Technical Report RS

Number 303

Computer Laboratory

Drawing trees —
a case study in
functional programming

Andrew Kennedy

June 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1993 Andrew Kennedy

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Drawing Trees —
A Case Study in Functional Programming

Andrew Kennedy
University of Cambridge
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
United Kingdom
ajki3@cl.cam.ac.uk

June 7, 1993

Abstract

This report describes the application of functional programming techniques to a
problem previously studied by imperative programmers, that of drawing general trees
automatically. We first consider the nature of the problem and the ideas behind its
solution, independent of programming language implementation. The functional lan-
guage implementation is described in a bottom-up style, starting with very general’
functions over trees and then narrowing in on the particular tree layout algorithm. Its
correctness is considered informally. Finally we discuss the implementation’s compu-
tational complexity and possible improvements.

1 Introduction

This short article is an attempt to demonstrate functional programming as a vehicle for
the abstract description of algorithms. Whilst the functional programming community is
aware of many programming techniques and ingenious data structures, little of this has
found its way into papers on algorithms. This is a shame, because functional languages
are an ideal means of explaining the operation of algorithms at a level which abstracts
away from nitty-gritty details of pointers and loops.

Many of the papers which do describe neat functional solutions choose examples such
as lambda-reduction or theorem proving—programs which imperative programmers are
unlikely to write anyway. There are exceptions [BY90, FL89, Hug89, JS89, Pey85, Tri89].
The problem described in this paper, that of drawing trees, clearly is not an ‘in’ problem.
But the functional implementation is almost embarrassing in its conciseness!

The particular functional language used is Standard ML. Any functional language could
have been chosen, lazy or strict, but ML is popular, standardized and has widely-available
implementations. The language is defined in [MTH89).

For the reader unfamiliar with ML, Paulson’s book [Pau91] provides an excellent introduc-
tion to the language, functional programming, and indeed algorithms in general. Bird and
Wadler’s book [BW88] is particularly good at explaining equational reasoning about func-
tional programs. They use a popular lazy functional language but most of the examples
are easily translated into Standard ML.

2 The problem and its solution

The problem is this: given a general tree, assign to each node a position on the page to
give an aesthetically pleasing rendering of the tree. What do we mean by “aesthetically
pleasing”? The various papers on the subject [WS79, Vau80, RT81, Wal90] list aesthetic
rules, as follows:

1. Nodes at the same level of the tree should be placed in the same position vertically
on the page.

2. A parent should be centred over its offspring.

3. A tree and its mirror image should produce drawings that are reflections of each
other. Thus symmetric trees will be rendered symmetrically. So, for example, here
are two renderings, the first bad, the second good:

A A
/\ /y\
BF G B F G
TN TN ANV
CDEHIIJ CDEHIJ

4. Identical subtrees should be rendered identically—their position in the larger tree
should not affect their appearance. Again, the tree on the left fails the test, and the
one on the right passes.

A A
TN RN
B F G B F G
SN AN
C D E H C D E H
AN
1 J K I J K

Incidentally, the Postscript used to produce these diagrams was generated by a back-end
ML program. This is a messy problem, and the ML solution is messy, though not as messy
as an imperative version would be.

The layout problem is solved by a decomposition into subproblems. First, draw all the
subtrees of a node. Fit these together without changing their shape (otherwise we break
rule 4). Place the subtrees one level below their parent (rule 1) and centre the parent
above them (rule 2).

The critical operation is the fitting together of subtrees. Each subtree has a profile: an
envelope around the subtree. Because we cannot distort the shape of subtrees, we simply
fit these together as tightly as possible. Unfortunately, the overall positioning of the
subtrees depends on the order in which we perform this fitting. For example, here are two
different arrangements of the same profiles:

We can choose a left bias for this ‘glueing’ effect, by starting with the leftmost subtree, or
a right bias instead. To satisfy rule 3, we simply do both and take the average!

3 Some general functions over trees

We first define a general tree datatype, using ML’s polymorphism to parameterize the
type of the node values.

datatype ’a Tree = Node of ’a * (’a Tree list)

This simply says that a node consists of a value (of type ’a) and a list of subtrees.

Our algorithm will accept trees with arbitrary labels (’a Tree) and return positioned trees
of type (?a*real*int Tree). The second element of the node value represents the node’s
position horizontally, and the third element represents the node’s depth. The root of a
tree has position (0.0,0). We must use values of type real for the harizontal displacement
because of rule 2 which forces exact division by two.

A frequently-used operation on lists is that of applying a function to each element of the
list and returning the result. In most functional languages this is given the name map. We
can write an equivalent function maptree for trees which we will find useful. In drawing
trees it is common to apply some function to the X co-ordinate, so we have a special
version of maptree to do just this. We then use this to define a function translatetree
which shifts a complete tree horizontally by a fixed amount.

fun maptree £ (Node(v, subtrees))
= Node(f v, map (maptree f) subtrees)

fun maptreex f
= maptree (fn (v,x,y) => (v,f x,y))

fun translatetree (x : real, t)
= maptreex (fn x’ => x+x’) t

Another frequently-used list operation is zip, which takes a pair of lists and returns a list
of pairs, corresponding elements paired with each other. The two lists must have the same
length.

[
(x,y) :: zip (xs,ys)

fun zip ([1, [1)
| zip (x::xs, y::ys)

The analogous tree function, ziptree, takes a pair of trees and returns a tree of pairs.
The two trees must have the same shape.

fun ziptree (Node(x, xs), Node(y, ys))
= Node((x,y), map ziptree (zip (xs,ys)))

These two functions will have respective polymorphic types
’a 1list * b list -> (’a * ’b) list

and
’a Tree * ’'b Tree -> (’a * ’b) Tree

A reflect function is very easy to define: we simply reverse the subtree list in each node
using ML’s built-in list function rev.

fun reflect (Node(v, subtrees))
= Node(v, map reflect (rev subtrees))

A function to reflect a tree physically is even easier: just negate all the X co-ordinates.

val reflectx = maptreex (* : real->real)

4 Profiles

We need some way of representing the ‘shape’ of a tree: its profile. For this we use a list of
pairs, the first element of which records the minimum X co-ordinate at a particular depth,
and the second element records the maximum. The head of the list corresponds to the
root of the tree.

It is useful to merge two profiles, combining their extents at each level. This we do simply
by picking maxima and minima:

if x1<x2 then x1 else x2
if x1>x2 then x1 else x2

fun rmin (x1 : real, x2 : real)
fun rmax (x1 : real, x2 : real)

fun merge ([1, gs) = gs
| merge (ps, [1) = ps
| merge ((a,b)::ps, (c,d)::qgs)
= (rmin(a,c), rmax(b,d)) :: merge (ps, gs)

Notice how we must deal with profiles of different depths. We will not assume that the
profiles overlap or are centred about zero. The gap between two separated profiles is filled
in, as in the case shown below.

Now given a positioned tree, the following function determines its profile:

fun treeprofile (Node((_, x, .), subtrees))
= (x, x) :: fold merge (map treeprofile subtrees) []

This is a nice example of the functional style. The extent of the root is simply (x,x) and
we tack this onto the result of merging the profiles of all the subtrees. The functional fold
is used to apply the binary operation merge between all subtrees. Informally, it is defined
as:

fold (@) [z1,%2,.. y2n]a=21® (220 (- (e D a) "))

where @ is a two argument function written as an infix operator which associates to the
right. We could have used a left-associative version instead because merge is associative.

A trivial function to shift a profile horizontally is convenient:
fun translate (x : real) = map (fn (a,b) => (a+x,b+x))

Now the real work begins. First we define a function which determines how close two trees
may be placed next to each other, given that the minimum separation between two nodes
in different subtrees is a constant value of 1.0. Of course when we actually draw the tree
this is scaled appropriately. The function accepts two profiles as arguments and returns
the minimum distance between the two root nodes.

fun findgap ((_,b)::xs) ((a,_)::ys) = rmax(findgap xs ys, b-a + 1.0)
| findgap - - 0.0

Now we extend this function to a list of subtrees. Given an initial profile p, the function
repeatedly fits trees against this profile and returns a list containing the minimum distance
between each tree and this initial profile. The asymmetry in the tree layout algorithm
derives from this function: trees are fitted together from the left.

fun findgaps p []
(1 ‘

findgaps p (q::gs)
let val gap = findgap p q
val newp = merge p (translate gap q)

in
gap :: findgaps newp gs
end

5 Drawing the tree

We will use findgaps to give us the positions of offspring relative to the first child. We
must centre these to satisfy rule 2. The function centre assumes that these offsets start
at zero.

fun centre xs =
case rev xs of
[l => []

| (w::) =>map (fn x => x - w / 2.0) xs

Now we wrap everything together in one function.

fun planleft tree =
let
fun plan’ level (Node(v, subtrees))
= let val ptrees = map (plan’ (level+1l)) subtrees
val offsets = centre (findgaps [] (map treeprofile ptrees))

[

val ctrees = map translatetree (zip (offsets, ptrees))
in
Node({v, 0.0, level), ctrees)
end
in
plan’ O tree
end

The local function plan’ produces a positioned tree with the root at position (0.0, level).
It does this in the following stages. First, recursively draw all the subtrees (in ptrees).
All the subtrees’ roots will be at position (0.0,1level+ 1). Calculate their profiles and fit
them together using findgaps. Then adjust the offsets so that they are centred around
zero, and translate each subtree by the appropriate offset to give ctrees. That’s it!

To produce a layout with the asymmetry in the other direction, we do the following:

6

1. Reflect the tree structurally.
2. Lay out the tree using the left-biased algorithm.
3. Reflect the tree structurally.

4, Reflect the tree physically.
Function composition is used to glue these processes together:
val planright = reflectx o reflect o planleft o reflect

Now we just take the average of the two cases to generate an unbiased layout with the
properties we require.

fun average ((v,x1,y), (_,x2,.)) = (v, (x1 + x2) / 2.0, y)
fun plan tree =
maptree average (ziptree (planleft tree, planright tree))

Here is a realistic example, in family tree form with all connecting lines horizontal or
vertical.

o
]
:3_

C 0 é 0
F_LWI_L'II—JF*—l I—‘Jr_l f | 1
D E P QTUY e g h p u 1
!_—T_LT——I l——_Lﬁ ‘ |II!|III|||
F G L M w Y i g r s t v w z 0
r—rl"r—Wl 1Illllfllll I—_l_|
H I J KN X Z a b c j k I m X Yy

6 Correctness

In contrast with a coding of this algorithm in Pascal{Wal90], it is clear from the ML code
that our aesthetic rules are not broken. Consider them each in turn.

1. The plan’ function produces a tree with its root at vertical position level. It calls
itself recursively with the same value (Level+1) for all subtrees.

Tt is clear that reflecting the tree either structurally or physically leaves the Y co-
ordinates alone, as does the final averaging operation. Hence the condition is satis-
fied.

2. The centreing of parent over offspring occurs in centre.

It is possible to use integer values instead of reals if we’re not concerned about
truncation errors causing this rule to be broken. Alternatively, to guarantee that
w is always even, we can set the minimum separation between subtrees to on-1,
where n is the maximum depth of the tree. This is somewhat messy, and could be
done automatically by plan before passing.it in as an argument to planleft and

planright.
A pathological case, where we really do need a separation value of on=1 isillustrated
below.
/A\
/B\ I
/C\]
D G J N
E F HK O

3. The mirror image property is forced by our final averaging function. We are asking
for the following equation to be satisfied:

plan t = reflect (reflectx (plan (reflect t)))

There is a fairly easy proof of this using the standard principles of equational rea-
soning and structural induction as described in [BW88, Pau91].

4, The subtree consistency property is self-evident from the recursive nature of the
algorithm. A recursive call to plan’ is used to draw the subtrees, and the subsequent
manipulation using translatetree does not affect their physical structure.

7 Complexity

The function plan has worst case O(n?) time behaviour, where n is the number of nodes in
the tree. This is due to the repeated use of translatetree, which traverses the entire tree
in order to displace it horizontally. To reduce this complexity to O(n) we can store relative
displacements in the nodes instead of absolute ones, so that translatetree uses constant
time. This requires a certain degree of plumbing in the other functions to accumulate an
absolute displacement when one is required.

The motivation behind this article was to show how a first-attempt, correct solution to
the problem could be knocked up quickly and elegantly. It would be interesting to apply
some of the program transformation techniques that have been developed to introduce the
improvement just mentioned.

8 Conclusion

It is hoped that this case study has once more highlighted the elegance and versatility of
functional programming. For readers unfamiliar with the ideas of functional languages,
the code must seem very strange but suggestive—a flavour to entice you to the references
listed below!

References

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Programming. Pren-
tice Hall, 1988.

[BY90] F. Warren Burton and Hsi-Kai Yang. Manipulating multilinked data structures
in a pure functional language. Software—Practice and Experience, 20(11):1167—
1185, November 1990.

[FL89] R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy
functional language. The Computer Journal, 32(2), April 1989.

[Hug89] R.J. M. Hughes. Why functional programming matters. The Computer Journal,
32(2):98-107, April 1989.

[JS89] S. B. Jones and A. F. Sinclair. Functional programming and operating systems.
The Computer Journal, 32(2), April 1989.

[MTHS89] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, Mass., 1989.

[Pau91] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

[Pey85] Simon L. Peyton Jones. Yacc in Sisal—an exercise in functional programming.
Software— Practice and Experience, 15(8):807-820, August 1985.

[RT81] Edward M. Reingold and John S. Tilford. Tidier drawings of trees. JEEE Trans-
actions on Software Engineering, SE-7(2):223-228, March 1981.

[Tri89] Phil Trinder. Referentially transparent database languages. In Glasgow Work-
shop on Functional Programming, Fraserburgh, Scotland, August 1989. Springer-
Verlag,.

[Vau80] Jean G. Vaucher. Pretty-printing of trees. Software—Practice and FEzperience,
10:553-561, 1980.

[Wal90] John Q. Walker II. A node-positioning algorithm for general trees. Software—
Practice and Experience, 20(7):685-705, July 1990.

[WS79] Charles Wetherell and Alfred Shannon. Tidy drawings of trees. IEFE Transac-
tions on Software Engineering, SE-5(5):514-520, September 1979.

