Technical Report R RAS

Number 313

Computer Laboratory

Proof by pointing

Yves Bertot, Gilles Kahn, Laurent Théry

October 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1993 Yves Bertot, Gilles Kahn, Laurent Theéry

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Proof by Pointing!

Yves Bertot Gilles Kahn Laurent Théry
INRIA-Sophia-Antipolis University of Cambridge

Abstract:
This paper presents a principle for a natural and effective use of the mouse
in the user-interface of computer proof assistants.

tThis work was supported in part by the “Types for Proofs and Programs” Esprit Basic
Research Action, by SERC grant GR/G 33837 and a grant from DSTO Australia.

1 Introduction

A number of very powerful and elegant computer programs to assist in making
formal proofs have been developed in the last decade. These systems include
ever more sophisticated automatic proof tactics. Nevertheless, proofs that
can be carried out without any user directions are the exception rather than
the rule. In this paper, we present a general principle called proof by pointing
that allows the user to guide precisely the proof process with the mouse of his
workstation. This idea is widely applicable and has been implemented by the
authors in user-interfaces for several proof development systems: Amy Felty’s
Theorem Prover [Felty89], Coq [Coq91], HOL [HOL88] and Isabelle [Isa90].

The paper is organized as follows: first, we give an example of the kind of
interaction that results from adopting our principle. Then the second section
describes rigorously the principle, its logical foundations and simple conse-
quences. The third section examines potential difficulties encountered when
implementing the idea in a variety of proof assistants. Finally, the last section
discusses possible extensions.

An Example

In contrast with symbolic algebra systems such as MAPLE [Maple] or Mathe-
matica [Matica] that operate as symbolic desk calculators, proof development
systems usually work in a mode where the user sets a goal and attacks it in
a backward-chaining (or goal-directed) manner: the user tries to eliminate
one of several pending subgoals by applying a theorem that matches it. In
case of success, the goal is removed from the list of pending subgoals and new
subgoals, that correspond to verifying that the theorem’s hypotheses hold, are
added to the list of subgoals. Of course, the user may follow a strategy that
does not lead to a proof, and need to backt1ack and attempt an alternative
proof.

With standard user-interfaces, the user issues commands to perform such
actions. These commands may be typed by hand or constructed using a
structured editor as in [TBK92] or [Nuprl86]. The idea in proof by pointing is
that the mere gesture of pointing at a subexpression in a subgoal is enough
to synthesize appropriate commands for the system. |

Consider for example the following formula in first order logic, where a and
b are individuals and p and ¢ are predicate symbols, and assume that it is
entered as goal Gy :

(Go) (p(a) V(b)) A (Y2 p(z) D ¢(z)) D (Fz g(=))

3

Formula Gy can be paraphrased in english: if we know that either p is verified
for a or q is verified for b and that p implies q, then there exists an = for which
property q is verified.

The proof of this fact examines the two cases involved in the formula
p(a)V q(b). In the case where p(a) holds, we use the fact Vz p(z) D q(z)
to deduce g(a). Then a is a witness to prove 3z ¢(z) in that case. In the
second case ¢(b) holds, so the witness b is directly available. We will tell the
computer exactly this using only the mouse. :

Starting from Gy, to steer the computer toward the proof, the user points
to subformula p(a) with the mouse. As it occurs within expression p(a)V g(b),
this indicates interest in a case analysis. The proof state changes to include
two new subgoals G; and G :

(G1) p(a), p(a) V q(b), (p(a) V q(b)) A (Vz p(z) D q(x)) F Iz g(z)
(G2) q(b), p(a) V q(b), (p(a) V q(b)) A (Vz p(z) D gq(z)) + 3z g(z)

In our notation, the turnstile symbol - separates the local assumptions from
the conclusion in a subgoal, and assumptions are separated by commas. Nat-
urally, assumptions that are local to a subgoal can only be used to prove this
subgoal’s conclusion.

The user is free to carry on working with subgoal G; or Gy, although G
should be emphasized since p(a) rather than ¢(b) was pointed at initially. In
G1 , since p(a) and Vz p(z) D ¢g(z) hold one can deduce g(a). This inference
step is requested by pointing at subexpression p(z) in G, meaning prove an
instance of p(x) end deduce the corresponding instance of g(z). In the proof
state, subgoal (1 is replaced by Gg:

(Gs) 4q(a), p(a), p(a) V q(b), (p(a) V ¢(b)) A (Vz p(x) D ¢(z)) F Fz q(x)

Now subgoal G5 can easily be dealt with. The fact ¢(a) appears in the
assumptions and we need to prove 3z g(z). The user simply selects g(z)
behind the existential quantifier in 3 with the intended meaning there is a
witness for x in the assumptions of this goal that allows one to prove g(z).
osubgoal G3 vanishes and only G5 remains. Subgoal G5 is handled in an
identical fashion and vanishes as well. As no subgoals remain to be proved,
the result is established. The entire interaction took place without any need
for typing commands. This is not to say that all commands may be eliminated
when using a proof assistant, but rather that they are unnecessary for many
boring logical tasks.

The meaning of mouse designation is not ad hoc. It is entirely determined
by the precise shape of the formulas we are trying to prove. The intuition is
as follows. In goal Gy, expression p(a) is designated by a first mouse click.
Precisely, this expression occurs, starting from the top of Gy :

i) to the left of an implication symbol (denoted by D),
ii) to the left of a conjunction symbol (denoted by A),
iil) to the left of a disjunction symbol (denoted by V).

When pointing at p(a), each one of these facts is exploited in turn:

i) the antecedent of the implication is added as an assumption,
ii) the left part of the conjunction is extracted and added as an assumption,

iii) two subgoals corresponding to the two cases in the disjunction are created,
with either disjunct as additional assumption; the goal created by the
left disjunct is emphasized.

The second mouse click is simpler to explain. In goal G, the user points at
expression p(x). This expression occurs in an assumption and:

i) to the right of a conjunction symbol,
ii) within a universally quantified expression,
iii) to the left of an implication symbol.
As a consequence, pointing at p(z) directs the computer to:
i) extract the right conjunct, |
ii) find a proof of p(z) for some =,
iii) add a new assumption g(z) for the same z, creating Gs.

The last two mouse clicks are even simpler. In goals G5, and similarly in
goal (3, the user points at ¢(z) in the conclusion of the goal, within the
existentially quantified formula. In both cases, the system looks through the
assumptions to see if an instance of g(z) is directly provable. In both cases it
is successful, so the goals are eliminated.

After this intuitive presentation, the meaning of mouse clicks will now be
described formally, taking all usual logical connectives into account.

5

2 The proof by pointing algorithm

To specify rigorously the pointing algorithm, we use Gentzen’s presentation
of logical deduction [Szabo69] in Sequent Calculus. In this formalism, propo-
sitions are represented by sequents, composed of a list of assumptions (this
list is also called a context) separated by the turnstile symbol - from the con-
clusion. The context may be empty. Legitimate inferences are specified by
rules. A rule’has two parts separated by an horizontal bar: a list of sequents,
the rule’s premises, and a single sequent, the rule’s conclusion. A partial
proof is a tree-like composition of instances of the inference rules. When a
sequent is of the form I' - A where A occurs in T', it can be closed and this
fact is represented by drawing an horizontal bar above the sequent. A proof
is a partial proof where all leaves are closed sequents. To start with, we limit
ourselves to the standard logical connectives A, V, D, V, and 3 and take the
familiar inference rules given on Figure 1. The process of building a proof
in a goal-directed fashion is formalized as follows: starting from the propo-
sition to prove, either it is possible to close it, or one picks an inference rule
whose conclusion matches the proposition, and then reiterates the process
non-deterministically on the premises of the rule after appropriate instantia-
tion. At any time during this process, the unclosed leaves of the partial proof
tree are the pending goals of the proof. Hence the proof is finished when there
are no pending goals left.

To construct the proof incrementally, the user is allowed to select a subez-
pression occurring in an arbitrary pending goal. The result of this action
is:

i) possibly nothing,

ii) possibly the growth of the proof tree above the goal containing the selected
subexpression; in that case, a residual subexpression is selected in a
pending goal.

The proof by pointing algorithm defines how the partial proof tree grows
as a result of a selection, and the position of the residual selection. Obviously
when selecting an expression in a given goal, we mean to work on that goal.
Intuitively, when selecting a subexpression o deeply inside the goal, we want -
to somehow bring o to the surface, and leave a residual selection showing
where o is now.

The definition of the proof by pointing algorithm is by induction on the
depth at which the selected subexpression can be found within a goal.

6

A,B,ANB,T'F C I'A I'+B

Aleft: ANB.ITFC A right: ————
left: A,AVB,FAI—VCZ;J{B',_AOVB,FI— c V”gh“pfﬁg F{;ij
> left: 42 B’ngBi:ﬁ 2L s gy LD EE

Y left: A[w};]’zaﬁly ¢ ¥ right _____F; I_“;[Z’X]

3 left: A[m;i]f,prﬁFgF ¢ Jright: _*_WE][:X]

Figure 1: Rules for the basic logical connectives

2.1 Selecting a subterm at depth 1

In a sequent, we define the subterms at depth 1 as the conclusion and all
assumptions. Selecting such terms is taken to mean that a closure involving
the subterm should be attempted. For example, assume we have the following

goal:

p(a),p(b),...+ p(b)

Selecting the first instance of p(b) (an assumption)

p(a),p(b),... - p(b)

or the last instance (the conclusion)

p(a),p(b),... F p(b)

closes the sequent and leaves the residual selection undefined:

p(a),p(b),... F p(b)

Selecting an assumption that doesn’t match the conclusion such as p(a) simply
leaves the goal unchanged and the residual selection on the selected assump-
tion.

2.2 Selecting a subterm at depth n,n > 1

Subterms located at depth n,n > 1 are the descendants of the top logical
connective of either the conclusion or some assumption. The rules of Figure 1
are partitioned into right and left rules. We take selecting in the conclusion
of a goal to mean that we begin to grow the proof tree using a right rule,
and selecting in an assumption that we start with a left rule. Now if the top
logical connective is x we use the s-right (resp. the x-left) rule. In the case of
a conclusion that is a disjunction (V right) we pick the first rule if the selection
is to the left of the connective, the second one if it is to the right.

We rewrite the rules of Figure 1 in a more appropriate manner on Figure 2.
A box around a subexpression means that the selection is inside that box.
The box in a rule’s conclusion means that the rule is applicable only if the
selection is inside. A box in a rule’s premises tells where the residual selection
is after one elementary step. Notice that we have now systematically two left
and two right rules for each binary connective.

We can make the following two remarks on the location of the selection after
one inference rule on Figure 2 has been used to grow the proof tree:

1. the residual of the initial selection is unique,

2. if the selection was located at depth n, its residual is located at depth
n— 1.

From the first remark, we deduce that we can apply recursively the proof
by pointing algorithm to the residual of the initial selection after using one
inference rule. The second remark proves that this process terminates. More
precisely, the process terminates on an attempt at closure. If this attempt
succeeds, there will be no residual selection. If it fails, the selection will
denote the residual of the initial selection after using n — 1 inference rules and
occur at depth 1. In other words, we have been successful in obtaining a goal
where this expression is at the surface.

2.3 Examples

We follow the algorithm on a number of revealing little examples. The selec-
tion is underlined and we use an arrow — to indicate the next goal generated
by the algorithm, when it is unique.

Goal: (p(a) A p(8)) Ap(c) F p(b).
Proof: click on p(b) in the assumption.

(p(a) Ap(d)) Ap(c) Fp(b) — p(a) Ap(d),p(c), (p(a) Ap(b)) Ap(c) F p(b)

8

Alefty:

Alefty :

Vlefts

Vlefts :

D lefty

D lefty :

B,AAB,I'F C

A

AB, T+ C

B

AAB,T'FC

AAN|B

A

I'FC

AVB,'-C B,AVB,I'FC

AlvB,I'FcC

A, AVB,I'+C [BLAVB,I'+C

Av|Blr+c

A>B,I'+[A] B,A>B,IFC

Al>B,r'FC

ADB,I'+A [BLA>B,I'+C

A>[Blrrc

Alz\€]

,Va

ATFC

Vieft:

Vz

Alrrc

Alz\c]

, Az

AT'FC

dleft:

dz

ALI'FC

I'-1A

I'-B

A righty :

It

I'+A

I'+|B

A rightg :

I'-AA|B

I'H1A

V righty

I'-14

I'+-\B

V rights :

. AL
D righty : —=

‘T'FAV|B

B

OB

‘ AT
D rights:

‘'t AD|B

I' | Alz\c]

Y right:

I'+Vz

I [Afz\e]

A reght:

'3z

Figure 2: Rules with selection propagation

= p(a),p(b),p(a) A p(b),p(c), (p(a) A p(b)) A p(c) F p(b)

— p(a),p(b),p(a) A p(b),p(c), (p(a) A p(b)) A p(c) F p(b)

Goal: aVblFbVa.
Proof: clicking to the left on a, the goal a Vb bV a generates two cases:

a,aVbFbVa
b,aVbFbVa

The first goal contains the selection. It is proved by clicking on a in the
conclusion. The second goal is resolved similarly by clicking on b in the
conclusion. The proof has been done with three mouse clicks. Clicking initially
in the conclusion is a dead-end.

Goal: I p(a) D p(a).
Proof: click on either instance of p(a). For example, clicking on the left gives:

Fp(a) D p(a) = pla)+p(a) = p(a) Fpla)

Goal: Fa D (bD (aAb)).

Proof: seeing the outermost a, one wants to click on the innermost one:
FaD> (D (aAb)) = akFbD(aAb) = bataAbd

Here we get two goals (by A right,):
b,ala
b,atb

The algorithm closes the first one and stops for lack of a residual selection,
leaving the user with the second goal. Clicking on the conclusion b finishes
the proof, which needed two clicks.

Goal: FaD ((aDb)Db)
Proof: this proposition is proved with two clicks, either in a “forwards” or
in a “backwards” style. Backwards, one points at the leftmost b.

Fa>((aD>b)Db) > ab(aDdb) Db = adbatb
Here the algorithm produces two goals and solves the second one:

aDbalta

10

badb,akb

The user closes the first goal trivially.
Noticing the outer a, the user could have used the forwards style and clicked

on the inner a :
FaD>((@D>b)Db) =+ at(aDb) Db~ aDbakb
Again the algorithm produces two goals and solves the first one:
aDbalta
ba Db,atb

The user closes the second goal trivially.

To use rules Vleft and 3 right, we postulate the existence of an additional
mechanism that supplies appropriate terms. This can be achieved either by
querying the user or with logical variables and an extension of the closure rule.
The issue is orthogonal to the proof by pointing algorithm and discussed in
the next section.

Goal: p(a) A (Vz p(z) D q(z)) F q(a).
Proof: here again we can do it forwards, clicking on p(z) because we know
p(a) or backwards, clicking on g(z) because we want to prove ¢(a). Clicking

on p(z):
p(a) A (Vo p(z) D ¢(x)) F g(a)
= p(a), Yz p(z) O q(2),p(a) A (V& p(z) D ¢(z)) - q(a)

— p(a) D g(a),p(a),Vz p(z) D q(z),p(a) AVz p(z) D q(z) F q(a)
Here, the algorithm generates two goals;

p(a) 2 ¢(a),p(a), Ve p(z) O q(z),p(a) A Vo p(z) D q(2) F p(a)

¢(a),p(a) 2 g(a),p(a), Yz p(z) O q(z),p(a) A Yz p(z) D q(z) F ¢(a)

The first one is closed automatically, and the second one is closed with one
additional click.
As a final example, let us come back to the proof given in the introduction:

Goal: + (p(a) vV q(b)) A (Vzp(z) D ¢(2)) D Fz g()
11

Proof: The user’s first selection is on p(a), to produce the case analysis.

F (p(a) V q(b)) A (Vzp(z) D q(x)) D Tz g(x)

— (p(a) V q(b)) A (Yzp(z) D g(z)) b Fz g(z)

= p(a) V q(b), Yz p(z) O q(z), (p(a) V ¢(b)) A (Vo p(z) D q(2)) F Fz ¢(2)

There the proof splits in two subgoals, as intended:

p(a),p(a) V q(b), Yo p(z) D g(z), (p(a) V ¢(b)) A (V2 p(2) D q(2)) F 3 q(=)

q(b),p(a) V 4(b), Ve p(w) D q(=), (p(a) V ¢(b)) A (Vzp(z) D ¢(2)) F Tz (2)
The second subgoal is proved by a single click on ¢(z) in the conclusion. To

prove the first subgoal, one clicks on the first occurrence of p(x) just as in the
previous example, and then on ¢(z) in the conclusion.

2.4 Intuitionistic negation

Extending proof by pointing to encompass intuitionistic negation is straight-
forward. The language of logical formulae is extended with the nullary symbol
1 tomean false and the unary negation symbol =. Formula —A4 is synonymous
with A D L. The extension is done in two steps:

i) First, the closure rule is extended to sequents where L occurs as an as-
sumption:

L|r'+¢c - ITFC

ii) Two rules that are immediate consequences of the definition of — are
added: '

-ATHIA) ALTFL
— left: = right : =———
-|ALT'FC 'F-A

These rules have the good properties of the rules of Figure 2 with respect
to proof by pointing. The first rule is included for completeness because in
practice, it is rarely used.

Let us play with a few examples:
Goal: Fz D -z

12

Proof: Clicking on the rightmost z proves this proposition.
F2D>==2 =+ zF--2 - ~zg,2+b L = 2,2tz — —z,0F¢

Goal: F(zV-y)AyD=
Proof: We click on the leftmost z to distinguish two cases

FV-y)Aydz = (zV-y)Aykz — zV-y,y,(zV-y) Ayt s
We are left with the two goals:

z,zVy,y,(xV-y) Ayt

¥,z V-yy, (zV-y)Aytz

The first goal is closed automatically. In the second goal, we see both y and
—y in the assumptions, and express this with one click inside —w:

Wz Voyy sV oy Aybs = o Voy,y, (sVoy) Ay by

= =,z V-yy,(sV-y)Ayky

Goal: - —1-1(513 \% —156)
Proof: surprisingly, this fact is proved with two judiciously placed clicks.

Fo=(zV-z) — =(zV-z)kF L — =(zV-z)FzV-z
= 2(zV-z)F-2 = z,-(zV-z) k- L

The process stops, and we click now on the second occurrence of z to reveal
a contradiction:

z,(gV-z)FL = z,5(zV-z)FzV-z = z,-(zV-z) ke

— JJ,ﬂ((I)V“‘IIL’)l“CI}

13

2.5 Logical equivalence

When A and B represent propositions, the term A < B stands for (4 D
B) A (B D A). Selecting in A may mean (A| D B)A(B D A)or (A D
B) A (B D | A)). Experimentally, we prefer the second choice and include the
derived rules:

A&B,T'HIA| B,A&B,T'+HC _ B,r'+-|A| ATFB
& left, & right, :
AB,I'-C 'HlAi&B
A&B,I'H|B| AJAeB,T'HC . B,TFA ATH|B
& left,: & right, :
A& B\ T'HC '-A& B

2.6 Classical negation

One way to introduce classical negation is to include the rule:

—A|T'F L
F+1A

Absurd right :

There are two difficulties with this rule:
i) it is ambiguous with all other rules
ii) it doesn’t allow the selection to get any closer to the top of a sequent.

To get around this problem, we will only allow this rule as the last one in a
sequence generated by the proof by pointing algorithm: it is applicable only
if the selection is at depth 1, and after applying it, the algorithm stops. We
assume that the interface provides a modifier to the initial selection (another
mouse button, or clicking while shift is depressed). The meaning of this new
click is to bring the subexpression to the surface, perform one step of Reductio
ad Absurdum, and stop. We make the following remarks:

1. if the user selects an expression e with the Absurd click, the algorithm
will stop with —e, possibly instantiated, at top level and selected;

2. after using the Absurd click, the goal is never completely proved; in
particular no truly classical proof can be done in a single click.

14

Let us examine two examples.
Goal: F -z D¢
Proof: first one absurd-clicks on the righmost z, obtaining

-z, -z L

Then, one concludes with a normal click:

e B At R s/ A St e s

Goal: FzV -z
Proof: first, one absurd-clicks on the whole conclusion, obtaining

~(zV-z) bk L

Now the proof is intuitionistic. Selecting the second z we obtain :
“(EV-z)FL = =(zV-oz)kaVaz = —(zV-z) b g
— z,~(zV-z)F L

Selecting the second z again:

z,~(zV-z)FL = z,-(zV-z)bzV-z = z,-(zV-z)Fz

-+ z,(zV-z) b o

These examples show that we have probably carried too far the paradigm
of proof by clicking. The proofs are feasible, but somehow the intuition for
finding the right place to point to has vanished.

Following Gentzen [Szabo69], there is a more natural solution. We could
consider that there is a meta-mechanism, (implemented by a button in the
interface for example) that asks the user for a formula A, and adds formula
AV =A to the hypotheses of the current goal. Alternately, but in the same
spirit, we could keep the following higher order theorem in the environment:

excluded middle : VYP.PV —P
and invoke it using the general mechanism described in the next section.

15

2.7 Theorems

In any serious proof, one reuses one ore more theorems, i.e. results that
have been proved earlier. One can use the mouse to invoke theorems in a
manner that is consistent with proof by pointing. Assume there is currently a
goal where the selection resides, and somewhere a list of theorem statements®
containing the desired theorem t T'. The idea is to click within T' directly. If
the goal was

I'+B

it becomes

r,[T|- B

The validity of this inference is an immediate consequence of the cut rule:

g It4 I AEB
' TFB

Consider again the earlier example:

Goal: F -z Dz

Proof: invoke excluded middle : VP. PV —P for z. We get immediately two
cases:

sz D
g k- Dg

The first case is solved by clicking on the rightmost z, and in the second case
clicking on the inner =z makes a contradiction apparent. The proof needed 3
clicks this time, but it is much easier to follow than the previous one.

2.8 Correctness and completeness

Proof by pointing is correct in a given logic as soon as the rules of Figure 1 are
provable in that logic. The rules are a close variant of familiar systems, such
as system IS used in [Sundholm83]. Thus, proof by pointing is correct in any
logic that is an extension of intuitionistic logic. This category encompasses
most practical logics.

1How this list is created is interesting per se, but immaterial here.

16

Proof by pointing is complete if it makes it possible to prove all formulas
that are provable with other interfaces. Here again, completeness will depend
on the logic implemented by the proof system. A sufficient condition to obtain
this property is to have completeness when clicking only at depth 1 and 2.
This is a cramped style of proof, but it makes all proofs possible.

To keep the spirit of proof by pointing, we suggest the following principle.
Let e be an expression occurrence at depth n and call thread of e the list of
occurrences at depth 1,2,...,n containing e. There should be no difference
for the user between clicking directly on e or stepping leisurely through the
thread of e.

The issue of completeness will arise again in the paper in section 4. To
make proofs less cumbersome, we will want to dispose of certain assumptions.
In doing so, one must be careful not to sacrifice completeness.

3 Implementation

Proof by pointing has been implemented for several proof assistants: Felty’s
theorem prover [Felty89], Coq [Coq91], HOL[HOLSS] and Isabelle [Isa90].
We used the Centaur system [Centaur93] as a toolkit for building interfaces,
mostly for the ability to point at a subexpression with the mouse. As a matter
of principle, we tried not to modify the proof engines at all. This is easier if
the user is allowed to program his own proof tactics. This section discusses a
number of little difficulties and the solutions we propose.

3.1 Basic tactics

The implementation attempts to follow exactly the description of the previous
section. The first question then is to identify the commands that implement
the inference rules of Figure 1. Most proof systems provide the ingredients to
do that, but sometimes a tactic may be eager to perform several steps at once.
For example, the Coq system provides an Apply command for eliminating
implications. Given an assumption H of the form 4 DO (B D (), the tactic
Apply H succeeds only if the goal’s conclusion matches C. Then it performs
a closure and two D left,, creating two goals with conclusion A4 and B
respectively. In most cases, this tactic is very effective for a human user with
a conventional interface. But it is partial to backwards reasoning and it does
not allow us to implement the D left rules correctly. A more atomic Use
tactic was added to Coq to solve the difficulty.

17

The tactics for the 3 right and V left rules raise another problem. When
implementing these rules the expression e that appears in the new subgoal
has to be given. Some proof engines require this term as an argument of the
tactic and we then have to provide interface tools to supply this argument.
Other systems introduce an unknown, basically a logical variable, that can be
instantiated later.

This mechanism is particularly useful in the context of an extension of the
closure rule. When the selection points to an assumption, we might ask for it
to be unified with the goal’s conclusion, i.e. to compute the instantiation of
the unknowns that will allow to use the closure rule. Similarly, if the selection
points at the goal’s conclusion, we may search for an assumption that unifies
with it. The problem with applying this method systematically is that there
may be several assumptions that match differently the goal. An arbitrary
choice may preclude proving another goal.

3.2 Management of the selection

The next issue has to do with managing the selection. It is not immediately
obvious how to do this because proof assistants do not have this notion and
we certainly don’t want to modify their private data structures.

All systems have means to perform logical operations in a goal’s conclusion.
They vary much more in their ways of acting on assumptions. In Coq, as-
sumptions are named and very easy to handle. In other systems, one may refer
to assumptions by rank or by content. Referring to an assumption by content
means that the whole text of the assumption will occur as an argument in
a command. This is safe, but commands may become huge, slowing down
execution. Referring to assumptions by rank makes for shorter commands
but it is less robust. For example, in Isabelle we had to use predictable but
undocumented features of the system.

After applying the basic tactics, we must indicate where the selection has
propagated. If we have control over naming assumptions as in Coq, this is
very easy to implement. In the cases where we use rank or content to refer
to assumptions, there is an alternative solution. The idea is to single out,
in the rules of Figure 2, the parameter that contains the residual selection.
This could be done with a three-place sequent I' H A : C' where A is the
distinguished assumption. In fact, this three-place sequent can be coded with
the existing two-place sequent as I' - A D C. The rules of Figure 2 have been
rewritten on Figure 3 using that encoding.

The proof by pointing algorithm algorithm works now as follows:

18

B,AAB,T'F[4]>C

) I'Hl1A| I'B
Alefty : A righty
I'FIAIANBD C I'FlA|AB
A AANB,T'H|B|>C I'rA I'+|B
Aleftg 1 — 2 A rights :
I'FAA|B|DC . I'AA|B
AVB,I'+|A|>DC B,AVB,T'lC) I'H1A
Vieft; : V right; : ———————
I'HlAlvVB> C I'IAlVB
A,AVB,I'C AVB,I’'-|B{D>C) I'+|B
Viefts : V rightg : —————=——=—
I'AV|{B|(DC I'+FAV|B
ADB,I'+|A| B, ADB,I'+C
S lefty : D b, yA D D,
'~(A[DB)>C
ADB,I'+FA ADB,'+H|B|DC . AT+ B
D lefts: D righty : —————
'(A>|B)> C I'FAD|B
Ve A, "' -{ A[z\e] |[D C I'] Alz\(]
Vieft: Y right: ————=
‘ I'kVYzlAlD C 'Vl A
dz A, I' F| Alz\c] [D C I' H| Alz\€]
dleft: dright: ————==
I'r-3z|A|D C 'z A
-ATHIA 'H{AlD L
= left: = right; ———
I'F-A[DC TFAHA

Figure 3: Modified rules for selection propagation

19

Step 1. If the initial selection is inside an assumption, then move this as-
sumption to the distinguished position in the conclusion with the rule:

r'vlAloB
Al T+ B

D right™ ! :

Step 2. Use the rules of Figure 3. The rules work on a goal’s conclusion
and keep the selection in the conclusion. When they are not applicable
any longer, either (i) the selection is on the whole conclusion, or (ii) the
conclusion is of the form A D B and the selection is on A exactly.

Step 3. In case (i) try closure as usual, in case (ii) apply D right, and then
attempt closure.

The rules of Figure 3 are unambiguous because D right,, that would conflict
with all the left rules, is not one of them. Rule D right, is only applied at
Step 3 in the algorithm,

The correctness of the rules of Figure 3 is immediate because they have
been obtained from the rules of Figure 2 using O right~!, which is a derived
rule as soon as the cut rule is in the system. For intuitionistic negation, one
simply uses the definition of =4 as A O L to obtain two rules that fit very
well with the rest of the system.

3.3 Compound tactics

When selecting an expression at a depth greater than 1, we have to combine
basic tactics into a compound one. For this, we use the proof assistant’s
tacticals [Paulson87]. The principal problem is to direct the choice of the goal
to attack next, and it is solved differently if different tacticals are available.
In the ideal situation, there exists a THENL tactical [Paulson87]. In systems
like HOL, Coq or Felty’s theorem prover, tactics are functions that take a
subgoal as argument and return a list of subgoals. The THENL tactical enables
composing tactics in the following manner: assume that we attack subgoal o
with tactic t, which gives rise to new sub-goals o4, ..., 0, and that for every
i, we attack sub-goal o; with tactic t;, which gives rise to new sub-goals o7},

. o*f ‘. The tactic expression t THENL [t;;...;t,] denotes the compound
tactic that attacks subgoal o and produces the subgoals o, ..., of*, ... o},

D
co.obn,

20

For example, suppose that the user selects expression B in the following
sub-goal:

T'HAA(BVC)

This results in performing two basic tactics: first applying rule A right,, then
applying V right; on the second of the resulting subgoals. The tactic to gen-
erate is simply the following one:

A right, THENL [do-nothing ; V right,]
The two goals that would be generated by the first basic tactic aloneare '+ A
and I' - B V C and the goals generated by the complete tactic are T' - A4 and
- T'F B.

In most proof development systems, the THENL tactical is already present
or is easily implemented. A notable exception is the Isabelle system, where
the current state of an incomplete proof is represented as a theorem whose
hypotheses are the remaining subgoals. Tactics basically are functions that
map the state (a theorem) to a new theorem. In this setting, there is no clear
notion of what new subgoals have been generated from old ones, and the THENL
tactical loses a lot of its meaning. However, some tactics take a rank n as
argument, specifying that these tactics work on the n** sub-goal. The system
provides a simple THEN tactical, that permits chaining tactics, independently
of the subgoal they are working on: if t; and t, are two tactics that take rank
arguments, the expression (t; n) THEN (t; p) denotes performing t, after
t1 but the programmer must take care of the relation between ranks n and p
to make sure that t; works on a sub-goal generated by t;.

For example, suppose again that subgoal n is the formula T'F A4 A (BvC)
and that the user selects expression B. The compound tactic to use is the
following one:

(Aright, n) THEN (Vright; n+1)
Note that the correct index had to be computed for the second basic step of
the tactic.

3.4 Synthesizing the command from the graphic selec-
tion

The last point to discuss is the method for generating a compound tactic
from a graphic selection. Indeed, proof by pointing is of little use if the
operation of selecting a subterm is cumbersome. The ideal solution is to
use a finger or a mouse to select a subterm. This implies that the interface
component keeps track of the underlying term structure of the formulas being

21

displayed. In our experiments, we have built user-interfaces following the
methodology advocated in [TBK92]. The interface is a separate process that
knows about the syntactic structure of logical expressions and is able to get
at a subexpression with a single click, possibly corrected by dragging if the
visual feedback shows that the mouse was incorrectly aimed. The interface is
able to generate the sequence of operators needed for proof by pointing.

There are now two situations: either (i) the proof assistant has a fixed set
of tactics or (ii) it has a provision for defining new tactics. In case (i), the
interface generates the appropriate command line. This has the advantage
that the command is readable. On the negative side, this command is possi-
bly very large. Additionally, this means that some (table-driven) code that
depends on the proof assistant resides-in the interface.

If the proof assistant provides for user-defined tactics, then it is better
to define a new tactic finger_tac that takes directly an abstract selection as
argument and performs the relevant combination of basic tactics. The script of
the proof will now contain a single call to finger_tac with a somewhat opaque
looking argument. On the positive side, finger_tac is entirely implemented
in the proof assistant.

To represent an abstract selection, the standard solution is to use a list
of integers that describes the path from the root of the goal to the selected
subterm. This solution has the drawback that it depends on the internal
representation of terms and that the generated commands contain absolutely
obscure sequences of integers. An alternative is to have a specialized, still
more abstract notion of path for our application. First, we consider that
all connectives A, V, D, V and 3 are binary, independently of the actual
representation of these terms in the proof assistant. So for the term (BVC) D
A, the path to C is denoted [1;2] Then we include additional information

as in [Boudol85] by prefixing the integer with the name of the appropriate
" connective. In our previous example, the path becomes [(D 1);(V 2)]. In
this way, the notion of path is independent and of the exact abstract syntax
used by the interface, and of the exact abstract syntax used by the proof
assistant.

4 Extensions

Using extensively proof by pointing in various experiments with proof sys-
tems suggests many extensions to this paradigm. While these extensions do
not necessarily fall in line with the formal foundations of the principle and

22

i ABLEC it LEA__ T8
Vleﬂ:A’F,:\fyB,rf,gFG Vright‘risz Ff;}jB
> left: }iAAj B,IJ? ,I—F(L— : > right : FAI:ZFDBB
Vit i/[: j,]}’rr-l—oc v right Frﬁi :]
eft:] X]}FJOC Iright: g

Figure 4: Linear rules for the logical connectives

the requirement of completeness, they help in making a more user-friendly
interface to those systems. The extensions are only sketched here, because
clearly more experience is needed.

4.1 Reducing the number of assumptions

In Figure 1, all left rules tend to add a new assumption in the context for
at least one of the new subgoals, while no right rule removes any assumption
from it. In long proofs, relevant assumptions tend to get hidden among many
useless assumptions.

An alternative set of rules, given in Figure 4, attacks this problem by con-
suming assumptions as they are being used. Practically, this ensures that the
number of assumptions will not grow, but some formulas are not provable
any longer. One solution is to use both behaviors, associating each one to a
different button of the mouse.

A better solution consists in tracking more carefully where the consumed
assumptions come from, so as to consume them only when they can be regen-
erated from the context if necessary.

23

4.2 Induction

In many theories, such as Peano arithmetic, proving universally quantified
formulas is not done exclusively with the V right rule, but also with induction
rules like the following one:

'+ P(0) P(n),I'+ P(n+1)
I' -Y|n: int | P(n)

When selecting inside a universally quantified formula, we mean to use the
V right rule. To obtain the induction rule, one idea is to select the typed bound
variable, as shown. Since this expression has no subterms, the induction rule
is terminal, i.e. it is the last one in a thread. There is no obvious choice for
the propagation of the selection at this moment. Grouping together a number
of universally quantified variables under the umbrella of a single V might give
a simple way to ask for several simultaneous recursions.

4.3 Equality

Equality has a special status in mathematics. Many operator definitions and
properties are given using equality and replacing equals for equals is a per-
vasive form of reasoning. Many theorems have the form of a universally
quantified implication, whose conclusion is an equality. When using such a
theorem, one would like to have more than one selection: one to tell where
in the current goal it is wished to apply it, one to tell whether to use the
equality from left to right or from right to left. Several computer algebra
(|[Bonadio89, Paracomp88]) systems have begun experimenting with this type
of ideas whose validity must be assessed.

4.4 Finding other Domains of Application

This paper shows that the idea of using the mouse to guide computer activity
is well understood in the realm of proofs and simple logics. It is reasonable
to look for possible extensions. There are two obvious extension directions:

1. Extending to other logics, either more elaborate like temporal or modal
logic, or more restrictive like linear logic. Obviously, the notion of focus
used in this paper does not depend too closely from the exact set of
rules used in the logic.

24

2. Extending to other behaviors than strict goal directed proof. There are
obvious similarities with tools like window inference [Grundy91] that aim
at supporting deduction through formula or program transformation.

5 Conclusion

In our experiments with proof assistants, we have noticed that similar proofs
done in different systems seem quite different due to specific features of these
systems: syntax of the logical language, nomenclature of the theorems, struc-
ture of the command language. This diversity increases, for no valid reason,
the dificulty of learning how to use a new proof assistant. Proof by pointing
provides a uniform approach for the basic and frequent logical manipulations.
Proving simple propositions tends to become identical in HOL, Isabelle and
Coq. For example, the fact proved in the introduction requires similar se-
quences of selections in all systems. Differences between proof assistants are
then concentrated on more important issues.

The rules on Figure 1 represent very elementary manipulations in compar-
ison to what we use in every day mathematics. For example, representing A
and V as binary connectives makes accessing an element in a disjunction or a
conjunction non-atomic and dependent on the exact structure of terms. In an
assumption such as AABAC, to access A (or C depending on the associativity
of A) requires two eliminations of an A operator, i.e., two applications of the
Aleft rules. Similarly, if we have two assumptions p(a) and Vz p(z) D q(z),
deducing g(a) which is intuitively an atomic operation requires an explicit
application of several rules. The proof by pointing mechanism restores this
natural idea of atomicity. To be more precise, in assumptions it groups in a
single operation any sequence of A eliminations followed by eliminations of V
. We have of course the dual property for any sequence of V introductions
followed by 3 introductions in a conclusion.

Another advantage of proof by pointing is that it accomodates without need
for any particular mental process both a forwards and a backwards style. The
D operator acts as a gateway between left rules and right rules. In a conclusion,
selecting a subterm in the left part of an implication moves this part to the
context, while selecting a subterm in the right part remains in the conclusion.
Similarly, in assumptions selecting a subterm in the left part of an implication
moves this part to the conclusion of a new goal, while selecting a subterm in
the right part remains in the context.

Working in assumptions or in the conclusion leads to two different styles of

25

proof usually called forwards and backwards. The forwards style consists in
starting from what we know, to reach what we want to prove. In backwards
style, we start from what we want to prove, determine what we need to infer
it and so on recursively. The backwards style tends to be privileged by proof
development systems, but humans, and computer algebra systems use the
forwards style constantly as well. With proof by pointing, the user makes no
permanent commitment to one style or the other. Every mouse selection gives
an opportunity for a change in direction.

Acknowledgments

The phrase “proof by pointing” comes from [Ritchie88], where it is limited
to pointing at expressions at depth 1 and 2. The authors want to thank A.
Felty for making initial experiments feasible with her proof assistant, and P.
Anderson for help in improving this paper.

References

[Bonadio89] A. Bonadio, E. Warren. Theorist Reference Manual, Prescience
Corp. 814 Castro St. San Francisco, 1989

[Boudol85] G. Boudol “Computational semantics of term rewriting systems”,
in Algebraic Methods in Semantics, M. Nivat, J. C. Reynolds eds., Cam-
bridge University Press, 1985.

[Centaur93] “The Centaur 1.3 Manual”, I. Jacobs, ed., available from INRIA-
Sophia-Antipolis, January 1993.

[Coq91] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B.
Werner, The Coq Proof Assistant User’s Guide, INRIA Technical Re-
port no. 134, December 1991.

[Felty89] A. Felty, Specifying and Implementing Theorem Provers in a Higher-
Order Logic Programming Language, PhD Thesis, University of Penn-
sylvania, August 1989.

[Grundy91] J. Grundy, “Window Inference in the HOL System”, in Proceed-
ing of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, M. Archer, J. J. Joyce, K. N. Levitt, P. J.
Windley, eds., IEEE Computer Society Press, 1991.

26

[HOL88] M.J.C. Gordon, “HOL: A Proof Generating System for Higher-
Order Logic”, in VLSI Specification, Verification and Synthesis, G.
Birtwistle, P. A. Subrahmanyam, eds., Kluwer Academic Publishers,
1988.

[Isa90] L.C. Paulson, “Isabelle: The next 700 theorem provers”, in Logic and
Computer Science, P. Odifreddi, ed., pp. 361-386, Academic Press,
1990.

[Maple] B. W. Char et al., MAPLE : reference manual : 5th edition, Springer-
Verlag, 1992..

[Nuprl86] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F.
Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P.
Panangaden, J.T. Sasaki, J.T.Smith, Implementing Mathematics with
the Nuprl Proof Development System Prentice-Hall, 1986.

[Paracomp88] Paracomp Inc. Milo User’s Guide, 123 Townsend St., Suite 310,
San Francisco, 1988.

[Paulson87| L. Paulson, Logic and computation : interactive proof with Cam-
bridge LCF, Cambridge University Press, 1987.

[Sundholm83] G. Sundholm, “Systems of Deduction”, in Handbook of Philo-
sophical Logic, Vol. I, D. Gabbay and F. Guenthner, eds., pp. 133-188,
D. Reidel Publishing Company, 1983

[Ritchie88] B. Ritchie, The design and implementation of an interactive proof
editor, PhD Thesis, University of Edinburgh, Nov. 1988. G. Sundholm,
“Systems of Deduction”, in Handbook of Philosophical Logic, Vol. I, D.
Gabbay, F. Guenthner, eds., D. Reidel Publishing Company, 1983.

[Szabo69] M.E. Szabo, G. Gentzen, The Collected papers of Gerhard Gentzen,
North-Holland, 1969.

[TBK92] L. Théry, Y. Bertot, G. Kahn, “Real Theorem Provers Deserve
Real User-Interfaces”, in Proceedings of the Fifth ACM SIGSOFT Sym-

posium on Software Development Environments, Tyson’s Corner, Va,
USA, Software Engineering Notes, Vol. 17, no. 5, ACM Press, 1992.

[Matica] S. Wolfram, Mathematica : a system for doing mathematics by com-
puter, Addison-Wesley, 1988.

27

