Technical Report A

Number 264

Computer Laboratory

CCS with environmental guards

Juanito Camilleri

August 1992

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1992 Juanito Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

CCS with Environmental Guards

Juanito Camilleri

Department of Computer Studies Computer Laboratory
University of Malta University of Cambridge
University Heights Pembroke Street

Msida Cambridge
Malta G.C. England CB2 3QG
Abstract

This paper investigates an extension of Milner’s CCS with agents guarded by
propositions on the environment. The agent ¢ > F, pronounced E in an environ-
ment of which g holds, depends on the set of actions the environment is ready to
perform. This dependency is realised by an operational semantics in which tran-
sitions carry ready-sets (of the environment) as well as the normal action symbols
from CCS. A notion of strong bisimulation is defined on guarded agents via this
semantics. It is a congruence and satisfies new equational laws (including a new
expansion law) which are shown to be complete for finite guarded agents. The laws
are conservative over agents of traditional CCS. The guarding operator > pro-
vides a dynamic, local, and clean syntactic means of expressing the behaviour of
an agent depending on circumstance; it is more expressive than the unless operator
presented in [Cam91] and the priority choice operator presented in [Cam90] and
[CaW91], and yields a much simpler expansion theorem.

1 Introduction

This paper augments Milner’s CCS by introducing agents that are positively and negatively
constrained by guards which specify the environmental circumstances in which the agents
can behave. A positive constraint on an agent makes its behaviour depend on the environ-
ment’s ability to perform some action. A negative constraint makes an agent’s behaviour
depend on the environment’s inability to perform some action. In other words, guards
are propositions which can restrict the behaviour of an agent to environments that can
perform certain actions and not certain others.

Guarding is both dynamic and local. 1t is dynamic in the sense that the environmental
constraints on an agent may change as execution proceeds. It is local in the sense that
the components of a system may behave independently subject to their local constraints.

We will show how the guarding operator provides a syntactic means of expressing a
priority structure on actions, that it can encode a form of multi-way synchronisation, and
that it can be specialised to several useful priority and conditional operators including
priority choice [Cam90] [CaW91] and the unless operator presented in [Cam91]. The work
presented here can be adopted as a formal semantic foundation for existing programming
language constructs that embody the notion of priority between actions [Cam89] [Cam90]
and hints at ways in which the expressiveness of such constructs can be augmented.

Consider, for example, a reactive system Sys (see Fig.1). A keyboard is busy-waiting
for the environment to issue the command print, meanwhile the printer-controller cannot

flash_light

printy K C §char

sound_bleep

Sys 2 (keyboard | controller)\a
keyboard % print.@.0 + [-print] > 7.keyboard
controller ¥ [online A —out_of_paper A —jammed_paper] > a.char.0 +

[out_of _paper] > flash_light.controller +
[-on_line V jammed_paper| > sound_bleep.controller

Figure 1: A simple reactive system.

issue a “print-character” signal: if the printer is out of paper the printer-controller flashes
a light, if the printer is not on-line or the paper is jammed then the controller sounds
a bleep. As soon as the environment can perform print, the keyboard is required to
stop waiting immediately. If the printer is on-line, has not run out of paper and is not
jammed then the controller is expected to handshake with the keyboard and then issue
a “print-character” signal to the printer.

This scenario can be specified very naturally using guarded agents. Suppose the agent
g > FE behaves as F in an environment of which proposition ¢ holds, then the system
Sys can then be defined as shown in Fig.1.

2 CCS with environmental guards

Suppose we simply augment CCS with terms of the form ¢ > F where g is a proposition
on the possible actions of the environment and F is any expression in the augmented
language. We would then allow mutually dependent expressions such as

(a0 + [> 6.0) | (5.0 + [-b] > 7.0))\ {a,B}, 1)

The left operand of the parallel composition can perform an a-action or, if the environ-
ment cannot perform @ the operand can perform b. On the other hand, the right operand
of the composition can perform b or, if the environment cannot perform a b action, the
operand can perform @. Can this composition perform a 7 action? One can argue both
ways. Partly to avoid deciding such questions, and partly to allow a simple expansion
law (see Fig.5), we restrict the syntax of agent expressions. We will break the symmetry
in CCS that exists between actions ¢ and their complements @, and distinguish between
i-actions and o-actions:

e an i-action is a named action in A with typical elements a, b, c, .

2

e an o-action is a co-named action in A with typical elements @, b, ¢, . . .,

e a silent action is represented by 7.

We shall denote by Act the set of actions AU AU {r} ranged over by a. We shall

understand the operation () to act so a + @, @ +— a. The operation () acts as identity

on 7. For every a € A we define a basic guard a : P(A) — bool where
a= \R.aeR

Let B be the set of basic guards ranged over by a. A guard ¢ is an assertion of the
language G defined by:

gu=a | T|F|gVg | ghgl g

For a set R C A and an assertion ¢ € G, we say R satisfies g, when R |= g is true
subject to the definition

REa = aR
RET = {true
REF = false’

RE@Ve = REgo REa
REgNgpn = REgadREg
R~y = not(R = g)

where and, or and not are boolean conjunction, disjunction and negation respectively.

CCS augmented with guarded agents is called CCS*. Let £* be the set of agent
expressions with typical elements E, F'..., and let G* be the set of guarded expressions
with typical elements G, H Let X range over the set of agent variables and P, () and
N range over the set of closed terms P*. The syntax of CCS*> expressions is defined as
follows:

Gu=X|0]ak | E | G\L | G[f] | G+G | fiz(X=G) | ¢>G
E:u=X | 0| ol | ENL | E[f]| E+E | E|E | fie(X=E) | G

We assume that the relabelling function f in E[f] is injective and maps A to A and A
to A. Furthermore, let L in E \ L be a subset of A. Finally, let recursion be guarded.

We intend propositions of the language G to constrain the behaviour of agents. Note
that guards ¢ in expressions of the form ¢ > G can only constrain G by making it
dependent on the possible o-action behaviour of the environment. Guarded agents, how-
ever, can only perform i-actions or the silent action. Hence problems due to mutual
dependency as illustrated by (1) are avoided.

3 Operational semantics

The behaviour of CCS> agents is formalised by a transition relation Fr E —%+ E' to be
understood as meaning: in an environment which is ready to perform the actions R, the

3

re(i) g> Grel re(ii) Ore{)

re(iil) 7.F re () re(iv) a.FE re §

re(v) a.E re {a}

Eore Ry EireR; EreR y
i 11 — C
) T Ere R U R e () i Trer-1 LA
 E[fia(X = B)/X]re R _ EreR
re (vii) fiz(X = E)re R e (%) FifTre F(R)

EYERQ FreR1
E|FreRoUR1

re (x

Figure 2: The definition of the ready-function.

agent F can perform an action « to become the agent E’. The ready-set R is a subset of
A. The transition relation will be defined in terms of a ready-function. Given an agent
E, the ready-function yields the set containing those actions in A that E can do next in
any environment. The ready-function is defined inductively in Fig.2.

The rules defining the transition relation are presented in Fig.3. Since the other rules
are similar to those of CCS, we comment only on the rules for guarded commands and
composition. Rule Guard states that ¢ > G can perform « in an environment that is
ready to perform R, provided G can perform « and the ready-set R satisfies the guard
g. Now consider the rule Com_ for composition under the assumptions that F re Ry and
F re R;. The rule takes account of the fact that the assumption that the environment
of E|F is ready to do R amounts to the assumption on E that its environment is ready
with RU Ry, and similarly that F’s environment is ready with R U Ry. If under these
assumptions F and F' can perform complementary actions then their composition can
synchronise. The rule Com, has a pleasing symmetry, though note that by virtue of
Prop.3.1 the requirements of Com,, Com, and Com, can be relaxed when they involve
o-actions. Consequently, these rules could be replaced by two rules taking account of

the fact that transitions associated with o-actions do not depend on ready-sets of the
environment.

Proposition 3.1 For terms E,E' and all R,S C A, a € A,
|"RE—3—+E/ <“-—‘>FSE—9—>E’. ‘

Proposition 3.2 The ready-relation re is a function in the sense that Ere R and Ere R’
implies R = R'. Moreover

EreS < S={a€A:VRIE.rrE-> E'}

Notation: In future we will use re(E) for the ready-set of E—justified because the
ready-relation is a function.

CCS> essentially extends CCS; once we restrict to unguarded agents, the transition
relations agree but for the extra decoration of ready-sets on the relations.

Proposition 3.3 For an unguarded term E, E —~ E' in CCS iff
Fr E - E' in CCS> for all R C A such that, if o € A then @ € R.

As mentioned earlier, assertions of the language G can be used to impose both positive
or negative constraints on the environment. A positive constraint on an agent makes its
behaviour depend on the environment’s ability to perform some o-action, while a negative
constraint makes an agent’s behaviour depend on the environment’s inability to perform
some o-action. Any assertion in G can be reduced to disjunctions of conjunctions of
positive and negative constraints:

Proposition 3.4 Any g € G can be reduced to the disjunctive normal form

VA By

i€l jed;
where B,; = a or B;; = —a for some a € B, for all i in I and j in J;. The disjunctive
normal form denotes T when J; are empty for all t € I, it denotes F when for all i € T
there exists some jo, j1 in J; and o € B such that B;;, = a and B,; = -«

ijo 141

5

Pre, Fra.E = E ifac R

Pre, Fra.E - E Pre, Frm.E - E

a !
l—RG__)aE RI:g
Frg>G — F

Guard

Fr F -5 F

Fr E = F
Sum, -
tr E+F — F'

*vFrE+F S5 F

Sum

ot B -5 B _ o B
Res —BLZ —7 — (o ¢T) Rel — T(LE
FRENL = BAL e Bl 29 B

Fror, B — E' F re Ry

ceA=a€R
AT ve k)

Com

Frur, F — F' E re Ry

R EF 5 B (¢ € A= @€ R)

Com,

Frup, B - E' EreRy brop, F -5 F' FreR;

C
om, F‘R EIF T, E/‘F' (a 7& T)

Fr Elfiz(X = E)/X] - E
Fr fiz(X = E) =% E'

Rec

Figure 3: The definition of the transition relation.

One can simplify the syntax of guards further by noticing the pleasing relationship be-
tween the disjunction of guards and the nondeterministic choice of guarded agents:

Proposition 3.5 For all ready-sets R C A, actions o € Act, guarded-agents G € G2,
FR(V A By) >G5 E = tpd(A\By)>G>E

iel jed; i€l jeld;

Therefore, any guarded agent in G can be re-expressed as an agent whose subterms may
only contain guards which are conjunctions of positive and negative constraints. To allow
a clear expression of the equational theory in the next section, we represent a conjunction
of positive and negative constraints as two respective sets of actions.

Notation: Henceforth, we will consider only those assertions g € G of the form Aj;c;B;
where 8; = a or B; = —« for some a € B. Such assertions are said to be in normal
form and will be denoted by a tuple (g%, g~) where

gt={a:a=p;, AjelJ}

and
g ={a:-a=p; NjeJ}
We will use go U g to denote (g5 Ugf,go Ugr) and go C g1 when g5 C gi and go C g7 -

If a proposition g is in normal form and R is the ready-set of the environment, then
R |= g holds when ¢ is a subset of R and none of the actions in ¢~ are elements of R.

Proposition 3.6 For all propositions g € G which are in normal form:
RE(gh9) <= ¢"CRAg NR=0
If a guard go implies g4 and R satisfies go then R satisfies ¢;:

Proposition 3.7 For all propositions go, g1 € G in normal form, for all R C A:

REgp N1 Cgo=REn

4 Strong bisimulation

We take a generalisation of Milner’s strong bisimulation as our central equivalence be-
tween agents.

Definition 4.1 A relation @ C P> x P> is a strong bisimulation with respect to the
operational semantics, if (P, Q) € Q implies, for all & € Act and for all R C A,

1. whenever g P — P’ then, for some @', Fr @ —— @' and (P, Q') € Q,
2. whenever tp @ —— Q' then, for some P', Fr P —» P’ and (P',Q’') € Q.
Definition 4.2 Let the relation ~ on agents be defined by:

P ~ @ iff (P,Q) € Q for some strong bisimulation Q.

As emphasised by Park, it follows by basic fixed-point theory that ~ is an equivalence
relation and the largest strong bisimulation, and as such it is amenable to the proof
technique: to show P ~ @ it is sufficient to exhibit a strong bisimulation containing
(P,Q).

This technique is used to show that equivalence is a congruence, i.e., it is substitutive
under the constructs of CCS® as well as under recursive definition. The proof follows
the standard lines of [Mil89], though with this more intricate operational semantics, it is
necessary to check that the strong equivalence of two agents implies that they have the
same ready-sets (this is needed in proving the congruence of ~ with respect to parallel
composition):

Lemma 4.1 If P ~ @ then re(P) = re(Q).

Proposition 4.2 Let Py ~ P,, then

(1) .Py ~ a.P; (83)g>Pi~g>h (5) PAlQ ~ P|Q
2)PA+Q~P,+Q (4) A\ L~ P\ L (6) Pi[f] ~ Po[f]

Thus strong equivalence is preserved by prefixing, summation, guarding, parallel com-
position, restriction and relabelling. We remark that, due to the syntactic restriction on
guarded terms, P; and P, in statement (3) must be terms in G, otherwise ¢ > P,
g > P, etc. would not be terms in £>. For example, let £ = (a.0 + 5.0) \ ¢ and
F = b.0—i.e., suppose that F' is an element of G and E is not. Although £ ~ F,
g>E o+ g>Fforgeg.

Hitherto, strong equivalence has been defined only for closed expressions. To remedy
this, we extend the definition of ~ to open terms as follows. Let substitution o map

term variables to closed terms such that Fo represents the closed term resulting from
the substitution of all free variables X in E by o(X).

Definition 4.3 Let E and F be agent terms, possibly with free variables. Then define
E ~ F to hold exactly when for all substitutions o, Eo ~ Fo.

It is a simple matter to extend Prop.4.2 to open terms. Prop.4.3 shows, moreover,
that recursion preserves strong equivalence.

Proposition 4.3 If E ~ F' then fiz(X = E) ~ fiz(X = F)
Theorem 4.4 ~ is a congruence with respect to the operators of CCS>,

Finally we note that the extension of CCS with guarded agents does not lead to any
new identifications between closed terms of CCS:

Proposition 4.5 Two unguarded terms E,E' are strongly equivalent in the sense of
Milner iff E ~ E' in CCS>,

This means that the equational laws of the next section are conservative over CCS
terms: terms of CCS will only be provably equal iff they formerly were so in CCS.

5 Equational laws

We now present a set of equational laws which are complete with respect to finite CCS>
terms (A term is finite if it contains no variables). First, the usual rules of equational rea-
soning (reflexivity, symmetry, transitivity and Liebnitz’ rule, viz.“substitution of equals
for equals”) hold as ~ is a congruence. Further rules are presented in Fig.4. These con-
sist of Milner’s laws for strong equivalence together with new laws for guarded agents,

notably G1-G8, R4 and L4.

G1 states that if @ € g~ then g > a.P behaves as 0.

G2 states that an a-prefix also acts as a positive constraint @.

G3 deals with the case when T guards an agent.

G4 deals with the case when F guards an agent.

G5 states that guarding the agent 0 does not change its behaviour.
G6 shows that a guard can distribute over nondeterministic choice.
G7 states that nested guards can be re-expressed as a conjunction.

GS8 states that if go implies ¢; then a choice between GG guarded by ¢o and G guarded
by g1 behaves as (G guarded by ¢;.

Law R4 asserts the distribution of guarding over relabelling. Note that if ¢ is a guard
then f(g) denotes the relabelling of all atomic propositions in g—e.g. if f maps a to b

and ¢ to d then o
f(({eh{al) » @) = ({d}, {b}) > &

Finally, one can view a restriction F \ L as an agent E whose behaviour evolves in an
environment that cannot perform actions in L. Therefore we expect (¢ > G)\ L to behave
as 0 if some action in L appears in g*. On the other hand, if L and g* are disjoint, then
since restriction acts as a form of negative constraint, one can expect (¢ > G)\ L to
behave as (g%,97 — L) > (G \ L) (see law L4).

Excluding Recl and Rec2, the laws of Fig.4 with the addition of the expansion law
EXP (Fig.5) are complete for finite terms. The expansion law operates on terms in
guarded normal form.

Definition 5.1 A term P is said to be in guarded normal form:

meM

o if for all m € M, P, is in guarded normal form, and
o forallme M, if o, € A then @, € g, and grng- =0.
We write “(0,0) > @.P” for “a.P”.

Al

A3

G1

G3

G5

G7

G8

R1

R3

P+Q=Q+P A2
P+(Q+R)=(P+Q)+R A4
g>aP=01if geg G2
0,0)>G=¢ G4
g>0=0 G6
90> (1> G)=(9Ugn)>G

(o> + (@ >G)=0>G if g1 Cg
o[f] = 0 R2

(. P)[f] = f(a).(P[f]) R4

L1 0\L=0
0

P+P=P

P+0=P
g>aP=(¢g"—{a},g7)>a.P
g>GE=0if gtnNg #£0

(9> @+ (g>H)=g>(G+H)

(P +Q)f] = Plf1+ QLS]

(9> AIfl = fl9) > G[f]

ﬂaeLUf}

Lz (aP)\L= {a.(P \ L) otherwise

L3 (P+Q)\L=(P\L)+

L4 (9> G)\L= r

(Q\L)
o iffﬂngsé(D}

(97,9 —L) > (G\ L) otherwise

Recl fiz(X = F) = E[fiz(X = F)/X]

Rec2 F = fiz(X = E) if F = E[F/X]

Figure 4: Equational laws satisfied by ~.

10

Let P= Z Im > ap. Py, and Q = Z Iy > Brn.Qn
meM neN

be two terms in guarded normal form. Then

PIQ = 3 ({0 = re(@):gn) > o (PulQ): re(@) N g5 = 0} +
gv{(hi —1e(P),h7) > fn.(P|Qn) : re(P) Ny = 0} +
- ZEA{(e(@),9m) > 7.(Pn|@n) : re(@) N g = 0} +
mz%m{(hi — re(P), k) > 7.(PulQun) : re(P) N by, = 0}

Figure 5: The expansion law EXP.

Note that any prefix component a,,.P, of a term in guarded normal form is associated
with a transition that the guarded term can make. When the indexing set M is empty,
we have the 0 agent in guarded normal form. When FE is in guarded normal form, the
prefix a.F is in guarded normal form if the indexing set M is singleton and ¢, is (0, 0)
for m € M. The summation, composition, restriction and relabelling of terms in guarded
normal form can be reduced to a term in guarded normal form using the laws in Fig.4
and the expansion law in Fig.5. In the case of unguarded expressions the expansion law
reduces to the one from CCS.

Notation The sum Y ;c; F; is indexed by a finite ordered set I. Because summation
is commutative and associative with respect to ~, we do not care about the precise
order on the indexing set. We shall understand 3" p(q,) Gi, where P is a predicate, as an
abbreviation for the sum Y ;cp G; indexed by I' = {i € I | P(G;)}.

Theorem 5.1 (Soundness)

The equational laws of Fig.4 and Fig.5 are sound (i.e., for each law P = Q) it is true that
P ~ Q). Any equation deduced by equational reasoning from these laws is valid as long
as both sides of the equation are terms in £ .

Proof (Soundness of Expansion Theorem)

Suppose P = Z Im > . Py and Q = Z he > BnQn,
meM neN

and abbreviate the right-hand side of the expansion law in Fig.h by exp. To establish
P|@Q ~ ezxp it is sufficient to show

FRP|Q—&->E g F—Remp—fi»E

for all R C A, actions p and agents E.

11

(=) There are several ways in which a transition Fr P|Q £, FE can be derived;
either by rule Com_, Com, or Com,. Consider only the latter case; the proof for the others
is similar. In this case g = 7 and

Fror, P =25 P'and Frug, @ - @', such that re (P) = Ry and re (Q) = Ry.

Assume o = a say in A (the argument when @ € A is symmetric). Then from the
form of @ we must have @ = 8, and Q' = @, for some no € N. From the form of P,
we see a = apy, and P’ = Py, for some my € M such that:

I—RURl 9mg > amO'Pmo __i) Pmo

The rule for guarding ensures that in order for this transition to be derivable RUR; = g,
must hold. By Prop.3.6,

g SRUR, (2)
and
Imo N (RU Ry) = 0. (3)
Therefore |
Ime VR =10 (4)
and
g,;o n R1 = @ (5)

Consider now the sum

2 {lon —re(@):90) > (B | @n) (@) N gy =0}

ﬁnzam €A

occurring in the expression exp. Since re(Q) = Ry then from (5) we have that

(g:;o - Rlagr—r—m) > T‘(Pmo l Qno)

is a summand in ezp. From (2),
(9t —Ri)CR (6)

From (4) and (6), and Prop.3.6, R |= (¢, — R, 9.,)-
Consequently, Fr exp — (P'|Q')—i.e., the original transition of (P|Q) is matched by
one of exp.

(=) One also requires that any transition of exp can be matched by one of (P | Q).
For example, one transition is:

R exp = (Pmg | Qno)

where @, = (n, = @ say in A. For this transition to be derivable one must necessarily
have that

Fro Y0 {(hE —re(P),hy) > (P | Qn) + re(P) N Ay =0} — (P | Qno) (7)

Tn=0n€A

12

From the rules of sum and guarding, however, this is only possible if

R = (b, = re(P), bz, | (8)
Assume that re(P) = Ry and re(Q) = Ry. From Prop.3.6 and (8)

ht —RyC R (9)
and

hp VR =0. (10)
From (9),

hi C RUR,. (11)
From (7),

RoNh, =0 (12)
Therefore from (10) and (12),

ho, N (RU Ro) = 0. (13)

By Prop.3.6, (11) and (13),

RU Ro = hn,

It follows from the guarding rule that
F'RURO hno > ﬂno'Qno _'LL) Qno'

Hence Frur, @ — @Qn, and as @ is an o-action, Fgyug, P N P,.,. Thus, the original
transition of ezp has been matched by one of P | Q. The other transitions are shown to
match in a similar fashion.

Theorem 5.2 (Soundness and Completeness)
For finite terms P,Q i €%, P ~ Q if and only if P = Q).

Proof

Soundness follows from Theorem 5.1. Conversely, suppose P ~). One can argue
without loss of generality that P and @ are in guarded normal form. Therefore, we show
by induction on the maximum depth of P and @ that P ~ @ = P = () where P and ()
are in guarded form.

The base case of the induction when the depth of P and Q is 0 is established easily as
then P = Q = 0 and P = @ follows from A2. Otherwise assume that, P and @) have
the following form:

P= Z Jm > oy P and @ = Z hy > Br.Qn
meM neN

We will show that @ = Q + (¢my > Qmg-Pmo) for all mg € M. It then follows that
Q + P = @ and by a symmetric argument that P +) = P. Hence P =). Suppose
Gmo > Omyg P 18 & summand of P for some mg € M, we consider

13

Fr P - P!

where @ = @, and P’ = P,,, when R = g, , and then when R = A —g. . Since P ~ Q
and P, () and their subterms are in strong guarded form, then there exists no € N, and
a term @' such that

l—RQ_O(‘*Qla P ~@Q, a = By, Q/EQno and R = hy,.

By Prop.3.6, when R = g, we can deduce that h} C gf and when R = A— g, we
can deduce that h C g, . Therefore hyy C gm,. By law G8,

Q = Q + (9mo > Bro-Qno)-

Since P’ and @' are subterms of P and @), inductively, P’ = @', and moreover, since
Qo = Py, then

Q=Q+ (gmo > O‘mo'Pmo)'

This can be shown for all mg € My. Therefore () = () + P. A converse argument shows
that P = P +). Therefore P = Q). |

5.1 Applying the equational laws
Recall the reactive system Sys defined in the introduction. The system can be re-
expressed as follows:

def

Sys (keyboard | controller)\a

keyboard = print.a.0 + (0, {print}) > 1.keyboard

de,

controller = ({on-line},{out-of paper, jammed.paper}) > a.char.0 +
({out_of _paper},B) > flash_light.controller +
(0, {on_line}) > sound_bleep.controller +

<

({jammed_paper},) > sound_bleep.controller
Applying EXP, L4, L3 and L2 yields:
B, {print}) > 7.Sys +

{out_of _paper},B) > flash.light.Sys +

(

(

(0, {on_line}) > sound_bleep.Sys +
({jammed_paper},) > sound_bleep.Sys +
(@

,0) > print.((@.0 | controller)\a)

14

Meal ¥ (Food| Dy | Dy | Dy | Butler)\ {gong, eat}
Da £ gong.(—gong > port.0) + —gong > eat.Dy
Dy 2 gong.(—gong > port.0) + —gong > eat.D;

D, ' gong.(—gong > port.0) + —gong > eat.Dy

Butler & timeup.gong.gong.gong.0

Food % ‘eat.Food

Figure 6: The dons’ meal.

Further applications of EXP, L1, L2, L4 and G3 yields Spec defined as follows:

(0, {print}) > 7.5ys +

({out-of -paper},®) > flash_light.Sys + |

(0, {on_line}) > sound_bleep.Sys +

({7ammed_paper},) > sound_bleep.Sys +
print.({on-line}, {out_of _paper, jammed_paper}) > 7.0

Therefore, Sys is strongly bisimilar to Spec which can be re-expressed as follows:

[—print] > 7.5ys +

[out_of paper] > flash_light.Sys +

[—on_line V jammed_paper| > sound_bleep.Sys +
print.[on_line A —out_of _paper A —jammed_paper| > 7.0

6 The dining-dons example

Three Cambridge dons are sharing a limitless source of food. A butler waits patiently
while the meal proceeds. When the butler notices that time is up, the dons are required
to stop eating immediately, and the butler strikes a gong three times to declare the meal
‘over’. The meal is defined in Fig.6. Before timeup occurs:

e Any don can help himself or herself to food.
e The food never runs out and the butler waits patiently.

After timeup occurs, the dons cannot drink port before three gong-strikes. In fact, one
can prove (see [Cam90]) that the behaviour can only proceed as follows:

T.7.7.port.porl.port.0

15

Informally, suppose timeup occurs. This can only be followed by a gong/gong interaction
between the butler and one of the dons—for example don Dgy. After this first interaction
Dy 1s in the state: ‘

—gong >> port.0

while the butler is in state:
gong.gong.0

Since the butler is still prefixed by a gong action, Dy is prevented from drinking port
while D; and Dj are prevented from eating. Once again, only a gong/gong interaction
may take place, this time between the butler and either don Dy or don Dj,. Suppose the
butler interacts with don Dsy, then the state of the butler becomes gong.0, and don D,
like Do has state —~gong > port.0. The remaining gong prefix of the butler prevents Dg
and Dj from drinking port until the final gong/gong interaction takes place between the
butler and Dy. This done, the butler stops and as there are no gonig prefixes left in their
environment, the dons are now free to have port.

This example illustrates the use of guarding to encode a form of multi-way synchroni-
sation; notice that all the dons stop eating as soon as timeup occurs. The dons represent
agents that share some resource. The butler represents a sensor. When the sensor detects
an interrupt, the agents stop their normal behaviour. The sensor then ensures that each
agent commences some routine to recover from the interrupt. Guarding prevents one of
the agents to proceed with recovery before the sensor has initialised recovery in the other
agents.

7 Related Work

This work arose as a continuation of [Cam89] which presented an operational semantics
of the PRIALT construct in occam. The guarding operation presented here is more rudi-
mentary than the priority choice operator prisum of [Cam90] and [CaW91]. Informally,
Go prisum Gy, written as Go+ Gy, can be expressed as G + (0, A) > G, where A is the
acceptance set! of Gp. On the other hand, there is no way of expressing the behaviour
of a simple guarded agent (@, ¢97) > G using the priority choice operator. In fact, terms
of the form (§,¢~) > G coincide with the conditional agents expressed by the unless
operator of [Cam91]. It is clear that unless can only impose negative constraints on an
agent and therefore the operator is less expressive than the guarding operator presented
here.

Both unless and prisum have duals which are also special cases of guarding. One can
represent an operator G provided g* as (g%, 0) > G. Like unless, provided can be used to
enforce synchronisation strategies. Sometimes, however, one needs the happy marriage
of both these operators realised by the guarding operator presented here. The dual of
the priority choice operator is rather peculiar. It can be expressed as Gy + (A,0) > Gy
where A is the acceptance set of Gy. This agent behaves nondeterministically like Gy or
(71 In an environment that allows all the ‘-actions of Gy to occur. None of the actions of
(41 can occur in an environment that refuses an 7-action of Gj.

1The acceptance set of an agent is the set of o-actions whose complement is the set of i-actions which
the agent can perform next.

16

We know of no other successful attempt to both semantically define and, with this as
a basis, provide a complete proof system for a CCS-like language with agents guarded
by both positive and negative constraints. We contribute a new set of laws for guarded
agents, complete for finite agents, as part of a well-rounded and, we believe, convincing
theory.

There have been other attempts to give a semantic basis to reasoning about priority
[BBK85] [Bar89] [CIHI0] [BeK90] [Gro90] [GeL90] [SmS90] [Tof90] [CaW91] [Cam91] (see

[Cam90] for more details). These attempts fall under three main categories:
e those that associate priority with choice [Cam89] [Bar89] [SmS90] [Tof90] [CaW91],
e those that associate priority with events [CIH90] [BeK90] [GeL.90], and
o those that express priority through environmental constraints [Cam90] [Cam91].

The guarding operator presented here falls under the last category. As stated in the
introduction, guarding:

e is a primitive and expressive means of imposing local, dynamic, positive and neg-
ative constraints on agents without complicating the underlying theory of CCS
unreasonably,

o can be used to encode a form of multiway synchronisation,
o can reflect syntactically a priority structure of actions in each state, and

o lends itself to implementation—it is closely related to existing priority constructs
in programming languages [Cam89] and hints at how the expressiveness of such
constructs may be extended.

Future work, should look at how to extend the theory of weak bisimulation to cater
for CCS agents with environmental guards. This is not expected to be trivial [Jen92]. It
is evident that guarding and other specialised priority constructs can be used to impose
intricate scheduling strategies including ones that are fair [CoS84], however, this relation-
ship requires further study. Finally, the implementation of the concurrency workbench
which caters for priority choice [Jen91], can be adapted to handle the more expressive
and simpler guarding operator presented here. The simple equational theory developed
in this paper makes its automated use with tools such as PAM [Lin91] feasible. An ex-
tension of the current work on embedding CCS in the proof assistant HOL [Nes91] to
handle agents with environmental guards is also possible.

8 Acknowledgements

I am grateful to Richard Boulton and Glynn Winskel for some helpful comments. Many
thanks to Glynn Winskel for funding a visit to Aarhus, and to Mike Gordon for supporting
my stay at Cambridge where most of the work presented here was done. Finally, I would
like to thank the University of Malta for granting me a sabbatical for research.

17

References

[Bar89] G. Barrett. The Semantics of Priority and Fairness in occam, April 1989. Proc.
MFPS 5, New Orleans, USA.

[BBK85] J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Technical Report CS-R8503, Center
for Mathematics and Comp. Sci, Amsterdam, February 1985.

[BeK90] E. Best and M. Koutny. Partial order semantics of priority systems. Technical
Report 6/90, Institute of Computer Science, University of Hildesheim, June 1990.

[Bri86] E. Brinksma. A tutorial on LOTOS. In M Diaz, editor, Protocol Specification,
testing, and verification, V, pages 171-194. Elsevier Science Publishers B.V.,
1986.

[Cam89] Juanito Camilleri. An operational semantics for occam. International Journal
of Parallel Programming, 18(5), October 1989.

[Cam90] Juanito Camilleri. Priority in Process Calculi. Ph.D thesis (October 1990).
Technical Report 227, Computer Laboratory, University of Cambridge.

[CaW91] Juanito Camilleri and Glynn Winskel. CCS with Priority Choice. Proceedings
of the Sixth Annual IEEE Symposium on Logic in Computer Science, July 1991.
To appear in Information and Computation.

[Cam91] Juanito Camilleri. A Conditional Operator for CCS. In J.C.M. Baeten and J.F.
Groote, editors, ConCur‘91, LNCS 527, pages 142-156, Springer Verlag, August
1991.

[CIH90] R. Cleaveland and M. Hennessy. Priorities in process algebras. Information and
Computation, Vol.87, Nos.1/2, July/August 1990.

[CoS84] G. Costa and C. Stirling. Weak and strong fairness in CCS. In Chytil M P and
Koubek V, editors, Mathematical Foundations of Computer Science, LNCS 176,
pages 245-264. Springer Verlag, 1984.

[GeL90] R. Gerber and I. Lee. CCSR: A Calculus for Communicating Shared Resources.
In J.C.M. Baeten and J.W.Klop, editors, ConCur‘90, LNCS 458, pages 263-277,
Springer Verlag 1990.

[Gro90] Jan Friso Groote. Transition system specifications with negative premises. In
J.C.M. Baeten and J.W.Klop, editors, ConCur‘90, LNCS 458, pages 332-341,
Springer Verlag 1990.

[inm84] inmos. occam Programming Manual. International Series in Computer Science.
Prentice Hall, 1984

[Jen91] Claus Torp Jensen. The Concurrency Workbench with Priorities. In K. Larsen
and A. Skou, editors, CAV‘91, LNCS 575, pages 147-157, Springer Verlag, July
1991.

18

[Jen92] Claus Torp Jensen. Ph.D Thesis Proposal. University of Aarhus, Denmark, April
1992. -

[Lin91] Huimin Lin. PAM: A Process Algebra Manipulator. In K. Larsen and A. Skou,
editors, CAV‘91, LNCS 575, pages 136-146, Springer Verlag, July 1991.

[Mil89] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[Nes91] Monica Nesi. Mechanizing a Proof by Induction of Process Algebra Specifications
in Higher Order Logic. In K. Larsen and A. Skou, editors, CAV*91, LNCS 575,
pages 288-298, Springer Verlag, July 1991.

[SmS90] S. Smolka and B. Steffen. Priority as Extremal Probability. In J.C.M.Baeten,
J.W.Klop, editors, ConCur‘90, LNCS 458, pages 456-466, Springer Verlag 1990.

[Tof90] C. Tofts. A Synchronous Calculus of Relative Frequency. In J.C.M.Baeten,
J.W Klop, editors, ConCur‘90, LNCS 458, pages 467-480, Springer Verlag 1990.

[WiN] G. Winskel and M. Nielsen. Models for concurrency (to appear in S. Abramsky,
D.M. Gabbay, T.S.E. Maibaum eds. Handbook of Logic in Computer Science).

19

