Technical Report A

Number 29

Computer Laboratory

Introduction to Poly

D.C.]. Matthews

May 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1982 D.C.]. Matthews

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

INTRODUCTION TO POLY

D.C.J. Matthews, May 1982
Computer Laboratory,

University of Cambridge

Abstract

This report is a tutorial introduction to the programming language Poly.
It describes how to write and run programs in Poly using the VAX/E{YX
implementation. Exargples given include polymorphic 1list functions, a
double precision integer package and a subrange type constructor.

INTRODUCTION TO POLY

Poly is a programming language which supports polymorphic operations.
This document explains how it is used on the VAX.

1. Commands and Declarations

The system is entered by running the appropriate program (e.g.
/mnt/dejm/poly at Cambridge). The compiler will then reply with a prompt
(>). To exit from Poly at any time type ctrl-D (end-of-text) or ctrl-C
(interrupt). There are three types of instructions which can be typed to
Poly; declarations of identifiers, statements (commands), or expressions.
An example of a command and the output it produces is

> print("Hello"):
Hello

Note the closing semicolon which must be present to indicate the end of
the command. If you forget it the compiler will print a # as a prompt to
indicate that the command is not yet complete.

An example of an expression is

> "Hi" ;

Hi

Poly prints the value of an expression without the need to type the word
‘print’,

Commands can be grouped by enclosing them with the bracketting symbols
begin and end or (and). For instance

> begin

print("Hello");
print(™ again")
end;

Hello again

Any object in Poly can be bound to an identifier by writing a
declaration. For instance

> let message == "Hello ";

declares an identifier 'message' to have the value of the string 'Hello '.
It can be printed in the same way as the string constant.

> message;
Hello

Names can be either a sequence of letters and digits starting with a
letter, or a sequence of the special characters + - * = < > etc. Certain
names are reserved to have special meanings and cannot be used in
declarations. Those words can be written in upper, lower or mixed case, all
other words are considered to be different if written in different cases.
When declaring a name made up of the special characters remember to put a

Introduction to Poly
space between the name and the == or colon which follows it. Comments are

enclosed in curly brackets { and }. They are ignored by the compiler and
are equivalent to a single space or newline between words.

2. Procedures

Statements or groups of statements can be declared by making them into
procedures. '

> let printmessage ==

proc()

i (print (™A message "));

A procedure consists of a procedure header (in this case the word proc and
parentheses (and)) and a body. The procedure body must be enclosed in
bracketting symbols (in this case '(' and ')') even if there is only one
statement.

This is simply another example of a declaration. Just as previously
'message' was declared to have the value "Hello ", 'printmessage’ has been
declared with the value of the procedure,

The procedure is called by typing the procedure name followed by ().

> printmessage();
A message

The effect of this is execute the body of the procedure and so print the
string.

-

Procedures can take arguments so that values can be passed to them when
they are called.

> let pmessage ==

proc{m : string)

begin

print (" The message is :");
print(m)

end;

This can be called by typing

> pmessage("Hello");
The message is :Hello

or by typing

> pmessage("Goodbye");
The message is :Goodbye

Introduction to Poly

3. Specifications

As well as having a value all objects in Poly have a specification,
analogous to a type in other languages. It is used by the compiler to
ensure that only meaningful statements will be accepted. You can find the
specification of a declared name x by typing ? "x";.

> ? "message";
message : string

This means that message is a constant belonging to the type 'string’.

> ? "pmessage";
pmessage : PROC(string)

This means that pmessage is a procedure taking a value of type string as
its argument. Since message has that specification the call

> pmessage(message);
The message is :Hello

will work. Likewise the call

> pmessage("Hi")
The message is :Hi

will work because "Hi"™ also belongs to type string. However

> pmessage(pmessage);
Error - specifications have different forms

will fail because 'pmessage' has the wrong specification. Incidently, the
specification of the procedure is the same as the header used when it was
declared, ignoring the differences in the case of some of the words.

4., Integer and Boolean

So far the only constants used have been those belonging to the type
string. Another type, integer provides operations on integral numbers.

> print(42);:

42

The wusual arithmetic operations +, -, ¥, div, mod, suce and pred are
available.

> 42+10-2;
50

However, unlike other 1languages all infix operators have the same
precedence so

> Uie3%2,

14

prints 14 rather than 10. Also - is an infix operator only, there is a
procedure neg which complements its argument.

Another 'standard' type is boolean which has only two values true and
false. Its main use is in tests for equality (the = operator), inequality

Introduction to Poly

(<) and magnitude (> < >= <=).
> let two == 2;

> 1 = two;
false

> 2 = two;
true

> 3 O U
true

> U4 >= 5
false

The expression '1 = two' has type boolean. Identifiers can be declared to
have boolean values in the same way as integers and strings.

> let testtwo == two > 1;

declares testtwo to be 'true' since 'two' is greater than 1. There are three
operators which work on boolean values, &, { and ~. ~ is a prefix operator
which complements its argument (i.e. if its argument was false the result
is true, and vice-versa). & is an infix operator which returns true only if
both its arguments are true. | is also an infix operator which returns true
if either of its arguments is true.

5. If-Statement

Boolean values are particularly useful since they can be tested using
if. The if-statement causes different statements to be obeyed depending on
a condition.

A

> if two = 2
then print("It is two")

else print("It isn't two%);
It is two

tests the value of the expression 'two = 2' and executes the statement

after the word then if it is true, and the statement after the word else if
it is false. This could be written as a procedure,

> let iszero ==

proc(i: integer)

(if 1 = 0 then print("It is zero")
else print("It isn't zero"));

which could then be called to test a value.

> iszero(l);

It isn't zero

since 4 is not zero. If-statements can return values as well as perform
actions in the then and else parts. An alternative way of writing 'iszero'
could have been

Introcduction to Poly

> let iszero ==
proc(i: integer)

(print(

ifi=z=0

then "It is zero"

else "It isn't zero"
D

This version tests the condition, and returns one or other of the strings
for printing. This can only be used if both the then and else parts return
values with similar specifications (in this case both sides return string
constants), The version of the if-statement which does not return a value
can be written with only a then-part. If the then-part returns a value
there must be an else-part (otherwise what value would be returned if the
condition were false?).

6. More on Procedures

Procedures can be written which return results. For instance a further
way of writing ‘'iszero' would be to allow it to return the value of the
string.

> let iszero ==

proc(i: integer)string

(if i = 0 then "It is zero"

else "It isn't zero");

> ? "iszero";

iszero : PROC(integer)string

Calling it would then cause it to return the appropriate string which
would then be printed.

> iszero(0):
It is zero

Another example is a procedure which returns the square of its argument.

> let sqr ==
proc(i: integer)integer (i%*i);

declares sqr to be a procedure which takes an argument with type integer
and returns a result with type integer. The body of the procedure
evaluates the square of the argument i, and the result is the value of the
expression, The call

> sqr{l);
16

will therefore print out the value 16.

Procedures in Poly can be written which call themselves, i.e. recursive
procedures. These are declared using letrec rather than let.

> letrec fact ==

proc(i: integer)integer
(if 1 = 1 then 1
else i*fact(i-1));

Introduction to Poly

This is the recursive definition of the factorial function. The procedure
can be called by using

> fact(5);
120

which prints the result. letrec has the effect of making_the name being
declared available in the expression following the ==, whereas let does
not declare it until after the closing semicolon.

7. Variables

Constants are objects whose value cannot be changed. There are also
objects whose value can change, these are variables. Variables are created
by declarations such as

> let v == new(0);
The procedure 'mew' returns a variable whose initial value is the argument.

> v,
0

A new value can be given to v by using the assignment operator.

>V o= 3
> vy

3
Thus v now has the value 3. The new value can depend on the old value.
> v o= (v+2);

Sets the value to be 5? The parentheses are necessary because otherwise
the order of evaluation would be strictly left-to-right. Variables can be
of any type.

> let sv =z new("A string");

declares sv to be a string variable., The specification of a variable is not
as simple as it may seem and will be dealt with later.

8. The While Loop

It is often necessary to repeat some statements more than once. This
can be done using the while statement. For instance

> let x == new(10);

> while x <> 0

do

begin

print (x*x);

print (" ");

X := pred(x).

end;

100 81 64 49 25 16 9 4 1

prints the square of all the numbers from 10 down to 1. The body of the
loop (the statement after the word do) is executed repeatedly while the

Introduction to Poly

condition (the expression after the word while) is true. The condition is
tested before the loop is entered, so

> while false
do print("Looping");

will not print anything.
9. Operators

We have already seen examples of operators such as + and &. In Poly
operators are just procedures whose specifications include the words
infix or prefix. They are declared in a similar way to procedures, for
instance

> let sq == proc prefix (i : integer)integer (i¥*i);

has declared sq as a prefix operator. It can be used like any other prefix
operator:

> sq 3;
9

The difference between a prefix operator and other procedures is that the
argument to a prefix operator does not need to be in parentheses. Infix
operators can be defined similarly.

10. The Specifications of Types

All objects in Poly have specifications. This includes types such as
string, integer and boolean.

> ? "boolean";

_ boolean : TYPE (bcolean)
& : PROC INFIX (boolean; boolean)boolean;
false : boolean;
print : PROC (boolean);
true : boolean;
! : PROC INFIX (boolean; boolean)boolean;
~ : PROC PREFIX (boolean)boolean

END

Types in Poly are regarded as sets of "attributes". These attributes are
usually procedures or constants but could be other types. The attributes
of a type can be used exactly like ordinary objects with the same
specification. However, since different types may have attributes with the
same name, it is necessary to prefix the name of the attribute with the
name of the type separated by $.

> integer$print(5);

5

This invokes the attribute 'print' belonging to integer and prints the
number. Most types have a print attribute which prints a value of that type
in an appropriate format. $ acts a selector which finds the attribute
belonging to a particular type. It is not an operator so operators always

Introduction to Poly

work on the selected name rather than the type name.

> 7 booleangtrue;
false

11. Records

Poly allows new types to-be created in the same way as new procedures,
constants or variables. One way of creating a new type is by making a
record. A record is a group of similar or dissimilar objects.

> let rec == record(a, b: integer);

This declares 'rec' to be a record with two components, a and b, both of
type integer.

> ? "rec";
rec : TYPE (rec)

a : PROC(rec)integer;

b : PROC(rec)integer;

constr : PROC(integer ;integer)rec
END

'constr' is a procedure which makes a record by taking two integers, and 'a'
and 'b' are procedures which return the 'a' and 'b' values of the record.

> let recv == rec$constr(3, U4);

creates a new record with 3 in the first field (a) and 4 in the second
field (b). The result is given the name 'recv’.

> rec$a(recv): .

3
> rec$b(recv);
y

show that the values of the individual fields can be found by using 'a' and
! as procedures. They must of course be prefixed by 'rec$' to show the
type they belong to.

Records can be made with fields of any specification, not just
constants.

> let arec ==
record(x:integer; p: proc(integer)integer);

declares a record with fields x and p, x being an integer constant and p a
procedure,

> let apply ==

proc(z : arec)integer

begin

let pp == arec$p(z);
pp(arec$x(z))

end ;

is a procedure which takes a constant of this record type and applies the
procedure p to the value x and returns the result. In fact, it is not
necessary to declare pp in the body of the procedure. An alternative way of

Introduction to Poly

writing apply is

> let apply ==
i proc(z : arec)integer
(arec$p(z)(arec$x(z)));

12. Unions

Another way of constructing a type is using a 'union'. A union is a type
whose values can be constructed from the values of several other types.
For instance a value of a union of integer and string could be either an
integer or a string.

> let un ==z union(int: integer; str: string);

This has created a type which is the union of integer and string. A value
of the union type can be constructed by using an injection function. This
union type has two such functions, their names made by appending 'int' and
'str' onto the letters 'inj ', making 'inj int' and 'inj_str'. ('int' and 'str!
were the 'tags' given in the declaratioﬁ? in a similar way to fields in a
record).

> let intunion == un$inj int(3);
This has created a value with type 'un' containing the integer value 3.
> let stringunion == un$inj str("The string");

creates a value, also with type 'un', but this time containing a string.
Given a value of a union type it is often useful to be able to decide which
of its constituent types it was made from. For each of the 'tags' there is a
procedure whose name is made by prefixing with the letters 'is ', which
returns 'true' or 'false' depending on whether its argument was made from
the corresponding injection function.

> ungis_int(intunion);
true

prints 'true' because intunion was made from 'inj int'. However

> un$is_str(intunion);

false

Values of the original types can be obtained by using 'projection'
functions, which are the reverse of the 'injection' functions. Their names

are made by prefixing the tags with 'proj ' to make names like 'proj_str!'
and 'proj_ int',

> un$proj int(intunion);

3

> ungproj str(stringunion);
The string

print the original values. It is possible to write

> ungproj str(intunion);
Exception projecte raised

because 'intunion' has type 'un', just like 'stringunion'. However, 'proj str!'

10

Introduction to Poly

is expected to return a value with type string so when this is run it will
cause an error., The effect will be to raise an 'exception' called
'projecterror' which means that a projection procedure was given an
argument constructed using a different injection procedure,

> let unprojstr == un$proj_str;

> ? "unprojstr";

unprojstr : PROC(un)string RAISES projecterror

shows that 'proj str' may raise 'projecterror'. Exceptions will be dealt
with in more detail later on.

13. The Type-Constructor

It is often useful to be able to construct a type which is similar to an
existing one but with additional attributes. This can be done by using the
type-constructor,

> let nrec ==
f# type (r) extends rec;
let print ==

proc(v :r)

begin

print(rs$a(v));
print(",");

print(r$b(v))
end

end ;

> ? "nrec";
nrec : TYPE (nrec) «
a : PROC (nrec)integer;
b : PROC (nrec)integer;
constr : PROC (integer:; integer)nrec;
print : PROC (nrec)
END

This declares 'nrec' to be a new type which is an 'extension' of an existing
type 'rec'. It then 1lists the new attributes, in this case Jjust the
procedure 'print', which are declared just as though they were ordinary
declarations. The name 'r' in parentheses which follows the word 'type' is
the name for the new type within the body of the type constructor, so the
argument of the procedure 'print' is given the type 'r'. It is important to
remember that the new type is a completely separate type from 'rec'. Values
can be changed from the old to the new type and vice versa, but they cannot
be used interchangeably. The specification of nrec is similar to that of
rec except that there is now an extra procedure 'print!.

> let nrecv == nrecg$constr(5,6);
> nrec$print(nrecv);
5,6

makes a value with type nrec, and prints it using the new 'print' attribute.
It is possible to write simply

> print(nrecv);
5,6

1

Introduction to Poly

because there is a procedure 'print' which looks for the 'print' attribute
of the type of the value given, and then calls it. This is the way integers
and strings are printed (they both have 'print' attributes). Many of the
other operations such as ':=! and '+' work in a similar way. A further
alternative is to write an expression.

> nrecv;
5,6

In this case the compiler looks for the 'print' attribute and applies it.

14. A Further Example

This record could be extended in a different way, to make a double-—
precision integer. Suppose that the maximum range of numbers which could
be held in a single integer was from -9999 to 9999. Then a double-precision
number could be defined by representing it as a record with two fields, a
high and low order part, and the actual number would have value
(high)*10000 + (low). This can be implemented as follows.

> let dp ==
i# type (d) extends record(hi, lo: integer);
let succ ==

proc(x:d)d

begin

if d$lo(x) = 9999

then d$constr(succ(dshi(x)), 0)

else if (d$hi(x) < 0) & (d$lolx) = 0)
then d$constr(succ(dshi(x)), neg(9999))
el se d$constr(d$hi(x), suce(d$lol(x)))
end ;

let pred ==

proc(x:d)d

begin

if d$lo(x) = neg(9999)

then d$constr(pred(d$hi(x)), 0)

{# else if (d$hi(x) > 0) & (d$lo(x) = 0)
then d$constr(pred(dshi(x)), 9999)

else d$constr(dshi(x), pred(d$lo(x)))
end ;

12

Introduction to Poly

- let print ==

proc(x:d)

it begin

i# if d$hi(x) <> 0O

then

begin

print(d$hi(x));

if abs(d$lo(x)) < 10
then print(*o00")
else if abs(d$lo(x)) < 100
then print(™0o0")
else if abs(d$lo(x)) < 1000
then print("o");
print(abs(d$lo(x)))
end

else print(d$lo(x))

end ;

let zero == d$constr(0,0);
let iszero ==
proc(x:d) boolean
((d$hi(x) = 0) & (d$lo(x) = 0))
end;

T oW VR I W A I IR I e Iw Tw h W S

This is sufficient to provide the basis of all the arithmetic operations,
since +,-,* etc. can all be defined in terms of sucec, pred, zero and iszero.

15. Exceptions

_ In the section on union types above mention was made of exceptions. In

the case of the projection operations of a union type an exception is
raised when attempting to project a union value onto a type which was not
the one used in the injection. An exception is simply a name and any
exception can be raised by writing 'raise' followed by the name of the
exception. '

> raise somefault;
Exception somefault raised

raises an exception called 'somefault’.

> let procraises
== proc(b: boolean)
(if b then raise afault);

has specification
PROC(b: boolean) RAISES afault

Various operations, as well as projection, may raise exceptions. For
instance many of the attributes of integer, such as 'suce' raise the
exception 'rangeerror' if the result of the operation is outside the range
which can be held in an integer constant. 'div' will raise ‘'divideerror' if
it is asked to divide something by 0.

As well as being raised exceptions can also be caught, which allows a

program to recover from an error. A group of statements enclosed in
brackets or 'begin' and 'end' can have a 'catch phrase' as the last item. A

13

Introduction to Poly

catch phrase is the word catch followed by a procedure. e.g. 'catch p' will
catch any exception raised in the group of statements and apply p to its
name.

>let proccatches ==

proc(excp: string) (print(excp));
> begin

procraises(true);

catch proccatches

end;

afault

tproccatches' has been declared as a procedure which takes a argument of
type string. The exception is raised by 'procraises' and, since it is not
caught in that procedure it propagates back to the point at which
tprocraises' was called. The catch phrase catches the exception and calls
the procedure with the name of the exception as the argument. The catching
procedure can then look at the argument and decide what to do.

> begin

procraises(false);

catch proccatches

end;

does not print anything because an exception has not been raised and so
the procedure is not called.

If the block containing the catch phrase returns a value, then the
catching procedure must return a similar value.

> let infinity == 99999;

> let divi ==

proc infix(a, b: integer)integer

begin

a div b

catch proc(string)integer (infinity)
it end;

This declares 'divi' to be similar to 'div' except that instead of raising
an exception it returns a large number. Since 'a div b' returns an integer
value the catch phrase must also return an integer.

16. The Specification of Variables

The specification of a variable in Poly is not, as one might expect, a
constant of some reference type or a separate kind of specification, but
each variable is in fact a separate type. Since a type in Poly is simply a
set of constants, procedures or other types, a type can be used simply as a
way of conveniently grouping together objects.
> let intpair ==
type
let first == 1;

let second == 2
end;

This has declared 'intpair' to be a pair of integers containing the values

14

Introduction to Poly

1 and 2. 'intpair$first' and 'intpair$second' can be used as integer values
directly.

The specification of an integer variable is

TYPE

assign: PROC(integer);
content: PROC()integer
END

A variable is a pair of procedures, 'assign' which stores a new value in the
variable, and 'content' which extracts the current value from it. The
standard assignment operator ':=' simply calls 'assign' on the variable. The
compiler inserts a call to 'content' automatically when a variable is used
when a constant is expected. 'assign' and ‘'content' can both be called
explicitly. '

> let vx == new(5);

> vx$assign(vxgcontent() + 1);
> vxg$content ()

6

As an example of a more complicated variable, suppose we wanted to write a
subrange variable, similar to a subrange in Pascal, which could hold values
between 0 and 10.

> let sr ==

begin

let varbl == new(0);

type

i# let content == varbl$content;
it let assign == :

proc(i: integer)

(if (i < 0) | (1 > 10)
then raise rangeerror
else varblgassign(i))
i# end

end;:

'varbl' is an integer variable which is initially set to 0. 'assign' checks
the value before assigning it to 'varbl', and raises an exception if it is
out of range. 'content' is just the 'content' procedure of the variable. It
can be used in a similar way to a simple variable.

> sr := 2;

> sr;;

2

> sr := 20;

Exception rangeerror raised
> 8r;

2

15

Introduction to Poly

17. Specifications in Declarations

The double-precision type declared above has one drawback. The
specification contains the thi', 'lo' and ‘'constr! attributes in the
specification of the type which would allow someone to comstruct a value
which had the type 'dp', but had, for instance, fields outside the range
-9999 to 9999 or with different signs. This could make some of the
operations fail to work. We need a way of hiding details of the internals
of a type declaration so that they do not appear in the specification, and
so cannot be used outside. In Poly a specification can be given to
something explicitly as well as having it inferred from the declaration.

> let aconst: integer == 2;

declares 'aconst! and forces it to have type 'integer!'. The specification is
written in the same way as the specification of the argument of a
procedure.

> let quote : proc(string)

== proc(x: string)
begin

print(" "),
i print(x);

print(m'm)

end;

is another example of explicitly giving a specification to a value. An
explicitly written specification is the specification of the name which is
being declared. It need not be identical to the specification of the value
following ‘the !'=='. However it must be possible to convert the
specification of the value to the explicit specification (the 'context').

> let avar == new(3);
> let bconst: integer == avar;

declares 'avar' to be an integer variable and 'bconst' to be an integer
constant. In the latter case the specification is necessary, otherwise
tbeonst' would have been a variable and would have been another name for
tavar'. The conversion of a variable to a constant in order to match a given
specification is one example of a 'coercion' of a wvalue to match a
tcontext'. There are several others which can be applied depending on the
particular specification. For instance the specification of a procedure
may be changed from an operator to a simple procedure or vice versa.

> let plus:
proc(integer ;integer)integer ralses rangeerror
== integer$+ ;

declares 'plus' as a procedure which is the same as the '+ attribute of
integer except that it is not an infix operator.

> plus(3,#);
7

The 1ist of exceptions raised by the procedure must be included in the
specification. The exception list in the specification given must include
all the exceptions which may be raised, but may include others as well., A

16

Introduction to Poly

special exception name any can be used to indicate that a procedure can
raise any exception. Any exception Iist will match a context with
exception list 'raises any'.

The specifications of the arguments and result must all match.

> let dble:

type (d)

succ, pred: proc(d)d raises rangeerror;
print: proc(d) raises rangeerror;

zero: d;
iszero: proc(d)boolean;
end

== dp;

Shonh Sk SR I Nk Sk

creates a new type 'dble' with the specification given. The specification
is the same as that of 'dp' but with some of the attributes of dp missing.

In the case of types the specification of the value must possess all
the attributes of the explicit specification, but the explicit
specification need not include all the attributes of the value. If a type
is regarded as a set of named attributes then it is possible to take a
subset of them and make them into a new type, simply by giving the new type
the required specification. The specification of each attribute must
itself match the specification that is given for it.

This mechanism provides a way of 'hiding' internal operations from the
specification of a type. The specification of 'dble' above has only those
attributes which are necessary to use it, and none of the operations which
are used internally.

18. Types as Results of Procedures

So far we have considered procedures which take constants as arguments
or return constants as results. In Poly values of any specification can be
passed to or returned from a procedure. For instance

> let subrange

== proc(min, max, initial: integer)
type (s)

content: proc()integer;

assign: proc(integer) raises outofrange
end

it begin

type

let varbl == new(initial);

let content == varblgcontent;
i let assign ==

proc{i: integer)

(if (i < min) } (i > max)
then raise outofrange

else varbl$assign(i))

end

end ;

This procedure is similar to the definition of the subrange type 'sr!'

17

Introduction to Poly

previously. However the bounds of the type are now arguments of a
procedure so their values can be supplied when the program is run. Also new
subrange variables can be created by calling the procedure.

> let sv == subrange(0,10,0);

This creates 'sv' as a variable of this subrange type. As with any
procedure the arguments can be arbitrary expressions provided they return
results with the correct specification.

19. Types as Arguments to Procedures

Types can be passed as arguments as well as being returned from
procedures.

> let copy ==

proc(atype: type end)
it type (t)

into: proc(atypelt;
outof: proc(t)atype
end

begin

type (t) extends atype;
let into == t$up

let outof == t$down
end

end ;

This procedure takes a type and returns a type with two operations 'into'
and 'outof'. 'up' and 'down' are procedures which are created when 'extends'
is used, and provide a way of converting between the original and the
resulting types. The specification of 'atype' merely says that it must be
passed a type as an argument, but since it does not list any attributes
then any type can be used as an actual argument (this is effectively
saying that the empty set is a subset of every set). The procedure can be
called, giving it an actual type as argument.

> let copyint == copy(integer);

The specification of the result is

TYPE (copyint)

into: PROC(integer)copyint;
outof: PROC(copyint)integer
END;

The specification of copyint allows mapping between integer and copyint
since the type integer has been included in the specification.

> let copy5 == copyint$into(5);
> copyintjoutof(copy5);
5

has mapped the integer constant 5 into and out of 'copyint'.
> let copychar == copy(char);

creates a similar type which maps between char and copychar.

18

Introduction to Poly

20. Polymorphic Procedures

There are often cases where, in addition to passing a type as a
argument, one or more values of that type are passed as well. For instance
a procedure to find the second successor of a value might be written as

> let add2 ==

i proc(atype:

type (%) .

succ: proc(t)t raises rangeerror
end;

val: atype)

(atypeg$succ(atypessucc(val)));

The specification of 'val' is that it must be a constant, and its type is
tatype'. However 'atype' is also an argument to the procedure so the
specification really means that this procedure could be called by giving
it any type with the required attributes, and a constant which must be of
the same type as the first argument.

> add2(integer, 2);
4

Similarly

> add2(char, 'A");
C

However

> add2(integer, 'A');

and «

> add2(string, "A string");

both fail, in the first case because 'A' is not integer, and in the second
because string does not have a successor function. :

21. Implied Arguments

Many types have a 'print' attribute which prints a constant of the type.

> let pri ==
proc(printable: type (t) print(t) end; val: printable)
(printablegprint(val));

declares 'pri' as a procedure which takes as arguments a type and a
constant of that type and prints the constant using the 'print' attribute.
This can be called by writing

> pri{integer, 3);
or
> pri(char, 'a');

since both 'integer' and 'char' have a 'print' attribute. Having to pass the
type explicitly is really unneccessary, since it is possible for the
system to find the type from the specification of the constant. It would be
possible for the system to convert 'pri(3)' into 'pri(integer,3)' since '3

19

Introduction to Poly

has type integer. In Poly types which can be deduced from the
specifications of other arguments can be declared as timplied' arguments. A
argument list written in square brackets, [and], can preceed the normal
argument 1list and those parameters, which must be all be types, are
inferred from the other actual arguments when the procedure is called.

> let prin ==

proc [printable: type (t) print: proc(t) end]
(val: printable)

i# (printable$print(val));

This can now be called by writing

> prin(3);

or

> prin("hello");

and is in fact the definition of ‘'print!' in the standard 1library.
Alternatively ‘'prin' could have been declared by giving it an explicit
specification and using 'pri’.

> let prin: proc[printable: type (t) print: proc(t) end]

(printable)

== pri;

This is another form of conversion which can be made using an explicit
specification. Using implied parameters can simplify considerably the use
of procedures with types as arguments, and allow infix or prefix operators
to be used in cases where they could not otherwise be used. For instance,
consider an addition operation defined as

> let add ==

proc(summ: type (s) + : proc infix (s;s) raises rangeerror
end ;

i, j: summ)summ

i+ 3

would be used by writing

> add(integer, 1, 2);
3

" However, by writing

> let +

: proc infix [summ: type(s)

+ : proec infix (s;s)raises rangeerror
i end]

(i, j: summ)summ raises rangeerror

== add;

14! can become an infix operator, since it has only two actual arguments.
Similar definitions are used for many of the other declarations in the
library.

20

Introduction to Poly

22. Literals

We have already seen how constants can be written as "Hello" or 42.
These are known as literal constants, because their values are given by
the characters which form them, rather than by some previous declaration.
They are however, only sequences of characters, it is only by convention
that "Hello" is a string constant and 42 an integer constant. This is only
important when we wish to use some other definition than the 'standard'
one. For instance, if the type integer were restricted to the range -9999
to 9999 then the constant 100000 would be an error if it were treated as an
integer. The definition of double-precision integer above, would, however,
be able to represent it.

In Poly, therefore, literals have no intrinsic type, they must be
converted into a value by the use of a conversion routine. The compiler
recognises certain sequences of characters as literals rather than names
or special symbols. The three forms of literal constants recognised by the
compiler are ‘'numbers', tdouble—~quoted sequences' and tsingle-quoted
sequences', 'Numbers' begin with a digit and may consist of numbers or
letters, '

42 OH3F6A 3p14159

are examples of ‘'numbers’. 'Double-quoted sequences' are sequences of
characters contained in double-quotes. A double-quote character inside the
sequence must be written twice.

"Hello" nn "He said ""Hellon"®

1Single—quoted sequencés’ arel similar to double—quoted sequences but
single rather than double-quotes are used.

'Hello' ' 'He said ''Hello''!

When the compiler recognises one of these literals it tries to construct a
call to a conversion routine which can interpret it as a value of some
type. For instance, the standard library contains a definition of
tconvertn' which the compiler calls if it finds a 'number'. That definition
has specification '

PROC(string)integer

All conversion routines must have similar specifications, but the result
type will differ and some exceptions may be raised. The literal is
supplied as a constant of type 'string'. The conversion routine can examine
the characters which form the literal and return the appropriate value. It
may of course raise an exception if the characters do not form a valid
value, if either the value would be out of range or if the literal contains
illegal characters.

There are also two other conversion routines in the standard library,
tconverts' which converts double-quoted sequences into string values, and
teconverte' which converts single—quoted sequences into values of the type
tchar'. These definitions can be overridden by preceeding the literal by
the name of a type and a $ sign. For instance

21

Introduction to Poly

> let int == integer;
> let one == int31;

applies the 'convertn' routine belonging to 'int', so that 'one' has type int
rather than integer.

23. Lists

Lists are a convenient example for polymorphic operations. List types
can be constructed by the following procedure,

> let list ==
proc(base: type end)
type (1list)

car : proc(list)base raises nil list;
i# cdr : proc(list)list raises nil list;
cons: proc(base; list)list;

i# nil : list;
null : proc(list)boolean

end

Dbegin

type (1list)

let node == record(ecr: base; cd: list);
extends union(nl : void; nnl : node);

#

let cons ==

proc(bb: base; 1l: list)list

(list$inj_nnl(node$constr(bb, 11)));
#

let car ==

proc(ll: list)base

begin

nodescr(list$proj nnl(1l))

catch proc(strlng)base (raise nil list)
end ;

#

let cdr ==

i# proc(1ll: list)list

begin

node$cd(list$proj nnl(11l))

catch proc(strlng)llst (raise nil llst)
end ;

#

let nil == list$inj nl(voidsempty);

#

let null == list$is nl

i end

end ;

'void' is a standard type which has only one value (empty), and is used to
represent the 'nil' value of the list. The list structure is made using a
recursive union with each node containing a value of the 'base' type and
the next item of the list, or containing a nil value. 'cons' makes a new
node of the list, 'car' and 'edr' find the 'base' and 'list' parts of a node
respectively, and 'null' tests for the value 'nil'. 'car’ and 'edr! both trap
the exeception which would be raised if a projection error occured and

22

Introduction to Poly
raise 'nil value' in its place.
A particular 1list type can now be created, for instance a list of

integers.

> let ilist == list(integer);
> let il == ilist$cons(1, ilist$cons(2, ilist$cons(3, ilist$nil)));.

A polymorphic 'cons' function could be declared to work on 1lists of any
base type.

> let cons ==
proc[base: type end;

list: type (1) cons: proc(base; 1)1 end]
(bb: base; 1l: list)list
(list$cons(bb, 11));

It is now possible to write simply
> let il == cons(1, cons(2, cons(3, ilist$nil)));

Polymorphic ‘car', 'edr' and 'null’ functions can be written similarly. As
further examples some other polymorphic list functions are given.

> letrec append ==
proc[base: type end;

list: type (1)

car: proc(l)base raises nil_list;

edr: proc(1l)1 raises nil list;

{ cons: proc{base; 1)1;

null: proc(l)boolean end]

(first, second: list)list

(if null(first) then second

else cons(car(first), append(cdr(first), second)));

> letrec reverse ==
proc[base: type end;

list: type (1)

car: proc(l)base raises nil list;

cdr: proc(l)l raises nil list;

cons;: proc(base; 1)1; -

nil: 1;

null: proc(l)boolean end]

(11: list)list

(if null(1l) then listénil.

else append(reverse(edr(1l)), cons(ecar(1ll), list$nil)));

A useful function would be one which would print the data part of a list if
the base type could be printed.

23

Introduction to Poly

> letrec pr ==

proc [base: type(b) print: proc{b) end;

list: type(l) car: proc(l)base raises nil list;
edr: proc(1l)1l raises nil list;
null: proc{l)boolean

i end]

(11: list)

i begin

if null(1ll)

then print("nil")

el se

begin

print("(");

print(list$car(ll));

print(". ");

pr(list$edr(ll));

print (") ")

end

cateh proc(string) O

end;

The list created above can now be printed.

> pr(il);
(1. 2. C3.nil1)))

Other polymorphic functions on lists can be declared in a similar way.

24, Conclusion

This document is intended as an introduction to Poly and to give some
jidea of the ways in which it can be used. It is not a rigorous description
and various details, such as the precise checking rules for
specifications, have been deliberately skated over in order to explain the
language simply. A companion document, the Poly Report, is the reference
for the precise details of the language.

