Technical Report A

Number 279

Computer Laboratory

The transition assertions
specification method

Victor A. Carreno

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© Victor A. Carreno

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

The Transition Assertions Specification Method

Victor A. Carrenio

vacQairl2.larc.nasa.gov

NASA Langley RC Computer Laboratory

MS 130 New Museums Site

Hampton, VA 23681-0001 Pembroke Street

U.S.A. Cambridge CB2 3QG
U.K.

Abstract

A modeling and specification method for real-time, reactive systems is described.
Modeling is performed by constructing time dependent relations of the system
parameters. A textual formal notation using higher order logic and a graphical
notation are presented. The formal notation allows the use of rigorous mathe-
matical methods on the specification, one of the primary sources of design errors.
A cruise control case example is included in the paper and the HOL mechanized
theorem prover is used to show that the specification comply with some top level
requirements.

1 Introduction

This paper consists of two parts. One, a generic model to represent time dependent systems.
Two, a method to specify real-time systems using a graphical and textual notation. The
generic model is described in section 2 and forms the basis for the graphical and textual
specification method. Reading section 2 is not necessary for the understanding of the spec-
ification method. Section 2 includes the rationale for developing such a model. The generic
model presented is called the Transition Assertions model. Its main characteristics are:

1. Transitions are not instantaneous; they require at least one time step.

2. The model uses assertions over variables to describe behaviour rather than the more
common method of assertions over states [1, 4, 5, 7, 9, 11]

3. Variables may or may not be specified at a given time, thus the state of the system
may not always be completely defined.

4. Time is discrete and is mapped to the natural numbers including zero. The size of the
time increments is arbitrarily chosen. For example t= 0,1,2, ... could correspond to
Ops, lus,2us, ... or Ons,Ins,2ns, ...

Section 3 describes the specification method. The objective is to have a method that:

1. Describes time dependent systems or properties of time dependent system in which
the timing characteristic are explicitly present.

2. Has a formal mathematical notation to support verification through theorem proving.
3. Is expressive enough to support the specification of relevant systems.

4. Is of manageable complexity.

Section 4 is an example of the specification of a cruise control system using the transition
assertion specification method. The specification was shown to comply with three top level
requirements. The HOL mechanized theorem prover was used to perform the proof of
compliance. A discussion of the proof effort and the findings is in section 5.

2 The Transition Assertions Generic Model

The Transition Assertion model is a generic model to describe a dynamic system over time.
Two approaches can be taken to model system behaviour with respect to time. The first
one, and the most widely used [5, 6, 9, 10], assumes that the system is in a given state, and
that it transitions from one state to another instantaneously. This approach is generally
suitable to model a wide range of systems, but it can also bring mathematical or conceptual
contradiction when formalizing a specification. This is due to the fact that when a variable

is transitioning from one value to a different value, no time elapses, and a variable can have
two distinct values at the same time.

The second approach, and the one used in this model, assumes that the system is con-
stantly transitioning, and in order to distinguish between two different states, an interval of
time, greater than zero, must have elapsed. A functional relation is defined between time
and values in which if ¢ = ¢, then v(¢;) = v(t;). This approach is also used in [4, 8].

Variables (or system parameters) are functions from time to values. Time is a natural
number used as the argument to the time dependent functions. Using the natural numbers
to represent time significantly simplifies the transition assertions model. This does not result
in a penalty on accuracy since the time steps can be made arbitrarily small. The variables,
values, assertions, and the absolute time ¢ are defined as follows:

V the set of system variables, including inputs, outputs and control variables. Each variable
v is a function from time to value. v:N — {values}.

Val the set of sets of possible values. The set Val is infinite and can include the sets N,
{colors}, {names}, and others. ({values} is used to range over sets of values.)

T the set of system assertions. Each assertion is a first order or higher order formula 7 :B.

t the system time ¢ € N.

A system execution is defined as a sequence of observations of the system variables over
time, starting at time zero or at a reference time ¢o:
t
0 1 2

w 35°F 36°F 36°F
z 1 5 237
Y 0

z red blue blue

The value of a variable can be undefined or unobservable at a given time and is rep-
resented by a blank space in the example above for y(1) and y(2). The set of all possible
system executions describe the system behaviour. The definition of system execution and
behaviour is similar to the definition of computation and behaviour, respectively, in [9] for
linear temporal logic.

System assertions restrict the set of behaviours and are used to model the system. The
assertion Vt.Vee(t) = 5 represents a system in which the value of Vec is always five (for ¢
greater or equal to zero). The assertion z(¢) < y(¢) means that the value of « is less than
the value of y at all times. This is assuming that an ordering exists amongst the values of
z and y. The assertion x(t) < x(¢t +t'), for t' # 0, means that at a future time the value of
z is going to be larger than the value of x now. That is, = is monotonically increasing. The
following are other examples of system assertions:

z(t+1)=z(t)+1
(t=0)=2(t)=0
y(t) <10= ((@(t+1) =2() +2(1) A (y(E+1) = y(t) +1))

A system S is defined by the conjunction of all the system assertions S = Ve.iAT AL A
7. The following system will increment indefinitely the variable & from zero, at time equals
zero: V = {a}; T = {z(0) =0, (¢t +1) = 2(¢t) + 1}. It is possible to define a system with
contradictory predicates. Consider for example V = {z}; T = {z(0) =0, z(t+1) = =(¢) +1,
£(20) = 10}. This definition will result in S = F and it is impossible to implement.

3 The Graphical and Textual Notation

The specification method uses 8 transition models. The transition models assert that if a
condition P holds (is true) at time ¢, then a condition @ will hold at a time ¢ + dt later.
The increment time dt is bounded by a lower and upper bound d and D, where d and D are
natural numbers. dt is therefore always greater than zero.

Each transition model has a graphical representation associated with it. A specification
can be formulated by generating the graphical model of the transition or by directly writing
the textual model. There are 3 basic transition models and 5 compound or derived models.

3.1 The Three Basic Models

The first transition model is the Multiple Transition. This model is defined by the following
textual and graphical representation:

1. Multiple Transition
MT dDPQ=3dt. Vi (d<dt)A(dt<D)AN(Pt= Q1 (t+dl))

Qt (t+dt)
d<dt ; dt<D

Figure 1. Multiple Transition Model

In transition model number 1, a transition does not have to be finished for a new one to
begin (hence multiple transition). Consider for example a conveyor belt:

K) Red U Red

paint paint

A /NN ZON

@ —

Figure 2. Conveyor Belt

Condition P is part_at_A and condition Q is part_at_B_painted_red. A new part can be
put at A before the first one appears at B. The number of transitions that can be taking
place simultaneously depends on how often condition P can be satisfied and the transition
time dt.

The specification for the conveyor belt using model 1 could be:

MT 30 35 (X t.part_at_A t) (At t'.part_at_B_painted_red t')
or expanding with the definition of MT"
3 dtV .30 < dt Adt < 35 A (part_at_A t = part_at_B_painted_red (t + dt))

By modelling the conveyor belt with transition model 1, a condition exists in which
painted parts may appear at B without having been put at A. This is because when P is
false at time £ and Q is true at time t 4 dt the transition assertion will be satisfied. If it
must be guaranteed that no parts appear at B if no parts have been put at A then transition
model 2 is used:

2. Multiple Transition with Negation
MTNdDPQ=3dt.Vt. (d<dt)A(dt <D)A(Pt= Qt(t+dt))

Pt Q' (t+dt)
~Pt dxdt : dt<D W

Figure 3. Multiple Transition with Negation Model

<P

In this model, Q is true at time ¢ + dt if and only if P is true at ¢. A specification for
the conveyor belt using model 2 will the be:

3dt.V£.30 < dt Adt <35 A (part.at_A t = part_at_B_painted_red (t + dt))

Model 2 can not be used in cases were two transitions update the same variable, unless
an additional assertion is used. Consider the following example on figure 4a.

dg<dt; dt<Dg

TGH y (t+dt)
dgh<dt; dt<Dgh ~y (t+dt)

TH

dh<dt; dt<Dh

Figure 4a. Logical Disjunction for MTN Figure 4b. Logical Disjunction for MTN; common delay

Transitions TG and TH update variable y. Let PG be always false which will force y to
be always false. If PH is true at ¢ then y is true at ¢ 4+ dt which clearly contradict the first
statement. The specification can only be satisfied if PG and PH are always false. When
transition model 2 is used as in figure 4a, the specification is redefined as follows:

TG =MTN dg Dg PG update_g
TH=MTN dh Dh PH update_h
Vt.updateg tV update h t =y ¢

Each transition updates a variable update. The third statement makes y true if one or
both of the update variables is true and false otherwise. The third statement is the logical
disjunction of the Multiple Transition with Negation model. If the transition times for TG
and TH are equivalent the definition can be simplified to one transition as in figure 4b and
one statement:

TGH = MTN dgh Dgh (PGV PH) y

A specific example of this feature is shown in section 4.2, figure 18. Transitions T1 and
T4 will both cause a capture_current_speed if maintain speed or increase speed are activated.
Capture_current_speed will be false if neither of these conditions take place.

The third basic model is the single transition model. In model 3 only one transition can
be occurring at the same time. Once a transition has started, making condition P true will
not cause a new transition. The definition and graphical representation of single transition
model 3 is:

3. Single Transition

ST dD P Q trans =
(Vt.
(P t) A (—trans t) =
3dt.
(d < dt) A
(dt < D) A
(Q t(t+dt)) A ‘
(VE.(0 < k) A (k < dt) = (trans(t+ k))) A
(—trans(t + dt))) A
(Vt.(=P t) A (—trans t) = (—trans(t + 1)))

Pt &
~rans i d<dt ; dt<D

Qt (t+dt)

Figure 5. Single Transition Model

The variable trans represents whether a transition is occurring or not and it is true if a
transition is taking place and false if it is not. As shown on the definition of model 3 above,

5

a transition will take place if P is true and trans is false.
The following example illustrates the single transition model. System S, figure 6, has a
data input N, a control input start, and a data output SQRN.

Push —y
Button y T stan
| await sta
assert Start 2 input N
3 SQRN
N
n_output SQRN
U —— |

Figure 6. Single Transition Example

When the control line start is asserted by the push button, the system latches the value
of data line N, computes the square root of the value, and puts the result on line SQRN.
Activating the push button at any time during computation will have no effect. The system
will effectively ignore this signal during transition. The behaviour of system S, and model
3, is illustrated further by the timing diagram of figure 7.

ty t, trdt t+at
t 1 F | | | |
FFFFF [true Itrue
start r .
oy J
N - -
rrc
7/
\ JV
SQRN rc L > ! |t
AN lied / \ \ 7
N /
dt<tf dt a’t

Figure 7. Single Transition Timing Diagram

At time ?;, with the value vy on input N, the line start is asserted after being false for
a time longer that dt. At time ¢y, line start is asserted in the middle of the transition.
The transition continues without interruption and at time ¢; 4 dt the value \/v; appears on
output SQRN. Asserting start at time ¢, has been ignored and therefore the value on SQRN
is not updated to ,/v; at time t; + dt. The graphical representation and formal definition
of system S is:

startt & o~/ SQRN (t+dt) = /N t
~trans 1 d<dt ; dt<D

Figure 8. System .S Diagram

ST d D (X tstart t) (At t.SQRN(t') = +/N(t)) trans_sqr

[e>]

3.2 The Five Derived Transition Models

Transitions 4 through 8 are derived from the basic transition models and include inertia,
and preemption.

3.2.1 Inertia

Inertia refers to the attribute a variable, parameter or condition has to retain its present
value indefinitely unless a process or transition occurs and changes its value. The Transition
Assertion generic model does not inherently have inertia. If an assertion states that the
value of variable 2 is 7 at time 1732, ¢(1732) = 7, then the value of z at 1733 is undefined
unless specifically defined by another assertion.

Inertia is implemented in the transition models by an auxiliary inertia assertion. The
auxiliary inertia assertion states that the value of a variable does not change:
Vialt)=2z(t—1)

Variable z is then of little use since it always have the same value and can not be changed by
any process. The auxiliary assertion is then modified to state that the value of the variable
does not change unless a transition is updating its value. A variable update is included
in the transition model, and the transition model makes update equals to true when it is
changing variable values and false any other time. The auxiliary inertia assertion is then,
not updating, stay the same:

V t.~update t = o(t) = 2(t — 1)

If two or more transitions can change the value of a variable var then the auxiliary

assertion is extended to be:

Y t.-updatel t A ~update2 t A ... = var(t) = var(t — 1)

The assertion states that if none of the transition that can update var are updating it at
time ¢ then the value of var stays the same.

Transition models with inertia are models 4 and 6. Model 4 is defined next.

4. Multiple Transition with Inertia

MTid D P @ update =
Jdt.
(V5. < dt = —wupdate j) A
(Vt.
(d<dt)yAN(dt<D)A(Pt=(Qt(t+dl))))A
(P t = update(t + dt))

= Q t (t+dt)
d<dt ; dt<D

Figure 9. Multiple Transition with Inertia Model

Model 4 is based on model 1 with the variable update added to implement inertia.
Variable update is true at the end of the transition, when condition Q must be true, and

false at all other time.
To illustrate model 4, two transitions (figure 10) from the cruise control example of

section 4.2 are used!. Inertia is implemented on the maintain speed request variable m_req.

m _req |
ds_req<=30

Figure 10. Multiple Transition with Inertia Example

Variable m._req is set to true by transition T2 when the variable cap_cs, capture current
speed, changes from false to true?. The request is canceled, by resetting m_req to false in
transition T6, if the desired speed is less than or equal to 30 miles per hour. The textual
representation including the auxiliary assertion is:

T2=MT: d D2 (A t.RE capcst) (At t.(mreqt) A((ds-reg t') = (cs t))) update2
T6 =MTi d D6 (\t.(mreqt)A((ds-reg t) <= 30)) (At t'.-m_req t') updated
m_reqt =V t.((—update2 t) A (—updateb t)) = (m.req t) = (m_req(t — 1))

The value of m_req will remain unchanged if both transitions T2 and T6 are inactive.

3.2.2 Preemption

Preemption is implemented in the next model. Preemption is the capability of interrupting

a transition while the transition is taking place. Transition models with preemption assert

that if P is true then Q is true at a later time unless a condition W is true during some

interval before the transition is over. Transition models with preemption are 5, 6, 7 and 8.
The definition and graphical representation of transition model 5 is:

5. Multiple Transition with Preemption

MTpdD P QW=
(Adt.
V.
(d<dt)yAN(dt < D)ANNVEO<E)A (k< dt)=-W({t+k)) =

1Preemption was eliminated in transition T2 to simplify the example. Preemption is discussed in sub-
section 3.2.2.

2The predicate RE, raising edge, returns true at time ¢ when its argument changes from false to true
from ¢ — 1 to ¢. It is defined by RE sig t = (((sig(t — 1)) = F) A ((sig t) = T)).

8

Pt=
(@t (1 +d)))

dedt ; di<D

Figure 11. Multiple Transition with Preemption Model

An example of model 5 is transition T5 in the cruise control example of section 4.2. In
transition TH (figure 12), if there exists a maintain speed request, desired speed is greater
than 30 miles per hour and the brake and the increase button are not activated, then the
maintain speed actuator will be enabled and the maintain speed request cleared. If, however,

the brake is activated during transition T5, then the transition will be interrupted and the
maintain speed actuator will not be enabled.

m_req
30<ds_reg
~increase
~brake

Figure 12. Multiple Transition with Preemption Example
Model 6 includes both preemption and inertia and is defined next.

6. Multiple Transition with Preemption and Inertia
MTpid D P Q W update =
(3dt.
(V5.5 < dt = -updatej) A
(Vt.
(d < dt) A
(dt < D) A
(VE(O<k)A (k< dt)=-W(t+Ek)=>
(Pt= (Q1t(t+dt)))A(Pt=update(t+dt))) A
(~(VE.(0 < k) A (k < dt) = =W (t + k) = —update(t + dt)))

d<dt ; di<D

Figure 13. Multiple Transition with Preemption and Inertia Model

As an example of model 6, transition T2 from the cruise control is used again, this time
with preemtion (figure 14).

brake

Figure 14. Multiple Transition with Preemption Example

Inertia is implemented on variable m_req. m_req is set to true by transition T2 unless
condition brake becomes true at any time during T2, at which point the transition will
terminate and the variable m_req will not be changed. Since variable m_req has inertia, the
value will remain constant after the transition terminates unless updated by a new transition.

Model 7 is defined next.

7. Mult. Trans. with Negation and Preemption

MTNp dDPQW =
(Adt. (V5.5 < dt = =Q 0 j) A
Vt.
(d < dt) A
(dt < D) A
((VE. (0 <k)A (k< dt)y=-W(E+k) =
(Pt=(Qt(t+dt))) A
(~(Ve.(0 <E)A(k < dt) = -W(t+ k)= (-Q t (¢t + dt))))

10

/’N d<dt ; dt<D Q (t+dt)
~P1 W

Figure 15. Mult. Trans. with Negation and Preemption Model

Model 7 is based on model 2 with preemption added. For model 7, Q is true at time
t+dt if and only if P is true at ¢ and W is false at all times between ¢ and ¢+ dt. Going back
to the conveyor belt example, P is part_at_A, Q is part_at_B_painted_red and the condition
W could represent emergency _power_off. That is, a part will appear at point B painted red
at time ¢t + dt if and only if a part was put at A at time ¢ and the power was not shut off
between ¢ and ¢ + dt. The transition assertions graphical representation is in figure 16.

Paﬂ at At dedt ; dt<D pan at B__palnted red {t+dt)

it w part__at_ B painted_red (tsdt)

emergenoy_powsr_off

Figure 16. Mult. Trans. with Negation and Preemption Example
The last transition model is model 8 defined below.

8. Single Transition with Preemption

STpd D P QW trans =

(V.
PtA transt =
(3dt.
d<dtA
dt < D A
(VEO< kAE<dt= W(t+Ek)) =

Qt (t+dt) A
(VEO < kEAk < dt=trans(t +k)) A
trans(t + dt)) A
(3.
E<t A <=(t+d) AW =
(Vi0 <iAi <=t =>trans(t +1)) A trans(t’ +1)))) A
(Vti. Pti A transti = trans(ti + 1))

11

dedt ; dt<D

Figure 17. Single Transition with Preemption Model

A Model 8 is similar to model 3 with preemption added. As an example of model 8, the
example shown in figure 6 is reproduced in figure 18 with a reset input added.

Push 3
Button ” i start
| await sta

assert Start 2 input N
3 SQRN
N
reset n output SQRN
I |

Figure 18. Single Transition with Preemption Example

If start is activated, the system will calculate the square root of the value N and put the
calculated value on SQRN. Activating start at any time during the transition will have no
effect. If line reset is asserted during the transition, the transition will terminate enabling
a new transition to begin by activating start. When a transition is terminated, the value
of output SQRN will be undifined if the variable SQRN does not have inertia. If inertia is
implemented on SQRN, the value at termination will be the value the variable had before
the transition started.

4 Cruise Control Example

4.1 Description

The example is a motor car cruise control used to maintain constant the speed of the car
during extended motoring. This example was chosen to evaluate the transition assertion
method against the objectives listed in the introduction. The cruise control example was
extracted from reference [10]. In the reference, a method called Extended System Modeling
Language (ESML), based on data flow diagrams, is used for the description of the cruise
control.

For this paper, only the control speed module of the cruise control was used. The control
speed module is represented by a state diagram in the ESML model and is reproduced in
this paper in figure 19. The arcs of the state diagrams represent the transitions between
states. The enabling condition for the transition to occur is shown above the line on the arc

12

label. The action that will take place when the transition occurs is shown under the line.
For example, if the system is in state IDLE and the condition RESUME;(DS;30) becomes
true the system will transition to state MAINTAINING with the action enable maintain
speed taking place.

<T> Trigger
<T> Capture Current Speed <E> Enable
<D> Disable
> IDLE ~
Resume; (DS>30) Maintain; (DS>30) (Increase = ON)_ Brake = OFF
<E> Maintain Speed <T> Capture Current Speed <E> Increase Speed (Brake = OFF)
<E> Maintain Speed
(Brake = ON)
INCREASING <D= increase Speed, | BRAKING
5 ¥
{Increse = OFE{% (Increase = ON)
<D> Increase Speed <D> Maintain Speed
<T> Capture Current Speed <E> Increase Speed
<E> Maintain Speed
(DS <=30) vV V y (Brake = ON)
<D> Maintain Speed MAINTAINING <D> Maintain Speed

Figure 19. Control Speed State Diagram

data Desired Speed _‘]]

control input Maintain

. Capture Current Speed control output

control input |ncrease b Control : Maintain Desired Speed control output
Speed

control input Resume Increase Speed control output

——— ——

control input Brake

Figure 20. Control Speed Module

The control speed module (figure 20) has 4 control inputs, 1 data input and 3 control
outputs. The control lines are operated directly by the driver through a control panel (with
push buttons) and the motor car brake. Pressing the maintain button will cause the speed
to remain constant if the speed is above 30 miles per hour. Pushing the brake will cause
the control to disengage, remembering the set speed. Pressing resume will cause the speed
to change to the previous setting, if there was one, and then held constant. Pressing and
holding increase will cause the speed to gradually increase and then remain constant after
release.

The data input is the captured speed which will be stored in a desired-speed memory
register. This register could be internal or external to the control module depending on the
implementation.

The 3 control outputs activate/deactivate the maintain and increase actuators linked to
the throttle and trigger the capture speed mechanism.

13

4.2 Specification using Transition Assertions

In order to specify the system behaviour using transition assertions, some assumptions had
to be made. Assumptions were necessary because some information cannot be extracted
from the state diagram. For example, the state of the system, when pressing and holding
the increase button and then pressing resume, cannot be determined from the state diagram.
The assumptions were made to produce a system which the author thought was desirable

and safe.

The transition assertion graphical specification is shown in Figure 21:

EEEsEzEsamzEIENSRYEEEEEEEEsEeREmEEEESR,
. -

increase
~pbrake

inc _speed

FE increase

MTNp 4
RE maintain
~brake
~increase MTNp 1 MTpi 2 n_req
¢ ds_reg=cs,
\
|/
MTi 8
brake ~maint_ds
~m_req

ic

m_req
30<ds_reg \\ P4 5

~increase
~brake

MT1 6\ds _reg<= 30

Figure 21. Transition Assertion Specification of Cruise Control

maint ds
~m_req

MTpi 7

RE resume
30<ds_reg
~brake

~increase

The specification uses 9 transitions and one initial condition, represented by the solid
lines, to define the behaviour. The dashed lines in the diagram do not represent transitions
and are used to connect two conditions that may occur simultaneously. The dashed lines

14

do not have any semantical connotation and can be added or deleted without changing the
specification. Transitions 1, 2, 4, 5, and 7 are preempted by the same condition brake. Each
transition corresponds to an assertion and each variable with inertia requires an auxiliary
assertion. The variables with inertia in this example are m_req, ds_reg, and maint_ds. If
two or more transitions with negation update the same variable, an ORing assertion will be
necessary for updating the variable. In this specification the variable cap_cs, capture current
speed, has such property. The predicates FE and RE take a signal and a time and return true
if the signal is a falling edge or rising edge respectively. The definition of RE is given in the
foot note, page 8, and the definition of FE is: FE sigt = (((sig(t—1)) = T)A((sig t) = F))
The corresponding textual specification is given next:

Tl = MTNp d D1 (Xt.(RE maintaint) A (mbraket) A (—increaset))
(At t'.updatel t') (X tp.brake tp)
T2 = MTpi d D2 (At.RE capcst) (At t'.(mreqgt')A((dsreg t') = (cs t)))
(A tp.brake tp) update2
T3 = MTN d D3 (X t.(increase t) A (mbrake t))
(At t.inc_speed t')
T4 = MTNp d D4 (Xt.(FE increase t) A (—brake t))
(At t.updated t') (X tp.brake tp)
T5 = MTpi d D5 ()Xt (moreqt)A (30 < (dsreg t)) A (—increaset) A (mbraket))
(At t'.(maintds t') A (—m_req t')) (A tp.brake tp) updated
T6 = MTi d D6 (At.(mreqt)A((dsregt) <=30)) (At ¢.~mreqt') updated
T7 = MTpi d D7 (X t.(RE resume t) A (30 < (ds_reg t)) A (mbrake t) A (mincreaset))
(A t t'.(—inc_speed t') A (maint_ds t') A (-m._req t'))(\ tp.brake tp) updateT
T8 = MTi d D8 (X t.braket)
(At t'.(—maint_ds t') A (—m_req t')) update8
T9 = MTi d D9 (Xt.(increase t) A (—brake t))(X ¢ t'.~maint_ds t') update9
ic = (—maintds 0) A (-m._req0) A (VY k.(k < (D3 —1)) = (~incspeed k))
maint dsi = VY t.((-updateb t) A (~update? t) A (~update8 t) A (—update9 t)) =
((maint_ds t) = (maint.ds(t — 1)))
m_req_i = V1.((-update2 t) A (—~updateb t) A (~updateb t) A (mupdate t)A
(—update8 t)) = ((mreq t) = (mreq(t — 1)))
ds_reg.i V t.~update2 t|Rightarrow((dsreg t) = (ds_reg(t — 1)))
cap_cs_or V t.(updatel t) V (updated t) = (RE capcs t)
SPECIF = TIANT2AT3ATAANTSAT6ATTATSATI AicAmaint.dsiA

m_reqe A ds_-reg.i A cap_cs

I

As in the graphical representation, there are 9 transitions and an initial conditions as-
sertion. The auxiliary assertions are explicitly shown by 3 inertia assertions and an ORing
assertion for variable cap_cs. The specification is the conjunction of all the assertions as
shown by the last statement.

15

5 Verification

Three top level requirements, to insure safe operation of the system, were formulated to use
in the example. Although many other requirements are also desirable, the 3 chosen were
thought to be representative.

The Verification process is then conducted by constructing a mathematical proof showing
that the specification implies the requirements. The proofs were done with the HOL theorem
prover.

The requirements are informally described as follow:

1. If at any given time the brake is activated, the control will disable the maintain current
speed and increase speed actuators.

2. If the button increase is never pushed, the increase speed actuator will never be en-

abled.

3. If buttons increase, maintain and resume are never pushed, the maintain current speed
actuator will never be enabled.

The higher order logic representation of the requirements are:

1. Rl =V t.(brake t) = 3 t'.(—inc_speed t') A (~maint_ds t')
2. R2 = (V t.(—increase t)) = V t.(-inc_speed t)

3. R3 = (Vi.-RE maintaint)A(Vt.~RE resumet)A(V t.—increaset) = V t.(~maint_ds t)

It was shown, using the HOL theorem prover, that the specification implies each of
these requirements. The first proof, SPECIF = Rl, was not difficult since transition T8
and T3 guarantees this requirement. The second proof was also easily derived. The third
proof, however, was very difficult. Thirty four lemmas were pre-proved and used to show
SPECIF = R3.

The difficulty on the third proof arises from the fact that, contrary to the first two proofs,
it is necessary to show that certain transitions never occur. That is, the preconditions of
the transitions leading to maintain.-ds = true are always false.

In general, proving that a system will not behave in a given way (or that a system will not
enter a given state) is more difficult than proving that a system will act in a predetermined
way. There are two reasons for this: First, it is sufficient to give an example to show that a
system will reach a state, but all possible paths must be examined to show that it will not.
Second, specifications are written to define how the system will perform, rather than how
the system will not perform.

During the proofs, some errors were found in the specification and some changes had to
be made to comply with the requirements. One term was also added to the initial conditions
to comply with one of the requirements.

16

6 Conclusion

The Transition Assertions specification method was successfully used to define a real-time
control system. It was demonstrated that properties of the specification can be mathemat-
ically proven. The level of difficulty of the proofs was high. However, it was found that
many of the lemmas needed for the third proof had similar structures. As the Transition
Assertions theory is expanded, many lemmas can be reused, making the proofs easier and
the method more useful.

One of the problems yet to be addressed is the fact that inconsistent specifications can
be written, especially as the complexity of the system increases. A consistency proof of the
specification appears to be difficult and time consuming at the moment.

Future work on the Transition Assertions method could include executable specifications
to aid in the understanding of the system behaviour. Simulation of specification is incor-
porated in other specification methods and has been implemented for higher order logic in
previous works [2, 3].

7 Acknowledgements

The idea for Transition Assertions are based on Mike Gordon’s work on State Transition
Assertions. Most of the work on Transition Assertions and the proofs for the cruise control
was done at the Cambridge University Computer Laboratory under NASA sponsorship.

References

[1] Rajeev Alur and Thomas A. Henzinger, Logics and Models of Real Time: A Survey, To
appear in the proceedings of the 1991 REX workshop "Real Time: Theory in Practice”
(Springer-Verlag LNCS series).

[2] A.J. Camilleri, Evecuting Behavioral Definitions in Higher Order Logic University of
Cambridge Computer Laboratory, Technical Report No. 140, July 1988.

[3] V.A. Carrefio, Definition and Partial Verification of Data Routing Circuit in Higher
Order Logic, 10 July 1991.

[4] M.J.C. Gordon, A Formal Method for Hard Real-Time Programming.

[5] D. Harel, Statecharts: A Visual Formalism for Complex Systems, Sci. Computer Pro-
gram., vol. 8, pp. 231-274, 1987,

[6] Leslie Lamport, A Temporal Logic of Actions, Technical Report 57, Digital Equipment
Corporation, Systems Research Center, April 1, 1990.

[7] Aloysius K. Mok, Towards Mechanization of Real-Time System Design, (workshop on
foundations of real-time computing, Office of Naval Research, Oct 1990) in Foundation

17

of Real-Time Computing: Formal Specifications and Methods, Andre M. van Tilborg
and Gary M. Koob, editors, Kluwer Academic Publishers, 1991.

(8] B. C. Moszkowski, Zohar Manna, Reasoning in Interval Temporal Logic, Report No.
STAN-CS-83-969, Stanford University, July 1983.

[9] A. Pnueli, Applications of Temporal Logic to the Specification and Verification of Reac-
tive Systems: A Survey of Current Trends, Current Trends in Concurrency (deBakker
et al. eds.) Lecture Notes in Computer Science, Vol. 224, Spring-verlag, Berlin, 1986,
pp 510-584.

[10] C. Ingvar Svensson ESML: An Extended System Modeling Language Based on the Data
Flow Diagram Appendix B, NASA Contract Report 187526, Oct. 1991.

[11] P.A. Zave, A Distributed Alternative to Finite-State-Machine Specification, ACM Trans-
actions on Programming Language Systems, 7, 1 (Jan 1985), 10-36.

18

