Technical Report A

Number 301

Computer Laboratory

The dual-level validation
concurrency control method

Zhixue Wu, Ken Moody, Jean Bacon

June 1993

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1993 Zhixue Wu, Ken Moody, Jean Bacon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

The Dual-Level Validation Concurrency Control Method

Zhixue Wu, Ken Moody and Jean Bacon
University of Cambridge Computer Laboratory, UK

Abstract

Atomic data types permit maximum concurrency among transactions by exploiting
the semantics of object operations. Concurrency control is needed to ensure both
object level atomicity and transaction level atomicity. It must be possible to regard
each operation on an object as elementary. Recovery methods for transactions which
are based on atomic objects must take into account that partial results of a transaction
might be seen by other transactions.

This paper presents, formalises and verifies a protocol called the dual-level val-
idation method which can be used to provide atomicity for atomic data types. It
is optimistic and has a number of advantages over previous methods. It permits
maximum concurrency at the low level by allowing non-conflicting operations to be
scheduled concurrently. It allows applications to cope with very large objects by sup-
porting multi-granularity shadowing. Transaction recovery is simple to implement.
The method performs well, particularly when different transactions are unlikely to
access the same (sub)objects concurrently. Finally, it is well suited to a distributed
environment since validation and commit are not implemented atomically.

1 Introduction

Transactions are designed to cope with concurrent execution and failures. They are there-
fore useful for managing computations in distributed systems in general as well as in
database systems. One way of ensuring atomicity of transactions is to implement applica~
tions in terms of atomic data types: data types whose objects, atomic data objects, provide
serialisability and recoverability for the transactions which use them. Atomicity of trans-
actions is guaranteed when all objects shared by transactions are atomic objects[WL85].

If the semantics of object operations are taken into account, more concurrency can be
achieved than with read-write semantics. For example, two transactions that perform a
credit operation on a bank account object can proceed concurrently because credit oper-
ations are commutative. A low-level synchronisation mechanism is then required to take
care of possible conflicts. For example, the credit operation is implemented as a read
and a write so two credits executed concurrently could interfere with each other at the
low-level. An implementation of atomic data types based on operation semantics must
therefore deal with this process concurrency as well as transaction concurrency. Process
concurrency is about making the object operations elementary and can be achieved by

classic methods such as taking out an exclusive lock on the object for the duration of a

1

critical read-modify-write sequence. Our approach is, in contrast, optimistic. Transaction
concurrency control is discussed below.

In an implementation of transactions based on atomic data types non-conflicting opera-
tions can be scheduled concurrently; that is, the execution schedule is inherently non-strict,
i.e. the isolation property of the transaction is not supported by the implementation. Nev-
ertheless, the atomic data objects must be recoverable to allow for failures and transaction
aborts. For example, consider an object A that initially has the value £2000. If two con-
current transactions Ty and T, both invoke a credit(£1000) operation on A then, providing
both transactions commit, the result is that A has the value of £4000. In an attempt to
make A recoverable, suppose that each transaction records the value of A prior to its
invocation. Consider the following sequences of events. Transaction T} changes the value
of A to £3000 and records the old value as £2000. Then transaction Ty sets the value
of A to £4000, recording the old value as £3000. T then commits producing £4000 as
the final value for A. Ty then aborts. Clearly, Ty should not restore the value of A to the
prior state it recorded, £2000, nor should it do nothing. The problem is that the isolation
property of transaction Ty is violated. The result of T} has been seen at the low-level by
T, which goes on to commit a value of A on this basis, thus we cannot simply undo Ty by
restoring the prior state recorded by 7T7.

In this paper, we present a protocol called the dual-level validation method (DLV)
which is used to provide atomicity for atomic data types; that is, atomicity of individual
operations, serialisability of the transactions that use the objects and recoverability of the
objects. The rest of the paper is organised as follows. In Section 2, we specify the DLV
method informally. In Section 3, some preliminary definitions and lemmas are introduced.
The DLV method is described formally and verified in Section 4. The recovery method
is discussed in Section 5 and Section 6 describes our implementation of DLV. Section 7

concludes the paper and includes a comparison with related work.

2 The Dual-Level Validation Method
2.1 Atomic Objects

We view an atomic object as a two-layered architecture. The high layer, called the lqgical
level, is a set of abstract operations defined on the object, which are the only means for
users to access the object. The low layer, called the physical level, is a set of operations
provided by the system to manage primitive data objects.

We use an optimistic approach to concurrency control. Transactions operate on shadow
copies of (components of) objects, relying on commit-time validation to ensure serialis-

ability. The two levels of DLV are concerned with the two levels of the object architecture,

2

physical and logical.

Physical level validation ensures that the logical level object operations are elementary.
This level is concerned with four kinds of physical operation: create, delete, read and write.
Logical level validation then ensures that the transaction that has used the object, and

which is requesting commit, is serialisable with other transactions.

2.2 Transactions

A transaction, in general, encloses operations on several objects. The sequence of oper-
ations of a transaction on a particular object forms the component of the transaction at
that object.

One approach to implementing optimistic concurrency control is to take a shadow copy
of a whole object at the start of a transaction, or perhaps at the time of the first operation
that updates the object. All subsequent invocations are on this copy and are validated
against the persistent object when the transaction requests commit [Bac93].

Our objects are tree structured with primitive objects as leaves. We‘ assume that
objects may be large. Our approach is to take a shadow copy only of the subobject of
the (tree structured) physical object that is required for a given invocation. A copy of a
subobject is taken on the first invocation that updates it and all subsequent invocations on
that subobject, for read or update, are performed on that shadow. A later invocation by .
the transaction may cause a shadow of a different subobject to be taken and this shadow
may contain the committed updates of concurrent transactions.

An execution of a transaction consists of two, three or four phases: a read phase, a

validation phase, and possibly a pending phase and a write phase (See Figure 1).

read : validation I pending L write

Figure 1: The four phases of a transaction

During the read phase, the transaction manager passes each operation enclosed in a
transaction to the appropriate object. The object arranges immediate execution of the
operation and records details of the invocation. If the invocation involves an update, this
takes place at a local shadow copy of the physical subobject as described above. Each
object therefore has a record of which object operations have been performed by each
transaction, and which physical (sub)objects, together with their version numbers, have
been read or written by each transaction. ‘

The validation phase begins when the execution of a transaction reaches its end. During

the validation, the transaction manager first assigns a timestamp to the transaction, and

then communicates with every object involved, passing it the transaction identifier and the
timestamp. Each object validates its component of the transaction and indicates accepted
or rejected. The aim is to establish whether any of the invocations of the transaction have
been invalidated by the invocations of concurrent transactions, see Section 2.3. This stage
is called logical validation. Note that we do not assume that logical validation takes place
in timestamp order at each object.

Each accepted component of the transaction enters the pending phase with a “waiting”
status, while each rejected component is aborted. Note that aborting simply involves dis-
carding the shadow subobjects. The transaction manager then asks every object involved
whether the component of the transaction handled at that object is accepted. If all are
accepted, the transaction as a whole is committed, otherwise the transaction as a whole is
aborted. The transaction manager informs every object involved of the result. If the result
is commit, then the component at each object remains in the pending phase but with a
new status “commit”; otherwise the component at each object is aborted and removed
from the pending queue.

A component of a transaction in the pending phase does not necessarily enter the
write phase immediately after the object gets the final result from the transaction man-
ager. This is because there may be several pending components, associated with different
transactions, at an object. They must enter the write phase in the order defined by their
timestamps and, at any time, there is at most one component in the write phase at a
particular object.

After entering the write phase, a component of a transaction is validated again by
the object to check whether it can be accepted at the physical level. The purpose of this
validation is to check whether the values read by the component are still up to date. If
they are, the transaction is committed by merging its shadow copies into the permanent
state. Otherwise the shadow copies are discarded and the operations of the component
are re-executed. During the re-execution, any update to a physical object takes place in
a shadow copy of the object as in the read phase. After the re-execution, shadow copies

are merged into the permanent state.

2.3 Validation Algorithms

The purpose of logical validation in DLV is to ensure that the concurrent execution of a set
of transactions is equivalent to executing these transactions serially in some order. To do
this, each transaction T} is explicitly assigned a unique number ¢;, called the timestamp of
the transaction, at the end of the read phase. The validation algorithm then ensures that

there exists a serially equivalent schedule in which transaction T; comes before transaction

T; whenever t; < t;. This can be guaranteed by the following validation condition [KR81,
Pap79]. For each transaction T; with transaction number ¢;, and for all T; with ¢; < tj,

one of the following three conditions must hold (see Figure 2):

1. T; completes its write phase before T starts its read phase.

2. The operation set of T; does not invalidate the operation set of T}, and T; completes

its write phase before T} starts its write phase.

3. Neither the operation set of T} invalidates the operation set of T); nor the operation
set of T invalidates the operation set of Tj, and T; completes its read phase before

T; completes its read phase.

B | I S | I]
| I N W | I
2) | I S | I wera)
l I R | IO
3 | | I N W | IS I
1 | IR W | I J

Figure 2: Possible interleaving of two transactions

The DLV method uses an algorithm that is an implementation of validation conditions
1 and 2. The first validation condition can be checked by recording the latest committed
transaction’s timestamp when a transaction starts. Validating the second condition is

done by the following three checks (suppose transaction T} is under validation):

e Check 1. For every transaction T; that is older than T}, and had not committed
when 7T} began, check whether the operation set of T; invalidates the operation set
of Tj; if it does, the validation fails.

e Check 2: For every transaction Tj that is in its pending phase and is younger than
T}, check whether the operation set of T} invalidates the operation set of Tk; if it

does, the validation fails.

e Check 3 Check whether any committed transaction T} is younger than Tj; if any

T} is, the validation fails,

Check 1 and Check 2 ensure that the first part of validation condition 2 holds, i.e., the

operation set of an older transaction does not invalidate the operation set of a younger

5

transaction. Check 8 ensures that the second part of validation condition 2 holds, é.e.,
transactions are committed in the order defined by their timestamps. Note that transac-
tions need not enter the validation phase in their timestamp order. Check 2 and Check 3

ensure that the validation condition holds.

3 Preliminaries
3.1 Serial Dependency Relations

In this subsection, we briefly introduce the formal method developed by Weihl [Wei89]
and the serial dependency relation introduced by Herlihy [Her90].

Each object has a type which defines a state and a set of operations. An eventis a
pair consisting of an operation invocation and a response. In the absence of failure and
concurrency, an object’s state is modelled by a sequence of events called a history. A
specification for an object is the set of permissible histories for that object. A legal history
is one that is included in the object’s specification.

In the presence of failure and concurrency, an object’s state is given by a schedule,
which is a sequence of events, transaction commits, and transaction aborts. To keep track
of interleaving, a transaction identifier is associated with each step in a schedule. For
example, the following is a schedule for an account object:

Ty: credit(£800) / OK
T,: credit(£1000) / OK
Ti: commit
Ty: debit(£1500) / OK
Ty: commit

(Serial) histories and (concurrent) schedules are related by the notion of atomicity. Let
« denote a total order on committed and active transactions, and let H be a schedule.
The serialisation of Hin the order < is the history h constructed by reordering the events
in H so that if 7y < T, then the subsequence of events associated with T precedes the
subsequence of events associated with Tp. H is serialisable in order < if his legal. The
schedule in the example above is serialisable in order T} < T3, but it is not serialisable in
order Tp <€ T1.

His serialisable if it is serialisable in some order. H is atomic if the subschedule asso-
ciated with committed transactions is serialisable. An object is atomic if it only produces
atomic schedules.

We wish to take account of all events that might, directly or indirectly, have influenced
e. Let <4 be a relation between pairs of events, and let & be a history. A subhistory (i.e.

a subsequence) g of h is closed under <g if whenever it contains an event e it also contains

6

every event ¢ of hsuch that e’ <q e.

A subhistory g is a view of h for e under <4 if gis closed under <g4, and if g contains
every € of hsuch that e <qe

Informally, < is a serial dependency relation if whenever an event is legal for a view,

it is legal for the complete history. More precisely, let “ e ” denote concatenation:

Definition 1 A relation <4 is a serial dependency relation if g e e is legal implies that
h e ¢ is legal, for all events e and all legal histories g and h, such that g is a view of h for

e under <.

We make use of the following lemma proved in [Her90] when reasoning about serial
dependency relations. It states that any sequence of events can be inserted into the middle

of a history provided no later event depends on any inserted events.

Lemma 1 If <q is a serial dependency relation, f, g and h histories such that f e g and

f o h are legal, and there is no e in g and ¢ in h such that e <4 € , then f e geh is legal.

Proof: The proof is by induction on the length of h. If h is empty, the result is
immediate. Otherwise, let h = h' e ¢'. By assumption, f e B isaviewof fege K fore.
Moreover, fege B’ is legal by the inductive hypothesis and f e b is legal because f o h
is legal by assumption. Because f e g ® B’ is legal and <4 is a serial dependency relation,

fegeh' ee =fegeh islegal by Definition 1.0

3.2 Views of a Transaction

We formalise an operation on an object as a function that reads from some primitive
physical objects (maybe none), and based on the results of reading and its parameters
writes to some primitive physical objects (maybe none). We use o(R,W) to denote an
operation which reads from a set of primitive physical objects R = [ro, ..., m] and writes
to a set of primitive physical objects W = [wg, ..., wn)].

Internally, an object is implemented by two components: a permanent state that
records the effect of committed transactions, and a set of local versions (shadow copies)
that record each active transaction’s tentative changes. Let T'=[Ty,..., Ty] be a set
of transactions, d, be a primitive physical object, we use d, to denote a specific version
i (created for transaction T;) of dy, and df to denote its permanent state. To process
operations from T, an object must translate an operation of T; on a (single version) prim-
itive physical object into an operation on a specific version of that physical object. This

translation is formalised by a function tr.

Definition 2 Let o(R,W) be an operation from transaction Tj, R = [roy ey, W =
[wo, ..., Wn), R = [ré‘), ey Pim], W' = [wk, ..., wkn], then tr(o(R,W)) = o(R',W"), where

7

1. k,=1for 0 <u < m
2. jy=1for 0 <u<m,ifan operation of T; has written to wy;
3. ju = p for 0 < u < m, if no operation of T; has written to wy,.

Rule 1 states that a transaction can only write to its own version of physical objects. Rule
2 states that if a version of a physical object has been created for a transaction, ‘then
it must read from that version. Rule 3 states that if a transaction has not written to a
physical object, it must read from the permanent state of the object.

The permanent state of an object can be modelled by a sequence of histories each of

which is a sequence of events caused by committed transactions. More precisely,

Definition 3 Let C = o0y ® -+ ® 0, be the component of transaction T; at an object
and h; denote the change in the permanent state of the object between the execution
of 0; and 0j41, then the permanent state of the object when executing oj(1 <1 < n)is

psi(Ty) =hoe - -ehiy, where hg is the object state before executing o;.

An object state consists of a set of primitive physical objects, the leaves in the tree
structure. A change on an object D made by an operation can be represented by corre-
sponding changes on D’s primitive physical objects. A read from D issued by an operation
can be represented by corresponding reads from D’s primitive physical objects. If we
denote an object D consisting of a set of primitive physical objects dy - + - dy, as:

d1
p=|: |,
din
then an operation o on D can be represented by a group of operations on the primitive

physical objects:

where o is an operation on physical object d;. We call o' a suboperation of o on physical

object d;. An event e on D can be represented by a group of events:

el

e%o---oe}z ht
h=e o r0e, = : = :
effe..coel ™

We call i o .- ¢ the subhistory of h on physical object d;, denoted by hi. The history
for a physical object d;, h = e{ LY) ef;, is locally legal if it is the same as executing the

corresponding operations on d; in a sequential environment in the same order.

Lemma 2 Suppose object D consists of a set of primitive physical objects dy ++ + dpy,
h=ejo: e, is the history for D. Then h is legal if and only if every subhistory of h
for each primitive physical object is locally legal.

Proof: At first we prove that if h is legal, then every subhistory of h for a physical object
is locally legal. Since h = e ® -+ ® e, is legal, h must be a permissible history for the
object. That is, h must be the same as executing the corresponding operations on D in a
sequential environment. Hence, every subhistory h? of h must be the same as executing the
corresponding suboperations on d; in a sequential environment. Therefore, Ri is locally
legal by its definition.

Now let’s prove that if every subhistory of h for a physical object is locally legal,
then h is legal. Since every subhistory, hi = e{ o..-e¢l, is locally legal, it is the same
as executing the corresponding suboperations on d; in a sequential environment in the
same order. Moreover, ¢; is the composite of €} - - -e*, Therefore, h must be the same as
executing the corresponding operations on D in a sequential environment. Hence, h must
be legal.Ol

A view of a transaction T; for an (abstract) object, denoted by View(T;), is the value

of the object that T; observes at some moment. More precisely,

Definition 4 Let C = o1 e- - -e0, be the component of transaction T; at an object and e;
be an event of executing operation o; (0 < j < n), suppose that the object state consists
of primitive physical objects dy - - - dm and we have ps;(T;) = hoe---o hj—1. Then after

executing operation 0;(1 < j < n), we have

v héo---ohkl_loe}clo-noe;
VieW(Ti): : = .
o™ h{)no---ohzzm_loe;cnmo---oe;-n

where ¢!, is the subevent of e, on physical object dj, (1 <1 < m,k <u < 7). Here, efcl
(1 <1< m) is the first subevent that writes physical object d;. We call ! the subview of
View(T;) on physical object dj.

Lemma 3 Suppose View (T;) is a view of transaction T; for an object. Then every subview

of it is locally legal, if the permanent state of the object is legal.

Proof: Let’s consider the subview for dy, vt = hie- - -ohfcl_loeﬁw .- -oeg. Since the permanent
state of an object is legal by assumption, he-- ~oh§cl~1 is locally legal. By Definition 2, we
know that when executing operation oy, the object creates a local version of d;, which has
the value hf)o» s hil_l, and all the subsequent operations of T} on d; are done on this local

version. Since the local version can only be accessed by T;, the event sequence e}cl o - 0ch

J
happened in a sequential environment. Therefore, vl =hhe- e hﬁcl_l o eﬁw o -0 eé- is
locally legal.O

Now we can get the lemma that is important to the proof of the DLV method.

Lemma 4 Let <4 be a serial dependency relation, C = oy 8- o0p be the component
of transaction T; at an object, e; be the execution of o;, ho be the object state before ey,
h; (1 < j < n) be the change that happened at the object between e; and eji1, hy be the
change that happened after e,. Then hoe - -eh,eci 0 : 0e, is legal, if hoe® -+ ® hy is

legal and if there is no e in hye---o h, and e ine o - ee, such that e <4 e.

Proof: The proof is by induction on the length of C, that is, the number of its op-
erations. If the length n = 1, by Definition 2, ho e e is legal. By assumption, ho ® hy is
legal and there is no event e in hy such that e <4 e1. That is, ho is a view of ho @ hy for

e;. Therefore, ho @ hy ey is legal by Definition 1.

If the length n >1, then

1. (a) by assumption, ho e hn_1 .\}12/ is legal,

f g
(b) by the inductive hypothesis, ho @+ 0 h,_1®e @ -0, 1 is legal, and

-~

7 h

(c) by assumption, there is no event ein g = h,and € in h=e, ®---®e,_; such

that e <q4 e.

Therefore, p = hopo - ®hy,_1 o&/o eje-- o6, 1 is legal by Lemma 1. Conse-
(S — S ———

S g h
quently, every p/ = hl e---ohj ee]e.. ee] , islocally legal by Lemma 2.

2. (a) By Definition 4, there is no event el in e{ o0 e*};j_l that writes d;. Therefore,
there is no event e’ in e{ L RN) ef;j_l such that e/ <4 ej,. This is because in the

physical level there is only one serial dependency relation: write <q read.

(b) By assumption, there is no e in hy; o .- - o h, such that e <4 e,. Notice that
if nonsense can arise at a physical level, the user must declare the potential
nonsense in the abstract semantics. Hence we know that there is no el in

hij o ---ohi such that e/ < el

10

Therefore, ¢/ = he--- o h*}ij_l . efcj o ..0el_ isa view of p for €.

3. Since hg e - - ® hy, is legal by assumption, every subview of View(T;) is locally legal

by Lemma 3. Hence v/ = ¢/ e ¢}, = hg TRRER hf;j__l . eij o .. .¢l is locally legal.

Therefore, p’ @ €], = hé o ..o hﬁ;—1 ohie e{ o -0 e*;_l e el for 1 < j < m is locally legal

by Definition 1. Hence hgpe---@ h,®ej @ 0¢y is legal by Lemma 2. O

4 The Correctness of the DLV Method
4.1 The Dual-Level Validation Automaton

Formally, each object is modelled by an automaton that accepts certain schedules. The
automaton’s state is defined using the following primitive domains: TRANS is the set of
transaction identifiers, DIDS is the set of physical object identifiers, EVENTS is the set
of events, and TIMESTAMP is a totally ordered set of timestamps. The derived domain
HISTORY is the set of sequences of events. A dual-level validation automaton has the

following state components:

Perm: HISTORY

View: TRANS — HISTORY

Intentions: TRANS — HISTORY

ReadSet: TRANS — DIDS

Read Version: (TRANS, DIDS) — TIMESTAMP
WriteSet: TRANS — DIDS

WriteVersion: (TRANS, DIDS) — TIMESTAMP
TimeStamp: TRANS — TIMESTAMP
BeginTime: TRANS — TIMESTAMP
CommitTime: TRANS — TIMESTAMP
Version: DIDS — TIMESTAMP
LastCommitTime: TIMESTAMP

Clock: TIMESTAMP

Committed: 9 TRANS

Aborted: 9 TRANS

The DLV automaton enforces the atomicity of schedules generated at the object. Its
behaviour is specified by giving the transitions during the read phase and the write phase.
Each transition has a precondition and a postcondition. In postconditions, primed

component names denote new values, and unprimed names denote old values.

11

At the read phase:

For a transaction 7T} to execute operation o(R, W) at an object, where R = [r1ye oy Pmls
W = [wl,"',wn] :
Pre: T; ¢ Committed U Aborted.

‘ e is the event of executing o(R, W).
Post: View' (T;) = View(T;) ¥ o(R, W)
Intentions (T}) = Intentions(T;) e e
ReadSet' (T;) = ReadSet(T;)U[r1,+ +, 'm)
WriteSet (T;) = WriteSet(T;)U[w, - - -, wy]
BeginTime' (T}) = min(BeginTime(T;),Clock)
ReadVersion (T}, r;) if 7; € ReadSet(T;)
ReadVersion' (T;,r;) = { WriteVersion(Tj,7;) if »; € WriteSet(T})

Version(r;) otherwise
. . [WriteVersion (T;, w;) if w; € WriteSet(T})
WriteVersion (T, w;) = { Version(w;) otherwise

where “¢” denotes executing an operation according to Definition 2.

The DLV automaton does not undergo any transition during the validation phase. The
result of logical validation is reported to the DTM, which returns a decision commit or
abort for the transaction. Committed transactions will subsequently enter the write phase.

Logical validation at an object is governed by a conflict relation <. defined at the object.

Definition 5 A transaction T} is logically valid for relation <. on an object, if the fol-

lowing three conditions hold:

e For each transaction T; such that TimeStamp(T};) < TimeStamp(T;) and
BeginTime(T;) < CommitTime(T;) (committed earlier transactions), there is no e

in Intentions(T}) and no ¢ in Intentions(7};) such that e <.e.

e For each transaction Tj such that TimeStamp(T;) < TimeStamp(7y) and T} is in
its pending phase (pending later transactions), there is no e in Intentions(7};) and no

¢ in Intentions(T}) such that e <, e.

e TimeStamp(T}) > LastCommitTime (commit in timestamp order).

When a committed transaction proceeds to the write phase we perform physical valida-

tion to check whether we can avoid re-executing the operations. If so, then the transaction

12

is committed by using its view for the object to replace the permanent state of the object;
otherwise we must apply Intentions(T;) to the permanent state of the object.
Physical validation is done by checking whether the version number of each physical

object in the read set of a transaction is still current. More precisely,

Definition 6 A transaction 7T} is physically valid at an object if there is no physical object
d in ReadSet(T;) such that Version(d) > ReadVersion(T;, d). That is, the value of d read
by T; is still current.

At the write phase:
Depending on the result of physical validation transaction commitment is defined by

the following transition of the DLV automaton.

If physical validation succeeds:

Pre:
T; ¢ Committed U Aborted.
T; is logically valid.
T; is physically valid.
TimeStamp(7;) > LastCommitTime.
Post:

Perm' = View(T)

Clock’ > Clock

Version' (d/) = Clock, for any d/ € WriteSet(T5);
LastCommitTime' = TimeStamp(T;)

If physical validation fails:

Pre:
T; ¢ Committed U Aborted.
T; is logically valid for relation <.
" TimeStamp(7;) > LastCommitTime;
Post:
Perm’ = Perm e Intentions(7})
Clock' > Clock
Version' (d) = Clock, for any d/ € WriteSet(T});
LastCommitTime = TimeStamp(T};)

13

4.2 Atomicity of the DLV Method

To verify the dual-level validation method, a new concept needs to be introduced. We
want to define equivalence so that two histories of an object are equivalent if they have
the same effects on the object. The effects of a history on an object are the values produced

by write operations in the history.

Definition 7 Two histories of an object are view equivalent if they produce the same

object value, denoted by “=".

Two histories of a physical object are equivalent if the last writes to the object in the
two histories are of the same value. An operation is a function that reads some values
from and writes some values produced by it to an object. If an operation reads the same

values in two histories, then the values it writes will be the same in the two histories.

Lemma 5 If View(T;) is the view of T; for an object when it entered the write phase,
Perm is the permanent state of the object, then View(T;) = Perm o Intentions(T;) for any
physically valid transaction T;.

Proof: Suppose the view of T; for an object when it entered the write phase is

hl h(l)o---ohllgﬁloeilo---oe%
View(T3) = : =1 :
™ hie---ehl! ecp o -ecl
Since T} is physically valid, for any d; either it does not belong to the read set of T; or it
has not been changed after T; read it. That is, there is no el in h{,j o..-ehi and ¢ in
) , , ,, . .
¢’ @+ e ¢f such that e/ writes d; and ¢’ reads d;. Moreover, by Definition 2, ef, - -,efcj__l
are each either a read only event or an empty event, otherwise a shadow copy would have
been creaJt.ed. Thus, ! = héo---ohf;j_lohij o---ohf;oef o-'-oef;j_l oe*};j o .eel,
because eij e ..o ¢l reads the same values, thus writes the same values in both histories.
Therefore, View(T;) = hp®---0h,eej e - 0e, = Perm o Intentions(T3). O
Notice that in the DLV method, at any time there is at most one transaction in the
write phase at a particular object. Therefore, the view of a transaction for an object will

be the same throughout the write phase.

Lemma 6 For any dual-level validation automaton whose logical validation relation <. is

a serial dependency relation, Perm e Intentions(T;) is legal for any logically valid T;.

Proof: Suppose C =01 ® -+ @0, is the component of T; at the object. We may now
write Perm = hge Intentions(T})e- - - e Intentions(Ti_1) = hge: - :®hy, and Intentions(T;) =

e1®:--ee,, where Ty, -+, T;_y have been committed with timestamp earlier than that of

14

T;. The proof is by induction on the number of transactions that have entered the write
phase before T;.

When 7 = 1, Perm o Intentions(7Ty) = hge Intentions(T1): it is legal by Lemma 4
because hi e - h, is empty.

When i > 1, by the inductive hypothesis, hoe Intentions(Ty) e --- Intentions(7;-1)
is legal. Since T; is logically valid by assumption, there is no e in Intentions(77) @ -+ -
Intentions(T;—1) and e in eje- - -o¢, such that e <, e. Moreover, <, is a serial dependency
relation. Therefore, hoe Intentions(7;) e - -+ Intentions(T;—1)e Intentions(T;) is legal by

Lemma 4. O

Lemma 7 The dual-level validation method is atomic, if the conflict relation used by the

logical validator is a serial dependency relation.

Proof: From the dual-level validation automaton, we know that the permanent state of
an object is the serialisation in timestamp order of the schedule accepted by the automaton.
Moreover, Lemma 5 and Lemma 6 imply that each commit carries the permanent state
from one legal history to another. Therefore, the schedule is atomic. Since its automaton

only accepts atomic schedules, the DLV method is atomic.O

5 Recovery

To ensure data consistency a system needs to provide three kinds of recovery [CP84]. The
activity of ensuring a transaction’s atomicity in the presence of transaction aborts is called
transaction recovery. The activity of ensuring a transaction’s atomicity in the presence
of system crashes, in which only volatile storage is lost, is called crash recovery. The
activity of providing a transaction’s durability in the presence of media failures, in which
nonvolatile storage is lost, is called database recovery.

In the introduction we pointed out that a transaction’s isolation property may be
violated in an implementation of transactions based on atomic data types. This results in
the failure of traditional state-based recovery. DLV uses optimistic concurrency control
in which a transaction performs update operations on local copies of objects during its
read phase. Transaction abort is therefore achieved by discarding these shadow copies.
Persistent object values are not affected until the write phase of a transaction.

Database recovery is independent of the concurrency control method used by a trans-
action system. Various methods such as stable storage [Lam81] can be used for providing
database recovery.

Our crash recovery method is log-based [Gra79], but in a system which uses DLV to

provide local atomicity there is no need to write a log record for an object operation. This

15

is because, in this method, updates to an object can only be made on its shadow copies
before a transaction commits, see Section 2.3.

A log record is recorded on stable storage when each phase of a transaction starts, and
when a transaction completes (aborts or commits). Hence during a recovery procedure
after a system crash, the status of a transaction can be determined.

If a transaction was in its read phase when the system crashed, it will be aborted when
the system restarts. No special recovery operation needs to be done, since the transaction
neither made any change to a persistent object, nor made any promise. Any local copy of
objects it has created will be collected by the garbage collector.

Before entering the validation phase, the performed-operations table (POT) and the
accessed-objects table (AOT) of the transaction must be recorded on stable storage. If a
transaction was in its validation phase when the system crashed, the object will do the
validation again at restart. The information necessary for the validation, i.e. the POT,
has been recorded on stable storage.

If a transaction was in its pending phase when the system crashed, it will remain in
this phase at restart. No special action needs to be taken. However the pending queue of
an object which records all the transactions in their pending phase needs to be refreshed
to stable storage whenever a change is made to it. ‘

The write phase of a transaction is separated into two or three steps: a physical
validation step, possibly a ye—execution step, and a merging step. A log record is necessary
to indicate the end of a step. Moreover, if a re-execution step is required, the new POT
and AOT produced by the re-execution need to be recorded on stable storage before the
merging step. |

If a transaction was in its physical validation step when the system crashed, at restart
the object will perform physical validation again for that transaction. The validation can
be performed because the AOT with the required information has been written to stable
storage. If a transaction was in the merging step, at restart the object will redo the merging
operation. This can be done because all the shadow copies as well as the AOT have been
written to stable storage. Notice that a merging operation is idempotent. If a transaction
was in the re-execution step, at restart the object will re-execute the operations on the
object of the transaction. The re-execution can be done since the POT which recorded

the operations of the transaction has been written to stable storage.

6 An Implementation -

The DLV method has been implemented and works well in a persistent programming
language PC++ [Wu93, WMB93] which is a persistent extension of C++. In this section

16

we show how the DLV method is used to implement atomic data types in PC++.

In order to construct an atomic object a programmer must not only specify the object
representation and object operations but also must implement the functionality of local
atomicity. This is a difficult task. In order to lessen the programmer’s burden, PC4-+ takes
an implicit approach to implementing atomic data types. A special type called Scheduler
is available which implements the DLV method. To provide local atomicity, user-defined
atomic types inherit this method from the Scheduler by making use of type inheritance.
The semantics of object operations are specified by users in the form of conflict relations.
Logical validation of an object is done according to the conflict relation of the object.

The state of an atomic object is represented by a number of physical objects. The
durability of transactions requires that object states modified by transactions become
permanent when they commit. To achieve this, PC++ uses the services of a multi-service

storage architecture (MSSA) for the storage of physical objects.

6.1 The MSSA

The Opera group in the Computer Laboratory at Cambridge has designed a storage archi-
tecture, the MSSA, to support multi-media applications [BMTW91, MBB*93]. As well
as traditional and continuous media files, among the file types recognised are ’structured
files’ which can include references to any MSSA object. PC++ uses the ’Structured File
Custode’ (SFC) [Tho90] to provide storage for the physical objects.

The SFC provides a large, shared, persistent object store, directly accessible from
programming languages. An important feature of the SFC is that it supports the storage
of structured object representations; that is, a highly structured object can be represented
directly by the SFC. The SFC is not a type manager, being concerned only with the
primitive storage types byte and storage service identifier. User programs can access
objects at any abstraction granularity, from a basic field such as an integer or char (these
types are known only to the programming languge) to a whole object. Therefore, when
‘making changes to a component of an object only that component needs to be rewritten;
no other component of the object is affected. The SFC provides a multiple granularity
locking mechanism as described by Gray [Gra79], which can be used to lock any logical
component, of an object.

The use of the SFC for data storage has proved very convenient. Since SFC objects
are tree-structured data migration and shadow versions may be managed at subobject
level, which meets the requirement of the DLV method. The multiple granularity locking
mechanism provided by the SFC means that concurrency control can be applied at any

granularity required by the DLV method.

17

6.2 The Scheduler
6.2.1 Operations

The Scheduleris an implementation of the DLV method. It provides five public operations:
create, tnvoke, validate, object_abort and object_commit. These operations are used by the
transaction manager to communicate with an atomic object. By using inheritance, these
operations can become the properties of a user-defined atomic data object.

Before any operation can be executed on it, an atomic object must be activated. This
can be done in either of the following ways: by calling the invoke operation, if the object
exists; or by calling the create operation, otherwise. After an atomic object is activated,
the calling transaction is registered with the object, so that it can call operations defined
on the object.

The operation validate is called when the transaction manager intends to ask partici-
pating objects to vote on a transaction. The validate operation performs logical validation
according to the conflict relation of the object. When the transaction manager has de-
cided to commit a transaction, it should ask every participating object to commit that
transaction locally by invoking the object_commit operation. This operation does the work
of the write phase manager (WPM). The object_abort operation is responsible for aborting
a transaction locally. This can be done simply by discarding the shadow copies created

for the transaction.

6.2.2 Data Members

Scheduler also defines a number of state variables to record information about transactions
that share an object. A state variable event._table is used by an object to record the opera-
tions that are performed on the object by each transaction together with their parameters
and results. The state variables read_set, write_set, create_set and delete_set are used to
record the physical objects which are read, written, created, or deleted by a transaction
respectively, Further, a state variable last_committed is used to record the timestamp of
the latest committed transaction.

State variables pending.queue and committed_queue play a very important role in the
DLV method. They are used by both the logical validator (LOV) and the write phase
manager (WPM). An important property of the DLV method is that transactions are
committed in timestamp order. This property could be achieved by enforcing that at
every object transactions are validated in their timestamp order and by implementing the
validation phase and the write phase together as a single atomic operation. However,

this would reduce greatly object concurrency and availability. Therefore, it is desirable,

18

especially in a distributed transaction system, to permit transactions to be validated in
an arbitrary order and to separate the validation phase from the write phase. We realise
this by using the pending_queue and committed_queue.

The algorithm works in the following way. The LOV validates a transaction: if vali-
dation succeeds, it puts the transaction in the pending_queue with status valid and begins
to validate another transaction; if validation fails, the transaction is aborted. When re-
ceiving the final decision about a transaction, the cooperation manager (COM) sets the
transaction’s status to commit or abort accordingly. Meanwhile, the WPM checks the
pending_queue from time to time to see whether the status of the transaction at the head
of the pending_queue has become abort or commit. If it has, the WPM aborts or commits
it, then removes it from the pending_queue. If a transaction is committed, it is put in the
committed_queue.

This implementation ensures that transactions are committed in timestamp order,
although it permits transactions to be validated in an arbitrary order. This is because
the WPM only commits a transaction when it reaches the head of the pending_queue, and
transactions are maintained in the queue in their timestamp order.

Furthermore, this implementation makes the following three actions independent: val-
idating a transaction; getting the final decision about a transaction; and applying the
updates of a transaction. As soon as the LOV has finished validating one transaction, it
can begin validating another without needing to wait for the completion of the first. A
transaction that has got its final decision but has not become the head of the pending
queue needs to be held until all transactions in front of it have been completed. It is
worth pointing out, however, that the application program does not need to wait for the
completion of a transaction. It can continue its work immediately after receiving the final

decision about the transaction.

6.3 Validating a Transaction

To validate a transaction 7, the LOV needs to check whether other transactions have
invalidated 7. Two kinds of transactions may invalidate T transactions that committed
after T began, and transactions that were validated after T began but have not yet com-
mitted and are older than 7. The first kind of transaction should have been recorded in
the committed_queue, and the second kind of transaction in the pending_queue.

The LOV also needs to check whether 7T would invalidate any transaction that has
already passed its validation. Transactions that may be invalidated by T are those that
have passed their validations but have not yet committed and are younger than T.

Finally, the LOV needs to check whether the latest committed transaction is younger

19

than T. If it is, the validation fails because transactions must be committed in their times-
tamp order. This check can be done by comparing 7’s timestamp with the last_committed
variable.

To check whether a transaction 7; may invalidate another transaction T2, the LOV
simply needs to check whether any event in the event_table of Ty may invalidate any event

in the event_table of Ty according to the conflict relation defined for the object.

6.4 Recording Events

One responsibility of the Read Phase Manager (RPM) is to record the events of a trans-
action into its event_table. The information in this table is necessary for validating and
re-executing the transaction.

Since, in our implementation, transactions invoke object operations directly and the
results of operations are returned to transactions directly, recording the events of a trans-
action must be done by the operations themselves. However, providing concurrency trans-
parency is an aim of our design so it is inappropriate to ask programmers to write the
code to perform the recording work for every object operation. A preprocessing method
is therefore adopted to solve this problem.

During preprocessing, the preprocessor adds to every object operation some code which
records the operation’s name, parameters and results into the event_table whenever the
operation is executed. It is easy for the preprocessor to find out the name and parameters
of an operation by analysing its header. However, it is impossible for the preprocessor to
get the results of an operation without the help of programmers. Fortunately, results of
operations need only to be distinguished as succeeded or failed. Therefore, if programmers
can tell the preprocessor whether a return point of an operation is a successful one or
unsuccessful one, the preprocessor can add appropriate code at the return point to record
the result. Programmers can do the job simply by writing an unsuccessful return in the
form of “fail_return” instead of “return”.

Under this implementation, therefore, whenever an operation is invoked by a transac-
tion, it will automatically record its name, its parameters and its results into the event_table

associated with that transaction.

7 Related Work and Conclusions

Several papers[Ton89, SS84, BGL83] have addressed the problem of extending concurrency
control protocols to cope with arbitrary user-defined operations. These focus exclusively
on locking protocols and do not consider recovery issues. In [Wei84, LCJS87, SDP91,
SBD*85, AM83] implementations of atomic data types are described, but all of them

20

use pessimistic concurrency control methods and support elementary operations by using
exclusive locks. Such methods limit concurrency at the low-level by forcing operations on
an object to run serially. The DLV method separates the concerns and permits maximum
concurrency at the low level while allowing the high level to focus exclusively on operation
semantics. Also, our atomic objects are recoverable. A transaction can affect the object
state only when it commits and the invocations on shadow copies can simply be discarded.

Like the DLV method, multi-level transactions[HW91, Wei91] increase concurrency by
exploiting the semantics of high-level operations. The major difference here is that DLV
is a single-level transaction. It is therefore cheaper to implement because only one level
of recovery is required. DLV is most similar to the method proposed by Herlihy[Her90]
in that both of them are optimistic and both of them use the semantics of operations
to validate interleaving of invocations by transactions. However, there are significant
differences betwen the methods.

Herlihy’s method represents the partial results of a transaction by a snapshot of the
permanent state of the object plus an intentions-list, and commits a transaction by ap-
plying the intentions-list serially to the permanent state. The DLV method represents
the partial results of a transaction by a group of shadow copies of physical objects, and
commits a transaction component by merging the shadow copies into the permanent state.
When taking a snapshot of an object for a transaction, Herlihy’s method is to create a
copy of the whole object state, even if the transaction only accesses a small part of it. The
shadow copies used by DLV are only of the components of objects that are required for the
requested invocations. Our storage service architecture contains a structured data server
which supports this well. Applications can therefore carry out transactions which involve
very large objects without consuming system resources unnecessarily. DLV does not re-
quire that transactions go through logical validation serially in timestamp order. This
feature is important for a distributed transaction system in which it is possible that an
older transaction may request logical validation, at some of the objects involved, later than
a younger one. Without this feature either an atomic, distributed validation algorithm
would be needed to enforce timestamp ordering at all objects or out-of-order validation
requests could be rejected by the objects. Both of these approaches are inferior to that
adopted in DLV. Also, in DLV an object may begin validating one transaction as soon
as it has finished another, without waiting for its completion. These two features make
DLV suitable for distributed environments. It is particularly suited to a multimedia envi-
ronment (the original motivation for the method) in which conflict is rare and real time
requirements must be met.

At commit Herlihy’s method re-executes the operations of the transaction at the per-

21

sistent object. Since the re-executions must be done serially, transactions may be delayed,
waiting to commit. DLV requires physical validation, since transactions may conflict at
the physical level even if they do not at the logical level. Transactions that pass physical
validation are committed simply by merging the shadow copies into the permanent state.
Transactions that fail physical validation are re-executed locally, as in Herlihy’s method,
before being committed. Absence of conflict has already been established at the logical
level.

The feasibility of the DLV method has been shown by our PC++ implementation. No
special difficulty has arisen during its implementation. PC+4+ has already been used to
reengineer a simple distributed application, namely to maintain the database for an active
badge system that is used within the Laboratory. This is a low bandwidth application
in which updates to the database are obtained from distributed collection points. The
database can be interrogated from any terminal within the Laboratory.

PC++, including DLV, was developed within the Opera project [MBBt93]. It gives
a programming language interface to the storage services which support the requirements
of multimedia as well as conventional storage. Its optimistic approach, with no delay
on access to objects, makes it ideal for programming reliable, distributed, multimedia

applications and it will be evaluated in this context.

Acknowledgements

We acknowledge SERC support for this work under grant GR/H 13666 and ICL support
of Z Wu. Thanks to members of the OPERA project and to Heather Brown, visiting this

year, for many discussions on all aspects of the work.

References

[AMB3] J. E. Allchin and M. S. McKendry. Synchronization and recovery of actions.
In Proceedings of the 2nd annual ACM Symposium of Principles of Distributed
Computing, pages 31-44, August 1983.

[Bac93] J. Bacon. Concurrent Systems: An Integrated Approach to Operating Systems,
Database and Distributed Systems. Addison—Wesley, 1993,

[BGL83] P. Bernstein, N. Goodman, and M. Y. Lai. Analyzing concurrency control
when user and system operations differ. IEEFE Transactions on Software En-
gineering, SE-9(3):223-239, May 1983.

22

[BMTW91] J. Bacon, K. Moody, S. Thomson, and T. D. Wilson. A multi-service storage

[CP84]

[Gra79]

[Her90]

[HW91]

[KR81]

[Lam81]

[LCIS87]

[MBB+93]

[Pap79]

[SBD+85]

architecture. ACM Operating Systems Review, 25(4):47-65, October 1991.

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.
McGraw-Hill, 1984.

J. Gray. Notes on database operating systems. In R. Bayer et al., editors, Op-
erating Systems— an Advanced Course, pages 391-481. Springer-Verlag, 1979.

M. Herlihy. Apologizing versus asking permission: Optimistic concurrency
control for abstract data types. ACM Transactions on Database Systems,
15(1):96-124, March 1990.

C. Hasse and G. Weikum. A performance evaluation of multi-level transaction
management. In Proceedings of the 17th International conference on very large

data bases, pages 55-66, 1991.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213-226, June 1981.

B. Lampson. Atomic transactions. In Goos and Hartmanis, editors, Dis-
tributed Systems: Architecture and Implementation. Lecture Notes in Com-

puter Science 105, pages 246-265. Springer-Verlag, 1981.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus.
In Proceedings of the 12th Symposium on Operating System Principles, pages
111-122, 1987.

K. Moody, J. Bacon, J Bates, R. Hayton, S. L. Lo, S. Schwiderski, R. Sultana,
and Z. Wu. OPERA: storage, programming and display of multimedia ob-
jects. In Proceedings of IEEE jth Workshop on Future Trends of Distributed
Computing Systems and Computer Laboratory TR 294, 1993.

C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the Association for Computing Machinery, 26(4):631-653, October
1979.

A. 7. Spector, J. Butcher, D. S. Daniels, D. J. Duchamp, J. L. Eppinger, C. E.
Fineman, A. Hessaya, and P. M. Schwarz. Support for distributed transactions
in the TABS prototype. IEEE Transactions on Software Engineering, SE-
11(6):520-530, June 1985.

23

[SDP91]

[S584]

[Tho90]

[Ton89]

[Wei84]

[Wei89]

[Wei91]

[WL85]

[WMB93]

[Wu93]

S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An overview of the
Arjuna distributed programming system. IEEE Software, January 1991.

P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract types. ACM
Transactions on Computer Systems, 2(3):223-250, August 1984.

S. E. Thomson. A Storage Service for Structured Data. PhD thesis, Cambridge
University Computer Laboratory, November 1990.

P. Tony. Using histories to implement atomic objects. ACM Transactions on
Computer Systems, 7(4):360-393, November 1989.

W. E. Weihl. Specification and Implementation of Atomic Data Types. PhD
thesis, MIT Laboratory for Computer Science, March 1984. Tech. Rep.
MIT/LCS/TR-314.

W. E. Weihl. Local atomicity properties: Modular concurrency control for
abstract data types. ACM Transactions on Programming Languages and Sys-
tems, 11(2):249-282, April 1989,

G. Weikum. Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems, 16(1):132-180, March
1991.

W. E. Weihl and B. Liskov. Implementation of resilient, atomic data types.
ACM Transactions on Programming Languages and Systems, 7(2):244-269,
April 1985.

7. Wu, K. Moody, and J. Bacon. A persistent programming language for
multimedia databases. Technical Report TR 296, Computer Laboratory Uni-
versity of Cambridge, 1993.

7. Wu. A New Approach to Implementing Atomic Data Types. PhD thesis,
Cambridge University Computer Laboratory, 1993. In preparation.

24

