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Summary

This dissertation is concerned with the design of the portable operating
system TRIPOS, and its use as the basis for an operating system to run in
'single connection' computers - that is, computers whose only peripheral is

an interface to a local area network,

TRIPOS is a lightweight, yet powerful, multi-tasking operating system
aimed at personal minicomputers. It is designed to be relatively
straightforward to transport to new hardware, providing an almost identical
user interface and program environment on each machine., Particular emphasis
has been placed on avoiding unnecessary complexity, in order to make i¢
simple to understand, explain, and adapt for special purposes. The majority
of the system and utilities are written in the language BCPL, and can be
moved without change to different computers. They run on a Kernel and
device drivers written in assembly language for each particular machine.
The user's view of the system is presented first, with samples of console

dialogue, and then its internal structure is described.

The main part of the work described concerns the building of a portable
operating system presenting user and program interfaces as similar as
possible to ordinary TRIPOS, but running in processors connected only to a
local area network - the Cambridge Ring. The system makes use of 'server!
computers on the Ring in order to gain access to disc storage, terminals, and
printers, Several methods are investigated for using the primitives
provided by a universal file server to construct a filing system which can
be shared by machines of different types. Some conclusions are drawn on the

effects of distributing operating system functions in this way.

-vii-




CHAPTER 1

INTRODUCTION

This chapter sets the scene for the rest of this dissertation by stating
the motivation behind, and aims of, the work described below. It outlines

the contents of subsequent chapters, and surveys other relevant research,

1.1 Motivation and Aims

The original motivation for the work described in this thesis was the
desire to write a simple but powerful operating system for personal
computers, which would be both easily portable to a variety of minicomputers,
and would avoid features and restrictions which had been found annoying in

manufacturers'! operating systems.

As the implementation of this operating system, TRIPOS, was nearing
completion, a local area network, the Cambridge Data Ring, became available
in the laboratory. Work then began on conversion of TRIPOS into a system to
run on minioompuﬁers with a ring connection as their only peripheral,
accessing terminal, dise, printers, ete., via other 'server' machines on the
Ring. The resulting system was designed to retain the portability of the
original, so that a user of the Ring could ask for 'a computer running

TRIPOS', and not need to specify a particular type of machine,
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1.2 Outline of Thesis

The work desecribed in this thesis falls broadly into two parts. Firstly,
the design and implementation of the portable operating system TRIPOS is
described. Secondly, an account is given of the use of a local area network
from TRIPOS, and the design of an operating system based on it for use in

personal computers whose only peripheral is the network.

Chapter two mentions the history of TRIPOS, giving the ground rules which
influenced its design. It then goes on to illustrate how the system looks
externally - i.e. to a user sitting at a terminal. The internal structure of
the operating system is explained in chapter three, which also includes some

conclusions on the merits and defects of its design,

The remainder of the dissertation is concerned with the interfacing of
TRIPOS to a local area network, the Cambridge Ring, and with the production
of an operating system to run in computers which have the network as their
only peripheral. Chapter four contains a brief description of the Data Ring
and computer interfaces to it. The Ring interface software for TRIPOS is

described in chapter five,

The next two chapters discuss the issues involved in using a network file
server to replace a local disc. In the past, file servers have usually been
designed specifically for an existing filing system. The Cambridge
Fileserver aims to be more general than this, so the opportunity was taken to
investigate different ways of implementing a filing system on an existing
file server. The first experiment was to use a single large Fileserver file
as an image of a real disc, and to retain the old file handler task; the
results of this are given in chapter six., Chapter seven describes a more
thorough approach, rewriting the file handler to take advantage of

facilities offered by the Fileserver,

The final steps to an operating system for 'single connection' computers
are described in chapter eight, which includes some conclusions on the
effects of distributing parts of the system. Chapter nine contains a

summary of the work done and some concluding remarks,




1.3 Extent of Collaboration

The original design and first few implementations of TRIPOS, described in
chapters 2 and 3, was a group project, on which I worked with Adrian Aylward,
Paul Bond, and Richard Evans, under the supervision of Martin Richards. My
particular area of work at this time was in the design and implementation of
the first full version of the TRIPOS kernel (for a PDP11), disc drivers, and

numerous commands and utilities. The comments on the system are my own,

Chapter four, on the Ring hardware, interfaces and protocols, is included
for completeness and to provide sufficient context for the following

chapters; the work described is not mine,

All of the Ring software for TRIPOS, the Fileserver-based filing systems,
and the creation of the operating system for single-connection computers,
are my own work. Inevitably, it relies on the work of others who have built
the Ring and interface hardware, and written servers for the Ring; they are
referenced in the text. The discussions of the Ring 'world', and of the

facilities provided by various servers, are my own.

1.4 Related Work

There are two main areas of research related to the work described in
this dissertation - the design of operating systems (especially portable
ones) for personal computers, and investigations into the distribution of

operating system functions over local networks.

1.4.1 Operating Systems

Many operating systems have been written for minicomputers in recent
years. This section concentrates on those which have some aims in common
with TRIPOS, in that they were designed to be portable, have been
transported, or are specifically for personal computers, Portable operating
systems is a fairly recent area of study. Most of the systems described

below were designed or first transported during the period that TRIPOS was




being developed. Thus they are presented for retrospective comparison with

TRIPOS, rather than because they strongly influenced its design.

0S6 [43] is an operating system designed by Stoy and Strachey at the
University of Oxford., It is a single process system for a single user and is
thus able to sidestep many problems which arise in more general systems,
The designers claim that the design of a satisfactory single-user system
should be the first stage in the production of a multi-user system, and that
it presents several interesting problems which should be solved before the
complexities of concurrent processing are faced. The original

implementation was for a Modular One.

As a deliberate act of policy, 0S6 was written entirely in one high-level
language. The designers considered that the ideal language would be one
that concentrated its resources around its control facilities, and left
matters concerning storage and representation very much to the programmer.
The language they chose was BCPL [37], which was compiled to an interpreted
code, The use of an interpreter reduced the effective machine speed by a
factor of 15, but left the designers free to concentrate on the structure of
the operating system, without being bullied by the idiosyncrasies of the
particular machine on which they implemented it. The operating system
contains only 17 words of virtual machine code, and the interpreter consists

of 250 intructions of Modular One machine code,

No special job control language was devised, BCPL being used at all
levels. The top level is not special; any program may load, obey, edit or

compile any other, to any depth.

0S6 is a very open system, with no privileged routines. This offers great
flexibility to the programmer, but means that absolute protection of the
system from its user is impossible, since anything may be overwritten at any
time. The problem of dealing with malice on the part of the user is avoided
altogether, as it is not possible in such an open system, and as the authors
considered it unnecessary in their sort of environment. However, the system
does check against the most common forms of accidental error. The store is

divided into two segments, making accidental overwriting of program very

.




unlikely,

086 1is notable for its I/0 streams, which are defined in a

device-independent way. It has the concept of stream functions, which take

one stream as argument and return a new one as result. This allows compound
streams to be built, which do arbitrary processing on data as they pass. The
system also aims for device independence by having its own internal code -
basically ASCII with the concept of underlined characters, and a special
code for '4 spaces'. Conversions to and from this code are done in the

device handlers.

As so much of 036 was written in a high-level language, it was likely to
be fairly easy to transport. Snow [U42] gives an account of moving it to a
Burroughs B1726 computer. This was partly achieved by adapting the target
machine to the operating system: it is a microcodable machine, and a
microprogram was written to directly interpret OCODE [37], the intermediate

code produced by the BCPL compiler.

The major changes needed to the operating system were those necessary to
reconcile its view of I/0 streams with the record-oriented Burroughs
hardware. Changes were also made to the object module format, the load and
unload routines, and the dump program. 0S6 internal code was abandoned and

replaced by EBCDIC, forcing minor modifications to a few programs.

Snow concludes that BCPL is particularly suitable for achieving
portability because it produces code for a well-defined virtual machine,
The fact that 0S6 was written in a highly structured way made it easy to
identify those places requiring modification, and to be confident that
changes would not have unfortunate side-effects. He also notes that since
0S6 is a rather rudimentary operating system, it does not require much

support from the underlying machine, making it simpler to move.

Another interpreted single-user system is SOLO [4], written by Brinch
Hansen primarily as an exercise in producing a reasonable-sized Concurrent
Pascal program. It is a system with a fixed number of processes, and was

implemented on a PDP11/45. Like 0S6 it uses its implementation language as




a job control language, and a program called from the console is not in a
special environment. Calling a command without arguments causes it to print

a list showing what it expects.

The Pascal compiled code is interpreted, and the system rests on a
machine code kernel of 4K words., The rest is written in Sequential and
Concurrent Pascal, System protection is achieved largely by compile-time
checking of access rights, so run-time checking is minimal and not supported

by hardware,

The filing system is flat, but each user has his own disc. Files are
typed, and are protected only against accidental overwriting or deletion.

There is a restriction that only one new file at once can be created.

It is possible for more than one program to want to read from the
terminal. Hence programs requesting console input identify themselves by

means of a prompt, and gain exclusive access for one line.

Brinch Hansen claims that it is worthwhile to write even a small
concurrent program in a high-level language that enables a compiler to check
data types and access rights, as this helps to eliminate time-dependent

errors,

Powell [32] has transported SOLO to a Modular One. He found three main
areas in which differences between that machine and the PDP11 caused
problems. Firstly, the Modular One had slightly less store. Secondly, it
had a different and less sophisticated memory management scheme. Thirdly,
it had no floating-point hardware, so some of the Pascal virtual code had to
be patched to use integer arithmetic. He concludes that, although in a
system supported by a special-purpose virtual machine it should be possible
to hide all the details of the real machine from the virtual code, in
practice such things as small word lengths or lack of floating-point

hardware can prove very costly to hide.

One of the first systems to be designed with portability in mind is
MUSS [12], which is a family of compatible operating systems for both large

computers and mini-computers. It supports multiple users, giving them both
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batch and interactive working. The designers directed their efforts not
towards producing an operating system which does "everything for everyone",
but towards making one which could be adapted to suit the requirements of

any individual user or installation.

MUSS is a multi-process, message-based system. The designers argue that
message-passing offers a significant number of advantages over
inter-process communication by data sharing, as it preserves the
independence of modules, and is more amenable to distribution over a network.
MUSS consists of a matrix of modules, with several versions of each one, so
that a range of compatible systems can be built, The designers found that
the requirement for several different versions of each module to exist and
be maintained simultaneously led to much cleaner specifications of the
modules and the interfaces between them. In fact, system specification
became the primary objective of the project, with a working implementation
as the second. To this end, the process of documenting each module was

largely automated.

MUSS is intended to support a potentially large number of user processes
(possibly several hundred). It has been implemented on a wide variety of
computers, including the MU5 and mu5 machines at Manchester University,

ICL 1905E, ICL 2900 series, PDP11/40, and MEMBRAIN MB7700.

MUSS consists of a set of processes executing on virtual machines
implemented by a central kernel. The designers considered two levels at
which machine independence could be attempted: at the
virtual machine / kernel interface or at the kernel / hardware interface.
The first is sufficient to lead to user programs and most of the operating
system being portable, The second is impractical because the kernel is
inherently machine-dependent anyway. However, the difficulty of producing
and maintaining a kernel for each machine is extremely high because of its
complexity, so they had to attempt some level of machine independence within

the kernel., This lead to the specification of a MUSS 'ideal machine'.




The designers were well aware that the effectiveness of this technique in
achieving portability is critically dependent on éhe ideal machine
interface, If this interface 1is set at too 1low a level, then
machine-dependent features start to permeate the logic of the operating
system, thus restricting the range of machines covered by the design. On the
other hand, if it is set too remote from the hardware, then the amount of

software required to emulate the ideal machine will be unduly large.

Peripheral control in the ideal machine is achieved by the use of
dedicated control registers (similar to those in PDP11 hardware). These are
emulated by a set of procedures to access the registers, and a set to handle
real interrupts and force virtual machine interrupts where necessary. The
ideal machine assumes that hardware support is available for two processor

states: user and kernel (supervisor),

Since real devices vary so much, it was decided to design ‘'ideal
peripherals' according to what was most convenient for the operating system,
leading to only two sorts of device: input and output. It later became
necessary to formalize several device-dependent functions and include them

in the ideal device specifications.

The designers of MUSS found that the address translation method was one
thing which could not sensibly be included in a single ideal machine
specification. It applies to every instruction, so is very expensive to
emulate on hardware which does not match the model. Instead, a family of
ideal machine interfaces was produced, including at first support for paged

and multiple base register machines.

Probably the nearest system to TRIPOS in aims is Thoth [5, 6], which is a
portable real-time system for mini-computers. It supports multiple
processes, multiple users, virtual memory, and swapping. The original
objectives were to investigate the feasibility of portable operating
systems for a specified class of machines, and to provide a tool for teaching
real-time programming of mini-computers. Further aims were to create an
environment which encouraged the structuring of programs as many small

concurrent processes, and a system which was adaptable to a variety of




real-time applications. It has been implemented on TI 990 and Data General

Nova computers,

The language chosen for Thoth is Eh, a derivative of BCPL which is
intended to conceal hardware idiosyncrasies while avoiding being a barrier
between the programmer and the hardware. The language includes statements
for enabling and disabling interrupts, and a "twit" statement for inclusion
of in-line assembly code. A function may be invoked as a subroutine or a

separate process,

Inter-process communication in Thoth is by means of messages with a fixed
length of 8 words. Primitive functions exist to send and receive messages,
reply to them, and forward them to other processes. The message-sending
primitive blocks execution of the calling process until the message returns,
meaning that a program which wants to continue executing while it has

messages outstanding must consist of several processes.

It is possible to set up a team of processes which share the same address
space, and thus may share data. Processes on different teams may not share

data. The unit of swapping is a team,

- Thoth aims to provide a reasonably uniform interface with peripheral
devices and files. The filing system has a tree structure, and has a
facility for mounting new disc volumes by grafting references to them into
the tree, There is the concept of a "mark" within each file, which

generalizes the notion of "end-of-file",

Programs running under Thoth can enquire about particular features of the
host machine, This environment information is provided in three ways.
Manifest constants are used for things known at compile-time, such as the
number of bits per word. Parameters known only at execution time are made

available as global variables, or through system function calls.

The authors of Thoth observed that it seems impractical to design system
software to be portable over all computers, and so aimed for portability
only over a restricted range of machines - the "Thoth domain". Description

of this domain documents assumptions made about the machine architecture in




the implementation language and in the machine-independent parts of the
operating system. The machine should have a word length of at least 16 bits,
it should be possible to store any word pointer in a word, and to address
consecutive words with consecutive integers. The machine should be a single
processor with interrupts and the means of disabling them, and should permit

implementation of a stack using a dedicated index register.

The small amount of assembly code (a few hundred instructions) in Thoth
is used for setting up interrupt vectors, handling interrupts, providing
intrinsic functions called by compiled code, and efficient versions of
frequently-used functions. Assembly code also occurs embedded in Eh
programs as "twit" statements. The designers refrain from estimating the
time taken to port Thoth, as their experience is limited to ports done by the

implementors themselves while the system was still evolving.

Thoth supports only one language. The authors consider that a major
deficiency of the system is due to the untyped nature of this language.
Since an integer is just a word, the maximum (assumed) value is 32767, which
leads to problems, for example, with the position pointer in large files,
The lack of a special pointer type leads to inefficiency on byte-addressed
machines, as a pointer is defined to be a word pointer. They plan to
introduce types to the language, and note that their desire for types is
based entirely on considerations of efficiency and portability over diverse
machines, They also intend to attempt to devise portable abstractions for

memory management and protection hardware.

By far the most widely used of the operating systems considered here 1is
UNIX [39, 40]. This is a multi-user operating system designed by Ritchie
and Thompson at Bell Labs, and originally implemented on a PDP11. They did
not set out to produce a portable system, but rather to provide a congenial
programming environment. Because UNIX is written in a high level language
(C - another derivative of BCPL), and has a concise and elegant structure, it
has proved feasible to transfer it to other machines. It has become very
popular, and positive feedback is likely to make it become more so - the more
installations there are, the greater the amount of useful software that will

become available to run under it, and so the greater the benefits of moving
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it to a new machine, Perhaps one should be careful when concluding that
wide use of a system means that it is inherently good; the merit of the most
universally used computer languages seems to be that everyone else uses them
rather than that they represent the best designs available. However, UNIX
has spread by demand rather than because it has been pushed by its

originators,

The designers of UNIX wanted to build a system that was simple, elegant,
and easy to use. They considered it important to make each program do one
thing well, and to make it straightforward for the output of one program to
become the input of another. Thus programs are viewed as tools, and a new
job can often be done by coordinating a suitable set of existing tools. The

use of textual formats for both input and output is strongly encouraged.

UNIX is a multi-process system which makes use of memory mapping and
swapping. New processes are created by fork operations to split existing
ones, Inter-process communication is by means of EEEEE - channels for
passing arbitrary streams of bytes. This mechanism is not completely
general, as a pipe must be set up by a common ancestor of the processes

involved,

There is a powerful command line interpreter (called the "shell"), Every
command runs in a new process, and the user chooses whether or not he wishes
to wait for it to finish before starting a new command. The shell provides
three standard I/0 streams: a standard input stream, standard output stream,
and console output stream. It is possible to cascade commands so that the
output stream of one becomes the input for the next, and they both run in
parallel, Hence it is sensible to write commands as "filters" - to take

text as input, transform it in some way, and produce text as output.

Files and devices are handled in a uniform way. The unconventional
approach is taken of regarding devices as special kinds of file and allowing
them to be retained in directories. A mounted disc volume can be grafted

into the filing system as in Thoth.
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UNIX contains about 1000 lines of assembly code, of which about 200 are
for efficiency only. The system calls are subroutines. There is no general
inter-process communication or synchronization scheme: the designers admit

this to be a weakness, but do not feel it to be important,

In his retrospective look at UNIX [40], Ritchie suggests a number of
reasons for its success. It is simple enough to be comprehended, yet
powerful enough to do most of the things its users want. The user interface
is relatively clean and surprise-free (but terse to the point of being
cryptic). It runs on a machine (PDP11) that is popular in its own right, and

a good deal of software is available to run under it,

He also lists some things it is not good at. It is not a real-time
system, as processes cannot be locked in memory, and cannot connect directly
to I/0 devices, Although pipes are sufficient for related cooperating
processes, they are not much use for multi-event processes, 1/0 appears to
be synchronous, but read-ahead and write-behind occur invisibly. In some
situations (e.g. network control) one would 1like to start several I/0

transfers, and wait for the first to complete.

Ritchie makes several recommendations to operating system designers. He
says that there is no excuse for not providing a hierarchical filing system
as it is useful, efficient, and easy to implement. He considers that a file
should consist of a sequence of bytes - the notion of a record being an
obsolete remnant of the days of punched cards - and that there should be
only one format for text files. Finally, he recommends that systems should

be written in a high-level language that encourages portability.

UNIX was ported from the PDP11 to Interdata machines independently by
Miller [25], and Johnson and Ritchie [40]. Johnson and Ritchie observed
that even programs in high-level languages tend to make assumptions about
word and character sizes, the character code, filing system structure and
organization, and peripheral device handling. They conclude that portable
programs tend to be good programs for reasons other than their portability,
and that although making programs portable costs some intellectual effort,

it need not degrade their performance.
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They decided to refine and extend the C language to make most C programs
portable, and to restructure the compiler so that it could be changed
comparatively easily to generate code for different machines. The changes
they made to the language were to allow types to be unions of other types,
and to add a TYPEDEF facility enabling types to be parameterized. They
wrote a program to check C programs, reporting on type rule violations,
dubious coding practices, and such things as uninitialized and unused
variables, Keeping type-checking separate from compiling is in keeping with

the UNIX philosophy of making each program do one thing well,

In porting UNIX to the Interdata, Johnson and Ritchie found that the main
problems were that their original routines for multi-programming turned out
to be unimplementable and had to be redesigned, that the stacks on the two
machines grew in opposite directions, the memory mapping hardware was
different, and so was the handling of processor traps. They also
encountered problems of byte-ordering within words when transferring files
between machines, and had to write code to reverse the order in those words
representing integers, They found that programs tended to assume an
integral number of bytes per word, and at least 8 bits per byte. They felt
inelined to make ASCII the standard character code for UNIX, as many
programs assume it. They point out that a problem when porting between
machines of very different size is that algorithms built into the system may
not scale well (just as suitable algorithms for sorting 10, 1000, or 1000000
things are different). Finally, they note that a system can be easy to

transport by virtue of being easy to change.

Miller's approach to porting UNIX to an Interdata machine was rather
unconventional, as he did it top-down in three stages. The first stage was
to transfer the C compiler and run-time library to run under an Interdata
operating system. He then moved the UNIX kernel and ran it as a privileged
user program on that system. Finally, he wrote the assembly code for the
interrupt routines, etec., allowing UNIX to be run on the bare machine. The
advantages of the top-down approach lie in the ease of extensively testing
each level as it is moved. The first stage allowed bugs in the C compiler to

be found. It also meant that several UNIX utilities (such as editors) could
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be made available under the Interdata operating system, to assist during the
rest of the project. The second stage allowed the main logic of the kernel
to be tested without being concerned with the detailed characteristics of
the hardware. Finally, the low-level routines could be tested using the
upper two iayers, in the knowledge that the latter were already working

correctly.

Miller too found that most of the changes resulted from implicit
assumptions about the C implementation, and recommended more rigorous
type-checking in the C compiler, and parameterization of machine-dependent
constants. He expressed some reservations about the general portability of
UNIX, as the PDP11 and Interdata are similar in some important respects, such
as being byte-addressed, having several general purpose registers,
interrupt-driven I/0 and segmented memory management, but concluded that the
project showed the value of the kind of careful and consistent design effort

that went into UNIX.

An unusual single-user operating system is described by Lampson and
Sproull [20]. Whereas most operating systems provide a kind of womb
(virtual machine) to insulate the user and her program from the harsh
realities of the outside world, this one is very “open", establishing no
sharp boundaries between itself and the user's programs, It offers a
variety of facilities which the user can reject, accept, modify or extend.

Both low-level and high-level components of the system are accessible.

The most important part of the specification of such a system is the
standardization of the disc representation of files and of the network
representation of packets. The price paid for flexibility is that any
changes to these representations require changes to several pieces of code,
possibly in different languages and/or maintained by different people. In
fact, the authors do not recommend standardization at this level when

processor speed and memory are ample.

This operating system was written for the Xerox Alto computer [47] - a
machine with 64K 16-bit words of memory and one or two discs, display, and

keyboard. The instruction set supports BCPL, which was used as the
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implementation language of this system. The system provides only two
processes: one for keyboard input, and one for everything else. There is no

scheduling or synchronization, as the keyboard process is interrupt driven,

This operating system can be viewed as a collection of procedures which
implement various potentially useful abstract objects, It is arranged as a
set of subroutine packages placed from the top of store downwards in
decreasing order of expected usefulness, so it is easy to selectively remove
different layers of the system. The kinds of abstract object available
include I/0 streams, files, storage zones and physical discs; each abstract

object can be represented in one BCPL word.

In such an open operating system, all communication between programs must
take place via the disc, A convention is defined for restoring the entire
state of the machine from a disc file, allowing an arbitrary program to take
control of the machine, Such programs are called "juntas". This leads to
an unusual coroutine structure, in which each coroutine switch consists of
saving the entire machine state, and then reloading the machine with another
saved state. The fundamental routines of the operating system are those
which do this saving and restoring. They live at the very top of store, but
should ideally be in read-only memory. The junta mechanism has found many
uses, such as bootstrapping, debugging, checkpointing a running program, and
activity switching. For example, a printing server could be split into a

printer and a spooler as coroutines,

The disadvantages of a very open system are that it is difficult to
change the representation or functionality of the filing system or
communications. It is also impossible to intercept all accesses to the
filing system or display - in order, for example, to direct them to a remote

system,

Another single-user operating system written at Xerox PARC is PILOT [34].
It ié a single language (Mesa) system for rather powerful personal computers
with an interface to a local network, and supports virtual memory, a large
"flat" filing system, multiple processes, and network streams. The Mesa

language contains support for coroutines, processes, and monitors.
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Pilot provides a basic set of services within which higher-level programs
can more easily serve the user and/or communicate with other programs on
other machines. It can be thought of as very powerful run-time support for
Mesa. It omits such things as character-string naming of files and
interpretation of wuser commands; these are provided as needed by
higher-level software. The user interface is via a bitmap display with

keyboard and pointing device.

The protection mechanisms in Pilot are defensive rather than absolute,
since in a single-user system errors are a more serious problem than
maliciousness., All the protection ultimately depends on Mesa type-checking.
The resource allocation features are not oriented towards enforcing fair
distribution of scarce resources. The virtual memory system gives a very

large simple linear memory, and everything runs in the same address space.

The filing system is flat in the sense that there is no relationship
between files. Files have 64-bit names that are unique in both time and
space over all incarnations of Pilot., A file is accessed by mapping one or
more pages of it into virtual memory. The file structures are such that the
filing system can be completely rebuilt even if the maps are lost. Devices
can be accessed through the Pilot stream facility or directly via a
low-level device driver exported from Pilot. Most I/O devices (except
discs) are available directly to clients. Streams have similar facilities

to those of 0S6 and UNIX.

The Mesa language supports communication between tightly coupled
processes by means of shared memory. Pilot has a communications facility
for loosely coupled processes (perhaps on different machines) consisting of
a hierarchical family of packet communication protocols. These protocols
are designed to be suitable for communication across multiple
interconnected networks., Communication software is an integral part of
Pilot because it is intended to be a suitable foundation for network-based
distributed systems. If both ends of a communication are on the same
computer, then the software will recognize this and avoid using the network.
This means that the communication facilities can be wused within

multi-process programs on an isolated computer. Such programs are easily
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split over several computers at a later date.

Pilot supports I/0 streams over the network, Usually, such streams are
asymmetric, with one end being considered a client and the other end a
server, Deleting such a stream causes no network traffiec, but just removes
the local record of it; it is left to the clients to have agreed termination

at a higher level,

Pilot was implemented by a team of 6-8 people in 18 months. They
attribute their speed to the use of the strongly-typed Mesa language, and

the use of small modules.

The authors of Pilot found that the context of a large personal computer
led to a reevaluation of many design decisions which characterize systems
designed for more familiar situations, This has led to a system which
provides sophisticated features but only minimal protection, which accepts
advice from client programs, and even boot-loads the machine periodically in
the normal course of execution., It provides an environment with relatively
few artificial limitations on the size and complexity of the client programs

which can be supported.

In a review of the development of Pilot [22], Lauer comments on several
of the design decisions. He says that an assumption behind the way virtual
memory was implemented was that disc accesses were expensive, leading to an
implementation making heavy use of queues and multiprogramming. In fact, on
two of the machines on which Pilot runs, disc accesses are cheap and it would
almost be more efficient to treat the disc as a synchronous device. The
stream fécility has not been widely used by either clients or implementors.
This is not because it does not work satisfactorily, but because the Mesa
language makes it more convenient to bind programs with procedural

interfaces, even over a network.
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" Typical of local networks are Ethernet [24], developed at Xerox PARC, and
the Cambridge Ring [17, 49]. The Ethernet consists of coaxial cable
structured as an unrooted tree connecting all the computers on it. Any
computer wishing to send a message listens to the ether for a while to check
that it is not being used, then transmits its message (or EEEEEE)' It is
possible that more than one station will decide to transmit at once. Both
transmitters and receivers can detect that this has occurred: transmitters
abandon the packet, wait a random time and try again, while receivers simply
discard any garbled packets., The maximum packet length is conventionally
limited to 500 bytes, to keep the latency of the network down. A packet may
be addressed to a particular station or broadcast to all stations. Packets
are delivered only with high probability, so applications which want an
error rate better than that of the raw network must employ protocols which

detect errors.

The Cambridge Ring is a loop of two twisted pairs of wire, around which a
few packets circulate. Each packet can hold 16 bits of data. A transmitter
sends data a word at a time by waiting for an empty packet to come past and
filling it. Each packet is addressed to a particular destination station;
there is no broadcast facility. A transfer unit of 16 bits is too small for
most purposes, and addressing to just a station is usually too coarse, so

data are usually packaged (by software) into basic blocks, containing

between 2 and 2048 bytes of data, and addressed to a software port of the

destination machine. The Ring is described in more detail in chapter 4.

Both of these networks have been used to build distributed systems based
on the "user - server" model [27], in which some machines are dedicated to
providing generally useful services such as printing or disc storage. Other
computers requiring these services may call on the server machines as

clients.

In most of these systems, users are provided with "workstations"
consisting of a mini- or micro- computer of moderate size, with its own

keyboard and display.
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1.4.2 Local Networks

The linking of individual computers so that they can directly communicate
can be achieved in a variety of ways. The method used and the tightness of

the coupling tend to be dictated by the distances involved.

At one extreme, when the computers are miles or thousands of miles apart,
they will usually be linked by telephone lines to form a 'wide area' network.
Typically the bandwidth of such lines is low compared with the rate at which
a computer can transfer data, the error rate is significant, and parts of the
network may fail. This necessitates an elaborate protocol and routing
mechanism to ensure that data gets through intact and in the right order, and
to provide flow control. A lot of the technology is concerned with making
the network as reliable as the computers connected to it. Thus
communication is expensive and is preferably done in fairly large units,

such as transferring a whole file or job,

At the other end of the scale are very closely coupled computers, in the
same room or even the same box, sharing main memory and peripherals.
Communication between machines is very fast and reliable, meaning that
protocols can be very simple. In such a setup, the computers are often all

of the same type, running the same software.

In between comes the type of network of interest here, the local area
network linking computers within a building or small group of buildings, up
to a maximum distance of a few hundred metres. The properties are
intermediate between those of the extremes mentioned above. The bandwidth
is of the same order as rate at which computers can supply data (e.g. 100,000
bytes/second), .and the error rate is low The principal cause of
communication failure is likely to be the failure of one of the computers
involved rather than the network, The overhead on communication is fairly
small, so it is reasonable to converse in blocks tens or hundreds of bytes in
size., There may be machines of several different types connected to the

network,
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For example, on the Ethernet at Xerox PARC, most of the workstations are
Alto minicomputers [20, 47] with Kkeyboard, high performance display,
pointing device, and one or two local discs. Each station can thus be used
as an independent personal computer, and is used in this way, calling on the
many services available from the network only when they are required. This
approach ensures that a network failure does not render all the workstations
useless, but makes the cost per station high. Some of the workstations are
built round the very powerful Dorado computer, running the Pilot operating
system which supports both a filing system on the local disc, and network

streams (see "Operating systems" above, and [34]).

In commercial networks, the tendency has been not to include a local disc
at each workstation, but to employ one or more central file servers for all
disc storage, thus reducing the cost of each station. Examples are
NESTAR [33], based on Ethernet, and Logica's Cambridge Ring system [451].
NESTAR is a network of Apple II microcomputers, The network is connected to
each user station through the machine's disc interface., Disc storage is
provided by a file server which is an Apple with floppy or Winchester discs.,
Printing servers are also standard Apples, so can be used as user
workstations when not needed for printing. The Logica network is broadly
similar, except that it is based on a ring, and makes use of different types

of computer for different functions,

The organization of the Ring in the University Computer Laboratory in
Cambridge differs from all the above in that it does not have workstations
with significant processing power. Instead, terminals are connected to the
Ring via small multiplexing computers, and can be used to access computers
across the Ring. One can log in to any of several multi-user computers in
this way. In place of the personal computer in each workstation is a pool of
uncommitted processors, which one may obtain exclusive use of, load, and
connect a terminal to, all via the Ring. This system is described more fully

in chapter 8.

An important way in which the various locally distributed systems differ
is in the abstractions provided by their file servers, or in other words, how

the job of implementing the filing system is split between client and
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server. The literature contains little information about how filing systems
are built on file server primitives, but concentrates on the design of the
servers themselves, This is probably because most file servers are built to

meet the needs of existing filing systems.

The simplest file servers provide facilities at a level quite close to
that of a local disc controller, They allow reading and writing of
information in units of pages. Any high-level filing system must be
implemented by code in each client, or by a separate "filing system server"

which clients use as an intermediary when talking to the file server.

An example of this simple kind of file server is WFS [46], built at Xerox.
WFS was written for the Woodstock office system, which had previously run
with local discs, and included all the software necessary to transform
access to physical disc pages into higher-level functions. The abstraction
provided by WFS was of files consisting of pages of 492 bytes each. Each
file had a 32-bit file identifier (FID). Each FID could be regarded as the
name of a virtual dise. There were commands for creating and deleting files,
and reading, writing and deallocating pages of them. Writing a page was done

atomically with high probability.

A1l communication with WFS was connectionless, consisting of a single
request packet and a single reply packet. All write actions were
idempotent, so could safely be repeated. WFS handled commands serially in a
single process, completing each before replying to the client, and thus
needed to maintain no state between requests that could not be regenerated

from the disc. This strategy also eliminated the possibility of deadlocks.

A simple facility for locking a file was provided, to permit a client to
make changes to several pages without others being able to see a

half-modified state.

A similar but slightly higher-level system is the Felix file server [131].
This provides similar abstractions to WFS3, but also allows atomic updates
over several blocks of a file, or over several files (a feature of more use

to databases than normal filing systems). It also allows more sophisticated
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protection of files. The FIDs are chosen from a large name space, making
them very difficult to guess. There can be several FIDs for one file, each

allowing different access to it.

At the other end of ﬁhe spectrum of file servers are those which
implement the whole of a particular filing system and provide an interface
allowing text-string naming of files, directory operations, and sequential
access to files, They essentially replace the filing system process in an
operating system. Most file servers in commercially available network
systems (such as NESTAR and the Logica Ring mentioned above) are of this
kind. Such a file server is usually also responsible for user
authentication: the user logs in to it, quoting his password, before being

allowed access to any files.

At an intermediate level come the Muniversal" file servers such as the
Cambridge file server (CFS) [3, 9] and DFS [44] at Xerox. Both allow random
access to arbitrary regions of files, support atomic updates to files, and
use nearly connectionless protocols. The CFS is described in chapter 7. It
is intended to provide an interface and structure at the highest level
common to typical operating system filing systems. It supports two sorts of

object:- the file - a vector of 16-bit words, and the index - a vector of

pointers to files and indexes. These exist to aid clients in the

construction of filing systems, without imposing any particular structure.

The DFS was intended as a basis for database research, so includes
support for atomic update of several files. It also differs from the CFS in
that it is distributed over several machines. DFS differs from all the
other file servers mentioned here in that it is not entirely passive: it will
send an unsolicited message to a client if it finds it necessary to break an
interlock that client holds, in order to avoid deadlock. Other systems also
break locks, but rely on the client discovering this when he finds that his
"key" no longer works. A comparison of the DFS and the CFS has been

published [26].
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.Much of the research on file servers is concerned with mechanisms for
atomic updates, transactions involving several objects, security,
maintaining integrity over crashes of client or server, and implementing a
server as several computers on the network. The aspect of file servers
which is of most interest in this thesis is the relative advantages of
splitting the work of the filing system at different points. To this end,
filing systems were built using the CFS in three different ways:- as a
virtual disc (chapter 6), as a provider of a files only, and thirdly making

full use of its facilities (chapter 7).

A very simple server like WFS makes each client contain all the code
needed to implement its filing system. However, the code to communicate
with the file server is likely to be small, as the possible requests are
simple and few. The code of the file server can also be relatively small and
simple, allowing more space for a cache of recently used dise blocks. Much
of the processing required is done in the multiple clients rather than in

the single file server, making good use of network resources,

A file server which provides a high level interface allows all of the
filing system code to be removed from each client, but the amount of
communication code is 1likely to increase substantially due to the large
number of different requests which can be made to the file server, The
amount of processing done in the server is increased, and so it is more

likely that it will be busy while all the clients idly wait for it.

A universal file server such as the CFS is a compromise between these two.
The client still has to build his particular filing system on top of the
rudimentary one provided, and the interface to the file server has a fairly
large number of operations available (about 20 for the CFS). Thus the
expected price for flexibility might be an increase in client code over that

for either the very simple or the very high-level file server,

McLellan's thesis [23] presents a detailed study of the issues involved
in designing a file server. He points out that a disadvantage of a medium or
low level file server is that it encourages development of various

incompatible filing systems upon it, leading to the unfortunate situation
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where the file server provides mechanisms for sharing files between systems,
but the contents of files cannot easily be shared. He also suggests that it
is unclear whether or not the file server's disc page size should be visible
to the client. Even if it is not visible, client programs will still tend to
be written to use this page size for reasons of efficiency. This was

exactly what was done when using the CFS as a virtual disc (see chapter 6).

A study of the effects of distributing the functions of a multi-user
operating system has been made by Dellar [7], who wrote a file server based
filing system for the CAP machine at Cambridge., He found that in this
machine, the amount of filing system code and workspace was slightly reduced,
and that as a conseqhence light-load performance was better than with a
local disc, because more free memory led to less swapping. The reduction in
storage requirement can be attributed to the fact that the CFS was designed

specifically with the CAP in mind [26].

A considerable amount of other work related to the work described below
has been done on the Ring in the Computer Laboratory in Cambridge.
References to this will be found in the text where the various servers, etc,,

are described,
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CHAPTER 2

A PORTABLE OPERATING SYSTEM

This chapter describes the design of TRIPOS, the operating system which
was used as the basis for the work described in later chapters. An external

view of the system is given - i.e. that seen by a user at a console.

2.1 History of TRIPOS

The original idea to write TRIPOS was due to Martin Richards, who began
work on it in late 1976. 1In the spring of 1977, he and Alasdair Scott (a
student on the Diploma course at Cambridge) wrote a prototype kernel for a

PDP11 computer.

The project gained new momentum in October of that year when four
research students joined it: Adrian Aylward, Paul Bond, Richard Evans and the
present author, Over the following months, the kernel was redesigned
somewhat, and a new version was running (on a PDP11 again) by the end of the

year.

Progress in 1978 was very rapid, with the four system tasks all working by
March., From this time, work‘began on implementations for two more computers
- the Data General Nova, and the Computer Automation LSI4., During that year,
numerous refinements and improvements were made, and many commands and

utilities were written,

During 1979, the members of the team began to concentrate on particular
aspects of TRIPOS, such as running languages other than BCPL on it [11], and
producing a version to run on memory mapped machines [2]. The author
investigated the interface of TRIPOS to the Cambridge Data Ring, and
designed and implemented the version which uses no peripherals other than

the Ring.
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TRIPOS has been put to several uses both at Cambridge and elsewhere., As
well as employment in its usual form as a general purpose operating system,
it has appeared in specialized forms for particular applications - e.g.
process control, data collection, and the File Server on the Ring [9].
Implementations now exist for PDP11, Nova, LSIH, General Automation 16/220,
IBM Series 1, and Motorola 68000.

2.2 Design Aims

The following points are those which the designers of TRIPOS set out to
achieve, They arose from the desire to create a system which was both
portable, and which did not suffer from features which had caused use of

manufacturers' operating systems to be difficult or annoying.

The type of machine for which the system was intended was the sort of
minicomputer which could be expected to be the personal computer of the near
future: typically with 28K to 64K 16-bit words, and floppy or hard dises with
a capacity of one half to twenty megabytes., The main design aims were as

follows; they are elaborated in subsequent sections:

- Portability

- Simplicity

- Friendliness

- Single User System

- Multiple Tasks

Portability

The prime influence on the design of TRIPOS was the desire that it should
be easy to move to a new machine. This suggested BCPL [35, 37] as a very
suitable language, as it had already been shown to be highly portable, and

was available on all the computers in the Laboratory.
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BCPL is a language of the Algol family, with good facilities for
controlling flow of execution, such as recursive procedures, conditional
commands and expressions, and cycle commands. It is unusual in that it has
only one data type - the machine word. A BCPL word may be conceptually of
any data type, such as integer, character or truth value, and operators exist
for all the normal operations on these conceptual types. BCPL's model of the
computer store is as a linear array of words with addresses which are
consecutive integers. There is an operator ('@') for obtaining the address
of the storage location represented by a BCPL variable. A word may hold an
address, and an indirection operator ('!') exists for accessing the contents
of the storage cell thus referenced. Structures requiring more than one
word of storage, such as text strings, may be represented in a single word as

a pointer to their real location,

Separately compiled BCPL programs communicate through a region of store

called the global vector, which is addressable by all of them, It is similar

to a FORTRAN COMMON block. Variables and routine addresses are held in this
vector at offsets known at compile time, so linking of segments is a
particularly simple process which can be done at loading time; no linkage
editor is necessary. In TRIPOS, this property is exploited to make the BCPL

library routines resident and available to all programs.

An important aid to making programs easy to move, even when all the
machine details cannot be hidden from the high-level language programmer is
that machine-dependent quantities should be easily parameterized. BCPL has

the concept of manifest constants to achieve this: these are named constants

with values known at compile time. Thus machine dependencies can often be
isolated into a number of manifest declarations at the top of a program, and
the symbolic names used throughout it, rather than writing explicit values

in the code,

BCPL is thus a language which provides many aids for the the programmer
in organizing his program, but does not get in his way. It enables him to do
almost anything he could do in assembly language. It is rather unsuitable
for the novice programmer, as its flexibility means that it can do little to

stop him writing nonsensical programs, but it is a powerful tool for the more
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experienced programmer.

The BCPL compiler is more portable than most because it is itself written
in BCPL and produces code (OCODE) for a simple hypothetical computer. The
only part of the compiler which need be rewritten for a new machine is the

code generator which translates OCODE to a particular machine code,

Because the BCPL compiler is straightforward to understand and change,
many installations run extended versions of the language. Alterations (even
small ones) to an existing language are not usually in the interests of
making programs more portable, even though that is surprisingly often
presented as the motivation for changes. Hence, the temptation to include
extensions for TRIPOS was resisted, and almost unadorned BCPL has been used.*
A result of this is that programs written under TRIPOS tend to be relatively

easy to move to other BCPL installations.

The characteristics of BCPL make it very attractive to the implementor of
operating systems., This is one of the few applications where the linear
mode of addressing used by most computer memories must be accessible in the
language; BCPL can treat addresses as data objects and do calculations on
them. The typelessness simplifies the treatment of various objects in the
operating system which are of uncommitted type, such as fields in

inter-process messages, and arguments passed between coroutines,

Stoy and Strachey [43] conclude that the ideal language for an operating
system should concentrate its resources around the control facilities, and
leave matters concerning storage and representation very much up to the
programmer. Thus they chose BCPL for 0S6., In fact, four of the operating
systems mentioned in chapter 1 (0S6, Thoth, UNIX and the Alto system) were

written in BCPL or closely related languages.

* The exception was the inclusion of the '3' operator for accessing
individual bytes in a vector, because its use can simplify and speed up so
many programs. However, this language extension is not widely available,
and has made necessary tedious changes when moving some programs to
non-TRIPOS environments.

28—




As far as possible, the TRIPOS system data structures both in store and on
disc are identical on different machines., In particular, all pointers are
stored as word addresses. Thus, BCPL code to handle these structures is

machine independent.

Making an operating system portable involves designing a virtual machine
on which the system is to run, and then implementing it on real computers.
There are two principal levels on which this can be done, Firstly, the
supervisor and library calls available to user programs should be the same
on all machines. However, it is possible to standardize the virtual machine
at the machine code level, and run an interpreter to execute compiled code.
This has the effect of reducing the size of compiled code, and the amount of
assembly language required for a new implementation, but seriously reduces
execution speed (by a factor of 10 or 15). 0S6 and SOLO use this approach,
arguing that the loss of speed is not very serious in a single user system.
TRIPOS was planned to be capable of real-time device control, so wants to use

the full machine speed and does not use interpreted code.

The area in which machines tend to differ most is in the methods of
driving peripherals and handling interrupts., TRIPOS hides these

differences 1in machine code device drivers, which present a standard

interface to the rest of the operating system in terms of packets (see

chapter 3).

Simplicity

TRIPOS aims to be easy to explain - both at the external "how to use it"
level, and in internal details of how it works. A related intention is that
modification should be straightforward. Several features of early versions
were later abandoned because they were over-elaborate without offering any

great advantage over the simple approach,

Thus fundamental operations such as task scheduling, message passing and
store allocation use simple algorithms, and most commands are not packed

with complex and rarely-used options,
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The whole system runs in one address space, making it simple to pass
around references to data structures, No attempt was made to use memory
protection, as it is not necessary in a single-user system, it complicates
the operating system and slows it down, most of the expected target machines
lacked hardware for it, and it does not appear to be possible to find a

portable abstraction for the mechanisms found on different machines [12, 5].

Friendliness

This is perhaps less easy to quantify than the other objectives. It
includes a variety of things, small in themselves, but which together can

strongly influence how pleasant a system is to use. Examples are:-

- A natural command language - based on English words and phrases
rather than incantations requiring odd characters.

- Type-ahead.
The console handler is always ready to accept and reflect input from
the keyboard, buffering it until requested by the currently selected
task. (Others systems will accept typed-ahead lines only sometimes,
or only if preceded by a special character, or accept it and direct
it to a random task, or accept but do not reflect.)

- Equation of letter cases wherever possible and sensible,
For example in commands and their arguments, filenames, program
source, and editor search strings.

Most people find lower case more pleasant to use when the
terminal supports it., It should not be difficult to work with lower
case text if one is forced to use a teletype sometimes,

- Long filenames (30 characters) and a hierarchical filing system.
This facilitates partitioning of work and storing it in files with
names descriptive of their contents. Filenames are recorded in the
case used when they were created - this can improve the legibility
of directory listings,

- A low tendency to corrupt the disc after a system crash.
The authors of TRIPOS found this not to be the case with
manufacturers' systems they used. The possibility of corruption was
kept very low by recreating the block allocation bitmap on each
system restart (so it could not suffer cumulative corruption), and
by checksumming blocks before writing, and the bitmap before
allocating.
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Single User, Multiple Tasks

TRIPOS was planned as a multi-tasking system for a single user. This
influenced several areas, and particularly led to the simple method used to
handle errors, with 'aborts' (see chapter 3) freezing the whole system. This
places it in the middle of the spectrum of portable operating systems
mentioned in chapter 1. Some of these (e.g. MUSS and UNIX) are systems for
machines with many users. At the other extreme are the simple single user
systems with a fixed number of processes and running on interpreters (e.g.
086 and SOLO)., TRIPOS runs compiled code, permits fast response to external
events, and allows dynamic creation and deletion of processes, while taking
advantage of the simplifications possible in a system not intended to

support more than one user.

The image was always of a single user at the console of his own machine,
aware of what he was running within it. The machines used for the original
implementations had no memory protection, so the operating system could not
be protected from the rampages of an untested program writing all over
memory. Hence, it was accepted that rebooting the machine would not be an
uncommon event during program development, and that this should be an easy

R
operation,

With only one user, there was no need for elaborate task scheduling to

share out the machine evenly, hence the simple algorithm chosen,

2.2.1 The dependence of TRIPOS on BCPL

TRIPOS was designed as an operating system for developing and running
programs written in BCPL. Some manifestations of this are mild, such as
system data structures being vectors of words with pointers which are word
addresses., In other areas, the implementation language is more firmly
built-in., Its libraries and run-time system are resident, a global vector

and stack are part of the structure of each task, kernel primitives look like

* Unfortunately, quick rebooting is to some extent in conflict with the
reconstruction of the disc allocation bitmap on each start,

-31-




BCPL functions, and DEBUG (see chapter 3) has knowledge of the layout of BCPL

code and stack frames.

The simplicity gained from this has probably been worthwhile, and the
language chosen is less restricting than most, though less kind to the naive
user. BCPL has been shown to be suitable for a wide variety of systems and

applications programs.

Other languages such as FORTRAN, Algol68C, Basic and Pascal have been
implemented successfully under TRIPOS, though each does of course need its
own library, and some contortions are necessary to make them run in a BCPL

environment, An account of this work is given by Evans in [111].

2.2.2 Use of assembly code

An early decision which had to be taken was that of how much of TRIPOS was
to be written in machine code. Superficially, it seems that machine code is
something to be avoided as far as possible; the more of it there is, the more
there is to be done when moving the system to a new computer. Some portable
systems have prided themselves on containing only a very small number of
assembler instructions written as such. However, this can be deceptive,
Machines are not the same, and the work has to be done somewhere; if it is not
in explicit assembler, then it is likely to be in extensions to the high
level language, consequently increasing the complexity of the compiler and

code generator,

For TRIPOS, it was agreed that a reasonable amount of assembly code would
be no great barrier to portability, and would be worthwhile ' in terms of
modularity, speed and size.* Thus, the system has a kernel and device drivers
written in machine code. These provide an environment which is defined at
the function-call and message-passing levels, and is machine independent.
For efficiency, more of the kernel than is strictly necessary has been

written in assembly language,

¥ 1In practice, the total amount of assembly code has been about 1500 words.
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2.3 TRIPOS as seen by the user

This section tries to indicate how TRIPOS looks to a user at a terminal,
An account presented in the form of an annotated console session can be
found in [36]. Both that paper and the text below describe TRIPOS on a
machine with its own disc and terminal; a corresponding example is given
later of the system which runs on single-connection computers on the Ring,

where all the peripherals are remote,

TRIPOS is loaded from disc using the normal bootstrap mechanism for the
machine, On starting, it issues some messages:-
TRIPOS starting

*¥%¥% Mounting "Alpha-0" for updating on unit 0
User:

The first message merely indicates that the system has started to run.
The second gives the name of the system dise, the number of the drive on
which it is running, and whether it is available for updating or just for
reading., The third line is requesting the name of the user's directory. The

response might be:-

User: brian
>

(User input is distinguished from machine output by being in bold type.)
The directory BRIAN has now been set as the current working directory.* The
command language interpreter (CLI) issues its standard prompt "> ",

indicating that it is ready to accept a command,

* The current working directory is that in which unqualified filenames are
looked up.
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2.3.1 Commands

The format of a command is the command name, possibly followed by some
arguments, which may be positional or keyed. There are no built-in commands;
a command name is the name of the file from which the compiled code of that
command should be loaded. The name is looked up first in the current
directory, and if that fails, in the system commands directory. Items within
a command are separated by spaces; commands are separated by being on

separate lines or by semicolons (;).

For example, the DATE command can be used either with an argument to set

the system date, or without one, to print the date:-

> date 27-mar-81
> date

Friday 27-Mar-81
>

2.3.2 Command argument decoding

The majority of commands use the library procedure RDARGS to read their
arguments. RDARGS is called with a format string describing the expected
arguments. The string consists of a series of keywords, possibly qualified,
and separated by commas. Each keyword takes a single argument, delimited
either by spaces or double quotes (") - used if the argument contains spaces
or semicolons, The argument is separated from the keyword by spaces or an

equals sign (=),

Keyword qualifiers come after the keyword, and have the following

meanings:
/A This argument must be given (but the keyword is optional)
/K If the argument to this keyword is given, then the keyword must be
quoted.
/3 The keyword is a switch; it takes no argument.
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These qualifiers may be used in combination: e.g. KEY/A/K means that both
keyword and argument are compulsory. If a keyword is unqualified, then both

argument and keyword are optional.

Synonyms for a keyword may be included using equals signs; any qualifier

applies to all the names for the keyword.

For example, the form of a command ABC could be given as:

ABC "FROM=SOURCE/A,TO,OPT/K,QUIET/S"

The command has a compulsory argument which may be positional, or keyed
by FROM or SOURCE. It has an optional argument which may be positional or
keyed by TO. It has another optional argument OPT, which must be keyed if it
is included, and a switch QUIET,.

Thus possible ways of using the command ABC would be as follows:

ABC FILEA
ABC FILEA FILEB OPT X

ABC SOURCE FILEA TO=FILEB QUIET

A useful feature of RDARGS is that if a question mark is typed instead of
the command arguments, then it prints out the format string, and waits for
the real arguments to be typed. Thus, most commands can be made to indicate

what parameters they are expecting. For example, using the assembler:-

> asm ?
PROG=FROM/A,CODE=TO,VER/K,LIST/S: from asmprog to asmcode ver log
>
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2.3.3 The system tasks

For simple use of TRIPOS, the user need not be aware that it is a
multi-tasking system, By default, all his input is directed to the CLI,
which interprets it as commands. In fact, the standard system has four
resident tasks, plus one which is there immediately after booting, but which

kills itself soon afterwards.

The STATUS command is used to find out what tasks exist, and what they
are, If this command is executed soon after starting, the result is as

follows:-

> status

Task 1: running CLI Loaded as command: STATUS
Task 2: waiting DEBUG

Task 3: waiting COHAND

Task 4: waiting DISC

Task 5: waiting RESTART

>

The name printed for each task is that of its principal code section.

CLI is the command language interpreter
DEBUG is the interactive debugging aid
COHAND is the console handler

DISC is the file handler

RESTART is the filing system's restart task

After a few tens of seconds (depending on the speed of the disc and the
number of files and directories on it), the fifth task finishes and deletes
itself. A call of STATUS then gives only the first four lines of the output

above.

The user can direct typed input to tasks other than the CLI. This

facility is described in the section on the console handler.
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Console Handler

The console handler task is described first, as it is the one which the
user encounters first, and because some of its features should be mentioned

before showing how CLIs and DEBUG are used.

The console handler provides input line reflection and editing, input
line buffering, management of output lines, the ability to set task attention

flags, and input characters not available directly from the keyboard.

It is always ready to accept input, and a partially-typed input line
holds up output., If typing of an input line is started while an output line
is being printed, then reflection is delayed until the output line is
complete, Corrections to an input line may be made by rubbing out
characters, or by deleting the whole line. A line is not transmitted to the
selected task until it is terminated by one of the characters 'carriage

return'or'escapeh*

Input lines may be typed before the current task is ready to read them.

In this case, they are buffered until requested.

Output lines are normally accepted from any task, and are printed in the

order received.

The character '€' is treated specially. Sequences starting with this
character are used for two purposes. Firstly, some such sequences are used
for input of characters that may not be available on all terminals - e.g. 'év'

for "' (vertical bar). An '@ character is put in as '@@’,

Secondly, other sequences are used to give commands to the console
handler itself: e.g. '@L' to rub out the current 1line, '@F' to free all

typed-ahead input lines,

¥ 'Escape' sends the line, but nothing is reflected to the terminal. Hence,
the cursor remains in the same position,
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Input 1lines are directed to the currently selected task. This is

initially task 1, the CLI, but can be altered by means of the escape sequence
8Snn, where 'nn' is the number of the new target task. For example, €502

selects task 2, the debug task.

Whichever task is selected for input in the above manner, output is
allowed from any task. An alternative method of task selection is by means
of the escape sequence @Tnn; this acts like @3nn, except that only task nn is
allowed to write to the console, Output from other tasks is held up until it

is explicitly permitted again.

Some of the task attention flags (see chapter 3) may be set in the

current task directly from the console, providing a quick way of signalling
to that task. The characters control-B to control-E set flags 1, 2, 4 and 8
respectively. Most commands respond to control-B by quitting immediately;
the CLI tests the control-C flag between commands, giving a clean way of

aborting a command sequence,

Command Language Interpreter

The command language interpreter is the task to which console input is
normally sent. It executes commands serially, with each command running as
a coroutine (see chapter 3) of the CLI. This means that the command has its
own stack, with dynamically chosen size. If the CLI were to call commands as
subroutines, its root stack would have to be large enough to accomodate the
command with the largest stack requirement, and this space would remain

allocated even when no command was running.

Since coroutines within a task share the same global vector, commands run
in the environment of the CLI, and can use the input and output streams which

it provides.

The command name (i.e. the first word in a command) is treated as a
filename, which is looked up first in the current working directory. If the

name is not found there, or is found but does not refer to a file containing
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an object module*, then the name is looked up in the system command directory

(SYS:C by default; it can be altered).

The CLI can run interactively or non-interactively (e.g. after the RUN and
C commands described below). In non-interactive mode, commands come from a
file or store buffer; when that is exhausted, the CLI reverts to interactive

console input (if a stream is present), or commits suicide.

DEBUG

DEBUG is a general debugger for use under TRIPOS. It allows inspection
and alteration of any store location, and has knowledge of TRIPOS structures
and BCPL routine and stack frame layout, so can be used to investigate TRIPOS
and programs running under it, Facilities include printing a backtrace of
routine calls within a task, giving the source names of the routines, setting

breakpoints, and selectively holding and releasing tasks.

DEBUG has two modes of operation, called task mode and stand-alone mode,

Task mode is the normal one, when the rest of TRIPOS is running, and DEBUG
is just a task within it (conventionally task 2)., The user can elect to talk
to DEBUG at any time by using the console escape sequence €502; he can then
inspect other tasks while they are running, perhaps to see how variables
within a task are changing. Any task may be held, so that it can be seen in a

static state, with the rest of the system left running.

There are four ways in which DEBUG can be entered in stand-alone mode:-

(1) After an abort

(ii) When a breakpoint is encountered

*¥ This strategy is included because the names of several standard commands
clash with names which may be desirable for sub-directories or text
files. For example, many directories contain sub-directories called
"bepl" and "asm",
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(iii) If a task abort is forced by typing control-A

(iv) By Jjumping to its stand-alone entry point using the machine's
handswitches or console,

In stand-alone mode, the rest of the system is frozen, interrupts are
disabled, and all communication with the terminal is performed using the
routines SARDCH and SAWRCH in MLIB. All the normal DEBUG commands are
available, and, unless entry was by method (iv), running of TRIPOS can be
continued with or without holding the task which aborted or encountered a

breakpoint.

Calling stand-alone DEBUG from the handswitches is usually used only
after a severe crash, when some vital area of store has been overwritten and
TRIPOS cannot run. It relies on very little of the system being intact in
order to work, so can often be used to gain some post-mortem information on

what happened.

To save on use of store by resident tasks, a small version of DEBUG can be
installed instead of the full one. This provides only basic handling of
aborts, but does have a command for loading the full version, if required.

DEBUG is also available as a command.

File handler; Filing system

The file handler task provides an interface to the disc in terms of named
directories and files., Each directory may contain an arbitrary number of
files and other directories, giving a tree-structured filing system. It is
a strict tree - for simplicity, a file or directory may not be retained in
more than one directory, so there are no loops or shared subtrees, There is
a single root directory for the disc; conventionally, this holds the main

system directories, and users' personal directories.

Filenames consist of a series of components separated by dots describing
the route to be taken from the current working directory to reach the file.
Each component is a sequence of letters, digits and/or '-' characters, and may

be quite long (up to 30 characters), Thus, the file "prog" in the
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sub-directory "bepl" of the current directory could be typed with the

following command:-

type bepl.prog

It is possible to indicate that a path name should start from the root
directory of the disec, rather than the current directory, by starting it with
the device name ':'. For example, the standard BCPL library header is Kkept in

the file "libhdr" in the directory "g" in the root directory. The command

type :g.libhdr

would type it regardless of what directory happened to be set at the time,

From BCPL, files are opened in the conventional way with library routines
FINDINPUT and FINDOUTPUT. Data may be transferred on the resulting streams
either a character at a time, using RDCH or WRCH, or in blocks of words, using

READWORDS or WRITEWORDS.

The file handler provides directory operations to delete and rename files

and directories, and to create new directories.

The filing system combines simplicity with a general freedom from
irritating restrictions. There is only one file type - essentially a vector
of bytés or words which are written and read back without interpretation,
meaning that there is no need to treat binary data specially. There is no
limit on the length of a file, or on the number of entries in a directory
(other, of course, than that imposed by the capacity of the disc). Although
the length of filenames is limited, the limit is sufficiently large that it
does not discourage the use of filenames which describe the contents. The
ability to have an arbitrary tree of directories means that related files

can be tidily grouped.
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File Handler Restart

The file handler restart task starts running when the system is booted.,
It serves two purposes: to create a bitmap for the file handler, showing
which disc blocks are allocated, and to do some checking of the integrity of

the disc.*

While restart is running, the file handler does not allow any operations
which would involve writing to the disc. There are two reasons for this.
Firstly, it cannot write to files because it does not yet have the bitmap to
tell it which disc blocks can be allocated. Secondly, it should not alter
any directory until all of them have been checked. However, it will allow
anything which only reads from the disec. Thus, when the system first starts
up, the user does not have to wait for restart to finish before he can start
to use it. He can load commands and other programs, set the date and time,
type files, and examine directories, When restart finishes, it issues

messages to announce this and to indicate the amount of disc used:

¥%% WALPHA-O" validated
%% 22 directories, 157 files, 77% utilization

The restart task then kills itself, The system is now fully started,

files can be written and directories altered,

An extra job done by restart is that of setting the system date and time
if they are not set explicitly. As it scans all the files and directories,
it notes the latest date and time of creation of any object on the disec. If,
when it is about to finish, the date and time have not been set, it sets them
to this value. This means that time does tend to move forward monotonically
when the machine is rebooted. Even though the time will not be accurate, it
will be possible to see in which order files were created, for instance, and

that is a property which usually matters more than the exact absolute times.

¥ It is not an exhaustive check of the disc; each directory and the first
and last blocks of every file are inspected, This will catch most forms of
disec corruption, and is much cheaper than a full scan (in both store and
time).

~4o-




This does introduce a potential problem; if the system date accidentally
gets set to a future value, then there is a danger of this getting recorded
as the creation date of many objects, and so being set again on the next
restart., In practice, this has rarely caused difficulty, and the convenience

of the automatic date setting is worth the potential danger.

2.3.4 Command sequences; the C command

As well as reading commands from a console stream, a CLI can take commands
from a file., This enables a sequence of commands to be stored, and then
executed without typing them all in again. The CLI is in non-~interactive
mode whilst reading from a file; in this mode it does not issue prompts. The
mode can be tested by commands which may chose to behave differently

according to whether or not they can expect interactive input.

The normal means of executing a command sequence file is to give the

filename as argument to the C command., For example:-

> input to seq
echo hello
echo there!

/%

> ¢ seq

hello

there!

>

(ECHO is a simple command which just prints its argument.)

A further feature of the C command is that it will perform parameter
substitutions in the command stream before execution, making it possible to
create more general command sequences., This facility is used by beginning
the file with a directive line starting with ".K" and containing a string in
RDARGS format describing the expected arguments. The value of an argument
can be substituted for the name by enclosing the name in angle brackets '<'
and '»'. A default value may also be given inside the brackets, separated

from the name by a '$',
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For example, the following is a command sequence file which compiles a
specified program from the sub-directory "bepl", putting the object code in
a file of the same name in sub-directory "obj" by default, or elsewhere if a

name is given. It also prints a message, verifying what it is doing.
.k name/a,to/k

echo "Compiling <name>"
bepl bepl.<name> to <to$obj.<named>

Suppose this were kept in the file "comp"; it could be used as follows:-

c comp prog
¢ comp from prog

¢ comp prog to :c.prog

Several commands exist designed for use within command sequences - e.g. to
execute commands conditionally on the value of parameters or other
conditions, and to terminate the sequence if any command gives a return code

exceeding a certain level,

The "control-C" break flag (= task flag 2) is tested between commands,
and can be used to stop a command sequence cleanly at the next command

boundary.

2.3.5 The RUN command

An alternative method of using a CLI non-interactively is provided by the
RUN command, This creates a new CLI task which then executes the remainder
of the the RUN command line (so a RUN command cannot be terminated by

semicolon). After executing that line, the extra CLI task goes away.

This is an easy method of running any command, or group of commands,
asynchronously to the main CLI, leaving that free to accept further commands
from the user., The created CLI runs at low priority, so RUN effectively

creates a background job,
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For example, printing a file in the background, and using STATUS to look
at the tasks:-

> run print :g.libhdr; echo "printing finished"

> status

Task 1: running CLI Loaded as command: STATUS
Task 2: waiting DEBUG

Task 3: waiting COHAND

Task 4: waiting DISC

Task 5: interrupted CLI Loaded as command: PRINT
>

After a while, printing finishes, the echo message comes out, and STATUS
shows that the task has gone away again:-
> printing finished
status
Task 1: running CLI Loaded as command: STATUS
Task 2: waiting DEBUG
Task 3: waiting COHAND

Task 4: waiting DISC
>

RUN copies some environment from the current CLI into the new one. 1In
particular, it uses the same current and command directories, the same

command stacksize, and the same console,

2.3.6 Multiple CLIs; the NEWCLI command

It is possible to have more than one interactive command program
available under TRIPOS. The command NEWCLI creates another CLI task, which
announces that it has started, then waits for input from the console. The
user chooses which CLI he wishes to talk to by using the console handler's

"@3nn" or "@Tnn" task selection mechanism.

This facility provides very simply much of the convenience of being able
to log on more than once to a multi-user system. It means that while one CLI
is tied up in a long interactive command, such as the editor, others can
still be available for inspecting files and directories, printing, and so on.
Other operating systems which allow the running of several interactive

commands at once do not allow the user to direct his input (e.g. SOLO).
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Instead, each time an input line is expected, a prompt is printed to indicate
which program will receive it. It is thus unsafe ever to type ahead in such
systems, because one cannot be sure to which program the input will go. It
is also impossible to talk exclusively to one of the running programs and

ignore the others,

For instance, consider referring to a header file while editing a program,
The user decides after starting that he wants to work with two CLIs. He
makes use of the fact that CLI prompts are printed out by the BCPL routine
WRITEF, and that the first argument is the task number, to give his two CLIs
distinct prompts:-
> prompt "&n> "
1> newcli

1> New CLI task 5
5>

He carries on working in CLI 1, and later edits his file "myprog". While
editing, he goes to the other CLI to type another file, in order to check the

name of a manifest constant.

1> edit myprog [issue EDIT command to CLI 1
Edit ready [message from editor
1/factor/ [EDIT command to locate string
127,
X := size * wadgetfactor [found on line 127
8s05 [direct input to task 5
5> type myhdr [type a file in CLI 5
MANIFEST
$(
blocksize = 10
maxchars = 19
widgetfactor= 42
$)
5> @s01 [back to task 1 (still in EDIT)
e/wa/wi/ [exchange strings
127.

X := size ¥ widgetfactor
{windup EDIT

T




NEWCLI copies some CLI environment in the same way as RUN, An extra CLI

created by NEWCLI can be removed by causing it to execute the ENDCLI command.
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CHAPTER 3

THE STRUCTURE OF A PORTABLE OPERATING SYSTEM

The previous chapter gave the design aims and history of TRIPOS, with a
description of some of the facilities offered, and what it is like to use.
This chapter gives an account of the internal structure of the operating
system, and the reasons behind the design decisions made. The system is
described in some detail. Portability of an operating system is achieved by
cdnstructing it in such a way as to conceal low-level hardware features, and
it is necessary to go into some detail to explain properly how this has been
done, The description also provides the background necessary for later
chapters which describe how the same structures and primitives were used to
build a network-based version of the operating system. The simplicity of
TRIPOS makes it possible to include a fairly complete account of its

structure.

As many of the areas considered below are interrelated, it has proved
necessary to mention some things before they have been fully explained. The
diagram gives an overview of the components of TRIPOS, indicating with

arrows which modules call which others.

The linking together of a system is explained, and there is a discussion
of what is involved in producing an implementation of TRIPOS for a new
computer, and the portability problems which. have been experienced.
Finally, some retrospective comments are made on the design of TRIPOS in the
light of several years of use, and it is compared with other portable and

single-~user operating systems.
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3.1 The Kernel

The TRIPOS kernel is a collection of BCPL-callable routines and other
pieces of code which provide a machine-independent interface to the
BCPL-written parts of the system. It is written in assembler, and is the
largeSt assembler component of the system. It contains both code which is
inherently very machine dependent and so is most conveniently written in
assembler (e.g. code to start up the system, and to save and restore machine
state on task switches and interrupts), and also code which runs outside a
BCPL environment and/or is executed very frequently so needs the speed of
machine code (e.g. the task scheduler). The kernel also contains some

system data structures, such as the root node,

The kernel contains the following components:-

(i) The Root Node.
This is the base of all the system data structures.

(ii)  The Task Selector.
The low-level scheduler, which decides which task to run next
whenever one ceases executing.

(iii) The library of kernel primitives.
This is a set of BCPL-callable functions - the supervisor calls of
TRIPOS.

(iv) The Idle Task. This is a dummy task (it does not have a BCPL global
vector or stack) with lowest priority. 1Its TCB and code (usually
only one instruction) are built into the kernel,

(v) The Clock Interrupt Routine.
This both maintains the date and time fields in the root node, and
implements the timer device,

(vi) Entries to stand-alone DEBUG. These include the 1lowest 1level
handling of aborts and breakpoints, and the entry available from the
handswitches.

(vii) System start-up code.
TRIPOS starts executing in the kernel. Most of the actions
performed are machine-dependent, but include resetting all
peripherals, initializing the TRIPOS devices, starting the clock,
and starting the initial task.
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(viii) Interrupt and trap vectors,
On machines with vectored interrupts, the vectors are all initially
gset to point to kernel code which will enter stand-alone DEBUG to
produce an error message.

The kernel usually consists of one absolute and one relocatable code
section. The absolute section contains the parts which must be loaded into
particular locations (such as interrupt vectors), and things which are put
at fixed addresses so that they are easy to find (e.g. the root node, and the
handswitch entry to DEBUG). The relocatable section contains all the rest

of the kernel,

3.1.1 Kernel Primitives

The kernel primitives are a set of routines which can be called from BCPL,
and provide the supervisor calls of TRIPOS, thus implementing the portable
virtual machine environment. They are written in assembly code for a
mixture of reasons. Some need close contact with the underlying hardware,
to access the registers, to call machine code subroutines in the device
drivers, or to save a BCPL environment and call the task scheduler. Others
are in machine code because they are called very frequently and the overall
efficiency of the system depends on them. Nearly all of the primitives run
with interrupts disabled, as they manipulate system data structures, though
none disables interrupts for very long at a time. It was a policy decision
not to provide BCPL-callable routines to disable and enable interrupts, as
their careless use could cause havoc in the rest of the system (deadlock, or
loss of device interrupts), and as they are unnecessary anyway. A task can
execute indivisibly with respect to other tasks simply by changing its

priority to the maximum possible,

The kernel primitive functions have been carefully chosen, as the whole
character of the operating system depends upon them. TRIPOS is an "open"
system in the sense that above the level of the kernel there is no
distinction between user and system programs; this is in keeping with the
recommendation of Lampson and Sproull [20] that both high and low level

abstractions should be made available to the user. Thus the primitives
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reflect the design aims listed in chapter 2 by being simple to explain and
use, and capable of straightforward implementation on a variety of machines.
The sixteen kernel primitives fall into six groups, concerned with storage

allocation, tasks, devices, messages, task flags, and program linking,

A summary is given here; most are described in more detail in the

appropriate sections on storage allocation, tasks, devices and packets.

The convention for results of primitive calls is that the value passed
back is zero if the function fails, non-zero otherwise, When zero is
returned, the global variable RESULT2 holds a fault code giving the reason
for failure. In some casSes, a non-zero result contains further information
from the call (e.g. GETVEC returns the address of the vector it has
allocated).

Store Allocation Primitives

The form of these is the same as corresponding routines in existing BCPL

libraries.

VECTOR := GETVEC(UPPERBOUND)
Allocate a block of store

FREEVEC (VECTOR)
Free a block of store obtained by GETVEC

Task Primitives

The fundamental routines required here are those to create and delete
tasks. A new task is characterized by the list of segments which comprise
its code, the size allocated to its BCPL stack, and its priority. A new task
has no special relationship with its creator. This is in keeping with the
lack of distinction between user and system. A hierarchical scheme (e.g. as
in Thoth) is unnecessary when there is only one address space and accounting

for CPU time is not of interest.
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It is useful to be able to alter task priorities dynamically, though this
facility is principally used by a task wishing to claim the maximum priority
in order to run indivisibly. The facility for holding and releasing tasks
is primarily an aid to debugging; these primitives are usually called in
direct response to user commands. An abort routine is a standard feature of
BCPL run-time systems, In TRIPOS, its action is to enter the debugger in

stand-alone mode,

TASKID

CREATETASK(SEGMENTLIST, STACKSIZE, PRIORITY)
Create a new task

RESULT := DELETETASK(TASKID)
Delete a task

RESULT := CHANGEPRI(TASKID, NEWPRIORITY)
Change the priority of a task

RESULT ¢= HOLD(TASKID)
Hold a task (prevent it from running)

RESULT := RELEASE(TASKID)
Release a held task

ABORT(CODE, ARG)
Abort the current task with error code CODE.
ARG can be used to pass more information.

Device Primitives

The only primitives required specifically for device drivers are those to

create and destroy them. All other communication with devices is done via

the meésage system. The only information required to create a device driver

is a pointer to its control block (and implicitly to its code).

DEVID ¢= CREATEDEV(DCB)
Create a new device

RESULT += DELETEDEV(DEVID)
Delete a device
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Message Primitives

TRIPOS is a system based on message passing rather than sharing of data
under monitors [16]. Lauer and Needham [21] suggest that the two schemes
are duals of each other, and that the resulting complexity is independent of
which is chosen. However, Frank and Theaker [12] argue that message passing
is better for preserving independence of modules. No justification will be
given for choosing to base TRIPOS on messages, except that it seems more
amenable to distribution over a network., Note, however, that the kernel
primitives are themselves monitors, as they disable interrupts to make their

execution indivisible. Thus both schemes are represented in TRIPOS.

The important thing was to design a simple, flexible communication
scheme. Thus messages are unrestricted in length and format, except for two
words used by the system. (A conventional format for the first few words is
defined, and almost universally used.) The message sending primitive does
not block execution of the calling task, so the programmer has the choice of
whether or not immediately to await the reply. There is a uniform message
interface to tasks, peripheral devices and the system clock. A third

routine allows a previously sent message to be forcibly retrieved.

RESULT := QPKT(PACKET)
Send a packet (to a task, device or clock)
PACKET 1= TASKWAIT()

Receive the head packet on the work queue, or
suspend the task to wait for one to arrive,

RESULTID := DQPKT(ID, PACKET)
Dequeue a packet from the work queue of a task,
device, or clock (i.e. cancel a message)
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Task Flag Primitives

These provide a cheap signalling system between tasks, and are usually

used in direct response to user input to signal to running programs,

RESULT := SETFLAGS(TASKID, MASK)
Set one or more task flags

RESULT 1= TESTFLAGS(MASK)
Test and clear specified flags for this task

Global Vector Initialization Primitive

BCPL compiled code contains information which enables the run-time
system to initialize global vector slots to the entry point addresses of
routines. This is the only "link editing" required to combine separately
compiled programs. The routine to do this is used by the kernel when a new
task starts up but is made generally available for programs which wish to

overlay code segments,

RESULT := GLOBIN (SEGMENT)
Write into the global vector the addresses
of global routines and labels defined in SEGMENT

3.1.2 Use of machine facilities

TRIPOS is designed for minicomputers of a size such that they are
suitable for use by one person - typically with memory sizes of from 32K to
64K 16-bit words., Most of these machines are broadly similar, in that their
store appears as a single vector in which words or bytes can be addressed,
they have a few central registers, a device interrupt mechanism, and a clock.
However, the low-level details can differ considerably. This section
discusses the use made by TRIPOS of the features peculiar to some of the
machines on which it has been implemented. This includes processor priority
levels, processor states, register types, hardware stacks, and address

mapping.
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Priority Levels

Some minicomputers allow selective enabling of interrupts of different
priorities. For example, the PDP11 has 8 priority levels [0 -> 7], and each
device has an associated priority. The processor is always in one of the
eight levels when running; only interrupts from devices of higher levels are
permitted, This allows the writing of interrupt routines which can

themselves be interrupted by devices requiring more rapid attention.

The PDP11 version of TRIPOS makes use of only the two extreme levels:- O
(all interrupts enabled) and 7 (all interrupts disabled), for the following

reasonsi-

- No piece of code runs with interrupts disabled for long anyway, so
allowing nesting of interrupt routines would not give substantial
speed increases. Most device interrupt routines consist of little
more than returning one packet to a task, and initiating the action
requested by the next. Kernel primitives generally need to disable
interrupts completely, and most are fairly short,

- Full use of the levels would need rather more complex state saving
to determine what to do when returning from the outermost of a set
of nested interrupts - i.e. which was the highest priority task to
which a packet had been sent.

- The pleces of code which disable interrupts for 1longest are in
general kernel primitives rather than interrupt routines. In most
cases it is not permissible to allow a task swap, or indeed any other
code to run, during execution of a primitive. It would also be
awkward to return from an interrupt routine nested within a
primitive, complete execution of the latter, and then enter the
scheduler rather than return to the caller.

If most of the disabling of interrupts is in kernel primitives,
and they must disable all, then elaborate use of priority levels is
unlikely to improve performance,

* Some kernel primitives could run for a long time if there were a large
number of tasks, or a long packet queue - e.g. CHANGEPRI, DQPKT. This is
not normally the case. GETVEC can spend a long time scanning the block
list, but deliberately enables interrupts briefly in the search loop. It
seems reasonable to treat GETVEC as a special case and to employ this
trick., The alternative method would be to have a special task for
managing free store, which would not need to disable interrupts at all.
However, this would make getting a vector rather more expensive, slowing
the whole system. It would also make it difficult to obtain vectors when
starting up a task (before its stack and global vector exist).
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- Many minicomputers lack this feature; it is desirable to Kkeep
various kernels as similar as possible.

Processor States

Of the machines on which TRIPOS was originally implemented, only the
PDP11s had special processor states - e.g. a supervisor state in which
privileged instructions are available, and in which memory protection may be

overridden,

Supervisor state can be used to protect an operating system from user
programs, by making it impossible for them to write to its instruction or
data store - i.e. to damage it in any way. Instructions to control I/0
operations are available only in supervisor state, forcing all handling of

peripherals to be done via the operating system, which can check them.

It was decided not to attempt to use such facilities in TRIPOS, as the

gain did not justify the increased complexity:

- Many minicomputers have only one state anyway

- Complete protection of the operating system is not usually
necessary in a single-user system (though it can be, of course, a
nice thing to have)

Memory Protection / Memory Management

The simplicity of TRIPOS is in part due to the fact that the whole memory
is available to every task and device, and that addresses are global. Thus,
packets, I/0 buffers, etc., can all be passed by reference, which is much
cheaper than copying them. The assumption that this can be done is built
into TRIPOS fairly firmly in a number of places, making it very difficult to
make a modified version of the system to take advantage of any memory
mapping or protection features that may be available on a particular
computer. Most of the computers on which TRIPOS has been implemented have a

global address space, and no way of restricting access to any regions of it.
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The Jjustification for ignoring these facilities is (as with other

simplifications described above) that the gain is not worth the loss of

simplicity and efficiency in a single-user system. It is also worth noting

that those portable systems which do make use of memory management hardware

(see chapter 1) have not been able to find a generally portable abstraction

of it, so have had to have several versions of the relevant code.

A system based on the original TRIPOS, but which is able to take advantage

of memory mapping hardware, has been implemented by Aylward [2].

3.2 Tasks

TRIPOS tasks are described here in terms of their components, scheduling

rule, and how they are activated. The creation and deletion of tasks, and

the inter-task communication mechanism are explained elsewhere in this

chapter.

3.2.1 Components of a Task

A TRIPOS task consists of the following components:-

(1)

(i1)

(iii)

(iv)

A Task Control Block (see below)

A Stack.

This is the run-time stack for the task. If the task contains more
than one coroutine (see "Coroutines in TRIPOS" below), it is the
stack of the root coroutine.

A BCPL Global Vector.
In TRIPOS, there is one global vector per task. Coroutines within a
task share the global vector.

A Segment List.

This is a small vector, each entry of which points to the start of a
code segment (a linked list of one or more BCPL code sections). It
defines the code of the task, and enables sharing of code modules by
different tasks. By convention, the first two entries in each
segment list point to the standard libraries MLIB and KLIB (linked
together), and BLIB.
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3.2.2 Task Control Blocks

- LINK ——3 Points to the TCB of next highest priority
TASKID The task's identity (a positive integer)
PRIORITY for task scheduling (a positive integer)
WORKQ ——» Points to first packet on task's work queue
STATE The task state (see below)
FLAGS The task flags
STACKSIZE Size of task's root stack
SEGLIST ——Y Points to task's code segments
GLOBALBASE ——> Points to base of global vector
STACKBASE ——> Pointer to base of root stack
/ 4
Save area
/[ £

Fig. 2: Task Control Block

FEach task in the system has a task control block (TCB) which contains
information relating to the task. There are two parts to a TCB. The first
part is machine independent, and contains information used by the operating
system for controlling the task. The second part contains the save area
used to hold the machine registers, program counter, and processor status
when a task suspends itself or is interrupted. Its format is necessarily

machine dependent.
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The Task State

This is held in the least significant U4 bits of the state field., All the

remaining bits are zero. The significance of each bit is as follows:-

0001:

0010:

0100:

1000:

1100:

Packet bit.
If this bit is set, the task has at least one packet on its work
queue, If clear, then the work queue is empty.

Held bit.

This bit is set when the task is in held state. It means that the
task will not be selected for running, even though it might
otherwise be eligible. Its primary purpose is as a debugging aid.

Wait bit.

This is set when the task has called TASKWAIT, and is waiting for a
packet to arrive. The task will not run while its work queue is
empty.

Interrupted bit.

When this bit is set, the task has been interrupted. The task will
run again when the interrupt service routine is complete, and any
higher priority tasks it may have activated are once again held up.

Dead state.

Note that this bit pattern would otherwise be invalid, as a waiting
task could not be interrupted, and an interrupted task could not
call TASKWAIT. It indicates that the task is dead or dormant, with
no BCPL stack or global vector. The only other TCB fields which are
valid are the LINK, PRIORITY, STACKSIZE, and SEGLIST.

All of the 16 possible bit patterns are valid. This means that the the

task selector can rapidly decide how to deal with a task, by using the state

to index a table of routine addresses.

Flags

The bits of this word are available as flags which may be set by other

tasks.

They are set and tested by using the kernel primitives SETFLAGS and

TESTFLAGS. They are useful as a cheap signal between tasks, and are used to

implement console 'break!.
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3.2.3 Task Scheduling; The TCB list

As well as being addressed by the task table, the TCBs are linked into a
chain, for the benefit of the scheduler. The TCBLIST field of the root node
points to the TCB of highest priority, whose link field points to the TCB of
next highest priority. The chain links all the TCBs in order of decreasing
priority, ending with that of the idle task, which has a priority of zero, and
a link of zero. No two tasks may have the same priority, so the correct

chain order is well defined.

The task scheduler is a kernel routine which is entered with interrupts
disabled whenever something occurs which may require a change of currently

running task. The reasons this can occur are:-

(1) A task calls TASKWAIT when its work queue is -empty. It will be
suspended until a packet arrives for it.

(ii) A task sends a packet to another task of higher priority. If the
other task had stopped to wait for a packet, then this makes it free
to run.

(iii) A device interrupt causes a packet to be returned to a task whose
priority is higher than that of the one running when the interrupt
occurred.

(iv) A task HOLDs itself,
(v) A task RELEASEsS one of higher priority than itself.

(vi) A task calls CHANGEPRI to reduce its own priority, or to cause a task
which had lower priority than itself to have higher priority.

(vii) A task deletes itself,

The diagram shows the task states and the possible transitions between

them.

The scheduling rule is very simple: the task currently running is the one
of highest priority which is free to run. After any of the events above, the
scheduler is told which is the highest priority task which might be eligible
to run. It starts at that position in the chain and works its way down until
it finds one which is able to run. The presence of the idle task ensures

that there will always be at least one able to run.
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0001 task resumed 0101 Only half of the
possible task states

/N

free to run waiting are shown:
with pkt with pkt corresponding to each
state in this diagram
is a state with the
TASKWAIT theld! bit (0010)
DQPKT packet DQPKT packet set.
\L arrives arrives Entry to these states
is caused by HOLD,
0000 TASKWAIT 0100 exit by RELEASE.
- A task will not run
free to run waiting while in any state
with the 'held' bit
set.
A
device task return
interrupt resumed from
START
1000 =] 1100
interrupted dead
D
packet packet
DQPKT arrives DQPKT arrives
task
1001 resumed 1101
N
interrupted dead
with pkt -—9—J/\\;—<————-——- with pkt

Fig. 3: Task State Transitions

The search for a task to run is done very efficiently. From each TCB in
turn, the task state is extracted. This Y-bit number is used to index into a
16-way jump table, which either causes the scheduler to be re-entered to try
the next TCB down, or enters the correct code to resume or activate the task,

according to the state it was in.
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It is important that switching tasks should be cheap, as TRIPOS relies on

it being so.

3.2.4 Task activation

Until a task receives its first packet, it is in 'dead' state, and has no
space allocated for its stack or global vector. When the first packet

arrives, the kernel activates the task as follows:-

(1) It gets an area of store for the stack (of size given in the TCB),
and records its address in the TCB.

(ii) It scans the global initialization tables (at the end of each code
section of the task), in order to find out the highest offset in the
global vector referenced by any section., It then gets space for a
global vector of this size, records its address in the TCB, and
applies GLOBIN to each segment in turn to initialize the addresses
of all routines and labels declared as global.

(iii) Finally, it starts the task by calling global 1 (START).

3.3 Devices

A device consists of a device control block (DCB) which points to a

device driver containing the code. In practice, the assembled code of

devices is often stored as two concatenated object modules. The standard
loading routine LOADSEG (in BLIB) scatter loads concatenated modules as a
linked list, so the required link between DCB and driver is established
automatically., As there are no backward pointers, a driver may be shared by

several DCBs.

As the way in which peripherals are controlled varies considerably
between machines and types of device, only the first few words of DCBs and
drivers have a machine independent format. Also, as most of the fields are
accessed only from the machine code written drivers and kernel primitives,

all pointers except the link and work queue are machine addresses.
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DCB Driver

—>
LINK —_— 0
DEVICE ID INIT -———]
WORK Q UNINIT
START = éJ
STOP —
code
of
machine — driver
dependent
includes
pointer to
INT
routine ——ou—-— .
in driver

Fig. U4: Device Control Block and Driver

A driver contains five machine code subroutines called from outside:

INIT: Called by CREATEDEV when the device is created. It sets up the
pointers to the START, STOP and INT(errupt) routines in the DCB, and
performs any action necessary to initialize the device (such as
setting up the interrupt vector).

UNINIT: Called by DELETEDEV. Performs any action necessary to uninitialize
the device (often nothing).

START: Called by QPKT when putting a packet on a previously empty work
queue., Should initiate the action requested in the packet.

STOP: Called by DQPKT when removing the head packet from the work queue.
Should cancel the action currently in progress.
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INT: The interrupt routine, It is called in a way which makes the
address of the corresponding DCB available. Usually, the interrupt
indicates that the last action is complete or has failed, so the INT
routine puts a return code in the head packet on the work queue,
sends it back, and initiates the action requested by the next packet
(if any).

3.3.1 The Timer Device

The kernel contains a special device used for timing purposes. It has
the identifier -1, which is recognized by QPKT, as the 'device' has no DCB,

and does not appear in the device table.

Packets to the timer contain in their ARG1 field a time given as a number
of 'ticks'. The action of the device is to return the packet to the sender
after this number of clock interrupts has occurred. The work queue of the
timer starts from the root node, and is unusual in that packets on it are
stored in order of expiry rather than order of arrival. This saves time in
the clock interrupt routine, as in the normal case of no packets expiring,
only the head packet need be inspected. A result field of each packet is
used to hold the number of ticks between the expiry of the packet in front

and this one; QPKT and DQPKT maintain this queue structure.

3.4 Inter-task communication; Packets

Under TRIPOS, all communication between tasks, device drivers, and the
timer, is performed by sending packets. A packet is a vector of at least two
words. The first two words are used by the system; any further words are

available for data. The conventional format is as follows:-
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LINK —— To next packet on work queue
DEVTASKID Identifies destination or sender

TYPE Packet type or action

RES1 First result

RES2 Second result

ARG1 First argument

ARG2 Second argument

ARG3 Third argument

ete.

The LINK field is used when the packet is on a work queue. It points to
the first packet to arrive after the current one, or contains zero if this
one is on the end of the queue. Whenever a packet is not queued, the link

should contain the value of the manifest constant NOTINUSE.

Three kernel primitives - QPKT, TASKWAIT and DQPKT - exist to handle
packets., BLIB contains some useful, slightly higher level, routines -

SENDPKT, RETURNPKT, PKTWAIT and DELAY.

Before QPKT is called to send a packet, the DEVTASKID field should be set
to indicate the destination. Values less than or equal to -2 indicate
devices, -1 means the clock, and values greater than zero refer to tasks.
‘The value zero is invalid. As QPKT sends the packet, it overwrites this
field with the identity of the sender. Not only does this automatically
mark the packet with its sender's identity, but also leaves it in the correct

form to be returned by a call of QPKT in the receiving task.

66~




By convention, the third word is used to specify the type or requested
action of the packet. The two result fields are in general not looked at by
the receiver of the packet, but are used to return results or error codes.
The number and format of the arguments are entirely up to the users of the
packet., The arguments and type field should not be overwritten by the

be
receiver, so that the packet oanAreused without modification by the sender,

As the message-sending primitive, QPKT, does not cause the task which
sends it to wait, it is possible to write tasks which are either sequential
or multi-event. A sequential task follows each call of QPKT with one of
TASKWAIT, and so never runs with a packet outstanding. A multi-event task
may send out several packets, and then act on each one as it returns; it

calls TASKWAIT only when it has nothing left to do.

The message system in TRIPOS is fairly efficient. One way to measure the
speed is to create a pair of tasks which just bounce a packet between
themselves., On an LSI4/30 computer, the number of bounces (and hence the

number of task changes) per second is about 5000.

3.4.1 Work queues

Packets are not moved in store; when they are "sent", they are simply
linked into a chain called a work queue. Tasks and devices process packets
in the order in which they arrive, so a new packet is linked on the end of
the work queue. Packets are removed from the head of the queue, which is

addressed by a field in the TCB or DCB.

The timer's work queue is different, as described above. The head of this

queue is in the root node.
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3.5 The machine code library MLIB

MLIB is a library of BCPL-callable routines written in assembly code. It
contains those routines which are found in most BCPL run-time systems,
rather than those specific to TRIPOS, but which are best written in machine
code for speed, size, or because of the low-level nature of the things they

do.

A brief list of the functions and their purposes is given here:-

LEVEL Return current stack level

LONGJUMP Jump out of current procedure activation

APTOVEC Call a function with a workspace area allocated
from the stack

SARDCH Stand-alone read character from console

SAWRCH Stand-alone write character to console

CREATECO Create coroutine

CALLCO Call coroutine

COWAILIT Suspend coroutine

RESUMECO Resume other coroutine

DELETECO Delete coroutine

GETBYTE Extract byte from vector

PUTBYTE Insert byte in vector

MULDIV Evaluate (a*b)/c, holding the intermediate
product in double length

STOP Exit from current command or task.

In some implementations, MLIB alsc contains routines to which calls are
generated by the BCPL code generator. This technique is used to reduce the
total code size when functions that would normally be code-generated in-line

(e.g. multiply, byte access) are not well supported by the hardware.

3.5.1 The action of STOP

BCPL run-time libraries usually contain a routine STOP, which terminates
the calling program (in a machine-dependent way). The STOP routine in
TRIPOS is more complicated in its action than it would be in a run-time
library for a single-task BCPL system, as it needs to observe the

environment from which it is called.
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STOP is expected to finish the program which calls it, passing back the
returncode given as its argument. Programs in TRIPOS which may call STOP
run in one of two environments:- either as the main body of a task, or as a
subsiduary coroutine of a task. In particular, commands run by a CLI are

executed as coroutines,

Thus, if STOP .is called in the root coroutine of a task, it returns
control to the task activation code in the kernel that started the task, and
the task becomes 'dead' - i.e. it is the same as returning from START. The

returncode is discarded, there being no higher level to pass it to.

STOP(N) called from any other coroutine is equivalent to returning from
the main procedure of the coroutine after setting the global RETURNCODE to
N. In commands called from a CLI, this is the same as setting RETURNCODE and
returning from START. Control goes back to the CLI, which receives the

returncode and deletes the code of the command.

3.6 Coroutines in BCPL

Some of the routines in MLIB form a coroutine package for BCPL programs.
This package is described in the paper [38]. TRIPOS uses coroutines in its
CLI, console handler and file handler tasks in the standard system, in some
commands, and in much of the Ring interface software mentioned in later

chapters.

A brief description of the coroutine system is given here, with some

examples of how coroutines can be used to simplify multi-event tasks.

A coroutine is created by a call of CREATECO with arguments giving the
procedure which is to be the main body of the coroutine, and the stack size

required. This returns a coroutine pointer - an object which identifies the

coroutine:-

coptr :=z createco(routine, stacksize)
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The coroutine is called using CALLCO, which allows one argument to be
passed. On the first call, this argument appears as the argument to the main
body routine. The called coroutine retains control until it makes a call of
COWAIT, which suspends it, and returns control to its caller. COWAIT also
takes an argument, which comes through as the result of CALLCO in the calling

level,

A further CALLCO causes the coroutine to resume by returning from its
call of COWAIT; the argument to CALLCO appears as the result of COWAIT.

Thus, the root level will contain lines of the form:-

result := callco(coptr, arg)

and the body of the daughter coroutine may be of the form:-

LET routine(res1) BE

$(

;;;é 1= cowait(arg?)
;é;é := cowait{arg?)
$)

RESUMECO takes a coroutine pointer and a value to be passed as arguments;
it directly resumes that coroutine as if control had been passed back to the

caller of the first, which had then in turn called the second.

DELETECO takes a coroutine pointer as argument, removes the coroutine,

and frees its stack space.

3.6.1 Coroutines in TRIPOS

Coroutines are extensively used in TRIPOS for several reasons:-

- They can greatly simplify the programming of a multi-event task -
that is one which may have several of its own packets outstanding at
once, as well as being ready to receive unsolicited request packets
from other tasks. This application is discussed below,
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- They can be used to implicitly provide interlocks on shared data
structures. When one coroutine within a task is running, no other
coroutine of that task will run until the first explicitly
relinquishes control. Hence, a running coroutine can make updates
to a structure belonging to the task, knowing that no other
coroutine will see it in an inconsistent state.

- Coroutines enable operations to be interleaved, giving some of the
power of separate tasks; but at lower cost. The store cost of a
coroutine is little more than its stack; calls are faster than task
switches.

3.6.2 Use of coroutines in multi-event tasks

Many TRIPOS tasks are multi-event in nature, particularly device handlers
such as the console and file handlers. One way to write such tasks is to
remember state information in various global variables and flags, which are
inspected when a packet arrives to discover the point reached in any

multi-stage operations in progress.

However, the task code becomes much simpler to write and understand if
there is a separate coroutine for each multi-stage operation, Then,
although the task as a whole 1is interleaving the stages of different
processes, each coroutine 1is proceeding sequentially through its own
operation, Much of the state can be remembered implicitly, by the position
reached in the code., A scheme for writing tasks in this way is presented
below; it was used successfully in the Ring handler, virtual terminal
handler, and Fileserver filing system tasks, as well as in some commands -
notably that used for logging on to other Ring machines, which handles
asynchronous input and output. It was also used used in a remote debugging

system [1].

A multi-event task receives packets of two kinds: those which it sent out
and are now returning, and those which originate from other tasks, and are
requesting services. The former can be recoghized by remembering their
addresses as they are sent, Any not recognized in this way are of the second

kind; the service they want is indicated by their type field.

-71-




The Fileserver file handler task will be used as an example, Its root
coroutine has three daughter coroutines - two equivalent ones which process
requests (called REQUEST.CO,1 and REQUEST.C0.2), and one which wakes up from
time to time to do periodic operations (called CLOCK.CO). There are
corresponding global variables with names such as REQUEST.CO.1.PKT, which
hold the addresses of the packets for which the coroutines are waiting. The
request coroutines can also be in an idle state, in which they are ready to
process a request packet. This is indicated by the expected packet address

being set to zero.

The main loop of the task has the following structure:-

$(
LET packet = taskwait() // The only TASKWAIT in the program

IF packet=request.co.1.pkt
THEN $( request.co.l.pkt := callco(request.co.1, packet); LOOP §)

IF packet=request.co,2.pkt
THEN $( request.co.2.pkt := callco(request.co.2, packet); LOOP $)

IF packet=clock.co.pkt
THEN $( clock.co.pkt := callco(clock.co, packet); LOOP $)

// If we reach here, then the packet is not one expected
// by any coroutine, but is a request packet.

// Pass it to a request coroutine if one is free,

// otherwise save it until one becomes free.

IF request.co.1,.pkt=0
THEN $( request.co.1.pkt := callco(request.co.1, packet); LOOP $)

IF request.co.2.pkt=0
THEN $( request.co.2.pkt := callco(request.co.2, packet); LOOP $)

// Put the request packet on an internal queue from which
// the next request coroutine to become free can extract it

save.request.pkt(packet)
$) REPEAT

For this to work, each time one of the coroutines sends out a packet, it
must call COWAIT with the packet address as argument. This is most easily

achieved by redefining the BLIB routine PKTWAIT (which exists to be
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redefined -~ see the section "BLIB") as follows:-

LET pktwait(dest, pkt) = cowait(pkt)

This works because the routines in BLIB which send packets (such as RDCH,
WRCH, FINDINPUT, LOADSEG and DELAY) do it by means of SENDPKT. As SENDPKT
uses PKTWAIT to wait for the returning packet, calls of SENDPKT now have
exactly the right effect: the coroutine suspends itself, delivering the
packet address; when it 1is resumed, it expects the same packet address as
argument and checks it. The coroutine bodies can be written as simple
sequential code using the normal library calls, with little regard for the

fact that they are part of a multi-event task,

3.7 The BCPL-written library BLIB

The majority of the resident library routines are written in BCPL, and
are identical in versions of TRIPOS for different machines., Most of these
are concerned with input/output and file operations; others are for loading
and calling programs, sending packets, comparing and manipulating strings
and characters, and converting fault codes into messages. About half of the
routines perform actions specific to TRIPOS; the others are found in most

BCPL run-time systems,

A list of all the BLIB routines, with a brief indication of what each one

does, is given in Appendix 1.

The remainder of this section describes aspects of TRIPOS implemented by

functions in BLIB, including input/output streams.
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3.7.1 Streams

Streams under TRIPOS reflect BCPL's view of input and output. That is,
streams are opened using FINDINPUT or FINDOUTPUT (in BLIB) with a stream

name as a string argument; these return a stream identifier, a value which is

used as argument to SELECTINPUT or SELECTOUTPUT. These set up the current
input and output streams respectively (recorded in globals), and routines
which read or write data, or close streams, always apply to those currently
selected., Reading and writing are normally done one byte at a time, by means
of RDCH and WRCH. Blocks of words may be read and written with READWORDS and
WRITEWORDS.

Most TRIPOS streams eventually talk to a peripheral. The low-level
operation of this is achieved by a device driver, and that in turn is usually
driven by a handler task, which provides higher level formatting and
management functions (e.g. console handler, file handler). The stream

jidentifier is the address of a stream control block (SCB), which includes:-

(i) The task number of the handler task
(ii) The address of the current buffer
(iii) Pointers to the current character position and the end of the buffer

(iv) The address of a routine to be called when the buffer is empty and
should be refilled (input stream), or when it is full and should be
transmitted (output stream).

(v) The address of a routine to be called to close the stream,

RDCH and WRCH use the buffer until full/empty, and then call REPLENISH or
DEPLETE (in BLIB), which in turn call the appropriate routine from the SCB.
This normally sends a packet to the handler task to deal with the buffer
appropriately. READWORDS and WRITEWORDS bypass the SCB buffer, transferring

instead the client's buffer address directly to the handler.

An output stream may be marked interactive in the SCB. This means that
the WRCH buffer is transmitted on the end of every line, (i.e. on '¥N', '*C',

ete,) rather than when it is full.
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Stream Names

The string supplied to FINDINPUT or FINDOUTPUT has the general form:-

device:path

"Device" may be a mounted disc, the system disec, or a pseudo-device (see

below). "Path" is of the form ‘“filename", "dirname.filename",
"dirname.,dirname,filename", etc. for a disc device; for other devices, it

specifies the route of the stream in an appropriate way.

Some special device names are:-

SYS: the system disc

: the root of the disc on which the currently selected directory
resides
¥  the console.

This stream name is treated specially by BLIB.

3.7.2 Pseudo-Devices

A powerful feature of the stream opening mechanism is that it is easy to
add extra devices to those known to the operating system, and that these need

not correspond to real peripherals, but can be 'pseudo-devices'. Examples

are:—
NIL: the dummy device: behaves as an infinite sink on output, and gives
immediate end-of-stream on input,
LP: loads the devices and handler task for the line printer

PIPE: loads the pipe handler for inter-process stream communication

BSP: Loads the Ring byte stream handler (see chapter 5)

When FINDINPUT or FINDOUTPUT is called with a stream name containing a
device part, it first looks for the device name in the assignments list in
store (see "File Handler Interface Changes" in chapter 7). If it is not
there, then an overlay is called (by the BLIB routine CALLSEG), and this in

turn attempts to open the file "SYS:H.devicename" and call the program
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therein, passing it the string argument to FINDINPUT or FINDOUTPUT, and a
blank SCB. This program is expected to return a completed SCB for the

stream.

The effect is that arbitrary new devices may be included, without
rebuilding the system, simply by including files containing appropriate

programs in the directory '":H",

3.7.3 PKTWAIT

The routine PKTWAIT in BLIB is a dummy, with the following definition:-

LET pktwait(destination, packet) = taskwait()

It exists only so that any task can redefine it in its own global vector.

Most packets are constructed and sent using the BLIB function SENDPKT -
in particular, all those sent by BLIB routines such as RDCH, WRCH, DELAY, etec.
SENDPKT sends the packet composed of its arguments, then waits for it to

return by calling PKTWAIT (rather than TASKWAIT).

Thus, by replacing the standard PKTWAIT, a task may regain control inside
SENDPKT (which would otherwise block execution of the task). This can
greatly simplify the coding of a multi-event task involving several
coroutines, as described in the section on coroutines in this chapter, It
can also be used to introduce some multi-event character into an otherwise

sequential task.

A common use of this is in applying a timeout to a device operation,
SENDPKT is used to send the packet to the device, and PKTWAIT is replaced by
a routine such as that below, which issues a packet to the timer, and canéels

the device operation if the timer packet comes back firsti-
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LET pktwait(destination, packet) = VALOF

$(
LET timer,pkt = TABLE notinuse, -1, ?, ?, ?, timeout.ticks

LET received.pkt = ?
gpkt(timer.pkt) // Start the timeout
received,pkt := taskwait() // Wait for the timer packet

// or the expected one
TEST received.pkt = timer.pkt

THEN
$( // Other packet has been timed out
dgpkt(destination, packet) // Retrieve the packet

packet ! pkt.res?1 :=z failure.code // Set its result field
RESULTIS packet

$)
ELSE
$( // Correct packet (or unexpected one!)
dgpkt(-1, timer.pkt) // Cancel timeout
RESULTIS received.pkt
$)
$)

3.8 System data structures

Most of the system data structures within TRIPOS have a format which is

machine-independent. In particular, pointers are held as word addresses.

3.8.1 The Root Node

The root node is the central point from which all the system structures
in store can be found. It is a vector containing pointers to the main chains
and tables. The position in store of the root node is fixed on any given
machine. Unfortunately, it is not practical to use the same address on all
machines, as each machine has some special store locations used for
interrupt vectors, device registers, etc. Instead, the address is given as
the manifest constant ROOTNODE in the standard BCPL library header for each

machine,
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TASKTAB —4—) Pointer to the task table
DEVTAB —— Pointer to the device table
TCBLIST —+—3 Pointer to TCB of the highest priority task
CRNTASK —4—— Pointer to TCB of task currently running
BLKLIST —}— Pointer to block list for store allocation
DEBTASK —4—3 Machine address of TCB of DEBUG task.
Used by kernel on traps, etec.
DAYS since start of 1978
MINS since midnight
TICKS clock ticks in current minute
CLKWQ —— Pointer to 1st packet on clock work queue
MEMSIZE memory size in units of 1K words
INFO —}—3 Pointer to vector of extra
(implementation dependent) info
KSTART —4—3 Machine address of kernel entry point
(used by bootstrap)
implement-
ation Entry points of kernel machine code
dependent routines used by device drivers

Fig. 5: The Root Node

The first part of the root node has a machine independent format. It is
followed by some addresses of kernel entry points for such operations as
saving and restoring registers on interrupts, and entering the task
selector, These are needed by device drivers which may be dynamically

loaded, so must be in fixed store locations,
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BLKLIST

This points to the start of the area from which store is allocated by
GETVEC., For details of the format of store blocks, see the section "Store

allocation" below.

DAYS, MINS and TICKS

The clock interrupt routine maintains the date and time in these three
words. DAYS is the number of days since the start of 1978 (i.e. 1st Jan 1978
is day 0). MINS is the number of minutes since midnight, TICKS is the
number of clock ticks since the last minute boundary. The time is updated
at an implementation dependent frequency given by the manifest constant

TICKSPERSECOND.

INFO

The INFO field is provided so that extra information may be made
available from the root node without making any change to root node format,
For example, it may point to a vector containing details of machine type, the
machine name as a string, and/or the identities of particular non-resident

tasks.

KSTART

This value is assembled into the root node, and is the means by which the

bootstrap finds the kernel entry point after loading the system into store.

3.8.2 Store Allocation

Blocks of store are allocated and freed by the kernel primitives GETVEC
and FREEVEC. Store is allocated from an area which starts at the address
given by the BLKLIST field of the root node, This area is divided into
contiguous blocks, which each consist of an even number of words. The first
word of each block is used both to indicate the length of the block (and

hence the start of the next), and to record whether or not the block is
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allocated. As all block lengths are even, the least significant bit of the

length is not needed, and so this is used to indicate allocation:

Free block: Allocated block:
n 1 n 0
2n-1 words 2n-1 words

The end of the block list is marked by a word containing zero,

3.9 The Resident System Tasks

The standard TRIPOS system has the four resident tasks mentioned in the

previous chapter. Some aspects of their internal design are presented here.

3.9.1 Coomand Language Interpreter

The CLI is the simplest of the system tasks., On starting, it calls
CLI.INIT, which in the initial load is the routine that starts all in other
tasks, In other environments (e.g. a CLI created by the RUN command), a

different version is used, which performs appropriate CLI initialization.

The main body is a loop which reads the name of a command from the input
stream, loads the file of that name from the current directory or command
directory, and calls START in the command code as a coroutine., It can run
interactively, giving prompts and reading from a console, or
non-interactively, reading commands from a file (see the C command). On

reaching the end of a command file, it reverts to its standard input stream,
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3.9.2 DEBUG

The majority of the code in the DEBUG task is concerned with its use as an
interactive debugging aid. It reads command lines from the terminal and

acts on them,

The peculiarity of this program is that it can run either as a normal
task, or in a 'stand-alone' mode after an abort, breakpoint, or stand-alone
entry from the handswitches. It remembers the mode in which it was called,
as a few commands behave differently in the different situations, and when
in stand-alone modes it must use SARDCH and SAWRCH to talk to the terminal,

as the console handler is not running.

When the DEBUG task is activated, it records its identity in the root
node, so that the kernel can find it after an abort. Its initial packet
contains no information, and is passed straight back. When the kernel calls
DEBUG in stand-alone mode, it calls START with a four-word vector as
argument, giving the calling reason, task number, abort code, and abort
argument (if relevant). The global vector used is that of the DEBUG task;
the stack is a specially reserved area in the kernel (actually, the space

where the kernel initialization code was).

On stand-alone entry, DEBUG outputs a message, announcing entry, abort or
breakpoint as appropriate. The commands whose action is affected by the
mode are 'C' (continue) and 'H' (hold). In task mode, these simply continue
or hold DEBUG's currently selected task., After entry from the handswitches,
neither of these has any useful function (- the system cannot be resumed, so
it does not matter if tasks are held or not). After an abort, 'C' and 'H' both
cause exit from stand-alone mode and resume the full system, with the
aborted task running or held respectively. The action is similar after a
breakpoint, except that 'C' takes a numerical argument. The breakpoint is

not taken again until it has been encountered that number of times.
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The kernel has a final mechanism to fall back on if an abort occurs in a
system which does not include DEBUG. It halts the machine, with the program
counter pointing at the 4Y-word vector which would have been passed to DEBUG,

so that information about the abort can be found from the handswitches.

3.9.3 Console Handler

The console handler task provides a line-by-line interface to the single
character console devices. It maintains two packets on the keyboard device,
so as to always be able to accept typed characters. Input is reflected as
soon as possible after it is received; if a line is being output when an

input line is started, then reflection is delayed.

The current line is read into a fixed buffer; when it is complete, a block
of store large enough to hold the line is obtained from the heap, and the
line copied into it., If there is a read request packet outstanding from the
currently selected task, then the buffer is returned in the packet;
otherwise, the buffer is added to a chain of waiting input lines. When a
packet arrives requesting the next input line, this chain is inspected to
see if any lines have been typed ahead for that task. If so, then the first
is returned; if not, then the request packet is appended to an internal

queue,

Request packets containing lines to be printed are similarly queued, if
there is already a line being printed, an input line is being typed, or
output from the requesting task is inhibited (by '@Tnn'). Output packets
pass the line in a buffer which is FREEVECed by the console handler. Thus,
the handler is able to return the packet when it starts to print the line,
allowing the client task to produce the next line while the current one is
coming out. Returning the packet before commencing output of the line would
mean that the flow control would be lost, and store could rapidly become

filled with output buffers.
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3.9.4 File Handler; disc format

The file handler task is the interface between the disc device and
operations in terms of files and directories. It treats its disc as being
composed of blocks of equal size (256 words for most dises) numbered from
zero upwards. These block numbers are used as disc addresses, and are
translated into cylinder, surface, and sector only in the routine which sends

packets to the disc device.

When it starts, it receives a packet describing the disc (blocksize,
number of cylinders, ete.). As none of the disc characteristics is built
into the program, its code can be shared by handler tasks when more than one
disc is mounted. After starting, it enters a mode whereby the only
operations that are allowed are those which do not involve writing to the
dise. When the restart task finishes, it passes over a block allocation

bitmap to the handler; all operations are then permitted,

All disc blocks have a similar format: there is a six word header
including the block type and a checksum of all the words in the block. The
checksum is checked just before writing each block, and just after reading

- one, as a safeguard against overwriting in store and disc errors.

The directory structure is unusual in that directories are of a fixed
size (1 block), and do not contain conventional directory entries giving
details of the objects held in the directory. 1Instead, the majority of a
directory consists of a hash table., The table is indexed by a value derived
from the name of the object to be looked up in the directory., Each hash
table slot points to the first object on a chain of objects with the same
hash value, Thus, all information about an object, such as its name, date of

creation, ete., is held within the object itself,

A file consists of a header block and some data blocks. A header block is
very similar to a directory block, except that the hash table is replaced by
a list of the block numbers of data blocks., The data blocks are also
chained, to improve the efficiency of serial reading. Each data block

contains the standard 6-word header; the rest of the block is used for data.
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Fig. 6: Directory Structure
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Each disc has a root directory, which differs from an ordinary directory

only in its type field. The root directory is positioned half-way through
the disc; thus, the file handler can always calculate the block number of the

root from the description of the disec.

The file handler maintains a cache of a few disc blocks, helping to reduce
the number of disc transfers when, for instance, the same directory is used

several times.,

The file handler restart task builds the disc block allocation bitmap
which the file handler needs before it can write to the dise, To do this, it
reads every directory block and every file header block. No data blocks
need to be read, as each file header contains a list of all the data blocks
allocated to the file. 1In fact, the last data block of each file is read as
a consistency check; this is the block which is most likely to disagree with

the header if a crash occurred while a file was being written.

A second bitmap is used to record which blocks are still to be inspected.
This enables restart to scan the disc (several times), reading blocks as

they are passed, keeping disc seek time to a minimum,

3.10 Program Environments in TRIPOS

There are three main environments in which a normal BCPL program (i.e. one
defining the routine START, and expecting to be entered by a call of that

routine) may be run under TRIPOS, These are:-

(i) As the root coroutine of a task.

The argument to START is the packet which caused task activation;
its arguments should be read, and the packet returned, as soon as
possible. The global vector is that belonging to the task; the only
values in it are addresses of global routines and labels defined in
the code segments of the task, plus a few special variables (e.g.
TASKID, TCB - set by the system to the task's identity number and the
address of its TCB). The stack is the task's root stack. The effect
of returning from START is to free the root stack and global vector,
putting the task into dead state; any result from START is lost. A
call of STOP is the same as returning from START, No streams are
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open at the time of entry, and INITIO should be called before any
streams are opened.

(ii) As a command called from a CLI.

The argument to START is zero. The global vector is that of the
CLI task., 1Its contents are as in (i), with the addition of some
variables used by the CLI - e.g. whether running interactively,
return code from last command. Routine addresses in the global
vector may be redefined by the command, as the CLI will restore them
before executing the next command. The stack is that of a coroutine
called from the CLI's root coroutine. The effect of returning from
START is to end the command, freeing its stack, and unloading its
code. A call of STOP(N) returns from START after setting the global
RETURNCODE to N. The value N indicates whether the command worked
(0) or how severely it failed (> 0). If the CLI is taking commands
from a file, then a return code greater than a (settable) threshold
causes processing of the whole file to be abandoned. The value of
RESULT2 on exit should give the reason for failure in the form of a
fault code (which can be translated into a text message by the BLIB
routine FAULT). The current input and output streams of the CLI are
open and selected on entry; they should not be closed by the command,

(iii) As a subroutine called from a disc file by the BLIB routine CALLSEG.

CALLSEG 1loads the code contained in the specified file,
initializes the globals defined therein, and calls START. START
receives up to U4 arguments, being the 2nd to 5th arguments to
CALLSEG. The global vector and stack are as for the calling
program. Returning from START causes the loaded code to be unloaded
again., CALLSEG returns to its caller, passing back the result from
START and RESULT2, STOP should not be called from a CALLSEGed
routine (nor should LONGJUMP), as it will exit without unloading the
code. The selected streams will be as for the caller; in general,
they should not be closed or unselected,

Programs may be written so that they may be run in any of the above
environments by making them inspect the first argument to START, and
specifying that, when they are CALLSEGed, this argument has a value which is

neither zero nor ‘a packet address (e.g. -1).
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3.10.1 Environment of Device Driver Code

The assembler code of device drivers runs in a simpler environment than
the rest of the system. All of this code runs with interrupts disabled, so
is not allowed to call any kernel primitives (which may enable interrupts
again)., The INIT, UNINIT, START and STOP routines of the device are called
as machine code subroutines from kernel primitives (CREATEDEV, DELETEDEV,
DQPKT or QPKT, and DQPKT, respectively) - i.e. the full BCPL calling sequence
is not used. The INT routine is called from the kernel on an interrupt, so
no stack or global vector is available to it., Devices use special kernel
routines to perform operations such as sending packets back to tasks, and

returning from interrupts.

3.11 Multi-User TRIPOS

TRIPOS was specifically designed as a single-user system. However, it

can easily be used by more that one person, and has been used in such a way.

The command RUN CLI2 creates a new CLI which then makes a new console
handler task and new devices attached to the machine's second terminal port,
and adopts this as its console. The second console then becomes virtually

equivalent to the first.

Multi-user use is only worthwhile between cooperative users who are
editing, etc., rather than testing dubious programs. As there is no memory
protection, any crash may affect both users, and of course there is no
protection against malicious attack by one on the other. Response for the
second user can be badly degraded if the first is using a lot of the CPU

time, as he is at a strictly lower priority.

Nevertheless, multi-user working is simple to provide, and has proved

very useful on occasions.
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3.12 System generation; SYSLINK

A new version of TRIPOS is linked together as follows:~-

- All the programs comprising the libraries, tasks, device drivers and
DCBs are compiled or assembled.

- A file describing the system to be constructed is created (see
below).

- The command SYSLINK is run on this description file to produce a
system object module,

The driving file for SYSLINK is a text file containing the following

information:—

(i) Some parameters of the target machine: e.g. its store size,
addressing unit, and some details of the system which depend on the
underlying machine - e.g. the root node address, size of TCBs.

(ii) The layout and initial contents of the root node info -ﬁe\d.

(iii) A 1list of filenames of files containing code of system components.
Code which is used only for system start-up is marked so that it can
be positioned contiguous with the free store, to reduce store
fragmentation when it is unloaded.

(iv) A description of each task, including its number, root stack size,
priority, and code segments. The task which is to be started first
is flagged.

(v) A description of each device, including its number and code
segments,

The output from SYSLINK is an object module containing the complete
initial core load of the system, It is usually processed further, by a
command such as SYSIMAGE, to create a core-image on disc for use by a

bootstrap loader,

Linking a new system is thus a simple and rapid process once all the

components have been compiled, taking a few tens of seconds.
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3.13 Transferring TRIPOS to a new computer

The following work is required to transport TRIPOS to a new machine:

- Writing of a BCPL code generator for that machine
- Coding of the libraries KLIB and MLIB in assembler
- Writing of device drivers for disc and console

- Modification of DEBUG for new function entry sequences, address
units, and possibly stack layout.

- Production of an assembler

BCPL code generator

The front end of the compiler does not need to be changed, as it is itself
written in BCPL and produces a machine-independent intermediate code [371].

This code is processed by a code generator particular to the target machine,

The writing of the code generator is probably the most difficult part of
the porting process. It involves decisions on how to make use of the
features of the machine: which central registers to use for argument passing,
holding pointers to global vector and current stack frame, and as general
work registers; whether to make use of any hardware stack(s); design of

function calling, entry and exit sequences.

A detailed account of several code generators written for TRIPOS can be

found in [111].
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KLIB and MLIB

Although the amount of code is not insignificant, the writing of it is not
usually too difficult, These libraries consist of a collection of fairly
small routines with clear specifications. The process is usually aided by
reference to an existing kernel, and can approach
instruction-for-instruction translation. (I.e, it is coding which does not
involve many decisions.) A detailed guide to one particular implementation

of TRIPOS (for PDP11s) has been written [19] as an aid to this kind of

translation.

Device drivers

The operations coded here will be highly machine dependent, but drivers

are not very long, and are each split into five routines.

DEBUG

The bulk of DEBUG will be unchanged; the alterations are just a few minor

ones concerned with such things as recognizing BCPL function entries.

An Assembler

An assembler to run under TRIPOS is desirable, in that it is necessary in
order to make the new system self-supporting. It may not be essential for

bringing up the system if a manufacturer's assembler is available.

Note that the assembler is needed only for a few components of the system,
and so need not be very elaborate - features such as macros, conditional
assembly, multiple sections, and external references probably are not needed,

Typically, a fair portion of the assembler is stolen from an existing one.




3.13.1 Portability Problems

Experience with transporting TRIPOS has shown up several areas in which
programs tend to make assumptions about underlying hardware., Differences in
word length have caused very few problems, perhaps because the first few
implementations were all on 16-bit machines, so moving to machines with
1ongér word lengths meant only that some store was wasted rather than
program logic destroyed. The few programs which were incorrect either
assumed that the bit 8000 (hexadecimal) could be inspected by testing for
the word being a negative number, or set up logical masks incorrectly. For
example, the expression a & #XFFF0 should be written a & (NOT #XF) to be
independent of word length, Similarly, very few programs proved sensitive
to the number of characters in a BCPL word, or their ordering within the

word,

Some trouble was experienced when moving from the PDP11 to the LSIY
because for the first time BCPL addresses could be negative numbers (the
latter machine having 64K words of store). This meant that programs which
compared addresses (e.g. to implement a circular buffer) would fail if their
workspace fell in the top half of store. It also meant that the memory size
could not be directly expressed as an integer; hence the MEMSIZE field of the

root node holds the size as a multiple of 1K words.

A programming mistake which more than once caused programs not to work
when moved was the inadvertent assumption of the contents of location zero

of memory, usually from an incorrect test for the end of a linked list.

In order to ensure that programs written for one machine will work on
others, the sizes of BCPL stacks have been kept the same on different
machines, regardless of the amount of memory available, Unfortunately, some
hardware forces the overhead per procedure stack frame to be higher than
others, so the effective stack size cannot be made identical on different

computers,

-91-




A few pieces of code assume that integers are held as twos-complement
binary: the system has not yet been moved to a machine with a different
representation., Also, in a few places there are implicit assumptions that
the character code is ASCII (e.g. tests for a letter as a character between
'a' and 'z', or a printable character as one greater than space). However,
most programs which are driven by the values of input characters make use of
the BCPL SWITCHON statement with the cases labelled by character constants,

so would still compile correctly with any character code.

A problem faced in the PDP11 version of TRIPOS is that the machine is
available in a range of models with slightly different instruction sets.
Particularly infuriating is that, although there are several ways of
disabling interrupts on any particular model, there is no way which works on
all models, Several slight variants of the kernel had to be produced. Some
PDP11s lack certain instructions, such as multiply, divide and multiple
shifts. To cope with these an option was added to the code generator to make
it generate calls to a supplementary machine code library instead of the

missing instructions.

3.14 Comments on the Design of TRIPOS

The original design aims have been realized to a large degree, in that
TRIPOS has proved relatively straightforward to transport, pleasant to use,
with good response, and simple to understand and modify. Perhaps a good
demonstration of the latter points is that several people unconnected with
the project have used TRIPOS as the basis for their own real-time systems,
for process control, data entry, automatic data collection, and 'servers' on
the Cambridge Ring. The latter include the Fileserver, its asynchronous
garbage collector (which runs in a separate machine), a database server, and
a server to drive a "pointing machine"™ (an aid to producing wire-wrapped
circuit boards). In some ways, making a system too easy to understand
creates problems, Almost every user suggests changes that he regards as
essential, and one has to resist strongly to stop the system growing

randomly under user pressure, destroying its original portability and
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elegance,

This section reviews various aspects of the design of TRIPOS in the light
of extensive use of the system, and experiences with transporting and

modifying it,

3.14.1 Tasks

Tasks in TRIPOS are inexpensive in terms of time (i.e. task switches are
fast), but do have a significant store overhead, as each has its own global
vector and stack. The simple scheduling rule has been quite satisfactory

for a single-user system.

The reversion of a task to 'dead' state when it returns from start is a
facility which has been hardly used in practice. It would enable a task
which wakes up only rarely to have a small store overhead while it was idle
(as a dead task has no stack or global vector). 1In order to remember

anything between activations, it would have to use static variables,

The use of the task creation primitive, CREATETASK, always involves
calling it in a loop in order to find an available priority. It would be
neater if the priority specified in the call were a maximum, and the

primitive itself found an available one.

3.14.2 Devices

Device drivers contain the minimum amount of machine code necessary to
provide a packet interface to a peripheral. This strategy has made it
relatively easy to write device driving code when moving TRIPOS to a new

computer, as all the complicated work is done in BCPL in handler tasks,
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The model of a device as something which serially processes the request
packets which arrive on its work queue, initiating a peripheral action for
each, and getting an interrupt for each, has proved an over-simplification
for multiplexers, multi-drive disc controllers, and intelligent Ring
interfaces. These devices have to 'process each packet as it arrives,
holding them on a private queue. This means that DQPKT cannot be used to
cancel a device request; another packet must be sent to request cancellation.

(See discussion of DQPKT in "Packets" below)

Another situation where a real device does not conform to the model is
when the terminal has a half-duplex connection (as was the case on the
Laboratory's LSI4s). TRIPOS expects the terminal to be two independent
devices, so some subtle coding is needed to create this illusion by having a

single device driver shared by two DCBs.

3.14.3 Packets

The conventional packet layout, and the sending and receiving primitives
QPKT and TASKWAIT, seem to have been good choices, being easy to use in
programs. The convention that the same packet as made a request is used for
the reply, and the way QPKT flips the ID field both simplify programming.
The BLIB routine SENDPKT is widely used by sequential code which wants to

temporarily create, send, and receive, a packet.

The fact that tasks and devices have only a single message channel (work
queue) has not been a great restriction, particularly as PKTWAIT can be used

to simulate the effect of multiple channels.

The primitive DQPKT was not such a good choice; it has rarely been used,
and tends to be the most tricky primitive to write for a new machine. It is
almost useless for retrieving a packet from a task, as multi-event tasks
receive packets quickly, and hold them on private queues. Most devices
process packets serially, so all unprocessed ones are still on the work
queue, and the one currently being serviced is at the head. However, some
device drivers need to store packets internally. DQPKT is most useful for

cancelling timer packets.
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A better mechanism might have been to define a 'cancel’ packet type, and
require all devices, and tasks providing services, to accept it. This would
rationalize a facility already provided in some tasks and devices, and would
mean that any device could be replaced by (or hidden behind) a task with the

same interface,

3.14.4 Tidying up After Tasks and Commands

A significant deficiency in TRIPOS is that it has no way of keeping track
of the resources claimed by a task or command, and so cannot tidy up when a
task or command finishes. Programs written for use under TRIPOS need to
exit cleanly, freeing all the store they have GETVECed, closing their
streams, sending back all packets they have received, and reclaiming all
outstanding packets. Although this tidy programming practice should be

encouraged, it can be tedious for it to be always necessary.

To improve this situation, it would be necessary to hold in each TCB a
record of store blocks claimed, streams open, packets held and outstanding.
Problems occur when buffer space is obtained in one task, and then passed to
another for processing; to avoid copying data, the ownership of the buffer

would need to be passed over as well.

It is doubtful whether it is worthwhile going to elaborate lengths to
solve this problem. Keeping a record of a task's resources would slow the
‘system down, but would still not be effective unless programs obeyed a
variety of conventions on how they should use store blocks, ete. TRIPOS has
always been planned as a single-user system which can rapidly be rebooted if

necessary.

Other systems seem to adopt one of two methods to solve the tidying-up
problem., Systems running in machines without memory management are usually
single-threaded monitors, which load a program, allocate most of the memory
to it, and them reclaim that memory when it finishes. The majority of
operating systems are able to take advantage of memory management hardware
in order to completely remove all traces of a program. Most personal

microcomputers combine the two techniques by having all the monitor code in
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read-only memory.

3.14.5 Attention Mechanisms

The only attention (or 'break') mechanisms provided in TRIPOS are the task
flags set by the console handler when control-B, C, D, or E is typed. These
rely on the target program polling the flags periodically. This gives a
clean method of signalling to a program that it should tidy up and stop; no

input or output is lost.

However, it is inadequate for killing a program which is not inspecting
the flags because it is stuck in a tight loop, waiting for a packet, or was
not written with the tests included. The best that can be done is to use

DEBUG to hold the task.

It would be desirable to have a system 'break! facility as well as the
flags. For the reasons given in the previous section, it would be very
difficult to provide a method of completely removing a task at any time it
was running. However, it would be possible to interrupt it and cause it to
call a particular global routine, which it could redefine to handle its own
tidying up. There remains the problem of where the stack frame for this
call should be placed; the highest location in use on the stack cannot be
determined, and in a multi-coroutine task it is not clear even which stack

frame should be used.

3.14.6 Store Allocation

All tasks in TRIPOS allocate store from a single heap, which covers most
of the machine's memory. This allows maximum use to be made of the available
store, but can also lead to fragmentation if, for instance, lines are typed
ahead while a large program is running, and are allocated buffer space in the

middle of memory.

This could be improved by making system tasks, at least, obtain the store
they would need when they start, and allocate privately from that. However,

this would lead to restrictions, such as a small limit on the number of lines
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that could be typed ahead.

The attempt to use only the store actually necessary means that commands
and tasks are usually run with a small stack, and expected to GETVEC any
extra store they need. In most other BCPL systems, the bulk of the available
store is given to the stack. A common change that has to be made when
importing programs to TRIPOS is that calls of APTOVEC (obtaining store from
the stack) have to be replaced by calls of GETVEC.

3.15 Comparison with Other Operating Systems

Research into portability of operating systems is a fairly new area of
study, and most of the portable systems mentioned in chapter 1 were being
designed or first ported at about the same time as TRIPOS was being
developed. Hence their influence on it was small, and this 1is a

retrospective comparison,

The other operating systems mentioned in the first chapter seem to fall
at the ends of a spectrum in terms of complexity and facilities provided.
At one end are 086 and S0LO, both single-user systems with just one process
or a fixed number of processes, and running interpreted code. Most of the
others (such as MUSS and UNIX) are much more elaborate, allowing multiple
users, and providing virtual memory, swapping and protection. Thoth is one

of these, but is aimed at similar machines to TRIPOS.

TRIPOS comes in the middle of this range, being explicitly a single-user
system and deliberately simple, but aiming to provide powerful facilities
and to be able to support real-time control of external devices. To this
end it runs compiled code, and allows dynamic creation of tasks and
coroutines, but has only minimal and defensive protection, and simple fault

handling.

In the power it aims to provide for a single user, and in its lack of
distinction between user and system, TRIPOS resembles Pilot and the Alto

operating system from Xerox (though the latter 1is really only a
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single-process system). Both of ihese run all programs in a single address
space, and avoid all protection except that designed to trap common errors.
Both accept that boot-loading the machine is a fairly common occurrence.
Pilot does not consider such things as command line decoding or text-string
naming of files to be part of the operating system (but provides programs
which can be used to do these things). The Alto operating system is open to
a far greater extent than the majority of systems. Since any or all of the
system code can be discarded, the operating system is really defined only by

its disc representation of files and its network representation of messages.

TRIPOS is like Thoth in the sort of target machines it is intended for,
though the latter is rather more elaborate, catering for multiple users and
supporting virtual memory, multiple address spaces and swapping. Both are
based on message~passing, but differ lsignificantly in the mechanism
provided. The length of Thoth messages must be known to the system, as they
have to be copied between address spaces. Thus all messages are the same
size (8 words). As TRIPOS messages are not copied, they can be of any size
and the size need not be known by the system. The message-sending primitive
in Thoth blocks execution of the task calling it, whereas that in TRIPOS
(QPKT) does not. This means that a multi-event process in Thoth must be
constructed from a team of tasks, with at least one for each outstanding
message., The TRIPOS primitives permit a multi-event process to be written

either as a single task (possibly with several coroutines, as explained

above), or as several tasks in the Thoth style,

UNIX is another minicomputer system rather more complex than TRIPOS, and
lacking a general inter-process communication facility, so not amenable to
direct comparison. However, Ritchie's recommendations to system writers
based on his retrospective look at UNIX [40] show that the designers of the
two systems had some common criteria., He says that there is no excuse for
not providing a hierarchical filing system, because it is useful for
grouping files, and efficient. He considers the notion of a "record" to be
obsolete, and supports the idea that all files should consist of a sequence
of bytes, with only one format for text files. He also recommends that

systems should be written in a high-level 1language which encourages
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portability. The design of TRIPOS fits in with all these guidelines.

The suitability of BCPL as a language for portable systems has been
convineingly demonstrated, both from the fact that the language has been
implemented on over 25 different machines, and from the successful use of it
and close derivatives for writing at least four systems apart from TRIPOS.
Its complete lack of types allows the programmer great freedom, and forces
him to take care when coding (encouraging good programming practices), but
means that even a small error cah cause a program to fail catastrophically.
Having no types can also lead to run-time inefficiency, particularly on a
byte-addressed machine where the lack of a special pointer type means that
all pointer values must be converted from BCPL to machine addresses before
being used. The lack of an integer type means that portable programs should
not assume more than 16 bits in an integer, giving a restrictive maximum

value,

For these sorts of reasons, the designers of Thoth plan to introduce some
types into their language Eh, but point out that their desire to do this is
based entirely on considerations of efficiency and portability. The
language C was developed from BCPL for UNIX by adding a few types. However,
the UNIX philosophy of making each program do one job has been adhered to, by
separating the functions of type-checking and compiling. The compiler has
to know about those types included for efficiency or portability reasons,
but its job is compiling, so type-checking is left to another program, which
also reports on dubious coding practices 1likely to produce non-portable
software, Thus the type rules may be broken 1if necessary, without
preventing the program from being compiled. The authors of Pilot say that
all of the protection in that system depends ultimately on type-checking in

the Mesa language.

The authors of TRIPOS rarely found the lack of types to cause trouble, so
do not plan to extend the language. Producing variants of a language has
the effect of reducing portability, and it is useful for TRIPOS to be able to
run BCPL programs written on other systems, and for programs written under

TRIPOS to be easily transferred to other BCPL installations,

~99-




CHAPTER 4

THE CAMBRIDGE DATA RING

4,1 Introduction

This section gives a brief description of the Cambridge Ring hardware,
and mentions the interfaces to the machines on which TRIPOS runs in the
Cambridge Computer Laboratory. It is included in order to provide
sufficient context for the following chapters and does not describe work
done by the author. A more detailed description can be found in (171, It
goes on to outline the protocols in general use at Cambridge; their use from

TRIPOS is described in chapter 5.

4,2 Overview

The Data Ring is a high bandwidth local area communications medium - i.e,
it is intended to connect computers within a single building or small group
of buildings near each other. The service Ring in the Laboratory joins over
thirty machines of various types, including 280s, Novas, PDP11s, CA LSIYs and
the University's IBM 370. Many of these computers are dedicated Ring
'servers', providing generally useful services such as disc storage, terminal

connection, machine allocation, accurate date and time, ete.

Data is transferred in units of 16 bits. The point-to-point data rate is

of the order of one megabit per second.
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4,3 Hardware

The Ring consists of a loop made of two twisted pairs of wires, containing
a number of repeaters, Data is carried in a fixed number of packets, which
continuously circulate. The number of packets is limited by the electrical
length of the Ring, and the clocking frequency used - this determines how
many bits are stored in the wires and in the repeaters. In fact, what is
circulating is an integral number of packets (typically one to three)

followed by a gap shorter than a packet.

The packets are 38 bits long and contain 8 bits of source address, 8 bits
of destination address, 16 bits of data, a 2-bit transmission returncode, and

four bits used for framing, control and error detection.

Each computer is connected to the Ring via a station, which is in turn
connected via its own repeater, Stations have a transmission and a
reception half, and the two halves appear independent to the host computer.
In particular, a station can transmit to itself - a facility which has proved
very useful while developing Ring programs. Every station has a unique

8-bit address in the range 1 to 254,

4.3.1 Transmission

The basic transmission operation provided by a station is to send one
16-bit data packet to a specified destination station. It achieves this by
waiting for the first empty Ring packet to pass its repeater, claiming this,
and loading into it the data word and the addresses of the source (itself)
and destination. It then waits until the same packet has been all the way
round the Ring. When it returns, it is compared with the packet sent (as an
error detection measure), and the 2-bit transmission returncode is extracted

and made available to the host computer,
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The four possible transmission returncodes are as follows:

- Accepted - the packet was received by the destination station.
- Busy - the destination was not yet ready to receive another packet.

- Unselected -~ the 'source acceptable' register (see below) was set to
a value other than our address or 255 ('anywhere'),

- Ignored ~ No station received the packet: that Ring address either
does not exist, or its station is turned off.

Two hardware features are included to limit the load that any one station

can impose on the network:

(i) It is not possible to reuse the same Ring slot for consecutive
transmissions. Therefore, every station gets an equal chance to
grab empty slots, even when there is a lot of traffiec,

(ii) Artificial delays are introduced to limit the retry rate after a
'busy' or 'unselected' transmission failure.

4,3.2 Reception

The reception operation provided by a station is to receive one packet

from a source controlled by the source acceptable register, If this

register is set to a value from 1 to 254, then only packets from the station
of that address will be accepted; transmissions from anywhere else will be
rejected 'unselected'. The value zero means 'receive from no-one'; it is used
at times when the software is not ready to take anything more. The value 255
enables reception from any station. The actual source can be read from

another register within the station.
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4,4 Interfaces

The nature of the Ring interface is rather different on each of the

machines on which TRIPOS runs, A brief description of each follows:

PDP11: one interrupt per 16-bit hardware packet on both transmission and
reception, It is also possible to poll a status flag to see when an

operation is complete, rather than using interrupts.
Nova: one interrupt per hardware packet.

LSIY with picoprocessors: Direct Memory Access (DMA) transfer of vectors
of 16-bit words to/from store, with an interrupt at the end of the vector.
Automatic (and indefinite) retry on transmission 'busy'. No processing of
transferred data. This was the original interface used, making use of CA's

"intelligent cables",

LSIY4 with 'Type 2': An intelligent interface incorporating an 8X300
bipolar microprocessor, the design of which is described in [14]. (The name
is historical - it was the second design of Ring interface to include a
microprocessorn,) The 'Type 2' provides full handling of the Basic Ring
Transport Protocol, including checksum calculation, holding several
outstanding reception requests, retrying on transmission errors, and the
ability to receive data split over more than one block into a single buffer,

The data part only of each block is transferred to/from store using DMA.

General Automation 16/220: This computer will also use the 'Type 2'

interface.
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4,5 Protocols

This section describes the three main protocols in use on the Cambridge

Ring - the fundamental one, and two others based on it:

- Basic Ring Transport Protocol
- Single Shot Protocol (based on BRTP)

- Byte Stream Protocol (based on BRTP)

4.5.1 Basic Ring Transport Protocol

Most Ring traffic is sent in the form of basiec blocks® [481, each of which

is a sequence of 16-bit hardware packets in the format shown in the diagram,

4 bits 2 bits 10 bits

1001 TYPE SIZE-1 Header packet
FLAGS PORT NUMBER Route packet
1
B ] 2

WSIZE" data packets
SIZE-1

SIZE

CHECKSUM Checksum packet

Fig. 7: Ring Basic Block

* Terminology: two alternative naming schemes for the units of Ring
transmission are in use. In the first, the 16~bit quantity is called a
hardware packet (or just packet), and the structure shown above is called
a basic block. In the second, they are called mini-packet and packet
respectively (by analogy with other networks, where the transmission
block has the term "packet"). As the basic block is the unit mentioned
most, the former scheme has been used in this dissertation, to avoid
over-use of the word "packet", which has yet another meaning in TRIPOS.
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The header packet contains U4 bits of fixed pattern (as a weak form of
identification), a 2-bit type code, and the length of the data part of the
block (1 - 1024 stored as 0 - 1023).

The type codes have the following meanings:-

00 block with calculated checksum
01 block with zero checksum
10 immediate data:; the header packet is itself the whole block, and the

COUNT field contains the 10 bits of data.

11 unassigned

The route packet contains a 12-bit port number, used to direct the block
to the right process within a machine, The four flag bits are at present
unused. (A possible use for one might be to indicate that the block is
addressed to an intelligent Ring interface, rather than the host - e.g. to

instruect it to reload the host.)

The checksum is a 16-bit end-around-carry sum of all the other packets in
the block, or zero for blocks of type 01. (Note that a calculated checksum
cannot be zero - that could only happen if all the other packets were zero,
and the header is never zero.,) The checksum is there more to aid detection
of block framing errors (e.g. because the wrong packet was identified as
header, or because transmission was abandoned part-way through a block and

restarted), than to protect against Ring data errors (which are very rare).

In practice almost all blocks have a calculated checksum, though most
systems will also accept those with zero checksum. The latter block type
would be useful only in situations where the transmission rate was so high
that calculation of checksums were a serious overhead (on most machines, it
takes a time comparable with that to send the block), and the occasional
error would not matter — FPor example, something highly interactive like

transmission of graphical display files or voice,
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The immediate data block type is also used for only a few specialized
applications. It was once envisaged that this might have been the vehicle
for character traffic to and from unintelligent terminals connected
directly to the Ring, as it has room for an 8-bit byte with 2 bits left for

control information; things did not turn out that way.

There are some conventions about how systems should behave when sending

and receiving basic blocks:-

- Once transmission of a block has started, the rest should be sent as
fast as possible,

- Conversely, once a system has received header and port, it should
accept the rest as fast as it can (or set its source acceptable
register to zero briefly as an indication of rejection).

These conventions tend to rule out the possibility of interleaving
transmission or reception of blocks at the hardware packet level because

most hosts could not achieve this at full Ring speed.

Basic blocks are not acknowledged, Protocols using them should be
prepared to cope with an occasional block disappearing without trace, as it
is legitimate to receive all blocks and simply discard those which have bad

checksum, are too long, or are not currently expected.

The fact that a sender is not reliably informed whether or not his block
was received is one of the most serious deficiencies of this protocol, and
stems from it being implemented in software on hardware which provides
return codes only at the packet level, The lack of an immediate indication
of rejection is often the cause of programs running very slowly, because
they spend most of their time waiting for replies to blocks which appeared
to be received but were not (e.g. because the destination was not quite ready
at the time of transmission). Ring driving software tends to be carefully
tuned to give reliable transmission of basic blocks, It has several times
been the case that a change in the timing characteristics of the Ring has

made it necessary to re-tune driving software in many machines.,
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4.5.2 Single Shot Protocol

This is a protocol used for making remote procedure calls to services
when the amount of data involved in the call and the reply is limited., It is

defined in [301].

SSP request

word
0 type |flags| block type indication

1 REPLY PORT reply expected on this port

2 FUNC CODE part of service's Ring address

3+
service
dependent
arguments
SSP reply
word

0 type |flags| block type

1 PORT or O port for rest of conversation
(if any)
2 RETURN CODE{| zero iff successful

3+
reply
data

One basic block is sent to request a service, and one is received in
reply. The first three data packets of each block are treated specially; the

size and meaning of the rest depends on the service, The diagrams show the

data parts only of the blocks.,
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4.,5.3 Byte Stream Protocol

The byte stream protocol (BSP) [18] is used to provide pairs of streams
(one input, one output) across the Ring, giving an error-free channel with
flow control. Facilities are defined for forcing transmission of data, and

for resetting the stream pair to a known state.

BSP is built on the Basic Ring Transport Protocol by reserving the first
two data words of each block for commands and sequence numbers relating to
the two streams. Each block is acknowledged, thus making the protocol
immune to blocks being lost, and data is not sent until requested by the
destination, giving flow control, Each end may, if it wishes, periodically
repeat its last block to the other at times when no data is flowing,

providing confirmation that the other end is still alive.

Byte stream connections are initiated by a special OPEN block, which is
similar in format to an SSP request block (but with a distinct type code).
The data passed is in two parts: that relating to the byte streams, and user

data relating to the particular service called. The only BSP data included

at present are two blocksizes: the largest that this end will send, and the

largest it is prepared to receive,

The reply to OPEN is an OPENACK block, which is like an SSP reply -~ indeed
the type codes are the same. It includes a new port to be used for further

transmission, and the called end's ideas on suitable blocksizes.

There is another method by which a new byte stream may be formed, from two
existing ones. If a machine has two byte streams open, it may perform a
'replug' operation to connect them together, removing its own association
with both, The Session Manager makes use of this mechanism to connect a

terminal to a machine it has just booted (see chapter 8).

BSP guarantees to provide reliable communication, but because basic
blocks may be discarded without warning, it will not necessarily get
information through quickly. It is thus not completely ideal for
interactive uses such as terminal streams, though works reasonably well in

practice,
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4,6 The Name Lookup Server

Machines and services on the Ring are known by names which are text
strings; in general, it is these names which are used to refer to them and
which may be bound into programs. The station number of a particular
machine, or the location of a service should not be expected to remain

constant from day to day.

In order to make the use of these names practical, there is a machine on

the Ring called the Name Lookup Server (or just Nameserver), whose job it is

to convert names into Ring addresses. A Ring address is the set of three

numbers needed to call an SSP or BSP service: the station number, port
number, and function code. The station number of the Nameserver is "written
on the wall" (i.e. well known), and is the only station number guaranteed not
to change. The primary service provided is on a well-known port and
function code. It is an SSP service, in which the argument is a name to be
looked up, and the reply is the Ring address corresponding to that name,
together with some flags indicating what sort of thing it is the name of
(machine or service), and what protocol should be used to talk to it (SSP,
BSP, or non-standard). Another flag indicates that the function code has
not been supplied; this is used by a service which provides a family of
related functions, the codes for which are published in the definition of
the service. A further flag is used to warn that the service may be slow to

reply.*

The Nameserver runs in a dedicated Z80 microprocessor, for reliability
and speed, A subset of the name table is blown into PROM. The full and
up-to-date version is kept in volatile store, but is dumped to the

Fileserver every time it changes, giving a very high degree of immunity to

* There is no precise definition of what 'slow' means. A reasonable
interpretation is that a service without this flag will respond in 5
seconds; one with it might take up to 30. In practice, there is a fairly
clear separation between those services provided by dedicated
microprocessors, which respond in a matter of milliseconds, and those
provided under an operating system, where the response time may be
measured in seconds.
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crashes, which themselves are very rare. Looking up names is an operation
which is both simple and fast, so the use of this indirection is not a major

overhead.

The Nameserver provides several other services in addition to loockup.
These services have their own names, so their ports and function codes need

not be well-known. They are:-

- Reverse lookup
This takes a station number as argument and yields the name of the
machine as a string, It is primarily used in order to produce
informatory messages.

- Own name
This returns the calling machine's own name, and requires no
arguments.

- Name table listing
A list of the entire contents of the name table can be obtained by a
series of SSP calls, each asking for one entry by its number in the
table,
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CHAPTER 5

RING INTERFACE SOFTWARE

5.1 Introduction

This chapter describes the way in which the operating system primitives
and structures described above were used to build portable Ring interface
software, It discusses the issues involved in handling the basic protocol,
arranging for a newly-loaded machine to avoid confusion from Ring traffic
meant for earlier incarnations, and in providing network streams in a
uniform way to local streams. A mechanism is presented for allowing
arbitrary programs to be executed in response to calls from other machines
on the network (enabling the operating system to act as a "server" as well
as a "client")., The effects of using a microprocessor-based Ring interface

to handle the lowest protocol level are reported.

The Ring interface software components fall into five main groups:-

(i) Ring transmitter and receiver device drivers

(ii) Ring system tasks:- Ring Handler
BSP Handler
Ring Services

(iii) Libraries of commonly used routines

(iv) Services:- programs loaded by the Ring services task to provide
particular services

(v) Commands:~ to start and stop system tasks, transfer files, provide
information on the Ring, and access remote Ring services.

The libraries, services and commands are described in Appendix 2. All
components except the device drivers are written in BCPL and are identical

on different machines.
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5.2 Ring Device Drivers

All communication with the Ring is done through two device drivers - an
independent transmitter and receiver. These are written in assembler to
provide a machine-independent interface at the TRIPOS packet level, The
transmitter function is to send a vector of 16-bit words to a given Ring
station., The receiver function is to receive a specified number of 16-bit

words from a particular (or any) station into a supplied buffer.

As the only routing information is that provided by the hardware station
addresses, these drivers are intended to be used directly (for reception, at
least) by only one task at once, otherwise confusion will result. 1In
general, only the Ring handler task talks to these devices, and user programs

and other system tasks never send packets to them,

5.3 Ring Handler Task

The Ring handler task (RHT) provides a 'basic block' (see chapter 4)
interface to the Data Ring. It acts as a multiplexer, allowing several tasks
to use the Ring independently. It is normally the only task in the system to
send packets to the Ring device drivers, and is itself used by all other Ring
programs, This follows the normal strategy in TRIPOS of hiding device

drivers behind a handler task.

Other facilities provided by the RHT are timeouts on both reception and
transmission of blocks, retry on transmission errors, and allocation and

reservation of ports.
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5.3.1 Transmission

To transmit data in basic block(s), a packet is sent to the handler giving
the address of a buffer containing just the data, the number of data words,
and the station and route code to which it should be sent., The supplied data
is transmitted in basic blocks with full checksum; no functions are provided
for transmission without checksum or as immediate data packets, as the need

for these block types has not arisen.

There is no special packet type for sending a large amount of data in
more than one basic block - this is done automatically if the buffer size

exceeds 1024 words.*

A transmission is abandoned if the destination ignores any Ring packet,
or goes busy for more than a timeout period (a few hundred milliseconds).
If the receiving station is 'unselected' for the header packet of a block,
then the transmission request is put to the back of the queue (so as not to
block any others), and retried several times. The most common reason for a
station to be unselected at the beginning of a block is simply that it
happened to be receiving from someone else at the time transmission started.
Since reception of a block can be expected to be over in a short time (a few
tens of milliseconds), fairly rapid retrying is sensible for that sort of
period. Note ¢that 'unselected for header' can also indicate that the

destination machine has crashed, so the number of retries has to be limited.

The situation where the receiver goes unselected during reception of a
block is treated as an error not worth retrying. Some machines on the Ring
have the strategy of deciding whether they want a basic block immediately
after reading the header and route packets. If there is no reception
request outstanding which matches the block, then they set their select

register to zero for a short period (either timed, or until one packet has
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* The ability to send data in a chain of blocks was included particularly
for the Fileserver 'write' operation, which expects the material to be
written in this form.
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been re jected tunselected'). Thus the usual meaning is "Go away - I'm not

expecting anything from you or on that port", and it is pointless to retry.

However, from the Fileserver, this effect can occur on its command port,
or during a multi-block write operation, and then the meaning is "I'm busy -
try again"., (The number of command processes is fixed: if all are in use,
then there will be no reception request on the command port. During a write,
the delay can be due to waiting for a disc write to complete in order to free
a buffer) Thus, in practice, the cases when a retry is not expected are the

rare ones, so there is some reason for automatic retry in the handler.

This was put in, but was restricted to the occurrence of 'unselected in
block' during a multi-block transmission (e.g. a Fileserver write) in blocks
other than the first. It proved preferable to retry single block
transmissions more slowly from the next level of software, which can be
expected to know some of the characteristics of the machine it is talking to.
In particular, it is decidedly anti-social to transmit to the Fileserver

hardest when it is already very busy.

The TRIPOS packet requesting transmission is sent back only when the
whole buffer has been sent, or when transmission has been abandoned (after

retries if necessary), with a returncode to indicate what has happened.

5.3.2 Reception

The Ring handler task provides two reception modes:-

(1) Reception of a single basic block.

(ii)  Reception of a specified amount of data in one or more basic blocks.

# Some systems accept all blocks, and simply discard any they do not
understand, so 'unselected in block' cannot be expected to happen: it is
just a hint.
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In both cases the parameters given are:-

- the address of a buffer for the data part of the block(s)

- the size of the buffer
- the station from which to receive (with 255 meaning 'any station')
- the reception port

- a timeout period (in 'ticks')

Requests of mode (i) are satisfied by any basic block matching both
station and port and whose data part will fit into the supplied buffer.
Those of mode (ii) are satisfied only if the total data size of appropriate

received blocks is exactly the buffer size.*

A1l reception requests have a lifetime. If no suitable block arrives
during this period, then the request packet is returned with a result
indicating this. For the majority of applications, this is precisely the
action required, and often saves other programs needing to issue their own

timeout packets to the clock.

For example, consider the operations needed to do a 'single shot' request

(simplified):

(1) Set up reception request for reply
(ii) Transmit request block

(iii) Wait for the reception packet to return:
either with the reply,
or having timed out

Only one system program needs an indefinite timeout: the Ring services
task, which maintains a request on its port all the time. It did not seem
worth providing the function for just this program; instead, the RST uses a

long timeout, and bounces the packet each time it expires,

# This mode was provided primarily for the Fileserver 'read' operation,
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Both basic blocks with checksum and those with zero checksum are
accepted. All blocks are fully received, but are discarded if they match no
request, match but are too long, or have a bad checksum. A timer is started
on reading a block header: the rest of the block has to arrive within a short
time (a few hundred milliseconds), otherwise reception is abandoned, and a

new header expected.

The third reception action available is to cancel a previously issued
reception request or requests (specified by station and port). On being
cancelled, packets céntaining reception requests are simply 'dropped' rather
than sent back, thus saving messy loops to collect them in the client
program. The link field is set to NOTINUSE, and the identity field to point
to the RHT, so that the packet is in the same state as if it had been through
QPKT and TASKWAIT, and can be resubmitted without further modification.

Use of this cancel facility has turned out to be rather rare; almost

always the port releasing function (see below) does the job instead.

5.3.3 Port Allocation and Reservation

Ports for transmission are always chosen elsewhere (either given in a
Nameserver address, or in a message as a reply port), so no problems arise

over allocation or use in the transmitting machine,.

Ports for reception are used in two ways:-

(i) Some are "well known" - used for requesting services and opening
byte streams - and usually recorded in Nameserver entries. The
prime example of this type is the port used by the Ring services
task.
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(ii) Usually, the requirement is for a port number which is known not to
be in use for any other reception in the same machine. Apart from
this constraint, its value has no significance.*

Thus, the following port functions were provided in the RHT, which is the

logical central manager of ports:-

(i) Reserve port N.
The Boolean result indicates whether or not it was already reserved.

(ii) Allocate and reserve a new port,
The result is the chosen port number,

(iii) Release port N,
As well as freeing port N, this cancels all outstanding reception
requests on that port:

(a) they are no longer sensible
(b) this simplifies client programs, as they always want both
operations done

Dynamically allocated ports are chosen from only a part of the range
offered by 12-bit numbers, This leaves the rest free for use as "well
known" ports (of which there are only a very few), and for programs which
prefer to do their own allocation from a private range of ports for reasons

of speed (e.g. the Fileserver file handler).

Care 1is taken to ftry to choose a random starting value for port
allocation on each run of the RHT. This is necessary to avoid trouble when

rebooting a machine immediately after it has crashed.
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¥ Reception requests specify a (station, port) pair, so it usually would not
matter if two concurrent receptions happened to use the same port, as
long as they were from different stations. However, in a multi-tasking
environment, there is always the possibility of two parallel Ring
transactions with the same station,
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Consider the following:-

- Machine is booted

- A virtual terminal is connected to it via a byte stream

- An untested program is run, crashing the machine

- Machine rebooted

- New terminal connection made.
With simple choice of a starting port, the byte stream
will get the same reception port as last time.

- Terminal concentrator decides that the first byte stream
has worn out, so sends a BSP CLOSE.

- The CLOSE is received by the second stream!

The new connection is killed soon after it has been made. As typical
times allowed before abandoning byte streams are a minute or two, there
would have been plenty of time to have started editing, say, before the

connection was lost.

This problem can be made very unlikely by choosing a random starting
value for port allocation. The RHT originally used the time-of-day in the
root node to generate this quantity. However, this technique was useless
when the RHT was loaded as part of the resident system, as the task started
before the time-of-day had been set, and so the value read was always the
same, Neither could a random number be obtained by such ploys as adding up

words of store, as the same value would be obtained each time.

The solution finally adopted is, on starting, to count in a tight loop
until the TICKS field in the root node first changes, and to use the count
value, Hence the first port depends on the phase of the real time clock at

which loading finishes, and is likely to be different each time.

5.4 Byte Stream Protocol Handler

The BSP handler task was written to implement the byte stream protocol

defined in [18].
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BSP provides pairs of error-free channels (one in each direction), which
will transfer data as a stream of 8-bit bytes. The streams have flow
control - i.,e., if the reading end cannot take information at the rate the
writing end can generate it, then "back pressure" is produced in the stream,
which will control the rate of writing. Mechanisms are defined for
resetting the stream pair to a known state, flushing data through all the

levels of buffering, and closing streams down either tidily or forcibly.

The BSP handler is a single task which can handle one or more streams., It
is loaded when the first byte stream is opened, and deletes itself when the

last stream is closed.

The definition of the protocol presents it as a state table indicating
what action to take and what new state to enter, as a function of the current
state and the event which has just occurred. Events are such things as a
vlock arriving from the Ring, a timeout occurring, or a buffer becoming full
or empty. The handler task reflects this model, and contains a large BCPL
SWITCHON statement to direct flow of control according to the state/event
pair. Some thought was given to structuring it as a set of coroutines (one
for each open stream) as described in chapter 3, but it was decided that this
would not simplify the structure, as each stream has some multi-event
character. Instead, there is a control block for each open stream. All
events correspond to packets arriving at the task. The stream associated
with the packet is identified and its control block passed as a parameter to

the routine which processes the packet,

5.4.1 Stream Interface

The BSP handler was designed to use the normal TRIPOS stream interface,
so that existing programs would be able, without alteration, to use byte
streams. This is similar to the uniform treatment of local and network
streams in Pilot [34]. Thus, each half of the stream pair has its own SCB,
which can be used as an argument to SELECTINPUT/SELECTOUTPUT. Bytes are
written and read with the standard routines WRCH and RDCH. This proved to
pose significant problems, mainly because byte streams come in mutually

dependent pairs, whereas BCPL regards all its streams as independent.
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However, it does mean that byte streams can be used by programs which have no

special knowledge of them.

If a BSP connection is closed by the other end, then the local streams
become as if connected to the pseudo-device "NIL:", I.e. the output stream
is an infinite sink, and the input stream is an infinite source of

ENDSTREAMCH.

5.4.2 Opening byte streams

A pair of byte streams is opened by calling one of the normal library
routines FINDINPUT and FINDOUTPUT to open a stream to the pseudo-device
"BSP:". The input or output stream (as appropriate to the call) is returned,
and the other stream of the pair is placed in the global variable RESULT2.
If the stream cannot be opened, then the result is zero, and RESULT2 contains

a fault code, in the usual way.

The service to which the stream is to be connected is specified by its
service name - a string which can be looked up in the Nameserver to yield the
" Ring address of a BSP service. The name is included in the "BSP:" string as

follows:

Either:

findinput ("BSP:servicename")
result2

instream
outstream :

or:
outstream := findoutput("BSP:servicename")
instream := result2

5.4.3 Closing streams

BSP streams are closed with the normal library routines ENDREAD and
ENDWRITE. Calling either of these breaks the connection, and kills both

sides of the stream pair. Hence, only one of then should be called.
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ENDREAD causes a BSP CLOSE to be transmitted, which forcibly closes down

the streams (destructively).

ENDWRITE closes down tidily by sending the last buffer (even if empty)
with the 'close request' and 'force transmission' flags set. This results in
the byte streams dying only when the other end has processed all the data

sent.

5.4.4 Streams to remote files and printers

The BSP: device allows remote files and printers to be accessed by
programs with no knowledge of the network, making them available to ordinary
commands. A string separated by a slash from the ring service name will be
included in the user parameter area of the BSP OPEN block, so can be used to

convey a filename or document title.

For example, if the name of a printing service is "TITANPRINT", this might

be used as follows to produce hard copy of the ocutput from a command:-

EX :C TO BSP:TITANPRINT/Commands

[Examine the directory ":C", sending the list of filenames to the printer,

with document title "Commands™]

TRIPOS provides Ring services enabling byte streams to read and write
files, Suppose the machine called NOVA provides such services with the
names "READ-NOVA" and "WRITE-NOVA": other machines on the Ring can then

directly access its files., For example:-

type bsp:iread-nova/:g.libhdr

ex :¢ to bspwwrite-~nova/:brian.commandlist

~121-




5.5 Ring Services Task

The early communications programs in TRIPOS were all rather specialized;
in particular, a special program had to be ready running in the destination
machine, expecting something to arrive on a fixed port number (built into
that program). This was adequate for early experiments, but was obviously
no good for long term use. For example, transferring a file between two

machines involved typing at the consoles of both,

The 'Ring services' task (RST) was written as a general mechanism for
dynamically firing up other tasks in response to a request received from the
Ring. On starting up, it read a driving file containing on each line a port
number and a filename., From this it built a corresponding list in core, and
issued a reception request to the Ring handler task on each of the ports.
Whenever something arrived on one of these ports the program was loaded from
the corresponding file, a task made from it, and a packet sent to the task to
start it and to give it the received basic block which was its reason for

existing., The reception request on that port was immediately reissued.

Installing a program to provide a new Ring service then became an easy
matter, as all that had to be done was to include an extra port-to-filename
mapping in the driving file (a text file which could be edited in the normal
way). The only overhead in running was the store required to hold the new

map entry,

The Ring services task was relatively small, so could usually be left
running. It meant that the machine could offer a variety of Ring services,

but each was actually loaded only when required,

Consideration was given to running the called service other than as a new
task. It could have been executed as a subroutine of the RST (e.g. using
CALLSEG), giving some advantage in the total store required (as a new task
requires its own global vector and stack), and slightly simplifying the code
of the RST. This would have meant providing the RST with a reasonably large
stack, which would be sitting round unused most of the time, so calling the

service as a coroutine (thus giving it a dynamically allocated stack) would
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have been a better alternative. Running within the RST is only suitable for
services which can generate their reply quickly, send it, and finish., 1In
practice, very few turn out to be of this nature: most common are things like
file transfer and remote logging-on which are going to take some time to
complete, and so ought to run in a task independent of the RST. Thus, it was

decided to make the RST always start up a new task for every service call.

The original RST performed no checks on a received block, but merely
passed it on to the program corresponding to the port on which it was
received. Two other changes brought about a need for an alteration in the

method of operation:-

(1) The 'SSP request' and 'BSP open' block formats came into general use.
These each contained a type byte, enabling them to be recognized, and
a 'function code' field.

(ii) The Ring handler interface was modified so that a buffer was
supplied by the user with each reception request, rather than a
buffer being obtained from free store when a basic block arrived
from the Ring.

The definition of the two block types expected to initiate a Ring service
meant that the RST could refuse to respond to anything which did not
resemble one of them. It was originally intended to use the function code
field to specify various forms of each service (e.g. for a date service,
whether the answer was expected as strings or numbers). However, a result of
(ii) was that it became very expensive in store usage to maintain several
reception requests, as each required a buffer big enough for the largest
expected block. Thus, in the revised version, all services provided by a
machine had Ring addresses with the same port, and were distinguished by
function code only. Only one reception request was needed, on this fixed

port.

At the same time, the reading of the driving file was delayed until a
block was actually received, thus saving the resident store previously used

to hold a copy of this information.
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Commands were provided to run and stop the RST. In the processor bank
machines, it became a resident task (though it could be killed, as it was not

an essential one),.

5.6 Driving an Intelligent Ring Interface

During 1981, all the LSIY computers in the Processor Bank were equipped
with 'Type 2' microprocessor Ring interfaces [14] (see also chapter .
These provide handling of the Basic Ring Transport Protocol, and the Ring
devices and handler task were rewritten to take advantage of this. The

interface to the Ring handler seen by other tasks remained identical.

The advantages of having this lowest level of protocol performed outside

the main CPU are:-

(1) The CPU is relieved of the burden of checksum calculation on both
transmission and reception. The speed of the Ring is such that the
time taken to calculate a block checksum is comparable with the
transmission time of the block,

(ii) The interface to the 'Type 2' transmits from and receives into
buffers containing just the data part of the basic block, meaning
that it is possible to place buffers end-to-end in store without the
need for copying or multiple device requests, to insert or strip off
the header, port and checksum.

(iii) Transmission retries on 'busy' and 'unselected' are automatic, as is
timing out of incomplete received blocks.

(iv) The Ring interface will hold several outstanding reception requests,
interrupting only when a valid and wanted block has arrived. It
will also receive data of a specified length which arrives in more
than one basic block (as used in the Fileserver read operation).
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5.6.1 Device Drivers

The 'Type 2' interface is controlled by presenting to it codewords, which
are small vectors of store describing the required transmission or

reception, and providing slots for return codes to be passed back.

The transmitter device remained broadly similar in operation to that for
simpler interfaces. Each TRIPOS packet to it requests the transmission of
one basic block. The order of arguments in this packet is chosen so that

part of the packet itself can be used as the codeword.

The reception device has become rather more complex, due to the 'Type 2's
ability to have more than one reception codeword outstanding at once. This
means that the device driver must process each TRIPOS packet as it arrives,
presenting the corresponding codeword to the 'Type 2' (again formed from
part of the packet to relieve the driver of any store allocation problems),

and transfer the packet to an internal queue.

On an interrupt, the corresponding codeword address is passed back by the
interface. Thus, the packet which initiated the reception can be found,
removed from the internal queue, its result fields can be filled in from the

codeword return codes, and the packet sent back.

As the device's work queue is always empty (interrupts are disabled for
the transient period inside QPKT when it is not), a reception cannot be
cancelled by a call of DQPKT. Instead, an extra packet type is accepted by
the driver, to cancel a previously issued reception request, It first tells
the interface to forget the codeword, and then 'drops' the original request

packet,
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5.6.2 Ring Handler Task

The job of the RHT was simplified by the introduction of the 'Type 2'
interface, as it no longer had to construct and dismantle basic blocks,
However, some parts of the basic Ring transport protocol not handled by the

new interface remain:-

- Transmitting buffers of more than 1024 words in length as several
basic blocks; retrying on 'unselected in block' for blocks other than
the first.

- Providing timeouts on reception requests:- i.e. if this request is
not satisfied within N seconds, cancel it,

The overall reduction in run-time size of the Ring handler and devices
was not as great as might have been hoped, The transmitter device driver
remained much the same size, the receiver grew somewhat, the handler shrank
by a few hundred words, but required some extra workspace to provide a pool

of packets to send to the reception device.

The effect on the speed of Ring transmission and reception was a small
increase, Although the real time taken for transmission or reception was
not greatly altered, the amount of CPU time used decreased considerably.
Heavy use of the Ring used to virtually stop all other tasks, but does not do

so with the 'Type 2' interface,.
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CHAPTER 6

DISC IMAGES ON A FILESERVER

6.1 Introduction

This chapter describes the first method used to run TRIPOS with a
non-local dise, employing a simple interface to the Fileserver® machine on
the Data Ring. In effect, the Fileserver was treated as if it were a disc
storage server of the simplest kind, providing just the ability to read and
write disc pages. Chapter 7 contains an account of the structures provided
by the Fileserver. For this chapter, all that need be known is that it can
provide files seen as randomly addressable vectors of 16-bit words. The
experiment showed both that it was feasible to use a remote disc by
re-writing a comparatively small amount of code, and that the Fileserver

could successfully be used in a simple-minded way.

6.2 Disc Images

The approach used was to replace only the lowest level of disc software
in TRIPOS - the disc driver device. In its place was substituted a task,
with exactly the same packet interface. This is possible because packets to
tasks and devices in TRIPOS are sent in exactly the same way - the only
difference is in whether the packet ID field is positive or negative. Thus,

no changes were needed to the file handler task,
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¥ A convention throughout this thesis is that "Fileserver" is used to refer
to the Cambridge File Server.
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The 'disc driver' task made use of a single large Fileserver file,
treating it as a physical image of a real disc, by considering it to be a
series of blocks placed contiguously. The requests made to the driver by
the file handler task are each to read or write a single disc block. These
were translated into Fileserver reads or writes of the corresponding region

of the disc image file.*

The original version ran on a PDP11, and the disc modelled was a 2.5
megabyte RKOS cartridge disec., A Fileserver file of this size was created,
and a modified version of the normal disc copy program used to perform a
physical copy of an existing filing system disc to the disc image file. The
block size used on real RKO5s was 256 16-bit words, so the layout of the disec
image file was as 'blocks' of this size, written contiguously in block number
order. Thus, the word offset of a particular block within the file was 256
times its block number., This 1layout took advantage, for speed, of the
knowledge that the file handler tries to allocate blocks with consecutive
numbers to a file, and that the Fileserver's unit of disc allocation is 1024
words for a large object. Thus, no TRIPOS block spanhed two Fileserver disc
blocks, and reading a TRIPOS file serially would tend to benefit from disc

block caching in the Fileserver,

The same disc image 'driver' task was then moved to LSIH# machines - first
tests being done with images of floppy discs. At this time, there were two
LSIY computers available, one with floppy dises, and the other with two 80
megabyte discs., The file handler used 20 megabyte sections of these as its
logical discs, providing a file system of considerable size and speed for a
minicomputer. The machine with the large discs was due to become the
Fileserver for the Ring, so TRIPOS would have to move from its luxurious
environment. The straightforward solution was clear: copy the old logical

disc to a large Fileserver file and use the disc~image driver, so that

¥ A slight infelicity in this was that the packets that the file handler
thought it was sending to a disc driver device contained block addresses
in terms of cylinder, surface and sector. It produced these from the
logical block numbers used within the filing system., However, the disc
image driver wanted to know the block numbers in order to calculate file
offsets, so had to immediately invert the mapping done by the file
handler on each packet,
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service could continue with the same filing system,

The doubt as to the validity of this approach came from the anticipated
speed of the new system. The logical disc (as with all filing systems!) was
nearly full, and the file handler would still need to validate the "disc", in
order to make its allocation bitmap. On the fast disc, this process took
over a minute. However, the prospect of doing the same operation via the
Fileserver, which was, after all, using the same physical discs, led to fears

that the restart might take half an hour.

Some trimming and tuning of code followed both in the disc-image driver
task, and in the Fileserver itself. The main improvements came from the
introduction of "single shot" read and write operations within the
Fileserver. Previously, even a small read had required a 3-part interaction:

Client: "I want to read X words from offset Y in file Z"
Fileserver: data (on one Ring port)

Fileserver: return code and other info (on a different port)

and a write had required a 4-part one:

Client: "T want to write X words to offset Y in file Z"
Fileserver: "OK, ready"
Client: data

Fileserver returncode

The disc-image driver was always transferring data in chunks of 256
words, which the Fileserver considered a rather small amount. Thus, the
above protocol, designed to allow very large transfers, was rather
heavyweight. The new single shot operations reduced both read and write to
single interactions, combining the data and returncode on read, and the

request and the data on write:-
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Single Shot Read:

Client: "I want to read X (<=256) words from offset Y in file Z"
Fileserver: Returncode + data, all in one block

Single Shot Write:

Client: "T want to write X (<=256) words to offset Y in file 2"
+ data, all in one block
Fileserver: Returncode

The introduction of these functions simplified the code necessary for
small transfers., The time taken to write 256 words to a file fell from 105
ms by the full mechanism to 65 ms using the SSP method (measured on an
LSIU/30, writing to scattered regions of the file to defeat the Fileserver's
cache). The time to read 256 words stayed the same, at 64 ms. The gain from
having one less Ring block is absorbed by the extra copy operation needed to

extract the raw data from the reply.

The transition to disc images went very smoothly, and the new system
proved quite reasonable to use - as fast as a PDP11 with local RK05, for

instance. It remained in use as the main TRIPOS system for some months,

6.3 Multiple Dises; Virtual Disc Description

It soon became desirable to have more than one disc image, for different
people and departments. These were created in various sizes, corresponding
to the real discs from which they were copied. Sizes used were 300 Kbytes
(floppy dise), 2.5 megabytes (RKO5 cartridge disc), and 20 megabytes (logical
pack area of CDC 80 megabyte disc),

The start of the Fileserver file for each image contained a description
of the disc being simulated, so that the MOUNT command could pick up this
information automatically, and pass it on to the file handler task for the
mounted disc image. Thus, the MOUNT command could be used in the normal way,
and users did not need to be aware of the changes in the underlying

mechanism.
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6.4 Sharing Disc Images

A disc image could not be fully shared for writing, as each file handler
task would have had its own copy of the allocation bitmap. Sharing for
reading was safe., Sharing where one machine was allowed to write, but all
others only to read, was possible with the chance of occasional confusion
for the readers. (An object could change while being read; also, local block
caching could lead to use of an out-of-date directory block,) 1In practice,
the main filing system image was shared in this way for some time, and little

trouble was found,

Completely safe sharing of images would be both expensive and
unsatisfactory. The allocation bitmap would have to be kept on the
Fileserver, in a special file so that it could be indivisibly inspected and
updated. Access to this map could become a serious bottleneck if there were
many clients, and there would always be the danger that it could become
corrupted over a long period of use, As the Fileserver's unit of interlock
is a whole file, some private arrangement would be needed to lock TRIPOS
directories and files, such as writing a flag to the header block of them.
It would be difficult to arrange for these interlocks to time out if a

client machine crashed leaving objects open.

6.5 Comparison with a Simple File Server

The style of use of the Fileserver described in this chapter is similar
to the expected mode of use of a simple file server such as WFS (see chapter
1 and [46]). WFS provides files which resemble virtual discs, and the files
are read and written in pages (with the somewhat bizarre size of 492 bytes).
The principal advantage of WFS over the Cambridge Fileserver for "virtual
dise" use is that it supports the explicit deallocation of pages, allowing

disc space to be released.
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Locking in WFS is at the file level, as in CFS. However, it does permit a
small amount of client data to be stored with each page, and checked on every
access to that page, so a client filing system could use this to provide
interlocks in terms of its own files and directories. The main problem with
this is that nothing would ever time out such interlocks if the client

machine which set them crashed.

It is probable that a file server which provides only simple page access
has an efficiency advantage over a more elaborate file server used in a
simple way. There are two ways in which the existence of higher-level
functions within the file server has an indirect degrading effect on the
performance seen by clients making only simple use of it. Firstly, if there
are any clients making use of the higher-level functions, then the file
server is consuming processor and disc time for their benefit, slowing its
response to other users. Secondly, the presence of code for these functions
reduces the amount of cache space available in the file server, meaning it

has to perform more disc transfers,

6.6 Use of Disc Image Files: Summary

The experiments in using disc image files proved worthwhile, both as a
simple way of bringing up TRIPOS on a machine with no local dise, and in
showing that the Fileserver worked well when used in a manner for which it

was not specifically designed.

Some merits and disadvantages of the disc image approach are given

below:-
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Merits

- Only the disc driving code need be rewritten; the file handler stays
the same.

- Copying an existing disc into an image file is an easy process
(though this should not be a common event).

- The file handler knows how much disc space is still free.

- Utilities written to use the disc driver interface, such as the disc
editor, and disc copy programs, will still work.

- It is possible to MOUNT a real disc (e.g. floppies) on a machine
using a disc image, and share the filing system code,

- The amount of communications code required is fairly small, as only
two Fileserver operations are used. Furthermore, it can be a simple
sequential program because the file handler presents disc requests
serially.

- More work is done in the (multiple) client machines, and less in the
central Fileserver. This exploits the processing power available
in a distributed system.

Disadvantages

- The TRIPOS machine still has to look after block allocation, so the
code to do this, and the in-core bitmap, are retained.

- The file handler expects to be talking to a serial disc device, so
does not take advantage of the parallelism offered by the
Fileserver.

- Machines cannot fully share a disc image for writing, as the block
allocation map is not held centrally.

- The RESTART task must still run after each booting, to check the
filing system and build the allocation map.

- After a period of use, the whole file will have been written to, and
thus disc space in the Fileserver will be allocated for all of it,
regardless of how much is actually in use by filing system blocks.

The most serious of the disadvantages was the difficulty of sharing disc
images. While there were only one or two machines running TRIPOS, then it

was bearable for them to have different filing systems, but for the
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Processor Bank (see chapter 8) a new filing system was written, which both
allowed sharing by any number of machines, and took advantage of the

operations and structures offered by the Fileserver, This is described in

the next chapter,
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CHAPTER 7

THE DESIGN OF A FILESERVER-BASED FILING SYSTEM

7.1 Introduction

The use of disc images, and a driver task simulating the disc driver
device, described in the last chapter, was an interim measure to enable
TRIPOS to use the Fileserver. This chapter describes the design of a
replacement filing system, which overcomes the restrictions of disc images,
and makes full use of Fileserver primitives. The literature concentrates on
the design of file servers; the emphasis here is on the issues involved in
designing a client filing system to work with an existing file server. A

short description of the Cambridge Fileserver is included.

7.2 The Cambridge Fileserver

The Fileserver on the Cambridge Ring is a Computer Automation LSI4/30
computer with three 80-megabyte CDC dises. It provides a basic filing
system, on top of which other computers can build their own filing systems.
A detailed account of the design can be found in [9], and a summary in [10].

The Fileserver supports two kinds of object:- the file and the index. Each

object has a unique name, or Permanent Unique IDentifier (PUID), which is a

64-bit value.

% There are no access controls on Fileserver objects, so protection is
achieved by having PUIDs sufficiently long as to be almost impossible to
guess, 32 bits of a PUID contain type and disc address information; the
remaining 32 bits are random.
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A file is a vector of 16-bit words, potentially of very large size (> 14
million words). Blocks of data of any length may be read from or written to
any position in a file. Each file has a size recorded in the Fileserver,
which is the maximum offset in it which may be used. Space is allocated on

the disc only for those parts of the file which have actually been written,

An index is an object which holds references to other objects, and is seen
as a vector of PUIDs. An index may contain pointers to both files and to
other indexes (or itself), and a PUID may be stored in any number of index
slots. Thus, the structure within the Fileserver is a full directed graph.
Each disc pack has a root index, from which the whole structure on that pack
hangs. Pointers between packs are not allowed, so that packs may be mounted
independently. The Fileserver undertakes to preserve an object as long as
it is reachable from a root index, Otherwise, its PUID becomes invalid, and

the disc space allocated to the object is reclaimed.

Two sorts of file are available - normal files, and special files. The
difference 1lies in the guarantees that the Fileserver gives about the
consistency of the stored data in the event of a crash (of either client or

Fileserver) during a write operation.

Normal files are intended for the majority of ordinary data storage. If
a crash occurs while data is being written to a normal file, then the file

may be left with the write only partially complete.

Special files are used for storing information that must always remain
self-consistent, such as a filing system directory. Any change made to a
special file will either happen completely, or the file will remain totally
unaltered. Operations on special files are correspondingly more expensive

than those on normal files.

It is possible to open a file (or index) for reading and writing, or for
reading only. The Fileserver responds to the OPEN operation by returning a

Temporary Unique IDentifier (TUID -~ another 64-bit value) for the object,

which should be quoted instead of the PUID while the object remains open. A
TUID is valid until either the object is explicitly closed, or until it times
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out, The Fileserver protects itself against an object staying open
indefinitely because the machine which opened it has crashed, by cancelling
a TUID if it is not used for some time (about 3 minutes). Normally, this
timeout is long enough not to be a problem; however, if an object is to be
kept open for an extended period, then the client must make sure to refresh

this timeout by using the TUID periodically.

Opening a file has two useful consequences:-

(i) It gives the client an interlock on the file,

If it is opened for reading, then further requests (from the same,
or other, machines) to open for reading will be granted, but no-one
will be allowed to open for writing. Conversely, if it is opened for
writing, all further open requests will be refused.

Thus, a client can make sure a file is not altered while being
read, or is not accessed at all by others while being written,

(ii) For a special file, the operations of opening for writing, and
closing, can be used to bracket a series of updates. The CLOSE
operation takes a Boolean argument, saying whether the updates since
the OPEN should be done, or whether the file should revert to its
state before the OPEN. A crash while a special file is open - of
either the Fileserver, or the client (detected by the TUID timing
out) - has the effect of closing without updating.

An extra operation, ENSURE, is provided, which commits all of the
changes made so far but without closing the file.

Most Fileserver operations are of a 'single shot' nature. The exceptions
are the full READ and WRITE functions, which are outlined in the previous
chapter. The Fileserver can process several (currently three) commands in

parallel,
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7.3 Filing System Design Considerations

The Fileserver-based file handler task for TRIPOS was designed with the

following considerations in mind:-

- The filing system within the Fileserver should be capable of being
used simultaneously by several machines.

- The code should be portable between machines of different makes, and
such machines should be able to share the filestore. 1In particular,
the byte order within words should be defined.”

- It should preserve the existing packet interface to other tasks.

- It should make full use of Fileserver structures and operations to
simplify its own job.

Three possible ways of building the filing system with Fileserver files
and indexes were investigated, and a prototype handler task written for each.
The first two tried to restrict the number of Fileserver objects needed by
having only a single, large, master index. The third design had a more
complex structure, with one index per TRIPOS directory, but proved the most

suitable to meet the above objectives,

The next section outlines the first two designs, and following sections

describe the final version,

o B S i S T o S T i S O D G

* This was overlooked in the disc filing system: some byte fields were
written using the BCPL operator ('%') for accessing bytes in a vector,
which is usually code-generated to use the natural byte order for the
machine. Thus a floppy disc, for example, written by an LSIY4 was not
directly readable on a PDP11., The same problem was encountered when UNIX
was transported [U0].
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7.4 Filing Systems with a Master Index

7.4.1 Why Use A Master Index?

The attraction of organizing the filing system with only one Fileserver
index arises from the fact that the objects provided by the Fileserver do

not map exactly onto those required by the filing system.

Master Index

0 | O0OE29DB21714237 4+—> Root Directory's File

1 | O00F29DB19A8BE6H

2 0 Empty index slot

3 | 000129DC938BU2C1 Example Filing System Pointer

4 | 000229DC9823987A = i 0002 | 29DC | 9823 | 98TA
5 ete.

Fig. 8: Master Index and corresponding pointer structure

The Fileserver's idea of a file corresponds very closely with TRIPOS's.
However, a directory is an object which needs to contain both text strings
(and other data), and pointers to other objects. The data part of a
directory must be represented as a Fileserver file, but pointers must be
retained in an index, so that the Fileserver knows that the referenced

objects are still wanted.

The idea of having a master index was to hide this problem from the
majority of the filing system code, by retaining all filing system objects
in this index. This was in effect treating the Fileserver as if it were one
which provided just files, with no special relationships between them (e.g.
WFS, Felix and DFS - see chapter 1). Pointers to objects would become 80-bit
values: 64 bits of PUID, and a 16-bit number giving the offset in the index

at which the PUID was retained (needed for deletion from the index, but also
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potentially useful as a consistency check). The low level software would
manage the index, making sure that the index entry was created whenever an
object pointer was stored in a directory, and deleted when the pointer was
deleted., Thus, all higher levels would be able to use pointers freely, and
not need to know about indexes, A secondary advantage of this approach is
that it keeps the number of Fileserver objects to a minimum, saving some disc

space.

7.4.2 First Version

The first version of this filing system closely modelled the data
structures used by the disc filing system (see chapter 3). Each TRIPOS file
and directory was represented by a Fileserver file. Directories were of
fixed size, containing some header information, and a hash table. To find an
object held in a directory, its name was hashed to give an offset in the hash
table. The entry at this offset was a pointer to another Fileserver file,
being the start of a chain of directories and files whose names had the same

hash value.

As all the TRIPOS objects were represented by files in the Fileserver,
they were just data to it, so it could not know where PUIDs were stored, and
hence know the structure. All objects in the filing system had to be

retained in the master index, in order that the Fileserver should not throw

them away.

Allocation of master index slots was done in a first-fit fashion. The
index was created with more than enough slots for the number of files
anticipated on a full disc; the search for a free one commenced from the
position after the last allocation and treated the index as if it were

circular,
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Type (dir) Directory
Name
Creation
date,time
ete.
0 Hash Chain pointer
—~13 To start of hash chain of objects in this
- o directory whose names have the same hash value
0
0 Empty hash table slot
}— Hash —
—t> Example Hash Chain
— Table
> —>
- — Type (file) Type (dir)
0
_— — Name Name
y /
Creation Creation
( { date, time date, time
— —_— ete, ete,
>
Hash Chain 0
Data Hash
/ / ) Table [/
{ { { {

Fig., 9: Directory and File Structure in Version 1
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7.4.3 Comments on the first version

This filing system has the advantage of being very close in logical
structure to the disc filing system. As directories had a fixed size, it was
possible to read a whole directory at once, find the first file on the
hashchain, and read a reasonable chunk of that. Most hashchains would be of
length 1, so two Fileserver reads would usually get some of the data part of
the required file into store., The similarity in structure also helped in
maintaining the interface to the EX (examine directory) command. It

remained easy for it to print the full name of any directory examined.

The major problem with this structure came from the desire to share the
filing system by holding interlocks within the Fileserver, Exclusive locks
on the files representing TRIPOS directories were expected to be only
transient - while altering a hash table entry. However, an exclusive lock
would be needed on a file all the time it was open for writing, possibly for
hours. As interlocks are enforced by the Fileserver, such a file would
become unreadable to all clients except the one who opened it (and knows the
TUID). Thus the header information would become inaccessible, hiding the
name of the open file, and the rest of the hash chain beyond it. This could
only be made to work if the Fileserver supported interlocks which could be
tested, but which it did not enforce., The file handlers would respect these
when attempting to open a file, but would still be able to look at the header

of a file that was open for writing.

7.4.4 Second Version

In this version the master index was retained, but the directory
structure was more conventional, with file description blocks within the
directory itself. Now, each file or directory was a Fileserver file, and the
hash chains were completely contained within the directory. Thus it was
possible to have a file exclusively open for an extended period without

losing access to other files,
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Type (dir) | Directory

Creation
date,
ete,

Hash
Table
of
pointers
to
chains
of Type (file)
entry
blocks

~N-

header
info

Entry
Block data

Entry to next entry block
Block on hash chain

5 1

Fig. 10: Filing System Version 2

This structure allowed an object to be held in more than one directory -
i.e. the original entry could have 'aliases' of equal status to itself. If a
new slot in the master index were used for each entry (holding the same
PUID), then there would be no need for the file handler to be aware that the
aliases were there; each could be deleted independently, but the Fileserver

would keep the file until the last reference to it had gone.
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7.4.5 Thoughts on the use of a master index

Objects in a filing system tend to contain a mixture of data and pointers
to other objects. The Fileserver provides files, containing only data, and
indexes, containing only pointers; it would be difficult for it to have mixed
objects in any clean fashion. The use of a master index attempts to solve
this, by allowing the filing system structure to be built out of files only,
and making sure all those files are kept by the Fileserver by retaining them
in the single index. It keeps the number of Fileserver objects to a minimum:

just one file for each TRIPOS object.

However, using only one index has two infelicities, both really caused by

the fact that facilities provided by the Fileserver become unavailable.

Firstly, garbage objects could be expected to accumulate within the
index. There are many things that can go wrong with a directory operation
carried out over a network. The use of 'special' Fileserver files should
ensure that the directories themselves remain intact. The safe method of
doing a deletion involves removing a directory entry, and deleting the PUID
from the index only when that has successfully completed. If the index
deletion fails, then an object is left behind. This is harmless to the
integrity of the filing system, but, as the slot will never be reused, the
Fileserver will keep the object indefinitely. This can be solved only by
writing a special garbage collector for the filing system, and running it
occasionally. As the Fileserver has its own garbage collector, it seems

sensible to avoid writing another if at all possible.

The second infelicity is that deletion of a non-empty directory requires
work by the file handler to remove the objects one by one, which may involve
working down a large tree. The disc file handler in TRIPOS has always made
the restriction that a directory may not be deleted if it is not empty - (a)
because the code to implement arbitrary deletion would be of significant
size and rarely used, and (b) as protection. It is something you want to do

only occasionally, but disastrous if you do it by accident.
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7.5 Final Version of the Fileserver Filing System

The third design of filing system, which was the one finally adopted,
abandons the use of a master index and employs a structure in which the
logical links between filing system objects are accurately reflected within
the Fileserver,

Directory
Index Special File

Type (dir)

Creation
2 date, etec.

3 Hash table
y y Of
pointers
to chains Type (file)
of entry
blocks length,
creation
date, ete,

[\ g

Entry
Block 0
(uses index
slot 1) data

Entry

Block 1 r
(uses index

slot 2)

y

Fig. 11: Final Version of the Filing System

As a directory must hold both data and PUIDs, it is represented by a pair
of Fileserver objects - a file and an index. The file must be a 'special’
one, as some directory operations require indivisible update of several

regions of a directory at once,
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A TRIPOS file is represented by a Fileserver 'normal' file, The first few
words are used to hold information which relates to the file itself, as
distinct from information which belongs in a directory entry pointing to the

* This includes its length in bytes, when it was created, and who

file.
created it. The Fileserver's record of the file's length is not used, as it
is in 16;£it words, so has insufficient resolution for character files. All
files are created with the maximum size allowed, and the Fileserver's idea of
the length is thereafter ignored.# Note that maintaining the length as data
at the start of the file actually saves a Fileserver operation when opening
a file for reading, as the header information can be read as part of the

first read of the file.

In order that a directory may be referenced by a single pointer (i.e.
PUID), its special file is retained in the first slot of the corresponding
index; the PUID of the index is used as a handle on the whole directory.
This also has the desirable property of tightly coupling the existence of
the two objects within the Fileserver, in that deletion of all references to

the index will also remove the file,

7.6 File Handler Interface Changes

Although the original intention was to retain the existing packet
interface between the BCPL library (BLIB) and the file handler, it was
decided that several changes would be desirable for future use of the
Fileserver filing system, and that it was as well to make them when it was

installed. The disc file handler was also modified for the new interface.

— o o o T D O T S O S S o S

% This starts to matter only when aliases are allowed, i.e. when an object
can be retained in more than one directory. The name of the object is a
property of the route taken to reach it, so belongs in the directory
entries, whereas its creation date and length (of a file) are properties
of the object itself, and should be stored with it, or more conveniently,
in it,

# The Fileserver's file length value could, in fact, harmlessly be set to
the length of the file in bytes - i.e. double the correct value. However,
this trick is a little devious, halves the maximum file size, and is
anyway more expensive than recording the length within the file,
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There were two main reasons for making changes. Firstly, there was the
possibility of there being sufficient machines in the processor bank for it
to be reasonable to take one to run the TRIPOS filing system. It should then
be possible in each other machine to replace the file handler task with a
much smaller task which translated each packet from BLIB into a call of the
filing system machine, Previously, part of the mechanism of decoding
filenames was in BLIB, which made multiple calls on the handler in order to
open a file, for instance. The interface was altered so that all operations
involving a filename became single packet calls, passing the complete
filename to the handler. Also, a cleaner interface was provided for the EX
command to obtain file and directory information, without having to know

about the internal structure of such objects.

The second change was a generalization of the way in which the identity
of a handler task was found from a disc name, This used to be done by a
piece of code with a compiled-in table of names and task numbers. The
generalization was to replace this by a chain of association blocks
accessible from the root node, and to allow 'device' names to be assigned to
directories as well as complete dises. (The subtree of filing system below

a directory is logically similar to the root of a mounted disc.)

This change comprised the introduction of the routine DEVICETASK in BLIB
and of the ASSIGN command. For an assignment to a device, all that is
remembered with the name is the task number of the handler; with an
assignment to a directory, a shared file handler lock is also held, providing

quick access to the directory as it contains the PUID.

7.7 Implementation of the File Handler Task

The file handler task contains three coroutines, organized as in the
example of coroutine use in chapter 3. There are two identical 'command'
coroutines, each of which serially processes request packets, and one 'elock!
coroutine, which wakes up at intervals to perform housekeeping operations.
Two instances of the command coroutine were included as it is useful to have

some parallelism when several client tasks are using the filing system.
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However, logging has shown that a third instance would be called only
rarely* and, currently, the Fileserver can process only three commands in

parallel anyway.

The clock coroutine keeps all TUIDs alive for open files by touching them
periodically. It also regularly calls the Fileserver's 'status' function, so
it can send a warning message to the terminal when a planned Fileserver stop

is imminent.

The file handler includes a cache to speed the sequential reading of
files. The handler tries to keep both the current and next file buffers in
the cache so that the client task will not have to wait for Fileserver reads.
The cache slots are kept in order of least recent use, so that active ones
tend not to be reused. This works well: using 4 cache slots of 400 words
each, programs reading a file sequentially nearly always achieve a 100%
cache hit rate. The typical overall hit rate is 80 - 90%, but is the result
of combining two extremes -~ a véry low rate while opening files and doing
other directory operations, and a very high rate during sequential reading.
Block reads larger than a cache slot are performed straight into the
client's buffer in a single Fileserver operation, by-passing the cache

completely.

Both SSP and full read and write Fileserver operations are used,
depending on whether the transfer is of more or less than 256 words. The SSP
versions are rather faster than the full ones, but do involve the CPU
overhead of copying the bare data, while the full versions allow it to be
transferred directly from or into the final buffer. A cache slot has to be
used as a temporary buffer for SSP reads and writes., Logging shows that
most use is made in practice of full read and SSP write; the other two are

used considerably less often.

* Tt would never be called when only one task was using files, and for less
than 109 of requests when three tasks were using files.
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Care is taken to ensure that the filing system is not corrupted if either
client or Fileserver should crash at any moment. The Fileserver allows
atomic updating of only one object at once, so a TRIPOS directory (2
Fileserver objects) cannot be altered indivisibly; The approach adopted is
to update atomically the special file part of the directory, and make
corresponding changes to the index part in a safe order. This means opening
the file, and making the alterations to that and appropriate retentions in
the index, being sure to use free directory slots so that no used index slot
is overwritten. The file is then ensured, and only when the changes have
been committed are any deletions done from the index. Thus, the worst that
can happen if either end crashes is that an index slot which should be empty
will contain a PUID. This does not affect the integrity of the filing
system, and the slot will eventually be reused because it corresponds to a
free directory entry in the file part., The holding of a Fileserver
interlock on the file part ensures that only one client at once can update a

directory, and that other clients cannot see it in an inconsistent state.

Fileserver operations are retried indefinitely if they fail through
communication errors - i.e. if transmission to the Fileserver fails, no reply
is received, or a Fileserver return code is received in the range allocated
to communication faults., If transmission fails repeatedly for several
seconds, then it is likely that the Fileserver has crashed, so a warning

message is sent to the console.

Hard return codes from the Fileserver cause the operation to be abandoned
immediately, except in two cases. The return code 'object in use' is treated
specially if it is received while trying to access a directory. The
operation is retried a few times, as directories should be held open only
briefly. The other special situation is when an attempt to read or write to
a file, using a TUID, fails. One try is made at re-opening the file to get an

equivalent TUID before abandoning the operation (see "Interlocks" below),

Fileserver return codes occupy 16 bits. In order to map them into the
set of TRIPOS return codes, use is made of the knowledge that the less
significant 8 bits merely indicate which Fileserver module the code

originated from. The other 8 bits are extracted, and added to a fixed base,
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to form a distinct range of TRIPOS return codes.

An 'editor' program was written as an aid to implementing the filing
system; this allowed Fileserver operations to be performed by means of
interactive commands. It was used to create the index and file forming the
root of the filing system. The file handler was then MOUNTed as an extra
'disc' in the normal version of TRIPOS, a complete set of directories created
in the new filing system using the normal CREATEDIR command, and all the
files copied across using a (long!) command sequence of COPY commands. (In
fact, a slightly modified COPY program was used, in order to preserve the

creation dates in all the copied files.)

7.8 Sharing The Filing System Between Machines

This filing system is intended to be sharable between machines, both in
the sense that the structure on the Fileserver may be used simultaneously by
several computers, and that the code of the file handler is portable between

different machines.

7.8.1 Portability of Code

Given the machine independent environment provided by TRIPOS, the writing
of a portable file handler task presented only a few problems. A major one
is that of machine word 1length. The file handler approaches this by
considering files to be vectors of bytes. However, some of the information
in directories and file headers is stored as 16-bit quantities, and the code
was originally written using the BCPL indirection ('!') operator to
manipulate these - hence worked only on 16-bit machines, In order to run on
a machine with a different word length, the code was modified to use routines
which were the 16-bit equivalents of PUTBYTE and GETBYTE (PUT2BYTES and
GET2BYTES). An alternative solution would have been to add a new operator
to the language to do 16-bit indexing. This was rejected, as language
extensions have the effect of reducing portability of programs to other

systems,
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Within 16-bit machines, the problem reduces to one of byte order within
words. The file handler uses a constant byte order in all words written to

the Fileserver, regardless of what sort of machine they originate from,

7.8.2 Concurrent Filing System Access; Interlocks

If the filing system structure on the Fileserver is to be used
concurrently by several machines running the file handler, interlocks on
objects must be held in a central place, the obvious choice being the

Fileserver itself.

When a file is opened for reading or writing, the file in the Fileserver
is opened in the corresponding way, and all data transfers done under the
resulting TUID. This automatically provides the required multiple-reader /
single-writer interlock. The file handler still produces a local 'lock',
returned in the SCB. This contains the file's PUID and TUID, plus other

information, such as the current position in the file,

Whenever a directory is being read, its special file is opened for
reading to prevent any changes being made to it while it is being inspected.
When a directory is being updated, the file part is opened for writing over
all the updates, both to prevent anyone else from reading it in an
inconsistent state, and to allow the changes to be committed or completely

cancelled on closing (because it is a special file).

However, a TRIPOS shared directory 'lock', used for such things as the
currently set directory, cannot be reflected in the Fileserver, Taking out
a shared Fileserver lock on your current directory would make it impossible
to update it. Thus, these locks do not prevent deletion of the object
referred to, which is unfortunate, but not often a problem in practice. What
is needed is a form of Fileserver OPEN which allows all further read/write

access, but forbids deletion.

The index part of a directory is never opened, as it 1is effectively

protected by the lock on the corresponding file,
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The Fileserver times out TUIDs which are not used for several minutes,
The existence of this timeout is ignored for TUIDs on directories, as none
should ever exist for more than a few seconds. However, files are commonly
open for long periods (e.g. while editing). The file handler's clock
coroutine deals with this problem by scanning the chain of local locks
regularly, and using each TUID to keep it refreshed. A small read is done
from each file open for reading, and the current size is written to each file

open for writing.*

A disadvantage of keeping locks in the Fileserver is that all TUIDs are
forgotten if the Fileserver crashes and restarts. If this happens during a
directory operation, then that operation will fail, but can usually be
retried easily., However, it is desirable that an ordinary file should be
able to stay in use over a Fileserver restart (e.g. so that any compilation,
editing, etec. should just carry on). To achieve this, if an attempt to read
or write gets the returncode "invalid UID", then one try is made at
re-opening the object to restore status quo. 1In practice, this is very

successful, and saves inconvenience,

Initially, the file handler tested specially so that it could forbid
deletion of an open file. However, it cannot reasonably test that an open
object is not implicitly being deleted when a directory is deleted, so this
test was removed; The Fileserver undertakes to retain any open object, even
if it is not reachable from the root, so the holder of the TUID is

unaffected,

* This has the useful side-effect that if a machine crashes with a file
open for writing, the size is quite likely to be up to date. Updating the
size on every write operation would be very expensive,
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7.8.3 Filing System Variants Per Machine

Although the filing system as a whole is shared, and should appear
similar regardless of which machine one happens to be accessing it from,
there each a need for each machine to have sections of the filing system for

its own use,

An example of this is the directory used to hold temporary files. TRIPOS
has never had the concept of anonymous files which exist only while they are
open., Instead, all temporary files (e.g. editor workfiles) are created
within the filing system, and deleted after use., This has the advantage that
if a machine crashes during editing, very little work will be lost.
Temporary files are created within a special directory - ™:T" in original
TRIPOS - with unique names, usually constructed from the name of the program
generating them, and the number of the task in which it was running (to allow

for multiple instances of a program).

Utility programs running independently on a network cannot so easily
produce unique filenames, so this scheme could not continue to be used. The
solution was to use the assighed device name "T:" as the directory for
temporary files, and arrange that this pointed at a different directory in

, *
each machine,

Thus, the assignment mechanism allows machines to share the bulk of the
filing system, while retaining a portion for their own use, with exactly the

same code running in each machine,
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* In fact, each machine has a directory with the same name as the machine,
(chosen because a machine can find out its own name from the Nameserver)
containing a sub-directory called "T", E.g. the machine called Bravo runs
with T: assigned to "SYS:BRAVO.T".
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7.8.4 Filing System Variants Per Machine Type

If the group of computers sharing the filing system is heterogeneous, but
running the same file handler, there is a need for a mechanism which allows
only relevant parts to be shared, and others to be machine-type specific,
This is vitally important for any directories containing compiled code, such
as the commands directory :C, the overlays directory L, etec, The method of
assigning a logical device name to each (as used for T:, above) is not very
practical here, as it would be messy to have the necessary large number of
assignments required, and a very large number of programs would need to be

changed to use the new names.

A solution is to take advantage of the ability of the filing system to
support aliases, i.e. to allow an object to be retained in more than one
directory. All the system directories used by standard software are at the
top level of the tree, as sub-directories of the root. A different root
directory can be created for each type of machine, with entries 'C', 'L', 'H',
ete., pointing to private versions of those directories., The majority of

entries, such as users' directories, are common in each root,

The system initialization code inspects the machine type (available in
the root node info vector), and sets SYS: to refer to the appropriate root
directory. Thereafter, references to 'SYS:C' or just ':C' will automatically

pick up the right sort of code. No other programs need be changed,

There remains the problem of accidentally loading the wrong sort of code
from a file outside one of these directories. The TRIPOS object module
format does not specify what machine the code is for - hence LOADSEG will

happily load the wrong code, and attempting to execute it will cause a crash.
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One change that could alleviate this danger without requiring alteration
of the object module format is to make the MLIB routine GLOBIN check that at
least one of the globals defined in a segment appears to have an entry

. AR
sequence for this machine.

No BCPL program can be executed without GLOBIN being applied to it first
to put the addresses of its global routines and labels into the global
vector, so this trap should always work. As GLOBIN is written in machine
code, it is inevitably different on each machine, and it can be expected to

know entry sequences,

7.9 Protection

The filing system for TRIPOS with a local dise includes no file
protection mechanisms. They would be impossible to enforce in such an open
system, and are unnecessary in a single-user system. However, when a number
of clients are sharing a network filing system, the situation is rather like
that in a multi-user operating system, and file protection is desirable. As
the Ring-based system is just as open as the ordinary one (and, anyway, a
user can run any program he likes in his machine), any enforcable protection
scheme must be supported by facilities of the Fileserver. However, a
Fileserver PUID has no associated access controls, and allows full access to
the corresponding object. For the file handler to operate, it must have the
PUID of the root index of the filing system in store. This means it can be
read by any user with a modicum of knowledge about the file handler program
(there being no memory protection). The PUID could be made less easily
accessible by holding it in encrypted form, but this does not remove the

logical lack of security.
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* Note that labels as well as routines can be defined as globals, but it is
reasonable to expect any segment to contain at least one routine
definition,
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Two file protection schemes have been incorporated in the filing system.
The first is designed to prevent accidental overwriting or deletion by means
of access flags in each directory entry, but is no defence against malicious
attack. The second completely protects part of the filing system by making
it unreachable from the normal root index. It works by having two instances
of the root directory, almost identical in contents except that only one
contains references to the protected part of the filing system., Part of the
logon authentication process (see chapter 8) sets the root directory
according to whether or not the user is privileged. This method has been
used to protect the system sources, but is hardly ideal, as it makes it
impossible for the unprivileged user even to read them. However, it does

provide enforcable protection in unprotected machines,

7.10 Evaluation and Conclusions

In most distributed systems, the file server is designed to support a
previously existing filing or database system., Hence the literature tends
to concentrate on the design of file servers rather than on the design of
filing systems to use them., This makes it difficult to compare the above
work with that done elsewhere. However, it has indicated some features that

are desirable in a file server,

In fact, the Cambridge Fileserver was originally conceived as a backing
store server for the CAP computer, and its design has been influenced by the
virtual memory and filing systems of that machine., Hence it supports a file
and index structure which is a full directed graph, allows very large data
transfers (for swapping), and maintains file sizes only to a resolution of
whole 16-bit words (CAP files contain integral numbers of 32-bit words).
The work of converting the CAP backing store system was done by
Dellar [7; 8]. He too used a special file / index pair to represent a
directory, but was able to map CAP files directly into bare Fileserver files,
as the resolution of size is fine enough, and CAP associates no other
information with a file (rather than with directory entries for it). He

made no use of Fileserver interlocks; there is only a single client of the
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CAP filing system, and it makes directory changes by reading the whole

directory into memory,altering it, and writing it all back.

There seems to be no very good reason for the Cambridge Fileserver not to
hold file sizes in terms of bytes, as does the Xerox DFS [44]., (Most other
file servers are page oriented, so the question does not arise.,) The
majority of operating system designers seem to consider a vector of bytes to
be the most sensible form for a file, It would also be useful if a small
amount of information could be stored with a file. Client systems could
then use this to hold items such as the time last updated (though ideally
this would be maintained by the server), and the identity of the file's
creator, This facility would perhaps be most neatly provided by allowing
access to negative offsets within a file; a client could then choose whether
or not to read the information with the first part of the file. WFS [46]
carries the idea of associated information one stage further, by having

system and client information attached to each page of a file,

Although nearly all of the Fileserver's functions are idempotent, and so
can be harmlessly repeated when a network block is lost, two are not and both
have caused trouble, These are the OPEN and CLOSE operations., If the reply
to an OPEN is lost, then when the client retries it will find that the object
is already open. As the corresponding TUID was lost, nothing can be done for
several minutes until the Fileserver breaks the lock. A function meaning

"break all locks which I hold on this object" would enable faster recovery.

The operation CLOSE (specifying that updates should be done) is
essentially useless. If the reply to it should be lost, then a repeat will
receive the response "invalid UID". There is then no general way of finding
out whether or not the first one succeeded. The safest way to close a file
is to call the ENSURE function, which is repeatable, first; there are then no
changes for CLOSE to commit. However, even this does not work if the
Fileserver crashes between committing the changes and replying to the
ENSURE., Xerox DFS gets round this problem by maintaining a list of the
fates of recent transactions, so that a client can enquire about how one

ended.
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The handling of directories consisting of a file/index pair would be
simplified if the Fileserver allowed atomic transactions involving more
than one object (as does, for example, DFS). There would then be no need to
be careful about the order of updates, and no possibility of spurious

entries being left in indexes.

The fact that the Fileserver allows the PUID of an object to be retained
in more than one index slot makes the implementation of unrestricted aliases
to files and directories trivial, because the server does all the work of
maintaining use counts, deciding when objects can be deleted, and garbage
collection, Aliases have proved to be a very convenient way of arranging
sharing of the filing system between machines of different types, and of

protecting some regions of the filing system, as described above,

If the Fileserver allowed several PUIDs for an object, giving different
access rights, then it would be possible to implement more sophisticated
file protection schemes in computers with unprotected memory. The Felix
file server [13] has such a facility. A function exists which takes a file
identifier (FID) and a list of access rights, and returns an equivalent FID
having the requested access, The FID must be just an index into a private
data structure of the file server's so that a client cannot manufacture a FID

giving him more access than he is allowed.

The area in which the Fileserver filing system is much slower than the
disc one is in locating files. The only safe way to follow a file's path
name is in turn to open each directory for reading, so that the entry can be
found without danger of the directory being altered from another machine.
Finding a file thus requires a 1large number of interactions with the

Fileserver, and can take several seconds.

In practice, it is rare for any directory to be in use by more than one
client, so a great efficiency loss has been made to eliminate a small danger
of incorrect operation, It would be of great benefit if clients could
safely cache heavily used directories, and have some cheap method of finding
out if a cached copy was out of date, One way of doing this would be for the

Fileserver to provide "weak" interlocks, which it could break if another
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client wanted a "strong" (conventional) interlock on the object. The DFS
file server has a similar facility (although there is not the concept of
"weak" and "strong" interlocks). When DFS breaks a lock, it sends an

unsolicited message to inform the client which obtained it.

A client could take out weak interlocks on all directories it had cached,
and would be told by the Fileserver when any part of its cache became
invalid. There is a small timing problem here, as the client may have made
use of an invalid cache entry just before receiving the message., If the
directory was changed in such a way as to add something, then the result is
harmless - it is as if the new entry were inserted a little later than it
actually was. If something was deleted from the directory, then the cached
copy may point at something which no longer exists., As PUIDs are
(theoretically) not reused, the entry is detectably invalid, so subsequent
path name decoding will fail. However, this does mean that "object just

deleted" is not necessarily distinguished from "filing system corrupted",
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CHAPTER 8

AN OPERATING SYSTEM FOR 'SINGLE CONNECTION' COMPUTERS

Preceding chapters have described the design of a portable operating
system for minicomputers with their own disc and console. This chapter
gives an account of the version of the operating system written to run in
the Cambridge Computer Laboratory's 'single connection' computers - those

whose only peripheral is the Data Ring.

The new system was designed to appear to users to be very similar to the
normal version, though some minor changes to the user interface were
inevitable, and the method of access became quite different. The internal
changes were quite substantial. Some comments are made on the benefits and
disadvantages that resulted from the exporting of some of the functions of

the file handler and console handler to other machines on the Ring.

8.1 The Processor Bank

The machines on which this work was done are Computer Automation LSIY
minicomputers with 64K 16-bit words of store. The Laboratory had just one
of these machines initially, with two console lines and two 80 megabyte
discs; it ran as the main TRIPOS machine for about two years, then went into

dedicated use as the Fileserver.

Half a dozen more LSIYs were purchased for use as general computing
engines, Their only peripheral was to be the Data Ring, and it was intended
that ordinary users should need no physical access to the machines
themselves. The model was of a pool of personal computers, which were

available to be borrowed by any user with some computing to do.
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This was an experiment in an alternative way of using personal computers
attached to a network, forming part of the Cambridge Model Distributed
System [29]. Other institutions (e.g. Xerox - see [47]) have used the
approach of giving each programmer his own minicomputer in his office, It
has its own console and a disc of modest capacity, so can be used
independently from the network; however, the facilities of the latter are

easily available when required.

This system has the advantage that people can still work when the network
is not operating, but is expensive in the amount of equipment required (as
only a fraction of the computers, terminals and discs will actually be in use
at any moment), and makes maintenance awkward. The machines are liable to be
widely distributed, and probably have to be physically wheeled away for

servicing.

The advantages of a pool of single-connection computers are that the
number of machines needed is only enough to cover the peak number expected
to be simultaneously in use (hopefully less than the number of people), and
that they can all be situated physically close together, This makes them
simpler to maintain, and when one breaks down, it is not one particular
person who is inconvenienced - it just means that there is one fewer machine
in the pool until it is repaired. The idea of these machines forming a pool

from which they can be lent out led to the name Processor Bank for them,

The LSIYds were all connected to the Ring via the 'Type 2' microprocessor
interface described in chapter 5. Duringéthe development of the version of
TRIPOS described below, the full power of this interface was not being used,
as the program running in it was a rather simple one which did not handle the
basic block protocol. The eventual introduction of basic block handling in
the interface did lead to the hoped result of less code and less CPU time

usage in the LSIus,

There are two models of LSI4 in the Processor Bank, differing most
significantly in their speeds. The LSIN4/30 model has instruction times
ranging from about 1.2 to 2.5 microseconds; the LSI4/10 is around three to

four times as slow for most programs,
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8.2 Access to the Processor Bank Machines

Use of the computers in the Processor Bank is by means of several server

machines on the Ring. These are:-

- The Terminal Concentrators
These each support several terminals, and allow each terminal to
make byte stream connections to one or more other machines, They
provide basic line-editing and escape facilities on input.

- The Resource Manager
This is responsible for allocating Processor Bank machines. It
maintains a table with an entry for each machine, indicating what
attributes that machine possesses (e.g. whether it has floppy dises,
whether it is an LSI4/30), whether it is allocated, and, if so, how
long it has been allocated for.

- The Ancilla [41]
The Ancilla performs low level operations on Processor Bank
computers, such as loading bootstrap code into them from the
Fileserver, and starting them. It is intended to hide the sordid
details of these operations from the Resource Manager, which calls
it to reset, load, and start machines.

- The Session Manager
This works closely in conjunction with the Resource Manager. It
manages the connection of terminal streams to machines, and provides
an interactive interface for inspecting machine states, and
allocating machines with particular attributes,

8.3 Towards a single-connection systen

This section outlines the development of the modified TRIPOS which runs
in the Processor Bank machines., The bank itself became available over a
period of about a year. Initially, only one machine was in use, with its own
console and dual floppy discs. A second was added, again with its own

terminal, but with no disecs.
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The order in which dependence on real peripherals was removed from TRIPOS
was as follows, When the first Terminal Concentrator appeared, a Ring
service was included to allow 'logging in' from the Ring - i.e. by creation of
a new CLI task and a virtual terminal handler task. This terminal handler

formed the basis for the full version,

When the Fileserver came into full-time operation, the whole of the old
TRIPOS disc was physically copied into a large Fileserver file. A task was
added to the system which looked to the file handler as if it were the disec
driver device, but which in fact transferred blocks to and from the large
file (fully described in chapter 6). This served two purposes: it was a
simple way to continue running the system, the main noticeable change being
Just that it ran more slowly; also it tested the viability of using the
Fileserver in a simple-minded way rather different from that for which it

was designed.

The next stage was to run TRIPOS with no real console, but without
external resource management. The system was booted manually into a
machine, either from the floppy discs, or by running a command on another
machine to load the target computer via the Ring, The system could be used
by connecting into the machine by name from the Terminal Concentrator. It
allowed only one user at once, issuing an 'already in use' message to anyone
else who attempted to connect in., Once the first user had disconnected his

terminal stream, the machine was open to another connection,

This was a workable arrangement, given cooperative users, but far from
satisfactory., It was awkward to find a free machine. If you did not reboot
it, then you got a used system whose integrity could be suspect, as the LSIis
have no memory protection., However, unless the machine was the one with the

floppy disecs, rebooting it required a second computer to do it from.
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The next change was the replacement of the disc file handler and its
imitation disc driver task, by a completely rewritten file handler which
made more use of the facilities provided by the Fileserver (see chapter 7).,
This meant that the whole filing system had to be copied again, using a
file-by-file logical copy this time, as the old disc blocks no longer had any

significance,

When the Resource and Session Managers, and the Ancilla, came into
service, the old problem of choosing and booting a machine was removed. When
TRIPOS found itself running, it could apply to the Resource Manager to
connect itself to its user, and no longer required a Ring service for logging

in,

The main change in the system after starting was that it had to talk to
the Resource Manager periodically to ask for a further time allocation,
This provided a "dead man's handle" mechanism whereby the Resource Manager

would eventually reclaim any machine that crashed.

8.4 Design of the Processor Bank system

This section explains the internal organization of TRIPOS for the
processor bank machines, and compares it with the normal system described in
chapter 3. The diagram shows the tasks and devices which comprise the

system, indicating with arrows which modules call which others.

Three of the four resident tasks (DEBUG, Terminal Handler, and File
Handler - see below) had to be completely rewritten or modified, and two more
had to be added to handle the Ring communication. 1In fact, a third task was
added as well - not because it was essential to the working of the system,

but because it'would usually be desirable to have it running.

The three devices (apart from the timer) in the normal system were
replaced by just two: the Ring transmitter and receiver. The initialization
code had to be substantially extended, a few commands became redundant and a

few were added, and some system overlays had to be replaced.
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Fig, 12: Tasks, Devices, and Libraries in the Processor Bank System
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However, the interface seen by programs at the system 1library 1level
remained unchanged, so the majority of commands and other programs needed no

alteration,

8.4.1 Ring communication

In the single connection systems, it is essential that the Ring handler
and drivers are resident; without them, nothing else could be loaded, nor

could anything be conveyed to the outside world,

The only changes needed to the Ring handler were minor ones. An extra
field was added to its start-up packet, indicating whether it is resident or
has been loaded dynamically., Only in the latter case will it go away in
response to an "RHINFO KILL" command. The other modification was in the way
the port number to be allocated first was chosen; this is explained in the

section on the Ring handler task in chapter 5,

Thus, only one version of the Ring handler program is needed, and can run

either in a single-connection or an ordinary system.

8.4.2 Byte Streams

One of the first actions of this TRIPOS after starting is to open a byte
stream pair to the Session Manager, which is immediately 'replugged' (see
chapter 5) to the terminal. Therefore, the BSP handler would always be
loaded at a very early stage, and so might just as well be in the initial
load., The extra time for boot loading is less than that to read the same

code through the file handler.

However, there is no need to take precautions to make sure that a resident
BSP handler cannot be unloaded. It does not go away until all streams are
closed, anyway, and all the apparatus to reload it on demand is still

available,
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8.4.3 Ring Services

Although it is not a necessary component of the system, this task is also
included in the initial load, The user of a Processor Bank machine is thus
deemed to be willing to accept Ring service calls from other machines,
unless he deliberately kills this task., This is useful mainly so that he

can by default receive operator messages.

8.4.4 The four standard tasks

The resident tasks of normal TRIPOS - CLI, DEBUG, console handler, and
file handler - all remain, albeit in different form, in this system. Thus,
there are seven tasks in the initial load. (No Restart task is necessary

with the Fileserver file handler.)

The changes made to these four tasks will now be described.

8.4.5 CLI

No modifications at all were needed to the CLI for the Ring system.
However, CLI.INIT, the routine which it calls on starting to initialize it

and the rest of the system, needed considerable extension (see below).

8.4.6 Terminal Handler

The terminal handler was completely rewritten for the Processor Bank
system, as 1its character reflection and line editing functions were no
longer relevant, and it had to interpret Virtual Terminal Protocol
(VTP) [31] on byte streams, rather than driving a console device. It proved
convenient to include some code connected with the Resource Manager and
Active Object Table Manager (see "User Authentication" below) in this task,

making it more of a session handler than just a terminal handler,

The terminal handler has two flows of data through it:- output lines from
other tasks are written to the terminal, and input lines are sent to tasks,

or held until wanted,
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Simplifications in VT handler compared to console handler

- No character reflection
- Very little line editing - just deletion of whole lines

- No '@' escape handling. The terminal concentrators use this as an
escape character, and provide most of the functions which it was
used for in the console handler. The few operations which cannot be
done by the concentrator (i.e. €Snn, €Tnn and @F) are done in the
virtual terminal handler by corresponding control codes, to avoid
the unpleasantness of interpreting '€ in two places (meaning you
would have to type four '@'s to get one through in an input line).

- No 'system freeze' function (done by control-A in the console
handler).

- No need to hold up output while an input line is being typed; this is
done by the concentrator.

- No processing of output lines

New facilities included in the VT handler

The virtual terminal handler is largely compatible with the ordinary
console handler in terms of its packet interface. However, it includes some
facilities not available in the latter:

- Single Character Input Mode.

Programs, such as screen editors, which need to receive each input
character from the keyboard as soon as the key was pressed achieved
this by driving the console devices directly in normal TRIPOS,
by-passing the console handler. With the virtual terminal handler,
the devices do not exist, so an interface was provided for doing
single character input and uninterpreted byte output. A packet can
be sent to the VT handler to switch it into 'single character! mode.
It has to RESET the byte stream to the terminal concentrator in
order to cancel the outstanding request for an input line (with
reflection) and replace it with one for a single character (without
reflection), Similarly, the byte stream must be reset on return to
line mode.

- Extra 'break' mechanism. The Virtual Terminal Protocol specifies
that byte stream reset initiated from the terminal end should be
regarded as the equivalent of pressing the 'break' key on a direct
terminal - i,e. it is an attention signal outside the character set.
The VT handler responds to this by giving a prompt of "¥¥¥_w  and
then reading a single character to find out what action is
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required.* This enables task flags to be set, or the mode of the VT
handler to be changed, whatever mode it was in before. The meanings
of the various break keys are listed in the section on 'Console
Characteristics' below.

8.4.7 File Handler

The File Handler task was also completely rewritten, to provide a similar
filing system using the file server rather than a local disc, This is

described in detail in chapter 7.

8.4.8 DEBUG

DEBUG in this TRIPOS version can be used only in task mode, as it depends
on the terminal handler, BSP handler and Ring handler tasks running merely
to talk to the console. The MLIB routines SARDCH and SAWRCH no longer have

any effect, so stand-alone DEBUG cannot be used.

Normal DEBUG was modified to handle aborts, traps and breakpoints in a
new way. After one of these occurs, it is entered in stand-alone mode by the
kernel as usual, Instead of trying to output a message, it records details
of the abort in a dummy packet#, which it puts 'by hand' on the work queue of
the debug task. It then returns to the kernel as if the 'H' (hold) command
had been typed. This causes the task which aborted to be held, and the rest

of the system to resume running.

In task mode, DEBUG recognizes the arrival of the dummy packet, and
responds by selecting the aborted task as the one currently being debugged,
and issuing an abort, trap or breakpoint message as appropriate. The dummy

packet is not sent back; it is just forgotten.

¥ The prompt "¥**_" prequesting a single letter argument was chosen because
it was already an established response to break on other machines in the
Laboratory.

# 'dummy' in the sense that it is not sent by QPKT, and is not returned to
the sender, as no task sent it.
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Thus, DEBUG can handle aborts in commands, other user programs, and some
system tasks., It is of no use when an abort occurs in a system task which is

necessary for communication with the terminal, or when a crash has involved

store corruption which has broken one of these tasks.

Provision of a fuller DEBUG could be achieved in two ways. Firstly, some
very simple stand-alone Ring driving routines could be devised, enabling
reading and writing of words of store, so that a DEBUG program in another
machine could investigate the crashed one. This could be expected to be
about as successful as stand-alone DEBUG in ordinary TRIPOS, as it would

require only about the same (fairly small) amount of code to be intact.

A better approach is to provide debugging primitives in the intelligent
Ring interface to the machine. This has the major advantage that no matter
how serious the crash, the debugging system will still operate. The minimum
set of primitives needed are those to read and write any store location,
Desirable additional ones are those to start and stop the CPU, and to read
the central registers. However, these are not needed if a small pertion of
the debugging code is retained in the target machine. A skeleton of
stand-alone debug could be kept; on an abort, it would dump the registers to
store, and then go into a tight loop. Thus, the remote debug program could
read registers from the store dump, and could restart the system by

temporarily overwriting one of the instructions in the tight loop with a

Jjump out of the loop,

This approach would simplify the interface, but would once again mean

that debugging would not necessarily be possible after a bad crash.
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8.5 Other system components changed

8.5.1 System initialization; CLI.INIT

CLI.INIT is so called because it is the program which the CLI calls
immediately after it starts running. One of its jobs 1is indeed to
initialize the environment of the CLI; however, the version called from the
standard CLI (task 1) is also responsible for starting up the other system
tasks. It sends a packet to each task in turn, containing either nothing, or
a small amount of information such as the identifiers of the devices to be

used by that task.

In TRIPOS for a single-connection machine, the initialization process is
considerably more complicated, and it is CLI.INIT which performs most of it,
The Ring handler task must be started first, as everything else depends on
it, then the BSP handler and terminal handler, as other tasks may want

terminal streams.

The date and time are found from the Ring clock service, and used to set
the system date and time. The name and station number of the machine are
discovered from the name server, and recorded in a structure attached to the

root node INFO vector, for easy access by any program which may want to use
them,

Next to be started is the file handler, which is passed the PUID of its
root index, and told how many cache slots to use, and of what size. When the
file handler is running, the standard device and directory assignments are
made to "FSO0:" (the system device), "SYS:" (the root directory of the system

device), and "T:" (the directory for temporary files).

CLI.INIT makes an SSP call to the Resource Manager to set up a further
time allocation, and to discover whether the Session Manager has a byte
Stream waiting for it. If it does, then a BSP open call is made to the
service specified in the reply to the SSP. This byte stream should be
'replugged' immediately after starting; CLI.INIT waits for this to happen
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before proceeding so that the initial messages and prompt are sent to the
terminal, rather than going to the Session Manager or being lost in the

'replug' operation.

Once the byte streams exist, the terminal handler task is sent a packet
passing them over, completing the terminal connection. Now, the "TRIPOS
starting" message can at last be issued, and user authentication requested
if necessary (see below). The DEBUG task is started at this point; if
started earlier, it could have provided a means for the user to avoid the
logon authentication mechanism. Finally, the CLI environment is set up, and

control passed back to the CLI.

8.5.2 The Resource Manager's 'Dead Man's Handle!

Any system loaded by the Resource Manager should ask for an allocation of
time soon after it starts running. Whoever caused the booting has
(explicitly or implicitly) already specified two time limits: an absolute
maximum time for which he wishes to claim the machine, and an initial period
during which the loaded system should contact the Resource Manager. The
latter time limit is usually set quite short, so that a failure to load and
start properly will soon be detected. The loaded system may then request

further allocation periods within the maximum.

For some programs loaded by the Resource Manager, it may be appropriate
for them to request all the available time, and then not talk to the Resource
Manager again. As TRIPOS is a general purpose operating system running in
machines with no memory protection, there is no way it can protect itself
from crashing when a program overwrites store, for instance. Therefore, it
is better for it to request short time allocations at frequent intervals; in
this way, the Resource Manager will notice fairly quickly when a crash

occurs, and reclaim the machine.

In practice, a further 2 minutes is requested every 30 seconds, inside a

default maximum period of 8 hours.
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This function could be carried out in a new task, which just wakes up
occasionally to do an SSP call to the Resource Manager. However, it was
decided to do the refreshing by adding an extra coroutine to the virtual
terminal handler task. This saves store: the cost of a new coroutine in a
task which already employs several coroutines is little more than its stack
space. Also, it is logically simpler to do the refreshing in the terminal
handler., It should be carried on only while the user for which the machine

was booted is still using it, and it is this task which knows whether or not

he is still attached.*

In view of this, the terminal handler task is perhaps badly named; it is

closer to being a session handler.

The introduction of an external debugging system for Processor Bank
machines would make use of an extension of this mechanism, as the machine
'doing the debugging would have to be able to operate the dead man's handle on

behalf of the crashed machine.

8.5.3 User Authentication

TRIPOS running in Processor Bank machines uses the Ring-wide

authentication system [15] to restrict access to the system to known users,

and to give those users access to other machines without needing to identify

themselves again.

After establishing the terminal connection, CLI.INIT calls the command
START (written by C.G. Girling), which requests a user identifier and
password, and checks them with the Ring's User Authentication service. If a
valid user / password pair is not typed in three attempts, or if nothing is
typed for three minutes, then the machine is returned to the Resource
Manager, To prevent by—pass;ng of this program, the DEBUG task is not
started, and the ! (create new CLI) break key (see

An explicit SSP call is made to the Resource Manager to free the machine
when the user logs out; however, it is as well to stop refreshing too, in
case this call fails,
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"Console Characteristics" below) is not enabled, until the user has been

authenticated,

Once a user's password has been verified, a UIDset is obtained from the

Active Object Table (AOT) Manager to represent the validated user, This is
a set of four 64-bit numbers containing the user's PUID (a synonym for his
name), a TUID (indicating that he has proved his identity), an authentity
(the authority identity under which he has been validated), and a TPUID (a

capability for refreshing or revoking the TUID).

The PUID and TUID can be used as proof of the user's identity to any
machine or service which trusts the authentity under which it was issued. A
machine to which they have been presented can call the AOT Manager (which
must of course also be trusted) to confirm that the TUID has been issued for

the PUID by a particular authentity,

A special form of the BSP open block exists, including the PUID and TUID.
This enables the setting up of authenticated byte streams, which can be used
for such purposes as logging on to another machine without quoting one's
user identifier and password again, or transferring files to or from one's
protected directory on another machine. TRIPOS includes a pseudo~device
called "AUTHBSP:", which is analogous to "BSP:", except that it opens an

authenticated byte stream using the UIDset of the logged-on user.

The UIDset of the logged-on user, and any other capabilities he may
obtain in the form of UIDsets, are kept in a chain hanging from the root node
INFO vector, There is a timeout associated with the TUID and TPUID in a
UIDset, so these must be refreshed periodically, The Virtual Terminal
Handler task does this for all UIDsets in the chain, by making SSP calls to
the AOT Manager. The name 'fridge' is often used for the chain of UIDsets;

any set left in the fridge will remain fresh - if it is taken out, it will go
bad.
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8.5.4 Printers; The pseudo-device "LP:"

In normal TRIPOS, the printer (if available) is used by opening a stream
to the pseudo-device "LP:" and then writing text to it. The code called to
create this device loads the device driver for it, makes a handler task to
look after buffering and low-level operation of the printer, and returns a

stream to this task.

Ring-based TRIPOS must use the printing services provided on the Ring.
These have a very simple interface: a byte stream is opened to a service and
a stream of ASCII characters is written down it to be printed. There is no

extra protocol level. If the BSP open block contains a string in the user

parameters field, then this is printed as the document title.

This means that the printing services are directly available on TRIPOS,

without any extra software being needed. For example:

type :g.libhdr to bsp:titanprint/LIBHDR

would print the BCPL library header file via the service "TITANPRINT" with
title "LIBHDR".

For compatibility, a new version of the "LP:" device is provided, which
also takes a document title, as in "LP:title". It has the advantage of
elaborating the title before calling the printing service, by adding date
and time, the user's name, the name of the machine, and the name "TRIPOS" to
identify the source of the document. It also retries when the printer is

busy.

As there is no extra protocol level superimposed on BSP, there is no need

for a handler task to be created to handle the printer stream; the stream is
just one to the BSP handler.
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8.6 Use of the Processor Bank Machines

This section discusses the use of the Processor Bank machines, and

mentions the ways in which this differs from use of TRIPOS on a normal

machine.

8.6.1 Booting

The normal method of gaining access to a computer running TRIPOS in the
Processor bank is to go to any free VDU Concentrator terminal, and type the

following command to its "Monitor >" prompt:-

Monitor >c¢ tripos

This establishes a connection to the Session Manager, which calls the
Resource Manager, and that in turn calls the Ancilla; the user need know
nothing of how it is done. 1In a few seconds, a machine has been chosen and
booted, The Session Manager prints a message informing the user which
machine he has been given (though he does not really need to know this)., The
newly-loaded machine opens a byte stream back to the Session Manager, which
then performs a BSP 'replug' operation to connect the byte streams from the
machine and from the terminal, and drops out of the proceedings. The
terminal concentrator issues a local message indicating that a byte stream

'reset' has occurred,

TRIPOS then starts running, issues its start-up message, and asks the

user's identity.
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Suppose that the machine called Delta is allocated; the output to the

console screen would be as follows:-

Monitor >c¢ tripos

¥%*% 1 gllocated. {from Terminal Conc.: channel number
Delta allocated. [from Session Manager: machine name
k%% 1 RESET [from Terminal Conc.: stream 'replug'
TRIPOS starting [from TRIPOS in Delta

User:

After identifying himself, the user gets a prompt from the CLI, and can
proceed with what he wants to do. Note that the system is completely
initialized by this time; there is no filing system restart to perform, so
files can be written immediately. Also, the system date and time have
already been set from the Ring clock service. Not only are they set each
time a machine is booted, but they are set more accurately than would be

likely had they been set by hand,

8.6.2 Console Characteristies

TRIPOS normally requests complete 1lines of input from the VDU
concentrator, Hence all reflection and line editing, and most escapes, are

handled there according to the concentrator's own conventions,

In TRIPOS with a real terminal, there are a few escape sequences which are
used to give commands to the terminal handler, rather than to input unusual
characters. It is useful to retain some of these when the terminal becomes
remote, particularly €Snn, €Tnn and €F. As the concentrators in the
Laboratory use the '€' character for their own escapes, it is not practical
for the virtual terminal handler in TRIPOS to use it as well. Instead, the
corresponding ASCII control characters are used, admittedly not with their
standard meanings. The terminal handler reflects these characters as the '@’
sequences which they replace. Control-F, control-S and control-T behave in

this way.
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The control characters used to set task flags (control-B to E) behave in
the same way as before, However, the virtual terminal handler provides an
alternative way of setting these flags: it responds to 'break' in the virtual
terminal protocol (= RESET on the byte stream pair carrying the VTP) by

giving a prompt:-

L2

This expects a single character response, and the replies B, C, D and E set

the appropriate flags and continue,

Normally, the use of the control character is a preferable way of doing
this, as it just sets the flag. Using VTP break will destroy any input or
output buffered or in transit when it occurs, so it is not so easy to see

exactly when it happened,

Other valid responses are:-

L Set 'line' mode for input.

N Nothing - cancel the break,

S Set 'single character' mode for input.

X Create an eXtra CLI task, and select it as the current task. This is

a powerful facility, allowing another CLI to be made available
regardless of what the existing ones are doing.

8.6.3 DEBUG

Using DEBUG as a task is the same as in normal TRIPOS. Stand-alone mode
is not available, as so much of TRIPOS must be running simply to talk to a
virtual terminal., Aborts, breakpoints and traps which are not fatal to the
system as a whole cause the offending task to be held, and a message to be
printed by the DEBUG task. This task may then be selected in the normal way

to inspect and release the held task.
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8.6.4 File Handler

The file handler provides a filing system which is very similar to the
disc filing system from the user's point of view. The only noticeable
differences should be in the file information printed by the EX (examine)

command (e.g. file sizes given in bytes rather than blocks).

8.7 Comments on distributing parts of the operating system

This work has shown that TRIPOS provided a good basis for an operating
system to run in 'single connection' computers. The new system presents user

and program interfaces almost identical to that of the old.

The differences in the user interface inevitably include a new method of
choosing a machine and booting it, and slight differences in the terminal

characteristics.

8.7.1 Terminal Handling

Most of the old '@' escapes are made unnecessary by the Terminal
Concentrator; the few which provide control functions in the Terminal
Handler ('@3nn', '€Tnn', and '@F') have been implemented by means of control
characters. The use of these control characters, and control-B to control-E

for break is not entirely satisfactory. Their functions do not correspond

to their significance as ASCII codes; the control characters used have been ,’

chosen on mnemonic grounds. A further infelicity is that the Terminal
Handler has to request the Terminal Concentrator to force transmission of a
partially typed input line on every control character (so that a special
mode can be entered to read the arguments after '@S' and '@T'). This means
that the control character, and anything preceding it on the line, cannot be
rubbed out, as the Concentrator has passed the partial line on. (A special

code in VTP is used to cancel the whole line,)
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Unfortunately, the current Virtual Terminal Protocol provides no better
way of achieving the required effect. The alternative to using control
characters is to use byte stream 'reset' to signal the start of control
information. However, 'reset' causes the loss of both input and output lines
buffered and in transit. This is very undesirable: the usual uses of the
TRIPOS control codes are to cleanly stop the current command, allowing the
next to continue, or to type-ahead to one task, and then cleanly switch to
typing to another one. Probably the neatest solution would be for the
Terminal Protocol to allow for the sending of control information (or just a
'break' signal code) in the byte stream, so that the stealing of control
characters could be avoided without the problems associated with resetting

the byte stream,

The Virtual Terminal Handler does allow control functions to be signalled
by byte stream reset followed by a single letter., This is included for
compatibility with other machines on the Ring, but is really of use only when
the Handler is in single-character input mode, so is not interpreting
control characters. 1In line mode, this technique not only causes the loss of
input and output lines, but also requires more keystrokes than using control

characters,

As TRIPOS allows input to be typed to several tasks, it must always read
and buffer input lines, so that one task is not held up waiting for‘another
to read input. Thus, there must always be a line request outstanding at the
Terminal Concentrator. This also gives the desirable property that even
typed-ahead input is reflected as soon as it is typed, making correction of

typing mistakes much simpler.

However, when single character mode is entered, the outstanding 1line
request is of the wrong kind (asking for a whole line, with reflection). A
byte stream reset must be issued to cancel it, and replace it with a request
for a single character, Thus, typing ahead is not possible to a program

which will use single character input.
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The best way for the Terminal Handler to provide a more satisfactory user
interface would be for it to always read characters from the Concentrator
one at a time, doing all its own reflection and line editing. This indicates
that the split made to distribute the terminal handling function has not
been made in quite the right place. It would be better if the Terminal
Concentrator was aware that it could be talking to more than one process
down a single byte stream. Input requests and output lines would have to be
labelled with a process identifier. The Terminal Handler task would be

considerably simplified, as most of its function would have been exported.

8.7.2 CPU time usage; Response times

The Processor Bank system is both larger and slower than ordinary TRIPOS.
Response time with a lightly loaded Fileserver is around a second for a
small simple command, while it takes about three seconds to load a larger
program, such as an editor. In ordinary TRIPOS with a fast disc, most
commands take a time only just perceptible, while it takes about a second to
load the editor, Programs which process files serially tend to be
CPU-limited in both systems; reading ahead from the Fileserver helps greatly

here.

Writing a line to a terminal takes 12 task changes, as the buffer goes
from the client task via the Virtual Terminal Handler, BSP Handler, Ring
Handler, and Ring devices, and the reply packets come back. (There are two
interactions between the BSP Handler and the Ring Devices.) In normal
TRIPOS, it takes 2, plus 2 for each character in the line (using the usual
single-character device). It is observed that writing to a virtual terminal

consumes a little less CPU time than writing to a real one.

Writing a line to a file involves 10 task changes, the buffer going from
client task, to File Handler, Ring Handler, and Ring Device. In the normal
system, this typically takes 4 (but it could be more if more than one disc
block was involved, or relevant blocks were not in the cache). The lower
speed of the Fileserver filing system is due mainly to the fact that calling
the Fileserver takes rather longer (50 -~ 150 ms under light load, up to 3

seconds under heavy load) than reading or writing a block on a local disec.

-181-




It is the opening of files, and other directory operations, that are slowed
particularly, as the claiming and freeing of interlocks within the
Fileserver increases the number of calls required. Sequential reading of

files is of similar speed in both systems,

8.7.3 Code Sizes

The Processor Bank system has considerably more resident code than
ordinary TRIPOS. The code saved by exporting some of the work from the
Terminal and File Handlers is outweighed by that required for Ring

communication:-

(1) Distributing an operation over a network introduces numerous extra
ways for it to fail, due to problems in communication. These
include transmission failure, lack of reply, and congestion at the
destination. Multi-part calls (such as a Fileserver write) have the
possibility of errors at each stage; if any occurs, then the other
stages must be cancelled, and the whole call abandoned or repeated.
A lot of code throughout the Ring software is there to check for all
the things that can go wrong.

This should be compared with driving a physical disc or terminal.
In the former case, most of the error checking can be done at one
place in the disc driving routine. On many machines, there are no
errors that can be detected in driving a terminal,

(ii) A variety of different protocols has to be supported. Calling many
Ring services uses the Single Shot Protocol. The Fileserver employs
a slight wvariant of this. However, over a dozen different
Fileserver functions are used, and a separate routine is needed to
set up the transmission block and decode the reply block for each.
The protocols for reading and writing are different again.

The (fairly large) BSP handler task is needed to drive the
virtual terminal, but is also used for driving printers. The
terminal stream needs another protocol layer on top of BSP.

(iii) Some extra code has to be included for refreshing state held
elsewhere - e.g. applying for a new time allocation from the Resource
Manager, regularly touching Fileserver TUIDs, and refreshing
authentication UIDsets held in the 'fridge’.

(iv) When the primitives provided by a Ring server do not correspond
directly with what is required, then it can take a lot of calls
across the Ring to achieve the desired effect. This is illustrated
by comparing the relative complexities of managing a directory
block in the disc filing system, and of manipulating the
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corresponding object consisting of an index and a special file in
the Fileserver.

Swinehart et al. [46] also make the observation that the size and
computing requirement of network communication code often exceeds that
needed to provide higher-level abstractions. However, Dellar {[7] found that
exporting backing store administration from the CAP computer to the
Fileserver slightly reduced the amount of code and workspace required. This
seems to be due to the fact that the CAP filing system is more complex than
most, and that the Fileserver provides functions that fairly closely match

.CAP's needs, allowing more function to be exported.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

This dissertation has been concerned with portable operating system
design for minicomputers in two different environments - firstly, for
'normal' computers with directly connected peripherals, and secondly, for

computers whose only peripheral is a connection to a local area network.

In designing TRIPOS, the object was to produce a system which was easy to
transport, pleasant to use, and simple to explain and understand both at the
level of the user interface, and internally. These intentions have met with
some success., It has been shown that TRIPOS can run on a variety of
machines. Users outside the original group (and Laboratory) have

successfully modified TRIPOS to suit their own particular applications.

The philosophy of TRIPOS can be compared with that of its implementation
language, BCPL. Both are attractive to use because they offer many of the
advantages of a very high level language, or elaborate operating system -
that is, aids to organizing work, the means to achieve a lot with a small
amount of typing, using abstractions to hide low-level machine peculiarities
- but without carrying the abstractions so far that facilities offered by
the hardware become difficult to get at. Both try to be an aid to the
programmer, but not to get in his way. Both aim to provide abstractions, but
make the right concessions to the underlying structure of present-day

computers.

A feature of BCPL that distinguishes it from most other high-level
languages is that many of the facilities available to the programmer are not
bound into the language, but are provided as library routines, For example,
the coroutine mechanism and all input and output operations are provided in
this way. The analogy in TRIPOS is that many of its facilities are made
available by dynamically loaded programs run as commands, rather than being

built into the system. The command line interpreter is a small and simple
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program which executes commands serially. Nevertheless, it is possible to
run programs in separate processes (via the RUN command), and to execute
command sequences from files with parameter substitution, recursion, jumps
and conditional execution (C, IF, SKIP commands). There are no built-in

commands at all,

The principal way in which TRIPOS differs from other portable operating
systems is that it offers much of the power and flexibility of a multi-user
system, while exploiting the simplicity and efficiency possible in a single
user system, The conscious decision not to make use of hardware features
such as processor states, memory protection and virtual addressing has led
to a simple system which makes few assumptions about the underlying machine,
and is easily transported to a variety of computers, Other portable systems
have either been rather restrictive interpreted single-user systems, or
substantial multi-user systems which are rather more complicated and not
capable of the same degree of portability without considerable rewriting of
code. All levels of system have their value: simple interpreted ones are
good for small machines or fast implementation, complex ones are needed to
support many users running arbitrary programs. TRIPOS has demonstrated that
there is a worthwhile compromise in the middle, providing power and
flexibility for a single user without the overheads of protection that he

rarely needs.

As it was designed with a particular style of use in mind, there are some
things that TRIPOS is not good at. It is not suitable as a multi-user
system, as it cannot protect the users from each other, or share the
processor time fairly between them, and cannot extend the effective store
size of the machine by using swapping or virtual memory. However, it can
safely serve multiple users when they are allowed to run only tested
programs with known behaviour. It has been used in this way for a
multi-terminal data entry and editing system. The system cannot be
recommended for the novice programmer as his mistakes can easily cause it to
fail in a way which will not give a helpful diagnostic. Similarly, it is not
suitable for anyone who is used to relying heavily on compiler type-checking

or memory protection faults as a substitute for thought when getting
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programs working,

The internal structure and workings of TRIPOS are described in some
detail in chapter three. The theoretical study of portability is of only
limited value; it is important that techniques devised are implemented on a
range of machines, and extensively used to show up their strengths and
weaknesses, Because this system is simple, it has been possible to explain
its design fairly completely in order to illustrate how the portability and
power have been achieved, This also provides the necessary context for
later chapters in which the same primitives and structures are employed to
build an operating system with the same user and program interfaces as the

original, but in a rather different hardware environment.

TRIPOS contains several features which (to the author's knowledge) are
novel, The message system is particularly simple and unrestrictive, and
provides a completely uniform interface to tasks, external devices, and the
timer hardware, This uniformity enabled, for example, the disc device driver
to be directly replaced by a task which provided the same functions by using
a remote file server; no changes at all were needed to the filing system code
which used the disc (chapter 6). The use of coroutines and the PKTWAIT
routine to structure a multi-event task with only one message channel
(chapter 3) gives an elegant and efficient technique for building a complex
process on simple primitives, The provision of a debugging system as a
separate task from the programs being inspected has often been found to be a
valuable aid, The ability to have several interactive programs running
simultaneously, and the mechanism for allowing the user to select which he
wishes to talk to, and to type-ahead to each of them independently, has
proved to be a useful facility and to make the system attractive to use. It
is particularly powerful when using a local machine to debug code in another
across a network. One task could be running a program that sends console
input to the remote machine, another could be running a debugging program
that enables memory locations in the remote machine to be inspected, and a

third could be used for executing commands locally.
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The fact that TRIPOS was running on several different types of computer
provided good day-to-day experience in writing portable programs, and
supported the view of Ritchie [40] that portable programs are good programs
for reasons other than their portability, Most programs could be
transferred between machines with no changes at all; only a few needed to
take care of underlying machine differences such as natural address unit, or

natural byte order within words.

Chapter five describes how the primitives described previously were used
to construct portable software to drive a local network and its protocols,
and to enable the operating system to act a server as well as a client. The
mechanisms for pseudo-devices and streams provided by the operating system
allowed the network stream protocol to be handled in the same way as a
stream to a local terminal or disc file, giving simple access to remote
files. The effects of exporting the lowest protocol 1level into a
microprocessor-based interface are discussed, and it is observed that there
is only a slight improvement in elapsed time for a data transfer, but a

considerable reduction in the processor time consumed in the host.

A network environment introduces new constraints when writing code
intended to be portable., The fact that otherwise identical systems are
using different word lengths and byte orders becomes important when blocks
of data are to be passed between them; it is usually not important when data

is written and read on the same machine,

Since the basic data unit in BCPL is the machine word, code in that
language has to be written very carefully to be independent of word length.
This is best done by using procedures to put / get bytes and 16-bit
quantities into / from buffers in a machine independent way. A tighter
definition of the byte ('%') operator, would aid the writing of such programs;
it should be specified that it treats bytes within a word as being in a
machine-independent order (most significant byte in a word having lowest
offset in vector). At the moment, the order is not defined, so implementors

use the natural byte order for the host machine,
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The work on distribution of the filing system in chapters 6 and 7
investigated different levels of interface possible between a client filing
system and a medium-level file server. Three distinct levels were tried:
treating the file server as if it were just a virtual disc server, using it
as a provider of a flat filing system, and making full use of its index
structure and locking primitives, Quantitative comparisons of efficiency
were not made, as there was only a single client machine for much of the
period of this work, and so it was not possible to investigate performance
under load, which is what is ultimately important. Implementations of each
design were made, to discover the complexity and quantity of the code needed,

and to demonstrate the viability of each.

From the point of view of amount of code in the client, a medium-level
intérface to a file server is not very attractive, as the client still has
most of the work of implementing his filing system, plus a substantial
amount of communication code for calling all the file server functions. It
seems likely that the best approach when there are many clients is to have a
file server which provides only page-level access to virtual discs, and
maintains a large cache, The client code is kept to a reasonable level, and
the best use is made of the total processing power available on the network,

but putting as little function as possible in the central server,

The modularity of TRIPOS meant that it was possible to use it as the
basis for an operating system to go into 'single-connection' personal
computers by taking some parts of the original completely unchanged, and
joining them with a substantial amount of new code, Most programs can run
without alteration in either system. The fact that the program and user
environments could be moved to this unusual hardware environment justifies
the level of abstraction incorporated into the system. TRIPOS has much of
the unrestrictive nature of a very open system, in that there is 1little
distinction between system and user programs, and that the facilities
available to the operating system are available to other programs., However,
it is not so open that many programs can see details of the peripheral

hardware, so fundamental changes in that area can be hidden.

-188-




The work described above suggests some advice which can be offered to
others embarking on related projects. A key to portability is to make as
few assumptions as possible about hardware features. Any restrictive
assumptions that are made will either reduce the range of possible target
machines, or make it necessary to achieve portability by secondary
techniques such as conditional compilation or multiple versions of programs.
It is important in the design of an operating system to get a prototype
version up and running at an early stage, so that practical experience can
show the merits or otherwise of the primitives and structures chosen. For a
portable operating system, it is important to have early versions on several
machines, so that its design is not unduly influenced by particular hardware,
and to give the implementors practice in writing portable programs. The
designers must be prepared to make even quite far-reaching changes in the
light of early experience with their system; actually implementing a design
greatly increases the reluctance to alter it. TRIPOS was altered in many
ways after early use. Examples are that the conventional packet format was
changed to have two result fields (rather than one), and a primitive for
finding the size of an allocated store block was abolished becéuse it proved
of little use, There should be a clear idea of what kind of system is being
produced, because overall aims decided in advance help with detailed design
decisions, and produce a more consistent result. In TRIPOS, this is

illustrated by the determination to keep the system simple at all levels.

There are several areas for further research related to the topics
discussed in this dissertation, Extensive development of TRIPOS itself is
probably not a sensible undertaking, however. A major aim was to design a
system which was simple throughout, so addition of many new features to it
(such as elaborate command line interpreters, or complicated filing systems)

would be likely to destroy much of the original elegance and adaptability.

The techniques of remotely debugging a machine across a network need
further study. At the time of writing, two remote versions of the TRIPOS
DEBUG program have been written (e.g. [1]), but neither allows the full
facilities of a local debugger, such as inspecting a task's registers at any

time. A particular problem with trying to debug a machine on a network is
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that it may have connections established with various other computers, which
will rapidly time out if it is simply halted. For instance, a machine in the
processor bank will normally be refreshing the Resource Manager's dead man's
handle at frequent intervals, and will usually have a byte stream open to a
terminal, files open in the Fileserver, and authentication UIDsets held in
the Active Object Manager. A usable debugger needs to have some knowledge
of which parts of the system should not be frozen in order to keep the rest
of the world happy. It is not very good to have the facility to set
breakpoints in a target machine, if it is essential to continue execution

within, say, 30 seconds of a breakpoint being encountered.

A promising area of research is in investigating how to divide work
between a file server and a client filing system, by varying both ends. This
thesis describes experiments in varying just the client end, and employing
different subsets of the facilities of a file server with a medium-level
interface. Another way of distributing filing system function (which is
being explored at the time of writing), is to dedicate a machine to providing
the bulk of the client filing system (using the file server), and to have
Just the minimum communication code left in each client. This should
certainly free some storage in each client, but it is not clear that it will
be faster under heavy load. The filing system server can undertake
intelligent caching because it knows a lot about the objects with which it
is dealing; however, a considerable amount of work has been removed from the
multiple clients and concentrated in a single server, so it could become a

bottleneck,

The simplicity in the design of TRIPOS has meant that the distribution of
operating system functions is probably not worthwhile in itself, as it can
be in a more complex system. The use of a virtual terminal indeed
simplifies, and reduces the size of, the terminal handler task, but the tiny
console driver is replaced by a rather large handler task to drive the Byte
Stream Protocol. The management of a filing system on the Fileserver is of
comparable complexity to management of one on a local dise, but again, a
great deal of code is needed to communicate with the Fileserver, replacing a

very small amount to drive a disc. Some extra complexity is introduced into
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the file handler by the need to hold object interlocks externally, so the two

filing systems are not directly comparable,

The advantages of this distribution of function must be viewed in wider
terms. In any particular machine, it means that it runs slower and has less
free store. However, a whole new personal computer can be added to the
network for the cost of CPU, memory, and network interface only. The new
machine immediately has disc storage, terminals and printers available, and

a wide range of services at its disposal.

It seems likely that the widespread use of local networks will increase
the demand for portable operating systems, as each user will have access to a
greater variety of machines. At the time of writing, the Processor Bank
contains fourteen computers, of two different types (eight LSI4s and six
68000s). The use of a portable operating system and shared central filing
system has made it possible (and usual) to ask simply for "a computer
running TRIPOS", and to be allocated any of the machines which happens to be
available, Particular attributes of the required machine may be specified
if necessary, but the availability of a portable operating system means that
general properties such as memory size are now more significant than

architecture or instruction set.
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APPENDIX 1

SUMMARY OF BLIB ROUTINES

The 1list presented below includes all the routines in the BCPL-written

library BLIB, with a brief indication of what each one does.

I/0 Stream functions

INITIO Initialize input/output

RDCH Read one character from current input stream
UNRDCH Step back one character in input stream

WRCH Write one character to current output stream

READWORDS Read vector of words from input stream
WRITEWORDS Write vector of words to output stream
FINDINPUT Open an input stream

FINDOUTPUT Open an output stream

FINDUPDATE Open a stream for input and output
SELECTINPUT Select a new current input stream
SELECTOUTPUT Select a new current output stream

ENDREAD Close the current input stream
ENDWRITE Close the current output stream
ENDSTREAM Close a specified stream

INPUT Return the current input stream
OUTPUT Return the current output stream

File Operations

DELETEOBJ Delete a file or directory

RENAMEOBJ Rename a file or directory

LOCATEOBJ Return a lock on a file or directory
FREEOBJ Release a file or directory lock
COPYDIR Make a copy of a directory lock
CREATEDIR Create a directory
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Formatted I/0

READN Read a number from the input stream
NEWLINE Start a new output line

WRITED Write a decimal number in fixed width
WRITEN Write a decimal number in necessary width
WRITEHEX Write a hexadecimal number

WRITEOCT Write an octal number

WRITES Write a string

WRITEF Write values according to a format string

Packet operations

SENDPKT Send a packet containing the given values
and awalt its return
RETURNPKT Return a packet with the given results

PKTWAIT = TASKWAIT by default: exists so it can
be redefined for special purposes (see chapter 3)
DELAY Wait for given period (sends packet to timer)

String and Character Operations

PACKSTRING Compress word vector of characters into string
UNPACKSTRING Expand string into word vector of characters
CAPITALCH Convert given letter to upper case

COMPCH Compare two characters (equating letter cases)
COMPSTRING Compare two strings (equating letter cases)
SPLITNAME Split a string at a given character

Command Argument Decoding

RDARGS Read and decode arguments from current input
stream, given a keyword format string

RDITEM Read one item (i.e. word) from the input stream

FINDARG Locate a particular keyword in a string

containing a list of keywords
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Program Loading

LOADSEG
UNLOADSEG
CALLSEG

Load a program from a named file

Delete a loaded program

Call a program from file as a subroutine,
deleting it when it returns control

Miscellaneous Routines

DATSTRING
DATSTAMP
ENDTASK
DEVICETASK

FAULT

Appendix 1

Give the current date, time, and day as 3 strings
Give the current date and time in binary

Delete the current task, and unload a specified
segment of program code

Find the task number of a device handler from

the device name (see chapter 3)

Write out the message corresponding to the

given fault code
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APPENDIX 2

RING LIBRARIES, SERVICES, AND COMMANDS

This appendix describes the TRIPOS Ring software components not included
in chapter 5. These are the BCPL libraries of Ring routines, the services

available for other machines to call, and the Ring-related commands.

A2.1 Libraries

Some routines of general use to Ring programs are made available in
libraries. The libraries are in source form, so that they can be included in

programs by the BCPL "GET" directive.*

There are two such libraries, called SSPLIB and BSPLIB.

SSPLIB

SSPLIB contains routines for making SSP calls, looking up names in the
Nameserver, and obtaining names from station numbers. The SSP routine can
call a service either by its name, or from a supplied Ring address previously

looked up.

* The use of 1libraries supplied as object modules is awkward in BCPL,
because linking is done via the global vector; the library would have to
claim some globals not used by anything else, and a header file would
still have to be provided to define the names and numbers used.
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BSPLIB

BSPLIB contains routines for performing special operations on, and
testing the state of, byte streams. These are functions which are peculiar
to byte streams-and hence are not provided by the normal stream interface.

Examples are:

- forcing transmission of buffered data

- testing whether a byte stream RESET has occurred

- causing a RESET

- sending a 'close request' without closing the stream

- testing whether any input is pending (i.e. whether a call of RDCH
would halt)

A2.2 Services

The Ring services usually provided by machines running TRIPOS are the

following:-

WTO "Write To Operator'*:receive and display a one-line message
TAKEF ILE Receive a (character or binary) file

GIVEFILE Transmit a file

READ Create a stream to read a file
WRITE Create a stream to write to a file
RATS 'Remotely Activated Terminal Session': create a new CLI and virtual

terminal handler to allow remote logging-on.

Conventionally, all these services have names 1in the Nameserver
constructed as <service name>-<machine name>. E.g. on the Nova, the services

would be WTO-NOVA, TAKEFILE-NOVA, etc.

¥ from the name of an IBM Assembler macro.
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A2.3 Commands

The TRIPOS Ring software includes many commands, to cover a variety of

functions:-

- File transfer

- Sending operator messages

- Nameserver operations

- Status of other Ring stations

- Remote logging-on to other machines

- Starting, stopping and inspecting local Ring tasks
File transfer

GIVEFILE "FROM/A,TO=MACHINE/A,AS/A,BINARY/S"

Copies a file from the local machine to another, either as characters or

in binary.
TAKEFILE "“FILE/A,FROM=MACHINE/A,TO/A"

Fetches a file from another machine, giving it the specified name here,

Operator Messages
WTO machine message

sends the message to the named machine, where it should be displayed on

the system console.
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Nameserver Operations
LOOKUP "NAME/A"

This prints the Ring address and flags corresponding to NAME.

LISTNAMES "TO"

This lists the entire Nameserver table.

Ring Status
RPROD "MC/A,PORT,CLOSE,BOOT"

Sends a basic block containing one data packet to the specified machine,
and reports on whether it was accepted. CLOSE causes the block to contain a
BSP CLOSE command, so it can be used to encourage errant byte streams to go
away. BOOT sets the data to the value which will cause a crashed PDP11
TRIPOS system to reboot.

RSTATUS

Sends a basic block (on port 1) to each Ring address in turn, and lists
‘all those for which the block is not 'ignored'. This is an easy way of

discovering which machines are 'alive'.

Remote logon
STAR "MACHINE/A"

Connects to the RATS service of the specified machine. Console input is
passed on to that machine, and output is displayed. The connection ends
either when the byte stream is closed by the far end (e.g. after a FINISH

command), or can be forced by control-D break.
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Starting, stopping and inspecting Ring tasks

The Ring handler is started by the command LOADRINGHAND. This command
loads and creates the transmitter and receiver devices, and creates the Ring

handler task, unless it was already running.
RHINFO "KILL/S"

Prints information about outstanding reception requests, reserved ports,

and bad or unwanted blocks received.

The command RHINFO KILL is used to make the handler delete itself,
abandoning any outstanding requests., Thus, any program which uses the
handler should be killed first, In TRIPOS systems in the processor bank, the
Ring handler is a resident part of the system, so does not need to be loaded,

and does not respond to RHINFO KILL.

The Ring services task is loaded by the command LOADRINGSERV. Setting
flag 4 (control-D break) or killing the Ring handler makes it go away.

The command BSINFO may be used to inspect the state of byte streams. It
prints the task number of the BSP handler, and information on the states and
sequence numbers of each open stream pair. The BSP handler may be killed by
using the command BSINFO KILL. This causes the handler to go away when it

next has no streams open.,
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