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Strong Normalisation for the
Linear Term Calculus

P. N. Benton*
University of Cambridge

Abstract

‘We prove a strong normalisation result for the linear term calculus which was
introduced in (Benton et al. 1992). Rather than prove the result from first principles,
we give a translation of linear terms into terms in the second order polymorphic
lambda calculus (A\2) which allows the result to be proved by appealing to the well-
known strong normalisation property of A2. An interesting feature of the translation
is that it makes use of the A2 coding of a coinductive datatype as the translation of
the I-types (exponentials) of the linear calculus.

1 Introduction

This paper concerns the term assignment system for the multiplicative/exponential frag-
ment of intuitionistic linear logic which is described in (Benton et al. 1992). A question
left open in that work was whether the normalisation process on derivations in the natural
deduction formulation of the logic (or, equivalently, the induced (-reduction of terms)
always terminates. Here we answer that question in the affirmative, showing that that
there are no infinite B-reduction sequences from well-typed linear terms.

The literature contains many strong normalisation proofs for various systems, many
of which use variants of Tait’s reducibility argument (Tait 1967). Strong normalisation
for the linear term calculus can be proved this way, see (Bierman 1993), but here we take
a somewhat different approach. If we wish to prove strong normalisation for a language
L1, and we already know strong normalisation holds for a language Lo (by a reducibility
argument, for example), then it suffices to exhibit a translation ¢ > t° from L to Ly with
the property that if s — ¢ in L; then s° ——J t° in Ly (where —1,—»9 are the one-step
reduction relations in Iy and Lo respectively, and —>§r is transitive closure of —3). For,
given such a translation, if there were an infinite reduction sequence

to =1ty =1t =1 v
in Ly, it would induce an infinite sequence

o -+ 40 + 40 +

tg =g 1 g tg =g+

of reductions in Lj, contradicting strong normalisation for that language. This is the
technique which we shall use here, with Ly the linear term calculus (LTC) and Lo the
Girard/Reynolds second order polymorphic lambda calculus (also called System F or A2).

*Author’s address: University of Cambridge, Computer Laboratory, New Museums Site, Pembroke
Street, Cambridge CB2 3QG, United Kingdom. Email: Nick.Benton@cl.cam.ac.uk. Research supported by
a SERC Fellowship.
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Figure 1: The linear term calculus (LTC)

1.1 The Linear Term Calculus

The types of LTC are given by the following grammar, where G' ranges over some given
collection of base types:
Au=G|I|ARA| A—oA|A

The term-formation rules of LTC are recalled in Figure 1, and the associated S-reductions
are shown in Figure 2, where, for example,

discard e; inu
is an abbreviation for
discard e; in discard e5 in ... discard e, in u

The one-step reduction relation — is defined by augmenting the § axioms with inference
rules making — into a congruence, which can be summarised by the rule

e—e
Cle] = Cle]
It should be noted that in (Benton et al. 1992) we also considered a secondary form
of reduction rule: the so-called commuting conversions. We shall not consider such con-

versions here and at present we do not have a proof that — . is strongly normalising for
LTC.




(Az.t)e - tle/z]

let * be * ine —+ e

let e®t be 2®y in u - ule/w,t/y]
derelict(promote e; for z; in t) - tlei/x]
discard (promote e; for z; int) in u — discard e; inu

copy (promote e; for z; int) asy,zinu — copy e; as x, x in
u[promote z} for z; in t/y, promote x; for x; in t/z]

Figure 2: B-reductions for the linear term calculus

z:AFxz: A
x:AFe: B I'te:A— B 'Hf:A
I'F(A\z:Ae): A B F'kef:B
Thke:A4; -+ T'hey: An The: Ay X X A,
I'tH{e1,...,en)t Ar X - X Ap I'bme: A;
I'kFe: A M'Fe:VX.A
X ¢ FTV(T)
'FAX.e:VX.A I'+eB: A[B/X]

Figure 3: The second order polymorphic lambda calculus (A2)

1.2 The Second-Order Polymorphic Lambda Calculus

The types of A2 are given by the following grammar, where G ranges over a given set of
base types and X over a set of type variables:

Au=G|X|Ax - xA|A—>A|VX.A

Note that, for notational convenience in what follows, we have presented the system with
n-ary product types. These are not strictly necessary as products can be coded within
the V — fragment in the usual way (see (Girard et al. 1989), for example). The term-
formation rules for \2 are recalled in Figure 3. We will frequently omit type annotations
in terms when they are clear from context.

We shall need the following trivial fact about typing derivations in A2:

Lemma 1l IfT'Fe: Aandx ¢ T then,x: Bl e: A

Proof. Induction on derivations. O




The reduction rules for A\2 consist of the following two § axioms:

(Az:Ae) f — e[f/z]

mi{e1, . en) — €
together with the following axiom for reduction on types:
(AXe)A — elA/X]

and a collection of inference rules extending — to a congruence.
The important fact about reduction of terms in A2 is that it always terminates:

Theorem 2 All well-typed terms of A2 are strongly normalising.
Proof. See (Girard et al. 1989, Chapter 14). O

2 Coding Coinductive Datatypes in A2

The way in which inductive datatypes such as finite lists, trees and natural numbers may
be coded in A2 is well-known. The dual codings of coinductive types are perhaps less
familiar, so we give a brief account here.

Let ®(X) be a A2 type in which the free type variable X appears positively. Then the
greatest fixed point of @ is given by

ve = AX.(X = B(X)) x X

where

XAV (VX ASY) Y

Expanding this out and currying gives

ve EVY.VX. (X 2 @(X) 2 X 2 Y) =Y

Note that ®(X) is functorial in X as X occurs positively. This means that given
f: A — B we can define a term ®[f]: ®(A) — ®(B) by induction on the structure of &.
Terms of type vg are built using

builde : VYX.(X = 3(X)) = X = vg

e AXA AT ACI(LX f )

and associated destructor is

outs : Vo — DP(vg)

et Amam ®(ve) (AXMf M. (@[builds X f](f z)))

The relationship between build and out is given by the following easily verified reduction:

outy (builds X fx) —*+ ®[builde X f] (f z)




The categorically-motivated reader will note that the equality implied by the previous
reduction is expressed by the commutativity of

®[builds X f]

®(X) (ve)
f outs
e &

which characterises (v, outs) as a (weakly) terminal ®-coalgebra. (This is strongly ter-
minal in models satisfying appropriate parametricity conditions. See (Plotkin & Abadi
1993), for example.)

3 The Translation

3.1 The Translation of Types

Given a LTC type A, the A2 type A° is defined by induction on the structure of A as
follows:
G°=G
(A—oB)° = A° — B°
(A®B)° =VX.(A° =+ B° = X)—= X
I’P=YX.X -+ X
(!A)O = V@AO
where
B(X)=(VZ2.Z = Z)x Bx (VZ.(X - X = Z) = Z)

Note that the translations of ® and I use directly the A2 encodings of binary products
and the unit type, as these turn out to be technically more convenient. Similarly, dB(X)
can be thought of as

1x B X (X xX)

and thus vgs is essentially the type of infinite binary trees with nodes labelled by elements
of B. This translation of exponentials is motivated by, apart from the fact that it works,
the linear logic treatment of ! A as satisfying

1A = [&AL(IARIA)

(where & is the additive conjunction ‘with’, which we do not treat here) and also by more
operational concerns. The types !A; of the promoted terms e; in promote e; for ; in f are
not apparent in the type !B of the whole term, but when the promoted term is broken
apart by a reduction, they become revealed. Thus the translation of !B needs to be an
abstract datatype which ‘hides’ the (translations of the) types !A;, which can be achieved
by the use of an existential type (Mitchell & Plotkin 1988).

If f: A — B is a A2 term, then ®C[f]: ®°(4) — &°(B) is given by

°[f] = w:®C(A). (mw, mw, AZh: B = B — Z.(m3w) Z (Az: A y: Ah(f 2) (fy)))
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3.2 The Translation of Terms

From a derivation IT of the judgement I' e : A in the linear term calculus, we now define
a derivation II° in A2 which proves I'° F e° : A° by induction on II. Of course, since
terms code derivations uniquely (in both systems), the translation is really from terms to
terms. It is, however, easier to present it using derivations as that makes the partitioning
of linear contexts more explicit. For the rules which do not explicitly involve exponentials,
the translation is straightforward:

[] IinS
z:AFgx: A

then II° is
x: A%k A°

o If II ends in
x:AlFe: B

't(Az:Ae): A—oB
then by induction there is a derivation of I'°,z : A° I e° : B°® so we can form
I°x:A°Fe®: B°
Ik (Az: A%e°): A° = B°

o If 1] ends in
I'e: A—B AFf: A

AR (ef): B

then by induction there are derivations of

I°+e°: A° = B°
and
A forA°

By Lemma 1, this means that there are derivations of

[°,A°Fe°: A° — B°
and

I° A% o1 A°
so that we can form
(T,A)° ket A° = B° (T,A)° R for A°
(T, A)° k(e f°) : B°

o If 1] is
R

then II° is
z: Xtz X

FOz: Xa): X X
F(AX )z X.z) VXX > X

6




e IfIT ends in
: AbFf:T T'Fe: A

I,AFlet fbe xine: A
then by induction and Lemma 1 we can form

(T,AP F f°:VX.X - X
(C,AP F (fOA%) 1 A° —» 4° (DA ke A°
(T, A)° F (£° A°) € : A°

e Similarly, if II ends in
F'ke: A AFf:B

At eRf: AQB
then II° is the obvious derivation of

(T,A)° F AXAh: A° = B° = X.(he®) f*: VX.(A° = B° = X) =+ X

e If IT ends in
I'Fe: A®B Axz:Ay:B+-f:C

LAl letebeaz®yin f: C
then II° is the derivation of

(T, A)° F (e° C°) (Aw: A° Ny : B°.f°): C°

The case of dereliction is dealt with as follows:

o If IT ends with
T'kelA ‘

[ derelict(e) : A
then by induction there is a derivation of I'® - €° : vgao so that we can form II° as
follows:

I'° - outgae @ Vgae — 4" (Vgac) I[°F e’ vgae
I° - (outgae €°) : (V2.2 — Z) x A° X (VZ.(vgae = vgae — Z) — Z)
I° b mo(outgao €°) : A°

In order to simplify the presentation of the translations of the remaining three rules
for exponentials, it is helpful to define the following abbreviations for A2 terms:

discard?C e in f def (m1(outgn €)) C f
copyPCeasx,yinf def (n3(outgs €)) C (\z:vgn. Ay:vgs.f)

o IfIT ends in
Fke:lAd A+ f:B

At discardein f : B
then by induction and Lemma 1 we have derivations of

(T, A F€° : vgao
(LA F fe:B°
from which it is easy to check that we can form II° proving

(T, A)°  discard?®” 2" ¢° in f°: B°
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e If IT ends with
I'tedA Ax:lAylA+-f: B

I'AFcopyeasz,yin f: B

then there are derivations of
[°F e vgao

A° x: vgao,y i Vgae F 01 B°

from which we can form II° proving

(T, A)°  copy™*B° e® asx,y in f°: B°

o IfII ends in
Arblep Ay o Apkey A, 1 dAq, . oA F f i B

Ay, ..., Ay - promoteey,... e, forzy,...,znin f !B

then we form II° proving

n

(A1, ..., A,)° F buildgse [[(14:)° ha: (IB)°
i=1
where
x = (€f,...,€p)
h = Ap: H(!A¢)°.(a,b, c)
a = AZMz: Zdiscard4V? mpin ... discard®™Z m,p in z
b = (xr: (141)° . Az 1 (1AR)°.F°) (mip) . . . (D)
and

c = AZAg:[JC4)° — [(4)° — Z.copy V7 mp as ay, ] in ...

... copy™Z wap as ol &l in (g {2, ..., @) (zf,...,20))

Note that the translation of terms is compositional (i.e. a congruence):

Lemma 3 For all appropriately typeable terms t and s of LTC, (t[s/x])° =t°[s°/z]. O

4 Reduction

Having given the translation, we now show that it behaves well with respect to reduction:
Theorem 4 IfT' & eq: A in the linear term calculus and e; — ez then e} —T €5 in \2.

Proof. By induction on the derivation of e; — e3. We omit the verification of the cases
of the congruence rules, as these all follow trivially from the compositional nature of the
translation. For the § axioms, we give a few cases:




e In the case of a ® introduction/elimination pair we have a derivation of
', Ty, A lete®f bex®yin u: C

where ;
I'MFeAd

I'yF f:B
AnAy:BFuC
The translation of this redex is
(AX.\h: A° — B® = X.he® f°) C° (Aw: A \y: B.u®)

which reduces in four steps to

(w?le”/a)[F* /Y]

which is

u’le®/z, f°/y]
as the free variables of u,e and f are all distinct and this is inherited by their
translations. As (—)° is a congruence, this is in turn equal to

(ule/=, £ /y])°
as required.
o In the case of promotion followed by dereliction we have
A1, ..., A, F derelict(promote ¢; for z; in f): B

where
A; e lA;

and
x1: VA, oA B f 0 B

The translation of this redex is

mo(outgpe (buildgse I[(!Ai)0 hx))
with A and x as before. This reduces to

72(®P° [buildgse [[(14:)° h] (R x))

which is
mo((Aw: 5 (H(!Ai)o).(mw, mow,...)) (hz))

and this reduces to
9 (h ’L)

Expanding h and x, this is
ma((w: [T(14:)°(a,b,¢)) (el -, €n))

9




which reduces to
bl{el, .. en) /]

The expansion of this last term then reduces to
foleg/m] - [en/an]
which is

(flei/=:])°
as required.
In the case of promotion followed by weakening we have
Aq,...,An, T F discard (promote e; for z; in f) inu: C
where
'wC
A FoeplA;
z1: A1, oA f i B
This LTC redex translates to |
i (outgse (buildgse [[(14:)° b)) C°u®
which reduces to
m1 (7 [buildgse [[(14:)° ] (hz)) C° u®

which is
1 ((Aw: @BO(H(!Ai)O).(Wlw,sz, co)) (h z)) C°u°

and this reduces to
mi(hz) C°u’®

Expanding A and @, this is

m((p: JT(A4)°(a,b,0)) (ef, - . €R)) C°u°
which reduces to
al(e?, ..., en)/p] C° w0
Expanding out the definition of a and reducing, this gives
dATC° €8 d4nC° €2 inu®

discar in ...discar

which is
(discard e1 in ...discard e, in u)°

as required.
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e In the case of promotion followed by contraction we have
Ay,...,An, T I copy (promote e; for z; in f) asy, zinu: C

where
A; e lA;

z1: 1AL, e lAn E i B
y:'B,z'BFwuC
The translation of this redex is
w3(outgne (buildgse ]:[(!Ai)O hz)) C° (\y: vgse Az: Vgre u°)
which reduces to
m3(F° [buildgse [[(14i)° B] (h@)) C° (Ay: vgse Az: Vo 1)
which, after expanding out the definition of ®5°[], reduces to

(AZNjivgpe — vgme — Z.mz(ha) Z (Am:1(1A4:)° An: T1(14:)°
.j (buildgse [1(14:)° hm) (buildgse [1(14s)° hn))
) C° (Ay: VgBo . Az: Vgpo .u°)

This expression then reduces to

m3(hx) C° (Am: T1(1A:)° . An: TT(14;)°
u°[(buildgse [1(14;)° hm)/y, (buildgse T1(1A:)° hn)/z])

and then to

(€S, ..., e8) /o] C° (s TT(LA)° s TI(AL)°
wC[(buildgze [1(14:)° hm)/y, (buildgse [T(14;:)° hn)/2])

After expanding the definition of ¢, this leads to

o ] . [e] o .
copyA1:C° €9 as ), &l in ... copy A C° €2 asal, )l in

w[(buildgse TI(14:)° h(z,. .., 2p))/y, (buildgse [T(14:)° h{af, ..., a3))/7]
which is

(copy ey asz),z{ in ...copy e, asx,,, ] in
u|(promote z} for z; in f)/y, (promote & for z; in f)/2])°

as required.

Corollary 5 All well-typed terms of the linear term calculus are strongly normalising. O
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5 Conclusions

We have presented a strong normalisation proof for the linear term calculus which uses a
translation into the second-order polymorphic lambda calculus.

The proof technique used here appears to be very general, and can probably be applied
to many other systems. It is therefore worth trying to comment on the motivation and
intuition behind the construction. There is a strong sense that morally one is constructing
a categorical model of LTC within one of A\2. This, however, is not in itself enough to
lead to the translation, as we need to model reduction rather than equality. For example,
every cartesian closed category is symmetric monoidal closed so one might hope to be
able to prove the result by translating LT'C into the simply typed lambda calculus, with
tensor mapping to product, linear function space to function space, and ! interpreted as the
identity (which is certainly a comonad satisfying the necessary conditions). Unfortunately,
such a simple-minded approach fails: although #; = to implies ] = ¢5 (for the appropriate
Bn equalities), the implication fails when equality is replaced by reduction. By getting
a feel for how a naive translation fails one can use what is essentially a programmer’s,
rather than a mathematician’s, intuition to derive a translation which works. As we have
already mentioned, in this case we gain further guidance from the isomorphism

1A = [&A&(IARIA).

Being slightly less naive, one might still feel that the use of A2 is overkill, as LTC is
first-order, and that a simply typed lambda calculus extended with coinductive definitions
would suffice (assuming that one knows that such a system is strongly normalising). This
appears to require that the lambda calculus be presented using the pattern-matching
destructor split (and its corresponding nullary version) in place of projections (cf. our
use of the A2 codings of products to translate ® and I), and even then it does not seem
possible to define (at least in any natural way) a translation which works. In any case, the
present translation into A2 has the advantage of extending trivially to cover the obvious
extension of LTC with second-order quantification.

It should also be noted that even when one has the right translation of types, the trans-
lation of terms does not follow automatically. For example, the translation of promoted
terms has to contain a very explicit coding up of the reduction rules associated with such
terms. This is probably a strength, rather than a weakness, as it means that a wide class
of calculi should be treatable using this technique.
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