Technical Report VA

Number 249

Computer Laboratory

A formalisation of the
VHDL simulation cycle

John P. Van Tassel

March 1992

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1992 John P. Van Tassel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Formalisation of the
VHDL Simulation Cycle

John P. Van Tassel!

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street
Cambridge, CB2 3QG, England.

Abstract: The VHSIC Hardware Description Language (VHDL) has been
gaining wide acceptance as a unifying HDL. It is, however, still a language
in which the only way of validating a design is by careful simulation. With
the aim of better understanding VHDL’s particular simulation process and
eventually reasoning about it, we have developed a formalisation of VHDL’s
simulation cycle for a subset of the language. It has also been possible to
embed our semantics in the Cambridge Higher-Order Logic (HOL) system
and derive interesting properties about specific VHDL programs.

tResearch supported under grant number AFOSR-91-0246 from the United States Air
Force Office of Scientific Research

Contents

1 Introduction

2 Overview of VHDL

3 Related Work

4 Philosophy

5 Intuition behind the Semantics
6 The Femto-VHDL Subset

7 The Semantic Framework

8 The Semantics of Femto-VHDL
8.1 Typesand Functions
8.2 Rules for Boolean Expressions
- 8.3 Rules for Sequential Statements, ..
8.4 Rules for Concurrent Statements

9 Femto-VHDL in HOL
10 Conclusions and Future Work
11 Acknowledgements

References

10

12

13
13
15
16
17

18
22
23

23

1 Introduction

When the VHSIC Hardware Description Language (VHDL) burst onto the
design scene, it was described as the solution to many existing problems. But,
when the language was designed very little thought was given to its formal
semantics, much less to using such a semantics to reason about individual
VHDL programs. The result has been a recent upsurge in research efforts
addressing precisely these problems. The following is a discussion of our
attempt to formalise the simulation cycle and timing model of VHDL. ‘

Our exposition will begin with an overview of VHDL’s history and uses
and will be followed by a précis of other work on the application of formal
methods to VHDL. We shall then explain the driving philosophy behind our
work. The semantics we have developed is then presented, and we conclude
with the description of some experimental results in the application of our
semantics to specific VADL programs.

2 Overview of VHDL

VHDL is a hardware description language (HDL) currently in use by a rea-
sonably large part of the design community. It is an event-driven simulation
language whose semantics is defined, at least informally, by the way in which
the various language constructs are evaluated by the simulation model [6].

To better understand VHDL and its place in current design practice, we
should consider the evolution of the language:

pre-1980°’s Chaos

This is a time period characterised by the existence of many proprietary
hardware description languages and simulators. Furthermore, no one
HDL is used throughout the entire design process. In many cases, ad-hoc
mechanisms are developed to translate between the tools and languages
in use at different stages of the design. This lead to increased confusion
and provided a further avenue for the introduction of bugs.

mid-1980’s VHSIC programme

The United States Air Force, a large consumer of custom electronics
obtained from a variety of vendors, is faced with the need to ratio-
nalise its procurement process. The primary concern is that all designs

5

submitted as a part of the bidding process are written in the same non-
proprietary HDLand meet certain design and documentation standards.
VHDL emerges as the language.

late-1980’s IEEE VHDL (STD 1076)

As a part of the VHSIC programme, large vendors such as IBM and
Texas Instruments take an interest in VHDL. That interest, coupled
with the growing need for an industry-standard HDL, causes VHDL to
go through the IEEE standardisation process and emerge as the language
in use today.

Since its introduction, VHDL’s use has spread to many areas of digital
design. While most of these applications are in the areas of design, there has
also been recent interest in synthesis directly from VHDL. The language in its
- current state is not generally amenable to this task, but it is anticipated that
modifications to the standard (VHDL’92) will overcome many of the problems.

3 Related Work

Past efforts at applying formal methods to VHDL programming were carried
out in the late 1980’s. These were intended to give additional simulation-time
assurance that particular VHDL programs were performing as anticipated.
One of these investigations led to the development of the VHDL Annotation
Language (VAL) at Stanford [2], which allowed the user to decorate a pro-
gram with specifications about its operation. Another of the early projects,
conducted by the present author, attempted automatically generate VHDL
assertions characterising the behaviour of VHDL programs using syntactic
analysis [11, 12]. |

More recent research has been directed at the verification of VHDL pro-
grams. To accomplish their goals, all these projects have necessarily had to
build up a notion of VHDL’s semantics. Temporal logic is currently in use at
the Aerospace Corporation as the framework in which their current research is
being conducted [5]. Other useful results are emerging from work being con-
ducted at IMAG in Grenoble on the application of more functional methods
to the problem [10].

4 Philosophy

Our formalisation of VHDL takes a rather pragmatic view. The semantics
of the language, as given informally in [6], emphasizes the way in which the
simulation behaves in the presence of events and transactions, and the way in
which language constructs are executed by that simulation model. Our plan,
therefore, is to codify these same principles more formally. The result not
only reflects the actual VHDL simulation cycle, but corresponds intuitively
to the way in which VHDL users think about the language. For purposes of
our research, it has been necessary to utilise only a subset of full VHDL. This
subset is extensible within the context of our semantics by simply formalising
the execution of the desired extensions by the simulation model of VHDL. It is,
however, sufficient to demonstrate the most salient features of the simulation

model.

5 Intuition behind the Semantics

Our intention is to formalise as closely as possible the simulation model of
[6]. To make this formalisation more understandable, we now explain what
actually takes place during the course of a VHDL simulation. We begin by
introducing a few definitions.

Event: A change in the value of a signal.
Transaction: The value that a signal should take on at a particular time in

the future. A transaction may (or may not) be converted into an event
at that time.

Point of computation: The point at which a particular collection of trans-
actions is processed.

Process: A VHDL concurrent statement equipped with a set of signal names,
or sensitivity list, guarding its activation.

Simulation cycle: The evaluation of all the processes in a program at a
particular point of computation.

MOVE TO NEAREST
INTERESTING POINT

UPDATE CURRENT STATE

PERFORM A SIMULATION
CYCLE

CALCULATE EVENTS

Figure 1: Progression of a simulation

The top-level simulation model of VADL may be viewed as a four step se-
quence, and is illustrated in Figure 1. We begin by moving forward to the
nearest interesting point of computation (i.e. one where there are transactions
to process), and set the current time to be the physical time unit associated
with that point of computation. The state of the signal values is then up-
dated by those that they are supposed to take on during the present point
of computation. We then move on to determine the signals for which this
update represents a change in value, or event. A simulation cycle is then per-
formed based on the our new state of the world. The cycle is then repeated
until there are no more transactions to process. We also present the following
pseudo-code as a more concise description of the simulation loop:

while transactions remain to be processed
go to nearest point of computation with transactions to process
update the state from the current transactions
determine which updates represent events
perform a simulation cycle based on new state and events
end while

‘The state referred to should be understood to contain the values of the indi-
vidual signals.

ACTIVATE PROCESSES RUN ACTIVES IN AMALGAMATE FUTURES
PARALLEL

Figure 2: Progression of a simulation cycle

We emphasize the use of the phrase “point of computation” above. While
one could often equate this concept with that of a time slice, a point of com-
putation is more than that within the context of VHDL’s particular simulation
model. One could, for instance, say that the points of computation P; through
P, represent the time units 1 through n. Alternatively, they could represent
1 through n é-delays between two major time units.

The concept of §-delay is the way in which VHDL deals with 0-delay signal
assignments. During each iteration through the simulation loop we are using
a static state of the world and are scheduling transactions to be performed at
some future time point. This scheduling applies to any transaction, whether
it is to occur at a delay offset zero units from now, or at some larger one.
Each time we go around the simulation loop (Figure 1) in zero time is called
a 6-delay. An individual 6 does not, therefore, represent a quantifiable unit
of time. Rather it is simply a simulator artifact.

As mentioned earlier, a component of the simulation loop is the performance
of a “simulation cycle”. The unfolding of such a cycle as shown in Figure 2
begins with the activation of those processes that are sensitive to any of the
current events. We then proceed to run these active processes in parallel.
During their execution, each process schedules transactions to be processed in
the future. When all the processes have terminated, we gather those separate
futures into an amalgamated view of future behaviour. The above steps are
again more concisely stated as:

determine which processes are active based on current events

run the active processes in parallel
join all activated process’ scheduled transactions into a collective whole

6 The Fémto-VHDL Subset

The VHDL subset that is used in defining our semantics is rather small (hence
the name “Femto-VHDL”), but it contains enough constructs of the language
to exercise the important features of the simulation model. We support only
one kind of VHDL concurrent statement, namely PROCESS statements with
explicit sensitivity lists. The sequential statements addressed are the IF-THEN-
ELSE conditional and the transport delay signal assignment. We assume that:

¢ Signals may only be Boolean-valued. This is for simplicity, and does
not impact our exposition of the simulation model in any way.

¢ Resolved signals are not allowed. The implication is that constructs
such as wired-and’s and wired-or’s are not permitted.

Given the-above listing of supported statements and assumptions, one can
ask what actually constitutes a Femto-VHDL program. At the outermost level,
" such a program is made up of one or more concurrent process statements, each
of which comprises some sequential statements. This structuring of constructs
is described by to the following abstract syntax for Femto-VHDL:

bezp = sig| not bexp | bexp and bexp | bezp or bezp | bexp nand bexp |
bexp nor bexp | bexp xor bexp | bexp xnor bexp | true | false

ss ; ss | bexp => ss | ss | sig := (bexp,dly)

cs || cs|sl: ss

88
(o]

(

bezp ranges over Femto-VHDL Boolean expressions, which are made up of sin-
gle signal names, or of compound expressions using the various VADL Boolean
operators. Sequential statements (ss) may be either two statements in se-
quence (;), a conditional statement guarded by some Boolean expression, or
a signal assignment statement that assigns a Boolean value to some signal
after some delay expressed in terms of the natural numbers. Finally, cs shows
the structure of concurrent statements. A concurrent statement may be either
two such statements in parallel (| 1), or it may be a single process composed
of a sensitivity list (s!) and sequential statements (ss).

We now present a pair of examples that demonstrate the abstract syntax of
Femto-VHDL and its relationship to real VHDL code. The translation between
the abstract syntax and actual VHDL is meant to be obvious and is raised
here to avoid confusion when results are presented later. The first example,

10

{¢} : ¢ := (NOT C,dly)

PROCESS (C)

BEGIN
C <= TRANSPORT (NOT C) AFTER dly;

END PROCESS;

Figure 3: A uniprocess oscillator

({H} : H := (NOT H,dly)) || ({H} : C1 := (H,0 NS))

PROCESS (H)

BEGIN
H <= TRANSPORT (NOT H) AFTER dly;

END PROCESS;

PROCESS (H)

BEGIN
C1 <= TRANSPORT H AFTER 0 NS;

END PROCESS;

Figure 4: A dual process oscillator

shown in Figure 3, is a uniprocess program that describes an oscillator with a
half-period of d1y. The second (Figure 4) is a simple extension of the previous
device which adds a second process representing a 0-delay buffer. While this
second example might seem contrived, it will be used to demonstrate certain
properties of the formal semantics later. Both examples are drawn from [1].

11

7 The Sémantic Framework

We now give a brief overview of the formalism to be used in defining the the
semantics of Femto-VHDL. In our semantics we will make use of a collection
of labelled transition relations in the style of [9]. Fach of these relations is
defined inductively as the least relation closed under a set of rules describing
the way in which different classes of Femto-VHDL constructs are evaluated by
the simulation model.

To better understand the concept of inductively defined relations, let us
examine an example taken from [4] using the even natural numbers. We
could define the properties necessary to describe even naturals to be:

1. 01s an even number.
2. if n is even, then n + 2 is also even.

These statements could be rephrased by the following set of deduction rules
~holding of a predicate even. Such rules are generally made up of hypotheses
above the line and the conclusion below it. As a point of terminology, rule 1
is an eziom as it has no hypotheses at all.

even n
(1) even ((2) even n 4 2

Since the rules correspond directly to the minimal properties required of the
even numbers, we can define even to be the least realation for which the
properties hold. It then follows by definition that even is satisfied by rules 1
and 2. Furthermore, because even is defined to be the least such relation, it is
a subset of any other relation satisfying these rules. The net result of all this
is that even describes only those values that it must describe to characterise
the even naturals.

If we wish to express that some relation P is closed under the rules for even,
the following characteristic statement is made:

(PO)A(Yn.PnDP(n+2)

Or, in the case of even itself we could define:

Vm.evenm =V P ((POA(VNn.PnDP(n+2))DPm

12

Now, if we wished to prove that some property P’ holds of even, we are
required to show that the set S = {n | P’ n} is closed under the rules for
even. Because even is defined to be the least such set, we have that even C S,
This means that the property in question (P’) holds of even.

The induction principle just used in reasoning about even is known as rule
induction, and is necessary for many proofs involving inductive definitions.
The way this principle is embedded in the HOL system is discussed in [§].

The rules for Femto-VHDL will be of the same form as those above, but
will be made up of more complex components. As mentioned, the formulas
will be elements of some transition system, the theoretical underpinnings of
which are given in [9]. In general, formulas will look like:

¢
env F a2 p

where 1797%¢ is the name of the transition relation, and F separates the envi-
ronment (env) used by the formula from the items being related (a and b).
Such a formula should be read, “in the environment env, a evaluates to b in
the relation trans”.

8 The Semantics of Femto-VHDL

We now present the rules used to describe the semantics of Femto-VHDL. A
good starting point is the rules that specify the evaluation of Boolean expres-
sions. We will then give the rules for Femto-VHDL sequential statements and
finish our exposition by formalising the operation of Femto-VHDL concurrent
statements. But, before introducing any rules it will be necessary to explain
the infrastructure upon which they are built.

8.1 Types and Functions

The types needed to make the semantics work are really very simple. They
were developed to correspond with VHDL users’ intuition about the structur-
ing of information in VHDL itself. We will make use of set theory in much
of what follows, as it is not only a convenient notation for expressing the
concepts that we are interested in, but also provides many simple operations
that capture the essence of the actions required by the semantics.

13

Three aliases are used to make what is explained later more readable. We
use the name “value” to represent Booleans, “time” for the natural numbers,
and “name” for signal names. By employing these aliases, we may define the
types used in the semantics as follows:

Type | Ranges Over Type
v | events (name) set
o | state (name X value) set

T | transactions | time — state
p | environment | (time x state X events)

Recall that an event is a change in signal value. ¥ is simply a collection of
signal names for which this is the case. State () is used to represent the
value of all the signals in a program. It is analogous to the “state” employed
in the algorithms of Section 5. Transactions (7) ensure a way of mapping
from future times to state, and will provide the underlying framework for
scheduling. Environment (p) is used to represent the static view of the world
~ in which a given simulation cycle unfolds, and allows us to keep track of the
current time for scheduling purposes, the current state of the signal values,
and the signals for which there are currently events.

Three functions are used in defining the semantics. The first is valcalc,
whose purpose is to calculate the value of a signal sig in a state o.

valcalc sig o = choice {val | (sig,val) € o'}

The function choice used in this definition selects an arbitrary element from a
non-empty set. The use of choice is justified here because the set from which
the choice is made will always be a singleton set (signals have unique values).

Whenever a signal assignment statement is encountered, it becomes neces-
sary to “post”, or schedule, a transaction to take place at some future point
of computation to effect that assignment. The function post does this, while
at the same time implementing the pre-emptive scheduling of transactions de-
manded by VHDL. post uses the current transactions 7, the signal for which
the assignment is to be made sig, the value that signal is supposed to take
on val, and the time at which that assignment is to take place t to create a
new version of future transactions by returning a function from time to state.
If the time supplied to this function is the one at which the signal assign-
ment is to take place, we return a set consisting of a “stripped” version of the
projected state with the given signal-value pair inserted into it, Otherwise,

14

we simply return the stripped version of the projected state. This stripping
process is performed by a function local to post called stripped, which in fact
does the pre-emption part of scheduling a new transaction. stripped, when
given a time ¢/, will return a version of our starting 7 in which all pending
transactions on signal sig have been removed when t” is greater than or equal
to the time at which the current scheduling is to take place. The function
insert below should be understood as simple set insertion.

post sig val 7t =
let stripped ¢ =
(rt") = {(z,9) | (&,y) € (") A (z = sig) A (t" > 1)}
n
Mt'if (¢ = t) then ((sig, val) insert (stripped t'))
else (stripped t')

The final function defined is employed during the execution of concurrent
statements. As we will see, each process makes use of the same starting 7
when activated and goes on to post new transactions into it. When two pro-
cesses finish their execution, it is necessary to combine their individual views
of future behaviour into an overall one. The function zip does this by return-
ing a function from time to state in which a set union is done at any given
future point of computation on the sets of signal-value pairs found there. It is
essential to bear in mind that this simple view of transaction resolution falls
apart when the restriction that signals not have multiple drivers is removed.
In that case the union would have to be replaced by a call to some function
which ensures that appropriate user-defined resolution functions are applied
to multiply driven signals, while continuing just to add to the global future
those which are not [6].

aipr =M. (7)) U (')

8.2 Rules for Boolean Expressions

The rules defining the semantics for the evaluation of VHDL Boolean expres-
sions (B29) are numerous but rather simple. The single unary operator (not)
applied to an expression e is defined to be nothing more than the logical
negation of whatever e evaluates to. A similar pattern arises for the binary

15

operators in rules b;; through by;;. It is only when we come to rule by;;; that
something interesting happens. Here we have an axiom stating that the value
of a signal sig in a given state ¢ is obtained by calculating its value using the
function valcalc described above.

Bool

Bool {b“}
r

o (not e) =%

Bool Bool

ot ey —= ockbe =y
o+ (eo and el)M(asz)

ocke=—7

{b;}

0"_60 Boolm 0‘|‘61 Booly

ok (eg or e) 2% (2 V y)

{bss;}

0'1_60 BOOI(U 0"—6]_ Booly

o F (e nand e1) 224 —(z A y)

{biv}

O'}"eo BOOI.GB 0'|_81 Booly

{by}

o F (eo nor e1) 224 —(z v y)

UI_BOBOOI:E 0}_8 Booly

o b (eq xor e1) =22 Bod] (zdy)

{bvi}

0,}_60 Boolm 0’[‘61 Booly

{bmz}

o (e xnor ey) Bool =(z & y)

{bysii }

o F sig Bool yalcalc sig o

8.3 Rules for Sequential Statements

The relation 2%¢ describes the evaluation of Femto-VHDL sequential state-
ments. The relation makes use of 229 in many places, and the ¢ that is em-
ployed should be understood to be the state component of the environment
in rules ss; through ss;,. Sequencing of Femto-VHDL statements is covered
in rule ss;, and the evaluation of conditionals is defined in rules ss;; and ss;;;.
The most important statement, from the point of view of describing the sim-
ulation model of VHDL, occurs in the postulation of rule ss;,. Here we show

16

what happens during the evaluation of a transport delay signal assignment.
For a signal assignment statement sig := (e, dly) where e evaluates to z in o,
the current time , and the current transactions 7, we say that the result of
performing the assignment are new transactions created by using the function
post to schedule into 7 the value z for signal sig at time (¢t + dly).

(ss:} pl—(sso,’r)“—g—egT pF (ss1, ’)Sﬂr”‘
2
pt (sso; ss1,T)S—eqwr’

ot e 2% true (t,0,7) F (sso,)“—g—: 7!

{ssii} 5

(t,o,7)F (e =>ss0 | s81,7)—37

ok e B2 Bool 299! false (t, o, "y) [(331,) :93;9 !
{sssis })
(tao-a'.)/)'—(@ => 88p | 8§81, T >___>7-

B
o el

(t,0,7) & (sig := (e, dly), 7) 5o post sig z 7 (t + dly)

{ssiv }

8.4 Rules for Concurrent Statements

The rules that describe the execution of Femto-VHDL concurrent statements
are really those which define how a VHDL simulation cycle works. Rule cs;
shows that if a process’ sensitivity list has no signals in common with the cur-
rent events (), then the process does not activate, and the transactions (7)
remain unchanged. If, however, there is an intersection (rule csiz-), then the
new transactions (7') are derived from the execution of the process’ sequential
statements using S¢4 Finally, when two processes are executed concurrently,
the resulting transactions are created by an application of zip to collect to-
gether the transactions derived by running each process separately. Note that
the execution is deterministic because we do not allow signals to have multiple
drivers (i.e. a signal name for which there is a transaction will appear at any
given time in either 7/ or 7', but not both). Syntactically, we require that
a signal not appear on the left-hand side of an assignment in more than one
process. If we remove the restriction, zip will have to be modified as described

in Section 8.1.

17

Cye (stN7) ={}

(t,o,7)F (sl :ss,7) =1

{cs;}

Seq

e.. (t,o,7)F (ss,7) — 7 o
{esii} (t,O',’y)l_(SlZSS,T)%T/ 1A #4)

pF {cso,T) Ll pt(cs1,T) Gy

{esiii}

Cyc .
p b {cso || esy,m) 25 7/ zip 7

9 Femto-VHDL in HOL

Having given the semantics of Femto-VHDL as a suite of inductively defined
relations, we may now use it to perform some experiments with actual Femto-
VHDL programs. Throughout the following examples, we will use the rules as
they are embedded in the HOL system. We have also coded the abstract syntax
of Femto-VHDL as a recursive type definition in the logic [7]. The semantics
can be viewed as an interpreter which “runs” Femto-VHDL programs by proof.
We will then be able to see what the characteristic future transactions are
which express the behaviour of a given program within some environment.
Note that the examples are coded in actual VHDL rather than the abstract
syntax which we have defined in order to ease readability.

In the first example, we will endeavour to show that a process with an absent
(empty) sensitivity list never activates, and therefore does not create any new
transactions. We make use of the following process (also taken from [1]).

PROCESS

BEGIN

C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;

If we create the following term in HOL, where p, 7 and 7’ are variables:

18

PROCESS
wp - (BEGIN) 9
C <= TRANSPORT (NOT C) AFTER dly; ’
END PROCESS;

! w

we can ask HOL to “run” the term to generate the following theorem (the
symbol |- signifies a theorem in HOL):

I-Vpr
PROCESS
BEGIN Cye
- T =
P { ¢ - TRANSPORT (NOT C) AFTER dly; T) =

END PROCESS;

(' =7)

Here we see that the theorem states that the future transactions 7/ are the
same as the initial transactions 7. The result is what we wanted, and demon-
strates that for any environment p the process never activates.

We now add a sensitivity list that will cause the process to activate whenever
there is an event on the signal C. In so doing, we would expect the process to
cause a transaction to be posted dly units from now that will give the signal
C its inverse value.

PROCESS (C)
BEGIN

C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;

As in the previous example, we first create a term in HOL that sets the process
up for an execution within the “¥¢ transition system. A point to note is that
we have given a somewhat more concrete environment this time. In particular,
we state that there is an event on C.

19

PROCESS (C)
BEGIN Cyec
,T) = T
C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;

“(now, 0,{C}) F (

Execution of the process leads to the following theorem, and the result of the
execution Is as expected.

|-V nowo 7 1.
PROCESS (C)
BEGIN Cye
C <= TRANSPORT (NOT C) AFTER dly; ,T) T =
END PROCESS;
(7! = (post ¢ ~(valcalc ¢ ¢) 7 (now + dl1y)))

(now, 0,{C}) F {

We see that the future transactions result from posting into the current trans-
actions on signal C its present inverse at dly offset from now. Special atten-
tion should be paid to the fact that the theorem holds for all now, o, 7 and
/. That is, it describes the characteristic behaviour of the process whenever
there is an event on the signal C. We should also note that dly can be just
0 NS. This reinforces the notion that é-delay is nothing more than a normal
occurrence of a standard simulation cycle rather than something special.

As a final example, we add a second process to our Femto-VHDL program
which inserts a 0-delay buffer into the system. We expect the behaviour of
our new program to involve the an application of zip to combine the future
transactions arrived at separately by each process. This result should be
characterised by the future transactions derived in the previous example being
combined with a statement about C1 always getting the current value of C.

20

PROCESS (C)
BEGIN

C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;

PROCESS (C)

BEGIN

C1 <= TRANSPORT C AFTER 0 NS;
END PROCESS;

As in the two previous examples, we create a term to express the relationship
we wish to investigate. Here again, we have declared that there is currently

an event on C.

PROCESS (C)
BEGIN
C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;
"(now,0,{C}) F{ ,7')927" :
PROCESS (C)
BEGIN
C1 <= TRANSPORT C AFTER 0 NS;
END PROCESS;

The result after execution is as expected. In particular we note that the
individual future transactions are combined using zip to form an overall notion
of the future. We also see that C1 takes on whatever C’s value is in the current
environment.

21

|-V nowo 1.
' PROCESS (C)
BEGIN
C <= TRANSPORT (NOT C) AFTER dly;
END PROCESS;
(now, o,{C}) F{ , TYy——1! =
PROCESS (C)
BEGIN
C1 <= TRANSPORT C AFTER 0 NS;
END PROCESS;
(7" = (post ¢ —(valcalc ¢ o) 7 (now + diy))
| zip -
(post €1 (valcalc ¢ o) T now))

10 Conclusions and Future Work

We have seen that the semantics of the VHDL simulator, in particular a single
simulation cycle, is a useful way of expressing the behaviour of individual
language constructs. We have also seen how this semantics can easily and
naturally be given as a collection of inductively-defined transition relations.
In doing so, we have made both unit- and 0- (or §-) time form a part of the
same whole, with no special interpretation required in the treatment of one
versus the other.

Using our formalisation, we have been able to animate the semantics as
an interpreter within the HOL system. This allows us to examine specific
Femto-VHDL programs and automatically prove concise theorems describing
their characteristic behaviour. We have, as a result of this embedding in HOL,
been able to see that our semantics relates closely to the intuition behind the
VHDL simulation cycle.

In future, we shall investigate ways in which different Femto-VHDL pro-
grams purporting to describe the same thing may be proved to be so under
some notion of equivalence. A case in point was raised in our discussion of
results: how do we know that the uniprocess oscillator and the dual process
one represent the same thing? The first task is, of course, to develop the

notion of equivalence itself.

22

11

Acknowledgements

I am grateful to Dr. Juanito Camilleri for his help in coming to grips with
this semantics. Further thanks are also due to Mike Gordon, Tom Melham
and Monica Nesi for their comments during the development of this report.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

R. Airiau, J.-M. Bergé, V. Olive, and J. Rouillard, VEDL: du Langage d la
Modélisation, Presses Polytchniques et Universitaires Romandes (1990).

Larry M. Augustin, Benoit A. Gennart, Youm Huh, David C. Luckham,
and Alec C. Stanculescu, ‘An Overview of VAL’, Technical Report CSL-
TR-88-367, Stanford University, Stanford, California (October 1988).

R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel, “The HOL Ver-
ification of ELLA Designs’, in: 1991 International Workshop on Formal
Methods in VLSI Design, edited by P.A. Subrahmanyam, (also Univ. of
Cambridge Tech Report 199, August 1990) Springer-Verlag (1991).

Juanito Camilleri, ‘Symbolic Compilation and Execution of Programs by
Proof: A Case Study in HOL’, Technical Repot 240, University of Cam-
bridge Computer Laboratory, Cambridge, England (December 1991).

Ivan V. Filippenko, ‘VHDL Verification in the State Delta Verification
System (SDVS)’, in: 1991 International Workshop on Formal Methods in
VLSI Design, edited by P.A. Subrahmanyam, Springer-Verlag (1991).

Institute of Electrical and Electronics Engineers, IEEE Standard VHDL
Language Reference Manual, IEEE Press, New York (1988).

T.F. Melham, ‘Automating Recursive Type Definitions in Higher-Order
Logic’, in: Current Trends in Hardware Verification and Automated De-
duction, edited by G. Birtwistle and P.A. Subrahmanyam, Springer-
Verlag (1988).

T.F. Melham, ‘A Package for Inductive Relation Definitions in HOL’, in
proceedings: 1991 International Workshop on the HOL Theorem Proving
System and its Applications, IEEE Computer Society Press (1991), in
publication.

23

[9] Gordon Plotkin, ‘A Structural Approach to Operational Semantics’,
Technical Report DAIMI FN-19, Computer Science Dept., Aarhus Univ.
(September 1981).

[10] A. Salem and D. Borrione, ‘Formal Reasoning About Signal Attributes
in VHDL’, in proceedings: VHDL Forum for CAD in Europe, Spring 1991
meeting.

[11] John P. Van Tassel, The Semantics of VHDL with VAL and HOL: Towards
Practical Verification Tools, M.Sc. Thesis, Dept. of Computer Science and
Engineering, Wright State University (1989). .

[12] John Van Tassel and David Hemmendinger, ‘Toward Formal Verification
of VHDL Specifications’; in: Applied Formal Methods For Correct VLSI
Design, edited by Luc Claesen, Elsevier Science Publishers (1990).

24

