Technical Report A

Number 28

Computer Laboratory

Poly report

D.C.]. Matthews

August 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1982 D.C.]. Matthews

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

POLY REPORT

D.C.J. Matthews, August 1982

Computer Laboratory,

P

University of Cambridge

Abstract

Poly was designed to provide a programming system with the same
flexibility as a dynamically typed language but without the run-time
oveheads. The type system, based on that of Russell allows polymorphic
operations to be used to manipulate abstract objects, but with all the
type checking being done at compile-time. Types may be passed explicitly
or by inference as parameters to procedures, and may be returned from
procedures. Overloading of names and generic types can be simulated by
using the general procedure mechanism. Despite the generality of the
language, or perhaps because of it, the type system is very simple,
consisting of only three classes of object. There is an exception
mechanism, similar to that of CLU, and the exceptions raised in a procedure
are considered as part of its 'type'. The construction of abstract objects
and hiding of internal details of the representation come naturally out of
the type system.

Poly Report

1. INTRODUCTION

Poly was designed to provide a programming system with the same
flexibility as a dynamically typed language but without the run-time
oveheads. The type system, based on that of Russell [1, 2] allows
polymorphic operations to be used to manipulate abstract objects, but with
all the type checking being done at compile—time. Types may be passed
explicitly or by inference as parameters to procedures, and may be
returned from procedures. Overloading of names and generic types can be
simulated by using the general procedure mechanism. Despite the generality
of the language, or perhaps because of it, the type system is very simple,
consisting of only three classes of object. There 1is an exception
mechanism, similar to that of CLU {3], and the exceptions raised in a
procedure are considered as part of its 'type'. The construction of
abstract objects and hiding of internal details of the representation come
naturally out of the type system.

1.1 Syntax

The description of the syntax in this report follows the Russell and
Alphard reports in the use of superscripts # o+ * to denote respectively
optional items, repetition with at least one occurrence, and repetition
with possibly no occurrence. Subscript symbols occur as separators between
occurrences of the item. Braces { and } are used as meta-brackets.

For instance

const? <{name> is equivalent to

const <name> | <name)

and

<identifier>t is equivalent to

<identifier> | {identifier>,<identifier>!
{identifier>,<identifier),<identifier> |

Reserved words, shown underlined in this report, may be written in upper,
lower or mixed case. In identifiers the case of letters is significant and
two identifiers are distinct if any of their letters are written in
different cases.

{identifier> ::= <letter> | <letterd><letter or digit>* ' <symbol>*
{letter> ::= albleld!....}z}A!BICID!....!2Z

<digit> ::= 011121314!516)7i819!.

{letter or digit> ::= <letter>|<digit>!

<symbol> :i= +1-1*I/INTHI#ISIBI&!=ICI> 21"

Comments are written by enclosing them in braces ({ and }). Words are
separated by one or more spaces, newlines or comments. The following words
have special meaning and cannot be used as ordinary identifiers.

const
extends
letrec
record

do

if
prefix
then

any
early
inline
proc
type

Poly Report

begin
el se

infix
raise
union

(W]

catch
end
let
raises
while

Poly Report

2. SPECIFICATION CHECKING

Every object in Poly has both a value and a specification. The value is
what is used when the object is used, the specification describes what can
be done with it. There are three main classes of objects; constants,
procedures and types. Exceptions (signals) could be regarded as a fourth
class though they cannot be used in the same way as the other classes.

Constants are simple values which c¢an be manipulated but have no
visible structure of their own. A constant is the implementation of an
abstract object.

Procedures are operations which can manipulate constants, other
procedures or types. They may return objects which may be constants,
procedures or types or they may raise exceptions. A procedure implements
an abstract operation.

Types are simply sets of named objects. They may, like conventional
types, have values belonging to them or they may be simply modules. A type
implements an abstract set of co-operating operations which can together
manipulate objects.

{specification> <constant specification>
<procedure specification>

<type specification>

The specification of an object is checked when it is used in some context,
either as a parameter to a procedure, or when an identifier is declared
with an explicit specification. The object and the context must be of the
same class (constant, procedure or type) and must satisfy the rules for
that class. The rules themselves are given in the following sections.

2.1 Constants

{constant specification> ::= const? <name>

<{name)> ::= <name>$<identifier> | <identifier>

A constant is a simple unstructured value. It has no properties of its
own and can only be manipulated by certain operations. All constants
belong to a named type, which is the set of operations which can correctly
interpret it. New procedures can be written which operate on a constant
but they will always be written using existing operations from the type.

The specification of a constant is T (or const T) where T is some type
name. 1t is then said to have type T. A value with type T can only be used
in a context requiring a value of type T. This rule is similar to the name
equivalence rule for type checking in other languages. Two different type
names are incompatible even if they are derived from the same declaration.

i

Poly Report

e.g. let S,T == integer

creates S and T with all the operations of integer but values of types S
and T cannot be combined with integer values or with each other.

2.2 Procedures

<procedure specification> ::= proc <operator mode>*

{implied argument 1ist>?
<explicit argument list>
<result specification>
{raises <exception 1ist>}#

<implied argument 1list> ::=z [<argument list>]
{explicit argument list> ::= (<argument list)>)

<argument list) {argument specification>?

<argument specification> ::= <identifier 1list> : <(specification)>

{specification>

<operator mode> ::= infix | prefix
]
<exception list> ::=z any ; <identifier>,

Procedures constitute the most complex class of objects. In general a
procedure takes objects as parameters, alters the global state and either
returns a result or raises an exception. The specification of a procedure
contains the specifications of its arguments and of its result. It also
indicates whether the procedure is to be used as an operator, and what
exceptions it may raise.

A procedure may have two argument lists, the explicit arguments and the
implied arguments. The implied arguments must all be types and must be
referred to by the 'explicit arguments., As far as checking the
specification of a procedure in a context is concerned the two argument
lists are considered as one, the only difference comes when the procedure
is called. Only the arguments listed in the explicit argument list need be
given, the ones in the implied argument list will be inferred from the
explicit arguments.

Any arguments which are types may be used in the specifications of
subsequent arguments or in the result. This allows polymorphic procedures.
For instance

proc (t : type end ; t)t

is the specification of a procedure which takes any type together with a
value of that type and returns as result a value of the type. An
alternative representation, using an implied parameter would be

proc [t : type end] (t)t

which would be compatible with the previous specification but when called
only the constant would be supplied.

Poly Report

A procedure matches a given context if corresponding arguments in the
value and the context have the same specifications and the result
specifications are the same. For the specifications to match they must be
the same except that where a specification refers to a preceeding type
name in one argument list the corresponding specification in the other
list must refer to the corresponding name. Apart from this the names of the
arguments are ignored in the matching process. For instance

proc (tt : type end ; x : tt)tt

is the same as the examples above and would match them correctly. The
exception lists have to match in that every exception listed with the
procedure value must appear in the exception 1list of the context. An
exception 1list with the word any is considered being the set of all
possible exceptions, T

2.3 Types

<{type specification> ::= type {(<ident1f1er>)}#
{d{identifier list>: <spe01flcat10n>}
end

A type is a collection of attributes: procedures, constants or types.
Its specification is the list of the names of the attributes, together
with their specifications. The specification'of a type is type (T) x : Ajy
: B; z : C;... end where t, the internal name, represents the type within the
specifications A;B;C... The ordering of the attributes is irrelevant. A type
value matches a context if every attribute in the specification of the
context appears in the specification of the value. In other words,
attributes may be lost from a type value to make it match a context, but if
any required attribute is not present or has the wrong specification then
the value will not match. For instance a type value with specification

type (i) zero: i; succ: proc(i)i end
would match a context with specification
type (i) succ: proc(i)i end

but not the other way round. The type specification of a context can be
regarded as a filter which removes all attributes apart from those listed.

2.4 Coercions

There is one circumstance in which a coercion may be applied when an
expression appears to break the above rules. It is included to allow the
usual syntax of expressions using variables, when a variable is used to
denote its current value. A variable in Poly is a type with two attributes,
both procedures (see sections 5.4 and 5.5). 'assign' gives a new value to
the variable, and 'content' returns its current value. If a type 't' is used
in a context requiring a constant, 't' is replaced by 't$content()' if 't’
has such an attribute. (i.e. the ‘content! procedure of the type is calied
to return the current value).

Poly Report

3. STATEMENTS AND EXPRESSIONS

<expression> ::= <if expression>

{while expression>
<infix expression>
{raise expression>

An expression describes a computation which returns a result and
possibly has side-effects. All expressions in Poly return results. If a
result is not returned explicitly then a value of 'void$empty' is returned.
It is also returned from expressions like the 'while loop' which cannot
return a general value.

3.1 Declarations

{declaration> ::= let <identifier>t {: <specification>}#
== <expression>
i letrec <identifier> {: <specification>}#
== <{expression>

A declaration associates a name with a value. The name can then be used
to represent the value in the block which contains the declarations and
any inner blocks. Declarations can occur in compound expressions or type
constructors. A declaration may contain a specification for the value
bound to the name. This may be necessary to simplify checking when a
complex expression is being bound or when the specification of the name is
not the same as the expression.

Declaring a name in an inner scope will hide an outer declaration of
the name; there is no overloading in Poly. Names may not be declared twice
in the same scope. Names belonging to operations of a type are not
automatically available in a scope where the type is available. The effect
of overloading can often be achieved by overloading.

let and letrec differ in that letrec declares the identifier before the
expression, making it available inside it, while 1let declares the
identifiers afterwards. letrec must therefore be used for declaring
recursive procedures. A declaration has scope from the point of
declaration to the end of the block containing it. An identifier cannot be
referred to before it is declared.

3.2 If Statement and If Expression

<if expression> ;:= if <expression> then <expression>
el se <expression>
if <expression> then <expression>

]
H

The if expression causes an expression to be executed depending on the

Poly Report

value of the "guard" expression. The guard, which must have a result type
of boolean, is evaluated and if it returns "true™ the expression following
the then is executed. If the guard is "false" the expression following the
else is executed. The specifications of the values produced by the then-
part and the else-part must be capable of being converted to a single
specification, that of the result. The second form of the if expression,
without the else-part, may only be used if the then-part returns a value of
void$empty.

The ambiguity in the syntax of nested if expressions is resolved by
requiring that an if-expression without an else-part may not be followed
by else. An else-part is thus paired with the nearest unpaired then.

3.3 Compound Expression

<compound expression> ::= begin
{expression block>
end
! (" <expression block>)

<expression block> ::

{<declaration> | <expression>}§
<catch expression)>
end

<catch expression> ::= catch <expression>

The compound expression is used to introduce new identifiers and to
group expressions together. All the expressions except the last must
return a value of void$empty. The specification of the compound expression
is the specification of the last expression. An empty compound expression
or a compound expression containing only declarations returns void$empty.

The catch expression is used to trap any exceptions which may be raised
in the expressions or declarations in the block. If an exception is raised
within the block and not caught in an inner block, it may be caught at this
level. The expression following the word catch must yield a procedure
whose argument must have type 'string'. Its result must be similar to the
result of the last expression in the compound expression (i.e. they must
both be capable of being converted to a single specification, that of the
result). When an exception is caught the name of the exception is passed as
the parameter to this procedure and the result of the procedure is
returned as the result of the compound expression. If there is no catch
expression or a further exception is raised in the catch expression then
it 1is propagated to the next 1level out where it may be caught or
propagated further.

Poly Report

3.4 Operators

{infix expression> ::= <infix expression> <operator>
<prefix expression>
i <prefix expression>

<prefix expression> ::= <{operator> <(prefix expression>
! <application)

The specification of a procedure can indicate that it is to be used as
a prefix or infix operator. This allows a more convenient notation for
some expressions than the procedure applicétion, but does not affect the
semantics. The precedence rules for operators are simple: All operators of
the same mode (prefix or infix) have the same precedence, prefix operators
being more binding than infix.

" 3.5 Procedure Application

%
<{application> ::= <application> (<expression>,)
| <basic expression)>

<basic expression> ::= <compound expression>

{ <name>

! <manifest>

} <procedure constructor>
| <type constructor>
}‘<union-type>

{ <record type>

A procedure application causes the expression associated with the
routine returned from the expression to be executed. The expressions in
brackets, if any, provide values for the explicit formal parameters of the
routine. The expressions must have specifications which match the
specifications of the formal parameters There must be the same number of
expressions as formal parameters in the explicit parameter 1list. The
specifications of the parameters are matched from left to right, starting
with the implied parameters. Each parameter is tested for a match using
the rules in chapter 2. If it matches then any subsequent use of the formal
parameter is renamed with the matched parameter value. The specification
of the result of a procedure call is the result specification of the
procedure, except that any formal parameters used are renamed with the
actual parameter value. If 'plus' has specification

proc (inttype: type (i) + : proc (i; i)i end;:
X, y: inttype)inttype

and 'a' and 'b' have type integer then it can be correctly used as
plus(integer, a, b).

and the result will have type integer.

Vel

Poly Report

3.6 Names

<name> ::= <identifier> | <named>$<identifier>

A name yields the value given to it by its declaration. Names may be
simple identifiers or a sequence of identifiers separated by the $ symbol.
The first 1identifier must always have been declared in one of the
currently open scopes. Subsequent names must be an attribute of the type
referred to by the previous name, so all but the last must refer to a type.
E.g. if 'atype' has specification

type (a)
X, y: proc(a)a;
z: type (z)
p: proc (z)
end
end

then

atype atypes$x atypes$y atype$z atypes$z$p

are all valid names.

3.7 Manifests

<manifest> ::= <number>
| <single-quoted sequence>
! <double-quoted sequence
<number> ::=z <digit> <alphanumeric>

<{single—-quoted sequence> ::= '<any char>*'

<double-quoted sequence> ::= "<any char>*"

Manifest constants are values which stand for themselves. There are
three forms of manifest, the number and the single and double-quoted
sequences,

0 9999 0x6f83 9xz Y "hello! '\n' '
nn "A message"

are examples of manifests. They can be converted to values of any type by
defining a procedure "convertn" , "convertc" or "converts" to return a
value of the appropriate type. For instance "convertn" for integer is
defined as '

convertn: proc(string)integer raises conversionerror

The compiler will act as though a call to the appropriate routine had
been written and the conversion will be made. Prefixing a manifest with a
type selector causes the compiler to use converte, convertn or converts
from that type.

Poly Report

3.8 Procedure Constructor

<procedure constructor> ::=z
proc <operator mode>
{[<argument 1ist>131¥ (<argument list>)
¢specification>” {raises <exception list)}#
<compound expression>

The prdcedure constructor creates procedure values. If & result
specification is given the expression must return a value which satisfies
it. If the result specification is omitted then the compound expression
must return void$empty. The exceptions which may be raised in the compound
expression must be equal to or a subset of those listed in the raises list.
However omitting the raises 1list is taken to mean that a list should be
made from the exceptions which may be raised in the compound expression.

3.9 Type Constructor

<type constructor> ::= type {(<identifier>)}¥
{<declaration>;} ¥\
{extends <expression>;}#
<{declaration>; end

The type constructor makes a new type by collecting together a set of
declarations. The declarations will usually be of procedures which provide
additional operations to an existing type.

-

The "extends" clause defines an existing type as the basis for the new
type. Any new operations can be written in terms of operations available
on this type. For instance

let newint == typek(int) extends integer;
T " Jlet cube == proc(i: int)int
T (1 int$* "1 int$® i)

end;
declares "newint" to be like integer but with the new operation "cube"
added. Its specification includes all the operations available for integer
together with the new operation, however it is a completely separate type
from integer. Values can be converted between the original type and the
new type by means of two operations, 'up’ and 'down' which are created when
'extends' is used. In this example they have specifications

up: proc (integer)int; down: proc (int)integer

Within the declarations the identifier in parentheses, in this case "int",
represents the type being created.

Existing operations on the base type may be overridden by declaring a
new operation with the same name. If let is used to declare a new operation
then it can be written using the exiéEEEg one since the new operation will
not replace the existing one until the end of the declaration. All the
operations of the base type, together with any newly declared operations,

11

Poly Report
are returned by the type constructor. It is possible to hide operations by

binding the result to a type name with a specification with fewer
operations.

3.10 Union Type

<union type> ::= union ({<identifier>f:<specification>}?)

The union type returns a type which is the union of the specifications
listed. For each identifier x with specification T there are three
operations on the union type. inj x creates a union from a value of
specification T and proj x extracts a value of specification T from the
union. is x is a predicate which is true only if the union was created with
inj_}. proi_x is only valid if is_x is true, otherwise "projectionerror"
will be raised.

For instance the specification of the union created by union(x: S; y: T)
is

type (U)
is x, is_y : proc (U)boolean;
inj x : proc (S)U;:
inj y : proc (T)U;
proj_x : proc (U)S raises projectionerror;
proj_y : proc (U)T raises projectionerror
end

Two different identifiers listed with the same specification (e.g.
union(x,y:T)) create different variants, so proj_y is not allowed on a
union created with inj x.

3.11 Record Type

<record type> ::= record ({<identifier>f:<specification>}€)

The record type returns a type which is the Cartesian product of the
specifications 1listed. The identifiers are declared as fields of the
record and can be used as selecting procedures. The selecting procedures
take a value of the record type as argument and return a value of the field
specification as result. There is also a constructor procedure "constr"
which makes a record out of values with the field specifications. For
instance the record created by record(x: S; y: T); has specification

type (U)
X ¢ proc(U)S;:
y : proc(U)T:
constr : proc(S; T)U
end

Because the fields may have any specification a record may be used to
make types whose basic values are procedures or types. Hence procedure or

~

Poly Report

type variables can be used.

3.12 Raise Statement

<raise expression> ::= raise <identifier>

The raise expression causes the named exception to be raised. This
causes further processing to be halted until the exception is caught.
Working from the raise expression outwards each compound expression 1is
examined until one is found which contains a catch phrase. If the
exception is caught the corresponding procedure 1is executed and
processing continues.

If the exception 1is not caught within the immediately enclosing
procedure and it has not been included in its "raises" 1list then the
program is in error. Otherwise the exception is raised at the point of call
of the procedure, and the exception propagated further.

The raise expression may form part of an expression even though it does

not return a value. For the purpose of specification checking it appears
to have the required specification for the context.

3.13 While Statement

<while expression> ::= while <(expression> do <expression)
™ s

The while expression causes the expression after the do to be executed
repeatedly until the expression, which must have a result type boolean,
returns "false™. The expression is evaluated before the expression and if
it is "false" on entry the expression is never executed. The body of the
while statement must return void$empty. and the while statement itself
returns voidgempty. '

Poly Report

4, STANDARD DECLARATIONS

The chapter describes the declarations that should be provided by the
compiler or standard library for any implementation.

4.1 void

Specification
type (v) empty: v end

The type "void" has only one value, "empty". "empty" is returned as the
result of operations which do not otherwise return a result.

4.2 Boolean

Specification
type (bool)
" true, false: bool;
&, | : proc infix (bool; bool) bool;
: proc prefix (bool) bool;
print: proc{(bool)
end

The type "boolean" is one of the few types which are actually built
into the language. It is required because various constructions in the

language such as if and while expressions use values of specification
"boolean",

4.3 Integer

Specification
type (1)
convertn: proc(string)i raises conversionerror;
+,—-,% : proc infix (i; i) i
raises rangeerror;
div, mod: proc infix (i; i) i
raises divideerror;
suce,pred,neg,abs: proc(i) i raises rangeerror;
=,$>,>=,{=z,>,< : proc(i; i) boolean;
print: proc(i)
end

Integer represents the positive and negative integers. "convertn" is
invoked automatically tc convert a number (i.e. a sequence of letters or
digits beginning with a digit) into an integer wvalue. It raises
"conversionerror" if the characters do not form a valid integer.

T4

Poly Report

4.4 New

Specification

proc [base: type end]l (initialval: base)
type

assign: proc (base);
content: proc ()base
end

"new" 1is a procedure which creates and initialises variables. A
variable in Poly is a type containing a pair of procedures, one of which
(cont) extracts the value currently held, and the other (assign) stores a
new value in it.

4.5 Vector

Specification
proc [base: type end] (size: integer; initial: base)
" proc (index: integer)
" type
assign: proc (base)
content: proc ()base
end
raises subscripterror
raises rangeerror

Vector constructs one dimensional arrays of values which can be indexed
by an integer value. Tha value of index must be in the range from 1 to size
(inclusive) otherwise 'subscripterror' will be raised. The result of
indexing the vector is a variable so that the element can either be read
or updated. All the elements are initialised to the value 'initial' when
the array is constructed. The size of the vector must be at least 1
otherwise rangeerror will be raised.

4.6 Char

Specification
type (c)
print: proc (c);
succ, pred: proc (c)c raises rangeerror;
=, <> : proc (c;c)boolean;
convertc: proc (string)c;
end

The type 'char' represents the characters used to form readable text.

15

Poly Report

4,7 String

Specification
type (str)
sub: proc infix (str; integer)char raises subscripterror;
+ 2 Efég—infix (str; str)str;
=, <> : proc (str; str)boolean;
length: proc (str)integer:
converts: proc (str)str;
print: proc (str);
mk: proc(char)str
end o

String is the type used for arguments to converts, convertn and
converte, and in a catch phrase. A constant of this type is regarded as a
sequence of characters of unspecified length. The 'length' procedure gives
the number of characters in a string, and 'sub' can be used obtain a
particular character. Strings can be concatenated using '+' and compared
using '=' and '<>'.

16

Poly Report

5. REFERENCES

(11

Demers A. and Donahue J. Report on the Programming Language Russell
TR79-371 Department of Computer Science, Cornell University, 1979

{21
Demers A. and Donahue J. Revised Report on Russell
TR 79-389 Department of Computer Science, Cornell University, 1979

(31
Liskov B. et al. CLU Reference Manual
Lecture Notes in Computer Science No. 114, Springer-Verlag, 1981

17

