Technical Report A

Number 30

Computer Laboratory

A portable BCPL library

John Wilkes

October 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 1982 John Wilkes

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Contents

Introduction

Standard Facilities

2.1 Header files and conditional compilation tags
2.2 Standard manifests

2.3 Initialization and termination
2.4 The stack

2.5 The heap

2.6 Character and string manipulation
2.7 Globals

2.8 Time and date

2.9 The exception system

2.10 Coroutines

2.11 Miscellaneous

Input/Output

3.1 Library-provided streams

3.2 Controlling streams

3.3 Character mode

3.4 Binary mode

3.5 Binary mode bulk transfers

3.6 Character mode input functions
3.7 Character mode output functions
3.8 A counting filter

Error Handling

4.1 The default handlers

4,2 Manifests for system errors
4,3 Hardware detected errors

Internal Details

5.1 Program.information

5.2 Debugging

5.3 Stream Descriptor Block format
5.4 Opening and closing streams
5.5 Reading from streams

5.6 Writing to streams

5.7 Miscellaneous
Extensions

6.1 Floating point
6.2 Record I/0

6.3 Interval timer
6.4 Random access

Implementation notes
7.1 Existing implementations




A portable BCPL library

Abstract

Too often, programs written in BCPL are difficult to port from one system
to another, not because of the language, but because of differences between
'standard' libraries. Almost without exception, the definitions of these
libraries are loose, woolly and inaccurate--the proposed BCPL standards
document being a prime example. The author has developed and implemented a
new BCPL library which is explicitly designed to aid the portability of
programs between systems. In addition to being largely portable itself,
its has two other features of interest: it uses an exception handling
system instead of return codes, and it makes no distinction between system
and user defined stream handlers. This paper defines the interface to the
package.




1. Introduction

This document describes a portable BCPL library which is being made
available on several of the machines in the Cambridge University Computer
Laboratory. The term 'portable' here refers to the programs that use the
library, rather than the library itself, although it is hoped that much of
the library code will itself be system independent.

This specification is not intended to be completely free standing: 1t is
expected that readers will have some Kknowledge of one or more BCPL
implementations, and so it aims merely to describe and clarify those areas
where the proposed library differs from the "standard" ones available.

The aims of this specification are the following:

1. One single definition of a library that can be used on several
machines.

2, A fairly rigorous definition to avoid needless differences in
implementations.

3. A reasonably rich set of facilities.

4, The use of exceptions for error handling, but in such a fashion that
the default state can be understood without knowledge of this.

5. The result should be implementable on all but the smallest machines in
the Laboratory, but it is not necessarily intended to be transportable
to all possible BCPL systems on all possible machines.

In an absolute sense, some portability has been sacrificed in the belief
that extreme forms of it correspond to bizarre or limiting features which
are unlikely to be relevant in our environment. For example, no attempt is
made to cope with machines which use ones-complement arithmetic, and
conditional compilation facilities are assumed in the compilers. Since the
library is rich in facilities, the code to implement it is unlikely to be
small, and byte addressed 16-bit machines may experience some problems in
supporting it.

The current document describes a first implementation - feedback from
potential users and implementors for other machines would be most welcome
if it is forthcoming quickly.

December 1981 - Original version.

April 1982 -~ Revised for release of the first Tripos implementation.

June 1982 - Minor revisions for BCPL Users' Group Conference.

October 1982 - Small editorial changes, AppendOutput, catchall exceptions.

A portable BCPL library 1




2. Standard Facilities

2.1 Header files and conditional compilation tags

The two and three letter prefixes "LB" and "Lib" have been reserved for
the library. As normal, the main library header file is called "LIBHDR";
in addition, there is a set of error manifests in the file "LBERRHDR".
Specific implementations may have other subsidiary header files.

Some conditional compilation tags are set by the header and the compiler
to characterize the hardware and system software for which a program is
being compiled. In our local environment, one (and only one) of the
following machine tags will be set:

$$PDP11

$$1BM370

$$VAX

$$LSIY

$$68000

$$CAP1 $$CAP3

Also, one (and only one) of the following system tags will be set:

$$TRIPOS
$$RSX11M

$$UNIX

$SMVT  $$MVS  $$CMS

In addition, there are some derived tags, which are set from the values of
the previous two:

$$Word Addr TRUE if McAddrInc = 1 (see below)
$$WordSize 16 TRUE if 16~bit machine
$$Word Size32 TRUE if 32-=bit machine

$$EBCDIC Only on IBM machines!
$$ASCII Most others (but not necessarily all)
$$Float PKG TRUE if the floating point package is available

$$RisingStack TRUE if stack grows upwards, FALSE if downwards

$$BigEndian TRUE if bits and bytes within a word are numbered
from the most significant end towards the least

$$LittleEndian TRUE if bits and bytes within a word are numbered
from the least significant end towards the most

In addition, LIBHDR always sets the tag $$PortableBlib to TRUE, to
characterize the use of this library. Declarations private to the library
(such as the more esoteric offsets in stream descriptor blocks) may be
accessed by setting the tag $$LibPriv to TRUE.

2 A portable BCPL library




2.2 Standard manifests

The following manifests are available in LIBHDR:

FirstUserGlobal - first user global available (also as FUG)

BytesPerWord = number of bytes in a BCPL word

BitsPerWord - the number of bits in a BCPL word

BitsPerByte - the number of bits in a BCPL byte
(note that BitsPerByte * BytesPerWord may not equal
BitsPerWord)

Mc Addr Inc - the number of m/c address units to a BCPL word

Max Int - the largest representable positive number

MinInt - the most negative number representable

Max Char - the largest value that can be held in a byte

End StreamCh - the value returned at end of an input stream

NothingReadCh - the value returned after UnRdCh is called on a new
stream ‘

NIL - a value which is not (if possible) a valid BCPL or

machine address

Both EndStreamCh and NothingReadCh will have values outside the character
set (i.e. they will not be in the range 0 - MaxChar). It is expected that
NIL will be used as an 'end-of-chain' marker in linked list applications.

There are several other sets of wmanifests - including those for I/0
functions and standard error codes - which are detailed later in this
document .

2.3 Initialization and termination

The user's code will be called in the usual way, by invocation of the
routine Start. Before this is done, a standard environment will be set up.

A program is finally terminated by a call of the library routine Stop
which tidies up and then exits (somehow). If the host understands return
codes from programs, the argument to Stop is used as the value to return.,
FINISH is defined to be a call of Stop (via the global vector) with the
value StopNoComment as argument. If Start ever returns, a FINISH is
obeyed.

Common return codes have manifests (even on systems where they are not
all distinct, they will all be available):

StopNoComment - nothing about success or failure to report
StopSuccess - operation succeeded

StopWarning - operation succeeded, with warnings
StopError " - operation did not succeed

StopFatalError - catastrophic termination of operation

If the operating system has no concept of 'no comment', then its value for
'success' should be used as a synonym.

A portable BCPL library 3




2.4 The stack

Each process runs with a BCPL stack for its local variables and procedure
invocation details. Normally, there is just one such stack (that belonging
to Start), but coroutine (see below) or coordinator systems may have more
than one. There is always precisely one active or current stack, which is
that belonging to the current process.

A routine may assume that the stack (and hence its arguments) are in
contiguous cells, but the direction in which the stack grows may or may not
be towards increasing addresses. Conditional compilation on the value of
$$RisingStack may be helpful.

Two functions manipulate the BCPL stack:

1vl := Level()
LongJump( 1lvl, label )

The result from Level is only useful with Longdump and the exception
system, In particular, it is not a valid way of estimating the remaining
stack space. Longdump interacts with the exception system (see below) and
the handlers for the UnwindException. It is an error to try to jump out of
the current stack.

Note that the function Aptovec is not provided by this library (Getvec is
the preferred alternative).

2.5 The heap

The BCPL heap is a dynamic storage area managed separately from the
stack. The storage allocated remains available for use until explicitly
freed, or the program terminates. The program does NOT have to tidy up
after itself (although some may see this as good practice). 'There is no
garbage collection. It is defined that coalition of storage areas returned
to the heap occurs, although when and how often it happens is at the
discretion of the implementation (it is only actually needed when Maxvec is
called or if a Getvec would otherwise fail). The heap may itself not be a
single contiguous area. Some simple consistency checks are made in an
attempt to trap some common errors such as running off the end of a vector.

v := Getvec( upperBound )

Freevec( v )

Shrinkvec( v, newUpperBound )
ub := Sizevec( v )
ub := Maxvec()
v := GetMaxVec( minUPB, maxUPB, increment )
The argument to Getvec must be positive or zero, even on word addressed
machines. The contents of the store acquired is undefined. Passing a non-
valid area address to Freevec is an error (which may not be trapped by all
implementations); this includes calls with argument zero.

Shrinkvec will reduce the size of a previously allocated vector by
relinquishing its upper part. It is an error to attempt to increase the
size of a vector by this means. Note that there may be a minimum size of
shrink needed to cause any releasing of space back to the heap. The

] A portable BCPL library




'

function BSizevec will return the current upper bound for an allocated
vector. As with Freevec, it is an error to quote an invalid vector
address; this will not always be trapped by all implementations.

Maxvec indicates the upper bound of the largest vector which could be
allocated from the program's heap area, except that the calculation will
not allow for any expansion of the heap area if this facility is supported
by the host. (As a result, it is not as useful as might be supposed - the
value returned is not at all the same thing as the largest which could be
asked for.) It will return -1 if there is no heap space remaining, which
Wwill cause an immediate error if it is passed straight to Getvec.

A 'conditional Getvec!'! facility is provided by GetMaxVec, which takes as
arguments two upper bounds. The first is interpreted as the minimum size
acceptable, the second as the maximum being asked for; they must obey the
relation

0 <= minUPB <= maxUPB

The result returned will be the address of the largest vector which could
be acquired whose size is between these two 1limits and a multiple of
increment. The upper bound of the vector actually allocated is put into
its =zeroth word. If the request cannot be satisfied from the heap
currently allocated to the program, the heap may be extended; if there is
insufficient heap to satisfy even the smaller upper bound, an error occurs.
Note that specifying the two upper bounds equal will effectively result in
an unconditional request for that amount. Some virtual memory machines may
permit very very large values for maxUPB, so care should be exercised!

The library will always use Getvec whenever it needs to acquire storage
for internal wuse, unless it is prevented from doing so by the host
operating system. The user may replace Getvec with a private storage
management function, if desired, but note that the library assumes that a
call to it either succeeds or does not return.

2.6 Character and string manipulation

The string manipulation functions access individual bytes by means of the
% operator (and thus use this as their standard of byte ordering). They
all expect the length of the string to be recorded in the zeroth byte.

nch := CapitalCh( ch )

yes := EqualString( string1, string2 )

dif := CompareString( stringil, string2, tolUppercase )

out := CopyString( tovec, fromstr )

out := AppendString( ec, addthis )

pos := IndexIn( string, ch )

out := CopyBytes( tovec,tooffset, fromvec,fromoffset, bytes )
out := CopyWords( tovec, fromvec, words )

The first will convert the lowercase letters of the alphabet into their
uppercase equivalents, passing all other characters through unchanged. (On
an EBCDIC machine, the 'others' include the character codes in the gaps in
the letter sequences.)

EqualString does not uppercase the strings for comparison, although
CompareString will do so if requested. The result from the latter is zero
for equality, -ve or +ve according to whether stringl or string2 is the

A portable BCPL library 5




'lesser' of the two. Comparisons are done in accordance with the collating
sequence of the host machine; the shorter string may be considered to be
extended to the length of the longer with characters lower than any in the
machine's collating sequence.

The effect of CopyString is defined to be that obtained by copying the
bytes (in % order) from O to the length of the input string. If tovec is
Zero a suitably sized vector will be acquired by use of Getvec, otherwise
it is assumed that the vector pointed to is of sufficient length. The
result returned 1is always the address of the vector used as the
destination., (If Getvec is used and fails, an exception will occur,)

AppendString adds the second string to the end of the first, and returns
the latter's address as its result.

IndexIn returns the byte offset of the first occurrence of ch in string,
or zero if it cannot be found. The length byte is ignored during the
search,

The routines CopyBytes and CopyWords will move a sequence of bytes or
words from one location to the next. For the first, the source and
destination start points are given in terms of a BCPL cell address and a
byte offset from it. It is expected that they will be implemented
efficiently. Both will do a Getvec if their first argument is zero; in
any case, the destination vector is returned as the result.

Note that PackString, UnpackString, GetByte and PutByte are not provided
by this library.

2.7 Globals

To ascertain whether a global is undefined or not, or set a global to
some ‘undefined' value,

yes := IsUndefined( globalAddr )
Undefine ( globalAddr )

may be used. Quoting an address which is not in the global vector is an
error. Note that the contents of an undefined global are left entirely up
to the implementation.

Programs may assume that the user part of the global vector is
contiguous. The manifest FirstUserGlobal (and its shorthand form FUG)
defines the global number of the first free slot in the global vector that
is available to the user. Note +that its value may vary between
implementations.

2.8 Time and date

Two functions are available for determining the time of day and the
calendar date:

vl = TimeStamp( v1 )
v2 := TimeString( v2, v1 )

The former does an atomic acquisition of both the date and time and puts
the year, month, day, hour, minute, second, millisecond, and day of the

6 A portable BCPL library




week into the first 8 words of the result vector. (The manifests TI.year,
TI.month, TI.day, TI.hour, TI.minute, TI.sec, TI.msec and TI.wday define
the offsets.) The latter takes a vector produced by TimeStamp and converts
it into BCPL string form in vector v2.

v2+TI.date - the date, in format "dd-Mmm-yy"

v2+TI.time - the time, in format "hh:mm:ss"
v24+TI.monthName - the month of the year, in format "Mmmm..."
v2+TI.dayName - the day of the week, in format "Wwww..."

A leading zero will be converted to a space on the day of the month but not
on the hour in the day. Monday is the first day of the week, Sunday the
seventh.

In both cases, if the output vector argument supplied has the value zero,
a suitably sized vector will be acquired with Getvec. If the vl vector is
zero for TimeString, an internal call of TimeStamp will be made. In any
case, the result returned is the vector used to store the values or
strings. The upper bounds of the vectors to be supplied to the routines
are given by the manifests TimeStampUPB and TimeStringUPB.

2.9 The exception system

An exception vrepresents a class of errors that can arise (e.g.
input/output errors on a particular stream). Exceptions are represented as
addresses of BCPL words that are initialized to zero.

An exception handler is a user function to be called when a particular
exception occurs. It may be passed sufficient state to exit to the place
at which the handler was set up, or (sometimes) to fix up the error and
carry on, Multiple handlers may be declared for an exception. Each
handler has an associated level, the first handler used being the one with
the 'highest' level (the level moves in the same direction as the BCPL
stack, with 'higher' corresponding to more deeply nested).

There is a completely separate set of exception handlers for each stack,
so that if an exception is signalled, only the handlers associated with the
current stack will be scanned. The coroutine mechanism provides a scheme
whereby exceptions can be signalled from one stack to another.

id :=z OnException( exceptionID, level, func, ont,on2 )

creates a new handler for an exception, and returns a unique identifier for
it. (It is conventional to use the address of a global variable as an
exceptionID, but this is not mandatory: +the only requirement is that the
value of the exceptionID is unique. There is no need for it to be a BCPL
cell address, and so the earlier requirement that the cell be initialized
to zero is hereby lifted. Nevertheless, the library exceptionIDs are all
generated by taking the address of the global used to identify them.) The
exception handler (which is a routine with address func) is inserted into
the list at a point corresponding to the given level, which should be the
result of a call to the function Level. If two handlers for the same
exception have the same associated level, the later one added will be the
'higher' of the two. Often, onl and on2 will be level and label values
that can be used as arguments to Longdump to return from the handler to the

A portable BCPL library 7




scope of the routine which set it up. It is an error to add a handler for
an exception at a 'higher' level than that of the caller of OnException.
If the value of the exceptionlID is NIL, the handler acts as a catchall and
will be invoked if the search for a handler on any exception reaches the
assoclated level.

Of fException( exceptionID, id )
RestoreExceptionlevel ( level )

may be used to remove exception handlers. The first removes the indicated
exception handler for the given exception, or the 'top' one if id=NIL -
note that this may not be the most recently added one. It is an error if
the handler cannot be removed for some reason (e.g. 1f the exception has no
handlers, or id is invalid). The second removes all handlers with the
given or 'greater' level. Neither may be used to remove an active
exception handler.

res := Signal( exceptionID, how, errcode, a,b,c,d,e,f,g )

is the call which is used to signal (or raise) an exception. In its turn
it calls the top handler of the given exception:

res := funce( exceptionID, how, onl,on2, errcode, a,b,c,d,e,f,g )

Note that the third and fourth parameters are from the OnException call
which set up the handler. The parameter how should be one of

EX.Fatal - it 1is quite inconceivable that the wuser program
continue after this error. If a handler tries to
LongJump out, Stop will be called.

EX.DontReturn - the call to Signal should not return (but may exit via
a LongJump).

EX. Notify - the exception is only raised to notify an event. If
there is no handler for a notification then the call of
Signal simply returns - there is no recourse to the
default handler (see below). The usual handler exits
are available; the normal course is to return. Note
that the issuer of the Signal cannot not expect a
result.

EX. NonFatal - otherwise - a result may be expected.

The exception handler may exit in a number of different ways:

1. It may return a result which will be passed back to the caller unless
how was EX.DontReturn or EX.Fatal, in which case Stop(StopError) or
Stop(StopFatalError) is obeyed.

2. It may issue a LongJump to another point on its stack, except that if
how was EX.Fatal, the «c¢all will be <converted into one of
Stop(StopFatalError).

3. It may call Stop directly.

8 A portable BCPL library




§, Tt may issue a call to the routine ResignalException(), which
indicates that this handler is unable to cope and the exception should
be re-signalled as if this handler was not present (the call will
never return). This has the advantage of consuming less stack space
than simply re-=signalling the same exception since the current
handler's stack frame is removed before the next handler is called.

If anybody (including the handler or the exception system) explicitly or
implicitly calls Stop or LongJump, then all those handlers that are between
the current level and the target level will be removed. For LongJump the
target level is the value of the first argument; for Stop it is a value
'below' the level of Start. Handlers at the destination level remain. If
there are any are handlers for the UnwindException (see below) they will be
invoked before they are removed, with how set to EX.Notify, errcode set to
ERR.Unwind Stop or ERR.UnwindlongJdump as appropriate, and the argument a to
the target level. Explicit signalling of the UnwindException is allowed,
but the how parameter is always treated as EX.Notify.

A handler or a routine it calls may signal the same exception again, in
which case the handler to be invoked will be the next one down the 1list.
This can be prevented by having the handler reinstate itself by a call to

ok :=z ReinstateExceptionHandler()

Indefinite recursion should be avoided! This call is ignored in a call
from an active handler for the UnwindException.

Two exceptions are predeclared by the exception system (as opposed to the
rest of the library); they are global variables whose address space should
be used as an ExceptionlID:

- The UnwindException is used when the stack is being lifted by Stop or
LongJump as described above. It is initialized to zero.

-~ The DefaultException is used when a handler is needed for some other
exception and there is none. If there is no DefaultException handler,
then Stop(StopFatalError) or Stop(StopError) is called. This
exception is initialized with the standard library error handler.

2. 10 Coroutines

A coroutine is a process with a distinct BCPL stack which shares the
code, global vector and heap space for the program as a whole. Transfer of
control from one coroutine to another is always explicit, rather than
dependent upon external factors such as a time-slicing coordinator. A
coroutine may be ACTIVE, in which case the program is executing code in its
stack; or INACTIVE, when it is waiting to be re-activated. Each ACTIVE
coroutine has a parent; some INACTIVE coroutines may also have parents -
this will be the case if they have invoked another coroutine as an
offspring, and it has not yet returned.

A new coroutine can only be created or destroyed by calls to the
functions

A portable BCFL library 9




coptr := CoCreate( routine, stackSize )
CoDelete( coptr )

The first makes a new stack for the coroutine and returns a coroutine
pointer, which is a non-zero number. (Such coroutine pointers are only
useful in the context of the functions discussed here.) Any of the
standard errors (such as insufficient heap) may occur, and will be reported
in the usual way. The new coroutine immediately executes a CoWait with its
coroutine pointer as argument, thus returning this as the result from the
CoCreate call. When control is next passed to this routine, by a CoCall or
CoResume, execution will proceed by calling the routine with the value
passed in this call as its argument.

The second releases the stack space for a coroutine. It is an error to
quote the coroutine pointer of a coroutine which has a parent.

To invoke an already-created coroutine, the function
res := CoCall( coptr, arg )

should be used. It passes control to the routine previously defined in a
CoCreate call, giving it arg as its single argument or as the result from
the call it made to CoWait or CoResume to suspend itself. The parent of
the target coroutine is marked as being the one that issued the CoCall. It
is an error for a coroutine to try to pass control to one which already has
a parent. Normally, the called coroutine should suspend itself at some
stage by a call to

newarg :=z CoWait( res )

which will pass res back as the result of the CoCall. The coroutine will
next be activated by a further call of CoCall, and the arg value to that
call will appear as the result of the CoWait.

To pass control to a waiting coroutine and mark it as having a parent
which is the parent of the current one, the function

newarg := CoResume( coptr, arg )

may be used. It appears like a combination of calls to CoWait and CoCall,
and the same restrictions about not re-activating a coroutine with a parent

apply.

If a coroutine body returns from its initial call, its result will be
used as the argument to CoWait, and the result that returns used to re-
invoke the coroutine body.

The coroutine system interacts with the exception system: there is a
separate list of exception handlers associated with each coroutine. To
signal an exception across a coroutine boundary, the function

res :=z CoSignal( coptr, exceptionID, how, errcode, a,...g )

should be used. It behaves exactly like the normal Signal call, except
that the call takes place on the stack of the given coroutine. If the
handler ever returns, control is passed back to the calling coroutine;
otherwise it behaves like a call to CoCall, except that the signalled
coroutine may have a parent.

10 A portable BCPL library




It is an error to LongJdump out of the current coroutine,

2.11 Miscellaneous

MulDiv( a, b, ¢ ) is defined to calculate the result of multiplying a by
b and dividing the result by c¢. It will always do so in such a fashion as
to preserve the intermediate double-length product to full accuracy. The
remainder from the division (which will be of the same sign as a¥*b) is left
in the global LibResult2. [Note that there is no global variable named
Result2 provided by this library.]

The two functions Max( a,b ) and Min( a,b ) calculate the (signed)
maximum and minimum of two values.

3. Input/Output

The basis of the I/0 system is the function which defines streams.
Streams may be duplex (mode = IO0.InOut), or simplex (Mode = I10.In, IO.Out
or IO,.Append). Several built-in stream definitions (such as for external
files and the like) are provided. The lowest level stream opening function
is:

stream :=z FindStream( mode, fune, workSize, a,b,c,d,e,f,g )

It returns a stream pointer for an open stream of the given mode or causes
an error if it cannot be opened. A valid stream identifier is a non-zero
number - it is the address of a Stream Descriptor Block (SDB), which is the
internal data structure describing the state of a stream.

The argument func is the address of a 'stream function', to be invoked by
the library to perform operations such as opening, closing and carrying out
transfers on the stream; workSize is the number of words in a work vector
to be made available (NOT its upper bound); and a to f are arguments to be
copied into the first 7 (or less if workSize is too small) words of it.

When invoked, func will be passed an SDB address as its first argument
and a manifest of the form I0.<{function> (e.g. IO.Rewind) as the second
indicating the action to be taken; subsequent extra arguments may also be
provided. All library-defined control manifests will be strictly positive,
so that negative values are available to the user to implement extended
control operations.

If the stream function wishes, the library will manipulate an internal
buffer, issuing calls to the stream function only when the request cannot
be satisfied with the buffer. The initial state will cause the stream
function to be called on every transfer., By having the library handle
buffers in this fashion, it is hoped that much code can be shared between

A portable BCPL library 11




stream implementations and some increase in runtime efficiency obtained,
particularly in the commonest cases (transferring data to and from external
buffered media).

The stream function should signal the exception associated with the
stream when the stream is exhausted or a transfer error (such as device
full or parity error) occurs. Obeying FINISH with open streams will cause
them to be closed automatically, in the reverse order to that in which they
were opened. More information about the precise interface to stream
functions and the contents of SDBs is provided later in this document.

3.1 Library-provided streams

The following high level functions are available; they may be considered
to map onto calls of FindStream with suitable arguments:

stream! := FindInput ( fileDefinition1 )
stream2 := FindOutput( fileDefinition2 )
stream3 :=z FindAppend( fileDefinition3 )

streamd := FindString( mode, string, maxlen )

It is defined that fileDefinitions are strings. An attempt to open a given
file more than once for (simultaneous) input is allowed, and will cause
completely distinct streams to be established; opening the same file for
output whilst it is already open will either succeed to produce distinct
output files, or cause an error. FindAppend is equivalent to FindOutput,
except that the file must exist beforehand (if the host allows this to be
checked), and the next write to it will be appended to the data already
there., If possible, an error will occur otherwise.

FindString takes as its first argument one of the manifests I0.In, IO.Out
or IO.Append, and returns a simplex stream to do the relevant thing to the
vector/string provided. If mode is I0.0ut or IO.Append, the maxlen
parameter must be supplied which specifies the highest byte offset that can
be written to. An error occurs if an attempt is made to make the string
longer than this. On output, the length byte will not necessarily be
maintained as a true reflection of the current string length while the
stream is open.

Three streams are defined on entry to Start: SysIn and SysOut are set to
the values of the currently selected streams, or zero - typically, they
will refer to the standard streams specific to the host system; SysErr is
set to a stream, on which every effort is made to see that characters sent
to it are made visible. It is the preferred stream for reporting errors
on; note that it may have the same value as SysOut on some systems.

3.2 Controlling streams

Streams may be selected and the current stream pointers enquired after:

12 A portable BCPL library




SelectOutput( stream )
SelectInput ( stream )

stream := Input()
stream := Output()
yes := IsValidStream( stream )

The effect of passing junk to SelectXXput is to cause an error. Selecting
zero sets the state of unselection, in which it is an error to attempt to
transfer characters or obey control functions. Input and Output will
return zero if there is no selected stream. The last function returns TRUE
if its argument looks like the address of an SDB, or FALSE otherwise. No
error occurs in the latter case.

Once a stream has been finished with, it may (should) be closed, a
process which normally releases back to the program any buffer and control
structure space acquired from the heap or operating system. Some streams
may be rewound (repositioned to their beginning), or closed for output and
re-opened immediately for input. In either case, the previous stream
pointer is returned as the result of the appropriate call,

End Read ()
EndWrite()
EndStream( stream )
stream := EndToInput ()
stream := Rewind()

If the stream to which these functions are applied is selected, the state
of unselection will be set for input or output (or both) as appropriate.
EndToInput will cause unselection of the current output stream, but neither
it nor Rewind will affect the selection of the current input stream. If a
stream cannot be closed or re-opened an error occurs. EndStream applied to
a duplex stream will close both halves; EndRead or EndWrite will normally
only affect the indicated half. EndStream may be applied to a simplex
stream.

Calling a control function will lead to an invocation of
res := IOcontrol( stream, IO.<function>, a,b,c,d,e,f,g )

which will itself map onto a call of the appropriate stream function. Res
is only defined if the appropriate function is expected to return a result.
Users may invoke IOcontrol directly if they wish, but should note that this
mechanism bypasses any internal buffering that the library may be doing.

Two functions to indicate the 'real-time' response of streams are
provided:

chars := TestInCount()
chars := TestOutCount()

The first returns a lower bound to the number of characters which the
current input stream has buffered up, ready to be read, or zero if there
are none; the second indicates a lower bound %to the number of characters
that could be immediately swallowed by the current output stream without
hanging.

A portable BCPL library 13




3.3 Character mode

Streams can be read from or written to in one of two modes:
character mode or binary mode. Character mode is indicated by use of RdCh
and WrCh, binary mode by BinRdCh and BinWrCh.

Whilst writing in character mode, certain bytes will be interpreted by
the library and translated into special actions; they may also be
generated by a set of convenience routines which map onto calls of WrCh:

routine char action

Sameline %#C return to beginning of a line
NewLine #N start a new line
NewPage #p start a new page

Note that the effect of calling the functions is defined in terms of
writing the control characters and not the other way around. The external
representation of these calls is host system dependent. To send the bytes
used to represent ¥C, ¥N and #P, BinWrCh should be used.

The only other control characters which are allowed as arguments to WrCh
are %¥B (backspace), *E (escape), *L (linefeed, but only if distinct from
#N) and ®T (tab), which are passed through as data characters. It is an
error to pass it any other control character value, or a value which does
not fit into a single byte; a user-supplied error handler may choose to
return a value to be written out - it will not be checked further.

Any internally buffered characters may be flushed out by means of the
function

ForceOut ()

which will not result in any data characters being sent down the stream.
Some streams may have and use mechanisms for passing control information,
in which case a ForceIn exception (see Chapter 5) will be raised when this
point in the stream is encountered whilst it is being read. Calling
ForceOut several times in succession may be equivalent to a single call on
some systems.

On input, calling RdCh will yield successive characters until the stream
is closed, exhausted or some error occurs. Note that it may be possible to
encounter an end of stream that 1s not immediately preceded by a line
terminator. It is an error to read a character in the range 0 - MaxChar
with RdCh which could not have been written with WrCh (this applies
particularly to control characters); a user supplied handler for this
error may choose to return a character to be passed back in place of the
offending one.

UnRdCh()

will backspace the current input stream by one character. It is an error
to call it before a character has been read from a stream (which will cause
RdCh/BinRdCh to return the value NothingReadCh), or more than once between
reading two characters. A 'last character' value is preserved with each
stream, and will be remembered over stream selection.

14 A portable BCPL library




A program can enquire whether a particular stream is (may be) connected
to an 'interactive' device such as a terminal by the call

yes := IsInteractive( stream )

vhich maps (via IOcontrol) onto a call of the relevant stream function. If
this information is not available, the result should always be TRUE,
Writing ¥C, ¥N or #P in character mode to a stream labelled as interactive
will also cause any internal buffers to be written out. An interactive
input stream is not required to support any other line terminator than ¥N,
although some implementations may do so.

count := MaxCharsOnLine()
returns the number of characters which may be written in character mode to
the current output stream before a wrapoutput error occurs. The value

returned will be MaxInt if the error will never occur; a NolInfo error will
be caused if the information is not available.

3.4 Binary mode

In binary mode no translations whatsoever are done by the library to the
characters being transferred. Operating system dependent line or record
breaks may be caused implicitly by buffer overflows or the like on output;
such breaks are completely ignhored on input. BinWrCh will discard all but
the bottom byte of any value passed to it.

The effect of mixing BinRdCh and RdCh on the same stream is well defined
provided that no mixing of modes by use of UnRdCh is made - i.e. the effect
of

RdCh() ... UnRdCh() ... BinRdCh()

is undefined. Indeed, the reader of a stream should use the same sequence
of RdCh/BinRdCh calls as the writer made of WrCh/BinWrCh when the stream
was output - the effect of not doing so is also undefined.

3.5 Binary mode bulk transfers

In binary mode there is a bulk transfer mode known as vector mode which
emulates the result of repeated calls to BinRdCh (except that it may be
more efficient). The transfer functions are:

len := BinReadVector ( vector, maxlen )
BinWriteVector( vector, len )

The first will read maxlen characters into vector as if by repeated use of
BinRdCh. Len will equal maxlen unless an error (e.g. end of stream) took
place during the operation. The second will output len characters, again
as if using repeated calls to BinWrcCh,

A portable BCPL library 15




A second type of binary bulk transfer, (record mode) makes direct use of
underlying operating system primitives, and is thus not portable: it is
described below in the section "Extensions',

3.6 Character mode input functions

The character mode input functions are constructed from calls to RdCh.
All leave the terminating character to be read by the next call (i.e. an
implicit UnRdCh will have taken place).

The basic function for reading numbers is:
num := ReadDigits( base, width, sign )

It takes as arguments %the radix of the number to be read (which must be
between 2 and 37 inclusive), the maximum number of characters to consume
whilst reading the number (which must be strictly positive), and one of +1
(positive), O (unsigned) or =1 (negative) to indicate the sign of the
number to be read.

Characters are mapped onto digits in the order 0-9, A-Z; 1lower case
being treated as equivalent to upper case. Numbers are defined as
contiguous sequences of digits (no leading sighs or layout characters (¥3,
¥T, #C, #N, #P) are allowed by this routine).

If no digits are encountered an error occurs; likewise when trying to
read a number that would overflow the wordsize of the machine. All values
which can be represented in a single word can be read (in particular,
MinInt may be read successfully).

For compatibility with existing 1libraries there is a read-integer
function which skips all layout characters (#¥S, #T, *C, #N, #P) whilst
looking for a number:

num := ReadN()

Since this uses ReadDigits, the same conventions about errors and formats
of numbers hold good, except that it understands immediately preceding
signs ('+' or '-' characters). Numbers without a leading sign are treated
as positive. Another variant skips leading spaces and tabs (¥S, #T) and
then reads an unsigned number in a given base:

num := ReadNumber( base )

Two functions are used by the library for converting characters into
numbers and vice versa:

har ToNum( char, base )

num :=C
¢+= NumToChar( num, base )

char

In both, base must be between 2 and 37 inclusive. The character argument
may be in either case - upper and lower case are treated as equivalent;
the number to character mapping is the same as for ReadDigits. An error
occurs if the character or number is not representable.

16 A portable BCPL library




A function is available to read in a string terminated by any of a set of
supplied characters:

len := ReadChars( vector, maxlen, terminators )

Up to maxlen (which must be <= MaxChar) characters are read into a string
constructed in vector, stopping when one of the characters in the string
terminators is read, end-of-stream encountered, or an error occurs (such as
maxlen+1 characters having been read but no terminator encountered). The
actual number of characters in the string is returned as the result and
placed into vector%0.

For skipping over characters to be ignored (e.g. leading layout
characters) or for skipping forward until one of a set of characters 1is
met, two functions are provided:

count := SkipWhile( discardChars )
count := SkipUntil( terminatorChars )

The first swallows and discards all characters until one which is not in
the string discardChars is met; the second stops only when one of the
characters in the string terminatorChars is read. Both also stop when a
value outside the character set (e.g. EndStreamCh) is encountered or an
error occurs on the stream. They return the number of characters read (not
including the one on which they stopped).

3.7 Character mode output functions

By analogy with the input functions there is a standard set of character
mode output functions, which all use WrCh as their basic primitive. The
two lowest-level functions for writing out numbers are:

count

:= WriteDigits ( num, width, base, signed )
count := Wr

itelowDigits( num, width, base )

The former writes out num in the given (or greater, if need be) width to
the given base. If signed is FALSE, a leading '-' sign will be provided if
num is negative; if TRUE, a leading '+' or '-' sign will always be
supplied. The 1latter outputs the bottom width digits of the number,
extending it to the left with leading zeroes if needed, in an unsigned form
in the given base (which must be a power of two).

The most general ouﬁ%ut function is WriteF, which takes a format string
and a number of arguments and interpretes the latter in accordance with
escape sequences in the former. The escape sequences are used to cause
invocation of other output functions:

count := WriteF( formatString, al, ... al2 )
// WriteF escape

count := WriteI( num, width ) // "%In" — decimal in fixed width
count := WriteN( num ) // "HN" - decimal in min width
count := WriteO( num, width ) // "%0n" - octal (only low digits)
count := WriteP( num, width ) // "%Pn" - octal in fixed width

A portable BCPL library 17




count := WriteR( num, radix ) // "%Rn" - based number, min width
count := WriteS( str ) // "%S"  — string in minimum width
‘count := WriteT( str, width ) // "%Tn" - string in fixed width
count := WriteU( num, width ) // "%Un" - unsigned decimal

count := WriteX( num, width ) // "%¥Xn" - hex (only low digits)
count :=z WriteY( num, width ) // "%In" - hex in fixed width

A1l the functions return a count of the number of characters they output.
WriteF takes up to 12 arguments in addition to the format string. Note
that the escape character used and the last character of the function name
are always the same; as a result, there is no WriteD function provided.

If a number or string cannot be held in the indicated field width, it
will be output correctly in the minimum width necessary, with the exception
of WriteO and WriteX, for which only the bottom digits of the arguments are
output , complete with leading =zeroes. Hexadecimal and octal numbers are
written in unsigned form.

The following two definitions hold good:

LET WriteN( arg )
AND WriteS( arg )

WriteI( arg, 0 )
WriteT( arg, 0 )

Writel, WriteP, WriteT, WriteU and WriteY will justify their output within
the given field width - to the left if the width is negative, to the right
otherwise.

WriteF escapes may be in either case; numeric values following the
escapes are a single digit interpreted in base 37, which may be immediately
preceded by a sign ('+' or '-'). Additional escapes are:

%B Uses BinWrCh, by analogy with %C

%C  Uses WrcCh

%Fn Treats the next n+1 arguments as a recursive WriteF call

%Zn Treats the next argument as a routine call with the following n
arguments as parameters

%$ Skips the next argument

%% Outputs %

Unrecognized escapes cause an error. The function invoked by %Z should
return the number of characters it caused to be written out.

3.8 A counting filter

For applications which wish to monitor the number of characters written
to a line, or the number of lines written to a page, a 'filter' stream
function is provided:

newstream := FindCounts( mode, oldstream, expandtabs, noPages )

This counts the number of characters read from or written to the stream
since the last #N, #C or #P, together with the number of #%¥Ns read or
written since the last *P (or the beginning of the file). Mode should be
one of I0.In or I0O.Out; oldstream should be an already-open stream of the
same type; if the expandtabs argument is TRUE, a #T will cause the chars-
on-line counter to be incremented to the next tab stop (tab stops are fixed
at every eight columns, starting with column 1), otherwise, tabs are

18 A portable BCPL library




treated like ordinary characters., If noPages is TRUE, #P characters do not
reset the lines-on-page count (this is useful for counting lines-in-file).
These counts can be interrogated by means of the call

vector := ReadCounts( newstream, vector )
where vector is a vector with upper bound ReadCountsUPB, which will have

the associated stream pointer in vector!FC.Stream,

the characters-on-line count in vector!FC.CharOnLine,
the lines-on-page count in vector!FC,LineOnPage and
the pages-in-file count in vector!FC,PageInFile

placed into it at the given offsets; its address will be returned as the
result. This filter only works in character mode: it is an error to use
BinRdCh/BinWrCh on it. Unset items will have the value zero (e.g. just
after opening the stream or doing a rewind).

4, Error Handling

The 1library makes use of the exception system described above for
handling errors. All errors will cause the signalling of an exception and
subsequent invocation of an error handler. There are two library error
classes: stream-specific and general. The former are sighalled on an
exception associated with each stream (stored in the SDB): the latter on
the general library exception (LibException). Two standard handlers are
provided; both classes of exceptions are initialized (the former at
FindStream time, the latter before invocation of Start) to have one of the
library handlers.

4,1 The default handlers

The stream specific handler interprets and understands errors which arise
as the result of operations (such as reading or closing) which are specific
to one particular stream. Certain errors are trapped and particular action
is taken:

- The end-of-stream exception from calls of RdCh or BinRdCh results in a
negative value (EndStreamCh) being returned.

- The wraparound error is ignored.

— The exception (not strictly an error) signalled as when a ForceOut is
read causes the result of a RdCh or BinRdCh call to be returned as the
result of the original call (i.e. the ForceQut is effectively
ignored).

A portable BCPL library 19




Any other errors are passed back to the general error handler by
explicitly signalling the error on the general exception.

The general error handler copes with those errors that are not related to
particular streams and those errors which the stream handler chooses to
pass on to it. 1In general, its behaviour is to issue an error message and
then call Abort (or Stop, if Abort 1is not defined) to exit from the
program, except that an invalid floating point length is ignored. If Abort
should return, Stop will be called.

The effect of the standard error handlers is to trap those operations
that most programs will be unable to cope with (e.g. I/0 errors, coding
errors) or traditionally never bother to find out about (e.g. illegal input
syntax). The result is that the exception system underlying the library is
completely transparent to the simple user - if a call returns, it can be
deemed to have succeeded -~ but the library permits more subtle error
handling by those who understand its workings. It also means that errors
get reported as soon as possible. For example, if a FindInput fails the
user will be notified immediately and not have to wait until an attempt is
made to write something to the resulting invalid stream.

Any of the standard handlers may be removed if desired, in which case the
standard exception package processing will take place. More normally, a
program may add handlers onto the exception to be invoked before the
library ones are reached. In this case, the action for error codes which
the new handlers do not recognize should be to call ResignalException.

When a library exception handler is invoked, the arguments specific to
the call (i.e. not the first three) will be a manifest indicating the
reason for the call, and (possibly) some extra information.

There is a function to convert library error codes into WriteF style
strings:

WriteF( LibErrorString(code), code, argl, arg2, ... )

where the argN parameters are the call-specific parameters - usually the
parameters passed to the routine which detected the error.

4,2 Manifests for library errors

The following manifests are used to represent errors issued by the
library. They are in two groups: those which are initially raised on the
exception associated with each stream, and those which are invoked on the
shared library exception. All have names commencing with ERR. First, the
stream signals:

ERR.Success Not an error!

ERR.Maxlen Trying to put too many chars into a string.
ERR. End To Input Unable to re-open or close.

ERR. Rewind Unable to rewind.

ERR. End Read Unable to close.

ERR.EndWrite Unable to close.

ERR. End Stream Unable to close.

ERR. IOfunction Unknown I0.<{function> in a stream function.

20 A portable BCPL library




ERR. End Of Stream End of input file read (not strictly an error)

ERR.ReadError Read error on i/p from a stream function.
ERR.WriteError Write error on o/p from stream function.
ERR.Wr Ch Invalid character to be written.

ERR.RdCh Invalid character read.

ERR. UnRd Ch Too many calls.

ERR.ReadDigitsSize Number too large to represent.
ERR. NoDigitsRead Number not read before non-digit encountered.

ERR. Read Chars Max string length > MaxChar.

ERR.WrapQut put A wraparound is about to occur on an operating
system record in character mode.

ERR.Forceln Not an error - a ForceOut has been read.

ERR. NoInfo Information requested not available.

ERR.Point Invalid notevec.

Next, the manifests used for exceptions and errors signalled on the
library exception. The ones marked with an asterisk are in the class of
hardware detected errors, about which a little more is said below.

ERR.Success Not an error!

ERR. NoInfo Information requested not available.

ERR. NoHeap Insufficient heap space.

ERR. Corrupt Heap Somebody has trampled on the heap.

ERR. Getvec Invalid size to Getvec,

ERR.GetMaxvec Invalid arguments to GetMaxVec.

ERR.Freevec Invalid pointer to Freevec,

ERR.Shrinkvec Trying to increase size of a vector.

ERR. NotGlobal Address not in global vector to IsUndefined or
Undefine.

ERR. UndefinedGlobal Calling a global which has not been defined.
ERR.CoPtr Invalid Junk coroutine pointer.

ERR.CoHasParent Trying to activate a coroutine which already has a
parent.
ERR. LongJump Trying to jump out of the current stack.

ERR. OnException Invalid arguments to OnException.

ERR. Of fException No handler to remove.
ERR.ReinstateExceptionHandler Calling from outside a handler.
ERR. Resignal Exception Calling from outside a handler.

ERR. Unwind Stop Not an error = call to an UnwindException handler.

ERR. UnwindLongJump Not an error - call to an UnwindException handler.

ERR.Find Stream Invalid parameters to FindStream.

ERR.Find Input Failure to open a host system file for input.

ERR.Find Out put Failure to open a host system file for output.

ERR.Find Append Failure to open a host system file for appending.

ERR.Find InCut Failure to open a duplex stream to a host system
file.

ERR, Stream Invalid stream pointer.

ERR. No InStream The current input stream is unselected.

ERR. NoQut Stream The current output stream is unselected.

ERR. NumTo Char Invalid number to be converted.

ERR.ReadDigits Invalid argument(s).

ERR.WriteF Invalid escape combination in format string.

ERR. TimeString Invalid timestamp presented.

ERR.FindCounts Invalid arguments to FindCounts.

ERR.ReadCounts Calling ReadCounts on a non-FindCounts stream.

A portable BCPL library 21




ERR.WritelowDigits Invalid base value.

ERR. ZeroDivide# Fixed point division by zero.
ERR. AddressError#*# An address violation has been detected.
ERR.FloatSqrt Square root of a negative argument.

ERR.FloatLength Invalid length.
ERR.FloatZeroDivide* Division by zero.
ERR.FloatOverflow# Overflow (N.B. underflow will be ignored).

In addition, all the exceptions defined for the stream error handler may
be passed back to the default error handler. All library error codes are
non-negative.

4,3 Hardware detected errors

Most BCPL implementations are extremely tolerant about the handling of
hardware detected errors such as arithmetic overflow. Some errors,
however, such as division by zero, should usually be (and indeed normally
are) seen as programming errors, and cause some form of standard system
action of greater or lesser degrees of unpleasantness. It is intended that
implementations of this library will go to considerable lengths, if need
be, to allow such hardware detected errors to be passed back through the
standard exception system. The initially defined set of such errors
consists of the ones marked with an asterisk in the list above.

5. Internal details

This chapter contains information that should only be of interest to
those wishing to make use of the library to write their own streams, or who
are interested in a more precise definition of its behaviour. It also
contains information on some functions which are not normally considered to
lie within the 'user domain', but which nevertheless may occasionally be
found wuseful (although their exploitation is to be discouraged, in
general) .

5.1 Program information

Some functions are defined which return word addresses giving information
about the extent of the BCPL stack and the global vector. If the
information is not available (e.g. the global vector is fragmented), an
error occurs.

22 A portable BCPL library




StackBase() StackTop()
Global Base() Global Top()
Max Global()

The value returned by StackTop may vary from one call to the next in some
systems (e.g. if the heap and stack compete for space, or if a new
coroutine or process has been entered). It is defined that the address of
a local variable may be used with the result from StackTop (if there is
one) to calculate the amount of stack space remaining, provided note is
taken of which way the stack grows. Note that the following relation may
NOT hold good:

GlobalTop() = GlobalBase() + MaxGlobal()

To alleviate overflow problems on word addressed machines, a function is
available %o compare the values of two unsigned numbers, typically
addresses:

cemp := UCompare( addril, addr2 )

The result is -ve, 0 or +ve, depending upon whether addrl is less than, the
same as, or greater than addr2. 1In addition, LibResult2 will be set to the
(unsigned) difference between the two values.

5.2 Debugging

The following routines are available to help with debugging (although
their actual inclusion in a working program may be optional). It is
expected that systems with interactive debugging facilities will in general
put more emphasis on those than the routines provided here.

Abort( code )
MapCode()
MapGlobal s()
MapStack()

Abort is the final recourse of the error handler to the system-dependent
part of the library; it is called after any error messages have been
output. If it is undefined, then Stop(StopFatalError) is invoked instead.
The other routines all output information to the currently selected stream,
the last causing a backtrace to the 'bottom' of the active stack from the
current level.

5.3 Stream Descriptor Block format

The communication between the library and a user-supplied I/O function is
largely by means of a Stream Descriptor Block (SDB). This contains the
following information (there may be more fields private to the 1library
itself), defined in terms of manifests which refer to offsets within it:

A portable BCPL library 23




SDB. Mode type of stream (IO.In, I0.Out, I0.InCut)

SDB. Func control function for the stream

SDB. Exception exception for stream-specific errors

SDB. LastCh the last value returned by RdCh/BinRdCh
SDB. UnRdChFlag true if UnRdCh call since RdCh/BinRdCh

SDB. ForceFlag true if there is a pending Forceln

SDB. InBuffer buffer for the input half

SDB. InBuf fUpb extent of the input buffer

SDB, InBuffPos last position in input buffer read from
SDB. InBuf fHWM last filled offset in the input buffer

SDB, Out Buffer buffer for the output half

SDB. Qut Buf f Upb extent of the output buffer

SDB. Qut BuffPos last offset written to in the output buffer
SDB. IsInteractive TRUE if so

SDB. LineMode TRUE if ®N/%#C/%P to go direct to stream function
SDB, UserDataSize words (upb+1) of user data available

SDB. UserData first word of user data area

The stream function is invoked by IOcontrol in the form:

res := func( sdb, I0.<functiond>, argl, arg2, ... )

The set of functions defined by the library is given below.

10, In / one of these four

I0. InQut | wWill be called

I0. Qut | to initialize

I0. Append \ the stream

I0.End Read / one of these

I0.EndWrite i three will be called

I0.End Stream \ on termination

I0.Rewind reset an input stream

I0.End To Input convert output to input

I0.RdCh buffer empty (character mode) & to read
I0.WrCh character mode write; interpret char given
I0.BinRdCh buffer empty (binary mode) & to read
I0.BinWrCh binary mode write

I0.ForceOut flush buffers & propagate if possible
I0,Test InCount return number that can be written NOW
I0.Test Out Count return number in hand NOW

I0.SamelLine writing #C in character mode

I0. NewLine writing ®*N in character mode

I0. NewPage writing *¥P in character mode
I0.MaxCharsOnLine return chars-to-WrapBError, or MaxInt
I0. Note remember a position

I0. Point and restore one

A portable BCPL library




5.4 Opening and closing streams

The user-supplied arguments (a-g) to FindStream will not appear as
arguments on the initial call, but will be placed in the user data area of
the SDB.

Stream functions are responsible for allocating and releasing any buffer
space; to make use of the library buffer handling, the input and output
pointers should be set correctly to reflect the amount of space remaining
or number of characters left. The library will take care of allocating and
releasing the SDB itself.

The words at offset SDB.IsInteractive and SDB.LineMode are initialized to
FALSE before the stream function is called for the first time. They should
be changed if desired.

Simplex streams will always be called with IO.EndRead or IO0.EndWrite,
even if EndStream is called to close them.

If the stream is opened with mode = IO.Append, this will be passed to the
stream function at open time, but the value stored in the SDB will be
I0.Qut .

5.5 Reading from streams

When a character is read from the buffer and the buffer is found to be
empty, the library will invoke the stream function with either IO.RdCh or
I0.BinRdCh as the function, depending upon the way in which it was itself
called. The stream function should return the next value to be passed back
to the user (there is no restriction that it must fit into a byte). It may
also put some characters into the buffer pointed to by the SDB (or change
the buffer pointer suitably), in which case any relevant other fields
should be updated (e.g. the last-valid position). The number of characters
transferred should be the minimum of the numbers required to:

- fill the buffer,

- encounter the external representation of a ForceQut,

- reach the end of an operating system record (for a record-based
system), or

- reach the end of a line written in character mode (for a stream-based
system) .

If a ForceQut is to terminate the buffer, the flag in SDB.ForceFlag
should be set TRUE. When the library tries to read the character after the
buffer has been emptied, it will look to see if the forceout flag is set
and, if so, signal the ERR.ForceIn exception with either RdCh or BinRdCh as
an additional argument. The exception handler should normally return the
character to be passed back to the user as the result of the call which
detected the condition. (The standard I/0 handler simply invokes the
function it is given after Reinstating itself.) Note that the exception
system will normally bypass the currently active handler when an exception
is re-signalled (directly or indirectly) whilst it is executing. If an
exception handler for the ERR.Forceln signal wishes to do a RdCh on the
same stream - which may in turn cause the exception to be signalled again -

A portable BCPL library 25




it should make a call to the exception system to re-instate itself. Take
care to avoid infinite recursiont

The library buffer handling software will assume that the buffer address
in the SDB is valid if the position and high-water-mark pointers indicate
that there is room in it for the current character, otherwise it will not
be looked at. The values at offsets IO.InBuffPos, IO.InBuffHWM and are
initialized to -1 when the stream is opened, rewound or has EndTolInput
called on it: this is done before the stream function is invoked.

5.6 Writing to streams

On output, the library will invoke the stream function (with one of
I0.WrCh or IO.BinWrCh) if the buffer is full, passing the character 'in its
hand' as an extra argument. The stream function should empty the buffer,
reset the pointers and accept the given character (one way would be to put
it into the buffer).

If (and only if) the word at offset SDB.LineMode is TRUE, the stream
function may also be invoked with one of the modes IO.Sameline, IO.Newline
or I0.NewPage; this may occur even when the buffer is not full. - These
represent the corresponding calls to WrCh with the associated characters
(the character is passed as the next argument). This can be used to cater
for those systems on which special action is needed to generate their
external representation (an end-of-record, for example).

With all other stream operations (including ForceOuts, EndStream, etc),
the buffer will NOT be flushed by the library beforehand: this is the
responsibility of the stream function.

For implementations which make use of operating system records, the
buffer used should normally be of the same length as one of those. If a
character mode write is attempted and the record is full, the stream
function should signal the ERR.WrapOutput exception on the stream, unless
implicit buffer handling takes place to relieve the situation (e.g. on an
I0.NewLine) .

Some systems (especially record-oriented ones) may not have any suitable
external representation of a ForceOut, and hence can never generate an
ERR.ForceIn exception on input. They should nevertheless cause any buffers
to be flushed on output if the stream is (may be) connected to an
interactive device such as a terminal.

5.7 Miscellaneous

The I0.TestInCount function should return an indication of how many
characters the stream function has in its hand, while the IO.TestOutCount
function should return the number of characters that the stream function
can immediately consume. They will only be called when the required
information cannot be deduced from the current state of the buffer (i.e. it
is full when writing or empty when reading).

26 A portable BCPL library




Buffers and their sizes may be altered at any time by the stream
function, provided that any other affected values in the SDB are updated.

The stream function may in its turn cause other calls of the I/0 system,
although recursion on itself should be treated with care.

6. Extensions

There are a number of areas which are outside the scope of the basic
library, but which are nevertheless worth attempting to specify here to
encourage consistency, should they be implemented.

6.1 Floating point

If a floating point package is provided (e.g. if the host compiler or
machine does not support the language extensions for floating point), it
should take the form indicated below. It should be noted that, for
portability reasons, it is highly desirable for all BCFL implementations to
provide this package, whether or not they have the floating point language
extensions available. It is not necessary for it to be included by default
in programs. Its availability on the system will be indicated by the
setting of the conditional compilation tag $$FloatPKG.

Since some machines permit several different lengths of floating point
numbers, the function

Flength( length )

is defined to allow the 'current length' to be altered. It takes as
argument one of the manifests for the upper bounds of vectors used to hold
floating point numbers, which have the following names:

FloatUPB

FloatSingleUPB

FloatDoubleUPB

FloatQuadUPB
The first is the default; it will have the same value as (at least) one of
the others. Specifying an invalid or unsupported length causes an error,
which the standard error handler will cause to be ignhored.

The functions provided are as follows:

v := Ffloat( v, n )

A portable BCPL library 27




n := Ffix( v )

v 2= Fabs( v )

vl 2= Feopy( v1, v2 )

vl = Fadd ( v1, v2 )

vl = Fsub ( v1, v2 )

vl 2=z Fmul ( v1, v2 )

vl = Fdiv ( v1, v2 )
cmp:= Fcompare( vi, v2 )
vl := Fsqrt ¢ vl, v2 )
vl := Fjitter ( vi1, v2 )

where the vs are vector addresses and the ns are BCPL words holding
integers. -

The result from Fcompare will be -~ve, 0 or +ve depending on whether the
value in v1 is less than, equal to, or greater than that in v2.

The 'fuzz' used for equality comparisons may be set by a call to Fjitter,
which sets the new value to that in v2, and returns the old one (which is
initially zero) in v1. It should not be negative.

Fsqrt computes the square root of v2 and places the result in vi. A
negative number causes an error.

6.2 Record I/0

Binary record I/0 is a mode provided to make direct use of any underlying
operating system primitives. Programs which use it should not expect to be
portable, since such primitives may or may not exist, and may even be
presented with a slightly different interface.

len := BinReadRecord ( record, maxlen )
ok := BinWriteRecord( record, len )

The result from BinReadRecord will be the number of characters read (which
may be less than the given buffer length). Some additional information is
put into the system error code global (LibErrorCode): if it has the value
ERR.Success the transfer was of a complete record; if the value is
ERR. IncompleteRecord there is more of this record waiting to be read. If
an error occurs, the appropriate exception will be signhalled. It is only
possible to get an end-of-stream exception when no data characters were
read (i.e. len will be zero). There is no obligation for an implementation
to support mixed use of single character (character or binary modes) and
record transfer on a stream.

6.3 Interval timer

If an interval timer is available, it may be invoked by the call of the
form

ticks := IntervalTime()

The result will be given in terms of the manifest TicksPerSecond; what it
represents is host dependent.

28 A portable BCPL library




A program may arrange to be suspended for a given period of real time by
calling Delay( ticks ), which will only return when at least ticks time
intervals (as defined by the TicksPerSecond manifest) have elapsed.

6.4 Random Access

Random Access facilities allow a user to re-position a sequential stream
- they are to be distinguished from block-mode Direct Access, which is
considerably less portable. The operations provided are:

stream := FindInOut( fileDescriptor )
notevee := Note( notevec )
Point( notevec )

The first opens an already existing file for updating (mode = I0.InOut).
The fileDescriptor is a string such as might be passed to FindInput. Not
all external files may be opened for update. The second remembers
sufficient information about the position of a stream so as to be able to
restore it later, by means of the third operation.

A notevec is a vector with upper bound NoteVecUPB; its contents are
entirely private to the stream implementation, and only of use in a
subsequent call of Point. Not all streams will support Note and Point;
some may do so even though they were not opened in mode IO.InOut. It is an
error to tamper with a notevec, and it may or may not be legal to reuse one
on a stream which has been closed and re-opened in the meantime, depending
upon the stream function.

A portable BCPL library 29




7. Implementations

An implementation of this 1library on a particular host machine and
operating system takes place by providing a relatively small set of
interfaces to a host-independent 'kernel', which implements the bulk of the
operations, If efficiency is dimportant, it is of course possible to
implement some of the code provided in the 'kernel' in the local assembly
language, and omit the relevant sections from the BCPL parts of the library
with suitable conditional compilation directives. For portability,
however, BCPL algorithms are provided for everything possible.

The interface to the host-specific section is in two parts: that which
is user-accessible (e.g. MapStack) and that which is private to the
library (e.g. a ‘'real' LongJump). At present, the user-accessible part
contains:

Level

TimeStamp

Coroutines

IsUndefined, Undefine

MapCode, MapStack, MapGlobals

StackBase, StackTop, GlobalBase, GlobalTop, MaxGlobal
The floating point package

BinRead Record, BinWriteRecord

IntervalTime, Delay

and the private interface (defined in the file "PRIVHDR") has:

Begin
sets up the standard environment & calls the user-supplied Start().
Level ToWords( level )
Returns a BCPL (word) address in the stack, given the result of a
call to Level().
PrivlongJump( coptr, level, label )
Does a 'real' Longdump, to a different coroutine stack if coptr is
. not zero.
ExtendHeap( minUPB, maxUPB )
Like GetMaxVec, but from the system heap.
FindFile( mode, name )
Opens a named file in the given mode (one of I0.In, IO.Out,
I0. InOut or IO.Append).
HPsecondar yUPB
A variable to give the minimum number words to allocate at a time
from the system heap.

Almost all BCPL code which has machine and operating system specificities
is concentrated in the one module LBHOST; additional assembler modules may
be needed to fully implement the library on a particular system.

If implementation-specific functions and routines are to be made
available (e.g. to cope with parameter passing from the operating system),
some convention which includes the name of the host system in the name of
the routine should be used. (For example, the Tripos implementation uses
names of the form TriposSendPkt.) This allows those parts of client
programs which are host system specific to be easily identified, and
clearly places the burden of choosing to use such facilities on the
individual programmer .

30 A portable BCPL library




7.1 Existing Implementations

An implementation of this library exists for the 68000 version of Tripos
in the Computer Laboratory, and one for the CAP research computer is under
way. Plans (and some initial investigations) have been made for a version
for Berkeley UNIX running on VAX-11s.

A portable BCPL library 31




