Technical Report A

Number 32

Computer Laboratory

How to drive a database front end
using general semantic information

B.K. Boguraev, K. Sparck Jones

November 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1982 B.K. Boguraev, K. Sparck Jones

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

How to drive a database front end using general semantic information

B.K. Boguraev and K. Sparck Jones

Computer Laboratory, University of Cambridge
Corn Exchange Street, Cambridge CB2 3QG, England

November 1982

Paper accepted for the Conference on Applied Natural Language Processing,
Santa Monica, California, February 1982,

ABSTRACT

This paper describes a front end for natural 1language access to
databases making extensive use of general, i.e. domain-independent,
semantic information for question interpretation. In the interests of
portability, initial syntactic and semantic processing of a question is
carried out without any reference to the database domain, and domain-
dependent operations are confined to subsequent, comparatively
straightforward, processirig of the initial interpretation, The differerit
modules of the front end are described, and the system's performance is
illustrated by examples,

This work is supported by the U.K. Science and Engineering Research Council.

I INTRODUCTION

Following the development of various front ends for natural language
access to databases, it is now generally agreed that such a front end must
utilise at least three different kinds of knowledge to accomplish its
task: linguistic knowledge, knowledge of the domain of discourse, and
knowledge of the organisational structure of the database. Thus broadly
speaking, a user request to the database goes through three conceptually
different forms: the output of linguistic analysis of the question, its
representation in terms of the domain's conceptual schema, and its
interpretation in the database access language. Early natural language
front ends usually did not have a clearcut separation between the
different stages of the process: for example LUNAR (Woods 1972) merged the
domain model and the database model into one, and systems such as the early
incarnation of LADDER (Hendrix et al 1978) and PLANES (Waltz 1978) made
heavy use of semantic grammars with their domain—dependent lexicons
combining linguistic knowledge with domain knowledge and so merging the
first two stages. None of these systems, moreover, made any significant use
of general, as opposed to domain-specific, semantic information.

In an attempt to achieve portability from one database to another, most
current systems adhere to a general framework (Konolige 1979), which makes
a clear distinction between the different processing phases and
distinguishes the domain-dependent from the domain-independent parts of
the front end, and also domain operations from database management
operations. However semantic processing is still essentially driven by
domain-dependent semantics. Linguistic processing is therefore primarily
syntactic parsing, and relating general 1linguistic to specific domain
knowledge within the framework of a modular front end takes the form of
applying domain-dependent semantic processing to the output of the
syntactic parser. This may be done in a simple-minded way as in PHLIQA1
(Bronnenberg et al 1979) and TQA (Damerau 1980), or by providing hooks in
the syntactic representation (domain-independent calls to semantic
operators which will evaluate differently in different contexts), as in
DIALOGIC (Grosz et al 1982). In either case the usual unhappy consequence
of separating syntactic and semantic processing, namely the hassle of
manipulating alternative syntactic trees, follows. Furthermore, changing
domains implies changing the definitions of the semantic operators, which
are procedural in nature, while it may be preferable to keep the domain-
dependent parts of the front end in declarative form, as is indeed done in

(Warren and Pereira 1981).

Thus in systems of this by now conventional type, the 'portability’
achieved by confining the necessary domain-dependent semantic processing
to well-defined modules is purchased at the heavy price of limiting the

early linguistic processing to syntax, and, perhaps, some very global and

undiscriminating semantics (see for example the scoping algorithm of
(Grosz et al 1982)),

IT SPECIFIC APPROACH

Our objective is to do better than this by making more use of powerful,
but still non-domain-dependent semantics in the front-end linguistic
analysis. Doing this should have two advantages: restraining syntax, and
providing a good platform for domain-dependent semantic processing.
However, the overall architecture of the front end still follows the
Konolige model in maintaining a clearcut separation between the different
kinds of knowledge to be utilised, keeping the bulk of the domain-
dependent knowledge in declarative form, and attempting to minimise the
consequences of changes in the front end environment, whether of domain or
database model, to promote smooth transfers of the front end from one back
end database management system to another,

We believe that there is a lot of mileage to be got from non-task-
specific semantic analysis of user requests, because their resulting rich,
explicit, and normalised meaning representations are a good starting point
for subsequent task-specific operations, and specifically, are better than
either syntax trees, or the actual input text of e.g. the PLANES approach,
Furthermore, since the domain world is (in some sense) a subset of the real
world, it is possible to interpret descriptions of it using the same
semantic apparatus and representation language as is used by the natural
language analyser, which should allow easy and reliable linking of the
natural language input words, domain world objects and relationships and
data language terms and expressions. Since the connections between these
do not appear hard-wired in the lexicon, but are established on the basis
of matching rich semantic patterns, no changes at all should be required
in the lexicon as the application moves from one domain or database to
another, only expansions to allow for the semantic definitions of new

words relevant to the new application.

The approach leads to an overall front end structure as shown in Fig.1l.

Each process in the diagram operates on the output of the previous one.
Processeés 1 and 2 constitute the analysis phase, and processes 3 and 4 -
the translation phase. Such a system has essentially been constructed, and
is under active test: a detailed account of its components and operations

follows.

For the purposes of illustration we shall use questions addressed to
the Suppliers and Parts relational database of (Date 1977). This has three

relations with the following structure: Supplier(Sno, Sname, Status,

Scity), Part(Pno, Pname, Colour, Weight, Pecity), and Shipments(Sno, Pno,
© Quantity).

s English question :

ANALYSIS

1
Analyser
(uses linguistic knowledge)

§ -
F -t

: meaning representation :

1/ ,
| Extractor
| (uses logico-linguistic knowledge)

]

+ - —

1

4

f oo e e g

e e

%

¢ logic representation :

TRANSLATION

4 A\ 3
| Translator
| (uses domain world knowledge)

+
i

]

t

1

I

|

i

| : query representation :
]

i

1

|

i

t

1

|

]

I

+ - 4

Convertor
(uses database organisation

'
i
' knowledge)

R —

F o e e -}

v
: search representation :

Fig.1

ITT ANALYSIS

A. The Analyser

The natural language analyser has been described in detail elsewhere
(Boguraev 1979), (Boguraev and Sparck Jones 1982), and only a brief summary
will be presented here., It has been designed as a general purpose, domain-
and task—indeﬁendent language processor, driven by a fairly extensive
linguistically-motivated grammar and controlled in its operation by
variegated application of a rich and powerful semantic apparatus.
Syntactically-controlled constituent identification is coupled with the
judgemental application of semantic specialists; following the evaluation
of the semantic plausibility of the constituent at hand, the currently
active processor either aborts the analysis path or constructs a meaning
representation for the textual unit (noun phrase, complementiser, embedded
clause, ete,) for incorporation into any larger semantic construct. The
philosophy behind the analyser is that syntactically-driven analysis
(which is a major prerequisite for domain- and/or task-independence) is
made efficient by frequent and timely calls to semantic specialists, which
both control blind syntactiec backbtracking and construct meaning
representations for input text without going through the potentially
costly enumeration of intermediate syntactic trees. The analyser can
therefore operate smoothly in environments which are syntactically or
lexically highly ambiguous.

To achieve its objectives the program pursues a passive parsing
strategy based on semantic pattern matching of the kind proposed by (Wilks
1975). Thus the semantic specialists work with a range of patterns
referring to narrower or broader word classes, all defined using general
semantic primitives and ultimately depending on formulae which use the
primitives to characterise individual word senses. However the application
of patterns in the search for input text meaning is more effectively
controlled by syntax in this system than in Wilks',

The particular advantages of the approach in the database application
context are the powerful and flexible means of representing linguistic and
world knowledge provided by the semantic primitives, and the ease with
which 'traps for the unexpected' can be procedurally encoded. The latter
means that the system can readily deal with the kinds of problems
generated by unconstrained natural language text which provoke untoward
'ripple' effects when large semantic grammars are modified. The semantic
primitive foundation for the analyser provides a good base for the whole
front end, since the comprehensive inventory of primitives can be
exploited to characterise both natural language and data language terms
and expressions, and to reconcile the user's view of the database domain

with the actual administrative organisation of the database.

For present purposes, the form and content of the outputs of the
natural language analyser are more important than the means by which they
are derived (for these see Boguraev and Sparck Jones 1982). The meaning
representations output by the analyser are dependency structures with
clusters of case-labelled components centred around main verb or noun
elements, Apart from the structure of the dependency tree itself, and group
identifying markers like 'tns' and 'modality', the substantive information
in the meaning representation is provided by the case labels, which are
drawn from a large set of semantic relation primitives forming part of the
overall inventory of primitives, and by the semantic category primitive
characterisations of lexically-derived items,

The formulae characterising word senses may be quite rich. The fairly
straightforward characterisation of 'supplieri!, representing one sense of

Ysupplier" is

(Supplier ...
(supplieri
(((%ent obje) give) (subj %org)) ...),

meaning approximately that some sort of organisation (which may reduce to
an individual) gives entities., The meaning representation for the whole

sentence "Suppliers live in cities" (with the formulae for individual
units abbreviated, for space reasons, to their head primitives) is

(clause ..eeeeee
(v
(livel ... be
(€€agent (n (supplieri ... man)))
(@@location (n (ecity2 ... spread)))))),

where @agent and @location are case labels, "The parts are coloured red"
will be analysed as

(clause
(v
(be2 ... be
(B@agent
(n (part1 ... thing
(@@number many))))
(88state
(st (colourl ... sign)
(val (red1 ... sense))))))),

and "Who supplies green parts?" will give rise to the structure:

(clause ... (type question)
(v
. (supplyl ... give
(@8agent (n (query (dummy))))

(€8object
({trace (clause v agent))
(clause
(v
(be2 ... be

(8@agent
(n (part1 ... thing)))
(8@state (st (colourl ... sign)
(val

(greeni ...
(see sense))))))N))II).

As these examples show, the analyser's representations combine
expressive power with structural simplicity. Further, the power of the
semantic category primitives used to identify text message patterns means
that it is possible to achieve far more semantic analysis of a question,
far earlier in the front end processing, than can be achieved with front
ends conforming to the Konolige model. The effectiveness of the analyser
as a general natural-language processing device has been demonstrated by
its successful application to a range of natural language processing
tasks, There is, however, a price to pay, in the database context, for its
generality. Natural language makes common use of vague concepts ("have",
"do"), almost content-empty markers ("be", "of"), and opaque constructions
such as compound nouns. Clearly, front ends where domain-specific
information can provide leverage in interpreting these input text items
have advantages, and it is not clear how a principled solution to the
problems they present can be achieved within the framework of a general-
purpose analyser of the kind described. To provide a domain-specific
interpretation of, for example, compounds 1like '"supplier city", an
interface would have to be provided characterising domain knowledge in the
semantic terms familiar to the parser, and guaranteeing the provision of
explicit structural characterisations of the text constituent which would
be available for further exploitation by the parser,

To avoid invoking domain knowledge in this way in analysis we have been
obliged to accept question interpretations which are incomplete in
limited respects. That 1is, we push the ordinary semantic analysis
procedures as far as they will go, accepting that they may leave 'dummy'
markers in the dependency structure and compound nominals with ambiguous
member words and no explicit extracted structure.

B. The Extractor

While the meaning representations constructed by the natural language
analyser are general and informative enough to be able to support
different tasks in different applications for different domains, they are
not necessarily the best form of representation for question answering,
and specifically for addressing a coded database. After the initial
determination of question meaning, therefore, the question is subjected to
task-oriented, though not yet domain- and database-oriented, processing,
Imposing domain world and database organisation restrictions on the
question at this stage would be premature, since it could complicate or
even inhibit possible later inference operations. The idea of providing a
system component addressing a general linguistic task, without throwing
away any detailed information not in fact needed for some specific
instance of that task, like natural language distinctions between
quantifiers ignored by the database system, is also an attractive one.

The extractor thus emphasises the fact that the input text is a
question, but carries the detailed semantic information provided by the
analyser forward for exploitation in the translation phase of the

processing.,

A good way to achieve a question formulation abstracted from the low-
level organisation of the database is to interpret the user's input as a
formal query. However our extractor, unlike the equivalent processors
described by (Woods 1972), (Warren and Pereira 1981) and (Grosz et al
1982), does not make any use of domain-dependent information, but
constructs a logic expression whose variable ranges and predicate
relationships are defined in terms of the general semantic primitives used
for constructing the input question meaning representation. The logic
representation of the question which is output by the extractor highlights
the search aspects of the input, formalising them so that the subsequent
processes which will eventually generate the search specification for the
database management system can locate and focus on them easily:; at the
same time, the semantic richness of the original meaning representation is
maintained to facilitate the later domain-oriented translation
operations.

The syntax of the logic representation closely follows that defined by
(Woods 1978):

(For <quantifier> <variable> / <range>
: <restrictions on variable)>

- <proposition>),

where each of the restrictions, or the proposition, can themselves be
quantified exprésgions. The rationale for such quantified expressions as

8

media for questions addressed towards an abstract database has been
discussed by Woods. As we accept this, we have developed a transformation
procedure which takes the meaning representation of an input question and
constructs a corresponding logic representation in the form just
described. Thus for the question "Who supplies green parts?" analysed in
Section A, we obtain

(For Every $Varil / query
: (For Every $Var2 / parti
¢ (colourl $Var2 greent)
- (supply?l $Var1 $Var2))
- (Display $Var1)),

where the lexically-derived items indicating the ranges of the quantified
variables ('query', ‘'part1'), the relationships between the variables

(*supplyl1") and the predicates and predicate values ('colour?!, 'greeni') in
fact carry along with them their semantic formulae: these are omitted here,

and in the rest of the paper, to save space,

The extractor is geared to seek, in the analyser's dependency
structures, the simple propositions (atomic predications) which make up
the logic representation. Following the philosophy of the semantic theory
underlying the analyser design, these simple propositions are identified
with the basic messages, i.e. semantic patterns, which drive the parser and
are expressed in the meaning representations it produces as verb and noun
group clusters of case-related elements, In order to 'unpack' these, the
.extractor looks for the sources of atomic predicates as 'SV0O' triples,
identifiable by a verb (or noun) and its case role fillers, which can be
extracted quite naturally in a straightforward way from the dependency
structure.

Depending both on the semantic characterisation of the verb and its

case arguments, and on the semantic context as defined by the dependency
tree, the triples are categorised as belonging to one of two types:
[$0bj $Link $0bjl, or [$0bj $Poss $Propl, where the $0bj, $Link, or $Prop
items are further characterised in semantic terms. It is clear that the
'basic messages' that the extractor seeks to identify as a preliminary step
to constructing the 1logic representation define either primitive
relationships between objects, or properties of those same objects. Thus

the meaning representation for "part suppliers" will be unpicked as a
'dummy' relationship between "suppliers" and "parts", i.e. as

[$0bj1(suppliert) $Link1(dummy) $0bj2(part1)],
while "green parts" will be interpreted as
[$0bj2(part 1) $Poss(be2) $Prop{colouri=greent)],

Larger constructs can be similarly decomposed: thus "Where do the status

32 red parts suppliers live?" will be broken down into the following set
of triples:

[$0bj1(supplier1) $Link1(livel) $0bj3(query)]
& [$0bj1(supplier1) $Link2(dummy) $0bj2(part1)]
& [$0bj1(supplier1) $Poss1(be2) $Propi(status=32)]
& [$0bj2(part1) $Poss2(be2) $Prop2(colourizredi)].
It must be emphasised that while there are parallels between these
structures and those of the entity-attribute approach to data modelling,
the forms of triple were chosen without any reference to databases. As
noted earlier, they naturally reflect the form of the ‘'atomic
propositions', i.e. basic messages, used as semantic patterns by the natural

language analyser.

For completeness, the triples underlying the earlier question "Who
supplies green parts?" are ‘
[$0bj1(query=identity)
$Link1(supply1) $0bj2(part1)]

& [$0bj2(part1)
$Poss1(be2) $Propil(colouri=greeni)]

The sets of interconnected triples are derived from the meaning
representations by a fairly simple recursive procedure. The next stage of
the extraction process restructures the triples tree into a skeleton
quantified structure, the logic representation, to be passed forward to
the translator generating the formal query representation. Whenever more
explicit information regarding the interpretation of the input as a
question can be extracted from the meaning representation, this is
incorporated into the logic representation. Thus the processing includes
identification and scoping of quantifiers following the approach adopted
by Woods, and establishing the aspect, modality and focus of the question.
Like anyone else, we do not claim to provide a comprehensive treatment of
natural language quantifiers, and indeed in practice have not implemented
processes for all the quantifiers handled by LUNAR.

The logic representation defines the logical content and structure of
the information the user is seeking. It may, as noted, be incomplete at
points where domain reference is required, e.g. in the interpretation of
compound nouns; but it carries along, to the translator, the very large
amount of semantic information provided by the case labels and formulae of
the meaning representation, which should be adequate to pinpoint the items
sought by the user and to describe them in terms suited to the database
management system, so they may be accessed and retrieved,

10

IV TRANSLATION

A, The translator

In the process of transforming the semantic content of the user's
question into a low-level search representation geared to the
administrative structure of the target database, it is necessary to
reconcile the user's view of the world with the domain model. Before even
attempting to construct, say, a relational algebra expression to be
interpreted by the back-end database management system, we must try to
interpret the semantic content of the logic representation with reference
to the segment or variant of the real world modelled by the database,

An obvious possibility here is to proceed directly from the variables
and predications of the 1logic representation to their database

counterparts, For example,
(supplyl (give)
$Var1i/supplieri (man) $Var2/partt (thimg))
can be mapped directly onto a relation Shipments in the Suppliers and
Parts database. The mapping could be established by reference to the
lexicon and to a schedule of equivalences between logical and database

structures.

This approach suffers, however, from severe problems: the most important
is that end users do not necessarily constrain their natural language to a
highly limited vocabulary. Even in the simple context of the Suppliers and
Parts database, it is possible to refer to "firms", "goods", "buyers",
"sellers", "provisions", "customers", ete, In fact, it was precisely in
order to bring variants under a common denominator that semantic grammars
were employed. We, in contrast, have a more powerful, because more flexible,
semantic apparatus at our disposal, capable of drawing out the
similarities between "firms", "sellers", and "suppliers", as opposed to
taking them as read, Thus a general semantic pattern which will match the
dictionary definitions of all of these words is (((#ent obje) give) (subj
i‘for‘-g)). Furthermore, if instead of attempting to define any sort of direct
mapping between the natural language terms and expressions of the user and
corresponding domain terms and expressions, we concentrate on finding the
common links between them, we can see that even though the domain and, in
turn, database terms and expressions may not mean exactly the same as
their natural language relatives or sources, we should be able to detect
overlaps in their semantic characterisations. It is unlikely that the same
or similar words will be used in both natural and data languages if their
meanings have nothing in common, even if they are not identical, so
characterising each using the same repertoire of semantic primitives

1

should serve to establish the links between the two. Thus, for example, one
sense of the natural language word "location" will have the formula (this
(where spread)) and the data language word "&city" referring to the domain
object &city will have the formula (((man folk) wrap) (where spread)),
which can be connected by the common constituent (where spread).

One distinctive feature of our front end design, the use of general
semantics for initial question interpretation, is thus connected with
another: the more stringent requirements imposed on natural language to
data 1language translsation by the initial unconstrained question
interpretation can be met by exploiting the resources for language meaning
representation initially utilised for the natural language question
interpretation. We define the domain world modelled by the database using
the same semantic apparatus as the one used by the natural language front
end processor, and invoke a flexible and sophisticated semantic pattern
matcher to establish the connection between the semantic content of the
user question (which is carried over in the logic representation) and
related concepts in the domain world. Taking the next step from a domain
world concept or relationship between domain world objects to their direct
model in the administrative structure of the database is then relatively

easy.

Since the domain world is essentially a closed world restricted in sets
if not in their members, it is possible to describe it in terms of a
limited set of concepts and relationships: we have possible properties of
objects and potential relationships between them., We can talk about
&suppliers and &parts and the important relationship between them, namely
that &suppliers &supply &parts. We can also specify that &suppliers &live
in &cities, &parts can be &numbered, and so on,

We can thus utilise, either explicitly or implicitly, a description of
the domain world which could be represented by dependency structures like
those used for natural language. The important point about these is the
way they express the semantic content of whole statements about the
domain, rather than the way they label individual domain-referring terms
as, e.g., "&supplier" or "&part", It is then easy to see how the logiec
representation for the question "What are the numbers of the status 30
supplier s?", namely

(For Every $Varl/supplier1 : (statusi $Var1 30)
- (Display (number?1 $Var1))),
can be unpacked by semantic pattern matching routines to establish the
connection between "supplieri" and "&supplier", "numberi"™ and "&number",
and so on, In the same way the logic representations for "From where does
Blake operate?" and "Where are screws found?" can be analysed for semantic

12

content which will establish that "Blake" is a &supplier, "operate" in the
context of the database domain means &supply, and "where" is a query
marker acting for &city from which the &supplier Blake &supplies (as
opposed to street corner, bucket shop, or crafts market):; similarly,
"screw" is an instance of &part and the only locational information
associated with &parts in the database in question is the &city where they
are stored., All this becomes clear simply by matching the underlying
semantic primitive definitions of the natural language and domain world

words, in their propositional contexts,

The translator is also the module where domain reference is brought in
to complete the interpretation of the input question where this cannot be
fully interpreted by the analyser alone., The semantic pattern-matching
potential of the translation module can be exploited to determine the
nature of the unresolved domain-specific predications (both 'dummy'
relationships and those implicit in compound nominals), and vacuously
defined objects ('query' variables). Thus the fragment of logical form for
"... London suppliers of parts ...", namely

(For <quant> $Var1/supplier]
: (AND :
(For <quant> $Var2/parti
-~ (dummy $Vari $Var2))
(For <quant> $Var3/London

-~ (dummy $Var1 $Var3)))

cacecoeoco)’

is broken down into the corresponding domain predications

(&supply $Var1(&supplier) $Var2(&part))

and
(&live $Var1(&supplier) $Var3(&eity)),

while translating the logic representation for the example question "Who
supplies green parts?" gives the query representation

(For Every $Vari/&supplier
: (For Every $Var2/&part
: (&colour $Var2 green)
- (&supply $Vari $Var2))
~ (Display $Var1))

Apart from the fact that semantic pattern matching seems to cope quite
successfully with unexpected inputs ('unexpected' in the sense that in the
alternative approach no mapping function would have been defined for them,
thus implying a failure to parse and/or interpret the input question),
having a general natural language analyser at our disposal offers an
additional bonus: the description of the domain world in terms of semantic

13

primitives and primitive patterns can be generated largely automatically,

since the domain world can be described in natural language (assuming, of
course, an appropriate lexicon of domain world words and definitions) and

the descriptions simply analysed as utterances, producing a set of
semantic structures which can subsequently be processed to obtain a
repertoire of domain-relevant forms to be exploited for the matching

procedures.

B, The Convertor

Having identified the domain terms and expressions, we have a high-
level database equivalent of the original English question. A substantial
amount of processing has pinpointed the question focus, has eliminated
potential ambiguities, has resolved domain-dependent language
constructions, and has provided fillers for ‘'dummy' or 'query' items.
Further, the system has established that "London" is a &city, for example,
or that "Clark" is a specific instance of &supplier. The processing now
has to make the final transition to the specific form in which questions
are addressed to the actual database management system. The semantic
patterns on which the translator relies, for example defining a domain
word "&supplier" as (((%#ent obje) give) (subj %*org)), while adequate
enough to deduce that Clark is a &supplier, are not informative enough to
suggest how &suppliers are modelled in the actual database,

Again, the obvious approach to adopt here is the mapping one, so that,
for instance, we have:
&supplier ==> relation Supplier

Clark ==> tuple of relation Supplier
such that Sname="Clark"

But this approach suffers from the same limitations as direct mapping from
logic representation to search representation; and a more flexible
approach using the way the database models the domain world has been
adopted.,

In the previous section we discussed how the translator uses an
inventory of semantic patterns to establish the connection between
natural language and domain world words. This inventory is not, however, a
flat structure with no internal organisation. On the contrary, the
semantic information about the domain world is organised in such a way
that it can naturally be associated with the administrative structure of
the target database, For example in a relational database, a relation with
tuples over domains represents properties of, or relationships between,
the objects in the domain world. The objects, properties and relationships

4

are described by the semantic apparatus used for the translator, and as
they also underlie, at not too great remove, the database structure, the
domain world concepts or predications of the query representation act as
pointers into the data structures of the database administrative
organisation,

For example, given the relation Supplier over the domains Sname, Sno,
Status and Scity, the semantic patterns which describe the facts that in
the domain world &suppliers &have &status, &numbers, &names and &live in
&cities are crosslinked, in the sense that they have the superstructure of
the database relation Supplier imposed over them. We can thus use them to
avoid explicit mapping between query data references and template
relational structures for the database. From the initial meaning
representation for the question fragment "... Clark, who has status 30 ..."
through to the query representation, the semantic pattern matching has
established that Clark is an instance of &supplier, that the relationship
between the generic &supplier and the specific instance of &supplier (i.e.
Clark) is that of &name, and that the query is focussed on his &status
(whose value is supplied explicitly). Now from the position of the query
predication (&status &supplier 30) in the characterisation of the
relation Supplier, the system will be able to deduce that the way the
target database administrative structure models the question's semantic
content is as a relation derived from Supplier with "Clark" and "30" as
values in the columns Sname and Status respectively.

The convertor thus employs declarative knowledge about the database
organisation and the correspondence between this and the domain world
structure to derive a generalised relational algebra expression which is
an interpretation of the formal query in the context of the relational
database model of the domain., We have chosen to gear the convertor towards

a generalised relational algebra expression, because both its simple
underlying definition and the generality of its data structures within the

relational model allow easy generation of final Ilow-level search
representations for different specific database access systems.

To derive the generalised relational algebra form of the question from
the query representation, the convertor uses its knowledge of the way

domain objects and predications are modelled in the database to establish
a primary or derivable relation for each of the quantified variables of
the query representation, These constituents of the algebra expression are
then combined, with an appropriate sequence of relational operators, to
obtain the complete expression.

she basic premise of the convertor is that every quantified variable in
the formal representation can be associated with some primary or

15

computable relation in the target database; restrictions on the quantified
variables specify how, with that relation as a starting point, further
relational algebra computations can be performed to model the restricted
variable; the process is recursive, and as the query representation is
scanned by the convertor, variables and their associated relational
algebra expressions are bound by an 'environment-type' mechanism which
provides all the necessary information to ‘'evaluate' the propositions of
the query. Thus conversion is evaluating a predicate expression in the
context of its semantic interpretation in the domain world and the
environment of the database models for its variables,

For example, given the query representation fragment for the phrase "...
all London suppliers who supply red parts ...", namely

(For Every $Vari/&supplier
:(AND ,
(For The $Var3/London -~ (&live $Var?l $Var3))
(For Every $Var2/&part : (&colour $Var2 red)
- (&supply $Varil $Var2))) ...,

$Var1 will initially be bound to the primary relation Supplier, which will
be subsequently restricted to those tuples where Scity is equal to
"London", Similarly, .$Var2 will be associated with a partial relation
derived from Part, for which the value of Colour is "red". Evaluating the
proposition (&supply $Vari $Var2), whose domain relationship is modelled
in the database by Shipments, will in the environment of $Vari and $Var?2
yield the relational expression
(join
(select Supplier where Scity equals "London")

(join Shipments
(select Part where Colour equals "red"))).

At this point, the information that the user wants has been described
in terms of the target relational database: names of files, fields and
columns, The search description has, however, still to be given the
specific form required by the back-end database management system. This is
achieved by a fairly straightforward application of standard compiling
techniques, and does not deserve detailed discussion here. At present we
can generate search specifications in three different relational search
languages. Thus the final form in the local search language Salt of the
example question "Who supplies green parts?! is

list (Part:Colour="green" # (Supplier * Shipments))

16

Vv IMPLEMENTATION

All of the modules have been implemented (in LISP), The convertor is at
present restricted to relational databases, and we would like to extend it
to other models. The system has so far been tested on Suppliers and Parts,
which is a toy database from the point of view of scale and complexity, but
which is rich enough to allow questions presenting challenges to the
general semantics approach to question interpretation, To illustrate the
performance of the front end, we show below the query representations and
final search representations for some questions addressed to this
database, Work is currently in progress to apply the front end to a
different (relational) database containing planning information: this
simulates IBM's TQA database (Damerau 1980). Most of the work in this is
likely to come in writing the lexical entries needed for the new
vocabulary, Longer term developments include validating each step of the
translation by generating back into English, and extending the front end,
and specifically the translator, with an inference engine.

Clearly, in the longer term, database front ends will have to be
provided with an inference capability. As Konolige points out, in
attempting to insulate users, with their particular and varied views of
the domain of discourse, from the actual administrative organisation of
the database, it may be necessary to do an arbitrary amount of inferencing
exploiting domain information to connect the user's question with the
database, An obvious problem with front ends not clearly separating
different processing stages is that it may be difficult to handle
inference in a coherent and controlled way. Insofar as inference is
primarily domain-based, it seems natural in a modular front end to provide
an inference capability as an extension of the translator., This should
serve both to localise inference operations and to facilitate them because
they can work on the partially-processed input question, However the
inference engine requires an explicit and well-organised domain model, and
specifically one which is rather more comprehensive than current data
models, or than the rather informal conceptual schema we have used to
drive the translator.

We hope to begin work on providing an inference capability in the near
future, but it has to be recognised that even for the restricted task of
database access, it may prove impossible to confine inference operations
to a single module: doing so would imply, for example, that compound nouns
will generally only be partly interpreted in the analysis and extraction
phases. Starting with inference 1limited to the translation module is
therefore primarily a research strategy for tackling the inference
problem,

17

Green parts are supplied by which suppliers?

+ query representation:

(For Every $Vari1/&supplier
:(For Every $Var2/&part : (&colour $Var2 green)
- (&supply $Vari $Var2))
~-(Display $Vart))

+ search representation in Quel:

Range of Ql-varl is Part

Range of Ql-var2 is Supplier

Range of Ql-var3 is Shipments

Retrieve into Terminal (Ql-var2.Sname)
where (Ql-vari.Pno = Ql-var3.Pno)
and (Ql-var2.8no = Ql-var3.Sno)
and (Ql-vari.Colour = "green")

% From where does Blake operate?

+ query representation:

(For The $Var2/&city
:(For The $Var1/Blake - (&live $Vari $Var2))

~(Display $var2))
+ search representation in Quel:

Range of (Ql-var1) is (Supplier)
Retrieve into Terminal (Ql-vari.Scity)
where (Ql-vari,Sname = "Blake")

* What is the status of the Paris part suppliers
who supply blue parts?

+ query representation:

(For Every $Var1/&supplier
: (AND
(For Some $Var2/&part - (&supply $Vart $Var2))
(For The $Var3/Paris - (&live $Vart $Var3))
(For Every $Varli/&part
:(&colour $Varl blue)
- (&supply $Varil $Varli)))
~(Display (&status $Var1)))

18

+ Search representation in Quel:

.nange of Ql-vari is Part
" Range of Ql-var2 is Supplier
Range of Ql-var3 is Shipments
Retrieve into Terminal (Ql-var2, Status)
where (Ql-vari.Pno = Ql-var3,Pno)
and (Ql-var2.8no = Ql-var3,Sno)
and (Ql=var2,3city = "Paris")
and (Ql-vari1.Colour = "blue")

VI CONCLUSION

The project results so far suggest that developing a natural language
front end to databases based on a general semantic analyser which
constructs rich and explicit meaning representations offers distinct

advantages in at least two respects: it makes all subsequent processing
cleaner than would be the case with a representation dominated by

conventional syntax, and enhances portability by encouraging the
declarative description of domain-specific knowledge.

VII REFERENCES

Boguraev, B.K. "Automatic resolution of linguistic ambiguities", Technical
Report No.11, Computer Laboratory, University of Cambridge, 1979.

Boguraev, BK. and Sparck Jones, K. "A natural language analyser for
database access", Information Technology: Research and Development, 1,
23-39, 1982.

Bronnenberg, W.J.H.J, et al., "The question answering system PHLIQA1", in
Natural language question answering systems (Ed. Bole), London:
Maemillan, 1979,

Damerau, F.J. "The transformational question answering (TQA) system:
description, operating experience, and implications", Report RC8287, IBM
Thomas J. Watson Research Center, Yorktown Heights, N.Y., 1980,

Date, C.J. An introduction to database systems, Reading, Mass.: Addison-
Wesley, 1977.

Grosz, B. et al. "DIALOGIC: a core natural-language processing system", in
Proceedings of the Ninth International Conference on Computational
Linguistics, Prague, 1982,

19

Hendrix, D.G. et al. "Developing a natural language interface to complex
data", ACM Transactions on Database Systems, 3, 105-147, 1978.

Konolige K. "A framework for a portable natural-language interface to
large data bases", Technical Note 197, Artificial Intelligence Center,
SRI International, 1979,

Waltz, D. "An English language question answering system for a large
relational database", Communications of the ACM, 21, 526-539, 1978.

Warren, D.H.D, and Pereira, F.C.N. "An efficient easily adaptable system for

interpreting natural language queries", Research Paper 155, Department
of Artificial Intelligence, University of Edinburgh, 1981.

C Wilks, Y. "An intelligent analyser and wunderstander of English",
Communications of the ACM, 18, 264-2T4, 1975, .

Wood s, W.A, "The lunar séiences natural language information system", Final
Report, Bolt, Beranek and Newman Inc., Cambridge, Mass., 1972.

Woods, W.A. "Semantics and quantification in natural language question
answering", Advances in Computers, 17, 1-87, 1978.

20

