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Abstract

We present sound, (weakly) complete and cut-free tableau systems for the propositional
normal modal logics $4.3, S4.3.1 and S4.14. When the modality O is given a temporal
interpretation, these logics respectively model time as a linear dense sequence of points; as
a linear discrete sequence of points; and as a branching tree where each branch is a linear
discrete sequence of points.

Although cut-free, the last two systems do not possess the subformula property. But for
any given finite set of formulae X the “superformulae” involved are always bounded by a
finite set of formulae X} depending only on X and the logic L. Thus each system gives a
nondeterminsitic decision procedure for the logic in question. The completeness proofs yield
deterministic decision procedures for each logic because each proof is constructive.

Each tableau system has a cut-free sequent analogue proving that Gentzen’s cut-elimination
theorem holds for these logics. The techniques are due to Hintikka and Rautenberg.
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1 Introduction

The Diodorean modal logics S4.3 and S4.3.1 have received much attention in the literature
because of their interpretation as logics of dense and discrete linear time [1]. The logics S4
and S4.14 can be given interpretations as logics of dense and discrete branching time. Using
a technique due to Hintikka and Rautenberg we obtain sound and complete cut-free tableau
systems for each logic. In so doing, we have to forsake the subformula property but, nevertheless,
the tableau calculi give nondeterministic decision procedures for determining theoremhood.
Furthermore, each tableau completeness proof is constructive and gives a deterministic decision
procedure for the logic concerned. FEach (cut-free) tableau system has a (cut-free) sequent
analogue thereby proving that Gentzen’s cut-elimination theorem holds for each logic. The
resulting tableau systems are of interest from a theorem proving perspective since they are
directly implementable in Prolog using a technique due to Fitting [5].

1.1 Preliminaries

The logics S4.3, S4.3.1 and S4.14 are all normal extensions of S4 and are axiomatised by taking
the rule of necessitation and modus ponens as inference rules, and by taking the appropriate
formulae from Figure 1 as axiom schemas. Their respective axiomatisations are: S4 is K'T'4;
S4.3 is KT43; S4.3.1 is KT43Dwm; and S4.14 is KT4Zbr.

As usual, a Kripke frame is a pair (W, R) where W is a non-empty set (of possible worlds) and
R is a binary relation on W. A Kripke model is a triple (W, R, V) where V is a mapping from
primitive propositions to sets of worlds. Informally, if (W, R) is a frame where R is transitive,
then a cluster C is a maximal subset of W such that for all distinct worlds w and w' in C' we
have wRw' and w'Rw. A cluster is degenerate if it is a single irreflexive world, otherwise it
is nondegenerate. A nondegenerate cluster is proper if it consists of two or more worlds.
A nondegenerate cluster is simple if it consists of a single reflexive world. Note that in a
nondegenerate cluster, R is reflexive, transitive and symmetric. For an introduction to Kripke
frames, Kripke models and the notion of clusters see Goldblatt [6] or Hughes and Cresswell [8].

We write 7 A to denote that A is a theorem of logic L. Given a model (W, R,V) we write
w |= A to mean that w assigns “true” to A under the valuation V. A formula 4 is valid in a
model (W, R, V) iff it is true in every world. A formula A is valid in a frame (W, R), written
as (W, R) = A, iff it is valid in all models based on that frame. Given a class of frames C, logic
L is sound with respect to C if for all frames F € C and all formulae A we have I, A implies
F |= A. Logic L is complete with respect to C if for all frames F € C and all formulae 4 we
have F |= A implies F;, A. A logic L is characterised by a class of frames C iff L is sound and

Axiom Axiom Alternative
Name Schema Names
K 0(A= B) = (0A = 0OB)
T |O0A=4 M [10]
4 OA = O0A
3 O(0A = B) VO(OB = A) H [3], HY [9],Lem [13]
Dum | O(O(A = DA) = A) = (OOA = 0A) | Dum, [13],M1 [7], M14 [18]
Zbr | O(0(4A = 0OA4) = A) = (O00A = OA)

Figure 1: Axiom names and alternative names.




| L | L-frame |
S4 | finite, transitive tree of finite nondegenerate clusters [10]

S4.3 | finite, reflexive, transitive sequence of finite nondegenerate clusters [8]
S4.3.1 | finite, reflexive, transitive sequence of finite nondegenerate clusters with
no proper non-final clusters [8]

S4.14 | finite, reflexive, transitive tree of finite nondegenerate clusters with
no proper non-final clusters [18]

Figure 2: Definition of L-frames.

complete with respect to C. The logics we study are known to be characterised by the classes
of finite frames ascribed to them in Figure 2. We therefore define a frame to be an L-frame if
it meets the appropriate criteria from Figure 2.

It can be shown that
(I,)F A Faus A

where 7 is either the set of real numbers or the set of rational numbers and < is the usual
ordering on numbers [6, page57]. Consequently, between any two points there is always a third
and S4.3 is said to model linear dense time. It can be shown that

(@, <) A Fsazy A

where w is the set of natural numbers [6]. Hence, between any two points there is always a
finite number (possibly none) of other points and S4.3.1 is said to model linear discrete time.
The correspondence between (Z,<) and S4.3-frames, and between (w, <) and S4.3.1-frames
can be obtained by bulldozing proper clusters and defining an appropriate mapping called a
p-morphism [6] [8].

It can be shown that S4 is also characterised by the class of all reflexive transitive (and possibly
infinite) trees [8, page 120]. That is, by bulldozing each proper cluster of an S4-frame we can
obtain an infinite dense sequence so that S4 is the logic that models branching dense time.
The axiomatic system S4.14 is proposed by Zeman [18, page 249] as the temporal logic for
branching discrete time. The name S4.14 is due to Zeman.

Therefore, the logics S4, S4.3, S4.3.1 and S4.14 cover the four possible combinations of dis-
creteness and density paired with linearity and branching.

2 Modal Tableau Systems

The most popular tableau formulation is due to Smullyan as expounded by Fitting [4]. Following
Rautenberg [10, 11], we use a slightly different formulation where formulae are carried from
one tableau node to its child because the direct correspondence between sequent systems and
tableau systems is easier to see using this formulation. We use a denumerable set of primitive
propositions P and a constant false proposition 0. To minimise the number of rules, we work
with primitive notation, taking O, - and A as primitives and defining all other connectives from
these. All our tableau systems work with finite sets of formulae.
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Figure 3: Tableau rules for €54

We use the following notational conventions:

p, ¢ denote primitive (atomic) propositions from P;

P,Q, Q; and P; denote (well formed) formulae;

X,Y, Z denote finite (possibly empty) sets of (well formed) formulae;
XY stands for X UY and X; P stands for X U {P};

0OX stands for {OP | P € X};

-0X stands for {~OP | P € X}.

A tableau rule consists of a numerator above the line and a list of denominators (below
the line). The denominators are separated by vertical bars. The numerator is a finite set of
formulae and so is each denominator. We use the terms numerator and denominator rather
than premiss and conclusion to avoid confusion with the sequent terminology. Each tableau
rule is read downwards as “if the numerator is satisfiable, then so is one of the denominators”.
A tableau calculus CL is a finite collection of tableau rules identified with the set of its rule
names.

Following Rautenberg [10], a CL-tableau for X is a finite tree 7 with root X whose nodes
carry finite formula sets stepwise constructed by the rules of CL according to:

- if a rule with n denominators is applied to a node then that node has n successors with
the proviso that
- if a node E carries a set Y and Y has already appeared on the branch from the root to
E then F is an end node of 7.
A tableau is closed if all its end nodes carry {0}. A set X is CL-consistent if no closed
C L-tableau for X exists.

Figure 3 shows a common tableau system for S4. Figure 4 shows the rules we need for 54.3,
S4.3.1 and S4.14. Figure 5 shows the sequent analogues of each rule. The only structural
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where Y = {P,,---, P} and ¥; =Y \ {£;}
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where

Y:{Qla""Qk};

Y, =Y \{Q;}

§; = U; 0X;-0Y;; 0-0Q);
Sp4s = 0X;-Q;; 0(Q; = 0Q;); ~0Y;

for1<j<k

Figure 4: Tableau rules (54.14), (54.3) and (54.3.1).




rule is (#) and, in particular, there are no contraction or cut rules. When formulated using
sets rather than multisets, tableau systems include an implicit rule of contraction since the
set X; P; P is the same as the set X; P. We believe that contraction is eliminable from our
systems provided the (T) rule contains a form of contraction on OP where OP is carried from
the numerator into the denominator. We return to this point later.

The logical rules are categorised into two sorts, static rules or transitional rules, as follows:

Static Rules Transitional Rules

(0), (=), () (V), (T)) (54), (54.3), (§4.3.1), (54.14)

The tableau method is a search for a counter model. The intuition behind this sorting is that
in the static rules, the numerator and denominator represent the same world, whereas in the
transitional rules, the numerator and denominator represent different worlds.

The tableau calculi CS4, C54.3, C54.3.1 and CS4.14 are respectively the calculi for the logics
S4, S4.3, S4.3.1 and S4.14 as shown below:

CL Static Rules Transitional Rules Structural Rules
CS4  (0),(), (A),(V),(T) (54) (9)
CS54.3  (0),(),(A),(V),(T) (54.3) (9)
CS54.3.1 (O)a(_')a(A)>(V)7(T) (‘94)’(54'3'1) (0)
C54.14 (0)7(_')7(/\),(\/)’(T) (54),(54'14) (0)

Note that CS54.3 does not contain the rule (54) and that CS54.3.1 does not contain the rule
(54.3) but does contain the rule (54).

The subformula property for tableau systems in primitive notation is slightly different than
that for sequent systems where the left side and right side of the sequent arrow respectively
act as signs representing “true” and “false”. In fact, Fitting makes these signs explicit in his
signed tableau [4]. In our tableau systems, the formulae from the right side of the sequent
' — A appear with an extra negation sign in the tableau node carrying I' U ~A. Hence the
“subformulae” we need to consider in our tableaux must contain the negated versions of the
sequent subformulae. The following definitions cater for this change. For any finite set X :

- let Sf (X) denote the set of all subformulae of all formulae in X ;

- let =5f (X) denote {~P | P € Sf (X)};

- let X denote the set Sf (X)U ~Sf (X) U {0};

- let O(X = 0X) denote the set {O(P = OP) | P € X}

- let X5y = Xhaa=X;

- let X531 = X541 = Sf(D(X = DX))
Thus, a tableau system C L has the subformula property if X7 = X. The tableau systems C.54.3.1
and CS§4.14 do not have the subformula property, but given some finite X, the set X} is always

bounded, so that the “superformulae” that may appear in a tableau node are bounded. We call
this an analytical superformula property and formalise this with the following lemma.




Lemma 1 (Rautenberg) If there is a closed CL tableau for X then there is a closed CL
tableau for X with all nodes in the finite set X7.

Proof: Obvious from the fact that all rules for CL operate with subsets of X7 only. .

A set X is closed with respect to a tableau rule if, whenever (an instantiation of) the
numerator of the rule is in X, so is (a corresponding instantiation of) at least one of the
denominators of the rule. A set X is CL-saturated if it is CL-consistent and closed with
respect to the static rules of CL. That is, with respect to each of (0), (=), (A),(V), and ().

Lemma 2 For each CL-consistent X there is an effective procedure to construct some finite
CL-saturated X* with X C X* C X7.

Proof: Since X is CL-consistent, we know that no CL-tableau for X closes and hence that
the (0) rule is not applicable. So any (static) rule we apply is guaranteed to give at least
one CL-consistent set and we can form a sequence of C L-consistent sets Xo = X, Xy, Xop,+ -+ If
applying some rule to X; gives a previous member of the sequence then we backtrack and choose
a different rule to apply to X;. For (V) we first decide which denominator is C L-consistent and
choose the corresponding denominator as the next set in the sequence. This procedure will
terminate with some final X,, either because all rule applications lead to a cycle or because
no rule is applicable to X,,. Put X* = X, UX; UX,U - UX, giving a C L-saturated set X*,
Since each rule carries subsets of X} to subsets of X} and we start with X C X7 we have
XCX*CX;. o

A model (W, R,V) is an L-model iff (W, R) is an L-frame. A formula A is L-valid iff it is true
in every world of every L-model. An L-model (W, R,V) is an L-model for a finite set X iff
there exists some wy, € W such that VA € X,wy = A. A set X is L-satisfiable iff there is an
L-model for X.

The following definition from Rautenberg [10] is central for the model constructions. A model
graph for some finite fixed set of formulae X is a finite L-frame (W, R) such that all w € W
are C L-saturated sets with w C X7 and

(i) X C wy for some wy € W;
(ii) if -OP € w then there exists some w' € W with wRw' and ~P € w';

(iii) if wRw' and OP € w then P € w'.

Lemma 3 (Rautenberg) If (W, R) is a model graph for X then there exists an L-model for
X.

Proof: For every p € P, let 9(p) = {w € W | p € w}. Using simultaneous induction on the
degree of A € w it is easy to show that (a) A € w implies w |= A and (b) =A € w implies
w = A. By (a), wo | X hence (W, R,¥) is an L-model for X [10]. .

This model graph construction is similar to the subordinate frames construction of Hughes and
Cresswell [8] except that Hughes and Cresswell use maximal consistent sets and do not consider
cycles, giving infinite models rather than finite models.




3 Soundness of CL

A formula —=OP is called an eventuality since it entails that eventually =P must hold. A set
w is said to fulfill an eventuality ~OP when -P € w. A sequence w; < wy < +++ < Wy, of sets
is said to fulfill an eventuality -OP when —P € w; for some w; in the sequence.

Theorem 1 The CL rules are sound with respect to L-frames.

For each rule in CL we have to show that if the numerator of the rule is L-satisfiable then so is
at least one of the denominators. The only interesting cases are the proofs for the modal rules.

Proof for (T'): Follows from the fact that all L-models are reflexive.

Proof for (§4): This follows from the semantics for ~OP as “eventually there is a world where
P is false”; from the guaranteed seriality of R for S4-models by the reflexivity of R; and from
the transitivity of R for S4-models. The (54) rule can be seen as a “jump” to the world where
~ P eventually becomes true [4]. The same argument shows that (54) is sound for S4.3.1-frames

and for S4.14-frames.

Proof for (54.3): The (54.3) rule is based on a consequence of the characteristic S4.3 axiom
3. Adding 3 to S4 gives a weakly-connected R for S4.3 so that eventualities can be weakly-
ordered. If there are k eventualities, one of them must be fulfilled first. The (54.3) rule can
be seen as a disjunctive choice between which one of the k eventualities is fulfilled first and an
appropriate “jump” to the corresponding world.

An axiomatic argument is that the following is a theorem of S4.3 [18, page 232-233]:
—0OP A-0Q = O(=O0P A Q) V O(=OQ A -P).

The soundness of the (94.3) rule follows from a generalised version of this last S43-theorem
containing k formulae of the form -OP; ---~0OP; [18, pages 236-238].

Proof for (54.3.1): By the law of the excluded middle, O-0OP V -0-0P is L-valid. So each
eventuality is either an invariant O=OP or there is a point in the future where -0O-0OP (that
is, ©OP) becomes true. In the latter case, the truth value of P eventually settles down to
“true”. The notion of “unique predecessor” is well-defined in S4.3.1-frames and the unique
world immediately preceding this point satisfies O(P = OP) A =P. But if there is more than
one eventuality in the numerator, then any of these may settle down first and the (54.3.1) rule
must cater to these orderings in the same way as did the (54.3) rule.

That is, the S; denominators “assume” that —~OP is an invariant by lifting it to O-OP. The
Si4s denominators make the opposite assumption that O-OP is false; that is, that OOP is
true. But we cannot simply “lift” =OP to ~O~0OP for then the (54.3.1) rule would no longer
be analytic as the eventuality =OP would spawn the eventuality -O0-0OF which could then
spawn another eventuality ~O-0-0P and so on.

Proof for (§4.14): By the law of the excluded middle, $0O-0OP V -O0O=0P is L-valid. That
is, either there is some branch on which the value of P never settles to “true”, or the value of P
settles to “true” down every branch. In the latter case, the unique parent of this node satisfies
a(P = OP)A-P. ‘ o




The (54.3.1) and (54.14) rules can also be motivated by rewriting Dum as

-0OP = &(O(P = dP) A=-P) Vv O-0OP

and rewriting Zbr as
-0A4 = CO0-0A4V O(O(A = OA) A -A)

For example, the left fork of the (54.14) rule is a jump to the world where O-0A eventually
- becomes true and the right fork is a jump to the world where O(A = 0OA) A - A eventually

becomes true.

4 Completeness of CL

Theorem 2 If X is a finite set of formulae and X is CL-consistent then there is an L-model
for X on a finite L-frame (W, R).

Proof for C.S4: The construction of the model graph is due to Rautenberg [10] where < denotes
the immediate successor relation. By Lemma 2 (page 7) we can construct some CS4-saturated
X* = wo with X C wy € X¥%,. If no 0P occurs in wy then ({wo},{(wo, wo)}) is the desired
model graph since it is an S4-frame and (i)-(iii) are satisfied. Otherwise, let Q1, @3, Qn be
all the formulae such that =0Q; € wy and —Q; & wo.

Let w' = {P|OP € w,}. Since Ow' C wy, we know that Ow' U {~0Q;} is C.54-consistent by (6);
hence so is each X; = Ow’ U {=Q;}, i =1,---,m by (54).

For each X; we can find some CS4-saturated v; with X; C v; C X%, by Lemma 2. Put wy < v;,
i=1,--+,m and call v; the ();-successor of wy. These are the immediate successors of wy. Now
repeat the construction with each v; thus obtaining the nodes of level 2 and so on.

In general, the above construction of (W, <) runs ad infinitum. However, since w € W implies
w C X}%,, a sequence wy < wy < - in (W, <) either terminates, or a node repeats. If in the
latter case n > m are minimal with w,, = w,, we stop the construction and identify w, and w,,
in (W, <) thus obtaining a circle instead of an infinite path. One readily confirms that (W, R)
is a model graph for X where R is the reflexive and transitive closure of < . It is obvious that
clusters in (W, R) form a tree.

Now (W, R) is an S4-model graph for X so by Lemma 3 (page 7), there exists an S4-model
(W, R, ) which is an S4-model for X where 9 :p— {w € W | p € w}.

Note that, when creating successors for some wy,, the proof for €54 still goes through if we let
Q1,Q2, Q@ be all the formulae such that =0¢); € w,, thus creating unnecessary successors
for the eventualities fulfilled by w, itself. The proof given above creates a smaller model since
we pre-empt the reflexivity of R. o

Proof sketch for €54.3: The completeness proof of C.54.3 is similar to the completeness proof
for CS4. The differences are that only one sequence is constructed, and that in doing so, the
(54.3) rule is used instead of the (54) rule. Note that the ($54.3) rule guarantees only that
at least one eventuality gives a C.§4.3-consistent successor whereas (54) guarantees that every
eventuality gives a CS4-consistent successor. The basic idea is to follow one sequence, always
attempting to choose a successor new to the sequence. Sooner or later, no such successor will




be possible giving a sequence § = wg < Wy < Wz < 0 < Wy < Wypr < 00 = Wy < Wiy
containing a cycle C = Wy, < Wyt < ++* < W1 < Wy Which we write pictorially as

S=wyg < w < Wy <+ < Wy, < Wyt < Wp_1.

The cycle C fulfills at least one of the eventualities in w,_;, namely the -0Q) that gave the
duplicated Q-successor wy, of w,_;. But C' may not fulfill all the eventualities in w,_1.

Let Y = {P |-0OP € w,_; and P € w;, m < j < n—1}, so that ~OY is the set of eventualities
in w,_; that remain unfulfilled by C. Let w' = {P |OP € w,_1}. Since (Aw'; ~0Y) C wy_; is
C54.3-consistent by (8), so is at least one of

X; =0w' U{-P}u-0Y;, forj=1,---,k

by (54.3). As before, choose the C$4.3-consistent X; that gives a S4.3-saturated P;-successor
for w,,_; which is new to S to sprout a continuation of the sequence, thus escaping out of the
cycle. If no such new successor is possible then choose the successor wy, that appears earliest
in . This successor must precede wp,, as otherwise, C would already fulfill the eventuality that
gives this successor. That is, we can extend C by putting w,_; < wy. Recomputing Y using
m/ instead of m must decrease the size of Y since w,_; has remained fixed. Repeating this
procedure will eventually lead either to an empty Y or to a new successor. In the latter case
we carry on the construction of §. In the former case we form a final cycle that fulfills all the

eventualities of w,_; and stop.

Sooner or later we must run out of new successors since X%, 5 is finite and so only the former
case is available to us. Let R be the reflexive and transitive closure of < so that the overlapping
clusters of < become maximal disjoint clusters of R. It should be clear that (W, R) is a linear
order of maximal, disjoint clusters that satisfies properties (i)-(iii), and hence that (W, R) is a
model-graph for X.

Note that thinning seems essential. That is we have to exclude the eventualities that are already
fulfilled by the current cycle C in order to escape out of the cycle that they cause. We return

to this point later. o

Proof Sketch for €.54.3.1: If w, contains no eventualities then ({wo}, {(wo, we)}) is the desired
model graph. Otherwise, let the current sequence be § = wy with n = 0 in the steps below. In
general, w, always denotes the last node in § = wo < wy < +++ < Wp_1 < Wy,

Step 0: Let Y, = {-0OP € w, |-P ¢ w, and O-0P ¢ w,}. These are the unfulfilled and
non-invariant eventualities of w,. If Y,, is empty then go to Step 2, otherwise do Step 1.

Step 1: Let w' = {Q |0Q € w,}. Assuming that Y, is not empty, we know that Ow' UY, is
€54.3.1-consistent by (). Hence there is a successor due to (54.3.1) for some -0OP €Y,.

If the successor is due to one of the denominators Sy, -+, Sy then call it w/, and replace w, by
w!, giving § = wo < wy < +++ < Wy < w), and return to Step 0 with n unchanged.

Else, the successor is due to one of the denominators Syt1,- -+, Sp4x so call it w, 1y and put
Wy < Wpy1 GiVing § = wg < Wy <+ < Wpoy < Wy < Wyyy. Increment n and go to Step 0; that
is, Wy 41 is now the last node of S.

Now, -OP € Y, and w/, contains O-0OP. Furthermore, no member of S contains O~0OP since
that implies 0~0OP € w, which in turn implies ~OP ¢ Y;,. Hence wj, is new to S. But note that
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w, C w/, since the denominators Sy, - -+ Sy of the (§4.3.1) rule merely lift some ~OP to O-0OP
and we regain ~0OP by (T'), so we lose no formulae of wy,.

Alternatively, the successor w,4; contains O(P => OP) and —P for some eventuality ~0.P of Y},.
Suppose w41 duplicated some existing node of 5. Then w, would contain (P = OP) by (T)
because both (S4) and (54.3.1) preserve O-formulae. But (P = OP) is just abbreviation for
~(P A-OP), hence by (V), w, contains ~P or ~=0OP. Since =OP € Y,, the first is impossible.
And the second contradicts the C.94.3.1-consistency of w, since ~OP € w,. Thus, w,4; must
be new to §.

Step 2: We know that ¥, = {-0OP € w, |[-P ¢ w, and O-0OP ¢ w,} is empty. That is, for
each ~OP € w,, we have =P € w,, or 0-0P € w,.

If ~OP € w, implies ~P € w, for all eventualities in w, then we are done. Otherwise, let
7 ={~0P € w, |-P ¢ w, and O-0P € w,}. These are the unfulfilled eventualities of w,. By
() and (S4) each eventuality in Z has a C54.3.1-consistent successor. Choose any successor
Wp41 that is new to S and put w, < Wy4y. Since OZ C wy, by definition of Z, the unfulfilled
eventualities of w, are carried into wy41; that is, Z C w,41. Increment n, and go to Step 0.

If no new successor is possible then choose the successor w, appearing earliest in § and put
w, < W, to give a final cycle that fulfills all the eventualities of w, and stop.

Sooner or later, we must run out of new successors since X§, 5, is finite, or encounter a node
w, that fulfills all its own eventualities. Let R be the reflexive and transitive closure of < to
give an S4.3.1-frame (W, R).

Again, (6) seems essential because we have to ignore some of the eventualities of w, in selecting
Y,,; namely the eventualities ~0OP with O-0P € w, or =P € wy. )

Proof for CS54.14: Let wy 2 X be CS4.14-saturated, wy C X%, 4. Construct a model graph
from w, using the method for C.$4 except for one additional step. In general, when a @;-successor
is created for ~0Q; € w (with ~Q; ¢ w) based on the (54) rule and where w’ = {P |OP € w},
the additional rule (54.14) means that

(a) Ow' U {0-0Q;} is C54.14-consistent or

(b) Ow' U{0(Q; = 0Q;),~Q;} is C54.14-consistent.

So each node can have a Q;-successor due to (94) and at least one ;-successor due to (54.14).
Note that the (54.14) rule denominators are not mutually exclusive so they can both be S4.14-
consistent at the same time.

The construction still gives a preorder over < as for C54 and each branch either terminates, or
gives a cycle due to the finiteness of X%, 4 by choosing the minimum ¢ and j such that w; = wy,
J > ¢ and putting w;_; < w;.

As for CS4 let R be the reflexive and transitive closure of < giving a finite model graph F =
(W, R) whose clusters form a tree. The graph may not be an S4.14-frame because S4.14-frames
must not contain non-final proper clusters and this is not guaranteed of the graph (W, R).
We claim that all non-final proper clusters can be eliminated from F whilst still preserving
properties (i)-(iii) giving a model graph F'.
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To see this first note that F is a finite tree where each branch is a sequence of nondegenerate
clusters of R. Suppose C = wyRwyRwsR -+ - Rw, Rw;, n > 2, is some arbitrary non-final proper
cluster on some arbitrary branch in F. Since each w; is a member of a non-final cluster, each w;
must contain at least one (originally unfulfilled) eventuality. Consider some such ~OP € wy,.
By (54.14), w, has a successor w' that contains {O0-0OP} or {O(P = OP),~P}.

If w' contains {C1~OP} then, regardless of whether w’ occurs in C or after C, all worlds in some
final cluster C; reachable from C must contain O-~OP and hence must contain =OP by (7).
Since C; is a final cluster, there must be some world in C; that fulfills ~OP.

If w' contains {O(P = OP),-P} then w’' must occur strictly after w,. For otherwise, by the
transitivity of R we would have O(P = OP) € w, and hence (P = OP) € w, by (7). But
(P = OP) is just abbreviation for =P V OP hence we would have =P € w, or OP € w, by
(V). The former is impossible since we create a successor for =0O.P only if =P ¢ w,. And the
latter contradicts our supposition that -OP € w,.

Thus we can liberate w, from C without breaking properties (ii) and (iii) giving two consecutive
nondegenerate clusters ¢! = w;RwyR -+« Rw,_1Rw; and C,, = w, Rw, so that C, is simple.
Applying the same arguments to C' allows us to liberate w,_;, and so on, giving a linear
sequence of simple clusters C;RC,R - - RC), where C; = w; Rw;.

As C was any non-final proper cluster, this can be done for all non-final proper clusters giving
some final ' = (W, R') that is also a model graph where R’ is the altered reachability relation.
But F' is now an S4.14-frame since it contains no non-final proper clusters.

Property (i) still holds because we have not removed any elements of W hence X C wo C W.
Property (iii) holds because we have not added any extra tuples to R, only removed some. So
if it held before the pruning process, it must hold after it. And property (ii) holds because of
the argument above. Since properties (i)-(iii) still hold, F' is also a model graph for X.

Note that the proof does not stipulate any particular ordering for C' = w, R - -+ Rw, Rw;. That
is, C' can be flattened into an arbitrary sequence of its constituent worlds and consequently, the
proof is constructive. o

5 Decision Procedures for L

Since each X is finite, there are a finite number of CL-tableau for any given finite X. If any
one of them closes then X has no L-model by the soundness of CL. If no CL-tableau closes
then we can construct a finite L-model for X via the completeness proof. Therefore, each CL
is a highly nondeterministic decision procedure for each L.

There is, however, a completely different deterministic decision procedure for L in the CL
completeness proof since each completeness proof is constructive, and hence is an effective L-
satisfiability test. That is, it is a (deterministic) procedure which uses CL-saturated sets to
construct a finite L-model for some finite set X. The deterministic decision procedure described
above is the basis of most decision procedures for temporal logics as exemplified by those of

Wolper [17].

12




6 Sequent Systems

Figure 5 shows the sequent analogues of each of our tableau rules. Each (cut-free) tableau
system therefore has a (cut-free) sequent analogue defining a finitary provability relation Fp for
each axiomatically formulated logic L. Consequently, any tableau proof can be converted into
a sequent proof which can be read downwards to obtain an axiomatic proof. In particular we
have the following theorem.

Theorem 3 Gentzen’s cut-elimination theorem holds for S4.3, S4.3.1 and S4.14.

From now on, we speak of CL as a tableau or sequent system depending on the point we wish
to stress.

7 Eliminating Thinning

The structural rule (8) corresponds to the sequent rule of weakening which explicitly enforces
monotonicity. From a theorem proving perspective, () introduces a form of nondeterminism
into each CL since we have to guess which formula are really necessary for a proof. It is therefore
desirable to eliminate (#). There are two places where we resort to applications of (¢) in our
completeness proofs. We consider each in turn.

In all the completeness proofs we avoid creating a successor for ~0Q € w if =@ € w, thus
using () to pre-empt reflexivity of R. This is not an essential application of (#) in C54 and
CS4.14 because a consistent successor also exists for these eventualities, it is just that we are
not interested in these successors.

The only other applications of () in CS4 and CS$4.14 are the ones used to eliminate all non-
boxed formulae prior to an application of a transitional rule. The crucial point is that we know
exactly which formulae to throw away: namely, the non-boxed ones. Consequently, (8) can
be eliminated by building thinning in a deterministic way into the transitional rules (54) and

(54.14). For example, we can change

L__]X; -0OpP
DX, -P

X;—IDP

with X’ = {0Q |0Q € X} and simultaneously changing the basic axiomatic tableau rule from

. ._|P . P. -
0 & to () 2T

see Fitting [4].

In terms of sequent systems this just says that a given proof of I' — A in CL can be converted
into a proof of ' — A in CL' either by moving applications of weakening into the (new)
axiomatic leaf sequents, or into the (new) transitional rules (in a deterministic way).
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or — <04 or, 0(A = 04) — A

5T S o4 (-+D:S4.14)
S1 S S,

ar — 04, -, 04, (= BS548)

where for 1<i<k
Y:{Aly"'7Ak}
Y=Y\ {4}
Si:DI‘__)Ais D_Y;

Si S ot S S Sws o Swo (g1

Ea ol — DAl;"',DAka A

wherefor 1<i<k
Y:{Al,"',Ak}
Y=Y\ {4}
S; =%, aI' — ©04;, 0Y, A

Sk =0T, D(Ai = DA{) — A, D?;

Figure 5: Sequent analogues of tableau rules (54.14), (54.3) and (54.3.1).
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However, () appears essential for S4.3 and S4.8.1. First, note that the (54.3) rule can simulate
the (54) rule by thinning Y in Figure 4 (page 5) to be a singleton. Second, note that the (54.3)
rule is not a rule of C.54.3.1; however, it is not derivable in C.54.3.1 either. The (54.3) rule is
odd in that more than one eventuality plays an active role in any one rule application. That
is, if {~OP,,-.,~0P,} are all the eventualities in the current tableau proof node, then by
appropriate uses of () we may choose Y in Figure 4 (page 5) to be any non-empty subset of

{Pl""’Pm}'

In the counter-model construction for C94.3, we may reach a stage where all C54.3-consistent
successors already appear in § but no such cycle fulfills all the eventualities of the last node.
At this stage it is essential to invoke applications of (f) on subsets of the eventualities. That
is, we must be able to ignore some of the eventualities in w,_; using (8) and this means that
(0) is now an essential rule of C54.3.

Similarly, in the completeness proof of C$4.3.1, it is essential to ignore -OP if =P € w or if
O-0P € w in order to guarantee that the ensuing successor is new to the sequence, and again
thinning seems essential.

It may be possible to eliminate thinning by using cleverer completeness proofs. For example, an
alternate proof for C54.3 may be possible by considering all (54.3)-successors for every node,
giving a tree of nondegenerate clusters, and then showing that any two worlds in this tree can
be ordered as is done by Hughes and Cresswell [8, page 30-31]. Note however that this seems to
require a cut rule since Hughes and Cresswell use maximal consistent sets rather than saturated

sets as we do.

Clearly the intuitions inherent in our semantic methods are no longer enough to prove that
weakening is eliminable. We have obtained a syntactic proof of elimination of weakening in the
sequent system corresponding to C.54.3' but this is beyond the scope of this article.

8 Eliminating Contraction

When formulated using sets, the rule of contraction
X;P
X;P;P
is hidden in the notation since the sets X; P and X; P; P are the same. Some of the tableau
rules we have given are not standard; for example, the (T') rule is usually given as:

X;aprP
X;P

where OP is not carried from the numerator into the denominator [10]. It is well known that
the rule of contraction, which is implicit in the set formulation, then becomes essential for
completeness. It is also well known that although contraction becomes essential, it is required
only for O-formulae in most normal modal logics, and on both O-formulae and <O-formulae
in some symmetric normal modal logics [5]. We have deliberately built contraction into our
rules to highlight this fact. We believe that if we interpret “;” as multiset union, and rework
our formulation using multisets instead of sets, then all the proofs will still go through with
appropriate modifications. That is, the rule of contraction appears to be eliminable from our
systems as long as the static rules build in contraction as given by our rules. Unfortunately,
the proofs become very messy.

15




9 Further Work

The logics S4.3 and S4.3.1 respectively have counterparts called K4DLX and K4DLZ (6]
that omit reflexivity where the new axiom schema are:

D OA= 04

L O((AA0OA4)= B)VvO((BAOB)= A);
X 004 = OA4; and

Z 0O(0A= A)= (COA = 0OA4).

It is known that

(I,<> |: A iff F‘K4DLX A

and
(U), <> II A iff }_I{4DLZ A

where 7 is either the set of real numbers or the set of rational numbers and w is the set of natu-
ral numbers [6]. Hence these logics model irreflexive linear dense and irreflexive linear discrete
time although the finite frames that characterise these logics are respectively finite sequences of
finite (degenerate or nondegenerate) clusters and finite sequences of finite (degenerate or nonde-
generate) clusters with no proper non-final clusters. I am not aware of a proof of completeness
for the non-reflexive counterpart of S4.14 but it seems reasonable to conjecture that K4DZ;4
is this counterpart where Z,4 is:

Zys  D(OA= A) = (O00A = OA).

The non-reflexive analogue of the (54.3) rule becomes very clumsy since it is based on the
K4DLX-theorem:

OPAOQ = O(P AOQ)V O(QAOP)VO(PVQ)

and it is easier to use the rule (K4DL) which makes explicit use of subsets. The (K4DL) rule
is similar to a rule given by Valentini [15]. By using rules from Figure 6 it is possible to obtain
cut-free tableau calculi for these logics as:

CL Static Rules Transitional Rules Structural Rules
CKaD  (0),(7),(N,(V)  (K4D) (6)
CK4DLX (0),(=),(A),(V) (K4D1L) ()
CK4ADLZ (0),(=),(A),(V) (K4D),(K4LZ) ]
CKADZrs (0),(~),(A), (V)  (K4D), (K4Z:) (6)

Now, it may appear as if the explicit subset notation would allow us to dispense with (6) but
this is not so. For (8) allows us to ignore certain eventualities, whereas (4D L) and (K 417)
only allow us to delay them. Thus using the reflexive analogues of these rules for S4.3 and
S4.3.1 does not help to eliminate (6).

Finally, these techniques extend easily to give a cut-free sequent system for S4.83Grz = KGrz.3
(16] which is axiomatised as I + 3 + Grz where Grz is the Grzegorczyk axiom schema
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DX, -ap

m where =OP and hence =P may be missing

(K4D)

DX, -0OpP

(K4214) X;0X;0-0P | X;0X;-~P;0P

O0X;-0{P, -, P}

(K4DIL) Lok
X; DX; ﬁDY’; -Y?

for some ¢ where
Y ={P,,---, P} may be empty, and
Y?!,...,Y™ is an enumeration of the non-empty subsets of ¥’

m=2"—-1, 1<i<mand

Yi=Y\Y!
U'DX"“!D{QI o Qk}
K4LZ ! ' o
FUD) STST 1 5 [Sews] Sewe | T Burm
where :
Y = {Qla""Qk};
Y, ..., Y™ is an enumeration of the non-empty subsets of ¥ with m = ok — 1;

Y =Y \{Q;}for 1 <j <k
Yi=Y\Yifor1<1i<m;

S; = U;0X;-0Y;0-0Q; for 1 < j < k;
Sppi = X;0X; Y5075 -0V for 1 <i<m

Figure 6: Tableau rules (K4D), (K4Z4), (K4DL) and (K4LZ).
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Grz0(0(A = OA) = A) = A. This logic is characterised by finite linear sequences of simple
clusters but note that Shimura [14] has already given such a sequent system.

The non-reflexive counterpart of S4.3Grz is KLG (sometimes called G.3 or G Ly, or K4.3W)
where I is as above and G is the Godel-Lob axiom O(0A => A) = OA. Rautenberg [10] shows
that KG is characterised by the class of finite transitive trees of irreflexive worlds. Thus KLG
is characterised by finite linear sequences of irreflexive worlds, but note that Valentini [15] has
already given a cut-free sequent system for this logic.

10 Related Work

Zeman [18] appears to have been the first to give a tableau system for S4.3 but he is unable
to extract the corresponding cut-free sequent system [18, page 232]. Shimura [14] has given a
syntactic proof of cut-elimination for the corresponding sequent system for S4.3, whereas we
give a semantic proof. Apparently, Serebriannikov has also obtained this system for S4.3 but
I have been unable to trace this paper. Rautenberg [10] refers to “a simple tableau” system
for S4.3 but does not give details since his main interest is in proving interpolation, and S4.3
lacks interpolation. In subsequent personal communications I have been unable to ascertain
the S4.3 system to which Rautenberg refers [12]. Bull [2] states that “Zeman’s Modal Logic
(XLII 581), gives tableau systems for S4.3 and D in its Chapter 15, ... ?. The D mentioned by
Bull is S4.3.1 but Zeman [18, page 245] merely shows that his tableau procedure for S4.3 goes
into unavoidable cycles when attempting to prove Dum. Zeman does not investigate remedies
and consequently does not give a tableau system for S4.3.1. In fact, Bull [1] mentions that
Kripke used semantic tableau for S4.3.1, in 1963, but he gives no reference and subsequent
texts that use semantic tableau do not mention this work [18]. Presumably Kripke would have
used tableaux where an explicit auxiliary relation is used to mimic the desired properties (like
linearity) of R as is done in the semantic diagrams of Hughes and Cresswell [7, page 290].
Note that no such explicit representation of R is required in our systems where the desired
properties of R are obtained by appropriate tableau rules. I know of no other (cut-free) sequent
or tableau systems for the logics S4.8.1 and S4.14 or their non-reflexive counterparts K4DLZ
and K4DLZ14.

11 Conclusions

We have presented cut-free tableau and sequent systems for the Diodorean modal logics 54.3,
S4.3.1 and S4.14, of which the last two appear to be new. We have also sketched how similar
results for the non-reflexive counterparts of these logics can be obtained. The sequent analogues
of our tableau systems give a finitary syntactic deducibility relation k1 so that any sequent proof
can be read downwards to give an axiomatic proof of the endsequent. As a consequence, we
obtain Gentzen’s cut-elimination theorem for these logics. Each tableau system serves as a
nondeterministic decision procedure for the logic it formulates. Furthermore, the proofs of
tableau completeness are all constructive and yield deterministic decision procedures for each
logic.

For some of our tableau systems, thinning seems essential. We believe that both thinning and
contraction are eliminable by suitable modifications to the tableau rules but intend to pursue
these matters using syntactic methods.

18




Acknowledgements: I have had many invaluable discussions with Thomas Forster, [an Gent
and Harold Simmons about matters modal. Particular thanks to Ian for proof-reading earlier
versions of this paper.

References
[1] R. A. Bull. An algebraic study of Diodorean modal systems. Journal of Symbolic Logic,
30(1):58-64, 1965.

[2] R. A. Bull. Review of ‘Melvin Fitting, Proof Methods for Modal and Intuitionistic Logics,
Synthese Library, Vol. 169, Reidel, 1983". Journal of Symbolic Logic, 50:855-856, 1985.

[3] R. A. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic, pages 1-88. D.
Reidel, 1984.

[4] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese
Library. D. Reidel, Dordrecht, Holland, 1983.

[5] M. Fitting. First order modal tableaux. Journal of Automated Reasoning, 4:191-213,1988.

[6] R. I. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes Number 7, CSLI
Stanford, 1987.

[7] G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic. Methuen, London, 1968.
[8] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen, London, 1984.

[9] E. J. Lemmon and D. Scott. An Introduction To Modal Logic. American Philosophical
Quarterly, Monograph Series, Basil Blackwell, Oxford, 1977.

[10] W. Rautenberg. Modal tableau calculi and interpolation. Journal of Philosophical Logic,
12:403-423, 1983.

[11] W. Rautenberg. Corrections for modal tableau calculi and interpolation by W. Rautenberg,
JPL 12 (1983). Journal of Philosophical Logic, 14:229, 1985.

[12] W. Rautenberg. Personal communication, December 5th, 1990.

[13] Krister Segerberg. An essay in classical modal logic (3 vols.). Technical Report Filosofiska
Studier, nr 13, Uppsala Universitet, Uppsala, 1971.

[14] Tatsuya Shimura. Cut-free systems for the modal logic 54.3 and S4.3GRZ. Reports on
Mathematical Logic, 25:57-73, 1991,

[15] S. Valentini. A syntactic proof of cut elimination for GLy;,. Zeitschrift fir Mathematische
Logik und Grundlagen der Mathematik, 32:137-144, 1986.

[16] J. F. A. K. van Benthem and W. Blok. Transitivity follows from Dummett’s axiom. Theoria,
44:117-118, 1978.

[17] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72-99,
1983.

[18] J. J. Zeman. Modal Logic: The Lewis-Modal Systems. Oxford University Press, 1973.

19




