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1 Introduction

Process algebras [2, 3, 22, 29] are generally recognized to be a convenient
tool for specifying concurrent systems at different levels of abstraction. These
formalisms are usually equipped with one or more notions of behavioural se-
mantics and with modal/temporal logics, which can be used to reason about
process algebra specifications. On one hand, behavioural equivalences and
preorders allow one to study the relationships between different descriptions
of the same system by verifying if they are equivalent when “uninteresting”
details are ignored, or if a low level description is a “satisfactory” implemen-
tation of a more abstract one. On the other hand, logics for process algebras
can be used to check if a specification has a given modal/temporal property.

The operational semantics of a process algebra is defined via labelled tran-
sition systems, and then behavioural relations and modal/temporal logics can
be defined and interpreted in terms of transition systems. Behavioural equiv-
alences/preorders have also been characterized through sets of (in)equational
laws, which can be used to manipulate specifications and reason about them.
In the literature, sets of laws have been proved to characterize various be-
havioural equivalences/preorders over subsets of several process algebras in a
correct and complete way [5, 14, 17, 21, 29].

In this paper we use higher order logic and the general purpose theorem
prover HOL [15] to develop an interactive verification environment for the
ccs process algebra [29]. The aim is to build a verification system based on
theorem proving which is logically sound, i.e. it is built up by following a
purely definitional approach, in order to avoid introducing inconsistencies in
the logic being used. In the HOL system, this can be achieved by means of
primitive definition mechanisms for introducing new entities in a sound way,
and by deriving all other kinds of definitions by formal proof.

This methodology also allows users to take advantage of all components of
the formal theory for process algebras, such as the labelled transitions, the
operational and axiomatic characterizations of behavioural semantics, and
modal/temporal logics, in a unified framework, and to define their own ver-
ification strategies. In this work the HOL theorem prover is mainly used as
a suitable framework for building a practical and sound proof-assistant tool
for applications specified in a given process calculus. But HOL also allows one
to perform metatheoretic reasoning about the process calculus itself, and can
help investigate variants of a given process calculus and develop the formal

theory for new calculi.
Our approach is based on the algebraic nature of the ccs language and on
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the axiomatic characterization of behavioural semantics. The formal theory
for observational congruence [29] and for a slight extension of Hennessy-Milner
modal logic [21, 35] over pure ccs (no value passing) is embedded in the HOL
logic, and the resulting formalization supports verification strategies based
on mechanized formal proof. These include strategies that exhibit different
degrees of user interaction depending on the subsets of ccs under considera-
tion [10], proofs of correctness by mathematical induction for parameterized
specifications [30], and verification of modal properties [31]. The mechaniza-
tion exploits the rich set of proof tactics available in the HOL system and the
facility for defining new tactics from the built-in ones. It also takes advantage
of the subgoal package for backward proofs, thus resulting in quite natural
and simple proofs.

In what follows, we first give a brief description of the HOL system. Then,
the syntax and the operational semantics of pure ccs are introduced, followed
by the theory of the observational semantics and its axiomatic characteriza-
tion, and the modal logic. Next, we show how all these definitions can be
formalized in HOL, and how verification can be performed in the resulting
framework by presenting the HOL proofs of the correctness of a buffer, and of
a modal property for a simple process, such as a vending machine. Finally,
we discuss related work and possible extensions to the described approach.

2 The HOL System

Higher order logic is a good formalism for mechanizing other mathematical
languages because it is both powerful and general enough to allow sound
and practical formulations. It has been used to mechanize several logics [20]
and process algebras, e.g. csP [8, 9] and w-calculus [27). The HOL theorem
prover [15], developed by Gordon [19] and used in these mechanizations, is
based on the LCF methodology [33] for interactive and secure theorem proving
by mechanizing the logic in the strongly-typed programming language ML [13].

The HOL logic is a variety of higher order logic based on Church’s formula-
tion of type theory [11]. The standard predicate calculus is extended in the
HOL logic by allowing variables to range over functions. The arguments of
functions can themselves be functions. Moreover, functions can be written as
A-abstractions, terms can be polymorphic, and Hilbert’s choice operator, ¢, is
included in the logic.

The ML language is used to manipulate HOL logic terms. In particular, ML
is used to prove that certain terms are theorems. A theorem is represented by
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a finite set of terms called assumptions and a term called conclusion. Given
a set of assumptions I' and a conclusion ¢, we write I' I ¢ to represent the
corresponding theorem or, if I' is empty, |- t. To introduce theorems into ML,
they must either be postulated as axioms or deduced from existing theorems
by ML programs called inference rules.

Certain kinds of axioms are classed as definitions. The HOL logic includes
primitive rules of definition for extending the logic in a consistent way. These
primitive rules are of very restricted forms, and this means that all other
kinds of definitions must be derived from the primitive ones by formal proof.
This can sometimes lead to rather complex formalizations. However, several
derived rules of definition have been mechanized in HOL and are supported in
a fully automatic way. These rules include recursive concrete type definitions,
primitive recursive function definitions over these types, and certain forms of
inductive definition, all developed by Melham [26, 28].

The derived rule of recursive type definition allows one to define arbitrary
concrete recursive types in terms of their constructors [26]. The input to this
definition mechanism is a specification of the syntax of the operators written in
terms of existing types and recursive calls to the type being defined. Then, the
system performs all the formal inference necessary to define the type in higher
order logic and derives an abstract characterization of the newly-defined type
in a fully automatic way.

The derived mechanism of primitive recursive function definition automates
existence proofs for primitive recursive functions defined over concrete recur-
sive types. The system proves the existence of a total function satisfying the
recursive defining equations, and then a constant specification introduces a
new constant to denote such a total function. A derived inference rule is also
provided to prove a structural induction theorem for any concrete recursive
type.

The derived rule for inductive definitions allows one to define relations
which are inductively defined by a set of rules [28]. Any such relation is simply
defined as the intersection of all relations closed under that set of rules. The
system automatically proves that the resulting relation is itself closed under
the set of rules and is the least such relation. The theorems resulting from such
a definition mechanism constitute a complete characterization of the defining
properties of the newly-defined relation. They also include a principle of
“rule induction”, which allows proofs by induction to be performed over the
structure of the derivations defined by the set of rules.

A collection of logical types, type operators, constants, definitions, axioms
and theorems is called a theory. Theories enable a hierarchical organization
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of facts, i.e. if facts from other theories are to be used, the relevant existing
theories must be declared as parents.

To prove a theorem in a theory, one must apply a sequence of steps (con-
stituting a proof) to either axioms or previously proved theorems by using
inference rules (forward proof). The HOL system supports another way of
carrying out a proof, called goal directed proof or backward proof. The idea
is to do the proof starting from the desired result (goal) and manipulating
it until it is reduced to a subgoal which is obviously true. ML functions that
reduce goals to subgoals are called tactics and were developed by Milner [33].

As far as goal directed proofs are concerned, the HOL system provides a
subgoal package due to Paulson [33], which implements a simple framework
for interactive proofs. A goal given by an assumption list I' and a term ¢,
written I' * ¢ (if I is empty, we write * t), can be set by invoking either the
function set_goal or the function g, which initialize the subgoal package with a
new goal. The current goal can be expanded using the function e which applies
a tactic to the top goal on the stack and pushes the resulting subgoals onto
the goal stack. When a tactic solves a subgoal, the package computes a part
of the proof and presents the user with the next subgoal. When a theorem is
proved, it can be stored in the current theory using several standard functions.
Among the others, TAC_PROOF takes a goal and a tactic, and applies the tactic
to the goal in an attempt to prove it; or one can use the function prove_thm
which takes a string s, a boolean term ¢ and a tactic tac, and attempts to
prove the goal * t by applying tac. If it succeeds, the resulting theorem is
saved under the name s in the current theory.

The HOL system also provides functions called conversions [32], that map
terms ¢ to theorems expressing the equality of that tern with some other
term,  t = u. Various built-in conversions and operators for constructing
conversions from smaller ones, and several tactics and operators for construct-
ing tactics from smaller ones and from conversions, have played a fundamental
role in our mechanization of ccs.



3 CCS

In this section we recall only the essential information about ccs (Calculus of
Communicating Systems) and refer to [29] for more details about the calculus.

3.1 Syntax and Operational Semantics

We consider pure CCs, a subset of the language which does not involve value
passing and consists of the inactive agent nil, and the following operations on
agent expressions: prefiz (.), summation (+), restriction (\), relabelling ({)),
parallel composition (|) and recursion (rec). The syntax of pure CCS expres-
sions, ranged over by E, F, E', FE1,... is as follows:

E:=nil| X |uwE | E+E| E\L| E[f]| E|E | recX.E

where L is a subset of visible actions, called labels (ranged over by ), u ranges
over actions, which are either labels or the invisible action 7, and X ranges
over agent variables (which will be bound in recursive definitions). Labels
consist of names and co-names where, for any name a, the corresponding co-

name is written @. This complement operation has the property that I =1. A
relabelling function f is a function from labels to labels such that relabelling
co-names has the property that f(I) = f(I). A relabelling function f is then
extended to actions by defining f(7) = 7.

The expression nil represents an agent which cannot perform any action.
The agent u.E can only perform the action » and then behaves like E. The
agent By + E; behaves like either E) or F;. The agent E \ L behaves like E
but cannot perform an action wu if either u or % is in L. The actions of E[f]
are renamings of those of the agent E via the relabelling function f. The
agent By | E; can perform the actions of E; and E; in parallel; moreover, the
agents By and E; can synchronize through the action 7 whenever they are
able to perform complementary actions. The expression rec X. E denotes a
recursive agent.

The operational semantics of the above ccs operators is given via a tran-
sitional semantics based on labelled interleaving transitions — over CCS ex-
pressions. The transition relation E — F is inductively defined by the

following rules:

PREFIX: —_————

u.FE— FE
SUM1: B— B -:*uE' SUM2: EB— B ":"uE'
E+F — B’ F+E — E'



RESTR: —E2E _ g4 a¢l

E\L — E'\L
RELAB: —E—E
Bl B )
) E- E ) E-—F
PARIL: E|F - B'|F PAR2: F|E - F|E'

T
PAR3: E—EF o F
E|F — B'|F!

u ’
reCx.g-— g’

where the notation E{rec X. E/X} denotes the substitution of rec X. E for all
free occurrences of X in the expression E.

3.2 Observational Semantics

In the literature several behavioural semantics have been defined for ccs,
such as strong and observational congruences [29], trace and testing equiva-
lences [14], and branching bisimulation [17]. Each of these semantics has been
characterized in terms of axiomatizations, which have been proved sound and
complete for subsets of CCs expressions.

The distinction between the various behavioural semantics lies in the notion
of behaviour and in the way the silent action 7 is dealt with. In what follows,
we address observational congruence, and recall the relevant definitions below.

The weak transition relation == for any sequence s of actions is first de-
fined. Given agent expressions E, F' and a sequence of actions s = u;...uy,
(n 2 0), then E == Fif E(——)* =L (—=)* ... =% (~5)* F, where (—)*
denotes the reflexive-transitive closure of the transition relation —. If s = ¢
(empty sequence), then E == F if and only if E (—)* F.

The observational equivalence is defined in terms of a bisimulation rela-
tion between agents. A binary relation S over agent expressions is a weak
bistmulation if for all E,F, E S F implies that

(a) for all u #
(i) whenever E — E', then for some F', F = F' and E' S F';
(i) whenever F —% F”, then for some E', E == E' and E' S F';
(b)
(i) whenever E — E', then for some F', F == F' and E' § F'
(ii) whenever F -~ F', then for some E', E == E' and E' S F".
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E and F are defined to be observational equivalent, E ~ F, if and only if
E S F for some weak bisimulation S.

This means that, in order to prove the observational equivalence of two
agents F and F, it is sufficient to show that there exists a weak bisimulation
which contains the pair (E, F'). An alternative approach is to use equational
reasoning: given a collection of basic equivalences which are known to hold
of observational semantics, E = F can be proved by applying them using the
principle of “substituting equals for equals”. This is possible if the behavioural
equivalence is a congruence, but observational equivalence turns out not to
be a congruence relation. A congruence over CCS expressions is a relation
which is preserved by all ccs operators, and observational equivalence is not
preserved by summation contexts. However, observational equivalence can be
refined to a congruence relation by defining that two agent expressions £ and
F are observational congruent, E = F, if for all actions u

(i) whenever E — E', then for some F', F =5 F' and E’' ~ F’,
(ii)whenever F — F’, then for some E', E == E' and E' ~ F'.

This means that every first action (7 included) of an agent must be matched
by an equal action of the other agent (plus some silent actions, possibly) and
vice versa. Observational congruence is preserved by all ccs operators and
its axiomatic presentation allows us to perform equational reasoning on ccs
expressions by substituting equals for equals.

3.3 Axiomatic Characterization of Observational Con-
gruence

The axiomatic presentations which characterize the behavioural equivalences
for ccs can be separated into two sets of axioms: (1) those common to all
equivalences, referred to as basic axioms, and (2) those concerning the silent
action 7 which distinguish the various equivalences, referred to as r-laws.

By means of the basic axioms, any finite (i.e. without recursion) ccs expres-
sion can be proved equivalent to one containing only nil, prefix and summation
operators. The basic axioms are shown below:

E+(F+GQ)=(E+F)+G (A1)
E+F=F+E (A2)
E+E=F (A3)
E+nil=E (A4)
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nil[f] = nil (A5)

(E+F)[fl=E[f] + Flf] (A6)

(u.E)[f] = f(v). Elf] (A7)

nil\ L = nil (A8)

(E+F)\L=(E\L)+(F\L) (A9)

(w.E)\L=u.(E\L) ifu,@¢ L, nil otherwise (A10)

If E= Zu,-.E,- and F = Z'vj.Fj then (A11)
i>0 i>0

E|F=Y u.(B|F)+) v(E|F)+T{r.(E|F;)| v =71)

>0 j>0
recX. E = E{recX. E/X} (A12)
The 7-laws for the observational congruence are the following:
v.7T.E=u.F (T1)
E+7r.E=1.E (T2)
v.(E+7.F)+v.F=u.(E+7.F) (T3)

The theory of observational congruence for finite cCs is characterized by the
axioms (A1)—(A11) and (T1)-(T3). These axioms have been proved correct
and complete with respect to bisimulation in [21].

Finally, we recall a result which will be used in the correctness proof in
Section 6. When dealing with recursive equations, two agents P and Q which
are observational congruent to the expressions E{P/X} and E{Q/X} respec-
tively, denote the (unique) solution of the recursive equation X = F, if X is
sequential and guarded in the expression E [29).

3.4 A Modal Logic

The modal logic under consideration is a slight extension of Hennessy-Milner
logic [21] presented in [35). Its formulas are defined by the following abstract
syntax:

u=tt | 0| ®AG | (4]0

where A ranges over sets of actions. The meaning of the first three formulas
is familiar. The modalized formula [A]®, where the modal operator [A] is
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sometimes referred to as boz, means that ® holds after every performance of

any action in A.
For any formula ® of the logic we define when an agent expression E has

(or “satisfies”) the property ®. We write E |= ® to mean E satisfies ®, and
E | ® to mean F fails to have the property ®. The satisfaction relation |=
is inductively defined on the structure of formulas:

E [ tt

E E -® if E P

El=‘1>1/\(1)2 iff E}=‘I>1andE}=(I>2

E = [A)® if VE.VucA if E-5E thenE' | ®
Every agent has the property tt. An agent has the property —=® when it
fails to satisfy the property ®, and it has the property ®; A ®; when it has
both properties #; and ®;. Finally, an agent satisfies [A]® if after every

performance of any action in A all the resulting agents have the property ®.
Derived operators, including the dual (A) (sometimes referred to as dia-

mond) of [A], are defined as follows:

£f def ¢t

B VE (= A D)
(e € 42

The intended meaning of the diamond operator (A) is the following:
E (A% if 3IE.Ju€ A E-SE andE' E &

This logic is a slight extension of Hennessy-Milner logic [21] in the sense that
modalities are indexed by a set of actions instead of a single action. Properties
such as capacity and necessity can be expressed within this logic. The modal
formula (A)tt expresses a capacity to perform an action in A, since:

E [ (Att iff 3E.Fue A E-SE

and (A)ff expresses an inability to perform any action in A. Using the
notation in which, given a set of actions Act, [—] stands for [Act] and [—u] for
[Act — {u}] (and analogously for the diamond operator), the property that an
agent expression £ must perform a given action a (necessity) can be expressed
as follows:

E | (-)tt A [—a]ff
where the formula (—)tt states that some action can be performed, and [—a]ff
expresses that every action but a is impossible.
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4 Mechanization of CCS in HOL
4.1 The Syntax

In this section we describe the formalization in HOL of the ccs syntax pre-
sented earlier. We begin with the mechanization of labels and actions by

defining concrete data types using the derived principle for (recursive) type
definitions [26]. The syntactic types label and action can be defined as follows:

label = name string | coname string
action = tau | label label

where name, coname, tau and label are distinct constructors. Given the above
specifications, the derived rule for (recursive) type definition automatically
derives a theorem of higher order logic for each type being defined, which
characterizes the type in a complete and abstract way. These theorems for

the types label and action are the following:
FVf0 f1.3! fn. (Vs. fn(names) = f08) A (Vs. fn(conames) = f15)
Ve f. 3 fn.(fntau=e) A (Vi. fn(labell) = f1)

They assert the admissibility of defining functions over labels and actions by
primitive recursion. Structuralinduction theorems for both types are provided

as well.
The notion of complement can be defined by a function over the type label

as follows:
V 5. Compl (name s) = coname s A V s. Compl (coname s) = name s

and then extended to actions with the following definition:

V1. Compl.Act (labell) = label (Compl {)

Using case analysis on the type label, we can then prove that | = ! for all |,
thus obtaining the following theorem:

F V. Compl (Compll) = I

The type relabelling for relabelling functions is defined as the set of func-
tions of type action — action such that relabelling respects complements and
T i8 renamed as 7.
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The type CCS of cCs agent expressions can now be defined by means of
the derived HOL rule for automatically defining concrete recursive types as
follows:

CCS = nil |
var string |
prefix action CCS |
sum CCS CCS |
restr CCS (label)set |
relab CCS relabelling |
par CCS CCS |
rec string CCS

where nil, var, prefix, sum, restr, relab, par and rec are distinct constructors.
Similarly to the types label and action, a complete characterization of the
type CCS is automatically derived:

Ve fO f1 f2 f3 f4 f5 f6.
A fn.
(frnil = e) A

(VAC. fn(prefix AC) = fO(fnC)AC)A

(VC1C2. fa(sum C1C2) = f1(fnC1)(fnC2)C1C2)A
(VC's. fn(restrC s) = f2(fnC)sC) A

(VCR. fn(relabC R) = f3(faC)RC)A

(VC1C2. fa(parC1C2) = f4(fnC1)(fnC2)C1C2) A
(Vs. fn(vars) = f5s) A

(VsC. fn(recs C) = f6(fnC)sC)

and this theorem of higher order logic is the basis for reasoning about the

type CCS.

4.2 The Operational Semantics

The next step in our formalization is the definition of the labelled transition
relation which gives the operational meaning of the ccs operators. This re-
lation can be embedded in HOL by using the derived principle for inductively
defined relations [28]. The transition relation E — E' is represented by
Trans F u E', where the relation

Trans : CCS — action — CCS — bool
15



is defined as the intersection of all relations that satisfy the rules of the oper-
ational semantics. The mechanism for inductive definitions proves that this
intersection is closed under the transition rules and is the least such relation.
Proving that the relation Trans satisfies the transition rules results in the
following list of theorems, which state the labelled transition rules given in

Section 3.1:

PREFIX: I Vu E. Trans (prefixu E) u E
SUM1: FVEu El. Trans Euw E1 D (VE'. Trans (sum E E') u E1)
SUM2: +VEuEl Trans BEu E1 D (VE'. Trans (sum E' E) v E1)

RESTR: FVEu E' L.

(3. Trans Eu E' A

((u=T)V ((u=Ilabell) A (I L) A(Compll ¢ L)))) D

Trans (restr E L) u (restr E' L)
RELAB: - VE u E'.

TransEw E' D

(Vf. Trans (relab E f) (ApplyRelab f u) (relab E' f))
PARL: FVEuFEl

Trans Ew E1 D (VE'. Trans (par E E') u (par E1 E'))
PAR2: FVEuEl.

Trans Ew E1 D (VE'. Trans (par E' E) u (par E' E1))
PAR3: +VEE1E'E2.

(3. Trans E (labell) E1 A Trans E’ (label(Compl l)) E2) D

Trans (par E E') 7 (par E1 E2)
REC: FVEXuEL

Trans (CCS_Subst F (rec X E) X)u E1 D

Trans (rec X F)u Fl

where Apply_Relab f u performs the renaming of the action u via the rela-
belling function f, and the function CCS_Subst implements the substitution
E{recX.E/X} of rec X. E for all free occurrences of X in E. Such a function
can ble defined in HOL through a primitive recursive definition over the type
CCS.

Proving that Trans is the least relation closed under the transition rules re-
sults in a “rule induction” theorem, from which a tactic is generated for proofs
by induction over the structure of the derivations defined by the transition
rules. The inductive definition package provides other tactics for supporting

INote that, for the time being, CCS_Subst works under the assumption that variables
bound in recursive processes are distinct, in order to avoid capture of free variables.
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goal directed proofs about the relation Trans. A tactic that reduces a goal
which matches the conclusion of a transition rule can be defined for each of
the theorems corresponding to the transition rules. For example, a tactic
SUM1_TAC is generated from the above theorem SUM1, such that to prove the
goal I'?* Trans (sum E1 E2) u E is reduced to prove I' > Trans E'1 u F.
Finally, a theorem for performing exhaustive case analysis over the induc-
tively defined relation is provided. In our case, this means that if there is a

transition Trans E « E’, this can only happen if one of the cases given by the
transition rules holds. From this theorem many other useful theorems about

the relation Trans can be derived. For instance, we can prove that the agent
nil cannot perform any transition:

NIL.NO.TRANS: FVuE. ~ Transnilu E
and that, if an agent can perform an action, then that agent cannot be nil:
TRANSIMP_NONIL: +VEuE'. Trans Eu E' D~ (E = nil)

In Section 7 we will use other theorems about the relation Trans which can
be derived using all these proof tools. They are presented below:

TRANS_REC:
F VXEuFE'.
Trans(rec X E)u B' = Trans (CCS_Subst E (rec X F) X) u E'

TRANS_SUM:
b VEE'uwE". Trans(sum E E')u E" D Trans Ew E" V Trans E' u E"

PREFIX cases:
F Vu Eu' E'. Trans (prefixu B)u' E' D (v = v') A (E = E')

Many other theorems about Trans can be derived in a similar way. All the-
orems and tactics provided by the induction definition package greatly aid
the task of proving properties of the transition relation and of deriving the

algebraic laws for behavioural semantics.

4.3 The Observational Congruence

Having formalized the labelled transition relation for the ccs operators, the
notions of bisimulation and observational congruence can now be defined by
using the basic definition mechanisms of HOL, and then the algebraic laws for
observational congruence can be derived by formal proof.
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The reflexive-transitive closure of the transition relation E —— E', rep-
resented in HOL by Eps E E', is first defined by invoking the derived rule for
inductive definitions. The relation

Eps : CCS — CCS — bool

is defined such that it satisfies the following rules for reflexive-transitive clo-
sure:

ONE.TAU: +VEE' TransETE' DEpsEE'

EPSREFL: FVE.EpsEE
EPS_TRANS: +VEE'. (3E1.Eps E E1 AEpsE1E') D EpsE E'

As for the transition relation Trans, the derived HOL rule for inductive defini-
tion proves that the relation Eps is the least relation closed under the above
rules, thus resulting in the following rule induction theorem:

EPSIND: VP
(VEE'. Trans ET E' D PEE')A

(VE.P EE) A

(VEE'.(3E1. PEE1 APE1E') D PEE')

D
(VEFE'.EpsEE' D PEE)

Tactics that reduce goals matching the conclusion of the rules for Eps are
provided as well, and the theorem to perform exhaustive case analysis over
the relation Eps is the following:

EPS_cases:
+FVEE'.
EpsE E' =
Trans ET E' V(E'= E) V(3E1.Eps E E1 AEps E1E')

which states that E - E' if and only if one of the cases given by the rules
for Eps holds. ,

The weak transition relation E ==> E', represented by Weak_Trans E u E’,
is formalized using a basic HOL definition mechanism. The relation

Weak_Trans : CCS — action — CCS — bool

18



is defined by making a constant definition as follows:

VEu E'.
Weak Trans Eu E' =
(3E1 E2.Eps E E1 A Trans E1u E2 AEps E2 E')

At this point we are already able to prove a theorem which will be very use-
ful when deriving properties and algebraic laws for observational congruence.
This theorem asserts that a transition Trans E « E’ is a particular weak tran-
sition Weak_Trans E u E’:

TRANSIMP_WEAK_TRANS:
FVEuE' Trans Eu E' D Weak_Trans F u F'

The proof of this theorem is very simple and makes use of rewriting with the
definition of the relations Weak.Trans and Eps.
The notion of weak bisimulation

Weak_Bisim : CCS — CCS — bool

can then be defined in HOL by means of a constant definition, thus obtaining
the following:

V Wbsm.
Weak_Bisim Wbsm =
(VEE'
Wbsm EE' D
(wi.
(VEL.
Trans E (labell) F1 D
(3E2. Weak_Trans E’ (labell) E2 A Wbsm E1 E2)) A
(VE2.
Trans E' (labell) E2 D
(3E1. Weak_Trans E (labell) E1 A Wbsm E1 E2))) A
(VEL1. Trans ET E1 D (3E2. Eps E' E2 A Wbsm E1 E2)) A
(VE2. Trans E' 7 E2 D (3E1. Eps E E1 A Wbsm E1 E2)))

Theorems about weak bisimulation can now be derived. By making use of
the above theorem TRANS_IMP_WEAK_TRANS, we can prove, among others,
that the identity relation is a weak bisimulation, the converse of a weak bisim-

ulation is a weak bisimulation, and that the union and the composition of two
weak bisimulations are weak bisimulations.
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The observational equivalence E =~ E', represented by Obs_Equiv E E', is
mechanized by making a constant definition, where the relation

Obs_Equiv : CCS — CCS — bool
is defined as follows:
VE E'. Obs_Equiv E E' = (3Wbsm. Wbsm E E' A Weak_Bisim Wbsm)

Using the above theorems about weak bisimulation, it is easy to show that
the observational equivalence is an equivalence relation by proving that it
is reflexive, symmetric and transitive. We can also prove that observational
equivalence is preserved by all the ccs operators, except for summation.

Finally, based on the definition of observational equivalence, the observa-
tional congruence E = E', represented in HOL by Obs_CongrE E', is formalized
using the constant definition mechanism by defining the relation

Obs_Congr : CCS — CCS — bool
as follows:

VE FE'.
Obs Congr E E' =
(Vu.
(VE1L.
TransEu E1 D
(3F2.Weak_Trans E' u E2 A Obs_EquivE1 E2)) A
(VE2.
TransE'w E2 D
(3E1. Weak.Trans Eu E1 A Obs_Equiv E1 E2)))

Theorems similar to those proved for observational equivalence can be derived,
such as showing that observational congruence is an equivalence relation and
is preserved by all ccs operators. It can also be proved that observational
congruence implies observational equivalence.

4.4 The Axioms for Observational Congruence

The algebraic laws for the ccs operators given in Section 3.3 can be derived
starting from the definition of observational congruence. All of them have
been formally derived in HOL. Most of the laws are proved using the above
definitions and the theorems derived for the transition relations Trans and
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Weak_Trans, plus the theorem stating that observational equivalence is an
equivalence relation, thus avoiding exhibiting an appropriate weak bisimula-
tion. The only law which requires some explanation is, in fact, the ezpansion
law (A11) for the parallel operator. We first present the formalization of some
of the other laws to illustrate their similarity to the mathematical presenta-
tion given earlier, thus demonstrating the suitability of HOL for supporting
other notations. The laws for the summation operator, the unfolding law for
recursion and the 7-laws for observational congruence are as follows:

SUM.ASSOC: FVE E' E".
Obs_Congr (sum (sum E E') E") (sum E (sum E' E"))

SUM.COMM: | VE E'. Obs_Congr (sum E E') (sum E' E)
SUM.IDEMP: I VE. Obs_Congr (sum E E) E
SUM.IDENT: I VE. Obs_Congr (sum E nil) E

UNFOLDING: - VX E.
Obs_Congr (rec X E) (CCS_Subst E (rec X E) X)

TAU.1: - Vu E. Obs_Congr (prefix u (prefix tau E)) (prefix v E)
TAU2: I VE. Obs_Congr (sum E (prefix tau E)) (prefix tau E)
TAU_3: FVuE E'.

Obs_Congr

(sum (prefix u (sum E (prefix tau E')))(prefixu E'))
(prefixw (sum E (prefix tau E')))

To formalize the expansion law (A1l), we first need to define the notation
used for indexed summation. In particular, we define the indexed summation
of prefixed agents, which is the one used in the law (A11). Given an index
n:num and a function E:num — CCS, a function SIGMA_PREFIX is defined
by primitive recursion such that SIGMA_PREFIX n F denotes the summation
PREFACT (E 0) . PREF_PROC (E 0) + PREFACT (F 1) .PREF.PROC (E 1) + ... +
PREFACT (E n).PREF_PROC (E n):

F(VE.
SIGMA_PREFIX 0 E = prefix (PREFACT (E 0)) (PREFPROC (E 0))) A
(VnE.
SIGMA_PREFIX (n+1) F =
sum

(SIGMA_PREFIX n E)
(prefix (PREFACT (E (n+1))) (PREF.PROC (E (n+1))))
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where PREF_ACT and PREF_PROC are the projection functions on prefixed agents
used for extracting the action and the process, respectively:

F Vu E. PREFACT (prefixu E) =
F Vu E. PREF_PROC (prefixu E) = F

We then define a function ALL.SYNC by primitive recursion which computes
the summation of all possible synchronizations between two summation agents
E, E' :num — CCS of length n, m respectively. This is done by using a
function SYNC which computes the summation of all possible synchronizations
between a single prefixed agent . P and a summation agent. Such a function
is defined by primitive recursion as follows:

F (VuPE.
SYNCu PO FE =
(((u = tau) V (PREF.ACT (E0) = tau)) D
nil
((LLBEL u = Compl (LABEL (PREF.ACT (E 0)))) D
prefix tau (par P (PREF_PROC ( E 0))) | nil))) A
(VuPnE,
SYNCu P (n+1) E =
(((u = tau) V (PREFACT (E (n+1)) = tau)) D
SYNCu Pn E |
((LABEL % = Compl (LABEL (PREFACT (E (n+1))))) D
sum
(prefix tau (par P (PREF_PROC ( E (n+1)))))
(SYNCu Pn E) |
SYNCu P n E)))

where LABEL is a function which simply projects the label from an action:
F V. LABEL (labell) =
The function ALL.SYNC is then defined as follows:

F(VEmE.
ALLSYNCOEm E' =
SYNC (PREF.ACT (E 0)) (PREF_PROC (E 0)) m E') A
(VREmE'

ALLSYNC (n+1) Em E' =
sum
(ALLSYNC n Em E')
(SYNC (PREFACT (E (n+1))) (PREFPROC (E (n+1))) m E'))
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The expansion law (A11) can then be derived, and its HOL formalization is
the following:

FVnEmE.
Obs_Congr
(par (SIGMA_PREFIX nn E) (SIGMA_PREFIX m E'))
(sum
(sum
(SIGMA_PREFIX
n
(M.
prefix (PREF_ACT (E 7))
(par (PREF_PROC (E 1)) (SIGMA_PREFIX m E'))))
(SIGMA_PREFIX
m
(M.
prefix (PREFACT (E' j))
(par (SIGMA_PREFIX n E) (PREF_PROC (E' 7))))))
(ALLSYNC n Em E'))

4.5 The Modal Logic

The first step in the formalization in HOL of the modal logic is to represent its
syntax. Again, this can be achieved by defining a concrete data type eHML
of formulas of the extended Hennessy-Milner logic, using the derived rule for
recursive type definition as follows:

eHML = tt |
neg eHML |
conj eHML eHML |
box (action)set eHML

where tt, neg, conj, and box are distinct constructors. Similarly to the def-
inition of the types label, action and CCS (Section 4.1), a theorem which
completely characterizes the type eHML is automatically derived.

The satisfaction relation Sat : CCS — eHML — bool can be defined using the
derived principle for the definition of primitive recursion functions over the
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type eHML, thus obtaining the following list of theorems:

SAT._tt: FVE.SatEtt = T
SAT.neg: |+ VE Fm.Sat E (neg Fm) =~ Sat E Fm

SAT conj: FVEFmFm'.
Sat E (conj Fm Fm') = Sat E Fm A Sat E Fm/'

SAT box: + VEAFm.
Sat E (box A Fm) =
(VE'u.u € A A Trans Euw E' D Sat E' Fm)

The derived operators of the modal logic can then be defined through basic
HOL definition mechanisms:

ff = negtt
VFm Fm'. disj Fm Fm' = neg(conj(neg Fm) (neg Fm'))
VA Fm.dmd A Fm = neg(box A (neg Fm))

The related theorems for the relation Sat can be easily proved by rewriting
with these operator definitions and the above satisfaction rules for the basic
operators:

SAT ff: F VE.Sat Eff = F

SAT disj: + VE Fm Fm'.
Sat E (disj Fm Fm') = Sat E Fm V Sat E Fm'

SAT.dmd: F VEAFm.
Sat E(dmd A Fm) =
(QF'uv.ue A A Trans Eu E' A Sat E' Fm)

A tactic that reduces a goal which matches the structure of formulas can still
be obtained for each of the cases for the satisfaction relation. For example,
a tactic SAT.conj.TAC is generated from SAT.conj such that to prove a goal
I' * Sat E (conj Fm Fm') is reduced to prove the two subgoals I' * Sat E Fm
and I'* Sat E Fm/'.

At the end of this section, it is worth noting that the above formalization
demonstrates the suitability of HOL for supporting embedded notations, most
of the definitions and axioms being very similar to their conventional pre-
sentation. On the other hand, more work than is originally expected can he
involved when mechanizing definitions or axioms, because axioms written by
hand are often packed with notation which itself needs to be formalized.
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5 Reasoning about CCS

In this section we discuss briefly the mechanization of some verification strate-
gies with different degrees of user interaction.

The degree of automation with which one might wish to reason about ccs
can vary depending on the complexity of the specifications, and on the level of
confidence one has in their correctness. For this reason, starting from the HOL
formalization of the ccs theory, we have developed a set of inference rules,
tactics and conversions to enable reasoning about ccs expressions by manip-
ulating them according to their algebraic properties. The idea is that these
rules, tactics and conversions can be used either interactively in a stepwise
fashion, or composed together to give automatic strategies.

A wide range of verification strategies can be defined in this way based on
our mechanization, depending on the subsets of ccs under consideration and
on the kind of property to be proved. A strategy can be defined by using the
algebraic laws to adopt selection criteria which depend on the state of the
proof, as well as on the state of the expression being manipulated. In [23] a
rewriting strategy has been defined which implements a term rewriting system
equivalent to the axiomatization of observational congruence for finite ccs
(Section 3.3). This strategy computes, fully automatically, the normal form of
a finite ccs term with respect to the laws for observational congruence. Thus,
the observational congruence of two finite ccs agents can be simply verified
by checking their observational normal forms for equality. This strategy has
been embedded in HOL [10] and will be referred to as TAU_STRAT from now on.

Another strategy is, instead, partially interactive. It deals with the unfold-
ing law (A12) for the recursion operator and the expansion law (A11) for the
parallel operator, and shows how it is possible to expand an expression, at the
same time keeping its size to a minimum. This rewriting strategy, called lazy
ezpansion in [10], manipulates an expression by expanding with the definition
of the agents occurring in it, by rewriting with the laws for the ccs operators
and by appropriately folding back some subexpressions with the definitions
of the agents.

The above strategies can be used to verify several properties of cCs expres-
sions, such as the behavioural equivalence between an abstract description of
a system, usually referred to as specification, and a more detailed one, referred
to as ¢tmplementation. The verification problem consists of showing that the
implementation is correct with respect to the specification or, equivalently,
that the implementation meets the specification. This means showing the
equivalence between implementation and specification with respect to a given
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behavioural semantics. The same rewriting strategies can also be used to
prove that an agent expression satisfies a given logical formula.

~ In what follows we show how the HOL formalization of ccs described in the

preceding section can be used to reason about ccs. In particular, we show

how proofs of correctness by mathematical induction for parameterized ccs

expressions can be mechanized, and how modal properties can be checked in

our framework [30, 31].

6 Verification of a Simple Buffer by Induction

In this section we consider inductive reasoning and apply mathematical in-
duction to prove the correctness of an implementation of a simple buffer with
respect to its specification. This example is taken from [29].

The behaviour Buffer,, of a buffer of capacity n can be simply specified as
follows:

Buffer,,(0) = in. Buffer,(1)
Buffer,,(k) = in.Buffer (k+ 1) + out. Buffer ,(k—1) (0 < k < n)
Buffer,(n) = out.Buffer (n~1)

Such a specification is parameterized on the capacity n of the buffer and the
number k of the values presently stored in the buffer. An implementation of
the buffer can be built by composing in parallel n copies of a buffer cell

C = recX.in.out. X

and hiding the internally synchronizing actions in and out by using a new
action mid, thus obtaining the chain Impl(n) given by:

Impl(1) = C
Impl(n+1) = C~Impl(n)

where ™ is a linking operator which, given two arbitrary agents E and F', is
defined as follows:

E~E' = (E[mid/out]|E' [mid/in])\ {mid)

To show that Impl(n) is a correct implementation of Buffer,,, we shall prove
that I'mpl(n) and Buffer,, are observational congruent, i.e. for all n > 1

Impl(n) = Buffer,,(0)

The proofis by induction on n, and in the proof of the inductive step, a lemma
is needed which is itself proved by induction.
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6.1 Mechanizing the proof in HOL

Below we describe the HOL mechanization of the proof by presenting tran-
scripts of a HOL session. The ML prompt is #, so lines beginning with # show
the user’s input (always terminated by two successive semi-colons), and other
lines show the system’s response. Terms in the HOL logic are distinguished
from ML expressions by enclosing them in double quotes. To help readability,
the HOL transcripts are edited to show proper logical symbols instead of their
ASCII representations. Moreover, to avoid using a verbose prefix notation, the
parsing and pretty-printing facilities in the HOL system are extended to accept
input and print output almost identical to the notation normally associated
with ccs.?

After having entered a theory in which we reason about the buffer, and
declared the mechanized theory for ccs described earlier as a parent of this
theory, we define the behaviour of a buffer cell and the linking operator.
Throughout the proof, a buffer cell will be considered in its two possible
states: as an empty cell ¢, which can only input a value, and as a full cell ¢,
which can only output a value. These two specifications are defined in HOL
by invoking the ML function new_definition, and the linking operator Link is
defined as an infix operator by using the function new_infix_definition.

#new_definition (‘C‘, "C = rec X. ‘in‘.-‘out‘.X");;

F C = rec X. ‘in‘.-‘out‘.X

#nev_definition (‘C’'¢, "C' = rec X. -‘out®.‘in’.X");;
F ¢ = rec X. -‘out‘.‘in‘.X

#new_infix_definition

(‘Link‘,

"WE E'. E Link E' = (E[‘mid‘/‘out‘] | E'[‘mid‘/‘in‘])\{‘mid‘}");;
- VE E'.

E Link E' = (E[‘mid‘/‘out‘] | E'[‘mid‘/‘in‘]1)\{‘mid‘}

The implementation Impl(n) of the buffer is a primitive recursive defini-
tion starting from 1, so we want to apply induction starting with 1. Since
recursion and induction are defined on natural numbers in HOL, we must
derive a recursive definition starting with 1 from that starting with 0. We
first prove the existence of a recursive implementation IMPLO starting with 0,
and then prove that there exists a function £n satisfying the recursive defini-
tion starting with 1. Finally, we give a name to £n by invoking the function

2Modulo Ascli syntax, e.g. @ is written —a and 7 is written tau.

27



nev_specification which allows the new constant BUFF_IMPL to be introduced
in a consistent way.

#new_prim_rec_definition

(‘IMPLOY,

"(IMPLO O = C) A (IMPLO (SUC n) = (C Link (IMPLO n)))");;
F (IMPLO 0 = C) A (Vn. IMPLO(SUC n) = C Link (IMPLO n))

#let IMPL1 = prove_thm

(*IMPL1¢,
"Jfn :num — CCS.
(fn 1 = C) A

(Vn. £n (SUC(SUC n)) = C Link (fn (SUC n)))",
STRIP_ASSUME_TAC IMPLO THEN
EXISTS_TAC "An. IMPLO (PRE n):CCS" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC [PRE]);;
IMPL1 =
F 3fn. (fn 1 = C) A (Vn. £n(SUC(SUC n)) = C Link (£n(SUC n)))

#new_specification ‘BUFF_IMPL® [(‘constant‘, ‘BUFF_IMPL‘)] IMPL1;;
l (BUFF_IMPL 1 = C) A
(Vn. BUFF_IMPL(SUC(SUC n)) = C Link (BUFF_IMPL(SUC n)))

The specification of the buffer is not primitive recursive, and HOL does
not yet provide a mechanism for defining mutually recursive functions. The
existence of a function BUFF.SPEC of type num — num — cCS which satisfies
the defining equations of Buffer,, will be assumed in HOL, and in the rest of
the paper all proofs and theorems involving the specification of the buffer will
hold under the assumption BUFF_SPEC_DEF.

#let BUFF_SPEC_DEF =
"WYn. 0 < n =>
(BUFF_SPEC n 0 = ‘in‘.(BUFF_SPEC n 1)) A
(Vk. 0 <k Ak<n=
(BUFF_SPEC n k =
‘in‘. (BUFF_SPEC n(SUC k)) + -‘out‘.(BUFF_SPEC n(PRE k)))) A
(BUFF_SPEC n n = -‘out‘. (BUFF_SPEC n(PRE n)));;

To prove that the implementation meets the specification, we apply sev-
eral tactics. Some of them are built-in and some have been implemented in
the system specially for manipulating ccs specifications. The built-in tactic
INDUCT.TAC applies induction on natural numbers and the induction hypoth-
esis, like any assumption, is indicated with brackets [ 1. The assumption
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BUFF_SPEC_DEF will be shown only when setting the goal, and replaced by brack-
ets with dots in the next steps.

#set_goal
([BUFF_SPEC_DEF],
"¥n. Obs_Congr (BUFF_IMPL (SUC n)) (BUFF_SPEC (SUC n) 0)");;
"Vn. Obs_Congr (BUFF_IMPL(SUC n)) (BUFF_SPEC(SUC n)0)"
[ "Wn. 0 <n =
(BUFF_SPEC n 0 = ‘in‘.(BUFF_SPEC n 1)) A
(Vk. 0 <k Ak<n=>
(BUFF_SPEC n k =
‘in‘.(BUFF_SPEC n(SUC k)) + -‘out‘.(BUFF_SPEC n(PRE k)))) /
(BUFF_SPEC n n = -‘out‘.(BUFF_SPEC n(PRE n)))" ]

-

#e (INDUCT_TAC);;
UKOO

2 subgoals
"0bs_Congr (BUFF_IMPL(SUC(SUC n))) (BUFF_SPEC(SUC(SUC n))0)"

...1
[ “0bs_Congr (BUFF_IMPL(SUC n)) (BUFF_SPEC(SUC n)0)" ]

"Obs_Congr (BUFF_IMPL 1) (BUFF_SPEC 1 0)"
[...]

To prove the basis subgoal, we expand with the definitions of BUFF_IMPL and
C. Next, the resulting recursive expression is unfolded once, by means of the
tactic REC_UNF_TAC derived from the unfolding law for recursion, and then the
current goal is folded back using the definition of ¢ and the first clause of the
definition of BUFF_IMPL.

#e (REWRITE_TAC [BUFF_IMPL; C] THEN REC_UNF_TAC THEN
ONCE_REWRITE_TAC [SYM C] THEN
SUBST1_TAC (SYM (CONJUNCT1 BUFF_IMPL)));;

OKl.

"Obs_Congr (‘in‘.-‘out‘.(BUFF_IMPL 1)) (BUFF_SPEC 1 0)"

[...]

Now we manipulate the specification of the buffer by expanding twice with the
definition of BUFF_SPEC, each time selecting the appropriate definition clause
based on the value of k.

#e (ONCE_REWRITE_TAC [CONJUNCT1 SPEC_SUCO_SUCO] THEN
ONCE_REWRITE_TAC [CONJUNCT2 SPEC_SUCO_SUCO]);;

OK. .

"0bs_Congr (‘in‘.-‘out‘.(BUFF_IMPL 1)) (‘in‘.-‘out‘.(BUFF_SPEC 1 0))"
[0'0]
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The next step is to check if BUFF-IMPL 1 and BUFF_SPEC 1 0 denote the (unique)
solution of the same recursive equation. This can be achieved by applying the
- tactic UNIQUE_SOL_TAC that mechanizes the proof rule for the unique solution
of recursive equations (Section 3.3). (Note that the dot before - abbreviates
the assumption BUFF_SPEC_DEF.)

#e (UNIQUE_SOL_TAC
“BUFF_IMPL 1 :CCS" "‘in‘.-‘out‘.(BUFF_IMPL 1)"
"BUFF_SPEC 1 0 :CCS" "‘in‘.-‘out‘.(BUFF_SPEC 1 0)");;
0K..
goal proved
I 0bs_Congr (‘in‘.-‘out‘.(BUFF_IMPL 1)) (‘in‘.-‘out‘.(BUFF_SPEC 1 0))
. I Obs_Congr (‘in‘.-‘out‘.(BUFF_IMPL 1)) (BUFF_SPEC 1 0)
. | Obs_Congr (BUFF_IMPL 1) (BUFF_SPEC 1 0)

Previous subproof: :

"0bs_Congr (BUFF_IMPL(SUC(SUC n))) (BUFF_SPEC(SUC(SUC n))0)"
[c . o]

[ "Obs_Congr (BUFF_IMPL(SUC n)) (BUFF_SPEC(SUC n)0)" ]

Once the basis subgoal has been proved, the HOL system presents us with the
induction step subgoal. Note that, since we started the proof by induction
from 1, the inductive hypothesis holds for n + 1 and we prove the induction
step for n + 2. We expand with the definition of BUFF.IMPL and of the linking
operator, and then apply the inductive hypothesis by rewriting with one of
the assumptions using the tactic 0¢_SUBST.TAC which performs substitution in
terms of the form Obs_Congr E E'.

#e (REWRITE_TAC [BUFF_IMPL; Link] THEN
0C_SUBST_TAC
(ASSUME "0bs_Congr (BUFF_IMPL(SUC n)) (BUFF_SPEC(SUC n)0)"));;
OK..
"Obs_Congr
(((C[‘mid‘/‘out‘]) | ((BUFF_SPEC(SUC n)0)[‘mid‘/‘in‘]1))\{‘mid‘})
(BUFF_SPEC(SUC(SUC n))0)"
[...]
[ "Obs_Congr (BUFF_IMPL(SUC n)) (BUFF_SPEC(SUC n)0)" ]

At this point, the goal will be proved if we show that the two agents above
denote the (unique) solution of the same recursive expression. This means
proving that the defining equations of Buffer,, ., are satisfied when replacing

Buffer,, . 4(k) by  C™ Buffer, (k) 0<k<n+1)
Buffer, ,(n+2) by C'"Buffer,.,(n+1) (k=n+2)
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By case analysis on k, this requires one to prove the following observational
congruences:

C~ Buffer,,,,(0) = in.(C" Buffer, (1))

C~ Buffer, (k) =in.(C" Buffer, . ,(k+1)) (0<k<n+1)
+ out.(C™ Buffer,1(k — 1))

C~Buffer,,(n+1) =in.(C'"Buffer,;,(n+1)) (k=n+1)
+ out.(C" Buffer,,(n))

C'" Buffer,,,,(n + 1) = out.(C"~ Buffer,,(n + 1))

These congruences can be proved using the lazy expansion strategy, i.e. by
rewriting each left-hand side with the definitions of the agents occurring in
it and applying the laws for relabelling, restriction and parallel composition
operators, until a suitable form is reached and the key lemma of the whole
proof can be applied. This lemma is the following:

C'~Buffer, (k) = 7.(C"Buffer,(k+1)) (0<k<mn)

It represents the intuition behind Milner’s proof. The specification Buffer,, (k)
can be expressed as the linking of k full buffer cells ¢’ and (n — k) empty cells
C. When an empty cell inputs a value and becomes a full cell, then its value
can percolate to the right by a sequence of internal actions, thus obtaining
Buffer, (k + 1).

The above lemma is proved by induction on k using the lazy expansion
strategy. In the proof various tactics and theorems are used which we have
previously defined and proved in HOL, to manipulate subexpressions of the
goal and make the application of some laws concerning the action 7 possible.
Some of the theorems are the following:

FULL_TO_EMPTY.CELL: - Obs_Congr C' (out.C)

TRANSF_FULL.CELL: L
- Obs_Congr (C' [mid/out)]) (mid. (C [mid/out]))

EXP_ABS_THM:
. Vnk.
O<n)A(k+2<n)D
Obs_Congr
(C(Buffera(k+2)
(in. (C' ~ (Buffer,(k + 2))) + out. (C ~(Buffer,(k +1))))
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Moreover, the rewriting strategy TAU_STRAT is used which, in the proof of the
lemma, applies the derived 7-law, E + 7.(F + E)=7.(F + E).

Below we present the HOL mechanization of the proof. To help readability,
the ML code for the tactic that proves the lemma has been replaced by an
informal English description.

#let LEMMA =
TAC_PROOF
(([BUFF _SPEC_DEF] ,
"Vk n.
((0 <n) A (x <n)) =
Obs_Congr
(C' Link (BUFF_SPEC n k))
(tau.(C Link (BUFF_SPEC n (SUC k))))"),
Rewrite using the definition of the linking operator
THEN Apply mathematical induction on the variable k
THENL
[Strip off the universally quantified variable n and
move the antecedent of implication to the assumption list
THEN Use the theorem FULL_TO_EMPTY_CELL
THEN Rewrite using the definition of BUFF_SPEC
THEN Apply laws for relabelling, parallel and restriction
’
Strip off the universally quantified variable n and move
conjuncts of antecedent of implication to the assumption list
THEN Use the theorem FULL_TO_EMPTY_CELL
THEN Rewrite using the definition of BUFF_SPEC
THEN Apply laws for relabelling, parallel and restriction
THEN Use the theorem TRANSF_FULL_CELL
THEN Apply the inductive hypothesis
THEN Apply the 7-law pu.7.E = u.E
THEN Use the theorem EXP_ABS_THM
THEN Apply TAU_STRAT]);;
LEMMA =
. F Vk n,
0<KnAk<n=
Obs_Congr
(¢' Link (BUFF_SPEC n k))
(tau.(C Link (BUFF_SPEC n(SUC k))))

The above congruences can now be proved, but we do not present the
proofs here. Actually, only the second congruence needs the application of
the lemma,; the remaining ones may also be proved by the usual lazy expansion
strategy.
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7 Proving Modal Properties of CCS Specifi-
cations

In this section we show how modal properties of ccs agents can be checked
in our HOL-CCS environment by means of a simple example.

Let us first see how the satisfaction relation for the notions of capacity and
inability to perform actions of a given set A (Section 3.4) can be derived.
After having entered a HOL theory in which we reason about the Hennessy-
Milner logic, we can prove that the formula (A)tt expresses a capacity to
perform an action in A. This can be achieved by applying the following
simple tactic which strips off the universally quantified variables £ and A
using the tactic GEN_TAC, and then rewrites the current goal with the theorems
for Sat corresponding to the logical operators in the goal:

#let CAPC_ACT =
prove_thm
(*CAPC_ACT',
“WE A. Sat E ((A) tt) = JE' u. u € A A Trans E u E'",
REPEAT GEN_TAC THEN
REWRITE_TAC [SAT_dmd; SAT_ttl);;

CAPC_ACT = I VE A. Sat E((A)tt) = (3E' u. u € A A Trans E u E')

In a similar way, we can easily prove that the formula (A)ff expresses an
inability to perform any action in A.

#let INAB_ACT =
prove_thm
(‘INAB_ACT',
"WE A. Sat E ([A] ££) = ~(3E' u. uw € A A Trans E u E')",
REPEAT GEN_TAC THEN
REWRITE_TAC [SAT_box; SAT_£f] THEN
CONV_TAC (TOP_DEPTH_CONV NOT_EXISTS_CONV) THEN
ONCE_REWRITE_TAC[]);;

INAB_ACT =  VE A. Sat E([Alff) = ~(3E' u. « € A A Trans E u E')

Note that the tactic CONV_TAC (TOP_DEPTH_CONV NOT_EXISTS_CONV) moves nega-
tion inwards through the existential quantifications.

Let us now show how to check that an agent satisfies a given modal property.
Let a simple vending machine be defined by the following ccs agent expression
(this example is taken from [35]): |

V ¥ recx. 2p.big.collect. X + 1p.little.collect. X
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This agent can be defined in HOL by the following definition:

#new_definition
(‘ve¢,
"W o=
rec
(x(
(‘2p‘.‘big‘.‘collect’.‘X‘ + ‘1p*.‘little‘.‘collect’.‘X‘)");;
FvVes=
rec ‘X (‘2p‘.‘big‘.‘collect.‘X‘ + ‘1p‘.‘little‘.‘collect’.‘X")

Several properties can be proved of this vending machine. For example, we can
show that a button cannot be depressed before money is deposited into the ma-
chine. This property can be expressed in Hennessy-Milner logic by the formula
[{big,little}]££. In our HOL-CCS environment to show V |= [{big, little}]££
means proving the following goal:

#g "Sat V ([{‘big‘, ‘little‘}] ££)";;
"Sat V([{‘big‘,‘little‘}]ff)"

We start the proof by rewriting the goal with the definition of v and with the
theorem INAB_ACT:

#e (REWRITE_TAC [V; INAB_ACT]);;
0K..
"~ (3E' u.
u € {‘big,‘little‘} A
Trans
(re:: ‘X (‘2p°.‘big‘.‘collect‘. ‘X + ‘1p*.‘little‘. ‘collect®.‘X*))
u E )ll .

We unfold the recursive expression by rewriting with the theorem TRANS_REC
(Section 4.2), then apply the substitution of agents with CCS_Subst, and fi-
nally fold back the obtained expression using the definition of v:

#e (REWRITE_TAC [TRANS_REC ; CCS_Subst; SYM V]);;
UKO L]
"~ (3E' u.
u € {‘big‘,‘little‘} A
Trans (‘2p‘.‘big‘.‘collect‘.V + ‘1p‘.‘little’.‘collect’ V) u E)»

Stripping quantified variables and moving antecedents into the assumptions
of the goal results in the following:
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#e (REPEAT STRIP_TAC);;
oK. .
"F"
[ "w € {‘big‘,‘little‘}" ]
[ "Trans
(‘2p‘.‘big‘.‘collect’.V + ‘1p‘.‘little’.‘collect’.V) u E'" ]

By applying the HOL resolution with the implicational theorem TRANS_SUM
(Section 4.2), we derive new assumptions from those in the list of the current
goal, and get two subgoals to prove:

#e (IMP_RES_TAC TRANS_SUM);;
OK..
2 subgoals
IIFII
[ "uw € {‘big*,‘little‘}" ]
[ "Trans
(‘2p‘.‘big¢.‘collect‘.V + ‘1p‘.‘little‘.‘collect‘.V) u E'" ]
[ "Trans (‘1p‘.little‘.‘collect‘.V) u E'" ]

llF"
[ "u € {‘big', 1little‘}" ]
[ "Trans
(‘2p‘.‘big‘.“collect‘.V + ‘1p‘.‘little’. collect‘.V) u E'" ]
[ “Trans (‘2p‘.‘big‘.‘collect‘.V) u E'" ]

To prove these subgoals, the conclusion of which is F (false), we have to show
that the assumptions are inconsistent. As regards the first subgoal, i.e. the
one at the bottom, the HOL resolution can be applied using the theorem
PREFIX cases (Section 4.2), thus deriving new assumptions:

#e (IMP_RES_TAC PREFIX_cases);;
OK..
"F"
[ "w € {‘big®, ‘little‘}" ]
[ "Trans
(‘2p*.‘big‘.‘collect‘.V + ‘1p‘.‘little’.‘collect‘.V) u E'" 1.
{ "Trans (‘2p‘.‘big‘.‘collect’.V) u E'" ]
[ "‘2])‘ a y" ]
[ "‘big‘.‘collect‘.V = E'" ]

The assumption © € {big,little} is now rewritten with the newly-derived
2p = u, thus obtaining a new assumption 2p € {big, little}:
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#e (ASSUME_TAC (ONCE_REWRITE_RULE [SYM (ASSUME "‘2p‘¢ = u")]
(ASSUME "u € {‘big‘,‘little‘}")));;

OK..
IIF"

[ "u € {‘big*,‘1little‘}" ]

[ "Trans

(‘2p‘.‘big‘.‘collect’.V + ‘1p‘.‘little‘.‘collect‘.V) u E'" ]

[ "Trans (‘2p‘.‘big‘.‘collect‘.V) u E'" ]

[ u¢2pc a g ]

[ "‘big‘.‘collect.V = E'" ]

g
[ "¢2pf € {‘big‘,‘little‘}" ]

By applying the HOL resolution using a pre-defined conversion Action_IN_CONV
for deciding membership in a set of actions, a contradiction is derived which

proves the first subgoal:

#e (IMP_RES_TAC (Action_IN_CONV "‘2p‘" "{‘big‘, ‘little‘}"));;
OKCC

goal proved

. |- F

.. |- F

) l-F

Previous subproof:
IIFII
[ "w € {‘big‘, ‘little‘}" ]
[ "Trans _
(‘2p‘.‘big‘.‘collect’.V + ‘1p‘.‘little‘.‘collect‘.V) u E'" ]

[ "Trans (‘1p‘.little‘.‘collect*.V) u E'" ]

The second subgoal can be proved in a similar way, thus solving the initial goal.
Both subgoals are proved with the same tactic: new assumptions are derived
by applying the HOL resolution using the theorem PREFIX_ cases, and then
assumptions are manipulated in such a way that a contradiction is derived. A
tactic MODAL.TAC can be defined parametrically and invoked with appropriate
arguments to solve a class of goals related to checking that an agent has a

given modal property:

##let MODAL_TAC asl1 as2 =
IMP_RES_TAC PREFIX_cases THEN
ASSUME_TAC
(ONCE_REWRITE_RULE [SYM (ASSUME as1)] (ASSUME as2)) THEN
IMP_RES_TAC
(Action_IN_CONV (fst (dest_eq as1)) (snd (dest_comb as2)));;
MODAL_TAC = - : (term -> term -> tactic)
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For example, the first subgoal above can be solved by invoking MODAL_TAC
with the assumptions asl and as2 given by 2p = u and u € {big,little},
respectively.

Many other and more complex properties of the vending machine can be
checked in a similar way. Moreover, modal properties of parameterized spec-
ifications can be naturally checked using proofs by induction [31].

8 Related Work and Conclusions

Several verification tools based on process algebras, such as Concurrency
Workbench [12], Auto [34], TAV [18], Aldebaran [16], Squiggles [4], have been
proposed for proving properties of concurrent systems [36, 37, 38]. These tools
work in the framework of ccs-like specifications and most of them resort to a
finite state machine representation of processes. This internal representation
is used to verify equivalences of processes and to show that a process satisfies a
logical property by means of some reasonably efficient automatic algorithms.

An automata based approach has the well-known problem of state explosion
(the number of states of a concurrent system potentially increases exponen-
tially in the number of its parallel components) and the limitation that it
can deal with only finite state specifications. In such a framework, there is
no easy way to accommodate the verification of processes with infinite states
or, more generally, to perform incremental or interactive proofs, even though
the theory behind process algebras supports such reasoning. Moreover, more
general and powerful proof techniques are sometimes required, such as in-
duction, contradiction, case analysis, etc., and it is often convenient to define
proofs parametrically so that they can be used to deal with a class of processes
and/or logical properties.

Recently, several investigations into verification environments based on the
algebraic nature of the concurrency calculi have been carried out, which allow
for a better understanding of the process algebra specifications one is trying
to verify than the finite state machine approach. They include axiomatic tools
in which the signature of a calculus and the laws for behavioural semantics
are just entered and then used to construct proofs in specially designed proof
tools [25, 38] or in general purpose theorem provers like LP, RRL and the
Boyer-Moore theorem prover [24, 1]. Other work in this field includes the for-
malization in the HOL system of different csP semantics [8, 9] and of Milner’s
w-calculus [27] following a purely definitional approach to using higher order
logic. This means that only primitive definition mechanisms are used for in-
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troducing new entities in a sound way, and all other kinds of definitions, such
as the laws for behavioural semantics, are derived by formal proof. To our
knowledge, however, these tools have not yet addressed the issue of checking
modal properties.

In this paper we have presented the formalization in HOL of some compo-
nents of the CCs process algebra, i.e. its syntax and operational semantics, the
observational semantics and its axiomatic presentation, and a modal logic. We
have shown how this mechanization can be actually used to perform verifica-
tion of behavioural equivalences and check logical properties of specifications.

Extensions to the subset of ccs and the process logic can be embedded
in the HOL system. For example, a more expressive temporal logic [35, 6]
can be represented in higher order logic, and proof tools, e.g. the tableau
system (extended to deal with infinite state processes in [7]), can be soundly
mechanized. The tableau system decision procedure has been implemented in
some verification tools, e.g. the Concurrency Workbench [12]. On the other °
hand, such a technique is also naturally described as a goal directed proof
system and, as such, is amenable to be formalized in a theorem proving system
which provides goal directed proofs. We believe that this demonstrates further
evidence that the formal theory for a process language can be embedded in
a theorem proving system to provide an effective approach to the mechanical
verification of concurrent systems. '
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