Technical Report VA

Number 266

Computer Laboratory

Automatic exploitation of
OR-parallelism in Prolog

Carole Klein

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© Carole Klein

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

AUTOMATIC EXPLOITATION OF OR-PARALLELISM IN PROLOG

Carole Klein

Computer Laboratory
University of Cambridge
New Museums Site
Pembroke Street
Cambridge
CB23QG
England

e-mail address:
csk@cl.cam.ac.uk

Abstract

A path through a search space can be defined by a sequence of integers called an
oracle. The Delphi Machine consists of a network of individual workstations
co-operating to execute a Prolog program. Using oracles, these machines
automatically partition the search space between them, thereby exploiting
OR-parallelism. This report provides a brief description of the tree-searching

algorithms (control strategies) implemented in the Delphi machine.

((Running Title))
AUTOMATIC EXPLOITATION OF OR-PARALLELISM

Introduction

As an alternative to the use of special architectures such as shared memory or
multiprocessor machines [1,2,3], this paper describes a parallel Prolog

implementation which operates over a network of processors.

It describes research which was completed in 1990, and includes the results

obtained on a small network (20 workstations).

In addition to the speed-ups shown in the results, the system benefits from
robustness. It can run on any number of processors and continue to run even when
machines are rebooted. During the test period, several workstations in the
network were damaged by fire, but this research was able to continue by running

the programs on the remaining machines.

Oracles

If the branches at each node of a tree are numbered, the location of any node
within the tree can be identified by a unique sequence of numbers called an oracle

[4].

At each node of the tree in Figure 1, the branches are numbered from left to right.
The oracle {4,1,2,1} leads to the node indicated.

oracle leading to this
nodeis {4,1,2,1}

Figure 1 Each node within the tree can be identified by a unique sequence of
numbers, an oracle

An oracle is therefore a path leading to a particular location in a search space. It
can be followed by picking - at each node - the clause that corresponds to the next

number in the oracle sequence.

As a processor follows an oracle, it creates the environment associated with each
of the nodes along the path (because it is executing the program as it goes). So an
oracle is also a concise means of specifying the environment at a particular node.

Prolog Search: the OR-only Tree

The execution of a Prolog program can be represented by an AND/OR tree. As an
example, Figure 2 shows the AND/OR tree for the following program:

g(u,v) = - p(U), q(V), r(U,V).
p(1).

p(2).

q(1).

q(2).

r(X,X).

with goal clause : - g(x,v). [5]

g(u,v)

p(V) a(V) N
r{A,

p(1) p(2) q(1) q(2)

Figure 2 An example AND/OR Tree

Conceptually, a Prolog search may be thought of as a depth-first, left-to-right
search of the associated OR-only tree. Figure 3 shows the creation of this tree,

graphically.

It should be stressed that the program itself is not duplicated in memory. The

OR-only tree is just a graphical representation of the Prolog search mechanism.

Figure 3 Creation of an OR-only Tree : the three AND branches are separated
and copied

The OR-parallel search mechanisms described in this paper are illustrated using
a condensed (but equivalent) tree representation. Since AND branches do not
represent a choice, they are automatically executed and do not appear on the

condensed tree. The tree created in Figure 3 thus becomes the tree in Figure 4.

All the nodes (choice points) in the tree are now potential points for exploiting
OR-parallelism. Since the bindings at OR nodes are independent of one another,
the branches of an OR-only tree can be partitioned amongst a number of

processors and executed simultaneously.

Figure 4 A concise OR Tree

The Delphi Machine

The Delphi Machine was first suggested by Clocksin and Alshawi [4]. Instead of
relying on a special architecture, or using shared memory multiprocessors, they
devised a system that could use the equipment then available at Cambridge
University Computer Laboratory. This was a number of networked workstations

operating independently to execute a single program.

The Delphi Machine consists of a control process (Controller) and any number of
equivalent Prolog processes (Processor). Clocksin and Alshawi describe a
theoretical Delphi: their Controller generates oracles according to certain control
strategies. It allocates each Processor an oracle to follow. When a Processor
reaches the end of its oracle, it reports back a result. It is then sent another oracle
to follow. The cycle is repeated with all the Processors until the whole tree has

been explored.

Applying this to the tree in Figure 4, four oracles describe the entire search space,
namely {1,1}{1,2} {2,1} and {2,2}, and these can be assigned to separate Processors
for execution. However, this method assumes that the Controller already knows

the shape of the tree.

This paper describes a set of Delphi control strategies which do not rely on the
generation of oracles by the Controller, but allow the individual Processors to
generate them automatically. The results show that these strategies make the

Delphi Machine a practical method for exploiting OR-parallelism.

Automatic Partitioning of the Tree

In the Automatic Partitioning strategy, each of several Processors takes a section
of the tree for itself and searches this subtree as a serial Prolog process. At the
same time, each keeps a record of its path through the tree. This path is a list of
each of the clauses that lead from the root of the tree to the current node, in other

words, an oracle,

At the start of a Delphi session, the source Prolog code is compiled and an
identical copy of the compiled code is sent to each of the participating Processors
(in general, each workstation runs a single Prolog process). In addition, each
Processor is sent the initialisation parameters it needs to execute Automatic
Partitioning, and once these are received, immediately starts executing the

program,

Manipulation of two variables, G and N, achieves Automatic Partitioning. There
is no need for further communication amongst the Processors. G is the group
counter, a record of the total number of Processors in the group. In addition, each
Processor is assigned an identifier number, N - the first Processor is assigned 1,

the second 2, and so on, up to the last Processor in the group, which is assigned G.

The Processors begin at the root of the tree. As this is a choice point, they begin

splitting up the search space. They know how many Processors are at the node (G),

they know how many branches there are to choose from (this is a feature of the
Delphi compiler written for this implementation), and they know their own

number within the group (N). .

At any choice point there are four possibilities:

only one Processor available

fewer Processors than branches

equal numbers of Processors and branches
more Processors than branches

In the first case, only one Processor available, the Processor behaves in the same

way as a serial Prolog process.

In the second case, fewer Processors than branches, the rightmost branch is taken
by the highest numbered Processor (N=G), the next rightmost by the next
highest (N=G —1), and so on, until only Processor 1 remains. It takes the rest of
the tree to execute on its own. Each Processor's group counter (G) is now modified

to reflect the new number of Processors proceeding along each branch.

If the number of Processors equals the number of branches, each Processor takes
the clause associated with its number. Each group counter is set to 1 to reflect the

fact that only one Processor is proceeding along each branch.

If there are more Processors than branches, each Processor takes the clause
associated with its number, and the extra Processors take the rightmost branch.

Their N and G variables are set accordingly.

The splitting is repeated in each group, at each node, until each Processor is

executing its own unique portion of the search space.

Figure 5 shows an example of Automatic Partitioning between 6 Processors, and

charts the changes to the values of G and N as execution proceeds.

Figure 6 shows how this same tree would be divided amongst from one to six

Processors.

This is a right-biased strategy - it assumes that the rightmost branches of the tree
will always be the longest, and assigns as many Processors as possible to the right
branch. Other possibilities are a left-biased strategy or one which divides the

Processors more equally between the branches.

The Reassign Jobs Strategy

Whatever algorithm is used to partition the search space, some sections of the tree
will prove less branchy than others, so some Processors will finish their search
before the others and be left idle. The Controller maintains all idle Processors in
an idle process queue. The reassign jobs strategy allows the Controller to send idle
Processors to the portions of thé tree which still remain to be searched. This is

accomplished with the minimum of communication.

When a Processor is uniquely searching some part of the tree, its G and N values
are both equal to one. Under these conditions, when it reaches a branching point,
the Processor can check-in to the Controller to request help with its workload. As
mentioned earlier, as a Processor executes the tree, it keeps a record of the path to
its current position in the form of an oracle. A check-in consists of sending this
oracle to the Controller. The Controller responds by sending back an integer,
telling the Processor how many idle Processors are waiting in the queue. If this

number is zero, the Processor continues searching the tree on its own. If the

P6

P5
<————«/
P1 P2 P3 P4 P5 P6
Node
N G N G N G N G N N
initialisation
root 1 1 1 1 1 4 2 4 3 4
® 1 1
1 1
® 1 1 1 1 1 2
@ 1 1
® 1 1
1
® 1 1
1
® 1

Figure 5 An example of Automatic Partitioning

10

P1 P2

“\C N ~
Lo\ :
. /
5

P1
\ P3 P4 \ P3 P4
J J
P5
PZ__/' pz_/' ‘j

P1
P1
_j
P1

Figure 6 Automatic Partitioning between from 1 to 6 Processors

11

number is greater than zero, then the Processor becomes part of a group of

Processors that will automatically divide the work from that point.

Reassign jobs is an extension of automatic partitioning. Instead of starting at the
root of the tree, the group of Processors is given an internal node as a starting

point. This involves giving each idle Processor :

a new group count (G) equal to the number of idle Processors
plus one (the Processor that checked in)

a new identifier number (N), and

the oracle sent by the Processor that checked in, which describes
the path to the new starting point.

Figure 7 shows this graphically. Assume that a Processor has reached the node
indicated and has checked in by sending oracle {2,1,2,1}. Assume that there 5
Processors on the idle queue. The Controller sends the value 5 to the checking-in
Processor which automatically sets N equal to 1 and begins executing the leftmost
branch. The Controller sends each of the idle Processors three pieces of
information: the group count 6, its new identifier number 2-6, and the oracle
{2,1,2,1). The idle Processors follow this oracle, reach the new starting point

directly (without any backtracking), and split the rest of the tree between them.,
Notice that because the tree beneath the new starting point happens to be
identical to the tree in Figure 5, it is automatically partitioned in exactly the

same way.

This cycle of searching, checking-in, becoming idle, and being reassigned

continues until the entire search space has been covered. The exact frequency of

12

Fiveidle
1 2 processors are

sent to {2,1,2,1}

and begin
Processor checks 1 9 automatic
in by sending partitioning.
the oracle
leading to this 2

1
position {2,1,2,1} /ﬁ\‘
and takes the

\ Tt
A

Figure 7 The Reassign Jobs strategy

check-ins can be regulated by setting a check-in interval. If this is set low, the

frequency of check-ins will be high, and vice versa.

Results
The first program run on the Delphi Machine was the 8-Queens Problem. The

graph in Figure 8 shows the execution times (in seconds) for a network of from one

to 20 Processors.

13

EHE~= ZO—HCQENME

N
[
N’

320

280

240

200

160

120

80

40 X x X X X X oxox X x x X

T T T T T T I T T T T T T T T T T T T T ITTTTTTTTT T

0 2 4) 8 10 12 14 16 18 20

NUMBER OF PROCESSORS

The relative speed-up for a number of different problems is shown in Table 9. The
first two columns show the results for C-Prolog (Version 1.4 [6]) and Cosmic
Prolog. Cosmic Prolog is a modified version of SB-Prolog Version 2.2, a public
domain Prolog developed at the State University of New York at Stony Brook.
(Cosmic Prolog was used to develop the Delphi Prolog System). The third column

shows the results for a 20 Processor Delphi Machine running on a network

Figure 8 The 8-Queens Problem running on from 1 to 20 Processors

14

(Ethernet) of pVAXes. The fourth column shows execution time for a single

Processor Delphi, and the final column shows the relative speed-up between the

two.

Problem C-Prolog Cosmic Delphi Delphi relative
Prolog (20 Processors) (1 Processor) speed-up
parser-2 38 38 11 58 5.27
parser-3 108 100 25 177 7.08
parser-4 390 354 73 461 6.32
adder 1192 805 154 1814 11.78
pentominoes 19005 13474 2521 26798 10.63
8-queens 411 175 42 301 7.17
9-queens 1994 841 127 1405 11.06
10-queens 10245 4560 450 8137 18.08

Table 9 Comparative results

The timings include all communications, from the initialisation phase to all

solutions being collected in a global log file, and have been rounded to the nearest

second.

Because of overheads imposed by the Delphi algorithm a program executed on a

single Processor Delphi Machine runs at approximately half the speed of the same

15

program running on an unmodified Prolog system. However, as more Processors
are added, the speed-up obtained is nearly linear for programs that include large

amounts of OR-parallelism.

A complete description of the problems run on Delphi, together with source code,

and full results of numerous control strategies can be found in Klein [7].

16

References

[1]
Ciepielewski, A., Haridi, S., and Hausman, B., OR-parallel Prolog on shared
memory multiprocessors, The Journal of Logic Programming, 7(2):125-147 (1989).

[2]
Lusk, E., Butler, R., et alia, The Aurora Or-parallel Prolog System, New
Generation Computing, 7:243-271 (1990).

[3]
Harsat, A. and Ginosar, R., CARMEL-2: A Second Generation VLSI Architecture
for Flat Concurrent Prolog, New Generation Computing, 7:197-218 (1990).

[4]

Clocksin, W.F. and Alshawi, H., A Method for efficiently executing horn clause
programs using multiple processors, New Generation Computing, 5:361-376
(1988).

[5]

Clocksin, W.F., Principles of the DelPhi parallel inference machine, Computer
Journal, 30(5):386-392 (1987).

(6]
Pereira, F., C-Prolog User's Manual 1.4, SRI International, Menlo Park,
California, 1984,

[7]

Klein, C.S., Exploiting OR-parallelism in Prolog using multiple sequential
machines, Technical Report No.216, University of Cambridge Computer
Laboratory, Cambridge, 1991.

17

Figure Legends
Figure 1: Each node within the tree can be identified by a unique sequence of
numbers, an oracle.
Figure 2: An example AND/OR tree.

Figure 3: Creation of an OR-only tree: the three AND branches are separated and

copied.

Figure 4: A concise OR-tree.

Figure 5: An example of Automatic Partitioning.

Figurg 6: Automatic Partitioning between from 1 to 6 Processors.
Figure 7‘: The Reassign Jobs sfrategy.

Figure 8: The 8-Queens Problem running on from 1 to 20 Processors.

Table 9: Comparative Results.

18

