Technical Report R

Number 293

Computer Laboratory

Objects and transactions for
modelling distributed applications:
concurrency control and commitment

Jean Bacon, Ken Moody

April 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/



© 1993 Jean Bacon, Ken Moody

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Objects and Transactions for Modelling Distributed Applications:
Concurrency Control and Commitment
Jean Bacon and Ken Moody

University of Cambridge Computer Laboratory

Abstract

The concepts of object and transaction form an ideal basis for reasoning
about the behaviour of distributed applications. An object model allows
the semantics of an application to be used to specify the required
concurrency behaviour of each object. A transaction model covers
multi-component computations where the components are distributed
and therefore subject to concurrent execution and partial failure.

This tutorial establishes an object model for a distributed system in
which transactions are used. It focusses on the alternative methods of
concurrency control that might be employed and shows how each
method might be appropriate for certain application characteristics and
system behaviour. The background for this discussion is established in
[Bacon 1993].

1. Introduction and overview

Distributed systems are now commonplace and application developers must work in
a distributed context. A conceptual basis is needed for reasoning about the
behaviour of distributed computations. This must take into account the
characteristic properties of distributed systems :

(a) Concurrent execution. The components of a distributed computation may
execute concurrently.

(b) Independent failure modes. The components of a distributed system and the
networks connecting them may fail independently. Some parts of a computation
may fail, or be unable to communicate, while others continue to run.

(¢) There is no global time. The components of a distributed system each have a
local clock. We cannot assume a consistent value of time throughout a distributed
system.,

(d) Inconsistent state; it takes time for the effects of an event at one pointin a
distributed system to propagate throughout the system. There will not be a
consistent view of system state at every point in the system unless we use
algorithms and protocols to ensure it.

The concept of transaction was developed, initially in the context of (centralised)
database systems, to handle multi-component computations in the presence of
concurrency and failure. An object model is widely accepted as a basis for modelling
both centralised and distributed software and the concepts of object and transaction
have recently come together in the context of object oriented databases. These
concepts give us a basis for modelling distributed computations.




In Section 2 we set up an informal object model which we use throughout to study
transactions (Section 3) and distributed transactions (Sections 6 and 8). We assume
a specification of the semantics of the operations of an object. The application-
specified concurrency behaviour of an object is assumed to be based on the
commutativity of its operations (Section 4).

We focus on concurrency control and commitment for object-based transaction
systems and the distinction between optimistic and pessimistic methods is
emphasised. In Section 7 we describe, in general terms, pessimistic methods based
on locking and timestamp ordering then optimistic concurrency control. In Section 9
we discuss how each of these methods might be implemented in a distributed system
and in Section 10 how transactions are committed in a distributed system. Section
11 gives a summarises the main points and concludes the tutorial.

2. An object model for a transaction system

1 .
eredit main memory | Dbersistent memory
l
i
= @00
T ‘}. ......
?}l)l;iations check balance :-@
fe k- : :
aﬁgﬁgt read balance : bank account data objects
objects ! |
add interest to balance | Q
r |
set interest rate I O Q
|
| |

Figurel An example of a persistent object: a bank account object.

Figure 1 illustrates by means of an example the object model we shall use. We
assume that a bank account is an instance of an abstract data type with type
operations as defined below.

The state of this application comprises the bank account objects in persistent
memory which may be distributed. In order to carry out a request of a client of the
application, operations are applied to object versions in main memory. A processis
the active agent which invokes objects on behalf of a client.

We shall discuss later how an application developer may specify the semantics of the
type operations of the application objects. One specification of an account object is as
follows. Others are possible, depending on the requirements of the application.

read-balance takesan account name as argument and returns the balance of the
account, '

check-balance takesan accountname and a value as arguments and returns true if
the balance of the account is greater than or equal to the argument
value, else it returns false.




credit takes an account name and a value as arguments and adds the argument
value to the balance. Note that the value of the balance is not output to the
client.

debit  takes an account name and a value as arguments and subtracts the
argument value from the balance. Note that the value of the balance is not
output to the client. It is assumed here that the client is responsible for
checking the balance before doing a debit, for example, the transfer
transaction would contain:

if check-balance (account-A, £1000) then debit (account-A, £1000) ....
set-interest-rate (r%)  is used to set the daily interest rate to a given percentage.

add-interest-to-balance is run daily by the system administration (probably at 3am
when, although cashpoints are available, not many people will be around
doing transactions). This operation computes the interest accrued to the
account, based on its current value, and adds the interest to the balance.

2.1 Execution of a single operation by concurrent processes

We shall assume that a single operation invocation can be made indivisible or
atomic in the presence of concurrency and crashes; that is:

e When it terminates normally all its externally visible effects are made
permanent (we shall call this the property of durability), else it has no effect at
all.

If a crash occurs during the execution of an atomic operation, the system can be
rolled back to the state it was in before the atomic operation was invoked and the
operation can be restarted. We do not consider in detail the mechanisms, such as
logging, for achieving this.

e Itsinvocation does not interfere or conflict with other operation invocations on
the same data object by concurrent processes.

P Po P
concurrent processes £ 2 8
\ l

Y critical
§ region
\ (operation E

N on object)
normal
execution

i
'! delay

v

Figure 2 Serialisation of conflicting operations on one object.

Figure 2 shows the serialisation of potentially interfering operations on a single
object. We understand how to make such operations atomic in main memory by
concurrency control mechanisms such as critical regions or guarded commands.
These in turn are based on hardware-enforced exclusion or by software protocols. We




do not consider this low-level (or language level) concurrency control problem
further, see [Bacon 93].

In our object model we do not assume that every operation on an object must execute
under exclusion, as in a monitor. Rather, we assume that it is possible to specify,
taking into account the semantics of a given object, which operations may be
executed concurrently and which must be executed under exclusion, see Section 4.

P P3 concurrent Py

l processes ¢

a composite
operation

i
|
t
3
3
t
1
1
_ , L
|
§ |
|
N :
related !
operations !
on different !
objects !
]
t
Rl ’
§ b) in this case the component
A\ operations (on different objects) of
the composite operation are executed
" normal inan interleaved fashion
execution a) inthis case the composite
operations (involving
! related operations on
I delay — different objects) are
! executed serially

M v

Figure 3 Execution of a composite operation by concurrent processes.

2.2 Execution of composite operations by processes

In practice operations which are meaningful to an application often require a number
of related (sub)operations to be carried out on different objects. An example isan
operation to transfer money from one bank account to another. Figure 3 shows a
composite operation, comprising related operations on three different objects,
executed by three processes. In 3a the composite operation is serialised as a single
operation. Concurrent execution of composite operations can be achieved by
interleaving the executions of their suboperations, as shown in Figure 3b. Notice
that, in this example, the operations on a given object are shown as serialised and
take place in the same order within the composite operation for each process. We
shall study how concurrent execution of composite operations may be achieved
without sacrificing correctness.




3 Transactions

It is useful to extend the concept of atomic operation to include composite operations.
We assume that it is the composite operation that has meaning to whatever
application invoked it; the suboperations are related and all or none of them must be
carried out. We shall use the term transaction to indicate a meaningful atomic
operation, such as transfer, that may or may not be composite.

In general, a meaningful composite operation may reside at any level in an operation
hierarchy. Also, a transaction at a given level in a hierarchy may form part of a
transaction at a higher level. This paper establishes a basis for studying how
transactions may be implemented with concurrent execution and in the presence of
crashes. We shall not study nested transactions explicitly; for further reading see
[Weikum 91].

3.1 Commit and abort

Successful termination of a transaction is called commitment and a successful
transaction is assumed to terminate with a commit operation. After a successful
commit operation, the changes that the transaction has made to the system state are
guaranteed to persist. This is the durability property of atomic transactions. So
that we can specify the duration of a transaction precisely we shall assume that a
transaction starts with a specific start operation.

We shall discuss in Section 5 whether commitment is also the point at which those
changes are allowed to become visible to other transactions. If thisis the case then
the transaction is said to have the property of isolation and the execution schedule
of the operations of this and concurrent transactions is said to be strict. It might be
desirable in an implementation to make uncommitted state changes visible, thus
achieving greater concurrency, but the effect on long term system state must be as
though the property of isolation was enforced.

A transaction management system must be crash resilient in order to enforce the
property of atomicity of transactions, so that either all or none of the operations of a
transaction are carried out. If a transaction has not been committed it cannot be
assumed that all its operations are complete. When the system restarts after a crash
it must be able to roll back (undo) the effects of any transactions that were
uncommitted at the time of the crash. This is called aborting a transaction. A
transaction is defined to end with a commit or an abort operation.

If such a procedure is available for achieving crash resilience it may also be used for
concurrency control by the management system. Once the possibility of undoing
the effects of operations exists in a system we can attempt to achieve greater
concurrency than is strictly safe and solve any problems that arise by undoing the
effects of the operations that have turned out to be wrong and restarting the
transaction that invoked them.

The abort operation can also be made available to the application level. A
transaction may then be coded to read values from persistent store and, depending on
the values, proceed to further processing or abort, requiring any previous operations
to be undone. An example is that a check-balance operation might find that there is
insufficient money in an account to proceed with a debit operation.




3.2 A notation for transactions

It is convenient to use a concise notation for transactions and their operations. We
assume that a transaction is given a unique identifying number i when it starts and
that this number is associated with all its operations. We refer to the transaction as
a whole as T, its start as S; , a commit operation as C; and an abort operation as A;.
The operations within the transaction will be named appropriately, such as debit;
(account-A, £1000).

For example, a transfer transaction may be specified in some application level
programming language as follows:

begin transaction;
transfer (account-A, account-B, £1000);
end transaction;

This implies that transfer is defined, at a higher level of abstraction, at the
programming language level. At alower level, within a library or the transaction
management system, transfer could be expanded in terms of operations on bank
account objects as follows:

T, = S if check-balance, (account-A, £1000)
then debit, (account-A, £1000); credit, (account-B, £1000); C;
else print (“not enough in account”); 4,
fi
For more complex transactions the application level may require to interact with the
transaction manager and it is returned the transaction identifier for this purpose.

3.3 Serialisability and consistency

We defined a transaction as a (possibly composite) atomic operation that is
meaningful to the application level. A transaction causes the system to move from
one consistent state to another. If the possibility of crashes isignored, in the first
instance, a consistent system state is maintained by executing transactions
serially.

If one process's transaction is executed to completion before any other can start there
is no possibility of interference between them. We have made the transaction a
single indivisible operation (Figure 3a). Such a procedure (single threading of all,
even unrelated, transactions) could be bad for system performance and serial
execution of all transactions could not be contemplated for a multiprocessor or
distributed system. We must therefore consider concurrent execution of
transactions, with interleaving of suboperation executions (Figure 3b).

The idea that consistent system state is maintained by serial execution of
transactions is fundamental. If a specific interleaving of the suboperations of
concurrent transactions can be shown to be equivalent in some sense to some
serial execution of those transactions, then we know that the system state will be
consistent, given that particular concurrent execution of the transactions. Further
discussion can be found in (Korth et al., 1990).

An example illustrates the point. Consider the transaction Transfer (T') executed
concurrently with a transaction Sum (S) which outputs the total amount of money in
the accounts. The start and commit operations are not shown here. A serial
schedule of the operations of the transactions may be achieved in two ways:




T before S or S before T

T: debit ( account-A, £1000); S: read-balance (account-A);
T:credit ( account-B, £1000); S: read-balance (account-B);
S: read-balance (account-A); S: print (account-A +account-B);
S: read-balance (account-B); T debit (account-A, £1000);
S: print (account-A +account-B); T: credit ( account-B, £1000);

An interleaving which leads to a result in which £1000 is lost from the sum:

T: debit ( account-A, £1000);
S: read-balance (account-A);
S: read-balance (account-B);
S: print (account-A +account-B);
T:credit ( account-B, £1000);

is not equivalent to either serial schedule of operations. The problem arises because
transaction S is seeing an inconsistent system state. We shall study how to achieve
concurrent execution of transactions whilst ensuring that no transaction sees an
inconsistent system state.

3.4 The ACID properties of transactions

Putting together the points made in the discussion above, the execution of a
transaction may be defined as having the following properties:

Atomicity Either all or none of the transaction's operations are performed.

Consistency A transaction transforms the system from one consistent state to
another.

Isolation An incomplete transaction cannot reveal its result to other
transactions before it is committed.

Durability Once a transaction is committed the system must guarantee that the
results of its operations will persist, even if there are subsequent
system failures.

These properties relate to the definition of transactions and do not imply particular
methods of implementation. The effect on system state of running transactions is as
defined by these properties.

Note that the A and D properties are the concern of crash resilience and the C and I
properties are associated with concurrency control.

4. How to specify the concurrency behaviour of an object

It is over-restrictive to insist that every operation on an object should be executed
under exclusion. We now define a general method of specifying the concurrency
behaviour of objects. As Herlihy (1990) points out, it may be possible to take a more
relaxed view of conflict.




4.1 Non-commutative (conflicting) pairs of operations

It is possible to specify which pairs of the type operations of an object do not commute.
Operations X and Y are commutative if, from any initial state, executing X then Y
results in the same object state and external output values as executing Y then X;
the order of execution does not matter. We shall use the term conflicting as
equivalent to non-commutative, relating to a pair of operations.

For a given object it must therefore be specified which pairs of operations conflict.
Note that it is necessary to include in the pairs each operation with itself. An
example of an operation which does not commute with itself is write, for example:

the order: write (x, 100); write (x, 200) results in the final value 200 for x,
the order: write (x, 200); write (x, 100) results in the final value 100 for «.
In the case of the bank account object:

credit and credit are commutative :
(the final value of the account is the same whatever the order of execution and
there is no external output).

debit and debit and credit and debit may be specified as commutative
(This is the case if account objects may take negative values or if we assume
that check balance is always used before debit. Alternatively, the application
developer may wish a debit transaction to be aborted if the account has
insufficient funds. In this case the order of credit and debit may be
significant).

read-balance and credit are not commutative
because the value read and output for the balance is different depending on
whether it is executed before or after the credit operation, the final value of the
account is the same whatever the order of execution.

read-balance and debit are not commutative

read-balance and read-balance are commutative, as are check-balance and check-
balance

check-balance and credit are not commutative
check-balance and debit are not commutative

set-interest-rate and set-interest-rate are not commutative,
because the final value of the interest rate depends on the order of execution.

add-interest-to-balance conflicts with credit and debit
because the value computed for the interest is different depending on whether
the credit or debit was done before or after add-interest-to-balance. It conflicts
with read-balance and check-balance with respect to the value of the account
output.

4.2 Condition for serialisability

We shall use commutativity as the basis for specifying conflicting operations and will
also make the following assumptions:

e objects are identified uniquely in a system;




e the operations are executed without interference; that is, the operations we are
considering here are at the finest granularity of decomposition visible to the
client;

e thereisasingle clock associated with an object which is used to indicate the time
at which operations take place and therefore their order;

e the object records the time at which each operation invocation takes place with
the transaction identifier of the transaction that executed the operation.

It is therefore possible, for any pair of transactions, to determine the order of
execution of their operations (in particular the conflicting pairs of operations) on a
given object which they both invoke. This leads to the following definition of
serialisability of a pair of transactions (Weihl, 1984, 1989):

For serialisability of two transactions it is necessary and sufficient for the order of
their invocations of all conflicting pairs of operations to be the same for all the
objects which are invoked by both transactions.

We shall use this definition as the basis for our study of concurrent execution of
transactions. In the next section we generalise from pairwise serialisability to
serialisability of a number of transactions. Note that the definition holds for a
distributed system where there can be no assumption of global time. All thatis
needed is time local to each object.

4.3 Example

Consider again the example of Section 3.3, of two transactions Sum (S) and Transfer
(T).

The pairs of conflicting operations on objects invoked by the two transactions are:
T: debit (account-A, £1000) and S: read-balance (account-A)
T: credit ( account-B, £1000) and S: read-balance (account-B).

In both of the serial schedules these pairs of conflicting operations are carried out in
the same order by the transactions.

In the non-serial schedule, which leads to an incorrect result, the pairs of conflicting
operations on objects invoked by the two transactions are:

T debit (account-A, £1000 ) and S: read-balance (account-A), (account-A: T
before S)

S: read-balance (account-B) and T credit (account-B, £1000), (account-B: S
before T).

The transactions therefore do not meet the condition for serialisability.

4.4 Serialisability illustrated by directed graphs of transactions

In this section we develop a graphical representation for schedules of operations of
transactions. Any necessary ordering of the operations within a transaction is
indicated in its graph. Figure 4 shows the transactions Sum and Transfer used
above. Taking the Sum transaction as an example, start comes first, the




Sum:

/4 read-balance (account-A)

start

> print (account-A +account-B) | —p| commit

read-balance (account-B)

/+deblt (account-A) \

credzt (account-B) /

Transfer: start

commit

Figure 4 Graphical representation of the Sum and Transfer transactions.

read- balance operations may take place in either order or in parallel (on a
multiprocessor) but must precede the print operation, after which comes the commit
operation,

W and X W’ Y and Z '
do not commute I @ do not commute | ¥

I

X Z

I

transaction T, @ -> @
transaction T, @_>_> _>@

Figure 5 A specification of two transactions.

In the next examples we use a more concise notation for the purposes of discussion; A
and B for objects and W, X, Y, Z for operations. Figure 5 specifies two transactions,
both of which access objects A and B, The operations W and X on object A are
conflicting, as are operations Y and Z on object B. In practice, an object is likely to
have many operations but we consider a minimal example in order to highlight the
issues. We focus on pairs of conflicting operations in order to explore the definition of
serialisability given in Section 4.2, The graphs show the operations within each
transaction in serial order for simplicity. Our concern is to explore how concurrent
transactions may be represented.

S, )» > »

@ @ T, —»T
serialisation graph,

HOEDEDEO

see Section 4.5
Figure 6 A serialisable schedule of the transactions' operations.

10




1

serialisation graph,
T @ @ @ @ see Section 4.5
2 »> -» -»>

Figure 7 A non-serialisable schedule of the transactions' operations,

HORDECDLO B
v X~

Figure 6 shows a serialisable execution of the operations of the two transactions:

T, invokes W on A before T, invokes X on A, (object A: T before T',)
T, invokes Y on B before T, invokes Z on B.  (object B: T, before T))

That is, the order of pairs of conflicting operations is the same for all the objects
which are invoked by both transactions.

Figure 7 shows a non-serialisable execution of the operations of the two transactions:

T, invokes W on A before T, invokes X on A, (object A: T, before T',)
T, invokes Z on B before T, invokes Y on B.  (object B: T', before T',)

In this case, the pair of conflicting operations on A (W, X) is invoked in the order T
then T',. The pair of conflicting operations on B (Z, Y) is invoked in the order T, then
T,. There is no ordering of the transactions that is consistent with the order of
operations at both objects.

4.5 Histories and serialisation graphs

A history is a data structure which represents a concurrent execution of a set of
transactions. The directed graphs of Figures 6 and 7 are simple examples; they show
the operations within the transactions, and the order of invocation of conflicting
pairs of operations by different transactions. Note that the order of invocation of all
conflicting pairs of operations on all objects must be shown in the history.

A history is serialisable if it represents a serialisable execution of the transactions.
That is, there is a serial ordering of the transactions in which all conflicting pairs of
operations at each object are invoked in the same order as in the given history.

An object is a witness to an order dependency between two transactions if they have
invoked a conflicting pair of operations at that object. A serialisation graphisa
directed graph that shows only transaction identifiers and dependencies between
transactions; the vertices of the graph are the transactions T',, and there is an edge
T,->T,if and only if some object is a witness to that order dependency. For example
T,->T, is the transaction graph for the history in Figure 6.

Figure 8 gives examples of possible serialisation graphs for four transactions. In
both 8a and b every pair of transactions have conflicting operations executed in the
same order (there is at most one edge between each pair of transactions). In Figure
8b the serialisation graph has a cycle and the history represented by the serialisation
graph is not serialisable.

In general we must ascertain whether a given schedule of the operations within a set
of transactions is serialisable. We require a total ordering of the set of transactions
that is consistent with the schedule.

11




T " T,
T *\>3 T1\ \>3

a) a serialisation graph b) a serialisation graph
for a serialisable history for a non-serialisable history

Figure 8 Examples of serialisation graphs.

Each object knows which pairs of its operations conflict.

Each object knows which transactions have invoked a pair of conflicting
operations: it is a witness to an order dependency between them.

Provided that the order dependencies are consistent both at each given object and
between objects then an ordering is determined for each pair of transactions
involved. IF NOT, then there is a cycle in the serialisation graph, say

T,->T,-> T, asin Figure 7, and the transaction history cannot be serialisable.

This information can be assembled for all the objects invoked by the set of
transactions, giving rise to the serialisation graph.

To find a total ordering of the set of transactions that is consistent with the
pairwise order dependencies requires a topological sort of the serialisation graph.
This can be done if and only if the graph is acyclic (Aho et al., 1983).

Suppose that a TP system maintains a serialisation graph of the transactions in
progress. A new transaction is submitted and the system attempts to execute it
concurrently with the ongoing transactions. Any proposed schedule of the operations
of the new transaction can be tested by creating a serialisation graph which is the
original one extended with the operations of the new transaction. A schedule can be
rejected if the serialisation graph thus extended has a cycle.

5 Dealing with aborts: more about the property of isolation

The theory outlined above does not take into account that the operations of a
transaction might be undone due to an abort termination. It must be possible to
return the system to a consistent state as though the transaction had not taken place.
The following problems could arise through concurrent execution of transactions,
even if a serialisable schedule of suboperations had been devised. It is demonstrated
that serialisability is necessary but not sufficient for correct concurrent operation.

5.1 Cascading aborts

Figure 9 shows a serialisable schedule of the transactions T, and T, used above in
Section 4. This time, T, happens to abort.

Suppose that the transaction scheduler, having noted the order of operations for a
serialisable transaction, had in order to achieve maximum concurrency allowed T', to
execute operation X on object A as soon as T, had completed operation W and

12




HOXDEEEO
HOLOLD

Figure 9 Example of a cascading abort.

T, T,

similarly for object B. T\, may have seen state or performed output that is now
incorrect because T', has aborted and T', must also be aborted.

In general, aborting one transaction could lead to the need to abort a number of
related transactions, called cascading aborts. This behaviour might degrade
system performance so badly that it could be advisable to ensure that any state seen
by a transaction has been written by a committed transaction. In other words, the
effects of the suboperations of a transaction are not made visible to other
transactions until the transaction commits: thus enforcing the property of isolation
in the implementation. A schedule of operation invocations which enforces this
property is called a strict schedule.

This approach can cause difficulties in systems where transactions may be long and
contention is likely. Strictness may be deemed unnecessary if aborts are unlikely to
happen. Note, however, that if non-strict operations are allowed to go ahead,
transactions which invoke them will be delayed when they request to commit if they
have seen uncommitted state.

5.2 The ability to recover state

The discussion here is in general terms.- In Section 7 specific methods for achieving
correct (serialisable) executions of concurrent transactions are described. Some of
the scenarios given below as examples might not in practice be allowed to arise, or
some of the theoretically possible systemn actions might be deemed too expensive to
implement.

If abort is supported it must be possible to return the system to a consistent state, as
though the aborted transaction had not taken place. Consider the following
interleaving of operations within a concurrent execution of transactions T, and T,
The operations involved, several credit operations on bank accounts, are
commutative so there is no problem with serialisability.

suppose A =£5000 B=£8000

start,;

credit; (account-A, £1000) A=£6000

credit; (account-B, £500) B=£8500

start,

credit, (account-A, £200) A=£6200

abort; (A=£5200 B=£8000should be achieved)
credit, (account-B, £600) B=£8600

abort, (A=£5000 B=£8000shouldbe achieved)

13




This example schedule is not strict, that is, it violates the property of isolation. If
this is the case, greater care must be taken on abort or on crash recovery than merely
restoring each object's state to that prior to the aborted operation. When T', aborts,
T, has already done another credit operation on account-A. The value of account-A
cannot simply be put back to that prior to credit; (account-A, £1000). Neither can we
take no action at all; T, goes on to abort. We cannot then put the value of account-A
back to what it was prior to credit, (account-A, £200) (this was the value after the
credit by T', which has already aborted). If we had discarded the value prior to T','s
invocation the original state would be irrecoverable. For this reason we assume that
a record of invocations is kept with the object and we have higher level semantics
than merely a record of state changes.

We shall assume that every operation has an inverse or undo operation. When a
transaction aborts, each of its invocations must be undone. For a given object, if
there have been no conflicting invocations since the one that is to be undone then we
simply apply the undo operation to the current state (the order of invocation of
commutative operations is irrelevant). In this example, the inverse of credit is debit.
When T, aborts we can simply debit (account-A, £1000) and remove the record of the
original invocation from the object.

If there has been a conflicting invocation, such as an add-interest-to-balance
invocation, since the invocation we require to abort then we must undo all the
invocations back to the conflicting operation. After we have undone that, we can
perform the undo to achieve the abort we require, then we must do the subsequent
operations again.

This is a complex procedure and is the penalty to be paid for relaxing the property of
isolation in an implementation and allowing non-strict conflicting operations to be
invoked. In general, we shall assume a strict execution of operations to avoid this
complexity, although as stated above, strictness may not be realistic in some
systems. A strict execution can be enforced if each object delays any request to
invoke an operation which conflicts with an uncommitted operation. An object must
then be told when a transaction that has invoked it commits; this is assumed to be
through a commit operation in the object's interface. Commit would cause all state
changes resulting from invocations on the object by the transaction to be made
permanent and visible to other transactions.

6 Distributed, object oriented transaction processing

Figure 10 shows two instances of a transaction processing system (TPS) such as
would occur at two nodes in a distributed TPS. We assume:

® A client submits a transaction at one node only, we shall call it the coordinating
node.

® A given object resides at one and only one node; that is, we assume there is no
object replication. An object invocation takes place at this home node.

@ There are mechanisms for locating an object, given its unique identifier.

A transaction manager is responsible for validating the clients' submissions and for
passing the component operations of the transactions to the local scheduler, if the
objects to be invoked are in the local database, or to a combination of the local and
remote schedulers according to the location of the objects involved.

14




000 68

transaction transaction
processing system processing system
transaction transaction
manager ¢ —————————p manager
communication
scheduler scheduler
data manager data manager
recovery recovery
manager manager
cache cache
manager manager
database database
(persistent memory) (persistent memory)

Figure 10 A distributed transaction processing system.

A scheduler will use some strategy to achieve a serialisable schedule of the
operations of the transactions in progress. Section 7 introduces the general
principles of concurrency control which apply both to a centralised and a distributed
implementation of a TPS. Section 8 discusses the issues which are specific to a
distributed TPS.

The data objects in persistent memory will be transferred into main memory for
operation invocation and new values will be written back. This is the concern of the
cache manager. The recovery manager is responsible for ensuring that sufficient of
the object histories is recorded in persistent memory to allow the TPS to support the
properties of atomicity and durability of transactions in the presence of crashes. For
example, the results of operation invocations must be recorded in persistent memory
before a transaction is acknowledged to the application as committed. Crash
recovery procedures are not discussed in this tutorial.

For further reading on implementations of TPS see [Gray and Reuter 93].

6.1 An object model for a distributed TPS

Figure 11 shows an object with type operations and some management operations
such as commit and abort which may be needed for practical implementation of a
TPS. We assume (Section 4.2) that each object holds information on the operations
that have been invoked on it. This information includes the transaction identifier of
the invoker and the time of the invocation, It should be emphasised that thisisa
theoretical starting point: all relevant information is assumed to be held. It would

16




not be possible in a practical implementation to hold an indefinite history from the
initial create operation with every object and optimisations would have to be made.

operation 1 .
{) data object
type operation 2 ,’| for each operation invocation:
operations , transaction identifier
. / operation invoked
, information __and arguments
operation n . time of invocation
. N old and new values
: commit N of object state
management ‘ A
operations
P abort

Figure 11 An object used in a transaction system.

7 Concurrency control
7.1 Concurrency control through locking

An object may be assumed to have lock and unlock operations as well as those
previously discussed. We assume initially that an object can be locked and only the
holder of the lock can invoke an operation on the object; that is, we are enforcing
exclusive access to the object and are not, at present, considering the use of operation
semantics to achieve a greater degree of concurrency. We are also assuming that the
granularity of locking is the whole object. In order to carry out a composite operation
comprising related operations on distinct objects, a number of locks are needed.

Let us assume that the transaction scheduler will issue lock and unlock operation
invocations as well as those discussed previously. A possible strategy is to lock all
the objects required by a transaction at its start and to release them on commit or
abort. Can we achieve better concurrency behaviour than this?

7.1.1 Two-phase locking

In two-phase locking, locks can be acquired for a transaction as they are needed. The
constraint which defines two-phase locking is that no lock can be released until all
locks have been acquired. A transaction therefore has a phase during which it builds
up the number of locks it holds until it reaches its total requirement.

In the general form of two-phase locking a transaction can release locks piecemeal as
it finishes with the associated objects. If atomic transactions are to be supported with
the property of isolation (that the effects of a transaction are not visible to other
transactions before commit), a safe procedure is to release all locks on commit, This
is called strict two-phase locking. Allowing visibility earlier allows more
concurrency at the risk of cascading aborts and state which is difficult to recover, as
discussed in Section 5.2.

Two-phase locking guarantees that all conflicting pairs of operations of two
transactions are scheduled in the same order and thus enforces a serialisable
schedule of transactions. This is reasonably intuitive but we will discuss it further
after looking at an example.

16




It is possible for a lock request to fail because the object is locked already. In this case
the transaction may be blocked for a time in the hope that the transaction holding
the lock will complete and release the lock. It is possible for deadlock to occur as
shown below.

7.1.2 An example of two-phase locking

OO DEOECUERO,

T (transfer). D debit
Q .\ CR credit
R read-balance
@ ‘@
T(sum): U unlock

Figure 12 Two transactlons 1nclud1ng lock and unlock operations.

In Figure 12 T, is the transfer transaction which first debits (D) A then credits (CR)
B. For conaseness we shall not show a balance check here. T, is a transaction which
sums the values of A and B using read-balance (R). Lock (L) and unlock (U)
operations have been inserted. When T, and T, are run concurrently, any of the
following can happen:

1. T,locks A before T', locks A. T, proceeds to lock B and calculates and outputs
A +B. T,is delayed when it attempts to lock A. A serialisable schedule T, ->T, is
achleved

2. T,locks A before T, locks A. T', proceeds to lock B. T, is delayed when it attempts
to lock AorB. A serlahsable schedule T,->T,is achleved

3. T,locks A before T', locks A. T, locks B. Deadlock is inevitable.

Two phase locking ensures that a non-serialisable schedule of the operations of
transactions cannot occur. The method is subject to deadlock but the occurrence of
deadlock means that a non-serialisable schedule has been attempted and prevented.

7.1.3 Deadlock in two-phase locking

Allowing the objects required by a transaction to be locked separately rather than all
together and allowing processes to hold their current objects while requesting further
locks (the definition of two-phase locking) can lead to deadlock. That is, the rules of
two-phase locking set up the conditions which make deadlock possible: 1) exclusive
allocation (in the sense that a request for an object invocation can be refused) 2)
resource hold while waiting and 3) no preemption, see [Bacon 93]. Concurrency
control based on two-phase locking must therefore have provision for dealing with
deadlock.

The ability to abort a transaction is likely to be in place for crash resilience and
application requirements. Deadlock detection followed by abortion of the deadlocked
transactions is likely to be a better design option than deadlock avoidance, which
involves a greater overhead. A simple alternative to maintaining complex data

17




structures and running an algorithm on them for deadlock detection is to time-out
requests for locks and to abort transactions with timed-out lock requests.

A general point is that if the ability to abort is essential in a system design for
reasons other than recovery from deadlock (for crash resilience or because the
applications require it) then deadlock becomes a problem that is relatively easy to
deal with without introducing excessive overhead. The overhead of supporting abort
was already there!

7.1.4 Serialisability of two-phase locking

Suppose two transactions have a pair of conflicting operations on object A, and
another pair on object B. A particular ordering of the conflicting operations is
determined as soon as one of the transactions locks one of the objects. It cannot
release the object until it has locked the other object (the two-phase locking rule)
which it may or may not succeed in doing. If it succeeds, it has acquired locks on both
objects over which there is conflict. Ifit fails because the other transaction has
locked the other object, deadlock is inevitable. This argument generalises to any
number of objects. It is not quite so obvious that it generalises to any number of
transactions.

We have established that two-phase locking enforces that the conflicting operations
of every pair of transactions are scheduled in the same order. It remains to argue
that a cycle involving a number of transactions is not possible. The intuition here is
thatif T', is “before” T', (in the sense of Section 4: the operatlons in T, of all conflicting
pairs are scheduled before the conflicting operations in T))) and T, is before T,, then
T, must be before T',: the before relation is transitive. Note that thls argument
generahses toa dlstrlbuted implementation because a before relation comprises
decisions on the order of invocations at individual objects. There is no need for a
single value of system time.

7.1.5 Semantic locking

The above discussion has assumed a crude locking policy; that an entire object is
locked for exclusive use before an operation is invoked on it. For some operations,
such as read-balance, any number of invocations could take place concurrently
without interference. We could at least refine the system's locking policy to allow for
shared (read) locks and exclusive (write) locks to be taken out.

In this case lock conversion might be required in some circumstances. A
transaction might read a large number of object values and, on that basis, decide
which object to update. The shared lock on the object to be updated would be
converted to an exclusive lock and the shared locks on all the other objects could be
released, at the time allowed by the two-phase rule. Deadlock could arise if two
transactions holding a given shared lock both required to convert it to an exclusive
lock.

By regarding each object as a separate entity there is scope for indicating which
operations can be executed concurrently and which can't (recall Section 4.1). Locking
could be associated with each operatlon on an object and not provided as a separate
operation. When an invocation is requested a check of any degree of sophistication
could be computed to determine whether to go ahead or consider the object locked

18




against this invoker at this time and with this current object state. In general,
semantic locking can be based on conflict specification, based on commutativity
(Section 4.1). The computational overhead of two-phase semantic locking would be
large and the approach has not been used in practice.

An alternative [Wu, 93], [Wu et al. 98] is to lock only the component of an object
required for a given invocation instead of the entire object. Invocations which access
different parts of an object can then proceed in parallel.

7.2 Timestamp ordering

We are aiming to run transactions concurrently and to produce a serialisable
execution of their operations. An alternative approach to locking for achieving this
is to associate a timestamp with each transaction. One serialisable order is then
imposed on the operations: that of the timestamps of the transactions they comprise.
Assume initially that the timestamp is the time of the start of the transaction and is
recorded at the invoked object with every operation that transaction invokes.

Suppose a transaction invokes an operation. Suppose a second transaction attempts
to invoke an operation that conflicts with it. If the timestamp of the second
transaction is later than (>) that of the first transaction then the operation can go
ahead. If the timestamp of the second transaction is earlier than (<) that of the first
it is deemed TOO LATE and is rejected (the requesting transaction is aborted and
restarted with a new, later, timestamp). If this is enforced for all conflicting pairs of
operations at every object then we have a serialisable schedule of the operations of
the concurrent transactions.

This approach enforces one particular serialisable order on the operations of the
concurrent transactions: that of the transactions' timestamps. This sacrifice of
flexibility can be justified on the following grounds:

® the implementation is simple and efficient, thus improving system performance
for all transactions,

® the information recorded for concurrency control is associated only with each
object and is not held or processed centrally,

® objects are not “locked” for longer than the duration of a single operation, unlike
two-phase locking, thus giving more potential for concurrent access to objects (but
see below for a discussion of strictness in timestamp ordering).

Let us consider implementation through the simple example used above and
illustrated here in Figure 13. Assume the timestamps indicate T, <T,

T, (transfer): @—» —» S start
C commit

T 1< T,
(timestamps D debit
of transactions) X
CR credit
T2(sum): e a

Figure 13 Two transactions with timestamp ordering.

R read-balance

19




Assume that objects A and B record the timestamps of the transactions which carried
out potentially conflicting pairs of operations (debit (D) and read-balance (R) are non-
commutative, as are credit (CR) and read-balance). Consider the following examples
of orderings of the operations of T, and T', and the corresponding actions taken by
objects A and B:

1. DA, R A, R,B, CR B FAILS because it conflicts with R,B which has a higher
recorded timestamp (of T,), T, is aborted.

2. R,A, R,B, D,A FAILS because it conflicts with R,A which has a higher recorded
timestamp, T', is aborted, even though the order T, < T, is serialisable.

An early transaction fails when it attempts to invoke an operation on an object on
which a later transaction has already carried out a conflicting operation.
Transaction abort could therefore be a common occurrence if contention was likely.
If contention is unlikely, the method incurs little overhead.

The following examples illustrate that the definition of conflicting behaviour must
be considered carefully. Suppose a transaction to read a large number of items,
process them and write a value depending on all the values read (the account to be
credited is that with the lowest balance) was run concurrently with transactions each
of which updates one of the values read. Figure 14 illustrates the point with a small
number of objects.

/' S start
C commit
T,<T, @ D debit
CR credit
. R read-balance
: —» >

Figure 14 Another example of timestamp ordering.

T,

R,A, R.B, R,C, R,D, CR,E, R;E — this fails because R E conflicts with CR _E
which has a higher recorded timestamp. The semantics of the transaction
indicate that it need not fail, since although the value read by T', relates to the
state after T, has run, rather than before, it is not incorrect, in fact it is more
relevant. Forcing serialisation in the order T',->T, happens to be unnecessary in
this case but we can only say this because we know the intention of T', is to invoke
a credit on whichever of objects A, B, C, D and E has the lowest value.




Two-phase (exclusive) locking was shown to limit concurrency more than might be
strictly necessary but delivered correct results. Timestamp ordering may achieve a
higher degree of concurrency because an object is available unless a potentially
conflicting operation is being invoked on it (but see the next section). We have seen
that a large number of aborts could be made necessary by the particular serialisation
enforced and that no simple general definition of conflicting operations would allow
us to be more flexible than this. The simple description given here has used the time
of the start of a transaction as its timestamp; it might be more appropriate to use the
time of its first invocation of an operation which belongs to a conflicting pair.
Refinements of the basic scheme are discussed further in Bernstein et al. (1987).

Timestamp ordering can be a simple and effective scheme when conflicts are
unlikely. The fact that the decision on whether an operation on an object can go
ahead is made on the basis only of information recorded with the object itself makes
it a suitable method for a distributed system.

7.2.1 Strict timestamp ordering

Timestamp ordering, as described above, does not enforce the property of isolation
and is therefore subject to cascading aborts and complex recovery of object state as
discussed in Section 5. Recall that it is necessary to be able to undo and redo
operations.

If isolation (strict execution) is to be enforced in the implementation, additional
mechanism to that described above is needed. A transaction scheduler together with
the individual object managers could achieve this. An object could ensure thata
commit operation had been invoked for a given transaction before allowing any
operation of any conflicting pair of operations to go ahead for another transaction
with a later timestamp.

Note that this does not introduce the possibility of deadlock. Circular waitis
prevented by the timestamp ordering of invocations; that is, a cycle of transactions
cannot occur such that each hasinvoked an operation and is waiting for another
transaction to commit before invoking another operation.

Strict timestamp ordering introduces the requirement for atomic commitment.
Assume that a given transaction has invoked, on a number of objects, operations
which belong to conflicting pairs. All the objects must agree whether the transaction
is to commit or abort. That is, all or none of the objects invoked by the transaction

- must commit the state changes effected by the transaction. This is not difficult to
achieve in a centralised system in the absence of failures. In practice, crashes must
be anticipated and distributed implementations may be required, see Section 10.

7.3 Optimistic concurrency control (OCC)

Optimistic schemes for concurrency control are based on the premise that conflict is
unlikely and crashes and transaction aborts are rare. We should therefore be careful
to avoid high computational overhead due to concurrency control mechanisms, but
we must still ensure a serialisable execution. OCC achieves high availability of
objects so delay is minimised at transaction start. OCC is appropriate for certain
application areas where these conditions and requirements hold; that is, for
applications which need a transaction system, but where it is unusual for different

21




transactions to touch the same objects. Applications which need real-time response
and therefore cannot tolerate delay on accessing objects also benefit from an
optimistic approach. These issues are discussed further in Section 11.

The strategy of OCC is to apply no changes to persistent memory during the
execution of transactions. When a transaction requests commit its history is
validated to determine whether it can be serialised along with transactions that have
already been accepted. (This is sometimes called backward validation. Forward
validation would also take into account current transactions). Once a serial order of
validated transactions is established, updates are applied in that order to objects in
persistent memory. The update of persistent memory must be such that in any state
read from an object either all or none of the changes at that object associated with a
given transaction are visible.

During transaction execution invocations are made on workspace copies, shadow
copies, of objects. Each such shadow copy has a well defined version, which
indicates the transaction whose updates have most recently been applied to the
object in persistent memory. Let us also assume that a timestamp is recorded with
the transaction identifier as part of the version information and that the timestamp
is the time when the transaction is validated and its updates are guaranteed.

Each transaction undergoes three phases:

1. Execution (read): the transaction executes to completion (commit or abort) using
shadow copies of data objects.

2. Validation: following commit the execution schedule is checked to ensure
serialisability.

8. Update (write): update invocations are applied to objects in persistent
memory in serial order, transaction by transaction. It is the
responsibility of the update manager to ensure that all
updates succeed. The update manager will know at any time
those transactions for which updates have succeeded. It can
therefore be asserted, at a given time, that the updates up to
those of some transaction have succeeded.

For valid execution each transaction must interact with a consistent set of shadow
copies. One (heavyweight) way of achieving this is to ensure that updates are
applied atomically across all objects participating in a transaction, using an atomic
commitment protocol such as 2-phase commit in a distributed system (see Section
10). Validation can take place at each object as part of the first phase of the protocol,
with update taking place only if all objects can accept the transaction. Recall that a
transaction is defined to take the system from one consistent state to another. We
can then make sure that a set of shadows taken at the start of a transaction is
consistent; that is, we must also ensure that taking a set of shadows is made atomic.

There are objections to this approach:

e The enforcement of update atomicity using a protocol such as 2-phase commit
reduces concurrency and is bad for performance in general. That is, there is
overhead in using such an algorithm which penalises all clients of the system.
Also, specific transactions will not experience high availability of objects if they
are held for the atomic commitment of some other transaction.

22




e At the start of transaction execution we may not know what shadows are
required. Even if we enforce atomic commitment this does not help unless all
shadows are taken “at the same time”,

e More importantly, there is a mismatch of philosophy. OCC is postulated on the
assumption that interference between transactions is unlikely. It is not worth
going to a lot of trouble to ensure that it does not occur. The approach we are
objecting to is pessimistic rather than optimistic!

We should therefore abandon the requirement that we take a consistent set of
shadows at transaction start. We can then delay making a shadow copy of an object
until an operation is invoked on it, noting the object's version so that it can be
checked by the validator, There is then the risk that execution will proceed using
inconsistent data, but this risk applies also to other schemes that aim for high
concurrency, such as allowing non-strict execution in a 2-phase locking approach.
We can achieve high concurrency only if we are prepared to risk abort. Figure 15
illustrates the problem.

transaction T invoked objects A, B, C
T is validated and its updates are to be
committed by the update manager

T's issued timestamp is t

1 - apply
T's updates

2 - done

update

manager 3 -apply e note that a new transaction may take
shadow copies of A, B and C which are

inconsistent. That is, in this example,

4 - done if the new transaction invokes A and C,
T's updates may have been applied to
5 - apply @ AbutnottoC.
comes next

Figure 15 Non-atomic commitment of a transaction.

The execution of the transaction continues, invoking shadow objects until:

either abort:  the shadow objects are simply discarded;
or commit: the validator is called.

The validator has knowledge of all transactions whose validation or update phases
overlap execution of the transaction that is to be checked. When a transaction
invokes an operation on a shadow object there may be transactions with outstanding
updates guaranteed for that object. The validator must ensure that there has been
no conflict. The information used by the validator might be extended to take into
account transactions that have started to execute since this one, but we shall not
consider this possibility further.

Two conditions need to be checked by the validator. If either cannot be met the
transaction must be aborted.

1. The execution must be based on a consistent system state.

The requirement is that the versions of the shadow objects were all current at
some particular transaction timestamp. Figure 16 shows a possible scenario.
Suppose that at the start S,, of transaction T the earliest unacknowledged
timestamp is u; that is, a transaction with timestamp u is in the process of being

23




............................................................................ »
t, t, t, u execution phase
of transaction T
update timestamps of
the shadow objects
used by transaction T S, = start of transaction T

Figure 16 checking for a consistent state.

committed and its updates are not acknowledged by all the objects it has invoked.
Suppose that during T"s execution phase shadow copies are made whose version
timestamps are (in some order) ¢, t,, ...t,. If all timestamps ¢,, ¢,, ...t, are earlier
than u, then certainly all versions were current at the latest of the timestamps
recorded, say t,.

If interference is low it is likely that all updates to the objects used by T will have
been acknowledged before the transaction starts, and also that no further updates
occur during the execution phase. Even if this precise scenario is not followed it is
still possible for the set of shadows to be consistent.

If validation of the shadow objects used by T"succeeds then the execution of T'is
based on a timestamp at which all the shadow versions were consistent, let us call
this the base timestamp of T'.

2. The transactions must be serialisable.

The transactions with which the given transaction T'must be reconciled are those
validated for update with a timestamp later than the base timestamp of T,
whether or not their updates have been applied. Recall that once a transaction is
validated its updates are guaranteed, and that updates are applied at each object
in the order of the timestamps issued by the validator.

The requirement is that an ordering of these transactions can be found in Whlch
serial update is meaningful: that is, that the final system state reflected after the
(serial) update of the set of transactions must be consistent with all of their
execution phases, performed concurrently. Although the definitions of conflict
needed can be based on non-commutativity this can be unnecessarily restrictive,
as we shall see in an example.

Provided that both conditions are met, the transaction can be accepted, recorded as
validated and issued a timestamp. This establishes its position in the queue of
validated transactions that are waiting to update. In simple cases object update is
just a matter of copying a shadow object back into persistent memory. In other cases
it may be necessary to reapply the operations of a transaction to a version more
recent than the original shadow.

OCC has very different properties from timestamp ordering. In the latter
transactions are scheduled in a predetermined order, usually that of transaction
start. In OCC the order is determined at validation time, and in theory the validator
is free to insert the current transaction at any position in the queue for update. The
validation algorithm could therefore become quite elaborate, but it is probably not
worth going to great lengths in an attempt to optimise. OCC is suitable only if there
is little interference between transactions, and the hope is that simple validation will
normally succeed.

24




7.3.1 Examples

T, (transfer): @.; _> S start

C commit

D debit
print, A+B CR credit

(sum): e 0
' R read-balance

Figure 17 The transfer and sum example.

Figure 17 shows concurrent transfer and sum transactions. Let us assume that both
transactions are using shadows of the same values of A and B. Note that sumisa
read-only transaction. It might be argued on the basis of this example that there is
no point in taking shadows for a read-only transaction. The counter argument is that
a number of reads might be required from an object and taking a shadow ensures
that the reads are performed on the same version of the object. We shall make the
assumption that shadows are taken when an object is first invoked, either for reading
or writing.

The sum transaction uses its shadow values of A and B quite independently of what
the transfer transaction is doing to its shadow values of A and B. In Section 4.1 we
considered read-balance and credit (or debit) to be non-commutative. If consistent
shadow copies are taken by both transactions this is no longer relevant. In fact, if the
shadows used by a read-only transaction represent a consistent system state then
that transaction cannot fail. If we allow the possibility that the shadows used by a
transaction do not represent a consistent state then it can be rejected when it
attempts to commit. A problem here is that the transaction may have performed
output based on inconsistent object values. This problem is not exclusive to systems
which use OCC. Whatever concurrency control scheme is used in a system there
must be a policy on how to deal with aborted transactions that have performed
output.

If we assume each transaction is working on a consistent set of shadows we need only
be concerned with operations that are non-commutative with respect to state
changes at the object. Values output by the transaction relate to a consistent version
of the system state and cause no problems. The sum transaction will therefore be
validated as correct at commit, whenever this is requested. It has not changed the
value of A or B.

The values output by a number of transactions that are working on the same version
of system state are not the same as those that would be output by a serial execution of
those transactions on the persistent state; they execute in parallel on the same
version. The transactions are however forced to commit in some serial order. It
should, if possible, be arranged that the output is not misleading to the application,
for example “credit of £100 accepted” rather than “new balance = £1000”, In some
cases it may be necessary to abort a transaction because of the outputit has
performed.

When the transfer transaction requests commit, the operations it has done on A and
B are validated. The information recorded at the persistent objects and their

25




shadows is sufficient for the commit to be validated as correct or rejected. Suppose
transfer has invoked an operation on A or B which belongs to a conflicting pair. If
some other transaction has committed (since the shadow was taken for transfer) the
result of an invocation of the conflicting operation of that pair, then transfer must be
aborted. The validation phase checks this for all the operations that the transaction
requesting commit has invoked on all objects.

information recorded at object A:

. .
persistent |credit @/y at time t;, A is£5000
copy of A —T— i £5000->£5005 ;o T,
[ t,: £6005— >£7005 credit (£2000) T,

T, A=£5000 credit(£2000) A=£7000 takes placeinshadow takenatt,
T, A=£5000 interest A =£5005 takes place in shadow taken att,

T; requestscommit validated and committed at time t,

information is recorded at the persistent copy of A. A=£5005
T, requests commit

REJECTED at validation because credit does not commute with interest
which has been committed since T','s shadow copy was taken. The
transaction is aborted and restarted as T',
T; A=£5005 credit(£2000) A=£7005 takesplaceinshadow takenatt,
T, requests commit validated and committed at time t,

information is recorded at the persistent copy of A. A=£7005

Figure 18 Example showing abort and restart.

Figure 18 shows transaction abort and restart when non-commutative credit and
add-interest-to-balance operations are invoked on the same value of a bank account.
The validation phase indicates whether commit is possible and the commit phase
must ensure the correct persistent values, taking into account changes that have
been committed since the shadows were taken.

In the example, T',invokes credit (£2000) on a shadow copy of account-A, changing its
value from £5000 to £7000. A shadow copy taken from the same persistent object
value has add-interest-to-balance invoked by T, changing its value from £5000 to
£5005. This latter transaction T, is first to commit and the persistent value of
account-A is updated to £56005. T, now requests commit. Because credit and add-
interest-to-balance are defined to be non-commutative, therefore conflicting, the
commitis rejected. The transaction is restarted as T, with a shadow of account-A
with value £5005. The credit (£2000) is performed at the shadow giving £7005 for
the value and this value is then committed at the persistent copy of the object.

26




Notice that when transaction T', requests commit and is rejected, applying the credit
operation at that stage at the persistent copy of the object would yield £7005! The
requirement for commutativity is too strong for a case such as this. Commutativity
enforces that the same result is obtained whatever the order of execution of a pair of
transactions. As soon as one transaction has committed, the serialisation order is
defined. If the rejected transaction is aborted and restarted it is from the system
state committed by the first. They are no longer running in parallel. Ideally, this
should be taken into account when T, requests commit.

Ifinvocations are carried out on shadow copies which do not conflict with subsequent
updates at the persistent object, the invocations can be reapplied to the object on
commit. For example, suppose a shadow copy of account-A was credited by £1000,
changing its value from £4000 to £5000. Suppose at commit, other transactions have
caused the balance to reach the value £8000 by invoking operations that commute
with credit. The credit operation is redone at the object giving a balance of £9000.

7.3.2 Discussion of the examples

Generalising from these examples, when a transaction requests commit and after a
consistent starting point has been ascertained (condition 1):

® the validation phase uses the information recorded with each persistent object
involved and its shadow, to check whether any non-commutative pairs of
operations have been invoked on the object by this transaction and any other that
has committed since this transaction took its shadows. As noted above, this
definition of conflict may be too restrictive, See Herlihy (1990) for further
reading.

® Ifthe validation phase is successful, the transaction is committed. This may
involve redoing (at the persistent copy of the objects) the operations that have
changed the values of shadow objects. This can be done because the validation
phase has rejected the commit if any of the invocations of the transaction do not
commute with committed invocations.

® Ifthe validation phase is not successful the transaction is aborted.

Optimistic concurrency control allows every operation invocation to go ahead
without the overhead of locking or timestamp checking; it achieves high object
availability. The fact that shadows are taken and work proceeds without delay
makes this method suitable for applications in which timing guarantees are required
and in which conflict is rare. The overhead occurs when commit is requested. The
validation phase uses the information stored locally at each object. If all the objects
invoked by a transaction indicate that commit is possible then the updates can go
ahead.

Optimistic concurrency control operates on a first come (to commit) first served basis.
If there are several shadows of an object, the state of the first to commit becomes the
new object state, without regard to fairness or priority of the transaction. If
contention is rare the method works well. If the application is such that transactions
might invoke heavily-used objects (data “hot-spots”) they are likely to be aborted and
restarted, thus wasting system resources. The method should probably not be used if
thisis likely to occur.

27




8 Distributed concurrency control and commitment

In Figure 10 the TPS instances comprising the distributed TPS must cooperate. A
client submits a transaction to one TPS. The transaction manager identifies and
locates the objects invoked by the transaction. Local object invocations are passed to
the local scheduler, remote object invocations are passed to the (scheduler of the)
appropriate remote TPS. A TPS must therefore handle both transaction requests
from local clients and requests from remote TPSs to invoke operations on its local
objects. For this latter type of request we assume initially that the TPS does not have
a specification of the whole transaction. The scheduler at each node is passed
operations which come from both local and remote transaction submissions. As
before, the scheduler is at liberty to invoke the operations in any order, subject to the
concurrency control algorithm it implements.

We must consider:

e Concurrency control: how a serialisable schedule is achieved in a distributed
TPS. The methods introduced in Section 7: locking, timestamping and optimistic
concurrency control will be reconsidered for a distributed system.

e Commitment:; The transaction manager at a single node receives a client request
for a transaction and initiates local and remote operation invocations. It must be
notified of the results of attempted invocations; whether an invocation was
accepted and done, or rejected, or perhaps that a lock request has been
outstanding for some specified timeout period, depending on the method used to
achieve concurrency control. Assuming that all the transaction's invocations (at
all the nodes) have been notified as “done” to the initiating transaction manager
the transaction must then be committed. We shall study how this can be achieved
in a distributed system in the presence of partial failures.

Communication

The above discussion assumes communication between TPS instances. In some cases
specific applications protocols are needed, for example, an atomic commitment
protocol. Application protocols are implemented above general communications
protocols such as remote procedure call or some form of message passing.

Communications protocols are designed to allow for the possibilities of congestion
and failure of the network and the communicating nodes. The mechanism used is the
timeout. If a timeout expires the protocol may immediately inform the higher level
which invoked it or may retry a few times to allow for congestion. We shall assume
the latter here for simplicity. The higher level may therefore receive a “success”
notification or an exception, indicating a failure. The application protocol must be
designed on this basis, as we shall see for atomic commitment in the presence of
failures.

9 Concurrency control in a distributed transaction system
9.1 Two-phase locking (2PL)

In Section 7.1 two-phase locking was shown to enforce a serialisable order on the
object invocations of transactions. We noted that semantic locking would increase
concurrency compared with the exclusive locking approach which is usually
employed. We should consider how the two phases, of acquiring and releasing locks,
can be implemented in a distributed system. In a centralised system the transaction

28




manager knows when locks on all the objects of a transaction have been acquired and
the operations done. The unlock operation can then be invoked on all the objects.

In a distributed system, all the schedulers involved in a transaction must inform the
transaction manager at the coordinating node that the requested locking and
invocation of objects is done. Only then can the unlock operations be sent back to the
schedulers concerned. Notice that use of a protocol of this kind prevents timing
problems. The phases are defined at one node: the coordinating node of the
transaction. For a strict execution, that enforces the property of isolation in the
implementation, the locks are not released until the transaction is committed.

The method is subject to deadlock and we assumed in Section 7.1 that deadlock
detection and recovery would be carried out by a component of a (centralised) TPS.
This component, let us call it the lock manager, maintains information on the objects
that have been locked by transactions and the outstanding lock requests. The
implicit assumption was that all the objects concerned were local to the TPS so that
complete information on all transactions was available. A deadlock detection
algorithm could be run and action taken such as aborting some or all of the
deadlocked transactions.

In a distributed TPS the lock manager at any node can maintain the same
information as described above for invocations by local transactions. It can be told
about requests for remote invocations by local transactions. It can also know about
the requests for local invocations by remote transactions. What it does not know is
the remote locks held by these remote transactions and their outstanding requests,
and so on until the transitive closure of locks and requests is computed. This
information is needed for deadlock (cycle) detection.

The overhead of two-phase locking is large, particularly when extended for use in a
distributed system. Each node must maintain a great deal of information to detect
and recover from deadlock and the method scales badly. In practice a simpler
approach based on timeout might be adopted. If a transaction fails to acquire a lock
in a given time it is aborted and all the locks it holds are therefore freed.

9.2 Timestamp ordering (T'SO)

The major advantage of this method for a distributed implementation of concurrency
control is that only information held at each object is used to achieve serialisation.
Contrast this with the overhead described above for the distributed deadlock
detection associated with distributed two-phase locking.

At first sight it seems that there might be a problem associated with time in using
the method in a distributed TPS. In a centralised system the timestamps have a
serial order because they are generated from a single clock. In a distributed system a
system-wide ordering of timestamps is needed for correct serialisation of
transactions. This is quite easy to achieve. The essential requirement for
correctness is that every object takes the same decision about the relative order of
two timestamps. First, suppose that we use the local time of the coordinating node of
the transaction for the timestamp. Except for the case of identically equal times,
these values could be used to achieve a correct serialisable execution. To deal with
the case of equal times we just need a system-wide policy to achieve the arbitration.
The node-identifiers could be used, for example.

29




Although this method of generating and using timestamps achieves correctness it
favours nodes with fast-running clocks when arbitration between equal times is
needed.

9.3 Optimistic concurrency control

In Section 7.3 we argued that it would be pessimistic, rather than optimistic, to
ensure at transaction start that the shadow copies of objects used by the transaction
during the execution phase represent a consistent system state. To achieve this
consistency we should have to sacrifice guaranteed high availability of objects since
an object might be held during commit of some transaction when required by
another, It would be necessary to enforce atomic commitment over all the objects
invoked by a transaction and to take shadow copies of all the objects needed by a
transaction atomically. Section 10 shows how atomic commitment can be carried out
in a distributed system. This is too heavyweight when we optimistically assume that
conflict is unlikely. Also it is not always possible to know at transaction start all the
objects that will be needed by a transaction.

As in timestamp ordering, the decision on whether a transaction may commit is
based on information recorded at each object. The decision is made during the
validation phase, after a transaction requests commit. Objects vote independently
to accept or reject the transaction, and this aspect of OCC is therefore appropriate for
a distributed system. There is a need to ensure that the local contexts for validation
at the objects participating in a transaction are consistent.

The discussion of Section 7.3 was equally applicable to a centralised and a
distributed implementation. An essential requirement in a distributed system is
that transactions are validated for update in a well-defined serial order. Decisions on
validation must be communicated to the participating objects atomically, and we
shall sketch a protocol to achieve this in Section 10.2.

We required that, in the update phase of a transaction, update invocations are
applied to objects in persistent memory in serial order, transaction by transaction. It
is the responsibility of the update manager to ensure that all updates succeed. The
update manager will know at any time those transactions for which updates have
succeeded. It can therefore be asserted that the updates up to those of some
transaction have succeeded.

This places a requirement on the underlying communications system used for
making remote object invocations. There are issues specific to a distributed
implementation that are associated with the independent failure modes of its
components. It is necessary to assume that the invocations are made at the object in
the order they are sent by the update manager and that these invocations are
acknowledged to the update manager. We require that messages are not lost without
notification and are not received in a different order from that in which they are sent.
This can be achieved by selecting an appropriate communications protocol.

10 Commit and abort in distributed systems

Let us assume in the case of 2PL and TSO that the transaction manager at the
coordinating node has received a request to commit a transaction. We have to
ensure:

30




Atomicity: either all nodes commit the changes or none do, and any other
transaction perceives the changes made at every node or those at
none,

Isolation: that the effects of the transaction are not made visible until all nodes
have made an irrevocable decision to commit or abort.

We have set up the conditions that no scheduler will refuse to commit the transaction
on correctness grounds. In 2PL and TSO we have avoided this possibility by only
allowing serialisable executions to take place. For these pessimistic methods there
are two remaining issues to consider:

e Nodes or network connections might fail during commit.

e Other nodes may be attempting to carry out distributed commit at the same time
and this might involve an intersecting set of objects.

Atomic commitment protocols address these issues. The two-phase commit protocol
is discussed in Section 10.1.

In 2PL and TSO we can ensure isolation by holding locks until after commit, thus
guaranteeing strictness. If strictness is enforced we can assume that all the objects
that were invoked by the transaction to be committed are available to the commit
procedure for it. To achieve this we have introduced a possible additional delay when
an object is invoked in 2PL and TSO. Once again we are restricting concurrency
(object availability) in order to ensure that transactions see a consistent system

state.

In the case of OCC we have made no attempt to ensure the correctness of an
executing transaction, preventing harmful consequences by invoking operations on
shadow objects. After an executing transaction has issued commit we have to ensure
during validation:

Consistency:  the execution has been based on shadow objects derived from a
consistent system state, and there has been no interference at any
object from transactions executing concurrently.

We have argued against the atomic commitment of updates for OCC, but its use has
definite advantages. Herlihy (1990) proves the correctness of OCC algorithms that
are based on a two-phase protocol for update in which validation is performed at each
object during the first phase. In this paper he also shows that optimistic and
pessimistic methods can be mixed on a per-object basis. Should we wish to enforce
strictness (execution based on consistent system state only) for OCC it would be
necessary not only to commit updates atomically but also to take the shadow copies
needed by a transaction atomically. The drawback of this in a distributed system is
that it can greatly reduce object availability, which was one of the goals when OCC
was introduced.

On the other hand we have to ensure a serialisable execution, which means that a
consistent serial order of committed transactions must be established system wide.
Global consistency is enforced during validation, and locks held during this phase
relate only to the process of validation, not to the objects themselves. Once a
transaction has its updates guaranteed these can be applied asynchronously at the
participating objects, and executing transactions merely read whatever version the
object has reached when creating a shadow object. Objects are therefore available
except at the moment of version change. The drawback is loss of strictness, with the

31




result that a transaction may be rejected simply because its shadow objects were
inconsistent. Since transactions always execute to completion there can be a
considerable waste of system resources. A protocol for atomic validation is described
in Section 10.2.

We shall now look at a widely used atomic commitment protocol: two-phase commit
(2PC). Other such protocols have been defined which vary with respect to the failures
they can tolerate and the number of communications that are needed. Further
reading on the topic may be found in Bernstein et al. (1987), Ceri and Pelagatti
(1985), Bell and Grimson (1992),

10.1 The two-phase commit protocol

We assume a number of participating nodes and a commit manager at the
coordinating node of the transaction, see Figure 19a. Each participating node
“votes” for commit or abort of the transaction. Ultimately, all the nodes must make
the same decision and the purpose of the protocol is to ensure this. The two phases
involved are, broadly:

phase 1: the commit manager requests and assembles the “votes” for commit or
abort of the transaction from each participating node;

phase 2: the commit manager decides to commit or abort, on the basis of the votes,
and propagates the decision to the participating nodes.

Showing more detail of the steps involved:
1. The commit manager sends a request to each participating node for its vote.

2. Each node either votes commit and awaits further instructions; or votes abort and
stops (exits from the algorithm). Note that a commit vote indicates that both the
new value of the data object and the old value are stored safely in stable storage so
that the node has the ability to commit or abort.

3. The commit manager receives the votes and adds its own vote. If all the votes are
to commit it decides commit and sends commit to every participating node. If any
vote is abort it decides abort and sends abort to all the nodes that voted commit
(the others have already stopped). The commit manager stops.

4. The participating nodes that voted commit are awaiting notification of the
decision. They receive this notification, decide accordingly and stop.

We assume that the decision indicated in the above description is permanent,
guaranteed to persist; there is a point of decision in the algorithm at the commit
manager,

We must consider how the protocol might handle congestion and failures in the nodes
and connections involved. The two-phase commit protocol is an application protocol
which is implemented above lower level protocols. Each communication involved in
two-phase commit will have a success indication or an exception returned from the
level below. We shall assume that the lower levels have made allowance for
congestion (by retrying after timeouts) and that an exception indicates a failure of
some kind. The protocol must be designed on this basis, Bear in mind that a decision
cannot be reversed; once a decision is made, failure recovery procedures must ensure
it is implemented.

32




P CM =commit manager
stable storage a) before phase 1 PN =participating node

]
PN old and new values
of data object

PN b) phase 1 (request and

| assemble votes)
1. PNsensure new
value of data is
I

old safely in stable
storage and

PN 2. vote commit

< CM assembles votes

-_ new

-'— new

N Ty ¢) phase 2 (decide and propagate decision)
PN if all votes are for commit

CM decides commit and
3. informs PNs

’l Q PNs note commit of new value of data object
‘!Il:b new

Figure 19 The two-phase commit protocol when all nodes vote commit.

33




Suppose that an RPC from the coordinating node to each participating node is used to
implement steps 1 (request for vote) and 2 (reply with vote), A failure of any one of
these RPCs is assumed to indicate a failure of that participating node. The vote from
that node might have been abort; an abort vote is the only safe assumption, so the
transaction is aborted.

Suppose that step 3 (send the decision to nodes that voted commit) is also
implemented by RPC, the reply indicating just an acknowledgement of receipt. A
failure of any one of these RPCs indicates that the decision to commit or abort may
still need to be effected at that node. The decision cannot be changed; it has been
made and put into effect at the management node and at the nodes which have
received the decision from the manager. Recovery from failure at any node must
therefore involve terminating correctly any two-phase commit that was in progress
when the node failed and sufficient information must be stored in persistent storage
to make this possible. On restarting, the node could ask the manager for the
decision. The manager knows that the node failed and can expect the request.

The above discussion has outlined how failure resilience might be approached in two-
phase commit if one or more of the participating nodes fail. The manager might also
fail:

1. after sending requests for votes but before deciding, All the participating nodes
that voted commit will time out (at the two-phase commit level) waiting for a
decision,

2. after deciding (and recording the decision in persistent store) but before sending
the decision to any participating nodes. All the participating nodes that voted
commit will time out waiting for a decision.

3. after deciding (and recording the decision in persistent store) and after sending
the decision to some but not all participating nodes. Some of the participating
nodes that voted commit will time out waiting for the decision.

Any one participating node which times out cannot distinguish between these three
possibilities. So far we have assumed that the participating nodes know about the
manager but not about each other. It would be easy to add a list of participating
nodes to the request for vote. Any node that timed out could attempt to find out the
decision from the other nodes. Bell and Grimson (1992) and Bernstein et al. (1987)
give detailed termination protocols for 2PC and also discuss three-phase commit
(3PC) protocols.

10.2 Two-phase validation for optimistic concurrency control

We assume a number of participating nodes and a validation manager at the
coordinating node of each transaction, see Figure 20. In addition there is a single
logical agent in the system, the update manager, which is responsible for the queue of
transactions that have been validated for update. Each transaction involves a
number of participating objects, and each object votes independently accept or reject
on whether there has been conflict. In addition, any object that votes to accept a
transaction notifies the validation manager of the version timestamp of the shadow
object that was created for the execution phase.

In the figure transaction T is being validated by validation manager 2, the
participating objects being A, D and X. Another transaction involving objects C and

34




update
manager

A

'enqueue T'

‘confirm (T, t)'

e
validation validation validation
manager 1 manager 2 manager 3
site site site ;
coordinator coordinator |.f coordinator |
X s r
object A object C object X
manager manager manager
object B object D object Y
manager manager manager

Figure 20 Distributed validation for OCC.

X has just issued commit, and validation manager 8 is to validate it. Two-phase
validation has much the same general structure as the two-phase commit protocol
described in section 10.1, but there are two important differences. First, an object
may be involved in several transactions concurrently; one transaction may issue
commit when the object is already participating in the validation phase of some other
transaction. It would be possible to block the newly requested validation, but such a
policy would run the risk of deadlock. A better approach is to ask the validation
manager to try again later if the object's vote is still of interest. Secondly, if all
participants vote accept at the first phase and the transaction is validated
successfully, they do not need to apply the updates during the second phase. Instead
the validation manager applies to the update manager for a timestamp for the
transaction, and at this point the serialisation order is determined. This interaction
is atomic. The validation manager must then inform each participating object of the
decision, so that any subsequent validation takes place in a consistent context.

Interaction between the validation manager and participating objects follows the
general pattern shown in Figure 20, but the details of the protocol must take account
of the above differences. The two phases involved are, broadly:

35




phase 1: the validation manager requests and assembles the “votes” for accept or
reject of the transaction from each participating object, except those that
say busy;

phase 2: the validation manager decides to commit, reject or retry, on the basis of the
votes, taking account of shadow object consistency. If the decision is
commit it applies to the update manager for a timestamp. The decision is
propagated to participating objects.

Considering the steps involved in more detail:

1. The validation manager sends a request to each participating object for its vote on
the transaction execution.

2. Any object thatis performing validation of some other transaction replies busy
and awaits further information. Other objects either vote accept (indicating the
shadow object version timestamp) and await further instructions; or vote reject,
record rejection locally and discard the shadow object. Objects that vote reject
need not be contacted further.

3. The validation manager receives the responses and determines what action to
take.

If any vote is reject it decides reject and sends reject to all the objects that replied
accept
or busy (the others have already stopped).

Otherwise if any vote is busy it asks all the objects to suspend validation for a
subsequent retry. Objects which voted accept are then free to validate other
transactions. The validation manager will retry after a suitable interval. Objects
which voted accept originally may then vote reject.

If all the votes are accept the validation manager decides whether to commit on
the basis of shadow object consistency. If the versions were inconsistent, see
Section 18.6, it decides reject and sends reject to all the objects; the validation
manager stops. -

4. If the decision is commit the validation manager applies to the update manager for
a timestamp for the transaction. The decision is propagated to all participating
objects, together with the timestamp. The validation manager stops.

The point of decision in the above algorithm occurs when the update manager issues
a timestamp for the transaction. At that point all participating objects have voted
accept in a two-phase protocol, and they must be prepared to apply updates at some
later stage.

It is worth considering the extent to which concurrent execution is sacrificed, and the
consequences for object availability. First, the interaction to obtain a timestamp
from the update manager is atomic, and requests must be serviced by a single queue
manager. Secondly, when a validation manager receives a busy reply from an object
it abandons the attempt to validate for a while. Objects will service only one request
to validate at a time. Both of these restrictions apply to the validation phase of a
transaction. The busy reply may increase the chance that a transaction is rejected,
thus wasting system resources. On the other hand there are no bad implications for
object availability at the execution phase, since updates are applied locally at each
object during the update phase without a protocol that involves external sites.

36




Shadow objects can therefore be created except when a request is received during a
change of object version (essentially a rename operation).

This discussion has not considered how the protocol might handle congestion and
failures in the nodes and connections involved. Two-phase validation, like two-phase
commit, is an application protocol which is implemented above lower level protocols.
The considerations outlined in Section 10.1 apply equally here,

11 Summary and conclusions

The nature of distributed systems is such that the designers of distributed
applications must take account of concurrent execution and failure of their
component parts. Transactions were developed in the context of database systems to
cope with just these issues,

We use an object model throughout and assume that a single operation on an object
can be made atomic; that is, recoverable and free from interference with other
operation invocations on the same object. The discussion focusses on transactions
which implement composite operations, comprising related operations on one or more
objects.

Using an object model for transactions allows concurrency control to be based on
application semantics. The concurrency behaviour of each object may be specified by
an application developer, thus informing the implementation which operation
invocations on an object may proceed in parallel and which conflict. A general
criterion for specifying whether a pair of operations conflict is commutativity.

The order of the invocations by transactions of potentially conflicting pairs of
operations on objects is the basis on which serialisability of transactions can be
established. The individual object is the witness to these orderings. An object model
is therefore equally suited to centralised and distributed implementations of
transactions. Decision are taken locally at each object and there is no requirement
for system-wide time.

Pessimistic methods of concurrency control include two-phase locking (2PL) and
timestamp ordering (T'SO). Practical implementations of lock-based concurrency
control tend to use exclusive locks or perhaps a combination of shared read locks and
exclusive write locks with the possibility of converting a shared lock to an exclusive
one. We have assumed that the granularity of locking is the whole object. A higher
degree of concurrency is achievable if components of objects can be locked.

Lock-based methods are subject to deadlock and a simple way of dealing with the
possibility is to use a timeout mechanism instead of a formal deadlock detection
procedure. The latter would introduce a great deal of overhead in a distributed
implementation,

Timestamp ordering is simple to implement but allows only one possible serial
ordering of conflicting pairs of operations, that of the associated transactions'
timestamps. A transaction which is serialisable with ongoing transactions may be
aborted ifits timestamp is deemed too late by any object it invokes.

All methods of concurrency control must ensure that all the objects invoked by a
transaction take the same decision on commit or abort. Pessimistic methods

37




implement commit as a single atomic operation; that is, all the objects invoked by a
transaction are unavailable to other transactions during commit. We studied one
atomic commitment protocol, two-phase commit, as the basis for transaction commit
in a distributed system.

A strict execution schedule enforces the property of isolation in an implementation of
a pessimistic method of concurrency control; that is, no transaction can see the
results of an uncommitted transaction. This prevents cascading aborts and complex
procedures for recovering state on transaction abort or on a crash. If strictnessis
enforced, applications must be able to tolerate delay on access to objects. Even if
strictness is relaxed, an atomic commitment procedure may still cause delay on
access to objects.

Optimistic concurrency control (OCC) has been proposed for applications where
conflictis rare. If OCC is used when conflict occurs frequently, an application may do
work on shadow versions of objects which is later rejected and must be repeated. This
wastes both system and application resources. The attraction of OCC is thatit incurs
very little overhead when there is no conflict. In this case, validation of a transaction
succeeds and it is committed by recording its results at the persistent objects it has
invoked. An application's work on shadow versions of objects may simply be
discarded if there is a failure (or if the transaction must abort because of conflict).

A characteristic of OCC is that the objects required by a transaction may be accessed
without delay. Objects are not made unavailable by concurrency control or atomic
commitment procedures. This may be important for applications which must meet
real-time requirements.

The fact that a transaction works with shadow versions of objects in OCC gives a
suitable model for continued working in the presence of server or communication
failure and for planned detached working. If the primary copies of objects are not
accessible because of failures, local versions may be used. The commit procedure for
OCC, taking into account object semantics, gives a coherent model for merging the
results of a detached transaction with persistent system state. In the case of planned
detached working a simpler procedure than that described in Section 7 is
appropriate. The application can arrange to work with a set of shadows that are
known to be consistent.

A hybrid approach to concurrency control can be used in a system which is based on
object semantics, see for example [Herlihy 90]. It is desirable to use OCC for objects
which are rarely shared; when it is important to avoid delay on access to objects;
when there are failures or when detached working is required. When these
conditions do not hold OCC can be expensive and a pessimistic method may be used
for some objects in a system.

Acknowledgements

To members of the OPERA project: Noha Adly, Mohammed Afshar, John Bates,
Huang Feng, Richard Hayton, Sai Lai Lo, Scarlet Schwiderski, Robert Sultana,

ZhixueWu. To Heather Brown, visiting from the University of Kent and to John
Wilkes of HP Research Labs., Palo Alto, CA.

38




References

[Aho et al. 83]
Aho A. V., Hopcroft J .E.. and Ullman J.D.
“Data Structures and Algorithms”, Addison Wesley, 1983

[Bacon 93]
Bacon J. M. “Concurrent Systems”, Addison Wesley 1993

[Bell and Grimson 92]
Bell D. and Grimson J., “Distributed Database Systems” Addison Wesley 1992

[Bernstein et al. 87]
Bernstein P A., Hadzilacos V. and Goodman N,
“Concurrency Control and Recovery in Database Systems” Addison Wesley 1987

[Ceri and Pelagatti 85]
Ceri S. and Pelagatti G. “Distributed Databases, Principles and Systems”
McGraw Hill 1985

[Gray and Reuter 93]
Gray J and Reuter R, “Transaction Processing: Concepts and Techniques”
Morgan Kaufmann 1993

[Herlihy 90]
Herlihy M. “Apologizing versus Asking Permission: Optimistic Concurrency
Control for Abstract Data Types” ACM Transactions on Database Systems 15(1),
March 90

[Korth and Silberschatz 91]
Korth H.F. and Silberschatz A. “Database System Concepts” 2nd edition,
McGraw Hill New York1991

[Weihl 84] '
Weihl W. E. “Specification and Implementation of Atomic Data Types” Tech.
Rept. MIT/LCS/TR-314, MIT Lab for Computer Science, March 1984, PhD
Dissertation

[Weihl 89]
Weihl W. E. “Local Atomicity Properties: Modular Concurrency Control for
Abstract Data Types” ACM Trans Prog Lang and Sys, 11(2), April 1989
[Weikum 91]

Weikum G, “Principles and Realization Strategies of Multilevel Transactions”
ACM Transactions on Database Systems 16(1): 132-180, March 1991

[Wu 93]
Wu Z, “A New Approach to Implementing Atomic Datatypes”
Computer Laboratory PhD thesis in preparation, 1993

[Yahalom 91]
Yahalom R., “Managing the Order of Transactions in Widely Distributed Data
Systems” University of Cambridge PhD thesis and TR 231, Aug 1991

39




