Technical Report A

Number 31

Computer Laboratory

Ponder and its type system

J. Fairbairn

November 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 1982 J. Fairbairn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Ponder and its Type System

Ponder and its Type System

Abstract

This note describes the programming language
"Ponder™, which is designed according to the
principles of ‘referencial transparency and
"orthogonality" as in [vWijngaarden 751]. Ponder is
designed to be simple, being functional with normal
order semantics. It is intended for writing large
programmes, and = to be easily tailored to a
particular application. It has a simple but
powerful polymorphic type system.

The main objective of this note is to describe the
type system of Ponder. As with the whole of the
language design, the smallest possible number of
primitives is built in to the type system. Hence
for example, unions and pairs are not built in, but
can be constructed from other primitives.



2 Ponder and its Type System

Section 1: Introduction

Ponder is .functional programming language with normal order
semantics and a strong polymorphic type checking system. The
language is not yet defined in full, and hence this document is open
to suggestion, and may not describe the final version of the
language.

Ponder is designed with a small set of primitives for declarations
and the syntax includes very few "built in" construects. Normal
order semantics were chosen in order that new constructs may be

introduced by the programmer, without the problem of unexpected
evaluation of arguments, as when attempting . to define 'IF', for

example. That the language is functional also allows
implementations to take advantage of new developments in processor
design. Thus no concession is made to <conventional machine

architectures, since it is hoped that programmes may be efficiently
run on (for example) combinator [Clarke 82] or graph reducing
machines.

Section 2: Motivation

This section describes the motivation behind the language and its
type system, and examines some aspects of other languages. The
reader who is unfamiliar with other languages menticoned is asked to
bear with nme. Some of the notation which occurs is -explained later.

Programming languages like Algol68, (and lately Ada), include too
much that is built in to the language. This has the effect that
they are difficult to remember in full, so that there is a tendency
for programmers to only take advantage of a small subset of the
language. Furthermore, the excessive size of the definition tends
to make implementation difficult, and prone to modification by the
implementor in order to make it "efficient"™.

2.1 Type Checking

Experience has shown that statically checked types in programming
languages aid the production of correct programmes in several
ways. The most important aspect is that more mistakes in the
logic of the programme are detected at compile time, and hence do
not need to be found by "debugging". This is particularly

2 Motivation



Ponder and its Type System 3

important, since it is often very difficult to test a progranmme

in such a way as to sufficiently 'exercise' all of its individual
parts.

A furthzr aspect is that the prcgrammer may take advantage cf
type checking when making changes to the data structures used
within & programme, since the structure of an object is reflected
in its type. Thus any incorrect accesses to an object will be
reported as type errors, so that any that are missed when the
programmer makes a change Will be reported by the compiler,
rather than 1lurking to cause a disaster when some part of the
progragze runs,

2.2

Compile time type checking, then, both protects the programmér
from itself®, and provides it with extra facilities which make
the writing and maintainance of programmes easier.

Important constructors in data types are STRUCTures (as in
Algol68, or records in Pascal), UNIONs (as in Algol68 or as in ML
[Gorden 791), arrays, lists, pairs, and so on, and some form of
encapsulation (as in Abstract types in ML). One of the aims of
the Ponder type checking system‘is to provide a mechanism for

creating such constructors, and the minimum number of primitives
to make them out of.

Unfortunately, the strong type checking as in Algol68 or Pascal
is rather too strict, in that it tends to prevent one from doing
things which do make sense, as well as things which do not. This
tends to make one write the same thing more than once. A
commonly quoted example of this is of a routine to sort an array.
If one wishes to write a function which given an array and a
funecticn saying whether or not two elements are in order, returns
a sorted version of the array, one can use the same algorithm
regardiess of the data type of the elements of the array. In
languzges such as Pascal or Algol68, this polymorphism (that is
to say the ability of a function to work for many "forms" of
argument) of the sorting function can not be exploited, and a

®Unfortunately this English usage tends to discriminate against
humans. Hewever, the discrimination is less than that against
machines suggested by the use of 'him/her'.

Motivation 2



Ponder and its Type System

different routine must be written for each type of array that is
to be sorted. For example, in the notation of Algolé68, one might
need both a

PROC ([] REAL, PROC (REAL, REAL) BOOL) [] REAL

and a

PROC ([] STRING, PROC (STRING, STRING) BOOL) [] STRING.

This leads to the idea that the type of an object should reflect
any polymorphism that is inherent in it. Thus the type of 'sort!
should indicate that its first argument is an array of objects of
any type, its second is a function taking two objects of that
type, and that it returns an array of that type. One might
extend the type system of Algol68 to include some kind of type
parameters, so that the type of 'sort' might be:

PROC (AMODE M, [] M, PROC (M, M) BOOL) [] M,
the first argument being the type that is to be used throughout.

Type parameters of this nature occur in some other type systems,
for example that of Russell [Demers 791, but are accompanied by
some philosophical objections: the appearance of a type as a
variable suggests that types should be "first class objects",
with various operations to split them apart, and to make new ones.
If this is the case, then surely types should also be given some
sort of type (Indeed in Russell, types do have 'signatures'), but
then one can ask why can one not pass the type of the type as a
parameter, and so on? Furthermore, the ability of a programme to
manipulate its data types in an unpredictable way means that some
type checking would be necessary at run time. This is due to
the problem that if types may be computed in a perfectly general
manner, then the compiler would have to be able to compare
functions to see if they always give the same result (which is
not generally possible). In Russell types are restricted so
that computation of this nature is not done at all, which gives
rise to unpleasant effects, such as 'int_array (1+43)' being a
different type from 'int_array (3+1)'.

One alternative would be to abandon the idea of totally static
(compile time) type checking and rely on some dynamic (run time)
checking of types. I feel that this is undesirable, since the
idea of a type <can be either extended to encompass all

Motivation



Ponder and its Type System 5

programming errors (at one extreme), or restricted to check none
(at the other). The first is too general to be really useful,
and corresponds for example, to including the fact that divide
may not be used with a second argument of zero in its type, ahd
obviously cannot be totally checked before running the programme.
The second extreme corresponds to no type checking at all (and
equally obviously may be totally checked even before writing the
programme!). Thus it is useful to restrict the idea of type
errors to that which may be checked for at before running the
programme.

My approach has more in common with that in ML, in that type
parameters do not really occur. Taking the example of ‘'sort!
again, what one wants to say is that, for all types 'M', 'sort' has
type

PROC (L[] M, PROC (M, M) BOOL) [] M,

and have the compiler decide what M should be whenever the
function is applied. The notation for types in Ponder also has
more in common with ML than with Algol68, so that the type of
'sort' might be written:

W T. ARRAY [T] X (T X T -> BOOL) —> ARRAY [T]

2.3 Comparison with ML

The type system of ML answers many of the problems indicated
above, but includes more predefined mechanisms than are necessary,
and can fail to give a type for some useful functions. In ML a
type may include free variables, represented as '#1, 811 '¥2' et{c,
so that the type of 'sort' in ML is:

(® array) X (® X % -> bool) => (® array)

where 't1 X t2' is the type of a pair whose left hand element is
cf type 't1', and whose right hand element is of type 't2', and
't1 => t2' is the type of a function requiring its argument to
have type '"1' and which returns an object of type 't2\. My
notation differs for type generators (see below for a

description), in that for an array of Dbooleans ML |has
'(bool array)' where Ponder has 'ARRAY [BOOLJ, since I find the

prefix notation more readable when there are several applications
of generators.

Motivation : 2



Ponder and its Type System

ML is, however, unable to express the types of certain sensible
functions. Consider the function:

let imposs = )select. )Mi. )b.
pair (select (i, 1)) (select (b, true))

which takes a selector function 'select' (which returns either its
first or second argument), and returns a pair constructed of a
selected integer, and a selected booclean. In ML parameters to
functions are required to have the same type at every application
within the function, and the type inference mechanism cannot
detect that 'select' must be a polymorphic function, nor can ML
types express this fact.

This also has the unpleasant effect that names bound by ‘'let' are
not treated in the same way as names bound by application. Thus:

let select = \a. M. a in
let fs = M. )b.
pair (select (1, 1)) (select (b, true))

is valid, although 'fs' is equivalent to 'imposs select'.

As will be shown, the type system for Ponder can express a type
for such functions, and Ponder preserves the equivalence of
binding by declaration and by application. An advantage of this
is that type constructors such as pairs and disjoint unions do
not have to be built in to the type system, since they may be
expressed in terms of simpler constructors. A minor objection
to ML types is that the type variables are declared implicitly
rather than explicitly. In Ponder all type variables must have
explicit deelarations, but it is the use of this which provides
the extra expressive power.

There 1s also a slight disadvantage, however. In ML types are
arranged so that there is always a most general type for a well
typed expression, and so that the compiler can infer what that
type 1is. In Ponder, the type system is somewhat richer, and

expressions do not always have a most general type, so of course
the compiler cannot be expected to find it. Thus in Ponder the
programmer must always specify the types of the parameters of a
function. I feel that this is no real loss, since 1t encourages
the programmer to think more about the types of things, and
prcbably improves style. It 1s also my belief that the
programming language should ensure that as much of the

Motivation



Ponder and its Type System 7

information about a function as possible may be discovered by
reading a small amount of the definition of the function. Thus,
although it may be difficult at first to get used to function
definitions which appear to be cluttered with type informatién.
it is worth while in the end. Programmers used to ianguages
like Algol68 will find that Ponder requires rather 1less
repetition of type information.

Section 3: Semantics

To define the semantics of a programming language in complete formal
detail is quite a complicated process, and is beyond the scope of

this description. It is, however, desirable that when different
people read a Ponder programme they shcould come to the same
conclusion about what it means. To this end, some form of

universally understood model is needed (this is clearly impossible).
Hence I will describe the semantics of Ponder as transformations
into the lambda calculus (see [Hindley 721]).

3.1 Lambda Calculus

I will now give a brief description of M-calculus, so readers who
are already familiar with it should skip to the next heading.
Lambda expressions are abstract representations of functions (in
the sense of methods of computation). The simplest form of
lambda expression is the name (Normally called a variable, but
'variable' has unfortunate connotations of 'variable storage' in
computer circles). Here is a lambda expression, then:

days

It does not mean very much, since there is no value associated
with ‘'days'. Names which occur without defining ocurrences are
said to be free. Names may be used as parameters to functions
by means of 'N, like this: '

Aparameter_ name. body

Where 'body' may be any form of 1lambda expression, and
'parameter_name' is a name for the parameter of the function. It
may help to think of ')x. body' as "That function f, such that
f(x) = body". I will refer to these as lambda functions. The
only other form of expression is the application:

Semantics 3



Ponder and its Type System

expression_1 expression 2

which means apply 'expression_1' to 'expression_ 2'. The result of
applying a lambda function to an argument is the body of the
lambda function with all the ocurrences of its parameter replaced
by the argument. Hence

()x. on rainy x) days
evaluates to
on rainy days

The parameter 'x' having been replaced with the value ‘'days'.
Note that parentheses are used purely for grouping, and that

application associates to the left, so that

the monk ryokan
means the same as
(((the) monk) ryokan)

It is intended that a lambda function should always mean the same
thing regardless of the name used for the bound variable, since
"x. x' clearly behaves the same as '")\y. y. Thus any lambda
expression may be replaced by another one which is the same

except for the names of bound variables, without change of
meaning. When an expression contains nested lambda functions,

variables bind to the nearest textually enclosing lambda, so that
Ax. ()x.x)
means the same as

Ax. ()z.z)

Note that if we allow the simplification of the insides of lambda
functions, the process of substitution of a value for a parameter
may cause a confusing state to arise. Consider:

. (Ohy. (Xx. x y)) x)

which in all respects behaves the same as

Semantics



Ponder and its Type System 9

Mx. (h\z. z x)
in that
. (()y. (Xxx y)) x) p
becomes
(Oy. (xx y)) p)
and then
ixx p
which is what you get from
M. (Xz. z x) p
(try it)
If we try to simplify the inside of
M. ((hy. (Mx. x ¥)) x)
We might try
Ax. (Ax. x x)

but the 1last 'x' is clearly meant to be bound to the first one.
In these situations the proper thing to do is to change the names
so that we can see what is happening, so

M. ((dy. (Ax. x y)) x)
may first be changed to
Ax. ((hy. (Xz. z y¥)) x)
and from there we get the correct answer. One final examplé:
(Ox. ()y- x ¥)) (\y. ¥y ¥) beep
evaluates to
()y. ()x. x x) y) beep
then to

()x. x x) beep

and finally (since 'beep' is unbound, and cannot be evaluated) to

Semantics 3



10

Ponder and its Type System

beep beep

Normally descriptions of lambda calculus go on to an extended
notation including numbers and so on, but that is unnecessary
here.

3.2 Evaluation Order

A1l objects in Ponder are intended to be capable of
representation as lambda expressions. The only other question
of semantics which needs answering is "In what order are things
evaluated?" In Ponder, function applications are evaluated
function first (this is called normal order) as opposed to
arguments first, which is usually the case in more conventional
languages (and which is called applicative order). To see what
this means, consider

()x. ()y. x)) nice nasty

If we were to evaluate the arguments first, we would have to work
out 'nmasty' first, and if 'nasty' does something nasty, we're in
trouble. Normal order evaluation gives us first

()\y. nice) nasty
and then
nice

since 'nasty' was bound to 'y' which did not appear in the result,
which means that the value of 'nasty' never even gets considered.

Normal order evaluation corresponds approximately to call by name
in ALGOL 60, and has a reputation for being inefficient.
However, the absence of side effects in functional programming
makes it possible to use a scheme of lazy evaluation, in which

arguments are evaluated at most obce, the first time they are
used.

This has the fortunate consequence that it is easy to represent
infinite structures, since they are never evaluated in full.

Semantics



Ponder and its Type System 11

Section ¥: Syntax

The syntax cof Ponder is intended to be both rich and simple (this
is, of c¢ccurse, impossible). The appendix —contains a formal
descriptica of the syntax of Ponder.

5.1 Symbols

Programzes in Ponder are represented by sequences of symbols.
Symbols are divided into four classes, the first being object
names. The name of an object should be written in italie

letters and numerals, with optional (italic) hyphens to separate
individuzl words within the name. The second class is bold

names. These are used for things which are purely syntactie,
like the names of data types, and keywords. Bold names are
written in bold face roman letters and numerals, with optional
(bold face roman) hyphens to separate words within a name.

Unfortunately, current terminals tend not to have italies, and do
not preserve the distinctions between hyphens, dashes and minus
signs. For this reason it is necessary to adopt the convention
that bcld names are written in upper case, and names in lower
case, using underlines instead of hyphens. hence

feels sorry_for_himself
is a name, and
ZEN KOAX

is a bcld name. Note that since it is often difficult to
distinguish between one and two underlines, consecutive
underlines are treated as meaning the same as one.

The third class of symbol is called (for want of a better name)
special. Special symbols are either one character, like '(' énd
" (so that '"((' is two symbols), or are combinations of the more
unusual characters available. The characters which are symbols
on their cwn (and cannot be combined) are:

(Y roi1itr,;:

the fcllcewing characters are the ones normally available in ASCII
for making special symbols:

Syntax y



12

Ponder and its Type System

£ $2&+-%/="1\<>:.78

(It was decided to allow an arbitrary number of these characters
to be made into symbols, because it is clear that only allowing
one at a time would give too few, and because'allowing two at a
time seems rather arbitrary and disallows some nice combinations
like <=> and =%z, However, it is obviously not a good idea to
use long combinations, since it is not easy to read them. For
example using both 'EEREEEY  and RERERER would reduce
readability.)

Note however that the following symbols already have built in
meanings, and may not be used in any other way:

()[1,5:.°>V

When the characters ‘&', ' and "' are not available, they will
be represented by '=z=', '->' and ' requctively, in which case,
these combinations of characters may not be redefined.

The remaining class of symbol is the icon. Icons are symbols
whose values and types are determined solely from the text of the
symbol. There are currently three types of icon for Ponder.
The simplest is the character icon, which is written as an
apostrophe, followed by a representation for a particular
character. Thus

‘a

is a character icon, and stands for the letter a. To enable the
representation of non-printing and other difficult characters,
character representations include escaped characters, which are
written as a further apostrophe followed by another character,
Some standard escaped characters are:

1w for ™

" for !

's for space
't for tab

so that

"y

is the character icon for apostrophe.

Syntax



Ponder and its Type System 13

To simplify the inputting of text, there are string icons. A

string icon is represented as a quotation mark, followed by a
series of character representations, and ending with a further
quotation mark. Character representations in strings are the
same a8 in character icons, with the addition that an apostrophe
followed by 1layout 1is remcved up to the next non 1layout
character. This is to allow long strings to be printed on more
than one line. Hence

*A string icon with a '""line!
break'™ in it"

is the string 'A string icon with a "linebreak™ in it'. Note
that all layout is removed, so that to insert a space at a line

break it is necessary to leave the space before the apostrophe,
as in:

"Another icon with a line !
break in it®

which means the same as '""Another icon with a line break in it"'.

The only other icon is for digit sequences, which are represented
by combinations of digits, for instance:

52

j.2 Declarations

There are two ways of giving a value a name. The first is as
the parameter of a function (which is obviously necessary), but
the second is by means of the 'LET' declaration, for example

LET three = 3;

Which declares the name 'three' and binds it to the value 3, and

to have the type 'INT', so that further ocurrences of the name
'three' mean exactly the same as 3. The general form is

LET name ® expression; ...

Note that the name is declared AFTER the expression, so that, for
example

Syntax y



Ponder and its Type System

LET x = 3;

IET x 2 x + 1;

x

has the value Y4, and not infinity.

Semantics

LET declarations may be transformed into lambda expressions:

LET name * expression_1; expression_2

becomes

(Jname. expression_2) expression_1

4.3 Functions

As in lambda calculus, expressions in Ponder may be names, or
applications or functions (but see below for more). Names we

have seen already, and applications are exactly as described for
lambda calculus above.

Functions are represented differently, however. Since Ponder is
a typed 1language, all function parameters must have type
definitions, so to simplify the form of functions we have a
' different syntax.

BOOL b =3 not b

is a function, and specifies that the parameter, which is called
' is to be of type 'BOOL', and has the value 'not b'. (It may

help to pronounce '>' as "returning".) Within the body of a
function

TYPE name > body

'name' may be used where any expression of type 'TYPE' could be
used. Hence we may declare named functions as in: '

LET and ®* BOOL a =5 BOOL b —>
IF a
THEN b

ELSE false
FI

Syntax



Ponder and its Type System 15

Semantics

To transform a Ponder function into a lambda function:
TYPE name > expression

beccmes

Jname. expression

R . Casts
A further form of expression is the cast:
TYPE: old_expression

is an expression which has the type 'TYPE', and the same value as
'old_expression'. Note that this is purely an operation on types,
and has no effect on the value of the expression, so the value of
the expression must be suitable as an object of type 'TYPE' For
example

FUHGUS:a_pushroo-

is an expression whose type is 'FUNGUS', and is valid if every
value that 'a_mushroom' can be is also a 'FUNGUS'

Semantics

TYPE: expression
becomes

expression

Section 5: Types

Ponder types are similar to the types of MacQueen and Sethi, but are
restricted in order to make mechanical type checking possible, and
include fewer built in type constructors. The reader is referred
to [MacQueen 82] for a meore formal treatment of a similar type
theory.

Types 5



16 Ponder and its Type System

Types in Ponder are constructed from other types by means of
'constructors' and ‘'generators', and by the introduction of named
types.

5.1 Function Types

The most obvious constructor is that for functions, which is
written *>' (ef Scott [Stoy 771). Thus if 'LEFT' and 'RIGHT' are
both types, then 'LEFT —» RIGHT' is the type of a function taking
objects of type 'LEFT' to objects of type 'RIGHT'. Note that '>'
associates to the right, so that 'A =5 B —» C!' means the same as
'A > (B> C)', and that as with expressions, parentheses serve
only to group things together, so that (D - E) > F' is
equivalent to '({(D => E)) =5 F)', but is probably easier to read.

5.2 Polymorphic Types

One way of introducing a named type is to allow it to be any type
at all. This is done by means of the quantifying constructor 'V'
(pronounced "for all"), which introduces a name within the rest
of a type or expression. Hence '¥wI. I > I' is a type, which
means "for all types 'I', take an object of type 'I', to another
object of type. 'I'"™ This is the type of the identity function,
which I will now declare as an example:

LET identity = WVI. I i = I:1i;

The name introduced in this way is known as the variable in which
the type is quantified, and things 1like 'VWT.! are known as
quantifiers. (This type corresponds roughly to the ML type
'® =5 ®) However, the function which takes a selector function as
an argument could be written:

LET £ = (WS. S > S —> S) select &>
INT i -5 BOOL b —>
pair (select 1 i) (select true b)

A further note about binding:

The variable introduced by a quantifier exists as far to the
right in its type as 1is possible, so '¥YT. T > BOOL' means the
same as '"wT. (T = BOOL)', and takes any argument, whereas
(YT, T) =5 BOOL' demands that its argument has type 'UT. T' and
hence cannot be expressed in ML, Note that it is mainly in this

5 Types



Ponder and its Type System 17

respect in which Ponder types differ from the types in ML, in
that a quantifier introduces a variable 1locally within a
particular type, whereas in ML all type variables are effectively

bound at the outermost level, MacQueen & Sethi's system also
allows local type quantifiers,

5.3 Type Generators

The final kind of type constructor is the the type generator.
These are declared using declarations similar to:

TYPE IDENTITY ®= VI. I => I;

This declares a generator 'IDENTITY' which has no parameters, and

which means the same as 'VI. I > I Generators may also have
parameters:

TYPE ARROW [LEFT, RIGHT] = LEFT -» RIGHT;

so that 'ARROW [BOOL, BOOL) means the same as 'BOOL -» BOOL!, and
'TARROW [INT, REALY is the same as 'INT —> REAL', and so on.

Finally Ponder allows types to be recursive, so we can have
declarations like

RECTYPE INFINITE LIST [THING] = PAIR [THING, INFINITE LIST [THING]];

which means that 'INFINITE LIST [INT]' means the same as
'PAIR [INT, PAIR [INT, PAIR [INT, ...1]1]1' (except that it is easier
to see where the recursion goes than deciding what '...' should
mean, (or writing it out in full, which would take too long!)).

Note, however, that 'RECTYPE' is intended %to declare generators for
recursive types rather than reéursive functions returning types,
hence applications of the generator being declared are restricted
to be to the parameters declared within the declaration, and
parameters may not be generators. For example:

RECTYPE WRONG [T] = WRONG [T —> TI;

is invalid. These restrictions are necessary to make mechanical
compile time type checking possible, since without them type
generators would be as powerful as the lambda calculus, and hence
comparing generated types would be as difficult (undecidable, in
fact) as comparing two functions.

Types 5



18 Ponder and its Type System

Section 6: Relationships Between Ponder Types

It is now necessary to consider which combinations of functions and
arguments "make sense" and should be allowed (and if so, what is the
type of the result?). One would 1like to be allowed to do the
following:

LET identity = VI. I 1 = I1:1i:
identity something '

and it is clear that it does not matter what the type of 'something'
is, and also that whatever it 1is, the type of the expression
'identity something' is going to be the same. Hence if 'true' has
type 'BOOL' then 'identity true' is valid, and also has type 'BOOL'.
If we define 'y' as in: '

RECTYPE GENY [T] = GENY [T] > (T > T) =5 T;

LET half y * VT. GENY [T] part_ y > (T=> T) f 5> T:
f (part_y part_y f);

LET y ®* half_ y half y;

then it is not easy to see whether
y identity
is valid, and if so, what is the type of 'y identity'?

A more helpful example is

LET apply boolean operation_to_true * (BOOL - BOOL) op -> BOOL:
op true;
apply_boolean_pperation_ﬁo_prue identity

since it is clear that although 'op' is specified as being of type
BOOL —> BOOL', 'identity' will work just as well. The notion being
used here is that of the 'generality' of a function. If we require
a function of type 'BOOL =3 BOOL' in some situation, it is always safe
to use the function 'identity' instead, but we can use 'identity' in
situations where a function from 'BOOL' to 'BOOL' will not work, so
that 'identity true' has type 'BOOL' but 'identity 3' has type integer,
and expressions such as 'mot 3' are invalid. We can hence say that
the function 'identity' is more general than any function of type
BOOL > BOOL', or that the type 'WT. T => T' is more general than the

type 'BOOL -5 BOOL:'. This reiationship is defined more rigorously
belcw.

6 Relationships Between Ponder Types



Ponder and its Type System 19

Thus an object is an acceptable argument to a function if the type

of the object is more general than the type of the parameter
specified in the declaration of the function.

The non-mathematical reader may like to skip to the end of this
section. '

For the definition:
The notation

means If 'p' is proven, deduce 'q'.

Tn' are names of types, either in quantifiers or bound at an outer
level,

Xn' are specifiers of types,
Gn' are generators,

and '"VT, U.! is the same as 'VT. VU.'
(X means X1, X2, ...)

™' is read 'more general (or the same as)', and 1! means 'is defined
as'

The following rules define the relation:

R1. Reflexivity
K1 2> K1

R2. Transitivity

(K1 > K2) & (K2 2> K3)

K1 > K3

R3. Instantiation

VvT1. G [T1] > G [K]

Relationships Between Ponder Types 6



20 Ponder and its Type System

R4. Generalisation

(K >G [T]) & T not free in K

K> VT G [T]

R5. Function

(E3 > K1) & (K2 > KU)

K1 => K2 > K3 = K4

R6. Result

VI.VILG [T1] = G1 [T1, T 2 VI1.G [T1] - VT.G1 [T1, T]

If T is not free in 'G!
R7. Recursion

K1 > K2 => G [K1] > K2 & K3 = G [K3]

K3 > K2

('a => b' is used here to mean 'b' may be deduced from the assumption
a')

R8. Expansion

G [K] = K

G [K] 2K &K >G [K]
(where 'K' may involve 'K')

R1 simply states that a specifier for a type represents a type which
is more general or the same as itself

6 Relationships Between Ponder Types



Ponder and its Type Systenm 21

R2 indicates that the relation is transitive.

R3 notes that a function which works for all types is more general
than one which only works for one type.

R4 states that if a type 'K' is more general than some function of
K1, for all types 'K1', then 'K' is also mcre general than the
generalised version of that funection.

R5 is perhaps a little more difficult. At first one might believe
that functions requiring more general parameters might me more
general. However, this corresponds to a greater restriction on the
applicability of the function. For example, if we have:

LETu=Xx—- _..:
LET v 2 Yy-= ...

with 'Y > X' Within the body of 'u' 'x' may be used in any situation
where an object as general as 'X' is needed. Similarly 'v' may use
its argument as an object of type Y. Hence 'u' will only work if
its argument is more general than 'X', and 'v' will only work for
arguments more general than 'Y\ But 'Y > X', so all the objeects to
which 'v' may be applied are also objects to which 'u' may be applied,
hence 'u' is more general than 'v'. Thus R5 states that a function
which requires less of its argument is more general.

R6 shows that a quantifier which does not appear in the parameter
specifier of a function can be moved to be in the result (and so on

until it 'drops off the end' if it does not appear in the specifier
at all).

R7 allcws the comparison of recursive types.

R8 gives a slightly more formal description of the meaning of
definition.

6.1 Validity of Application

Using the definition of '>' we can now specify that an argument of
type 'K' is acceptable to a function whose type is 'Ks' if

Ks > K => Kr,

for some (see Section 6) Kr.

since this is true if 'K' is more general than the specifier for
the parameter of 'Ks' (if it has one).

Relationships Between Ponder Types 6



22

Ponder and its Type System

6.2

The following properties are straightforward consequences of the

rules:

Proposition 1

VH' _'r_zo G [2_1' 1_2_] -:'Vlg! _Uo G [I_]! _'12]

(where 'K1 £ K2' means 'K1 > K2 & K2 > K1), i.e. The order in
which quantifiers appear in a type specifier is irrelevant to its

meaning.

Proposition 2

VI,T1.G1[T] = G2[I,T1] § VI. G1[T] =5 VT1. G2[T,T1]

Section 7: Properties

We may now examine the properties of some types.

7.1 Lemma 1:

(VT. T) > K for all K
Proof:
Follows immediately from R3

Hence an object of this type is acceptable as an argument to any
function, and no object other than one of this type is acceptable
for this type. Thus the only way of creating an object of this
type is to declare something like:

LET bottom ® y identity;

(With 'y f' reducing to 'f (y f)'; hence 'y identity' reduces to
'identity (y identity)', and to 'y identity' again, and so on.)
which corresponds to a non terminating computation (i.e. there
are no values of this type).

Properties



Ponder and its Type Systenm 23

7.2 Lemma 2:

If TYPEB = (VT. T) > B
Then K1 > B & K2 > B & ... => G [K] > B for all G [K]

Proof:

By structural induction on G [K]
Case 1t

G [K] * Ki
Follows immediately from the assumptions.

Case 2:
G [K]l ®» G1 [K] - G2 [K]

By Lemma 1, WT. T > G1 [K]
By induction, K1 > B & K2 2B & ... => G2 [E] 2 B,

Hence by R5,
K1 >B&EK22>B¢& ... => G1 [E]"?GZ [E]Z(VT.T)")B

by R8, R2
K1 >B&K22>B&... =>G1 [K]>G2 [K]2>2B

Case 3:
G [K] ®= VT. G2 [K, T]

By induction
K1 >B&EK2>B& ... $&T>B =>G2I[K, T]1>8B

Hence by R2, R4:
Kt >B&K2>B& ... &&T>B =>VT.G2 [k, T] > B

Case I:

G [K] = G3 [G [KI]

Properties 7



24 Ponder and its Type System

By induction:
K1 >B&EK2>B& ... G [K]>B =>G3I[G [K]]>B

Hence:
K1t >DB&EK2>B¢& ... => (G [E] > B =>G3 [G [E]] > B)

Hence by RT:
K1 >B&K22>B & ... => (G3 [G [K]] > B)

QED.

Note that if 'G' is parameterless, we have
G>B

since 'K' is empty.

It is clear that, since any object may be applied to an object of
type 'WT.T', and if it returns at all, it will return an object
with the same property, any object is acceptable for 'B'

Section B: Result Types

it how remains to answer the question "What is the type of the
result of applying some function to some argument when the
application is valid?n.

We begin by noticing that if there are no quantifiers on the outside
of the type of the function, i.e. it is of the form 'Ks > Kr', then
the type returned is clearly the result type 'Kr'. For instance, if
we have: '

LET true 2 BOOL...:
LET bint » BOOL b - INT:
IF b
THEN 1
ELSE O
FI;

then 'bint (true)' has type 'INT'.

8 Result Types



Ponder and its Type System 25

We may also notice that if a type is compared with one in which
there are free names, the relationship may be dependant upon some
censtraints on the values of the variables. Hence if we compare
BOOL -> BOOL' with the parameter type of 'VI. (T > T) > T > T
(that is (T => T)') then 'BOOL => BOOL > (T => T)' is true if both
BOOL > T' and 'T > BOOL!. We could consider that the result type
would be the mcst general substitution of variables into the result
type within these constraints. This seems to work, since for
example in

LET identity » VI, I i = I:1i;
LET true ® BOOL: ...
identity true

we have 'BOOL 2 I', and hence the most general type for the result
would be 'BOOL'. Unfortunately this does not always make sense, An

example is:

LET f o WYT. ((T > T) > T) thing —> T: something non obvious;
LET x = (INT - BOOL) ib —> BOOL: something less odd;
f x

since '(BOOL —» INT) > BOOL > (T > T) > T is true if both
BOOL > T' and 'INT > T', and it is possible that the only 'T' for
which this is satisfied is 'B = (WT. T) = B However, since it is
unlikely that such applications were intended, the soclution here is
to add the condition that an application is only valid if the type
which satisfies the constraints is in the set of constraining types.
Hence the above example would be rejected.

There are still some situations in which there is no most general
type satisfying the conditions. An example of this is:

LET £ = VT. ((T > T) > T) thing > T = T: something odd;
LET x = (A > B) bi > A: something equally odd;
f x

In this case we have both 'A > T' and 'T 2 B', and hence 'A > B', but
the result types satisfying the conditions are 'A -> A', and 'B => B!
and everything between, and none of these types is the most general.
In such cases as this the result can be said to have every such
type. Thus the type checker should wait until the result of such
an application is used before deciding which of the types  was
intended. (The present implementation of the type checker does not
do this, however, since such applications appear to be rare.

Result Types 8



26 Ponder and its Type System

Instead it selects one of the possible types by using a similar
scheme to that of ML. It is at present not known whether there are
any meaningful programmes in which this strategy selects an
inappropriate type.)

An alternative approach is found in [MacQueen & Sethi 19821, and is
to allow conjunctions of types. This, however tends to result in
very complicated types, with little gain for practical applications.

One final problem is that having chosen the result type in this way,
it is possible that the bounds on a type variable were in terms of
that variable, for example 'A > A -3 A', which would be solved by
putting 'A 2 A > A" As far as is known, most of the examples in
which this situation occurs are nonsensical, and those that make
sense may be expressed in ways which avoid the problem (and are
usually clearer, for example 'y' above). Given this, it was decided
that the type checker should not 'invent' generators as solutions to
(in)equations 1like this, and should reject function applications
which produce them (as does ML).

An example of this case is:

LET £ = WA. ((A -3 A) > A) thing —> Az ...
LET z 2 VTI. (T2 T) g>T—>T:...;
f z

which could be solved by putting 'A = A > A' in the result, but is
instead rejected.

Section 9: Useful Types

The reader may have noticed +that I have said nothing about
brimitive' types in Ponder. This is because there are none. Since
it is possible to represent any kind of cbject with an appropriate
functional data structure (as in Gedanken [Reynolds 70J]), it is not
strictly necessary to make any type primitive. For example, we
might represent booleans as:

TYPE BOOL = \wB. B —> B —> B:
LET true = WVB.Bt - B f = B: t;
LET false = WB.Bt > B f — B: f;

LET if » BOOL b -5 VT. T then_part => T else part —> T:
b then_part else part;

9 Useful Types



Ponder and its Type Systenm 27

Note that the definition of 'if' relies on normal order evaluation,
which is the order of evaluation defined for Ponder (otherwise the
‘then' and '‘else' parts would always be evaluated). Thus 'true' is
the function which retains its fi}'st argument and discards 1its
second, whereas 'false' retains its second. v

It would however be desirable to have types such as boolean built in
to the implementation, so that programmes may take advantage of
properties of the hardware. Unfortunately 'BOOL' as represented
above has slightly different properties from booleans, since it
includes several objects which fail to terminate if applied. Also
Yf' may be given arguments other than (functions which evaluate to)
one of the objects 'true' or 'false'. Since this criticism applies
to functional data structures in general, it is clearly necessary to
provide a mechanism to prohibit wunintended applications. The
proposed mechanism is to allow the programmer to state that a
particular generator is to be sealed, so that it is no 1longer
equivalent to the type which it generates. Thus 'BOOL' might be
declared:

9.1 BOOL

CAPSULE TYPE BOOL = W¥B. B > B = B;

LET true ®» BOOL: \yB. B t 3 B f =3 B: t;

LET false = BOOL: ¥YB. Bt > B f —> B: f;

LET if = BOOL b =5 YT. T then_part —> T else_part > T:

b then_part else part;
SEAL BOOL;

which means that 'true' and 'false' are the only objects of type
'BOOL', and that 'if' is the only function which is allcwed to take
advantage of the representations of 'true' and 'false'. Note that
only objects whiech have been declared to have type 'BOOL'
explicitly retain the type 'BOOL' after 'BOOL' is sealed, so that
if the declarations included

LET spurion = WYB.Bb > B f 5 B:y i;

‘spurion' would only have type '¥B. B -> B - B'. Conversely,
objects which have been stated to be of type 'BOOL' lose their
relationship with the representation of 'BOOL' after the 'SEAL', so
that one may no longer apply 'true' to anything.

Useful Types 9



Ponder and its Type System

Similarly there are no primitive data structures, and we might
declare:

9.2 PAIR

CAPSULE TYPE PAIR [T1, T2] = WwU. (T1 > T2 -> U) = U;
LET pair ® W¥T1, T2. T1 t1 —> T2 t2 —> PAIR [T1, T2]:
YU. (Tt > T2 => U) u > U:
utltz

LET left ® WT1, T2. PAIR [T1, T2] p = T1:
p (VT1, T2. T1 t1 = T2 t2 =5 t1);

LET right ® WvT1, T2, PAIR [T1, T2] p => T2:
p (WVT1, T2. T1 t1 > T2 t2 > t2);
SEAL PAIR;

representing 'pair's as functions which take unpacking functions
as arguments. Thus for example:

left (pair a b)

Reduces to:

pair a b (VT], T2. T1 t1 > T2 t2 = t1)
to:

(VT1, T2 T1 t1 > T2 t2-> t1) a b

to:

(vT2. T2 t2 5 a) b

to:

a

The rules for comparing capsules are straightforward: if the
names of the two capsules identify with different generators,
then they are incomparable. If the names identify with the same
generator, then compare the arguments as if comparing the body of
the generator with the two sets of arguments substituted.

We now have means of representing 'true' and 'false', and 'PAIR's of
things, so it should not be too difficult to represent bit
patterns, but what about 'UNION's?

Useful Types



Ponder and its Type System 29

9.3 UNION

CAPSULE TYPE UNION [L, R] = WYE. PAIR [(L = E), (R = E)] = E;
LET inject 1 ®» VL. L 1 => VR. UNION [L, R]:

VYE. PAIR [(L - E), (R = E)] p—> E:

left p 1;

LET inject r *# VR. R r => VL. UNION [L, R]:
YE. PAIR [(L =5 E), (R =5 E)] p > E:
right p r;

LET choose ® WL, R. UNION [L, R] u —>
VE. PAIR [(L = E), (R > E)]l p =
u p;

SEAL UNION;

The above implements disjoint unions of two types (which may
either or both be 'UNION's of other types), as functions which
remember an object of one of the two types, and take a 'PAIR' of
functions, one for each type. Thus if 'left_thing' has type
'LEFT', 'right_thing' has type 'RIGHT', and 'u 1l r' has type
'UNION [LEFT, RIGHTY',

inject_1 left thing

creates a '"WwR. UNION [LEFT, R]', ie. a union of ‘'LEFT' and
anything,

inject r right thing
creates a 'WwL. UNION [L, RIGHT]', and

choose u 1 r
(pair function_ to_apply_ if left
function_to_apply if right)

will apply to the element 'function_to apply if left’ or
'function_to_apply if right' as appropriate.
9.4 LIST

As a final example of the types of functional data structures,
here is one version of lists:

Useful Types 9



30 Ponder and its Type System

LET abort = y identity;
CAPSULE RECTYPE LIST [T] # VR. (BOOL > T = LIST [T] > R) = R;

LET nil ® WT. LIST [T): WVR. (BOOL = T =5 LIST [T]1 > R) f =5 R:
f true abort abort;

1]

LET cons V¥T. T new_head —> LIST [T] tail -> LIST [T]:
WYR. (BOOL =% T =5 LIST [T]1 > R) £ —> R:

f false new _head tail;

LET head ® VT. LIST [T]11 > T:
1 (BOOL null => T h => LIST [T] tail —> h);

LET tail %¥T. LIST [T] 1 - LIST [T]:

1 (BOOL null > T h = LIST [T] tail > tail);

LET null # VWT. LIST {T] 1 —> BOOL:
1 (BOOL null => T h => LIST [T] tail —% null);

SEAL LIST;

In which a list is represented as a function which applies its
first argument to a boolean (which is 'true' if the list is 'mil'),
~the head of the list, and to another 1list, which is the tail.

Note that 'CAPSULE' and 'SEAL' are not brackets, so that the areas
where two capsules are open 'may overlap. However, if you leave the
seal off a capsule, you can expect the compiler to complain, since
its contents are likely to spill out and ruin your programme.

Section 10: Syntactic Sugar

The language so far described is rather dry, and some things would
be a little tedious to do. Hence Ponder includes some mechanisms
for introducing new syntactic forms.

10.1 Infix Operators The simplest form of syntactic sugar is to
allow infix operators. First the symbol to be used must be
declared as an operator, and given a precedence over other
cperators and a directicon for asscciation.

10 Syntactic Sugar



Ponder and its Type System 31

PRIORITY n symbol ASSOCIATES direction:

Here 'n' is a nonzero digit with 't' being the most binding,
‘symbol' is either a bold name other than a keyword, or is a

"Special symbol", and 'direction' is either 'LEFT' or 'RIGHT'. Then
We can associate an expression with the symbol.

INFIX symbol = expression;
and
TYPEINFIX symbol = NAME OF GENERATOR;

After such a declaration, the symbol may be used as an infix
version of the expression or type. So we might have:

PRIORITY 5 - ASSOCIATES LEFT;
PRIORITY 3 ® ASSOCIATES RIGHT;

INFIX - = subtract;
INFIX & = times;

after which 'a - b - ¢ means ‘subtract (subtract a b) c',
'a # h ®# o' means 'times (a (times b ¢))' and 'a ®# b - ¢ ¥ d' means
'subtract (times a b) (times ¢ d)'.

Further examples:
PRIORITY 5 >< ASSOCIATES LEFT;
" TYPEINFIX >< = PAIR;

LET or # BOOL a => BOOL b = if b true a:
INFIX OR = or;
LET implies = BOOL a —> BOOL b — (not a) OR b;

It would be better if operators were not given priorities, but
that their binding power were expressed in relation to other
operators, but it is not yet clear what the notation for this
should be.

10.2 Prefix Operators

Similarly we can have prefix operators:

Syntactic Sugar 10



32

10

Ponder and its Type System

PREFIX - ® minus;
so that '-1' means 'minus 1'.

Prefix operators differ from functions in that they may be
overloaded, and that they bind differently. Thus 'minus minus 1'
means '(minus minus) 1', whereas '- - 1' means '- (- 1)'.

10.3 Bracketing Operators'

The final kind of operator goes round the outside:

LET identity = IT. T t - t;
BRACKET BEGIN END = identity;
BRACKET IF FI = if_ﬁhing:

so that 'BEGIN expression END' means the same as ‘'identity
(expression)'. Note that for a function to be infixed, it must

have a type which, when it is applied once, yields another
function.

10.%8 Overloading

It also would be inconvenient if one had to have a different name
for every type of equality function (like 'equals string string'
or 'equalq_int_intﬁ, and indeed, programmes would be difficult to
read. Hence any kind of operator ‘may be overloaded on the
type(s) of its argument(s). Hence we might have:

LET equal bool bool = BOOL a —=> BOOL b ~> if a b (not b):
INFIX ® equal_bool bool;

INFIX INT a = INT b > ...

INFIX = STRING a —» STRING b = cess

PREFIX — = INT i » cee}

PREFIX — = REAL r — ceed

After which all of ™s® = "s"' ‘trye = true' and '3 = 3' are valid.
Note that the overloading is purely syntactie, and that special
symbols are not objects, merely syntactic marks.

An overloaded operator application identifies with the mocst

recently declared version c¢f the operator for which an
application is valid.

Syntactic Sugar



Ponder and its Type System 33

10.5 Pairs

Pairs are however, known more intimately to the compiler. This
is to allow "Colateral Declarations™ which have proven to be very
useful in functional languages. Hence

LET a, b » some pair;
means the same as

LET Invisible Name * some pair;
LET a # left Invisible Name;
LET b * right Invisible Name;

(Where Tnvisible_ﬂame'is intended to be some name which will not
be visible to the rest of the programme).

Although ') could have been declared as an infix operator for
‘pair’, it was decided to build this one facility into
declarations, since the more general notion of declarations of
which this is a special case does not fit readily with the
semantiecs of the 1lambda calculus, and hence would require
something too complicated to be included in Ponder.

Similarly if the argument to a function is a pair, the parts of
the pair may be given names, as in

LET swap = ¥T1, T2. T1 a, T2 b > b, a;

Note that ', associates to the 1left, so that 'a, b, ¢' means
'‘pair (pair a b) c'. This is hardly important, since the

declarations work the same way, so that
LET one, two, three ¢ 1, 2, 3;

has the obvious effect.

10.6 Recursive Objects

A further form of syntactic sugar is the recursive object
declaration:

LET _REC factorial ® INT n =5 INT: IF (n <= 1)
THEN 1

ELSE n ®# (factorial (n - 1))
FI

Syntactic Sugar 10



34 Ponder and its Type System

declares the factorial function.
Semantics
LET REC name ® expression_1; expression 2

means the same as:

(Jname. expression 2) (y (lname.expression_1))

where

y * M. (. £ (g g)) ()e. £ (g g))

Section 11: Separate Compilation

In the first versions of the Ponder compiler it will be necessary to
allow the programmer to split a programme into several pieces. The
mechanism intended for this is similar to that of Algol68c, in that
a programme may optionally begin with 'USING "some-definition-filem
which causes the compiler to read definitions from the file, and may
include expressions of the form '"TYPE: ENVIRON "some-other-
definition-file™', which would cause it to output all the preceeding
definitions into the file.

Section 12: Standard environment

In order to relieve the programmer of some of the initial
definitions, a standard environment file will be provided. This
will include definitions of the types 'BOOL, INT, STRING, CHAR, and of

the generators 'PAIR', 'LIST', and possibly some others, together with
definitions of some useful infix operators, such as '+', '-', and so on.

Section 13: Example

I now give a complete definition of the construction for
TF... THEN...ELSE...FI%

13 Example



Ponder and its Type System 35

CAPSULE TYPE IF_FI [T] ® T;

CAPSULE TYPE BOOL = VT. T > T 2> T;

CAPSULE TYPE TE [T1, T2] = PAIR [T1, T2];
BRACKET IF FI = VT. IF_FI [T] if_fi —> T: if_fi;

PRIORITY 9 THEN ASSOCIATES RIGHT;
INFIX THEN = BOOL b = WT. TE [T, T] te => IF FI [Tl
BEGIN LET then_part, else_part :te;
b then part else part
END; B B

PRIORITY 9 ELIF ASSOCIATES RIGHT;
INFIX ELIF = WwT1. T1 then =5 VT2. TE [T2, T2] te —> TE [T1, T2
pair then IF te
FI;

PRIORITY 9 ELSE ASSOCIATES RIGHT;

INFIX ELSE = WT. T1 then > VT2. T2 else —> TE [T1, T2
pair then else;

SEAL IF FI;
SEAL BOOL;
SEAL TE;

Note the use of 'CAPSULES' to ensure that only objects constructed
using the operators may be passed to 'IF ... FI', and the use of
pairs to ensure that the various results may have different types,
but have some least general type in common.

Section 14: Conclusion

This note has shown that locally quantified polymorphic types with
parameterised generators and capsules provide almost all the
facilitates required of a type system.

Some useful kinds of types appear at first to be missing from the
system, STRUCTures being a notable example. However, much of this
can be solved by the use of the mechanism for the overloading of
operators, so that a STRUCTure can be represented by a capsule with

the appropriate number of 'PAIR's, and overloadable functions for
field selectors.

Conclusion 14



36 Ponder and its Type System

CAPSULES' do not provide all the facilities of other forms of
abstract type, in that everything declared within a 'CAPSULE' is
visible from outside. Hiding is, however already provided within
the normal block structure, and is made more palatable with the use
of the syntactic sugar for declarations, for example:

CAPSULE TYPE BOOL » WVT. T > T = T:
LET true, false, if = BEGIN LET true 2 BOOL: WVT. Tt > T £ = T: t;
LET false = BOOL: WT. Tt = T £ = T: f;
LET spurion 2= VI. Tt > T f > T:
’ y identity:
LET if ® BOOL b =5 VT. PAIR [T, T] te —>
T: b (left te) (right te);

true, false, if
END;
SEAL BOOL;

so that 'spurion' does not even appear in the outside world. This

can be improved even more with the use of suitable combining forms
fer declaration [Milne 761.

The author has implemented a parser and a type checker for Ponder.

Section 15: Acknowledgment
The author wishes to thank his supervisor, Dr M.J.C. Gordon for useful

direction, and Dr A.C. Norman for his helpful introduction to
functional programming in general.

15 Acknowledgment



Ponder and its Type System 37

Appendix: Reference Grammar

The grammar is given as a two level grammar [vWijngaarden 75], but
does not attempt to describe the type checking or scope rules.

{Metaprbductions}
EMPTY= .

ALPHAz a;bj;c;d; e;f; g:h;i; jsksl;m
n; o; p;q;r; s; t;u; v W} x;y; zZ.

NOTION= ALPHA; NOTION ALPHA,

LEVEL= iy ii; iidi; iidii; 1iidid; iiiii i;
11idf ii; iiiii iid; 1idiid diidi.

PRIO= prior LEVEL ty.

AS3S0OCxz: left; right.

BRACKET:: name; parenthesis.

{General Hyperrules}

NOTION list: NOTION; ,
NOTION, comma symbol, NOTION list.

{Predicates}

provided that PRIO1 greater than or equal PRIOZ2:
provided that PRIO? greater than PRIO2;
provided that PRIO1 equal PRIO2,

provided that PRIO1 equal PRIO1: true.

provided that prior LEVEL1 LEVELZ2 ty
greater than prior LEVEL3 ty: true.

true: EMPTY.

{Productions}
programme: unit.

Reference Grammar 15



38 Ponder and its Type System

unit: declaration, semicolon symbol, unit;
representation.

declaration: type dec:
capsule dec;
seal capsule;
operator dec;
name dec,

operator dec: priority dec;
infix declaration;
type infix declaration;
prefix declaration;
bracket declaration.

priority dec: priority symbol, integer icon, new operator,
associates symbol, direction.

infix declaration: infix symbol, new operator,
is defined as symbol, representation.

type infix declaration: type infix symbol, new operator,
is defined as symbol, bold name symbol.

prefix declaration: prefix symbol, new operator,
is defined as symbol, representation.

bracket declaration: bracket symbol, opening BRACKET symbol,
closing BRACKET symbol,
is defined as symbol, representation.

new operator: PRIO ASSOC operator.

PRIO ASSOC operator: PRIO ASSOC operator symbol;
PRIO ASSOC bold name symbol.

type dec: type symbol, generator name,
is defined as symbol, type;

rectype symbol, generator name,
is defined as symbol, type.

15 Reference Grammar



Ponder and its Type Systenm

capsule dec: capsule symbol, type dec.
seal capsule: seal symbol, bold name symbol.

generator name: bold name symbol, bound types;
bold name symbol.

bound types: 1left bracket symbol, bold name list,
right bracket symbol.

type: quantified type;
prior iiiii i1ii ty ASSOC map.

quantified type: quantifier, type.
quantifier: for all symbol, bold name list, dot symbol.
PRIO1 ASSOC1 map: solid type;
PRIO2 left map, PRIO2 ASSOC1 operator,
PRIO2 right map,
provided that PRIO1!1 greater than or equal

solid type: type name; type pack; applied type generator.

applied type generator: bold name symbol,
solid type 1list square pack.

solid type list square pack: left bracket symbol,
solid type list,
right bracket symbol.

type name: bold name symbol.

type pack: opening parenthesis symbol, type,
closing parenthesis symbol.

name dec: let symbol, name list,
is defined as symbol, representation.

Reference Grammar

PRIOC2.

39

15



40 Ponder and its Type Systemnm

representation: function rep;
cast;
prior i1iii iiii ty ASSOC application.

function rep: quantified named map;
named map.

cast: type, colon symbol, representation.
quantified named map: quantifier, function rep.
named map: named parameters, arrow symbol, representation.

named parameters: typed name;
named parameters, comma symbol, typed name.

typed name: so0lid type, name symbol.

PRIO1 ASSOC1 application:
prefix application;

PRIO2 left application, PRIO2 ASSOC1 operator,
PRI1O2 right application,
provided that PRIO1 greater than or equal PRIO2.

prefix application: operator, prefix application;
function application.

function application: expression;
function application, expression.

expression: name symbol:
character icong;

string icon;
integer icon;
bracketed expression.

bracketed expression: opening BRACKET, representation,
closing BRACKET.

{end of productions}

15 Reference Grammar



Ponder and its Type System 41

{The representation of a NOTION-symbol is wusually obvious from
NOTION. In the case of PRIO ASSOC operator-symbols, however, PRIO
and ASSOC are determined by the priority declaration for the symbol

in question}

Reference Grammar

15



References:

[Clarke 82]: T.JM. Clarke,
Proceedings of the 1980 Lisp Conference,
The Lisp Company, 1982

[Demers 79]): A.J. Demers & J.E. Donahue,
Revised Report on Russell,
Department of Computer Science Cornell University, 1979

[Gordon 79]: M.J.C. Gordon, A.J. Milner, C.P. Wadsworth,
Edinburgh LCF,

Springer Verlag Lecture Notes in Computer Science No. 78, 1979

[Hindley 72]: Hindley & Seldin,
Introduction to Combinatory Logie,
Cambridge University Press, 1972

~[MacQueen 821: MacQueen & Sethi, ,
A Semantic Model of Types for Applicative Languages,
Bell Laboratories, 1982

[Milne T763: R. Milne & C. Strachey,
A Theory of Programming Language Semantiecs (1.9.3),
Chapman and Hall, 1976

[Reynolds 701]: J.C. Reynolds, :
GEDANKEN — A Simple Typeless Language Based on the Princlple

of Completeness and the Reference Concept,
CACM Vol. 13 No. 5, 1970

[Stoy 771 J.E. Stoy,
Denotational Semantics: the Scott-Strachey Approach to
Programming Language Theory;
MIT Press, 1977

[vWijngaarden 75]: van Wijngaarden et. al,,

The Revised Report on the Algorithmiec Language Algol 68,
Springer Verlag, 1975



