Technical Report A

Number 309

Computer Laboratory

Strictness analysis of
lazy functional programs

Peter Nicholas Benton

August 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1993 Peter Nicholas Benton

This technical report is based on a dissertation submitted
December 1992 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Pembroke
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

Strictness analysis is a compile-time analysis for lazy functional languages. The
information gained by a strictness analyser can be used to improve code generation
for both sequential and parallel implementations of such languages.

After reviewing the syntax and semantics of a simply typed lambda calculus with
constants, we describe previous work on strictness analysis. We then give a new
formulation of higher order strictness analysis, called strictness logic. This is inspired
by previous work on static analysis by non-standard type inference, and by work on
logics of domains. We investigate some proof theoretic and semantic properties of
our logic, and relate it to the conventional approach using abstract interpretation.
We also consider extending the logic with disjunction.

We then describe how to extend the simply typed lambda calculus with lazy algebraic
datatypes. A new construction of lattices of strictness properties of such datatypes
is described. This arises from the characterisation of the solutions to the recursive
domain equations associated with these types as initial algebras.

Next we consider first order (ML-style) polymorphism and show how Wadler’s ‘the-
orems for free’ parametricity results may be obtained from a simple extension of the
semantics of the monomorphic language. We then prove a polymorphic invariance
result relating the derivable strictness properties of different substitution instances
of polymorphic terms.

Preface to the Technical Report Edition

This technical report is, apart from a few very minor typographical corrections,
identical to the submitted version of my thesis. Several relevant bits of work have,
however, been done or come to my attention since the thesis was submitted. These
include the following:

General. Jensen’s thesis [Jen92a] has a very similar scope to this one, though
with a slightly different perspective.

Section 2.1.2 Full Abstraction. Some very recent work by Abramsky, Ja-
gadeesan and Malacaria at Imperial [AJM93] and by Hyland and Ong at Cam-
bridge [HO93| leads to semantic presentations of intensionally fully abstract
models for PCF.

Section 2.3.2 Type Inference for A\2 appears recently to have been shown to be
undecidable by a number of people, for example [Wel93].

Section 4.3.2 Computational Adequacy proofs for languages with general
recursive types (as opposed to the merely algebraic ones considered in this
thesis) can be found in various places. See, for example, [Win93] (which is
also an excellent introduction to much of the background material presented
here). Pitts has used the methods of [Pit92] to give a particularly neat and
‘modern’ proof [Pit93].

Section 4.5 Strictness Properties of Lazy Algebraic Types. A version of this
work appears in [Ben93]. That paper improves slightly on the work presented
here in that there is now a (rather unpleasant) syntax for the propositions
associated with an arbitrary algebraic datatype and general program logic
rules (expressed in terms of the new syntax). I still do not have proof rules
which capture the way in which the initial algebra induction principle can be
used to reason about entailment, however.

Section 6.3 Using Strictness Information. Burn and Le Métayer have also
considered the problem of how to express and justify the optimisations which
one wishes to make as a result of strictness analysis [BL92]. They suggest
using the information to modify the translation of the source language into
continuation passing style.

Finally, I should like to take this opportunity to thank my examiners Chris Hankin
and Andy Pitts.

i

Contents

Acknowledgements i
Statement - i
Preface to the Technical Report Edition ii
1 Introduction 1
1.1 Functional Programming 1
1.1.1 Background o1

1.1.2 Functional Languages. 3

1.1.3 Strict or Lazy? 4

1.1.4 Implementations of Lazy Languages 5

1.2 Static Analysis and Optimising Compilers 6
1.2.1 Optimising Functional Programs 6

1.3 Outlineof Thesis, 7
1.4 Prerequisites. e 8

2 Basics 9
2.1 TheLanguage Ar R 9
211 Syntax e e e e 9

2.1.2 Semantics e e e e e e 13

2.2 Strictness Analysis and Abstract Interpretation 22
2.2.1 A Simple Example 23

2.2.2 Strictness Analysis by Abstract Interpretation 25

2.3 Static Analysis and Type Inference 29
2.3.1 Kuo and Mishra’s Strictness Type System 30

2.3.2 Other Work on Static Analysis by Type Inference 33

il

Strictness Logic 35

3.1 Imtroduction 35
3.2 The Logic of Strictness Properties 36
3.3 The Program Logic 44
3.4 Strictness Logic and Abstract Interpretation 54
3.5 Disjunctive Strictness Logic 59
3.5.1 TheLanguage Ay o o e 60
3.5.2 The Logic of Disjunctive Strictness Properties 62
3.5.3 The Disjunctive Program Logic 69
3.54 Related Work 72
Algebraic Datatypes 74
4.1 Introduction 74
4.2 Recursive Domain Equations 75
4.3 Extending Ar with Algebraic Datatypes 79
431 Syntax 79
4.3.2 Semantics e 80
4.4 Previous Work on Strictness Analysis and Recursive Types 83
4.4.1 Projection Analysis 83
4.42 Ideal-based Analyses 86
4.5 A New Construction e 87
Parametricity, Free Theorems and Polymorphic Invariance 101
51 Introduction e 101
5.2 ML-style Polymorphism and Free Theorems 103
5.2.1 TheLanguage Aps v . v v v v i v it 103
5.2.2 Free Theorems 108
5.3 Polymorphic Invariance 116
Conclusions and Further Work 125
6.1 Summary e e e 125
6.2 Further Work 126
6.2.1 Implementations e 126
6.2.2 Disjunctive Strictness Logic 127
6.2.3 Foundationso . 127
6.2.4 Algebraic Datatypes 128
6.2.5 Parametricity F 128
6.3 Using Strictness Information 128

A Omitted Proofs 136

Bibliography 145

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3

Syntax of A7 e 11
Capture-Avoiding Substitution 12
Operational Semanticsof Ax oL 14
Denotational Semanticsof Az o oo 18
BHA-style Abstract Interpretation e 27
Kuo and Mishra’s Strictness Type System 31
Formation and Inference Rulesfor £, 37
The Program Logic PL1 45
The Program Logic PL2 49
Formation Rulesfor £Y 63
Logical Rules for £Y 64
Type-specific Rulesfor £Y 65
Irreducible Propositions 66
The Program Logic PLV oo oL 70
Basic Strictness Properties of nlist. .« oo 92
The Lattice of Strictness Propertiesof nlist 97
Proof Rules for Constructors of mlist 98
Proof Rules for nlistcase, 99
Syntax of Apg o oo . 105
Denotational Semanticsof Ap,o 107
Syntax of Agp Lo 131
Operational Semantics of A, 0oL 132
Translating Call-By-Name into Agp, 133

vi

Chapter 1

Introduction

1.1 Functional Programming

1.1.1 Background

A program in a conventional imperative language, such as Pascal, C or FORTRAN,
consists of a sequence of commands to be obeyed, each of which effects changes in
the store of the computer. This view of computation is very close to the actual
architecture of nearly all present-day, general-purpose computers. It is therefore
relatively straightforward to compile a program written in such a language into
a sequence of machine code instructions which can be executed efficiently by the
machine.

There are, however, significant problems associated with programming in imperative
languages, which have contributed towards what has been called ‘the software cri-
sis’. There has been rapid progress in computer hardware, so that larger and more
complicated systems should be feasible. However, software technology has not kept
pace. Programmers are increasingly swamped by complexity, partly because things
really are more complex, but largely because they are are still using tools, languages
and methodologies developed for the previous generation of systems. The practi-
cal consequences are that software is now the most expensive component of many
computer systems, is frequently delivered late and usually fails to work correctly.

One approach to resolving these problems is mainly sociological: specifying how pro-
grams should be designed, laying down standards for documentation and inventing
rules about how teams of people should cooperate on a project. A complementary
approach is to improve the tools which are used for software development. -

Much current research on improving the technologies used for program design and
development falls into the broad area of formal methods. This means using mathe-
matical techniques to reason (more or less formally) about systems. Such reasoning
can provide important insights into the problem, guide the development of a solu-
tion and greatly increase confidence in the correctness of the final product. The
need for formal methods is due not only to increased complexity, but also to the

increasing use of computers in so-called ‘safety-critical’ applications. Completely
formal mathematical proofs of program correctness are usually large, complex and
tedious, but this can be at least partially alleviated by the use of automated theorem
proving systems. A more modest view of the place of formal methods in everyday
programming is that if we develop languages which are suitable for formal proof and
teach programmers about these proof principles, then the informal reasoning which
they use when writing programs is much more likely to be correct.

If we wish to apply formal methods to programming, we have to start with a formal
mathematical account of what a given program means. This is known as semantics.
In the past, programming language definitions tended to go into great detail speci-
fying the surface syntax, and then fall back on ambiguous English descriptions when
it came to saying what that syntax actually meant. There are three main styles of
semantics:

e An operational semantics defines the intended behaviour of programs by giving
a set of rules which specify how programs are to be executed. This feels like
traditional computer science.

e An aziomatic semantics is more directly aimed at proving properties of pro-
grams. It gives rules for proving assertions like ‘if the machine is initially in a
state satisfying property P, then after the execution of command C it will be
in a state satisfying property @’. This has a logical flavour.

e A denotational semantics gives the meaning of programs as objects in certain
mathematical spaces, such as domains. This feels like traditional mathematics.

These different styles of reasoning are each good for different applications, and we
obviously hope that different styles of semantics for the same language will turn
out to be equivalent in some sense. In fact, the relationships between different
semantics can be surprisingly complicated. This dissertation contains elements of
all three approaches.

Having given a formal semantics to a programming language, one should then be able
to use it to prove that a program meets its specification (expressed in some suitable
formalism), or that two programs are equivalent. Unfortunately, the semantics of
imperative languages can be rather intractable. In particular, the presence of side-
effects means that referential transparency is lost—the simple substitution of equals
for equals does not, in general, preserve the meaning of programs.

These problems become even more acute when we come to consider programming
parallel machines. Whilst it is simple enough to add parallel programming constructs
to an imperative language, using them efficiently and reasoning about the correctness
of the resulting programs can be extremely difficult. It should be noted, however,
that there has been considerable progress in the area of calculi for reasoning about
the behaviour of concurrent systems.

1.1.2 Functional Languages

Functional programming languages appear to have the potential to alleviate all the
difficulties mentioned above. Most of the problems seem to stem from the concept
of implicit updatable state. It is the presence of state which prevents a simple
statement like f(3)=f(3) from always being true in an imperative language (as the
function f might both depend on and update the state). It is the state which prevents
us from executing arbitrary parts of an imperative program on different processors.
Functional languages do away with state, commands and looping, replacing them
with side-effect-free expressions, recursion and powerful type systems.

Programming with higher-order functions and without side effects brings many ben-
efits. Programs are clear, concise, more likely to work first time and easier to reason
about. The level of abstraction is higher than in imperative languages, so programs
are closer to specifications, freeing the programmer from worrying about low-level
details. Functional programs are also well-suited to execution on parallel machines —
so long as we preserve termination, parts of a program can be evaluated in any order,
or even in parallel, without affecting the final result. The advantages of functional
languages are argued in, for example, [Bac78, Hug89).

Of course, functional languages do not solve all our problems at a stroke. There
are two main difficulties. The first is that whilst functional languages are good for
writing certain sorts of program (compilers, theorem provers), they are less obviously
appropriate for writing programs which have to manipulate state, such as real-time
controllers and operating systems. Research is addressing this problem both by
seeing how far the functional paradigm is applicable to this sort of application,
and by considering how to re-introduce state-like (‘impure’) features in a controlled
way. The second problem is that, because the underlying model is further away
from the real machine, it is harder to compile a functional program into efficient
machine code. This means that functional programs tend to run more slowly than
imperative ones. There has been some work on addressing this problem by building
special-purpose computers for running functional languages, but most current work
is aimed at producing better compilers for conventional architectures.

The foundations of functional languages lie in the lambda calculus and combina-
tory logic (both of which predate computer programming). The lambda calculus
is a theory of functions, which was invented by the logician Alonzo Church in the
1930s. In the pure, untyped, lambda calculus, everything is a function: functions
take functions as arguments and return functions as results. This turns out to be
powerful enough to code arithmetic and, in fact, to represent all functions which
are computable by a Turing machine. Functional programming languages tend to
be very close to their mathematical foundations, though they are usually based on
a typed lambda calculus with constants. A functional program may be translated
into an expression in the lambda calculus. The program is executed by applying
local rewriting rules to the lambda calculus term until some normal form is reached.
This process is known as reduction.

1.1.3 Strict or Lazy?

An expression in the lambda calculus will, in general, contain several redexes (subex-
pressions which can be reduced). The Church-Rosser theorem tells us that if a term
t can be reduced to ¢’ by one sequence of reductions, and to ¢’ by another, then
there is a term " to which both ¢’ and ¢” can be reduced. This does not quite mean
that the order of reductions is unimportant, however. If we choose a bad reduction
strategy, we could end up reducing for ever when a different strategy would have
reached a normal form (a term with no redexes).

There are two particularly natural reduction strategies. The first is called applicative-
order, or innermost, reduction. This corresponds to evaluating each argument to a
function before substituting the arguments for the formal parameters in the func-
tion body. Each function argument is therefore evaluated exactly once. In a pro-
gramming language this is called call-by-value parameter passing. It is a natural
reduction strategy, in that it is efficient and maps well onto most existing processor
architectures, which have been designed with call-by-value evaluation of imperative
languages in mind. The disadvantage is that it is not guaranteed to find a normal
form if one exists. Languages which employ applicative-order reduction, such as ML
[GMW79, MTH90] and Hope [BMS80], are called strict.

The other main reduction strategy is called normal-order, or leftmost, reduction.
This corresponds to substituting arguments unevaluated into function bodies. In a
programming language, this is known as call-by-name. Normal-order reduction will
find a normal form if one exists, but it is potentially inefficient as an argument may
end up being reduced many times, although it may also turn out not to be needed
and thus avoid being reduced at all.

There is an optimisation to normal-order reduction, which is vital if one is to imple-
ment a programming language with normal-order semantics. Instead of copying the
unevaluated argument into the function body, we can pass a pointer to the argument.
If the argument is evaluated, then the reduced value overwrites the original expres-
sion. Any subsequent reference to the argument then picks up the reduced value for
free (of course, this only preserves the result of the program because of referential
transparency). This is known as lazy evaluation or call-by-need parameter passing
and is characterised by the fact that each argument is either never reduced or reduced
exactly once. This technique was first proposed by Wadsworth [Wad71]. Lazy lan-
guages include Ponder [Fai82, Fai85], MirandaT™™ [Tur85]! and Haskell [HWA*90].
The terminology has become somewhat confused in recent years, and the word ‘lazy’
is now frequently used to mean either simply ‘non-strict’ or ‘reducing to weak head
normal form’. There is a small, but significant, mismatch between the traditional
theory of the lambda calculus and real lazy functional languages which concerns the
question of when leftmost reduction should stop. The traditional theory is based
on stopping when head normal form (HNF) is reached, which roughly means that
the leftmost application is the application of a variable. Lazy functional languages,
by contrast, stop leftmost reduction as soon as they reach a lambda-abstraction

1Miranda is a trademark of Research Software Limited.

4

(infomally, no reduction takes place ‘under a X’). This is called weak head normal
form (WHNF). The term ‘lazy’ is now often used to refer to the theory of the pure
lambda calculus with reduction to WHNF [Abr88, Ong88|. In this work, we will
be concerned with lazy functional languages in the broad sense of reducing to weak
head normal form.

Lazy languages allow some novel programming techniques, such as using infinite
data structures, and defining new control structures. They are generally regarded
as being more ‘pure’ than strict languages and to be more pleasant to reason about
(though this is a matter of taste). We should qualify that assertion—the appli-
cability of familiar principles of equational reasoning makes extensional properties
(i.e. those properties relating to the input-output behaviour of functions, typically
correctness) of lazy functional programs relatively easy to prove. Intensional proper-
ties, such as time or space complexity, can be hard to reason about for normal-order
evaluation, and the situation becomes significantly worse for lazy evaluation. It is
not uncommon for a small, meaning-preserving, transformation to cause a large and
unexpected change in efficiency. This problem is unfortunately exacerbated by the
kind of work we shall be describing in this thesis, as aggressive optimisations mean
that the compiled code is far from the user’s original program. A good introduction
to programming in lazy functional languages can be found in [BW88].

1.1.4 Implementations of Lazy Languages

The earliest implementations of lazy languages were entirely interpretive, and hence
very slow indeed. These were followed by implementations which compiled code
for abstract machines for graph reduction, such as the G-Machine [Aug84, Joh84,
PJ87] and the Ponder Abstract Machine [Fai85]. Code for these abstract machines
was then compiled into real machine code, though it still retained an interpretive
character. The current state of the art is represented by closure reducers such as
the Three Instruction Machine (TIM) [FW8T], which are variously estimated to be
between 2 and 10 times slower than good compilers for imperative languages. Strict
functional languages are still slightly faster than lazy ones.

As we have already mentioned, functional programs can theoretically be executed
without change on parallel machines. The hope is that the programmer will just have
to make sure that the algorithm is inherently parallel (for example, some form of
divide and conquer), and the same program can then be compiled to run on machines
with any number of processors. Although this seems to offer ‘parallelism without
tears’, there are still significant obstacles. One of the main problems is the generation
of far too many small tasks, so that the overheads of communication reduce the
benefits of parallelism. A related difficulty is that it is hard to partition tasks
between the available processors in an efficient way. Several parallel implementations
of functional languages have been built and appear to offer modest, but genuinely
useful, performance gains [Bur88, WW87, PJCSH87, KLB89, AJg9|.

One of the most important ways to reduce the performance gap between functional
and imperative languages on sequential machines, and to approach the problems

5

of compiling for parallel machines, is to improve compilers by making use of static
analysis.

1.2 Static Analysis and Optimising Compilers

Static analysis is the process of analysing the user’s program at compile time to
-discover information which can be used to generate better code. Optimising compil-
ers for imperative languages have been doing this sort of thing for years: detecting
invariant expressions so that they can be moved out of loops, eliminating dead code
and propagating constants, for example. In practice, these optimisations are of-
ten rather ad hoc. It is not uncommon for optimising compilers to perform unsafe
transformations. Various analyses for imperative programs were justified and put
into a common framework by the Cousots’ seminal work on abstract interpretation
[CCT7, CCT9].

1.2.1 Optimising Functional Programs

If we look at why lazy functional languages are still slower than their imperative
counterparts (or even strict functional languages), we find that it is essentially be-
cause functional programs contain much less operational (intensional) detail (which
is precisely their strength from the point of view of writing programs). Conse-
quently, a simple-minded compilation scheme, even to a relatively efficient abstract
machine code like TIM, will be excessively general. For example, it will always
pass arguments unevaluated because they may not be needed. If we can discover
at compile-time that a particular function always evaluates its argument, then we
can compile code which passes that argument by value, thus saving the expense of
building a closure. Similarly, to maintain referential transparency, the functional
version of an array update operator must return a modified copy of the original ar-
ray, rather than just overwriting the original. If we can be sure that, in a particular
case, the original version will never be referred to again then we can compile code
which performs the update in place without affecting the semantics of the program.

Clearly, the kind of information we are asking for is, in general, uncomputable. The
best we can hope for from an automatic analysis system is safe approximations. For
example, saying that an array might be referred to again when it actually will not
be just leads to a slightly less efficient program, and is therefore safe, whereas the
converse could change the result of the program, and is therefore unsafe.

There are many different analyses which have been studied in the literature. For
example:

e Strictness analysis aims to find out how much information is definitely required
about the argument to a function to produce a given amount. of information
about its result. The information can be used to transform call-by-name into
call-by-value, to spawn tasks in a parallel machine and to allow certain source-
level transformations.

Usage (liveness) analysis discovers whether objects can be used in future. It
can be used for compile-time garbage collection and in-place updates as well as
to avoid unnecessary updates of closures that will never be referenced again.

e Sharing analysis is similar to usage analysis and has similar applications. It
attempts to estimate how many references there will be to an object.

e Binding-time analysis discovers how much of the result of a function can be
computed at compile time, given that we know a certain amount about its
inputs. It is essential for performing partial evaluation, which is the auto-
matic generation of specialised programs from general ones. This is a powerful
technique which can, for example, produce compilers from interpreters.

o Termination analysis discovers if the evaluation of an expression will definitely
terminate.

e Stack usage analysis finds a safe approximation to the number of stack loca-
tions which will be used in evaluating an expression. It is particularly useful
in parallel implementations because giving each task a potentially unbounded
amount of stack space is very inefficient.

o Complexity analysis aims to find upper or lower bounds on the number of
steps a reduction will take. Its applications include deciding whether or not a
computation is worth spawning as a separate task in a parallel implementation.

So there are many opportunities for optimising functional programs. Since we have
claimed that functional languages have tractable semantics, we aim to use the se-
mantics to give formal proofs that our analyses and optimisations are correct. In
this work, we are concerned with the theory (and to a lesser extent, the practice)
of static analysis and optimising transformations for lazy functional languages. We
will focus entirely on strictness analysis, though the same ideas can be applied to
other analysis problems.

1.3 Outline of Thesis

o Chapter 2 reviews some basic material which we shall use throughout the the-
sis. It introduces the functional language with which we shall work and gives
its operational semantics. We then summarise some simple domain theory,
give a denotational semantics to our language and show how this is related
to the operational semantics. We then describe previous work on strictness
analysis.

e Chapter 3 introduces a new formulation of strictness analysis, called strictness
logic. This extends and gives a firm foundation for previous work on strict-
ness analysis by non-standard type inference. We prove some semantic and

proof-theoretic results about the logic and study its relation to abstract inter-
pretation. We also describe a more powerful logic which includes disjunction
and show that a disjunctive logic proposed by Jensen is unsound.

e Chapter 4 describes the extension of our simple language to include lazy al-
gebraic datatypes. After reviewing some standard material on the domain
theoretic semantics of such types and previous work on strictness analysis of
recursive types, we present a new construction of lattices of strictness proper-
ties for algebraic types. Using this construction, we show how the strictness
logic may be extended to reason about a language which includes a type of
lazy lists.

e Chapter 5 is concerned with the relationship between different instances of

polymorphic functions in an ML-style type system. We give a simple seman-

" tics to an extension of our language including this kind of polymorphism and

use this to derive the parametricity theorems which have been presented by

Wadler. We then prove a polymorphic invariance theorem which relates the

strictness properties which are derivable (using either abstract interpretation
or our logic) of different instances of a polymorphic term.

e Finally, Chapter 6 concludes and suggests directions for further.research. It in-
cludes some rather tentative suggestions about a framework for expressing and
justifying the uses which can be made of strictness information in a compiler.

e Appendix A contains one of the proofs from Chapter 3 and proofs of several
standard results quoted in Chapter 4.

1.4 Prerequisites

The thesis is intended to be relatively self-contained. We ass/ume a basic knowledge
of set theory and logic and some experience of a modern, typed, preferably func-
tional, programming language. The introductory chapter is rather too terse to be
used as an introduction to denotational semantics for those who have never encoun-
tered it before, but knowledge of the contents of a good undergraduate-level course
should be adequate background.

Although we do not really use any category theory in this thesis, there are some
uses of basic categorical terminology, which may not be familiar to all readers. Any
introductory account of category theory will include definitions of all the undefined
terms used here. See, for example, [BW90, AL91]. '

Chapter 2

Basics

This chapter reviews some background information. It introduces the syntax and
semantics of the language with which we shall be working and briefly describes
previous work on strictness analysis.

2.1 The Language Ar

This dissertation is concerned with lazy functional languages. Although there are
many different lazy languages, nearly all of them are based on the simply typed
lambda calculus with constants. Of course, real languages add a number of different
features to this core: pattern matching, type inference, polymorphism, modules and
abstract datatypes are all important aspects of modern functional languages. The
typed lambda calculus is, however, the prototypical functional language and many of
the extra features of real languages can be translated into it (indeed, many compilers
perform such a translation at an early stage). We will therefore start by defining a
very simple typed lambda calculus with constants, which we call Az. This will be the
basic language with which we shall work, although we shall also consider extending
the language to include ML-style polymorphism, sums, recursive types and extra
constructs to express strictness optimisations. Ar is essentially the same as Plotkin’s
language PCF [Plo77], except that Ar includes conditionals at higher type, pairs
and extra language constructs instead of constants for conditionals, arithmetic and
recursion. PCF has a base type for booleans, which is omitted from Ar.

2.1.1 Syntax
Types

Types in At are formed inductively from a single base type ¢ (which we shall interpret
as the natural numbers) by forming products and function spaces. We shall use o, 7
and 0 to range over types. It is common to add another base type for booleans, but
as that makes no essential difference we have chosen not to do so. More formally,

9

the syntax of types is given by the following BNF grammar
ou=1t|(c—0)]|(0cxo)

We will frequently omit parentheses in types, with the convention that — associates
to the right and that x binds more tightly than —. Thus ¢ — ¢ — ¢ X ¢ should be
understood as ¢t = (¢ — (¢ X ¢)).

Terms

Terms of A7 are built up from typed variables and constants by application, abstrac-
tion, pairing, projections, conditionals, fixpoints and arithmetic operations. Instead
of typed variables, we could have presented the language using typed abstractions or
worked with typing derivations for untyped terms. We have also chosen to present
the syntax with extra language constructs for conditionals and so on, rather than
using constants, as this turns out to be technically slightly more convenient. We will
usually use f, g, h,w, z,y, z to range over variable names, m, n for natural numbers
and e, s, t,u,v for terms. The syntax is defined inductively by the rules shown in
Figure 2.1, where the judgement s :: ¢ is to be read ‘s is a well formed term of type
o'l. Note that typings are unique. We shall sometimes write ¢” for ‘¢ where ¢ :: 7.

Although we have only defined one arithmetic operation, +, this should be regarded
as generic, and we shall feel free to use multiplication, subtraction and so on in
examples. Parentheses will often be omitted, with the convention that application
associates to the left and binds more tightly than anything else, and that the body
of an abstraction extends as far to the right as possible. The set of all terms of type
o will be written AZ. Terms of functional type are (confusing syntax and semantics)
often referred to as functions.

Free and Bound Variables and Substitution
The set F'V(t) of free variables of a term ¢t is defined inductively as follows

FV(2') ={«"} FV(n)=0

FV(st)=FV(s+t)=FV((s,t)) = FV(s)U FV(t)
FV(fst(s)) = FV(snd(s)) = FV (s)
FV(if s then t; else t3) = FV(s) U FV(t1) U FV (t2)
FV(Az°.s) = FV(fix(z°.5)) = FV(s) — {z°}

We say the variable 27 is bound in Az°.t and in fix(z?.t). We identify terms which
only differ in the names of bound variables. We say a term t is closed if FV (t) = {.
The set of all closed terms in our language is denoted by A%.. This will be combined

1The use of :: for typings is to avoid confusion with judgements in the strictness logic which we
shall present later.

10

Variables

Numerals

Application

Abstraction

Pairs

First projection

Second projection

Conditional

Recursion

Arithmetic

S

T . g
nelN
nit

too—>T1 s o

SuOXT
snd(s) == T

A t1 T 19 ::

T

if s then ¢; else t3 1 7
s o

fix(z%.s) = o

Figure 2.1: Syntax of Ar

11

nls/z’]=n 2%[s/z%]=s y'[s/z"] =y (fory” #)

(w)[s/2°] = (us/z"]v[s/2])

Ayt if y" =2a°
My t[s/z7] = ¢ Ay".i[s/z7] if y" # 27 and y" € FV (s)
Az7.(t[z" [y"])[s/=°] (where 2" is new) otherwise
fix(y™.t) if y" =z
fix(y7.t)[s/z%]) = { fix(y".t[s/z]) if y" # 2% and y" & FV(s)

fix(27.(t[z" /y"])[s/x°]) (where 2" is new) otherwise
(u,v)[s/27] = (uls/7], v[s/z7])
(fst(t))[s/z°] = fst(t[s/z°]) (snd(t))[s/27] = snd(t[s/2°])

if ¢ then u; else uy[s/z] = if t[s/z°] then uy[s/z’] else us[s/z7]

(u +v)[s/2°] = u[s/z] + v[s/z°]

Figure 2.2: Capture-Avoiding Substitution

with our earlier notation so that the set of all closed terms of type o will be written
AZ.

If s :: o and t :: 7, then we define t[s/z°] (read ‘¢ with s substituted for free
occurrences of z°’) by induction on the structure of ¢ as shown in Figure 2.2. This is
a slightly fussy definition, since we could simply rename bound variables whenever we
substitute into a binding construct, rather than just when it is absolutely necessary?.

Lemma 2.1.1 Ift:: 7 and s :: o then t[s/z°] :: T.

Proof. Induction on the structure of t. O

We will also write t[s1/z]", ..., s,/z2"] for the simultaneous substitution of each s;
for free occurrences of the corresponding z7* in t. We refrain from giving a detailed
definition.

2The whole business of variable names is an annoying technicality, and can be avoided by the use
_ of combinators or de Bruijn indices [dB72]. Unfortunately, these are both rather difficult to read.
Another possibility is to use higher-order abstract syntax, such as Martin-Lof’s theory of arities
and expressions (see, for example, [NPS90]), but this seems, because of its relative unfamiliarity,
to create as much confusion as it removes.

12

2.1.2 Semantics

We now describe the intended meaning of terms in the language Ar. This is done by
giving both an operational and a denotational semantics and showing how they are
related. The operational semantics describes how terms are to be reduced whereas
the denotational semantics gives the meaning of terms as mathematical objects
which are more convenient for reasoning.

Operational Semantics

The operational semantics of Ar is given by defining an evaluation relation between
closed terms of the language and canonical terms. Canonical terms are those terms
on which our evaluator will halt; in our case this means closed terms in weak head
normal form (WHNF'). The canonical forms are as follows:

n (s, t) Azt

Note that there is one canonical form for each type constructor. We shall use ¢ to
range over canonical terms.

The evaluation relation | is defined by the rules shown in Figure 2.3. This is a ‘big
step’ evaluation relation [Kah88], rather than a ‘one step’ rewriting relation like that
used in [Plo77]. tllc should be read ‘¢ converges to ¢’ and we shall also write tJ (‘¢
converges’) for Je.tlc and tff (‘¢ diverges’) for —(ti}).

This is a call by name (CBN) semantics, as can be seen from the rule for applications:
arguments are substituted unevaluated into the bodies of functions. Note also that
evaluation is deterministic—if ¢{}c and t{}¢’ then ¢ = ¢’. The proof rules above are
rather more than a system for deriving facts of the form ¢{}¢, in that the derivations
show just how a term is reduced. We shall sometimes use Q7 as an abbreviation for
the term fix(z?.z7), which is easily seen to be a divergent term of type o.

Elementary Domain Theory

Before presenting the denotational semantics of our language, we review some ex-
tremely basic material about ordered sets. This is mainly to fix notation, so we only
. introduce the minimum amount of material which we shall need in what follows. For
a more comprehensive account of the theory of ordered sets, including domains, see
[DP90]. For their use in denotational semantics, see [Sto77, Ten91, Plo79, Plo77].

A preorder P is a pair (|P|,Cp) where |P| is a set (called the carrier or underlying
set) and CpC |P| x |P| is a reflexive and transitive relation (called the order).
Such a P is a partial order or poset if Cp is also antisymmetric. We will frequently
abuse notation by writing P rather than |P| and by omitting the subscript on the
order relation where it is clear from context. Write z J y for y C z. A function
f 1 |P] — |Q| between the underlying sets of preorders is monotone if it preserves
the order: if z Cp y then f(z) Co f(y).

13

nln (s,t)U(s,1) PY AR ADY AN
ulAz?.t tv/z e
(uwv){e

ull(s, 1) sle ul(s,t) tic
fst(u)lc snd(u){c

tlfix(z?.t) /2 e
fix(z?.t)c

sl0 tile sin n>0 talle
if s then ¢; else t3llc if s then t; else t5lc

sin tUm
s+tlnt+tm

Figure 2.3: Operational Semantics of Ar

If P is a poset then the least or bottom element of P, if it exists, is an element of
P, written L p, which satisfies Vz € P. Lp C x. Dually, the greatest or top element,
if it exists, is written Tp. A poset with a least element is said to be pointed. A
function f : P — @ between pointed posets is said to be strict if it preserves the
bottom element (i.e. f(Lp) = Lg).

Given S C |P|, the least upper bound or sup of the set S, if it exists, is an element
of P, written |]S, which satisfies Vs € S. s C ||S and for any p € P such that
Vs € S.s C p we have || S C p. Dually, we write ['lS for the greatest lower bound or
inf of the set S, if it exists. We write z U y for | |{z,y} and similarly for z My. A
poset P is a lattice if x Uy and x My exist for all z,y € P. It is a complete lattice
if 1S and S exist for all S C P. A subset S of a poset P is called a chain if
Vr,y€ S.z CyVyLCz. Sisan antichain if Vz,y € S. (z C y) = (z =vy).

As a general piece of notation, when we wish to emphasize that an w-indexed set
should be thought of as a sequence, we will write u = (u,) for {u, | n € w}. If
P is a poset, then an w-chain in P is a sequence (z,) where Vn € w.z, € P and
m < n implies z,, C z,. An w-complete partial order or w-cpo is a poset for which
| {z,} exists for all w-chains (z,). If f : P — Q is a monotone map between w-cpos
which also preserves sups of w-chains (i.e. f(llz,) =] f(z»)) then we say that f
is continuous. We will refer to w-cpos as predomains and write Predom for the
category of predomains and continuous maps. Similarly, pointed w-cpos are called
domains, and we write Dom for the category of domains and continuous maps. We
will also write Domg for the non-full subcategory of Dom with the same objects

14

but only the strict maps as morphisms. Note that any set may be regarded as a
predomain by equipping it with the discrete order z C y <& = = y. We shall say that
a subset S of a domain D is a subdomain of D if 1p € S and for all chains (z,) in
D, if Vn.z, € S then ||z, € S. Note that this is stronger than just requiring S to
be a domain under the induced order. If S is a subdomain of D then the inclusion
map ¢ : .S — D is strict and continuous.

If P is a predomain, then O C P is a Scott-open set if Vo € O,y € P.z & y =
y € O (we say O is upwards closed), and for all w-chains (z,) in P, (Uz,) € O =
In € w.z, € O (we say O is inaccessible by sups of w-chains). C C P is Scott-
closed if its complement P \ C is Scott-open. Equivalently, C is Scott-closed if
Ve e C,y € P.yC z =y € C (C is downwards closed), and for all w-chains (z,) in
P, {z,} CC = (Uz,) € C (C is closed under sups of w-chains). We will also call
a non-empty Scott-closed set an ideal. If S C D then we write S for the smallest
Scott-closed set containing S, which we will call the closure of S. The smallest
downwards closed subset of D which contains S is written | .S, and we write | (z)
for | {z}. Note that | (z) = {z}.

The Scott-open subsets of a predomain D form a topology on D, called the Scott
topology. A map f : D — E between predomains is continuous in the sense defined
above iff it is continuous in the usual sense with respect to the Scott topology.

If f: D — D is a continuous map from a domain to itself, then f has a least
fized point, fix(f) , which is characterised by f(fix(f)) = fix(f) and for any other
d € D such that f(d) = d, d 3 fix(f). This value is given by fix(f) = Unew [™(LD)-
An element d € D is called a prefized point of f if f(d) C d. fix(f) may also
characterised as the least prefixed point of f.

We will say that an element d of a predomain D is finite (or compact or isolated) if
for any chain (z,) in D, if d C | |z, then In.d C z,. We say that a predomain D
is w-algebraic if for all d € D there is a chain (z,) of finite elements with d = ||z,
and, moreover, the set of finite elements of D (sometimes written D°) is countable.
A subset X of a predomain D is consistent if it has an upper bound in D. D is
consistently complete if every consistent subset of D has a least upper bound. All
the (pre)domains with which we shall work will in fact be consistently complete
w-algebraic w-cpos; we shall call these Scott domains. We will not, however, make a
big issue out of what-ambient category our domains should be considered to live in.

There is an alternative way of defining domains which is based on limits of directed
sets, rather than simple w-chains. A subset X of a partial order D is directed if it
is non-empty and any pair of elements of X have an upper bound in X. A directed
complete partial order (dcpo) is a partially ordered set for which every directed
subset has a least upper bound. There are then definitions of continuity, open sets,
finite elements and so on in terms of directed sets. It turns out that in the case of
w-algebraic posets, these definitions are equivalent to those we have given in terms
of w-chains, so which set of definitions we choose makes little difference for our
purposes. '

Some of the most important constructions on (pre)domains are listed below:

15

0 The empty set, with the empty order relation, is a predomain, though it is not a
domain. It is the initial object in Predom.

1 The one element set {*} with the order * C * is a domain. It is the terminal
object in Dom and Predom. It is both initial and terminal in Domsg.

Product The product D x E of two predomains has the cartesian product of the
two carriers as its carrier and is ordered componentwise. D X E is a domain
if both D and E are, with least element (1p, Lg). The obvious projection
maps 71 : DX E — D and my : D X E — E are continuous. This construction
generalises to the product [[;c; D; of an arbitrary set of domains. This is a
categorical product in Dom and Predom.

Lifting The lifting D) of a (pre)domain D has the set {(0,d) | d € D} U {1}
as carrier, and is ordered by z C yif z = L or z = (0,d),y = (0,d’) and
d C d. We will often write [d] instead of (0,d) for non-bottom elements
of a lifted domain. The map [| : D — D, is continuous, as is the map
drop : Dy, — D, which sends L and [1] to L and [[d]] to [d]. Lifting is
functorial (if f: D — E then f, : D, — E sends 1 to L and [d] to [f(d)]).
The lift functor together with [] and drop (which are natural transformations)
forms a monad on Dom and on Predom. If f : D — E, in Predom, then we
shall write lift(f) : D, — E, for the obvious strict extension of f. A domain
which arises as the lift of a set (considered as a predomain) is said to be flat.
We will sometimes write 2 for the two-point domain 1.

Exponential If D,E are predomains, then the set of all continuous maps from D to
E, ordered pointwise (f C g < Vz € D. f(z) C g(z)), forms a predomain. It is
a domain if E is, with least element the function which- is constantly Lg. We
will variously write [D — E] or EP for this (pre)domain. The application map
app : [D — E] x D — FE given by app(f,d) = f(d) is continuous. [D — E] is
an exponential in both Dom and Predom.

Disjoint Sum If D, E are predomains, so is D + E, which has the set {(0,d) | d €
D}u{(1,e) | e € E} as carrier and is ordered by
zCy & (z=(0,d) &y=(0,d)&dCd)V
(z=(1,e) &y=(1,¢) &eC¥¢)

The evident injection maps inl : D — D+ F and inr : E - D + E are
continuous. This is a categorical coproduct in Predom.

Separated Sum If D, F are domains then we will (with some ambiguity) write
D + E for the domain with the set {(0,d) | d € D}U{(1,e) |e€ E}U{Ll} as
carrier and the order

zCy & (z=1)V
(z=(0,d) & y=(0,d") &dC d)V
(z=1,e)&y=(1,¢)&eC¥)

16

Again, the injection maps are continuous. The generalisation of this construc-
tion to a set of domains is written Y ;c; D; (note that > ; D; is not equal to
D1+ (Dy+++++Dyp)--+)).

Coalesced Sum If D, E are domains then we write D & E for the domain with
carrier {(0,d) | d € D,d # Lp}U{(l,e) | e € E,e # Lg}U{L} and the
obvious order. This is a coproduct in Domsg.

Hoare Powerdomain If D is a predomain then we write Py (D) for the predomain
~ which has the set of all non-empty Scott-closed subsets of D as its carrier and
which is ordered by inclusion. This is a domain if D is, with least element
{Lp}. The singleton map { - [} : D — Py(D) which sends d to {d} is contin-
uous, as is the ‘big union’ map U : Pg(Pu(D)) — Pu(D). Pg(-) is a functor
(given f : D — E, Pu(f) : Pu(D) — Pu(E) sends I to f(I)) and forms a
monad together with the natural transformations { - [} and U.

A continuous map f : D — E between domains is said to be an embedding if there
is a continuous map g : E — D such that go f = idp and f o g C idg (with respect
to the pointwise ordering of the function space which was defined above). Such a g
is called a projection. Embeddings and projections determine each other uniquely,
and we shall write f for the projection corresponding to the embedding f, and call
this the right adjoint of f. Dually, we write g¥ for the embedding corresponding to
the projection g, and call this the left adjoint of g. If f: D — E is an embedding
then we shall sometimes write f : D < E. Embeddings and projections are always
strict, and we write Domg for the non-full subcategory of Domg with domains as
objects and embeddings as morphisms. Embedding-projection pairs are a special
case of the notion of a Galois connection between lattices, which is itself a special
case of the general notion of an adjunction between functors. In Chapter 4, we will
meet a slightly different definition of projections.

Denotational Semantics

The denotational semantics of Ar defines the meanings of terms using domains.
There are two main styles in which this can be presented. The first is the ‘cat-
egorical’ way: types are interpreted as objects in Dom and terms are interpreted
as morphisms from the product of the objects representing the types of their free
variables. The second way is more element-oriented and uses environments. We
will give the semantics in the second form, as this seems more familiar to computer
scientists.

We define a type-indexed family of domains {D,} by induction on the structure of
o as follows: ’
D, =IN;

Da’—)’r = [-DO' — D‘r]
Doxr = D, x D,

17

[2]p = [n]
[z°]p = p(=7)
[ts]p = ([t]p)([s]p)

[Az?.t]p = Ad € D,.([t]p[z® — d])

[(s,8)]p = ([slo: [£]0)

tfst(s)]p = m (Is1o)
[snd(s)]p = ma(lslp)
1 if [s]p = L,

[if s then ¢; else t2]p =< [t]p if [s]p = [0]
[t2]p otherwise

[fix(z?.s)]p = U, dn where dg = Lp,,dnt1 = [s]p[z7 — dy]

4L, if [sfo=Lor [t]Jp=L1
IIS +t]]ﬂ - { [m+n] if I[s]]p = [m] and |[t]]p = [’I"L]

Figure 2.4: Denotational Semantics of Ap

An environment p is a type-respecting finite partial function from variable names
to the disjoint union of all the D,; that is to say that for any z?, if p(z?) is defined
then it is an element of D,. For an environment p, variable z° and d € D,, we
define the environment plz? — d] by

d if ym =2
g TY
pla” = dl(y") = { p(y™) otherwise
The meaning of a term t :: 7, which we write [t], is then a partial function from
environments to D,. [t] is defined by induction on the structure of ¢ as shown in
Figure 2.4.

It is straightforward to verify that all the above are well-defined in the sense that if
t :: 7 and p(z7) is defined for all the free variables z” of ¢, then [t]p is defined and
is indeed an element of D,. From now on it should be understood when we write
[t]p that FV(t) C dom(p).

18

Computational Adequacy

Having given both an operational and a denotational semantics to A7, we now look
at how they are related. We shall take the position that the operational semantics
is primary and that we wish to be sure that the denotational semantics correctly
models the relevant features of the operational semantics so that we can use it to
reason about evaluation. The results which we shall present are due to Plotkin
[Plo77] and to Sazonov [Saz76).

The question we immediately have to answer is: what do we mean by ‘relevant’
features? The most important idea is that denotationally equal terms should be, in
some sense, operationally equivalent. The correct notion of operational equivalence
will depend on what observations we are allowed to make of computations. The
view which we shall take is that the only directly observable behaviour is that of
programs, where a program is defined to be a closed term of type ¢ (i.e. an element
of A7"). The only behaviours which a program can exhibit are to diverge or to
converge to an integer value. The only way in which we can observe terms of higher
type is to plug them into a complete program. In particular, this means that the
only kind of ‘test’ which we can perform on a term of functional type is to apply
it. We shall return to this issue later when we come to consider strictness-based
optimisations.

We define a contezt Cf[], somewhat informally, to be a program with a typed hole
in it. For example

Afefo 3

If CJ] is a context and ¢ is a term of the appropriate type then C[t] is the program
which arises from plugging ¢ in for all the occurrences of the hole in C[]. Note that
this differs from the notion of substitution which we defined earlier in that here we
are allowing variable capture. A further restriction for this to be well-defined is that
all the free variables of ¢ are bound in C[t].

The observational preorder < is the relation on terms given by
t < s < VC[.Yn. C[tln = C[slin

This gives us an operational notion of when one term approximates another, which
we need to relate to the denotational order.

The following facts about the denotational semantics are easily verified:
Lemma 2.1.2
1. If p(z?) C p'(z°) for all ° € FV(t) then [t]p C [t]0;

2. [tls/=1lp = [t]plz” > [s]pl;
3. If [s]p C [t]p for all p, then for all C], [C[s]] C [C[t]].

19

Now define the observational or operational meaning of a program p by

Olp] = { [n] if pln

1 otherwise

The result which we want in order to show that the two semantics agree is Vp €
AZ". [p] = O[p]. One direction of this is straightforward:

Proposition 2.1.3 For any program p, if pln then [p] = [n]. Equivalently, Op] C

[p]

Proof. This follows by an induction on derivations in the operational semantics to
show (using Lemma 2.1.2(2)) that for all ¢ € A%, if t{}c then [t] = [c]. Then if pin
we have [p] = [n] = [n] as required. _ O

The other direction is more difficult. A naive attempt to do induction on types or
on terms fails. We need to assume a strengthened induction hypothesis to make the
proof go through at higher types. We will do this by means of a logical relation.
Logical relations are an important tool for proving properties of typed A-terms, and
we shall use them several times in this thesis. A good introduction can be found in
[Mit90]. There are several closely related notions, such as computability predicates
and reducibility candidates.

Define the type-indexed family {R?} of relations, where R® C D, x A7’ as follows:

dR't & dT O[]
dR°7"t & Ve,5.eR°s = (de) R (ts)
dR*"t & (m(d) R fst(t)) & (ma(d) R™ snd(t))

Lemma 2.1.4

1. For allt € AZ" we have Lp_ R™ t;

2. If (d,) is a chain in D, and for alln, d, R t then (), dn) R ¢.

Proof. Both parts are proved by simple induction on the structure of the type .
a

Lemma 2.1.5 Fort,t' € Ay" andd € D, if (tyc) = (t'lc) then (dR"t) = (dR"t').

Proof. This also follows by induction on types and consideration of the operational
semantics. We give the case for function spaces:

20

e If 7 = ¢ — ¢ then we need to show d R° ¢’ on the assumption d R~ t.
That means showing that for all &', s such that d’ R° s we have (dd’) R" (¢ s)
on the assumption (dd’) R (ts). This follows by induction if we can show
(ts)dc = (' s)Uc’; but this is immediate from the rule for application in the
operational semantics and the premisses of the lemma.

Proposition 2.1.6 Ift € A%, p is an environment such that FV(t) C dom(p) and
for each z¢ € dom(p), s; € A3 and (p(z*)) R7 s; then ([t]p) R™ (t[si/z7']).

Proof. Induction on the structure of {. We give a few illustrative cases:

e If t =n then [t]p = [n] and it is plain that [n] R* n.

o Ift = A\z°.t' where t' :: 7/ then we need to show that for any d, s such that dR%s
we have ([Az”.t']p)(d) R™ ((Az?.t'")[si/z7*]) s. The first of these expressions is
equal to [¢']p[z® + d]. Then since t'[s;/z]*][s/z"[Jc = (Az?.t'[s;/x]']) slc, we
can use the induction hypothesis on # together with Lemma 2.1.5 to obtain
the result.

o If t = if s then u else v where u,v :: 7 then we consider the possible cases
for [s]p. If this is 1p, then [t]Jp = Lp, and we are done by Lemma 2.1.4.
Otherwise, assume [s]p = [0] so that the induction hypothesis applied to s tells
us that s[s;/z7*]J0. Then [t]p = [u]p so that the induction hypothesis applied
to u, together with the fact that u[s;/z7|{}c = t[s;/z{*]{c and Lemma 2.1.5
gives the result in this case. The argument for the case in which [s]p = [n] for
n > 0 is similar.

o If t = fix(z".t') where ¢’ :: 7 then [t]p = |, d, where dy = Lp, and dpy1 =
[t']o[z™ — d.). Lemma 2.1.4 tells us that do R" t[s;/z;’]. Assume that
d, R™ t[s;/z]*]. Then the induction hypothesis applied to ¢’ tells us that

([1plz™ = dnl) RT ¢'[si/ 277 [tsi /"] /2]
But [t']plz™ = dn] = dny1 and ¢[s; /2] [E]s:/2]]/27)be = t[si/xi e so that

by Lemma, 2.1.5 we have d,,1 R ¢[s;/z{’] for all n by ordinary induction. Thus
by Lemma 2.1.4 we are done.

Corollary 2.1.7 For any program p, O[p] = [p].

Proof. The previous proposition gives [p] R* p which means that [p] C O[p]. The
other direction is Proposition 2.1.3. O

21

Corollary 2.1.8 (Computational Adequacy) If Vp.[s]p C [t]p then s <.

Proof. By Lemma 2.1.2, for all C[], [C[s]] C [C[t]]. Hence by the previous result,
Csiin = C[tNn. ' O

It should be noted that for the language as we have presented it, the converse to
computational adequacy, which is known as full abstraction, is false. There are terms
s,t for which s < ¢ but it is not the case that Vp.[s]p C [t]p. This is essentially be-
cause Ar is sequential whereas the denotational semantics contains functions which
are inherently parallel (and which are not therefore the denotation-of any term in
the language). In terms of equality, rather than approximation, some terms can
be distinguished denotationally by contexts involving these parallel functions but
not by any sequential context. This means that if we base a system for reasoning
about observational equality on the denotational semantics then it will be incom-
plete. Conversely, if we use the denotational semantics to reason that two terms
are observationally different, our results may be unsound. In practice, however, we
nearly always want to reason that two terms are equivalent and are prepared to
live with some incompleteness. Note that if we do wish to show the observational
inequivalence of two terms, this is usually easy to do using the operational semantics
directly, as all we have to do is exhibit a suitable context.

The simplest way in which we can repair the failure of full abstraction is to add a
parallel operator, such as parallel or, or parallel conditional, to our language. Whilst
we shall not do this, it makes very little difference to any of the material in this
thesis. The other approach, defining a useful semantics which is fully abstract for
the language as we have defined it, appears extremely difficult. Despite considerable
effort, the problem of obtaining a ‘semantic characterization’ of the® fully abstract
model remains open. For further information on the full abstraction problem, see
for example [Mil77, Plo77, BCL85, Sto88].

2.2 Strictness Analysis and Abstract Interpreta-
tion

A function f : D — E is strict if f(Lp) = Llg. A function of n arguments
g: Dy X% ...x D, = E is strict in its ith argument if Vd; € D; we have

g(dl) s ,di—I)J—Di,di+1’ .. '7d’n) = —LE

In its simplest form, strictness analysis is the process of trying to find out which
functions in a program are strict. Strictness is the denotational analogue of the
operational notion of neededness, where we say a function g needs its ith argument
if whenever an application of g is reduced, so is its ith argument. It is easy to

3Milner has shown that there is only one inequationally fully abstract order-extensional model
for PCF [Mil77].

22

see that neededness implies strictness but not the other way around—the function
Az?.Q)7 is strict but does not actually evaluate its argument under the operational
semantics which we have given. For most purposes, strictness is actually the more
useful notion.

Strictness information has several uses. We briefly indicate some of these here:

e Transforming call-by-name parameter passing into call-by-value. We shall say
a little about this in Chapter 6.

¢ Indicating which expressions should be sparked as concurrent tasks in a parallel
implementation. See, for example, [PJ87, Bur87, HBPJ86, Bur91b).

e Program transformation. For example, the useful rule
f(if a then b else ¢) = if a then f(b) else f(c)
is only valid in general if f is strict.

e Improving the accuracy of other analyses, such as complexity analysis [Wad88].

Accurate strictness information is uncomputable (the problem is obviously equiva-
lent to the halting problem), so if we wish to automate the process in a compiler
then we shall have to accept safe approximations. This means that the analysis
should indicate that a function is strict only if it definitely is.

Many program analysis problems can be approached using the framework of abstract
interpretation. This was pioneered by the Cousots [CC77, CC79], and was first
applied to strictness analysis by Mycroft [Myc80, Myc81]. The basic idea of abstract
interpretation is very simple: we can find things out about a computation by running
a ‘simplified’ version of it at compile-time. This simplified, or abstract, version of
the program computes with (lattices of) program properties.

If we are interested in analysing extensional properties of programs then we can
base our abstract interpretation on a denotational semantics like that which we have
already seen for Ar. This is what we shall do for strictness analysis. If we wished
to reason about intensional properties, such as complexity or sharing behaviour,
then we would have to define some more detailed semantics which included this
information before we could construct an abstract interpretation.

2.2.1 A Simple Example

The usual simple of example of an abstract interpretation is the so-called ‘rule of
signs’ for simple arithmetic.

We can answer the question ‘what is the sign of —314 x 1597’ without actually
performing the multiplication by using the fact that ‘a negative times a positive

23

is a negative’. More formally, there is an abstract version, ®, of the standard
multiplication operation, x, which makes the following diagram commute:

7 x 7 —= A
sign
)

sign X Sign‘

UXN 8

where ¥ = {—,0,+}, sign : Z — ¥ maps an integer to its sign, and ® is defined by
the following table:

®[-J0]+
— | +10]| =
010j0]0
+|-10]+

The diagram says that sign(n x m) = sign(n) ® sign(m) — instead of doing the
multiplication and taking the sign, we can take the two signs and do the abstract
version of multiplication. In algebraic terms, this says that sign is a homomorphism
between two algebras for a signature containing a constant for each integer and one
binary operation.

Now consider extending this framework to include addition as well as multiplication.
We have to add a ‘don’t know’ element to ¥, which corresponds to the whole of Z.
We shall write T for this element. For the sake of completeness, we shall also add an
element L to correspond to the empty set of integers. The intended interpretations
of the abstract points are given by the concretisation map Conc : ¥ — P(Z) defined
by '

{} ifs=1
{0} ifs=0
Conc(s) =< {z|z>0} ifs=+
{z|z<0} ifs=-—
Z ifs=T

The inclusion order on P(Z) induces the following order on %:’
T
— 0+
N/
1

The new definitions of the abstract operators ® and @ are given by the obvious
tables. We list a few representative entries

09T=0 —@+=T
~®T=T TeT=T
1®+=1 0@l=L

24

The correctness of our abstract interpretation is now expressed by the following
diagram:
Zx7—>—7

sign

sign X sign[3

XX z

02

Note that because of the approximation which we have been forced to introduce,
the diagram no longer commutes exactly. Instead, the abstract value which we get
by first taking signs and then performing the abstract computation is greater than
or equal to (with respect to the order shown above) the abstract value we get by
doing the real computation and then taking the sign. This is sometimes known as
a semi-homomorphism.

We can also define a function Sign : P(Z) — ¥ which allows us to abstract sets
of integers. This is given by Sign = ||oP(sign). The pair of maps Sign and Conc
satisfy the following two conditions:

Sign o Conc = idy,

Conc o Sign J idp(z)

The second of these is called the safety conditon. Taken together, these two con-
ditions say that the two maps form what is sometimes called an embedding-closure
pair. This is dual to the notion of an embedding-projection pair which we defined
earlier.

Other everyday examples of abstract interpretation include order of magnitude es-
timates, and the use of a map to plan a journey.

2.2.2 Strictness Analysis by Abstract Interpretation

Mycroft’s original account of strictness analysis by abstract interpretation was re-
stricted to first-order recursion equations over flat domains. The natural extension
to higher-order functions was first described by Burn, Hankin and Abramsky in
[BHAS86]. This section, which is based on that paper, explains how abstract inter-
pretation may be used to perform strictness analysis for our language Ar. Some of
the details of the presentation are slightly different from those in loc cit.

We start by defining an abstract domain A, at each type o
A =2
Aorx'r = Aor X AT
Ao’—)’r = [Aa' — A’r]

In fact each A, is rather more than a domain: it is a finite (and therefore complete)
lattice.

25

The intended relationship between the standard and abstract domains at each type
is captured by the continuous maps a, : D, — A,, Abs, : Pg(D,) — A, and
Conc, : Ay — Py (D,). These are defined inductively as follows

Abs, = |o(Pa(e)
a(Llp,)=1a af
oxr(d,) = (o (d), ar(e))
Qo7 (f) = Abs; o (Py(f)) o Conc,
Conc,(z) ={d € D, | ap(d) C z}

Note that the definition of Abs uses |]: Py(A4,) — A,. This map exists because A,
is a complete lattice. (Ay,|]) is an algebra for the Pg(-) monad, which means that
the following two diagrams commute:

Aa— b poay paPa(a) Pi(A)
id L Pr () U
A Pr(A) A

The maps Conc and Abs form an adjunction:
Conc, o Abs, J ide(Da)

Abs, o Conc, C idy,
and the second inequality can in fact be strengthened to an equality.

The non-standard interpretation of Ag is very similar to the standard denotational
semantics which we gave earlier. We define an environment for the abstract inter-
pretation (ranged over by p?) to be a finite type-respecting partial function from
variables to the disjoint union of all the A,, and we can then define the abstract
semantics [t]4p% € A, of a term ¢ :: o as shown in Figure 2.5. We shall refer to this
system as the ‘BHA-style abstract interpretation’ in the rest of the thesis.

The abstract semantics differs from the standard semantics only in the choice of
domain for the ground type and in the interpretations of numeric constants, condi-
tionals and arithmetic operations. This can be generalised in a fairly obvious way to
give the notion of an interpretation of our language, which is specified by a choice
of base domain and by semantic equations for those language constructs which are
not part of the pure simply typed lambda calculus.

The following lemma concerning the abstraction maps is easily established by in-
duction on types, and will be useful later:

Lemma 2.2.1 For each o, a, is both strict and bottom-reflecting; that is to say
ag(d):_LA‘,{:}d:_LDa. O

26

[n]#p* =Ta,
[7]4p* = p*(z7)

[ts]*p* = ([e]*p*)([s]% ")
[Az°.t]4p% = da € A,.([t]*p?[z° — a])
[Gs,)40 = ([s]%p%, [E]" ")
[fst(s)]*p* = m([s]*p?)
[snd(s)]4* = ma([s]*0")

L if [s]4p” = La,

i A A _
[if s then t; else t]*p* = { ([ta]2p?) U ([t2]4p*) otherwise

[fix(z°.s)]4p* = U, a. where ag = L4, ns1 = [s]A02[z7 — ay)

[s + t]*p* = ([sI*p*) 1 ([t1* ")

Figure 2.5: BHA-style Abstract Interpretation

27

We shall also want the following:
Lemma 2.2.2 For any f € D, and z € Dy, a5 (f)(00(2)) T ar(fz)

Proof. This uses naturality of { - [} and the fact that [|o{] - [} is the identity on A,.
a

Since all the abstract domains are finite, we can compute the abstract denotation
of a term in finite time. What we need to show is that the abstract value we get
by doing this is a safe approximation to the abstraction of the standard denotation
of the term. For p a standard environment and p# an abstract environment, write
a(p) E p* to mean that for all z° € dom(p), oy (p(z%)) C p?(z).

Theorem 2.2.3 If a(p) C p* then for any t :: 7, o ([t]p) C []40%.
Proof. This is proved by a fairly straightforward structural induction on terms. O

In particular, this shows that if the abstract interpretation of a term of functional
type is strict, so is its standard interpretation:

Theorem 2.2.4 If a(p) T p? and f :: 0 — 7 then [f]2pALs, = La, implies
I[f]]pJ‘Dcr = ‘LDT'

Proof.

La, = (10" La,
J (aes([f1r)La, by previous theorem
= (oo ([f]0))(as(Lp,)) as a, is strict
3 a.(([flp)Lp,) by Lemma 2.2.2
which implies that
[fleLlp, = Lp.
as a, is bottom-reflecting. a

Example The abstract denotation of the factorial function
fact&fix(fo*. Azt if z* then 1 else z* * (f***(z* — 1)))

can be calculated as : .
[fact]* =1 |an'

where
ag = J_AL_“
and
any1 = [Azt.if z* then 1 else z* * (f***(z* — 1))JA[f = an]
— —LAL if Y= -J-AL
= WweA { Ta U(yM(an(yMTg,))) otherwise
= AMEAY

28

This means that
[fact]® = Ay € A,.y

so that
[[fact]]A_LAL = —I—AL

and therefore the standard denotation of the factorial function is strict.

In general, when analysing recursive definitions, we have to perform several steps of
fixpoint iteration (this did not show up in the example because a,+; was independent
of a,, but this is not usually the case). This can be very expensive as even though all
the lattices are finite, they get very large as we go up the type hierarchy. Note that
to perform fixpoint iteration for higher-order functions, we have to test functions
for equality at every step and this is in itself a costly operation. In fact, even for
first-order functions, calculating the abstract function is complete for deterministic
exponential time in the number of arguments [YH86]. Several techniques have been
‘proposed for implementing analysers with better average case behaviour than this.
See, for example, [YH86, Hun89, HH90, Hun91].

There is a different way of phrasing the correctness proof for this abstract interpre-
tation which makes use of a logical relation between the standard and the abstract
domains at each type. Instead of the concretisation map Conc, : A, — Py (D,), we
define a relation A* C A, x D, which relates 1 4, to Lp, and T 4, to everything in
D,. This is then extended to a family {.A”} of relations between the abstract and
standard domains as follows:

fA g & Yae A,,d€D,.a A°d = (fa) A" (gd)
PAT"q & (m1(p)A7m(g)) A (m2(p)ATT2(q))

The ‘basic lemma’ (or ‘fundamental theorem’) of logical relations says that if we
have a family of relations like this between two interpretations of our language, and
that the extra language constructs and constants are related, then the meaning of
any term in the first interpretation is related to its meaning in the second (provided
the two environments are pointwise related). This allows correctness to be proved
without any explicit mention of powerdomains, although, in this particular case, the
broad outline of the proof is very similar to that of the one we have given. This
version of the semantic basis for BHA abstract interpretation appears in [Abr90a]
and [Nie86]. See also [MJ85].

2.3 Static Analysis and Type Inference

Most modern functional language implementations include type inference. This
means that the programmer does not have to supply any explicit type information
(except perhaps to disambiguate uses of overloaded built-in operators). The com-
piler attempts automatically to reconstruct the types of expressions in the program,
and reports any type errors which it finds. In general, these languages also have
polymorphic type systems based on Milner’s extension [Mil78] of Hindley’s system

29

[Hin69]. The Hindley-Milner type system (often just known as the ‘ML type system’)
allows a single definition to be used at several different type instances. Languages
with polymorphic type inference offer the programmer much of the convenience of
using an untyped language whilst retaining the considerable advantages of strong
typing. We shall consider polymorphism further in Chapter 5.

Effective type inference systems can never be complete with respect to an interpre-
tation of types in a model of the untyped language for elementary computability
reasons. We have, therefore, to settle for safe approximations—if the compiler re-
ports that a term has a particular type then it definitely has that type, but some
well-typed programs will be rejected.

It is clear that type inference is, at least superficially, similar to the static analysis
problems which arise in optimising compilers. Both involve compile-time inference of
safe, approximate information about the run-time behaviour of programs. Several
people have noticed this and have presented type inference as an example of an
abstract interpretation [MJ85, Kie87].

There is a slight pragmatic difference between the two sorts of analysis which is that
if an inference algorithm cannot type a program then it reports an error and then
stops. If an optimiser cannot discover that a program has a particular property (e.g.
‘the argument of this array update function will not be shared’) then it just behaves
in some default manner (e.g. compiling code to copy the array). Thus analyses for
optimisations are rather more like partial type inference for untyped languages such
as LISP or Smalltalk. These languages are not statically typed and must therefore
carry around and check type tags at run-time. Performance can be improved by
inferring some type information at compile-time so that at least some of the code is
free of such overheads. Indeed, the connection between static analysis and partial
type inference is very close—Gomard [Gom90] presents an algorithm for partial type
inference and shows how it may also be used for binding time analysis.

There are a number of reasons why we might want to investigate the link between
type inference and abstract interpretation, with an emphasis on the use of type
inference methods for performing program analyses. The most important of these
is simply to increase our understanding, but there are several potential practical
benefits. These include the possibility of getting more control over the trade-off
between the complexity of an analysis and the quality of information gathered,
and of developing analyses which have better average-case complexity than that
of abstract interpretation. We might also want to develop analyses which can be
performed at the same time as type inference, or can cope with polymorphism.
Finally, we may be able to devise analysers which can obtain information which we
could not get before. At present these are mostly rather vague hopes, rather than
proven benefits of the type inference approach.

2.3.1 Kuo and Mishra’s Strictness Type System

The use of type inference techniques for strictness analysis was first suggested by
Kuo and Mishra in [KM89]. Their non-standard type system is shown in Figure 2.6.

30

Terms
tu=2x|n|plus|cond |Y | (¢t) | Azt

Types
ou=¢|lo—oo
ex=0|0
Type Inference
Fz:okbz:0 F'kn:0
F'kplus: 0 —0—0 IF'kplus:O0—=0—0

l'Fcond:)—+0—-0—0 FFcond:0—=0—0—0
F'tY:(c—0)—0

'Ft:o' >0 'Ht:d
it o

Cz:obt:o

CMet:o— 0o

I'tt:o ocCo
F't:¢o

Subtyping
cCo pco

dCo T1CT

oc—17Co o7

Vi.o; matches 7;

o1 —>... >0, —€eCn—... 51— 0

Matching
€ matches ¢

o matches o’ 7 matches 7'

o — 7 matches ¢/ — 7'

Figure 2.6: Kuo and Mishra’s Strictness Type System

31

The intention is that O should denote ‘all terms’ whilst) denotes ‘looping terms’. For
example, the set of all strict functions is represented by @ — 0. There is clearly an
inclusion between the two base types: # C O, and the type inference rules therefore
have to incorporate subtyping. The paper is mainly concerned with obtaining an
inference algorithm and draws on Fuh and Mishra’s earlier work on implementing
type inference in the presence of Mitchell-style subtyping [Mit84, FM88, FM89].

One of the complications in this system is that the subtyping rules differ from those
considered by Mitchell in that they are non-structural. This means that an inclusion
between two non-basic types cannot always be broken down into inclusions between
their components. The usual rule for subtyping the — type constructor is

dCo T1CT

c>17Co 7

which is indeed one of Kuo and Mishra’s rules. Notice that this makes — antimono-
tonic in its first argument and monotonic in its second argument with respect to the
inclusion ordering, which fits with one’s intuition. This rule is not, however, sufficient
to derive all the inclusions which we want. For example, we expect § — @ € O — O
to hold (‘every strict function maps terms to terms’), but this is not an instance of
the above rule. This is the reason for the addition of their final, rather odd-looking,
subtyping rule and the rules for type matching (which say when two types ‘have the
same shape’). Although there is no discussion of semantics or correctness, Kuo and
Mishra do mention that there are other obvious but ‘non-matching’ inclusions, such
as § — @ C O, which are not captured by their inference rules. It is therefore not
really clear whether the analysis is for typed terms or untyped terms, although the
paper states that the analysis is independent of any conventional type system, but
that the analysis algorithm requires terms to be typeable (presumably in the simply
~ typed lambda calculus sense) for it to work.

Kuo and Mishra’s type system gives weaker information than the BHA-style abstract
interpretation which we have previously described. This is pointed out in the paper
with regard to the analysis of recursion, but in fact the system gives weaker results
even for non-recursive terms. For example, consider

g% (A\f. Az My.condz (f1y) (fy1)) plus

We should like to be able to show g to be strict in its second argument, i.e.
Fg:O0—=0—0

but this is not derivable in the type system, although the corresponding fact is
derivable from the abstract interpretation (modulo making trivial changes of syntax
and adding type information to translate the above into Ar). In this example, the
' weakness is caused by the fact that plus has two minimal strictness types but we
cannot derive the required property of g from either one of them alone. This is
related to the restriction that A-bound variables behave monomorphically in the

32

Hindley-Milner type system. Kuo and Mishra mention the possibility of adding
intersection* to their system, and say:

“We find that including boolean operators in the type language results in
an extremely rich and complex language of types. This complicates sev-
eral algorithms used in our strictness analysis technique. It also appears
to provide a more general framework than can be used by our analysis
techniques.” ‘

In fact, adding intersection types to Kuo and Mishra’s system in the natural way,
by adding the rules

C'Ht:o F'Ht: o FT't:oNd FFt:oA0
F'Ht:ond F'kt:o CHt:o

would give an undecidable system. It is well known that for the pure simply typed
lambda calculus extended with intersection types, the typeable terms are precisely
the solvable terms and thus type inference is equivalent to the halting problem
[CDCV81]. Adding syntactic restrictions on the use of intersection might alleviate
this, however, and this is in some sense what we shall do in this thesis.

2.3.2 Other Work on Static Analysis by Type Inference

Wright has been developing an approach to neededness analysis which is based on
type inference [Wri91lb, Wri9la]. As we have already mentioned, neededness is an
intensional property of terms which is very close to strictness. Wright’s type system
is based around defining different versions of the — type constructor: a function
of type ¢ = 7 takes an argument of type o, which it needs to evaluate, to an a
result of type 7. A function of type ¢ /4 7, on the other hand, takes an argument
of type o which it then ignores to produce its result of type 7. This is extended
to include variable arrows and boolean operations on arrows. Wright has produced
several different systems, some of which also incorporate intersection types. An
interesting feature of Wright’s work is that he uses unification over the theory of
Boolean rings [MN89] in order to solve the typing constraints which arise in his
inference algorithm.

A different strand of work is motivated by the Curry-Howard correspondence be-
tween types and propositions in intuitionistic logics [How80]. Several researchers
have suggested that one could produce languages with more refined type systems,
expressing finer resource usage properties of terms, by extending the correspondence
to intuitionistic resource logics, such as suitable fragments of Girard’s Linear Logic
[Gir87]. This seems a promising line of research although much remains to be done

4We use the word intersection, rather than conjunction, to avoid possible confusion caused by
the fact that the type corresponding to the logical operation of conjunction under the propositions-
as-types analogy is a cartesian product, not an intersection

33

in devising efficient translations of ordinary typed lambda terms into these more
refined languages. This process would be at the heart of any compiler based on such
ideas. The pleasant technical properties of these systems also tend to evaporate
somewhat when recursion and constants are added to the pure languages. See, for
example, [Abr90b, Wad91, Bie92, BBHdP92].

Pierce’s thesis [Pie91] also contains some remarks on how a language with an unusu-
ally powerful type system, the second order lambda calculus with bounded quantifi-
cation and intersection types, can mimic various program analyses entirely within
its type system. Indeed, it is amusing to note that in most domain-theoretic models
of the second order lambda calculus (A2), the interpretation of the type Va.a is
precisely {1} (see Chapter 5), so some strictness information is in a sense already
expressible within the type system. However, as decidability of type inference for
A2 is still an open problem, this is perhaps not a particularly good approach to
obtaining practical analysis algorithms.

34

Chapter 3

Strictness Logic

3.1 Introduction

In the abstract interpretation approach to strictness analysis which we described in
Chapter 2, the concretisation maps have the Hoare powerdomain as their target.
Thus the interpretation of each abstract domain point is a non-empty Scott-closed
subset of the standard domain. The similarity between strictness analysis and type
inference is strengthened by the observation that subsets of this kind have also been
suggested as the interpretation of types [MS82, MPS84]. In this context, non-empty
. Scott-closed sets are often referred to as ideals, and this is the nomenclature we shall
adopt from now on.

The work described in this chapter arose from an attempt to improve upon, and
to understand in semantic terms, Kuo and Mishra’s strictness type system. One of
the advantages of their system is that it makes the basic program properties (such
as ‘maps strict functions to strict functions’) in which we are interested much more
visible!. Although it may appear obvious, a greater emphasis on program properties,
rather than particular representations of them, is long overdue. This point is also
made in [Bur9la]. :

Obviously, some properties imply others. For example, a function which satisfies the
property of being the constant bottom function also satisfies the (weaker) property
of being strict. Our approach starts by identifying the basic properties at each type
and then axiomatising the entailment relation between logical combinations of these
properties. We then have to give a formal system for assigning properties to terms.

This idea, and other work on non-standard type systems, represents a shift from
denotational analysis techniques to logical ones, so the obvious place to look for
insight was the work of Abramsky and Zhang on domain logics [Abr91, Zha89].
These arise from Stone-type dualities between (topological) spaces and logics [Joh82,
Vic89]—one can either view points as primary and then consider a property to

! Although their claim that this kind of information is not obtainable from the abstract inter-
pretation is untrue.

35

be a set of points, or take properties as primary and then consider a point to be
determined by the properties it satisfies.

Abramsky’s work is concerned with the logic of observable properties: things we can
observe by looking at finite bits of output. These correspond to compact open sets?
in the Scott topology. Strictness is non-observable (intuitively, one can never observe
non-termination), and the strictness properties which we shall consider correspond
to closed sets. The logic presented here is nevertheless essentially a fragment of
the open set logic in [Abr91], although the interpretations of propositions are very
different.

It should be noted that the same system was arrived at independently by Jensen in
[Jen91]. That work is complementary to this, however, in that Jensen considers the
relation between conventional abstract interpretation and the logic whereas here we
take as fundamental the direct relation between the logic and the standard semantics.
Some of the work in this chapter and in Chapter 5 was previously reported in
[Ben92b].

The plan of the rest of this chapter is as follows. Section 3.2 describes the ax-
iomatisation of the lattice of strictness properties and shows that it is sound and
complete with respect to its intended interpretation in the standard semantics. We
then give, in Section 3.3, a program logic which allows us to deduce properties of
terms. We show that the program logic is sound and then investigate some of its
proof-theoretic properties. This leads us to reformulate the program logic to give a
set of rules which are more suited to implementation. In Section 3.4 we show that
our logic is equivalent in power to BHA-style abstract interpretation. Finally, in
Section 3.5, we describe a more powerful strictness logic which incorporates disjunc-
tion. This is used to extend our analysis to a language with sum types. We also
show the unsoundness of a disjunctive logic due to Jensen.

3.2 The Logic of Strictness Properties

We define a family of propositional theories {L,}, indexed by the types of Az. The
theory L, is a pair (Ls, <,), where L, is a set of propositions and <,C L, X L,
is the entailment relation. The formation and inference rules for £, are shown in
Figure 3.1. Type superscripts on propositions will frequently be omitted. We define
¢° = 17 to mean ¢? < 97 and 7 < ¢°.

At each type o we have a domain D,, as defined on page 17, and a propositional
theory £,. These are related by giving an interpretation map [-] which takes each
proposition ¢ € £, to the set of elements of D, which satisfy it (i.e. its extent). We
shall frequently write z = ¢ for = € [4].

2If D is an algebraic domain, each Scott open set is expressible as {J;c; T (b;) where each b; is
a finite element of D. The compact open sets are those which can be so expressed with I finite.

36

Formation rules

) eLa

6feL, $Yels
¢pAY € Ly

9L, Yel, ¢cLl, YeL;

(¢ — ¢) € Lo’—)T (¢ X ¢) S LaXT

Inference rules

¢ < ¢ [refl] ¢ < t[t] f < ¢[f]
¢ AP < [AE-1] ¢ A < P[AE-2]

P<Y TIJSX[tmnS] p< 1 ¢S¢2[/\I]

¢ < x ¢ <P A

p<¢ Yy
(6 x) < (¢ x9)

7% < £ X t7[6x] £7 x f7 < £o7[fx]

[x]

(@xP)A (¢ xYP) < (PAP) X (W AY)[XA]

<o <Y
— =]
(=) < (¢ =)
77T <t7 — t7 [t—] t7 — 7 <977 [f—]

(0= 1) A (@ —) < (¢ — 91 Ada) [A

Figure 3.1: Formation and Inference Rules for £,

37

[t"] = Do

[£] = {1p.}
[6 A] = [8] N [¥]
[¢7 x ¥7] ={(z,9) € Doxr | z € [¢°] and y € [¢"]}
[¢7 = %] ={f € Dossr | f[¢°] C [¥']}
There is an somewhat unfortunate blurring of terminology going on here: the for-
mulae of £, are referred to as propositions, but are interpreted as unary predicates
over D,. A slightly different way of viewing the relationship between £, and D,
is that each non-.L element of D, corresponds to a model of the theory £, in the

two element meet-semilattice. Note that distinct domain points do not necessarily
correspond to distinct models.

Proposition 3.2.1 For any ¢ € Ly, [[qb]] is an ideal of D,.

Proof. Induction on the structure of ¢. For example, if I = [¢°] and J = [¢)"] are
ideals, we have to show that K = [¢° — ¢7] is too. Well, K is non-empty as it
contains the constant L function (because J contains). K is down-closed because
Jis—if fC gand g € K then for any d € I, fd C gd € J and hence fd € J. K
also inherits closure under sups of chains from J as if (f,) is a chain in K then for

any d € I, (Ll fa)d = U(frd) € J. . m

Example Some examples of the sort of properties which we can express in this
system: '

e A function f :: ¢ — ¢ is strict iff [f] € [f* — {*].
e A function f :: ¢ — ¢ is the constant L function iff [f] € [t* — £*].

e A function h :: ¢ X ¢ — ¢ is strict in both its arguments iff [h] € [(f* x t* —
) A (t° x £ — £9)].

e A function g :: (¢ — ¢) = (¢ — ¢) maps strict functions to strict functions iff
[e] € [(f* = 1) = (f* =)] |

Remarks 3.2.2

e Kuo and Mishra’s type system roughly corresponds to the subsytem of our
logic which does not contain conjunction.

e Instead of presenting the logic in terms of binary conjunction and a top el-
ement, we could have used n-ary conjunction. We shall sometimes abuse
notation by using this alternative syntax. The proposition A;cp ¢ should be
understood as being equal to t7, though we will often treat the t case sepa-
rately.

38

If we allow n-ary conjunction, then both of the axioms [— A] and [t—], which
describe how the type structure interacts with the logical structure, could
both have been captured in the single axiom A;c (¢ — ¥;) = (& = Aier %),
by allowing the indexing set to be empty.

For any ¢?, ¢° — t™ = t°7". This corresponds to the non-structural rule in
Kuo and Mishra’s system.

The rule [f—] explicitly identifies L and Az.L.
Similarly, [fx] has the force of identifying (L, L) with L.

It is almost true to say that the [t—] and [t x] rules are 7 (extensionality) rules.
They can be read as saying that everything in the domain associated with a
functional type is a function, and that everything in the domain associated
with a pair type is a pair. However, as all our interpretations are ideals, rather
than arbitrary sets, these rules are actually still valid in some situations where
the 7 rules are not (e.g. the semantics of a language which requires lifted
products and function spaces).

Each L, is consistent; that is t” £ f°.

¢ < Aier ¥ if and only if for all i € I, ¢ < ;. Similarly, d = Asjer 9 if and
only if for all i € I, d |= ;.

Every proposition in £, is logically equivalent to either t* or f.

Every proposition in £, is logically equivalent to one of the form A;c (¢ —

¥i).
Every proposition in £, is logically equivalent to one of the form ¢ x 97.

The similarity between the basic properties of functions (f = ¢ —) and the
Hoare triples used in axiomatic semantics of imperative languages ({¢} C {¥})
should be apparent.

Proposition 3.2.3 (Soundness) If ¢ < then [¢] C [¢¥].

Proof. This follows by a simple induction on the derivation of ¢ < . If, for
example, the derivation ends in

$<o P<o
¢ < ¢ =y

then given f |= ¢ — ¢ and d |= ¢’ we have d = ¢ by induction hypothesis, so
fd =1 and thus by induction again, fd = 4'. Hence f = ¢’ = 1)’ as required. O

Note that the proof of soundness does not really use any of the order properties of
the interpretations of propositions—it is purely set-theoretic.

39

At first sight, it does not seem likely that the small set of rules which we have just
given is going to be complete. In fact it turns out that it is because at each type we
are restricting attention to a very well-behaved subset of the set of all ideals of the
domain.

We write LA, for the Lindenbaum algebra (poset reflection) of the theory £, (that

is to say, LlAadzefCa/ =,). LA, is readily seen to be a finite lattice with all meets
(and hence all joins as well). We shall abuse notation by writing ¢ when we really
mean its equivalence class [¢]-.

Let a, : D, — LA, be defined by a,(z) = A{¢ | z = ¢}, so o takes a domain
element to the conjunction of all the propositions which it satisfies. The conjunction
is finite as the lattice is. We can say some simple things about this map immediately:

Lemma 3.2.4
1. If x = ¢° then a,(z) < ¢°.
2. If x Ty in D, then a,(z) < ay(y) in LA,.
3. If (z,) is an w-chain in D, then ay (L, x,) = V{as(zn)}

Proof. These follow from the rules for conjunction in the logic and from the fact
that the interpretations of propositions are ideals. 0

A sufficient (but not necessary) condition for completeness is that « be surjective.
We show this by constructing an explicit map v, : LA, — D, such that a, o v, =
idea,.

The definition of the «, proceeds by recursion on the type structure. The base case
is easy, just let ,(f) = Lp, and 7,(t) = [42] (say). For higher types we need a
couple of auxiliary definitions.

Define hyxr : Loxr = (Lo X L) as follows:
hUXT(tO'X’T) — (tﬂ, t‘r)
hUXT(fO'X'r) — (fa,f‘r)
haxr((ba X ¢T) = (¢a7’¢T)
hoxr (97T ANY7*T) = (¢7 AT, 3 A93)

where (¢9,835) = hoxr(¢777)
and (Y],97) = hoxr(¥7*7)

40

Lemma 3.2.5 If ¢°7 < Y77, hyur(977) = (65, 83) and hoxr (¥77) = (45, 45)
then ¢7 < ¢7 and ¢} < V5.

Proof. Induction on the derivation of ¢7*7 < 9/7*". a

This shows that Ayx, induces hoxy : LAsxr = (LA, X LA;) in the obvious way.
For function spaces, we define h,_, : L,sr = (L; — L;) as follows:

) b
P £77)(87) =
toon0” 200V ={ 47 XS
Pasr @7 AU T)O) = B (67 TVO) A (7T
Lemma 3.2.6 If 777 < ¢¢°" and 7 < 9 then
P (G5O < o (057 45).

Proof. Induction on the derivation of ¢§~" < ¢377". O

As before, this shows that A,_,, induces hy_r : LA, — (LA, — LA;). We can
now complete the definition of :

Yoxr(@7T) = (Vo (#]), 7+ (¢3)) where (47, ¢3)

70_”((?0—)1-) =70 E’(d’a_w) ° Qo

It is easy to see that « is well-defined (in that v,(¢?) is indeed an element of D)
and that + is monotonic, i.e. that if ¢ < ¢ then v(¢) C v(¢).

ﬁ(¢0'><'r)

Proposition 3.2.7 (@) E ¢.

Proof. Induction on types. The base case is trivial. For products, we may
assume without loss of generality that ¢°*™ = 9% x x™ so that V,x.(¢7*7) =

(7o (¥?),7-(x7)). Then by induction hypothesis 7,(¢?) = 9 and v (x") F X"
and hence Y,x,(¢7%7) E ¢7*". -

For function types, we may similarly assume that ¢ = A;c; @i — 9¥; so that we
need to show '

Yoo\ 0i = i) E N\ 0i = ¥

i€l i€l
which is the same as showing that for all j €

70—)7(/\ i = wz) |= ©Y; — '(pj

i€l

41

and by monotonicity of v, it suffices to show

Yoar (05 = %) B @05 = Y;

Now if d |= ¢, a,(d) < ¢; so

Yoorr (05 = Yi)(d) = ¥ (h(p; = ¥;)(ar(d)))
= 7T(¢j)

and by induction hypothesis v,(¢;) k= ¥;, so we are done. a

Having shown that v(¢) = ¢, we want to show that ¢ is the best proposition which
v(¢) satisfies. We will first need the following:

Lemma 3.2.8

1. hoosr(Nier 85 = i) () = N | x < ¢4}
2. If N{ws | ¢ < s} < o then Nigr s = ¥ < ¢ = 9.

Proof. The first part follows simply from the definition of h,_,,. For the second
part, being somewhat overcautious, if the conjunction is empty then we have t < 1)
so that ¢ — 9 =t and we are done. Otherwise, let I' = {i € I | ¢ < ¢;} and note
that for all i’ € I', ¢y — by < ¢ — ¥y by []. Thus

/\d’i_)'l;[}i < /\ Gy — Py

iel der
< A o— s

ile}'l

= ¢—= N\ o

el

¢ =

IA

Proposition 3.2.9 If v(¢) E ¢ then ¢ <.

Proof. This is another induction on types. The base case is clear. For product
types let ¢7*7 = ¢J x ¢7 and Y77 = § X 7. Then if v, (¢7*7) = ¥7*" we have

76(97) = 97 and 7,(¢3) k= ¥5 and so by induction ¢ < v and @5 < ¥5 so that
@7%T < %" as required.

For function types we need to show that if

Yosr(N\ i =) E N\ &5 = ¥;

i€l jeJ

42

then
Noi—= v < N\ oj—

i€l jeJ

which is the same as showing that for all j € J, if

Yoo (N @i = i) = b5 = b5

iel
then
N\ ¢ = ¥ < @5 =

i€l
Now, by Proposition 3.2.7 v,(¢;) = ¢; so

’Y’r(ﬁa—)’r(/\ ¢z — wi)(aa(’)’a(d)j)))) IZ d)j

i€l
so by the induction hypothesis in the form ooy = id

,Y’T'(]_I’O'—)T(/\ d)z — "/Jz)(qu)) |: wj'

i€l

By the induction hypothesis again, this means

hoosr(\ i — i) (5) < b

iel
which is, by the first part of Lemma 3.2.8,
N{wi | ¢ < &} <

so that, by the second part of Lemma 3.2.8,

/\¢i—>1/)i < @5 = 1

el

as required. O

Corollary 3.2.10 (Completeness) If [¢] C [¢] then ¢ < 9.

Proof. By Proposition 3.2.7, v(¢) = ¢ so that y(¢) = ¢ and therefore by Proposi-
tion 3.2.9, ¢ < 9. O

Corollary 3.2.11 (Disjunction Property) If [¢] C [¢1]U[2] then either [¢] C
[v1] or [8] C 4ol

43

Proof. Since y(¢) = ¢ we must have vy(¢) = ; for some 7 € {1,2}. Then by
Proposition 3.2.9 ¢ < 1); so that [¢] C [¢;] by Proposition 3.2.3. - a

It is an interesting observation that in some sense we only have completeness because
of the disjunction property. If we had [¢] C [1] U [¢2] without [¢] C [#1] or
[#] € [%2] then we would certainly also have [— x Aa — x] C [¢ — x] but no
way of proving it without adding disjunction to the logic.

It is worth noting that the proof of Proposition 3.2.9 also shows that the converse
to the second part of Lemma 3.2.8 holds. This gives a useful characterisation of the
entailment relation at function types:

Lemma 3.2.12 (Entailment Decomposition)

Ngi =) < (¢ =) ifandonlyif N{thi|¢' < ¢} <9’

iel
Proof. The right-to-left implication is Lemma 3.2.8. For the other direction, note
that the left hand side implies

YN ¢ = %) E (¢ = o)

i€l
and then follow the proof of Proposition 3.2.9. a

3.3 The Program Logic

Having seen how strictness properties behave, we now give a program logic for
assigning properties to terms of Az. As we have already mentioned, since our system
is decidable?, it cannot be complete. This is in contrast to the situation for, say,
Hoare logic for while programs. There all the incompleteness is in the assertion
language, whereas here it is in the program logic. As it happens, the program
logic is complete for reasoning about terms which do not contain conditionals (see
[Abr90a]), but as this is not a particularly useful observation we shall not discuss it
further.

The inference rules for the program logic appear in Figure 3.2. We call this system
PL1 to distinguish it from a slight variant which will be introduced later. The
notation is fairly standard. A context I' is a finite set of assumptions of the form
x% : ¢?. The variables appearing in a context must be distinct. We write I', 27 : ¢7
to mean the context I' with any existing binding for 2 removed and the binding
z7 : ¢° added. We restrict attention to well-formed judgements I' - s : 9%, in which
all the free variables of s appear in I'. It is implicit in such a judgement that s :: 0.

3We should really prove decidability, though we have not yet done so. It is, however, intuitively
fairly obvious, and in any case it is also a corollary of the result we shall prove later on the
equivalence of our logic and BHA abstract interpretation. This does not contradict our earlier
remarks about the undecidability of Kuo and Mishra’s system extended with conjunction. Our
terms are typed, and we never form the conjunction of two properties which are associated with
different types.

44

[z% : ¢° b 2o : ¢7[var] 'k n: t'[nat]

FHt:¢? =7 I'ks: ¢

a
Fk-ts:y” lapp]
L,z?: ¢t o7
i v [abs]
CHAz%t: ¢ =97
Ths:¢” Thrs:g° Ths:g® ¢ <y°
— [conj] [sub]
TFs:¢®Ay° Tks:y’
Ths:¢° TrHit:y
[pai]
Ik (s,t):¢% xo7
Fks:¢? xy" 'Es:¢? xo™
¢ xv [fst] Xy [snd]
T Ffst(s) : ¢ 'k snd(s) : ¢7
Ths:f Dhty:¢" Thiy:gr
[cond1] _1 ¢ 209 [cond2]
' - if s then ¢; else t5 : f7 'k if s then t; else ¢y : ¢7
,z?: ¢ s:¢° 'kFs:¢ Lty
— [fix] ¢ v [arith]
I'F fix(z.s) : ¢° CEs+t:¢" Ay

Figure 3.2: The Program Logic PL1

45

To be able to talk about soundness, we have to extend the notion of satisfaction to
terms in context. Write p |= I' if for all 2% in dom(p), I' = I, 27 : ¢° for some I"
and p(z°) = ¢°. Then define ' = s : ¢ to mean that for all environments p such

that p = T, [s]p = ¢°.

Proposition 3.3.1 (Soundness of the program logic)

IfTFs:¢° thenT =s: ¢
Proof. An easy induction on the derivation of I' - s : ¢7. We give two cases:

e If the derivation ends in an instance of the [abs] rule, so s = Azt : 0 — 7
and ¢ = x? — 97, then assuming p |= I" we have to show that for any d € Dy
such that d = x%, ([A2%.t]p)(d) = ¥". From the denotational semantics,
([Mz?.t]p)(d) = [t]p[z® — d]. By our assumption on d we have that p[z?
d = T,z% : x% and hence the result follows from the induction hypothesis
applied to the derivation of T',z% : x% ¢ : ¢ :

e If the derivation ends in [fix], so that s = fix(z?.s'), then [s]p = U, d» where
do = Lp, and dpy1 = [§']p[z" — d,]. Clearly dy = ¢°. If d, |= ¢° then p[z” —
d,] =T, 2% : ¢° and therefore by the induction hypothesis, [s']p[z” + da] =
#°. So by mathematical induction d, | ¢ for all n, and hence (LI, d») | ¢°
as ideals are closed under sups of chains.

O

The proof of soundness of our logical system (which does not rely on any of the
work we did in order to prove completeness of £, with respect to its intended
interpretation) is much simpler than the corresponding proof of soundness for BHA-
style abstract interpretation which we gave in Chapter 2.

Example We can use our logic to deduce that the factorial function is strict (this
was shown using abstract interpretation on page 28).

fact&fix(f Azv.if z* then 1 else z* * (f**(z* — 1)))

[var]
{f: -zt
{f7t £ > 2t £} - if 2 then 1 else o* * (f*7(z* — 1)) : £
{f £ — £} F Azt.if 2 then 1 else z* x (f*7(z* — 1)) : £* = £
{} +fact: f* — f*

[cond1]
[abs]
[fix]

Example As a second example, we show that the function g given by

g O\ frree Azt Ayt if 2t then (F 1) else (f ¢y 1)) (w* Aztw® + 2*)

46

is strict in its second argument. This is essentially the same example we gave earlier
of a property which could be deduced from BHA abstract interpretation, but not
from Kuo and Mishra’s type system.

For layout reasons, we split the derivation up into parts. Write II for the following
derivation: . ‘

[L L 13 (3 L[Var] (2 2 L 3 L[vaI]
{w*:th 2" ' wt e t SR LT AR Sl W oA §
: [arith]

{w:t42" R w 2t AL t' A< £
{w: 2" ' w20 f
{w: t'} Azt + 2 o
[} F At Xob b+ 24 0 6 — £ — £

[sub]

[abs]
[abs]

There is then a similar derivation II' of {} F Aw*.Az*.w* + 2* : f* — t* — f*, so that
we can deduce

IT '

H”: L L 3 [L L 12 L 12 [Conj]
Mtz + 20 (8= =)A=t =)

Now write ¢ for the proposition (t* — f* — f*) A (f* — t* — f*) and T" for the
context {f*77: ¢, z*: t*,y* : f*}. We have the following derivation X:

—— [var] . . .
THf:¢ o<t >t —>f
[sub] —— [nat]
TEf:tt>f—f r+1:t
: [app] ——— [var]
Thfl:f —f Thy:f
[2pp]
T (fly):f
and a similar derivation &' of I' - (f y* 1) : f*. Hence we can deduce
3 PN
[cond2]
T Fif ¢ then (f*7v1y") else (f* 7y 1) : f* fabs]
abs
{f77 s g,z 1t} Ayhif 3¢ then (F 77 Lyt) else (f*7* 7yt L) £ — fabs]
abs
U770 6 At o then (77 L) dse (F D) S B B
abs

{} F A ATt Aytif o then (Fo 7 Lyt) else (f* 7yt L) gt > £ — £
which, together with II” and an instance of [app] allows us to deduce
{rg:tt=>f 1

as required. _

The program logic PL1 has the awkward property of being highly non-deterministic
— it is not even close to being syntax directed, either on terms or on propositions.
This makes it messy to reason about and would also present difficulties in the design

47

of an inference algorithm. The problems mainly stem from the unrestricted use of
the [sub] rule. Similar situations arise in various type systems — for example, in the
Hindley-Milner system the rule for specialising polymorphic types, which is usually
called [spec], may be applied anywhere in a derivation. To implement an efficient
algorithm for type inference it is necessary to show that it suffices to apply [spec] at
the leaves of a derivation; Kuo and Mishra prove a related result for their system.

We should like to prove a similar proposition for our program logic; namely that if a
judgement is derivable, then there is a derivation in which the only uses of [sub] occur
immediately below leaves. Unfortunately, this is not true with the presentation of
the logic which we have given. As a trivial example, consider the derivation

[var]
ittt
- ¢ [abs]

(}F Aztzt 6 — ¢ £ — ¢ <t
{}F Azttt

[sub]

There is no way of moving the [sub] rule up the derivation. To alleviate this prob-
lem, we reformulate the program logic to give the system PL2, which is shown in
Figure 3.3. PL2 is somewhat less concise and natural than P£1, and it builds [sub]
into those places where it is necessary. In particular, the two new rules [absbot’]
and [pairbot'] build the [f—] and [fx] rules of £, into the program logic. PL2 still
contains the [sub] rule, but we shall show that this is redundant. For technical
convenience, PL2 is presented in terms of n-ary, rather than binary, conjunction.

We shall sometimes decorate the turnstile in judgements with an integer to indicate
which system we are working in. The first thing we need to know about the new
version of the program logic is that it is'equivalent to the original one.

Lemma 3.3.2 If we consider N, ¢; to be an abbreviation for g1 A(daA...¢n)...)
then T'Fl s : ¢° if and only if T 2 s: ¢°.

Proof. This follows because each inference rule in one system is a derivable rule in
the other. For example '

e The [var'] rule of PL2 is derivable in PL1

[var]
C,z% 197 27 1 ¢° ¢7 <Y’

—— [sub]
Lz? ¢ bx? Y

e The [top’] rule of PL2 is derivable in PL1. This follows from a trivial induction
on the structure of the term in question.

e The [absbot’] rule of PL2 is derivable in PL1
O,z :t7 ¢ £
abs|
CEAz7t:t7 = t7 =7 < 777
CHF Mot £777

[sub]

48

97 < Y7

var’ 'k s:t7[top’
I‘,w":¢"|—w":1/)"[] [top’]
CHt:¢° =97 's:¢? L,z? : ¢ Ft: g7
[app'] [abs]
'Hts:y” CFAx%t:¢7 =57
Fa®:t ¢ f7
[absbot’]

INEDY RS Snd
Tkt:¢]...TFt: g0

- [conj] LHt:¢" ¢"<9"
_ . - - [sub']
ThHt: ¢ Tt
=1
I'ks:¢? FHt:y7 . N'kFs:f° et 7 .
——— [pair’] - [pairbot']
TF(s,t):¢° X9 L'k (s,t):f
I'ks:¢? xy" ot 'Fs:¢? xoy™ fsndl]
[Ffst(s) : ¢ ['Fsnd(s) : 97
Lz ¢ Fs: ¢ <Y
rraed Fev
['F fix(z%.s) : ¢
s:f lcond1 'Et 9" Fl—tzzqﬁT[a2
con con
I'Fif s then ¢, else t5 : ¢" I' - if s then ¢ else &5 : ¢
F'Fs:¢ L'kt: ¢
—— [arithl’] ———— [arith2’]
F'Fs+t:¢ FFs+t: ¢

Figure 3.3: The Program Logic PL2

49

e The [arith] rule of PL1 is derivable in PL2
'kFs:¢* Lty
—¢ [arithl’] —d) [arith2)
F'Es+t: ¢ s+t

F'kFs+t: " AYt

[conj']
O

Define a normal derivation to be a derivation in P£2 which does not contain any
use of the [sub’] rule. We shall show that any derivable judgement has a normal
derivation. First we need a few lemmas.

Lemma 3.3.3 If s :: 0 and t° < ¢7 then there is a normal derivation of U s : ¢°.

Proof. This can be shown by a double induction on the structure of s and the
structure of ¢°. If ¢° = t” then we are done by [top]. The case ¢ = f° cannot
occur. If ¢7 = A; 97 then for all i, t7 < ¢ and thus by induction there is a normal
proof of I - s : 9¢ so we are done by [conj'].

If 97 = ¢7' — ¢7* then t < 9' by entailment decomposition. Consider the
structure of s. If s = Az.t then by induction there is a normal derivation of
L,z @ ¢7* B ¢ : 4" so we are done by [abs']. If s = t;t; where t; :: 6 and
t; : @ = oy — 7 then we have a normal proof of I' I t, : t¢ by [top'] and, since .
t?—7 <t — ¢°, by induction there is a normal proof of I - ¢; : t — ¢°. Hence
we are done by [app’]. The remaining cases are similar. a

Lemma 3.3.4

1. If T F2 n: ¢ then t* < ¢*.

2. IfTF2 1% : ¢° then ' =1",2° : Y° for some I"',¢° such that ¢° < ¢°
Proof. Both parts are proved by easy inductions on derivations. a

Define the height of a derivation to be the length of the longest path from the root
to one of the leaves. Paths are not allowed to include derivations of entailments in
L.

Lemma 3.3.5 If there is a (normal) derivation II of T'yz° : ¢ 2 ¢t : 97 and
¢3 < @9 then there is a (normal) derivation IU' of T'yz% : ¢ F2 ¢ : 7 , with the
height of II' equal to the height of II.

Proof. This is a simple induction on II. Essentially, II' is exactly the same as II
except that leaves of the form
¢1 < x7
Iz : ¢ F2 27 1

— [var']

50

are replaced by
¢ <97 P <X’

¢ <X’
V2% g5 F2 2% x

[trans]

~ [var']

O

Theorem 3.3.6 (Normal Derivations) If the judgement T' 2 s : ¢° is derivable,
then it is derivable by a normal derivation.

Proof. See Appendix A. a

Intuitively, the proof of Theorem 3.3.6 describes a procedure in which we take each
occurrence of [sub’] in turn, starting with the highest, and percolate it up the deriva-
tion until it disappears, either by turning out to be unnecessary or by being absorbed
into another rule. This is reminiscent of some proofs of cut elimination, and indeed
one can view [sub’] as a form of cut rule.

Our normal derivations are are still not quite as ‘normal’ as one might like. In
particular, it should be possible to move closer to a truly syntax-directed set of
rules by restricting the use of [conj] as well as that of [sub/]. For the moment,
however, we leave this (and the design of an inference algorithm) for future work.

The program logic has another pleasant property. This is that the derivable strict-
ness properties of a term are preserved by S-conversion. For conventional type sys-
tems, the preservation of typings under S-reduction is an important property (often
called subject reduction), as it is this which ensures that “well-typed programs don’t
go wrong” [Mil78]. The converse, preservation of types under 3-expansion, does not
generally hold. A very simple example would be the term

= (Ay.Az.z) (Az.22)
which is not typeable at all in the simply-typed lambda calculus (as the subterm z z

is not typeable). After one S-reduction, u reduces to Az.z, which is typeable.

Type systems which include conjunction do, however, usually satisfy subject expan-
sion, and as our logic contains conjunction it is perhaps not such a surprise that it
too has this property. Note that we are not claiming invariance under all expansion
steps—we do not say anything about the ¢ rules associated with conditionals, fix-
points or arithmetic. Indeed, such a claim would clearly be false, as can be seen by
consideration of the following term:

Azt.if 0 then z* else 1

We are unable to deduce that this function is strict using the logic, but after applying
the obvious (and sound) rewrite rule

if 0 then t; else t; ~» #;

to the body, we get Az*.z*, which can be shown to be strict in the logic.
We shall need the following facts, which are both easily verified:

51

Lemma 3.3.7
1. If 7 ¢ FV(t) then T',z% : ¢7 ¢t : 47 if and only if T - ¢: 47,
2. If 11 4s a derivation of T',z% : ¢° bt : " and y° & FV(t) then there is a
derivation TI' of T',y% : ¢° & t[y?/z°] : ¢™ which is the same height as 1.
O
The ‘if’ direction of the first of these is often known as weakening, whilst the ‘only if’

direction is called strengthening. The second part simply asserts the entirely obvious
fact that we may change variable names in terms and derivations.

Subject reduction then follows from the next lemma, which shows that our program
logic has what is known as the substitution property.

Lemma 3.3.8 (Substitution) IfI'z7 : ¢° ¢t : 9" and T = s : ¢7 then ' I
t[s/z?] : Y. '

Proof. Induction on the height of the derivation of I', z° : ¢° F! ¢ : 97, We consider
cases according to the last rule of the derivation:

e Case [var]. In this case t = y". If 2° = y” then ¢° = 9" and ¢[s/2°] = s s0
there is nothing to prove. If 27 # y” then t[s/z°] = y” and the result follows
from Lemma 3.3.7(1).

e Case [app]. In this case t = t; t2 so we have
D27 : ¢t :x? =y T,z% : ¢ Fty: X’
L,z% i ¢ ity 7
By induction, there are derivations of T' + #;[s/z°] : x* — 9" and I' F

to[s/z°] : x® and so of T' & (¢1[s/z°]) (ta[s/2°]) : ¥7. But (¢1[s/z7]) (t2[s/2°]) =
(t1t2)[s/z°] so we are done.

[app]

e Case [abs]. In this case t = A\y®l.u ::) — 6. If y® = 27 then we have

I‘,ﬂv":x‘l’l—u:xg2

o [abs]
Doz? Y% F Az u: x] = x5

so we clearly have T' - Az%.u : I — x5 and thus we are done as #[s/z°] =
Az ..

If % # 2° then the situation is
D% 0 ¢7,y% e g’
T,2%: ¢ F M X — x5

[abs]

and we assume y% ¢ FV(s) (otherwise we can apply Lemma 3.3.7(2) to re-
name y® and get us to this case). By induction I',y% : x' - u[s/z%] : X3
and thus T' - Ay®.(u[s/z°]) : xI* — X% and so we are done as t[s/z°] =
Ay® . (uls/z7)).

52

e The remaining cases are similar.

Corollary 3.3.9 (Subject Reduction) IfT' F (Az°.t)s: ¢" then I' - ¢[s/z?] : ¢7.

Proof. Assume that the derivation II of I' F? (Az°.t)s : ¢7 is normal. It should be
clear that if II ends in [top’] then there is nothing to prove. The case where II ends
in [conj'] follows immediately given the result in the remaining possible case, which
is that the derivation ends in [app’]. In that case, we must have

22 Yt "
[abs’]
L'EAz%t: 9 — ¢ Fk-s:y?)
' - [app']
'F(Az®t)s: ¢
and so by Lemma 3.3.8, there is a derivation of I' - ¢[s/z°] : ¢" as required. |

The converse to the previous proposition, subject expansion, follows from the fol-
lowing lemma, which is essentially. the converse of the substitution lemma:

Lemma 3.3.10 Ift:7,s: 0 and T\ t[s/z°] : ¢" then there exists a)° such that
7Yt " and s 9.

Proof. Induction on the height of II, a normal derivation of ' -2 t[s/z°] : ¢™. First
we deal with the cases where the last rule of II is [top’] or [conj']:

e If the last rule is [top'] then I', 27 : t° ¢ : t7 and ' - s : t7, both by [top'], so
we are done.

e If the last rule is [conj’] then II looks like

H1 Hn
Tk ts/z%): 4] -+ T'Ft[s/z°]: ¢T,

- [conj']
T'+t{s/z?]: N\ &7
=1
so that by induction for all ¢ there exists a 9¢ such that I',z? : ¢ = ¢ : ¢
and 'k s 1/1" Thus for all ¢ we have I',z% : A_; Y7 ¢ : ¢ by Lemma 3.3.5
so I a? c AL Yf it AL o and T' s 0 AL, 9, both by [conj’], so we are

done.

Otherwise, we consider cases for the structure of the term t:

53

o Ift =uv,whereu :: 0 — 7 and v :: 0 then ¢[s/z°] = (u[s/z°]) (v[s/z?]) so that
we just have to deal with the case where the last rule of IT is [app’]. In this
case, we must have derivations of I' - u[s/z] : X! — ¢" and T' F v[s/z°] : x*
for some x?. By induction there exists a %7 such that T',z° : ¢ Fu: x? — ¢7
and I' - s : ¢¢ and a 93 such that T,z : S F v : x? and T F s : ¢g. So
[+ s: 97 Ag by [conj’] and we also have T',z% : ¢ A - u: x? — ¢™ and
T,z° : ¢ AS F v x?, by Lemma 3.3.5. Consequently I',z% : ¢ AYS Fuw :
¢” and we are done.

o If t = \y®.u where u :: 6, then if y** = 2 we have t[s/z°] = t so that
C'Ht:¢,soclearly I',z° : t7 ¢ : ¢" (by Lemma 3.3.7) and I' - s : t7 by
[top’]. So assume y% # z° and without loss of generality that y% ¢ FV (s). .
This means that t[s/z°] = Ay®.u[s/z°]. The two possibilities for the last rule
of II which have to be considered are [abs'] and [absbot’]. We shall just deal
with [abs'] here as the case for [absbot'] is very similar. In this case, IT ends in

Ly” xP b uls/a?] : x3?
T F My%ufs/z7] : x0 — x5

bs']
so that by induction we know that there exists ¥ such that
Dy x8 a7 Fu:xd2 and T, y® x$t s 0y

Then T',z% : % ¢ : x¥* — x%* by [abs/] and T F s : 47 by Lemma 3.3.7 as
Y ¢ FV(s).

e The remaining cases are similar. When there is more than one premiss for the
last rule of II, it is necessary to use [conj'] as we did in the case of [app’] above.

O

Corollary 3.3.11 (Subject Expansion) If ' - t[s/z°] : ¢" then T F (Az°.t)s :
7.

Proof. By Lemma 3.3.10, there exists 97 such that I',z” : ¥“ F ¢ : ¢" and
'k s: 4’ Hence I' b Az°.t : ° — ¢" by [abs'] and thus I' F (Az?.t)s : ¢" by
[app']. : O

3.4 Strictness Logic and Abstract Interpretation

We now turn to the relationship between our strictness logic and the BHA-style
abstract interpretation which we described in Chapter 2. We show that the two
systems are equivalent, in terms of both the properties which they can express and
the properties which can be assigned to terms.

54

If A and B are finite lattices with a € A, b € B define the step function [a,b] : A — B
by

b ifdCa
Tp otherwise

8@ = {

It should be noted that the step functions which are most commonly used in domain
theory step up from L, rather than up to T, as ours do. [a,b] is monotonic and
" is therefore an element of [A — B, since the finiteness assumption means that
monotonicity coincides with continuity. Recall that [A — B] inherits all meets and
joins from B, and is therefore itself a finite lattice.

Lemma 3.4.1= If A, B are finite lattices and f € [A — B then
f=Ma,0] | f E [a,b]} = H[a,8] | f(a) C b}

Proof. The second equality follows from the easily verified fact that f C [a, b] iff
f(a) C b. For the first equality, it is clear that

fETHa,b] | f E [a,0]}

so we just need the reverse inequality. For any o/, f C [/, f(a')] so

M{[a,8] | f E [a, 8]} E [¢, f(a')]

which means
M{[a,8] | f T [a,8]}{(a') C [d', f(a)](a") = f(a)

which is what we wanted. a

So every monotone function between finite lattices can be expressed as a meet of
step functions, although this representation will not, in general, be unique. The
next lemma characterises the order relation on maps in terms of this representation.
It is essentially the same as the entailment decomposition result (Lemma 3.2.12)
which we proved earlier:

Lemma 3.4.2

Mierlas, b] C Myeslal, b5 if and only if V5 € JT{b; | a} C a;} Cb;

3777
Proof. As before, this reduces to showing that for all j € J
[—lie][ai,bi] E [a'j, b;] iff I_]{bi | a;- E az-} E b;
For the left to right implication we have

Mierlai, bi]
= (Mierlai, b:])(a})
=4 rl{bz | a;- cC ai}

(a5, b]

[a5, 1(a5)
v,

J

Frir

55

Whilst for the right to left direction, assume that
and theﬁ for any a € A, if a E aj then

(Mierlas, bi])(a) MHb; | a T a;}
b

[a5, b1 (a)

il

I

whilst if a Z a
’ (Meerlas, b)) (a) © T = [a},] (a)

so that we are done in either case. O

We need to relate the propositional theory £, and the BHA-style abstract domain
A, at each type o. To do this, we define p, : L, — A, as follows:

) pa(ta) =Ta, pa(fg) = J—Aa
Pe(¢” AY°) = po(97) Mps(¢7)

Posr (97 = ¥7) = [ps(6°), P+ (¢7)]
paxr(¢a X 'L/}T) = (pa(¢a)’pr(¢7))

Lemma 3.4.3 If ¢7 < 97 then p,(¢”) C po(¢¥7).
Proof. An easy induction on derivations. a

This means that p, induces p, : LA, — A, in the usual way. Note that p and p
are essentially identical to the functions h and h which we used earlier. We claim
that each P, is an isomorphism, which we show by constructing its inverse. Define
gs : As — LA, by:

0.(Ta)=t q(La) =1

doxr(a,0) = go(a) x g-(b)
qg'—)r(ﬂiel[a'i, b’t]) = /\ QU(ai) — Q'r(b@)

i€l

We need to check that the last clause is a good definition because of the non-
uniqueness of the representation of maps in terms of step functions. This is a
consequence of the following:

Lemma 3.4.4 Ifa,a’ € A, and a C d' then ¢,(a) < g,(a’).

56

Proof. Induction on types. The case for function spaces uses Lemma 3.4.2 and
Lemma 3.2.12. : O

Proposition 3.4.5 For all o, p, is an isomorphism.

Proof. It is trivial to show

D50 Qs = ‘idAa'
and

Qo © Do = ijAc

for each ¢ by induction on types. a

Although it is not actually necessary from the point of view of showing that our
strictness logic and the BHA abstract interpretation are equivalent, we would obvi-
ously hope that the intended interpretation of each proposition would coincide with
the concretisation of the associated abstract domain element. The following shows
that this is indeed the case:

Proposition 3.4.6 For all ¢°, [¢°] = Conc,(p,(¢7))

Proof. This is proved by induction on types. The only interesting case is that
of function spaces (in this proof a denotes the abstraction map for the abstract
interpretation, rather than the map into £A, which we defined earlier. Of course,
we are engaged in showing that these two maps are essentially the same):

Concy_sr (pa—w(/\ o7 — ¥7))
il

= Concosr(Micrps(#7), p-(¥7)])

= {f € Dyyr | aa—w(f) = Hiel[pa((bg))p‘r("/)”]}

{.f € Dyyr | Vi € Lo (f) E [pa(d’:))p'r("/};r)]}

{f € Dosr | Vi € Loy () (po(97)) C p- (%)}

{f € Dosr | Vi € I.(Abs; o Py(f) o Concy)(ps(45)) E pr(¥7)}
{f € Dy, | Vi € I.(Abs, o Py (f))([¢7]) C p-(¥])} by induction
{f € Dousr | Vi € LAbs, (FI#7]) C pr(¥7)}

{f € Dy, | Vi € I.f[¢7] C Conc,(p-(¢]))} as Conc and Abs form an
adjunction

{f € Do | Vi € If[¢7] C [%7]} by induction
{f € Doy | Vi € I.f[#7] C [W7]}
IA 67 — 7]

i€l

fl

Il

I

57

So the properties expressible in two systems are the same. Now we show that
the program logic and the abstract semantic equations are equally powerful. If
' = {z7 : ¢7'} is a strictness context, define the abstract environment pI' by

pL(af) = po,(87)-
Proposition 3.4.7 Ift:: 7 and T+t : ¢" then [t]4(pD") C p.(¢7).

Proof. Induction on the derivation II of ' H ¢ : ¢7. We give a few representative
cases:

e If the last rule of II is [app] then ¢ = u v and we have (omitting type subscripts
and superscripts) derivations of I' - w : ¢p = ¢ and I' - v : 9. Thus by

induction, [u]4(pl') C p(¢ — ¢) = [p(¢),p(¢)] and [v]*4(pI') C p(v). Hence
[0] (pD) = ([u]* (L) ([0} (pT)) E #(#) as required.

e If the last rule is [abs], so ¢t = Az°.w and ¢ = x — %, then we have a
derivation of I',z° : x F u : 9 and so by induction [u]4(pI'[z” — px]) T py.
Thus [Az?.u]4(pL') = Aa € Ao [u]*(pL'[z” + d]) E [p(x), p(¥)] = p(¢) and we
are done.

o If the last rule is [conj], so ¢ = x A %, then we have derivations of I' = ¢ : x
and T - ¢ : 4 so that [¢{]*(pT") E p(x) and [t]*(pT) C p(s). Thus [¢]4(pI") E
p(x) N o(y) = p(¢) and we are done.

e If the last rule is [fix], so ¢ = fix(z".u), then we have a derivation of I',z" : ¢ I
u : ¢ so by induction [u](pI'[z” — p(¢)]) C p(¢). This means that p(¢) is a
prefixed point of the map which takes a € A, to [u]4(pl'[z"™ + a]). The result
then follows as [¢t](pI") is the least prefixed point of that map..

Proposition 3.4.8 Ift:: 7 and [t]*(pD) C p,(¢7) then T F2 ¢ : ¢".
Proof. This direction is proved by induction on the structure of ¢.

e If t = 27 then [t]4(pl') = (pI')(z7) so T =T",2" : 47 where p(4)") C p(¢") but
this means 9™ < ¢" as p reflects order, so we are done by [var'].

o If t = uv where v :: o, then write f for [u]*(»I') € [A, — A,;] and a
for [v]4(p') € A,. Now pick 9 such that a = p(¢), which we can do
as p is surjective. By induction, I' - v : ¥. As f(p(¥)) C p(¢) we have
f C [p(¥),p(¢)] = p(— ¢) and thus by induction I' - u : 4p — ¢. Then by
[app’], T uv : ¢ as required.

58

e If t = \z”.u then without loss of generality we can assume ¢ = A;c; ¥ — Xs
so we have [t]4(pI") T Micr[p(¥:),p(x:)]. This means that for all © € I,
[u]4(pT[z° — p(¢)]) C p(x:) and thus by induction I', 2% : 1; - w : x; so that
'k t:4; — x; by [abs'] for each i. Then by [conj'] we have I' - ¢ : ¢ and we
are done.

o If t = fix(z".u) then let a = [t]4(»I') and p(¢)) = a. Then as a is a fixpoint,
we know that [u]“(pL[z"” > a]) = a and so by induction ',z : ¢ - u : ¢ and
since a C p(¢) implies ¥ < ¢, we have T'F ¢ : ¢ by [fix'].

o If t = (u,v) then [t]4(pI') = (a,b) where a = [u]*(pl') and b = [v]4(pT"). We
can assume ¢ = 9 X X, so we have (a,b) C (p(¢),p(x)) and hence a C p(v))
so that by induction ' u : 9 and similarly for v and x. Then by [pair’] we
have " ¢ : ¢ as required.

a

The previous pair of propositions establish the equivalence of the logic and the
abstract interpretation. This was the main result of [Jen91]. Whilst the differences
between Jensen’s formal system and ours are entirely negligible, there is a slight
difference in the way in which this equivalence is shown, and this deserves some
further comment.

Jensen’s work gives an interpretation of each proposition in £, as an ideal of the ab-
stract domain A,, where here the word ‘ideal’ is meant in the slightly more common
lattice-theoretical sense (that is, a non-empty subset which is down closed and closed
under binary joins). He thus shows an isomorphism between £.A4, and IdI(A,), the
lattice of ideals of the abstract domain®. Equivalently, there is an isomorphism be-
tween A, and (Fil(£A,))°P, the lattice of filters of LA, ordered by reverse inclusion
(the definition of a filter is dual to that of an ideal viz. a non-empty, upwards closed
subset which is closed under binary meets).

So Jensen takes the abstract domain as given, and then presents that in logical form,
in the spirit of the work of Abramsky or Zhang [Abr91, Zha89]. However, because
the abstract domains are actually finite lattices, every ideal is the downwards closure
of a single element (i.e. every ideal is principal). This means that Idi(A4,) = A,
which explains why the slightly more direct relation between LA, and A, which we
have used is equivalent to that used by Jensen.

3.5 Disjunctive Strictness Logic

There are some rather simple terms for which the logic which we have described
gives unsatisfactory results. A typical example would be the function g given by

gz \y.plus (if z then (1,y) else (y,1))

4 Although the published proof incorrectly claims that A; ¢; = ¥; < A ;05— oy iff Vj.3i.¢; <
¢ & s < Ay

59

where
plusd——-d/\p.fst(p) + snd(p)

It is easy to deduce that g is strict in z, but we cannot deduce that it is also strict
in y, although this is clearly the case. The problem arises from the way in which the
strictness properties of the two arms of the conditional are joined together when we
try to find a v such that '

{z:t,y:f}Fif z then (1,y) else (y,1) : ¢

Intuitively, we can see that, in such a context, the conditional expression will either
satisfy ¢; = f X t or ¢o = t x f and that whichever of these alternatives turns out to
be the case, the application of plus will satisfy f. In the logic we have given, since
it is impossible to tell which ¢; will be satisfied by the conditional, the best we can
deduce is that it will certainly satisfy t x t; but this is too weak to allow the required
strictness property of g to be deduced.

The obvious way to strengthen the logic to cope with this kind of example is to
add disjunction, with the intended interpretation of ¢ V v being the union of the
interpretations of ¢ and . We should then be able to deduce

{z:t,y:f} Fif z then (1,y) else (y,1) : (t x £) V (f x t)
and then, provided we can also show
Fplus: (txf)v(fxt)—>f

we will be able to deduce that g is strict in y. For first-order abstract interpretation,
this kind of treatment of pairs has been called a dependent attribute or relational
method, by contrast with the independent attribute (i.e. a property of pairs is a pair
of properties) treatment which we described earlier [JM81].

There is a second reason for wanting to add disjunction, which is really a generalisa-
tion of the one above. This is to be able to obtain a sensible treatment of strictness
properties of sum types. Since we have not discussed these at all so far, we make a
brief digression to introduce the language Ar,, which is Ar extended with sums.

3.5.1 The Language Ar,
Syntax

The types of Ar, are the same as those for A, extended with an extra clause for
" sums:
ou=1t|(c—=0)|(ocxo)|(c+0)

The term-forming rules for Ar (Figure 2.1) are extended by the following rules:

tuo toT

inlyyr(t) no+7 inrg4r(t) no+7

60

tuo+T u:f v

casetofinl(z?) = u |inr(y") =>v:: 0

where the variables z° and y” are bound in casetof inl(z”) = u | inr(y") = v. The
definition of free variables is extended by the following clauses:

FV(inly1r (£)) = FV(infesr(t)) = FV (1)
FV(casetofinl(z’) = u | inr(y") = v) = FV({{)U(FV(u) —{z°) U(FV(v)—{y"})
and the definition of substitution (Figure 2.2) is extended by
iy 1 (8)]5/2°] = iy 4.y (]3/2°)) 0 (O)8/5°] = i, 43 (E/2°))
and (rather unpleasantly)

(casetof inl(y1!) = wuy | inr(y3?) = u2)(s/z°]
= caset[s/z?] of inl(z]*) = vy | inr(23?) = v,

where, for ¢ € {1, 2},

o _ { Tk if y#* =z or y* & FV(s)

7 Ti

w;* (a fresh variable) otherwise
and
Us if y;* = a°
v; =< u;ls/z”] if y7* & FV(s)
wilw [y;*][s/x°] otherwise

Operational Semantics

The canonical forms of type o + 7 are inl,;,(t) and inr,;,(t). The evaluation rules
of the operational semantics (Figure 2.3) are augmented by

inly - (E)inly 4 (2) inrgr (E)Jinrgyr (t)
tlinlyy (&) wft'/z7]e
casetofinl(z?) = u | inr(y") = vic
thinr, () ot /y e
casetofinl(z?) = u | inr(y") = vic

Denotational Semantics

The domain D,,, associated with the type ¢ + 7 is D, + D,. Recall that this is
the separated sum of the domains D, and D,, and that it comes equipped with
the two continuous maps inl : D, — D, + D, and inr : D, — D, + D, given

61

by inl(d) = (0,d) and inr(e) = (1,e). The semantic equations in Figure 2.4 are

extended by
|[inlt7+‘r (t)]] H]([[t]p)

p=1
[ine 4 (] = inr([£])
1 if [t]o= Lp,,.
[casetof inl(z?) = u | inr(y™) = v]p =4 [u]plz” — d] if [t]p = inl(d)
[vlely™ €] if [t]p = inr(e)

Computational Adequacy

The results we gave for Ar concerning substitution, the denotational semantics and
contexts all go through for Ar.. The proof of computational adequacy also goes
through exactly as before, if we extend the definition of the logical relation {R?} by

dR7t & d=1
or d=inl(d'), tlinl,4.(¢) and IRt
or d=inr(d"), tlinre4-(¢") and d"R7¢"

This concludes the summary of the syntax and semantics of Ar, and we now return
to strictness analysis.

3.5.2 The Logic of Disjunctive Strictness Properties

To extend strictness logic to Ar., we first have to decide what the propositional
theory L,4, should contain. That is, which ideals of D,,, do we wish to reason
about? Clearly, £, will contain t and f, and if ¢ € L, then it seems natural to

have inly4r(¢) € Lyyr, with [inlotr(¢)] = inl([#]), and similarly for ¢ € L.

If we try to axiomatise these properties within the conjunctive framework of our
first logic, there are two problems. The first is that we lose the disjunction property,
as [t7+7] = [inlgyr(t7)] U [inryyr(t7)]. This means, as we remarked after Corol-
lary 3.2.11, that our axiomatisation of the properties of function spaces cannot be
complete. The second problem is that the resulting inference system is very weak.
This is because, in practice, it is only rarely possible to deduce at compile time which
summand a term of type o + 7 lies in. Consequently, the best deducible property
of such a term is often simply t“*", so we gain very little useful deductive power
compared to the simple system which just has t and f in £,,.

So, both in order to strengthen our deductive system, and to have any hope of a good
treatment of sum types, we are naturally led to add disjunction to the logic of strict- .
ness properties. The formation rules for the family {£Y} of propositional theories,
indexed by the types of Ar,, is defined in Figure 3.4. The intended interpretations

62

te LY feLy
peLly Yel; peLly el
pAY €LY oV e LY
oLy YelLf pely YelL
¢ YeL,, ¢ x P € Ly,
¢ e Ly ¥ el

inlosr(¢) € Lyyr inro4(¥) € Ly,

Figure 3.4: Formation Rules for £

of these propositions are
[[ta]] =D,

[£°] = {L1p.}
[¢ Aol =[8] N ¥
[¢v ol =[s]V[Y]

[67 x ¥™] = {(2,y) € Doxr | z € [¢°] and y € [¢"]}
[¢° = 4] ={f € Dosr | f[#°] € [¥7]}
[inlo4r(#)] = {inl(d) | d € [¢]} U {Lp,,.}
[intorr ()] = {inr(e) | e € [¥]} U{Llp,,.}

Lemma 3.5.1 For all ¢° € LY, [¢°] is an ideal of D,,.

Proof. Trivial. The fact that the union of two ideals is an ideal may be verified
directly or seen as a consequence of the fact that ideals are closed sets. a

The logical inference rules, which are the same at all types, are shown in Figure 3.5,
whilst the type-specific rules are in Figure 3.6. The [Irr] rule for function spaces
makes use of an auxiliary irreducibility predicate on propositions, the inference rules
for which are shown in Figure 3.7. This is intended to pick out those propositions
whose interpretations are ideals which are not properly expressible as the join of
two smaller ideals. Such a proposition has an interpretation which is the downwards
closure of a single point®.

5Technically, the property of a topological space that every irreducible closed set is the closure
of a unique point is known as sobriety. :

63

¢ < ¢ [refl] ¢ < tt] < ¢f]
p<v YP<x
[trans]
¢<Xx
¢ N1h < P[AE-1] ¢ N < P [AE-2]
¢ < dVY[VI-1] Y < oVy[VI-2]
¢ < ¢ 3'1/)2 AT $1 <% G < VE]
¢ < Py A by ¢V <Y
PA@RVX) S (BAY)V (S A x) [dist]

Figure 3.5: Logical Rules for £

Proposition 3.5.2 (Soundness)

1.

2.

If lrr(¢°) then 3d € D, such that [¢°] =] (d).
If 7 < ¢ then [¢7] € [¥°].

Proof. The two parts are proved simultaneously by induction on derivations. We
consider cases according to the last rule used:

Case [Irrf]. Then [f°] = {1p,} =| (Lp,).

Case [Irrx]. We have lrr(¢?) and Irr(%™) and so by induction 3d € D, e € D,
such that [¢°] =] (d) and [¢"] =J (e). Hence [¢7 x¢"] = [¢7]|x[v7] ={ (d,€).

Case [[rr=]. We have Irr(¢?) and ¢° = ¢°. By induction 3d € D,.[¢°] =/ (d)
and [¢°] = [¢°] so we are done.

Case [Irr—]. By induction Je € D,.[¢"] =| (e) and so
[t° = "] ={f : D, = D, | Vd € D,.f(d) € [¢"]} =} (Ad € D,.¢).
Case [Irr+1]. By induction 3d € d,.[¢°] =| (d). Then
[inlo+-(¢°)] =1 (inl(d)).

All the logical rules are sound for trivial set-theoretic reasons.

64

Function Spaces
b <t t[t—] t— f < f[f—]

<o <Y
=P < =
(¢ = Y1) A (P = 2) < — 1 Ahg [A

d

(¢1—>¢)/\(¢2—>¢)‘S PV =P [= V]

Irr(#)
d—= PV < (¢ = 1) V (¢ = 9ho)

tIrr]

Products
t <t xt[tx] fxf<f[fx]

p<¢ P<y
pxp< ¢ xy

(P xD)N (P x) < (BAF) x (P AY)[XA]
¢ X (Y1 Vahg) < (@ X h1) V (¢ X 1hg) [x V1]
(1 V ¢2) X9 < (d1 X P) V (¢ x 9) [X V2]

[x]

Sums
t < inl(t) Vinr(t) [t+] inl(@) Ainr(y) < f[f+]
b<¥ [inl] vV [inr]
inl(¢) <inl(¢') inr(¢) <inr(¢’) |

inl(¢) Ainl(w) < inl(¢ A) [+ A 1] inr(d) Ainr(9) <inr(p AY) [+ A 2]
inl(¢ V1) <inl(¢) Vinl(y) [+ V1] inr(¢pV) <inr(¢) Vinr(y) [+ V 2]

Figure 3.6: Type-specific Rules for £Y

65

() Y=4¢
trr(f) [Irrf] Ire(4))
frr(¢) Ire(3)) fTrrx] Irr—(ilz)_ [Irr—]
Irr(¢p X 1) Irr(t —)
lrr(¢) Irr())
m [lrr+1] , m [Irr+2]

[Irr=]

Figure 3.7: Irreducible Propositions

o Case [Irr]. We have
lrr(¢7)

¢7 = P Vg < (87 = YT V (67 — ¢3)

[Irr]

By induction, 3d € D,.[¢°] =4 (d). Then if f |= ¢ — 9] V97, since d = ¢°
we must have f(d) = ¥7 V7 so that f(d) = 97 for some i € {1,2}. But then
for any d' € D, such that d' = ¢%, d’ C d so that f(d') C f(d) by monotonicity
and therefore f(d') = ¢7. This means f = ¢° — ¢! for some %, so we are

done.

e The remaining type-specific rules are easily verified.

Remarks 3.5.4

e The other distributive law:

(OVYIA(BVX) SOV (PAYX)

is a derivable rule in LY.

e Each LA is a finite distributive lattice.

66

Corollary 3.5.3 For all types o of Ar, LY1s a conservative extension of L,.

Proof. This is an immediate consequence of Proposition 3.5.2 and Corollary 3.2.10,
since if ¢, 9 € L, then ¢ < 9 is provable in £Y implies that [¢] C [¢] which implies
that ¢ < 1 is provable in £, by completeness. -

O

e Obviously, we could have used n-ary conjunctions and disjunctions. However,
in contrast to the situation for conjunction, the nullary form of the [— V] rule,
ViZ.

ta—)’r < fa’ - ¢T

is not a rule of our logic. It would be valid for strict function spaces.
e Any ¢ € L is logically equivalent to t* or f*.
e Any ¢°*7 is logically equivalent to a proposition of the form V;c;(¢7 x ¥7).

e Any proposition in £)_,, is logically equivalent to one of the form

VA (85— ¥)

i€l jeJ;
e Any proposition in £Y . is logically equivalent either to £7*7 or to a proposition
of the form inl,4.(¢7) Vinr, i (¥7). '

I do not know whether the following is true or not:
Conjecture 3.5.5 (Completeness)
1. If 3d € D, such that [¢°] ={ (d) then Irr(¢7).
2. If[¢°] € [¥°] then ¢° < 7.

O

It would be nice if we could approach the question of completeness by first proving
that every proposition could be put into a well-behaved normal form, in which
disjunction only appeared at the outermost level. Unfortunately, this is not the
case. The reason for this is that there are many propositions which are neither
irreducible nor expressible as the disjunction of irreducible propositions (t* is one
such proposition).

Note also that if Conjecture 3.5.5 is true, it must depend on a fairly delicate property
of the domains and ideals we have chosen. This is that the extent of each proposition
which is neither irreducible nor expressible as a join of irreducibles is ‘infinitely wide’.
More formally (although this may not be quite the right statement of the condition),
for each proposition ¢° which satisfies the conditions above, there must be no finite
antichain A C D, such that [¢7] = Useq 4 (a).

To see the reason why we cannot have completeness without some property like this,
consider what would happen if we were to add a type of booleans to our language,
treated in the same way as the existing type of natural numbers. The domain
associated with the boolean type would be the three point domain {true, false},.

and LAY , would just contain t and f. Note that tP°°! is certainly not irreducible,

67

but has what we might call a ‘width’ of 2. Now write o for ¢ + (¢ +¢). We have the
following:

[t5°° — inl, (t) V inrg(inl, o, (t)) V inr, (inr,.,(t))] C
[(> = inl,(t) Vinr(inl4,(t)))
V(85— inl, (t) V inrg (inru (5)))
V(%% = inrg (inlg (£)) V inrg (inr,, (£)))
]

But there is.no way to deduce the corresponding fact in the logic. The attempt to
fix this by adding the rule

tbool — ¢1 Vi ¢2 vV ¢3 < (tbool - ¢1 V; ¢2) vV (tbool N ¢1 Vv ¢3) V; (tbool - ¢2 YV, ¢3)

still leads to an incomplete system because there are higher type propositions which
have larger finite widths (e.g. t°°°!°°! has width 4). Even if there were any way
of calculating these widths automatically, the resulting inference system would be
extremely unpleasant.

We can obtain a better treatment of booleans by adding two more basic irreducible
propositions to Ly, .;, namely inlpool() and inrpeor() with [inlpee()] = {true, L} and
[inrboo ()] = {false, L}. However, the property logic is still not complete, as we are
unable to show, for example, that

(inlboor () = inlboot()) A (inrpocl() — inrboot())

is irreducible. This could be remedied by adding another rule to the irreducibility
predicate, such as '

Vi€ Llrr(¢) &lrr(;) t< A\ o
€]
Irr(Aser (s —)

But, for the moment, we must leave further investigation of these matters for future
work.

It should be noted that the way in which the lattices £.AY are constructed does not
fit the standard notion of how abstract domains should be built up. Usually, the
abstract domain associated with a type o ¢ 7, where ¢ is some type constructor,
is A,0A, where A,, A, are the abstract domains associated with ¢ and 7 and &
is some operation on abstract domains. The situation is more complicated for the
disjunctive logic, as LAY, is not obtainable purely from the two lattices £.AY and
LAY — it is also necessary to know which elements of the component lattices are to
be regarded as irreducible. To give a concrete example, consider adding a unit type
with Dyp;e defined to be the two-point domain {*},. The only sensible way to treat
this in our logic is to have LAY ., just containing t and f. This means that LAY
is isomorphic to LAY. However, "¢ is irreducible, whereas t* is not. This means
that LAY, is not isomorphic to LA, ..

unit—re+e

68

Interestingly, the disjunctive strictness properties are expressive enough for us to be
able to see where full abstraction fails for our language. It is the case that for any
closed term t of type ¢ X ¢+ — ¢, if

[lEfxf—f

then
[flE@txf=f)V(Ext—f)

Intuitively, because ¢ is sequential, if it diverges when both its arguments do then
either it always diverges, or it always evaluates a particular one of its arguments
first and will thus diverge if that argument does, irrespective of whether the other
does or not. The axiom

fxfof < (txf=f)v(Ext—f)

is not, however, valid in our denotational semantics. Nor would it be operationally
sound to add it to our logic, because of the restriction to closed terms above. This
indicates that, for a sequential language, even if we had a complete axiomatisation
of the inclusion order on our disjunctive collection of ideals it would still be in some
sense incomplete for reasoning about the entailment relation between the operational
properties which those ideals are intended to denote.

3.5.3 The Disjunctive Program Logic

Despite all these complications, we do still have a sound logic for reasoning about
disjunctive strictness properties, and we can give an associated program logic which
allows such properties to be assigned to terms of Ar,. This is shown in Figure 3.8.

Proposition 3.5.6 (Soundness of PLV) IfT'FY s:¢° thenT' =s: ¢°.

Proof. This is proved by a fairly straightforward induction on the derivation of
' F s: ¢?. Most of the cases are the same as for the proof of Proposition 3.3.1.
Some of the new cases are:
o If the derivation ends in [sum1], so we have
F'ks:¢°
'+ inlo-+7-(3) . in|a+7-(¢0)

then for any environment p such that p = T', we have [s]p = ¢” by induction.
Then [inly1,(s)]p = inl([s]p) which clearly satisfies inl, . (¢%).

[suml]

e If the last rule is [case2]|, we have
Tkt:inlyyr (¢%) 2% ¢ Fu:of
T F casetofinl(z?) = u | inr(y™) = v : o

For any p such that p |=T', we know by induction that [t]p | inly4-(¢7). This
means that either

69

I'Fn:t* [nat]

T,2% : ¢ Ft: 97
TF Aot ¢” —

[abs]

Ths:¢° Thrt:y
TF(s,8): ¢ X 97

[pair]

I'ks:¢? xym
I'tsnd(s) : 9"

[snd]

'ty
Tk intpyr(t) @ infpr (47)

[sum2]

[,27 : ¢ 27 @ ¢ [var]

I'Ft:¢° > I'ks:¢?
Tk (ts):ym

[app]

F'ks:¢? xy™
' fst(s) : ¢°

(fst]

'ks:¢?
T F inlyyr(s) : inlypr (6°)
I'ks:g¢” 7 <7
F'ks:y°

[sum1]

[sub]

NSRS sl

It casetofinl(z’) = u |inr(y™) = v: f

Tkt inlysr(6°7)

— [casel]

F,x”:gb”l—u:we

' F casetof inl(z?) = u | inr(y™) = v : ¢°

I'Et:inrg.(47)

[case2]

D,y":¢" Fuo:ef

I'F casetofinl(z?) = u | inr(y™) = v : ¢

F'kFs:¢? Pks:qy”
[conj]
I'ks:¢? ANY°
'ks:f
[cond1]

T'+if s then ¢; else ¢, : f7
,z? : ¢ Fs:¢°
' fix(z%.s) : ¢7

[fix]

D,z it ™

- [cased]

L,x? Yt)

[disj]
D,z i VYo Hit:)

Lt : 97 Lty ¢
' if s then ¢; else t3 : ¢

[cond2]

Fks:¢ Lty
F'ks+t:¢" Ny

[arith]

Figure 3.8: The Program Logic PLV

70

(a) [t]lp = Lip,,., in which case
[casetofinl(z?) = u | inr(y") = v]p = Lp,

and we are done since 1p, |=?, or
(b) [t]p = inl(d), where d |= ¢°. In this case,

[casetof inl(z?) = u | inr(y") = v]p = [u]p[z° — d]

and since p[z” + d] & T,2° : ¢° we know [u]p[z® — d] E 9° by

induction.
o If the last rule is [disj], so the situation is
L,z i o] it y7 Loz : g5t 9"
D% i Vvegt-t:ym

[disj]

then given p such that p |= T, 27 : ¢ V ¢9, it is clear that for some 7 € {1,2}
pET,z° : ¢7. Thus [t]p = ¥" by induction applied to the i*h premiss of the

last rule.

Example We can now deduce that the function g, which we gave earlier as an
example of a term for which our conjunctive logic gave unsatisfactory results, is

strict in its second argument. Recall that g was defined as follows:
g2z \y.plus (if = then (1,7) else (y,1))

where
plus® \p fst(p) + snd(p)

Write I' for the context {z : t,y : £}, and II for the following derivation:

[var] [var] .
Dp:txfrFp:txf Lp:txfhEp:txf
fst] [snd]
Dyp:txfHfst(p):t I‘,p:txfl—snd(p):f[]
art
Iyp:t x £ fst(p) +snd(p) : t A S tAf<f

[,p:txfhfst(p) +snd(p): f
There is a similar derivation II' of
Typ:fxth fst(p) +snd(p) : f
so that we can form II":
II Ir
Typ: (tx£) Vv (f xt)Ffst(p) +snd(p) : £
Choplus: (txf)v(fxt)—>f

[isi]
[abs]

71

We can also form the derivation X:

—— [nat] —— [var]
'F1:t 'Fy:f
[pair]
'@y :txf txfg(txf)v(fxt)[b]
su
Tk (1y): (txf)Vv(fxt)
and there is a similar derivation ¥’ of
Tk (y,1): (tx£)V(fxt)
so that we can form
b ¥
. [cond?2]
1’ [I if £ then (1,y) else (y,1) : (t x) V (f x t) fap]
a
T plus (if z then (1,y) else (y,1)) : £ ab]pp
abs
{z : t} + Ay.plus (if z then (1,y) else (y,1)) : f = f fabs]
abs

{IFg:t>f-f

as required.

-3.5.4 Related Work

Nielson, in [Nie85], describes a first-order abstract interpretation which uses a tensor
product of abstract domains to abstract product types. His work is restricted to
atomically generated lattices of properties. Burn, in [Bur9laj, considers extending
this idea to higher-order strictness analysis and discovers this to be problematic.

Jensen has also looked at extending his strictness logic by adding disjunction [Jen92b).
He presents a disjunctive logic for a language with base types, pairs and function
spaces, and relates this to a model using downwards-closed subsets of domains from
an ‘abstract interpretation’ which is based on tensor products and linear function
spaces. However, neither the logic nor the non-standard semantics is related to the
standard semantics. Unfortunately, they are both unsound.

The main difference between Jensen’s logic and ours is in the treatment of irre-
ducibles. Jensen’s system essentially treats as irreducible all those propositions
which come from the conjunctive logic we described earlier. For example, he treats
t? as irreducible for all ¢. Whilst the interpretation of these propositions may be
irreducible in the lattice consisting of those ideals which we have chosen to reason
about (cf. Corollary 3.2.11), they are not irreducible in the lattice Py (D) of all
ideals (though Jensen does not give any interpretation of propositions as program
properties). As a simple example to show how this makes the logic unsound, consider
the term (omitting type annotations)

g Az.(Afsnd(f1z) +fst(f0z))h
72

where ‘
h % Az \y.if z then (1,y) else (y,1)

Now, for any I, we can certainly deduce
Loz :t,y: fHif z then (1,y) else (y,1) : (¢ x £) V (f x t)
and hence
Iz :tF Ay.if 2 then (1,y) else (y,1) : £ — (t x £) vV (f x t)
Then as Irr(f), we can correctly deduce that
Izt F Ay.if 2 then (L,y) else (y,1): f 2>t x) V(f = f x t)

So that
F'Fh:t—>(f>txf)v(f =fxt)

If we wrongly have Irr(t) then we can then derive
'Fh:(t—=f—=txf)v(t—-f—>fxt)
Now consider the subterm (Af.snd(f1z) + fst(f0z)) of g. We can deduce
{z:f,f:t>f>txf}Fsnd(flz):f
and hence that
{z:f,f:t>f>txf}rsnd(flz)+fst(f0z):f

Similarly
{z:f,f:t>f—=fxt}tsnd(f1lz)+fst(fQz):f

And hence, by [disj],
{z:f,f:(t—)f%t><f)v(t—>f—>f><t)}l—snd(flz)—}-fst(fgz):f
So that
{z: £} Afsnd(fLl2) +fst(f0z): (> f >t xf)V(E>f>Ext) - f

Then by [app]
{z:f}+ (Afsnd(f1lz)+fst(f0z))h: £

S0
{}rg:f—>f

which means that g is strict. This is untrue, as g is easily seen to be the constant 2
function. The only error is the step which assumes that t* is irreducible.

73

Chapter 4

Algebraic Datatypes

4.1 Introduction

The language Ar as described so far lacks an important feature of all real functional
languages—it has no support for any kind of recursive datatype. Moreover, such
types cannot easily be translated into A (in contrast to the situation for the pure
untyped lambda calculus or, in certain cases, any of the higher order typed lambda
calculi). This is a serious shortcoming, as recursive types, especially lists, are a
central part of functional programming.

Even before we start thinking about the extra complications introduced by polymor-
phism, there are roughly three levels of complexity of recursive type definitions. The
terminology is far from fixed, and there are various subtleties concerning the differ-
ence between strict and lazy languages, but, at least informally, we will distinguish
between

1. Algebraic types. These are also known as sum-of-products types or polynomial
types. This class includes lists, binary trees, syntax trees, and so on. They are
characterised by the fact that the body of the type definition is made up of
sums and products of simple types, previously defined datatypes and recursive
occurrences of the name of the type being defined. A typical example would
be (in MLish syntax) the type of lists of functions from integers to integers:

datatype flist = Nil | Cons of (int—int)xflist;

Note that this definition includes an arrow, but is still algebraic since the type
being defined does not occur within the scope of the arrow.

2. Inductive types. These extend the algebraic types by allowing the name of
the type being defined to occur positively within function spaces. We refrain.
from giving a detailed definition of positive and negative occurrences, but for
non-nested arrow types this means that the type being defined may occur on
the right hand end of an arrow, but not on the left. A typical example would

74

be the following type of infinitely branching trees, with integer labels on the .
nodes:
datatype itree = Empty | Node of intx (int—itree);

3. Recursive types. These allow the body of the definition to be an arbitrary type
expression involving the type being defined. This extra power is not used very
often in practice. A trivial (but genuine) example of its use is the following
datatype which occurs in an interpreter, written in ML, for an untyped version
of Ar. The datatype for expressions includes a clause for arithmetic operations,
which are implemented by ML functions:

datatype exp = N of int | ... | Arith of expxexp—rexp;

It should be noted that from the point of view of implementations, there is no
particular difference between the three classes. Furthermore, the techniques for
solving recursive domain equations which we shall describe in the next section will
allow us to give a denotational semantics to arbitrary recursive types. The real
distinction comes when we try to find reasoning principles. Whilst algebraic and
inductive types are fairly well understood, the subject of reasoning principles for
- more general classes of recursive types is still an active area of research. See, for
example, [Pit92]. '

The rest of this chapter is organised as follows. Section 4.2 contains some basic
material on the solution of recursive domain equations. The account given here
follows that of [P1o79]. A more general categorical treatment may be found in [SP82]
and presentations using predomains and partial functions in [Ten91] and [Plo85].

Section 4.3 uses this material to give the semantics of an extension of Ay with lazy
algebraic types. Section 4.4 then gives a brief overview of existing work on strictness
analysis in the presence of recursive types, including abstract interpretation and
projection-based approaches. Finally, in Section 4.5, we suggest a new construction
of lattices of strictness properties of algebraic types. This is motivated by the
categorical view of the solutions of the domain equations associated with these types
as initial algebras.

4.2 Recursive Domain Equations

If we wish to give a denotational semantics to a language which includes recursive
types, then we need to find appropriate domains for modelling such types. A domain
D, suitable for giving the denotations of terms of type natlist, where the definition
of natlist is

natlist = Nil | Cons of natxnatlist;

should satisfy the domain equation

D=21+NxD

75

where N is the domain associated with the type nat, and for a lazy language, 1 is
the one-point domain, + is the separated sum operation and X is cartesian product.
Such a D will contain elements which model finite, partial and infinite lists of natural
numbers!. Since the domain constructing operations are functorial, we can rephrase
the problem as that of finding a fixed point of the functor F' : Dom — Dom given by
F(D) =14 N x D. The solution should also be the least fixed point in some sense.
The basic approach is to solve recursive domain equations in a way analogous to
the way in which we solve the equations arising from recursive definitions of domain
elements by taking limits of chains in w-cpos. Thus we want to treat the class of
w-cpos as a large w-cpo. To do this, we need something analogous to the order
relation of a w-cpo, that is a notion of when one domain approximates another. The
appropriate notion is that D approximates F when there is an embedding p: D4 E,
and we shall therefore solve domain equations in the category Dompg of domains
and embeddings. Working in Domg also solves a problem which we have not yet
mentioned, which is that the domain equations arising from arbitrary recursive types
do not always give rise to endofunctors on Dom, because — is contravariant in its
first argument. Mixed variance functors on Dom, however, give rise to covariant
ones on Domg, so this complication can be avoided. ‘

Note that the material which we shall present on the solution of recursive domain
equations is slightly more general than we will need later, as we are only really
interested in algebraic datatypes. However, it seems best to present the technique
for arbitrary recursive types and then show that the solutions for the algebraic ones
are particularly well-behaved. Although we ultimately wish to think of the solutions
which we construct as living in Dom, it will turn out that the category in which
they have the properties which we shall use is Domg. Thus we shall regard the basic
domain forming operations as functors on Domyg, rather than on Dom.

A functor T : (DomZ)™ x (Domg)™ — Domg is locally monotonic if whenever we
have f;, fl : D} — D; and 9;,9; + E; — Ej such that f; C f] and g; E g} for
0<1<m,0< 5 <nthen

T(for- s fm-1,90s -3 9n-1) E T(fos- s Frae1: 90>+ +» Gn1)

All of our domain forming operations £,II : Domg™ — Domg, —: Domg X Domg —
Domyg are locally monotonic, as are P; : Domg™ — Domg (the j** projection func-
tor) and Kp : Domgs™ — Domg (the constant D functor).

Lemma 4.2.1 If T : (Domg)™ x (Domg)™ — Domg 1is locally monotonic, then it
gives Tise to a covariant functor T : Domg™t" — Domg, given by

TE(DO) e aDm—la EO; vy En——l) = T(DOa teey Dm—l; EO) cee ’En—l)
and for f;: D; <4 Dy, g5 : Ej < E;

TE(fO: . ';fm—lag()a s agn—l) = T(f(‘)Ra o 'afR——bgO,' . ’g'n.—l)
O

'If we were working with a strict language, then the domain theoretic interpretations of + and
X would be varied.

76

Corresponding to the idea of an w-chain in a cpo, we have the notion of an w-chain,
or w-diagram in Domg.

If C is a category, then an w-diagram A = (A, f,) is a sequence of pairs of objects
and morphisms of C such that f, : A, = A,41:

AO fO 'Al fl —Ag f2r_._

Given such a A and m,n with m < n, we write fn., : Am — A, for the map
fno10--0 frn. We will also write A~ for (Ani1, fut1), that is, the diagram A
without its first element.

A cocone from the diagram A consists of an object B of C (called the vertez) and
a sequence v of morphisms v, : A, — B such that all the triangles

An f'n. An+1

V,
\‘n+1

B

commute. If 4 : A — B and v: A — C are cocones then a cocone morphism from
4 tovisamap@:B — C in C such that all the triangles

A, — P . p
\ 10
Un

C

commute. With this definition of morphism, the collection of cocones over A forms
a category. An initial object of this category is called a universal (or initial or
colimiting) cocone. If p: A — B is initial, then we write B = li_r+nA and call 4 a

mediating morphism. If u : A — B is a cocone, then so is u~ : A~ — B where
u~ = {tns1)- If g is universal, then so is p~.

Lemma 4.2.2 If A = (D,,, fn) s an w-diagram in Domg, and p: A — D is a
cocone such that |, p, o pf = idp then p is universal.

Proof. See Appendix A. : O
Lemma 4.2.3 For any w-diagram A = (Dy,, f) in Domg, there ezists a cocone
p: A — D such that || p, o p® = idp.

Proof. See Appendix A. O
The previous two lemmas together imply that every w-diagram in Domg has a

colimit (é.e. that Domg is w-cocomplete). Furthermore, the converse to Lemma 4.2.2
holds:

7

Lemma 4.2.4 If o : A = D' is universal in Domg, then |, pl, o o' = idp.
Proof. See Appendix A. O

Corresponding to a continuous function between w-cpos, we have the notion of an w-
continuous functor, one which preserves colimits of all w-diagrams. More precisely,
we shall say that a functor F' : Domg — Dompg is w-continuous if whenever p: A —
D is universal, so is F(p) : F(A) — F(D). This means that F(li_r+nA) = li_r+nF(A)
where if A = (D, fm) then

F(A)E(F(Du), F(fm))

The definition of w-continuity extends in fairly obvious way to functors of several
arguments. It is also straightforward to verify that w-continuity is preserved by
composition of functors.

We say a functor T : (DomZ)™ x Domg™ — Domyg is locally continuous if 1t is locally
monotonic and whenever we have an increasing chain of strict functions (f ()z cw With
f9 . D! — D; for each 0 < i < m and a chain (g ,(]))le with g : E; — E for each
0 <j < nthen

I_I T(fl(O), .. ~1fl(m 1)’91(0)) cee agl(n 1))

lEw
|_| o, |_| i I_I gL e ’
l

All of our domain constructors +, X, —, Kp, P; are locally continuous.

Lemma 4.2.5 If T : (DomZ)™ x Domg™ — Domg is locally continuous then T% :
Domg™™ — Dompg is w-continuous. 0O

We are now in a position to solve the domain equations arising from recursive type
definitions. For simplicity, we shall restrict ourselves to the case of non-mutually re-
cursive type definitions. Such a type definition gives rise to an w-continuous functor
F : Domg — Domg. For example, the functor associated with the type declaration
for lists of natural numbers which we gave earlier is F' = +F(KF, xF(KE, Id")).
We then form the w-diagram A = (D, fm) in Domg by Dy = 1, Dipy1 = F(Dp),
fo =! (the unique embedding ! : 1 < F/(1)) and fp+1 = F(fm); and construct the
universal cocone:

1 ! . F(l) F(') —F2(1) F2(') F3(1) F3(')
Po P1 P Ps3
li_1>nA

78

Note that this does indeed construct a solution to the recursive domain equation as

F(li_r}nA) = li_r)n(FA) as F' is continuous
= limA~
__).

= limA
._)

We will usually write Fixg for li_r}nA and nr for the isomorphism from F(Fixp) to

Fixp. np is given by || pme1 0 (Fpm)®, and its inverse is | | F oy, 0 pE. We shall return
to the question of the sense in which these solutions are initial in Section 4.5.

4.3 Extending Ar with Algebraic Datatypes

We now explain how we can use the results of the previous section to give a denota-
tional semantics to A extended with lazy algebraic datatypes. We restrict ourselves
to algebraic types to keep things simple, and because we are currently unable to say
anything sensible about strictness analysis for more general recursive types. To sim-
plify matters further, we shall only describe how to add a single algebraic datatype
a (in sum-of-products form?) to the language (so we are really defining a param-
eterised collection of languages). The language arising from adding the algebraic
type a to Ar will be denoted by Ar,.

4.3.1 Syntax
Types

The type declaration for the type a has the form

a = Cl of (51,0 X ... X 51,m1—1
I Cg of (52,0 X ... X 52,m2——1

I Cn of 51,,,0 X ... X 5n,mn—1;

Note that, just in the above, |’ is part of the syntax of the declaration, not a bit
of meta-syntax of BNF notation. The type expressions ¢ are given by the following
BNF grammar:

du=k|a

ku=1t| (k= k)| (kxK) .

2Rarlier, we claimed that sum-of-products was synonymous with algebraic. This is not quite
true unless our domain-theoretic interpretations of the sum and product type constructors satisfy
the distributive law A x (B + C) =2 (A x B) + (A x C), which ours do not. We shall simply ignore
this fact, and continue to use the term ‘algebraic’.

79

Finally, the types of Ar,, ranged over by o,7 and 6, are given by
ogu=t|(c—=0)|(c%x0)]|a

The tokens C;, 1 < i < n, are the constructors of the type a. They are assumed to
be distinct. Note that whilst m; may be 0, n is always at least 1.

Terms

The term-forming rules of Ar are augmented with the n rules of the form

to . 5«5,0 cre 2';mi—l b di,mi-—l
Ci(to, - stm—1) = @

and
t:a uy =0 -0 wu, 6
acaset of 01(3,'1,0, ce)ml,m1—1) = U
|- Ca(zop,...) Tayma—1) = U
I Cn(CEn,o, ces ;mn,ﬁn—l) = Unp

Where we have omitted the obvious type superscripts on the z; ;, which are bound

within the respective u;. We should really write, for example, xi",;":__ll We also
omit the formal definition of substitution for the new constructs.

4.3.2 Semantics
Operational Semantics

The canonical terms of type a are all those of the form
Ci(t()a te tm;—l)
The evaluation relation of Figure 2.3 is augmented with the 2n new rules

Ci(to, “os ,tm‘._l) »U'Ci(t(), BN 1t'm,'—1)

and
tUCi(to, -+ s tmi—1) Ui[to/Ti0y - -+ s bmim1/Time—1] V€
acaset of Ci(z10,...,T1,m—1) = U1
| Ca(ma0,. .., Tome—1) = Uz
. Jc
' Cn(xn,m ey xn,mn—l) = Uq

80

Denotational Semantics

The domain-theoretic interpretation of types is just as for Az, with the extra clause
Da = FiXTE

where

and cs
__ Dn i ij — K

The semantic equations of Figure 2.4 are extended by
[Cilto, - - - s tmi—1)]p = nre(ini([to]p, - - -, [tmi-1]p))
and

[acase t of ... = u,]p
Lp, i [t]p=lp,
[[’U,l]]p[.'L'l,o — do, cees Tlmy—1 — dm1—1] if [[t]]p = NrE (inl(dg, ce 7dm1—1))

I[Un]]p[xn,o = dO, <oy Tnymp—1 — dmn——l] if l]:t]]p = NrE (inn(d07 e 1dmn—1))

Computational Adequacy

To show that our previous adequacy result still holds for Ar, we need to extend the
logical relation R which was defined on page 20 to the type a. Given a domain D
and a relation R C D x Az, define the relation T(R) C T(D) x Ap;, by

dT(R)t iff d= L
or d=in;(eg,.--,€m;—1), t4Ci(vo,...,Vm,—1) and
Re if 6,5 =K

Vj.e;Pjv; where P; = { R ié;=a

Now let the cocone used in the construction of D, = Fixpe be v : A — Fixpe where
A = (D, fr) and define for each k € w the relation R§ C Dy, X A;Jf1 by
LRyt Vt € Apg,
i+1 = T(’R’;cl)
Finally, define R* C D, x Az}, by
dR*t iff Vk € w. vf(d) R t

It is straightforward to verify that Lemma 2.1.4 and Lemma 2.1.5 both still hold
with this definition. We shall also need the following two lemmas:

81

Lemma 4.3.1 Ifd € T(Fixrz), t € A7S and dT(R®)t then n(d) R°t.

Proof. If d = L then the result is immediate. Otherwise, d = in;(e, ..., €m;-1),
tJC;(vo, .« - -, Um,—1) and Vj. e; R% v;. To obtain the result, it suffices to show that
(i on)(d)Re, t for all k. But vff, on = (Tw)? = T(vf) and T(WF)(d) =
in;(eg, . . . , €m,—1) Where

CI- _ €; if Jij =K !
J I/,?(ej) if 61']' =a

and since for any j such that d;; = a we know that e; R*v; we have that e} R v;
and hence T'(vf)(d) T(R%) t and we are done. O

Lemma 4.3.2 Ifd € Fixgs, T € A7}, and dR*t then n~'(d) T(R) .
Proof. Again, if d = L then the result is immediate. Otherwise

d = n(in;(eg, . . ., €m;—1))-
We know that v%, ;(d) RZ,, ¢ for all k, and this means that ((Tvx)®on™")(d) T(R3)t.
This is equivalent to T () (in;(eo, - - - , €m;—1)) T(RE) t. But

T(wf) (ini(eo, . . ., em;—1)) = imy(ey,. .., e;ni_l)

where
e,' _ €5 if (Sij =K
J I/,?(ej) if 5ij =a

and thus t{C;(vg, . . ., Um,—1) such that for all j

Re i d; =k
! P. . L= 1]
e; Pjv; where P; { RE if b = a
and this means that e; R% v; so the result follows. ' a

We can now extend the proof of Proposition 2.1.6 to cover the new language con-
structs associated with the type a:

Proposition 4.3.3 Ift € A%, p is an environment such that FV (t) C dom(p) and
for each xi' € dom(p), s, € A7y and p(z]")R%s; then [t]pRt[s:/z]"].

Proof. There are two new cases:
o Ift = Ci(Uo, o ,’Umi_l) then

[t]p = n(ini([volp, - . . , [Vm;-1]0))

and
tsi/ar'] = Cilvolsi/al'], -, vmi-alsi/2']) -

82

By induction, [v;]pR% v;[si/z;'] so that

" ([t]e) T(R®) tlsi/a]"]

and thus by Lemma 4.3.1 ,
[tloR* t[si/ "]

as required.
If
t = acase v of C1(Y1,0,- -+ Y1mi~1) = U1 | *** | Co(Un,05 -+ Ynymn—1) = Un
then if [v]p = L, [t]p = L and the result is immediate. Otherwise,
[vlp = n(ini(eo, - . ., €mi-1))
for some 7 and by induction we know that
[vlp R v[s:/27"]
By Lemma 4.3.2, this means
in;(eg, - - -y €m;—1) T(R*) v[si/x]"]

so that v{C;(vo, . - ., Um,—1) Where for all j, e; R% v;. Hence we can apply the
induction hypothosis to u; to deduce that

[uilplvio = €0y - - Yimim1 +> €mi—1] R wils1/z7"][vi/y;]

which means
[tlp RT wilsi/x"[vi/yi]
But (ui[si/z]"][vj/y;]) Ve = t[si/z]'[{c so that
[tlp R™ t[s1/=)"]

as required.

4.4 Previous Work on Strictness Analysis and

Recursive Types

4.4.1 Projection Analysis

When we come to look at strictness analysis of first order functions over structured
datatypes, such as the algebraic types in Ar, (or even just pairs), there is a much

83

richer collection of ‘natural’ strictness properties than is the case for functions over
flat domains. For example, in the language A pjist, which is Az augmented with
the algebraic type nlist, defined by

nlist = Nil | Cons of ¢ x nlist

we can define the functions length and sumlist, both of which have the type nlist — ¢,
by
length & fix(f.AlLnlistcase [of Nil = 0 | Cons(z, zs) = 1 + (f zs))

and
sumlist & fix(#.Al.nlistcase I of Nil = 0 | Cons(z, zs) = z + (f z5))

Both of these functions are clearly strict, but this is not particularly interesting.
What we really want to know is that length needs to evaluate the entire structure
of its argument (the spine of the list) but does not evaluate any of the list elements
whilst sumlist evaluates both the whole structure and all the elements. For functions
which also return structured results, the amount of evaluation peformed on the
argument can depend on that demanded of the result. Consider, for example, the
function :

mapincd-——effix(f.)\l.nlistcase [of Nil = Nil | Cons(z,zs) = Cons(z + 1, f zs))

of type nlist — nlist. mapinc will evaluate exactly as much of its argument as is
demanded of its result. This means that [will just have its structure evaluated in
the evaluation of

length (mapinc 1)

but will also have all its elements evaluated during the evaluation of
sumlist (mapinc 1)

Thus we can view functions as taking a level of demand on their results to a level
of demand on their arguments?.

In [WH87], Wadler and Hughes chose domain-theoretic projections to capture the
idea of a level of demand. In this context, a projection on a domain D is a continuous
function a : D — D such that aoa = a (a is idempotent) and a C idp. Projections
in this sense are in 1-1 correspondence with projections as we defined them earlier, in
connection with embedding-projection pairs. .Given a projection in our earlier sense
v : D — E, we know that v has a unique left adjoint ¥ : E — D which satisfies
vl ov Eidp and v o v* = idg. But then (vfov)o (vrov)=vloidgov=vlov
so v ov : D — D is a projection in the new sense. Conversely, given a projection
a: D — D as above, then the set I = {a(d) | d € D} is a subdomain of D, so
the inclusion map-7 : I — D is continuous and « gives rise to o' : D — I. Then
1oad =aCidp and o/ ot =1id; as a0 = a..

3Note that this is not something special about projection analysis—the ideal properties which
we have previously discussed can also been seen this way.

84

Projection analysis looks for properties of the form

Bofoa=fof (4.1)

where f : D — F is a continuous map and oo : D — D and 8: E — E are projec-
tions. If f satisfies (4.1) then we say ‘f is a-strict in a B-strict context’. Projection
analysis has been applied both to strictness analysis [WHS87] and to binding-time
analysis [Lau89]. An example of a projection which is useful in strictness analysis
is H : Dpjst — Dpiist, Which is given by

1 ifd=1
) n(iny (%)) if d = n(iny(+))
H(d)=q | if d = n(ing(L, zs))

n(ing(z, H(zs))) if d = n(ing(z,zs)) and z # L

We can rephrase this definition in a slightly more readable, but less formal, way by
mixing syntax and semantics:

H(L) = L
H(Nil) = Nil
H(Cons(Ll,zs)) = L
H(Cons(z,zs)) = Cons(z,H(zs))ifz#L

If f : nlist — D satisfies f = f o H then we say f is head-strict. Head-strictness is
a property which does not seem to be expressible in any ideal-based analysis. Note
that the use we can make of head-strictness in a compiler is slightly more subtle than
it might at first appear. What head-strictness of f tells us is that the argument of
any application of f may be replaced by H applied to the argument. This does not,
however, mean that we can safely evaluate H applied to the argument before calling
f, as can be seen by considering the function

A xnh’st 3

which is easily seen to be head-strict, but for which it is unsafe to perform any
evaluation of the argument. If f is head-strict, then what we can deduce is that
every Cons cell in the argument which contributes to the result of f can safely have
its head evaluated too. Formalising the uses to which projection information can be
put has turned out to be rather awkward; see [Bur90b].

The set of properties which can be expressed in the form given in Equation 4.1
above does not include the most simple f L = L kind of strictness. To deal with
this, Wadler and Hughes lift all their domains, adding a new bottom element which
they call ‘abort’ (and write as a lightning bolt). They then analyse the lifted ver-
sions of functions. Burn has established a connection between ideal properties and
the properties expressible using a restricted class of projections (called smash pro-
jections) over lifted domains [Bur90a).

Hunt has generalised projection analysis to higher-order functions by making use
of an abstract interpretation in which the points of the abstract domains represent

85

partial equivalence relations (pers) on (father than subsets of) the standard domains
[Hun90, Hun91].

Projection analysis (or Hunt’s per analysis) requires a finite lattice of projections
(or pers) to be chosen at each type. There is still no completely satisfactory way of
picking such a lattice for arbitrary recursive, or even merely algebraic, types. Hunt
gives a construction of a lattice of pers for any algebraic type in [Hun91], but this
leads to a lattice which omits some of the more useful points. : -

4.4.2 Ideal-based Analyses

To extend an ideal-based analysis, such as our strictness logic, to a language which
includes some form of recursive type we first have to decide which ideals we wish to
reason about. This is a rather difficult problem. The collection of ideals which we
pick for a recursive type should have the following properties:

1. It should be finite.

2. It should not be too big. This is because a large collection of properties will
lead to an impractically slow analysis system.

3. It should contain as many ‘useful’ (in terms of optimisation-enabling) proper-
ties as possible. This plainly pulls against the previous requirement.

4. Tt should also contain sufficient points to enable us to deduce useful properties
of real programs. Even if, for example, we were only interested in the opti-
misations which can be performed as a result of simple strictness, an analysis
for Ar which only made use of the two-point lattice at every type would be
extremely weak.

5. It should be closed under intersection, so that each domain element has a ‘best’
abstraction.

6. There should be some procedure by which the lattice of properties is derived
from the type declaration.

7. The compiler should be able automatically to calculate a representation of the
lattice of properties from the type declaration.

8. The ordering on the representation should be sound with respect to the inclu-
sion ordering on the interpretations of representatives, and as complete as is
practical.

There is currently no technique for constructing lattices of ideals which meets all

the above criteria (though we sketch a promising approach to the problem in the
next section). For particular types, there have been various more or less ad hoc

86

suggestions. The best-known of these is Wadler’s four-point abstract domain for
lazy lists of elements of a flat domain [Wad87]:

Te

Le
|
o0
|
1

The abstract point L denotes the singleton ideal containing the 1 element of the list
domain. oo denotes all infinite lists and lists with an undefined tail. .. € contains
in addition all the finite lists which contain a L element and T € denotes all lists.
This collection of properties seems to work fairly well in practice?, although it is not
clear how to generalise it to lists of elements from non-flat domains or to, say, trees
of elements from a flat domain. Wadler suggests that since the lattice given above
is the double lifting of the two-point lattice which is used to abstract elements of a
flat domain, the abstraction of lists of elements of D, should be (4,,),. An even
simpler approach is just to use the same lattice for all algebraic types—[Bur91b]
abstracts lists and trees with elements of any type using this lattice. Whilst this
ignores all the structure of the elements, and the structure of the datatype, it may
well be that for a practical implementation any more sophisticated approach leads
to lattices which are impractically large. [Bur91b] also gives three other abstract
domains for lists, which we shall mention later.

Ernoult and Mycroft [EM91] have suggested an alternative construction of lattices
of ideals for lists, which is based on the idea that we should choose those properties
which ‘treat all the elements the same’. They call the properties which they pick
uniform ideals. There is, however, no formal definition of what constitutes a uniform
ideal, so it is not clear how to generalise the idea to other datatypes. Hughes and
Ferguson have devised a (rather complicated) construction which yields a finite set
of subsets for any lazy algebraic type [HF89).

4.5 A New Construction

In this section we present some preliminary ideas about a different approach to the
construction of a suitable lattice of ideals of D,, where a is a lazy algebraic type. To
beginh with, notice that it seems futile to attempt to define a ‘good’ set of ideals in
some external way; that is in a way which is independent of the syntactic definition
of a. This is because, for example, whatever finite lattice we choose to abstract nlist,
we shall surely choose a larger lattice as the abstraction of the isomorphic type

nlist’ = Nil' | Cons’ of ¢ x nlist

4Though it gives poor information if programs are written using head, tail and isnil, rather than
listcase.

87

In any case, a good set of ideals will also reflect the way in which values of type a
are used, and this is not captured in the order structure of D, alone.

Note also that a Scott-closed subset of a domain D is precisely the kernel f=!(1)
of a continuous map f — O, where O is the two-point domain (sometimes called
Sierpinski space). A non-empty Scott-closed set, one of our ideals, is the kernel
of a strict map into . Thus we can rephrase the problem of finding a good set
of ideals of D, as that of finding a good set of strict maps f : D, — O. Our
construction is based on the observation that a natural collection of such maps
arises by considering the sense in which D, is the initial solution to the recursive
domain equation associated with the type a.

Lemma 4.5.1 If A = (D, fm) is an w-diagram in Domg and p : A = D is a
universal cocone in Domg, then p is a universal cocone in Domg as well.

Proof. See Appendix A. a

Recall that if F' : C — C is an endofunctor on a category C, then an F'-algebra
consists of a pair (A, &) where A is an object of C and a : FA — A. The collection
of F-algebras are the objects of a category F'— Alg in which a morphism from (A4, o)
to (B, () is a morphism f : A — B in C such that

FA ——F—i—v FB
al I}
A 7 B

commutes. Such an f is called an F'-homomorphism.

Now it is the case that for an arbitrary w-continuous functor F' : Domg — Domg,
the pair (Fixp,nF) is the initial F-algebra (see [Plo79] for the details). If, however,
F arises as TF where T : Domg — Domyg is a locally continuous functor, as is the
case for the functors associated with algebraic types, then we can say something
rather more useful:

Proposition 4.5.2 If T : Domg — Domg is a locally continuous functor then the
pair (Fixpe,npe) is the initial T-algebra

Proof. See Appendix A. . a

From now on, if T': Domg — Domg is a locally continuous functor, we shall blur
the distinction between 7" and T'F whenever it seems convenient.

Homomorphisms from the initial T-algebra capture a kind of primitive recursion
over our lazy datatypes. These maps are very familiar to functional programmers,
and it is worth seeing what the construction gives in a simple case:

88

Example In the case of lazy lists of natural numbers, Proposition 4.5.2 says that
for any domain F and any strict map ¢ : 1+ IV, X E — E there is a unique strict
h: Dpjst — E such that

idy +idpy, % h

14 IN; X Dpjist 1+ IN, X E
n g
Dn]ist - B

h

commutes. This means, if E = D, and g = [g] that A is the denotation of reduce’ g
where
reduce’ :: ((1+tx0)—0)— nlist >0

is given by

reduce’ & fix(f.Ag. Al.nlistcase | of Nil = g(inl())
| Cons(z,zs) = g(inr(z, f zs)))

Actually, we have cheated slightly above, in that we have not described any variant
of Ar which includes a type 1 which is interpreted as the one-point domain, and we
really want g to range over strict functions only. By using the domain isomorphisms
(A+B) >, C2(A-C)x(B—=C),l—wA)2Aand AxB)=-C=2A—
(B — C) (currying), we can obtain the more familiar definition which is used by
functional programmers:

reduce :: (t >0 —0) =0 —nlist >0

reduce & fix(f.Ag.Aa.Al.nlistcase | of Nil = a
| Cons(z,zs) = gz (fgaxs))

The reduce function is also known as fold. It is an extremely useful function, and
many other common list-manipulating functions, such as sumlist, length, map, reverse
and append can be defined in terms of it. If we write (gns) asn® s, and [is a
finite list [n1, ..., 7], then the result of (reduce g a l) isn @ (N2 ® - N @ a) -+).
Functions like reduce are sometimes known as iterators, and they also arise naturally
from the encodings of algebraic types in higher-order polymorphic lambda calculi,
such as A2 [GLT89].

We shall present our construction of strictness property lattices for algebraic types
in several stages. The first step is to generalise the idea of going from the domain
of lists of natural numbers to the domain of lists of strictness properties of natural
numbers. This latter domain is, of course, still infinite and therefore unsuitable for
our purposes (it contains points which represent properties such as ‘has a L in every
prime-numbered position’). We shall then cut this domain down to a small finite
set, of properties by using the associated iterator to define a small set of maps from
it into O. '

89

Given the type declaration for an algebraic type a, we defined D, as Fixy, where T :
Domg — Domg was a locally continuous functor derived from the type declaration.
We now introduce the functor T' : Domg — Domg which is defined in terms of

abstract, rather than standard, domains®.
N n mi—1 -
T(Xx)=>_ Il Di;(X)
i=1 j=0
where
= | A it =k

The pair (Fixz,n5) captures the construction implicit in the intuitive idea of the
domain of lists of strictness properties. We now wish to give a formal definition of the
obvious abstraction map from Fixy to Fixs. In the case of lists of natural numbers,
this is what one thinks of as map(w,), where «, : D, — A, is the abstraction
map we used earlier. Firstly, note that for any domain X, there is a strict map
px : T(X) — T(X) given by

m;—1
fii(X)

§=0

bx = Z
=1

where f; ;(X) : D; ;(X) = D;;(X) is the strict map given by

(87 if (51',]' =K
idx if 61',]' =a

fii(X) = {

Now nzoufiy . makes Fixs into a T-algebra, so by Proposition 4.5.2, there is a unique
T
h such that the following diagram in Domg commutes:

T(h)

T (Fixz) T(Fixz)
\ﬂFix?
nr f(Fin)
e
Fixy - Fixa

5We shall use the term ‘abstract domain’ instead of ‘lattice of strictness properties’, though
this should not imply any commitment to the use of classical abstract interpretation techniques to
perform the analysis. Note also that when we write A, for the abstract domain associated with
the type 7, we are being somewhat ambiguous. This can be taken to be either the sublattice of
Py (D.) consisting of those ideals in which we are interested, or as the approximate representation
of that lattice which is part of whatever formal system we use to reason about these properties.
In the presence of a completeness result like Corollary 3.2.10, these will be equivalent; but this is
not always the case, as we saw in the case of the disjunctive logic.

90

and this is the map we want.

The second step in the construction uses the fact that, by Proposition 4.5.2 again,
(Fixz,) is the initial T-algebra. This means that, given any strict map g : T'(0) —
O, there is a unique strict map g* : Fixz — O such that

T(Fixz) T(g") T(0)

Fixg —— O

commutes. Because T(©) is constructed from finite sums and products of finite
domains, it will itself always be a finite domain. Thus there will only be a finite
number of maps g : T(O) — ©. Each one of these gives rise to an ideal of Fixr,
namely '
Ky = (9" oh)7H(L)

and it is the collection of all these K, which we propose as a good set of basic
strictness properties of the type a. We shall also find it helpful to define J; C Fixz
to be (¢*)7H(L). |

Let us see how this works out in the familiar case of lists of natural numbers. The
abstract domain A, is the two-point domain, which we will write as 2. This is, of
course, isomorphic to O, but this is just coincidental. The domain of lazy lists of
elements of 2 (i.e. Fixs) will be written L2. The previous diagram thus specialises
to the following:

idy + ida X g*

1+2x L2 r14+2x0
n g
L2 - -0
g .
The domain 1 + 2 X O looks like this:
(T, T)
(T,1) (4, T)
* \ (L, 1)

and there are twelve strict monotone maps g from this domain into ©. We can

91

n_ gn(inl(+)) gn(inr(z,y)) K,
1 L L All lists.
2 T L All non-empty lists.
3 L T The empty list. Non-empty lists with 1 as
the first element.
4 T T Non-empty lists with L as the first element.
5 1 Y All lists.
6 T Y All infinite and partial lists.
7 1 My All lists.
8 T My Infinite and partial lists. Lists containing at
least one L element.
9 L zUy The empty list. Finite, infinite and partial
lists all of whose elements are L.
10 T xUy Partial and infinite lists all of whose elements
are L.
11 1 T The empty list.
12 T T Just the completely undefined list L.

Figure 4.1: Basic Strictness Properties of nlist.

describe each of these maps by giving a pair, the first component of which is the
image of the point inl(*) and the second component of which is the image of the point
inr(z,y) for z € 2, y € O. A little calculation then gives the informal interpretation
of each K, as shown in Figure 4.1 (we write K, for K).

This collection of properties includes Wadler’s four points: his 1, oo, L. € and T €
are our K19, Kg, K3 and K respectively. Burn’s A" domain [Bur91b] consists of
our Ki9, K4 and K;. Note also that our twelve maps only give rise to ten distinct
properties, as K, K5 and K7 are all the whole of the domain D j;et.

These ten properties are all intuitively compelling: this seems to be the ‘right’
construction. These ten points alone, however, do not quite satisfy all the criteria
we laid down earlier for a good collection of properties. This is because the collection
is not closed under intersection. The intersection of Kz and. Ky is the set of non-
empty lists all of whose elements are |, and this is not one of our properties. This
is not a serious problem—we just have to add intersections in explicitly, exactly as
we did in the strictness logic. We might also want to add unions, if we were trying
to extend the disjunctive strictness logic to algebraic types.

By unfolding more, that is, by solving the domain equation with 7™ instead of 7,
we can in principle get an infinite sequence of larger and larger lattices of strictness
properties. This would, however, be rather unwieldy, and it is not clear that the
extra points would be particularly useful.

Another of our criteria for a good collection of properties was that we should be
able to calculate an entailment relation on a set of representations of the properties

92

which was sound and fairly complete with respect to the real inclusion ordering on
the properties. It is clear that the representation of the set of properties produced
by our construction will be based on some representation for the maps g,. For a
single simple type like nl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>