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Verifying Modular Programs in HOL

J. von Wright*
January 18, 1994

1 Introduction

This paper describes a methodology for verifying imperative programs that are modular,
i.e., built using separately defined functions and procedures.

The verification methodology is based on a simple programming notation with a weakest
precondition semantics. This notation has been semantically embedded in the HOL theorem
prover [3] and a number of laws have been derived from the semantics.

These semantic laws are used to prove (in HOL) the correctness of functional proce-
dures, by showing that a call to the procedure in question is equivalent to a call to the
corresponding function as it is defined in the logic. This makes it possible to specify a
program in an essentially functional style, but the functions are then implemented as im-
perative procedures (like user-defined functions in FORTRAN or Pascal).

We also show how to define non-functional procedures and calls to such procedures.
Procedures may be recursive. Altogether, this gives us a basis for mechanical verification
of modular imperative programs.

2 The programming notation

The programming notation that we use has a simple syntax. To make life simple, we use the
syntax of the HOL-embedding directly. In a sense, this means that we blur the distinction
between syntax and semantics.

2.1 Predicates

A predicate is an arbitrary boolean-valued function p:*=->bool. In instances, the argument
type * will be a product type and elements of this product type are called states.

A predicate always makes explicit what the state space is. For example if we want to
model the predicate

r<y+1l

we have to know what the underlying state space is. Assuming that it is a triple (x,y,z) of
variables ranging over the natural numbers, we would represent the predicate as
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Alx,y,2) . x <y + 1

This means that the state components (which model the program variables) are anony-
mous; they are identified by their position in the state tuple rather than by name.
We define functions corresponding to the ordinary logical operations on predicates:

Fgef false = Au. F

Faef true = Au, T

Fgef mot p = Au., =pu

Fdgef Pand g = Adu, puAqu
Fgef porq = Au.puVaqgu
Fdef P imp ¢ = du. pu = qu

We also introduce generalized conjunctions (greatest lower bounds) and disjunctions
(least upper bounds) of sets of predicates:

Fdgef g1 P = Au. Vp. Pp = p
Fdef lub P = pAP

Note that sets are modelled by their characteristic functions.
Furthermore, we define the implication order on predicates:

Faef p implies ¢ = Vu. pu = qu

Thus p implies q means that p is stronger than q.
Our HOL-theory of predicates can be found in Appendix A.

2.2 Commands

A command is a function c: (¥*2->bool)->(*1->bool) from predicates to predicates. The
idea behind this is to identify a command ¢ with its weakest precondition predicate trans-
former. Predicate transformers map predicates over the final state space to predicates over
the initial state space (note that these need not be the same state space). Intuitively, the
predicate ¢ q holds in an initial state s if execution of ¢ from initial state s is guaranteed to
terminate in a final state where the predicate q holds. What we call ¢ q would in traditional
weakest precondition methodology be called wp(c,q).

In principle, we accept any function of type (¥2->bool)->(*1->bool) as a command.
However, we mainly want to reason about commands that have a specific syntax. For this,
we introduce a command syntax, which essentially just consists of a number of abbreviations
for commands. We start with a simple set of commands; later on we will extend them with
a specification construct and recursion. The commands we want to reason about at this
point have the following syntax:

¢ = skip
| assert g

| assign e

| cl seq c2

| cond g cl c2
| dogc




where g is a predicate (for “guard”) and e is a state-state function (of type *1->%2).
Intuitively, seq models sequential composition, cond models conditional composition
(if-then-else) and do models iteration (a while-loop). Finally, assign e is a command
which transforms a state s into a state e s. Ordinary assignment statements can always
be written using this command.
The predicate transformer semantics of these commands is at the same time their defi-
nitions:

(g andd (c1 @)) or ((not g) andd (c2 q))
fix(Ap. (g andd (¢ p)) or ((not g) andd q)))

Fgef cond g ¢l c2 q
Fger do g ¢ g

Faer skip q =q

Fief assert g q = g and q
Fgef assign e q = Au, q (e w
Faef (cl seq c2) q = cl(c2 q@)

Here £ix is a least fixpoint operator for monotonic functions on predicates (see Appendix
B).

As an example, consider the assignment z := & + y in a three-component state space
where 2 is the first and y the second component. This is represented by the command

assign A(x,y,z). (x+y,y,2)

Note that we explicitly state that the values of the second and third component are un-
changed. The following example shows how our definition of the assignment corresponds to
the ordinary definition. Consider the weakest precondition for the assignment z := 2z + y
to establish the postcondition z > 2. In traditional wp-semantics, we have the rule

wp(z == F,Q) = Q[E/z]
which means that
wp(z:i=z+y,2>2) = 2z+y>=z

In our framework, the following calculation gives the same result:

(assign A(x,y,z). (x+y,y,2)) (A(x,y,2) .x>2)

= Ax,y,2). OA,y,2) .x>2) (A(,y,2) . (x+y,¥,2)) (x,7,2)
= AMx,y,2). (A(x,¥,2).x>2) (x+y,¥,2)

= A(x,y,2). x+y>z

Our command notation is in a sense very arbitrary. We may add more constructs (as
we do in Section 5). We also note that the skip command is redundant; it can be written
as an assignment:

F skip = assign Au.u




Healthiness conditions We identify four important criteria (often called “healthiness
conditions”) that commands with a weakest precondition semantics are usually assumed to
satisfy. These criteria are monotonicity, strictness, conjunctivity and termination. Their
definitions are as follows:

Fg4ef monotonic ¢ = (Vp q. p implies q = (c p) implies (c @)
Faef strict ¢ = (c false = false)
Fdef conjunctive ¢ =

YP. (3p. P p) = (c(glb P) = glb(. Ip. Pp A (q = ¢ p)))
Fgef terminating ¢ = (c true = true)

In fact, all the commands in our notation are monotonic, strict and conjunctive. The
assert and do commands may be nonterminating.
Conjunctivity of ¢ means that ¢ distributes over arbitrary nonempty conjunctions of pred-
icates. Intuitively, the conjunctivity assumption means that nondeterminism is assumed to
be demonic. Note that since true is the empty conjunction, a command which is terminat-
ing and conjunctive distributes over all conjunctions.

It is also common to define a notion of continuity. A restriction to continuous commands
corresponds to an assumption that nondeterminism is never unbounded. However, we will
not make use of continuity in this paper.

2.3 Other commands

In later sections, we will extend our programming notation with three important constructs.
One is a specification construct (a nondeterministic assignment) nondass and another is a
recursion construct mu. The third construct is block which lets us handle local variables.

In order to prove important facts in predicate transformer semantics, we have also
defined a number of other commands. Since they will not be used in the programs we want
to reason about, we will not show their definitions or consider them in detail. The interested
reader can find their definitions in Appendix B. The following is a brief description of these
commands: '

guard dual to assert

dch demonic choice of two commands
Dch demonic choice of a set of commands
ach angelic choice of two commands

Ach angelic choice of a set of commands

dolib a variant of iteration with a greatest fixpoint semantics

3 Total correctness

A command c is said to be totally correct with respect to precondition p and postcondition
q if ¢ is guaranteed to establish q whenever it is executed from an initial state where p
holds. Our definition is simple:

l correct p ¢ q = p implies (c q)




We have derived (i.e., proved in HOL) a number of rules for proving total correctness
of commands. For a complete listing, see Appendix D.
For assignments, the rule is as follows:

F (Vv. p v = q(e v)) = correct p (assign e) q

This corresponds closely to the ordinary Hoare rule (of total or partial correctness) for
assignment:

P = Q[E/z]
{P}e:=E{Q}

For sequential composition, we have a simple sequencing rule, familiar from Hoare logic:

F (3q. monotonic ¢l A correct p ¢l q A correct q ¢2 r)
= correct p (cl seq ¢c2) r

When applying this rule, the user must supply a suitable intermediate predicate q. The
monotonicity condition can be proved automatically for commands that are built using the
basic command notation.

For the conditional commmand, we also have a simple Hoare-style rule:

F correct (g and p) cl g A correct ((not g) and p) c2 q
= correct p (cond g cl ¢2) q

The rule for iteration is the well-known invariant-bound rule:

I (dinv t. monotonic ¢ A
p implies inv A
((not g) and inv) implies q A
(Vx. correct (inv and (g and (Au. t u = x)))
c
(inv and (Au. (t u) < x))))
= correct p (do g ¢) q

"When this rule is used, the user has to supply the invariant inv and the bound function t.
In fact, this is a special case of the more general rule where the bound function has values
in an arbitrary well-founded set. The HOL-theory of well-founded relations that we have
built is in Appendix C and the general rule for iteration in Appendix D.

We do not give a separate correctness rule for the assert command. This is because this
command is not interesting as such. Instead it is used to makes reasoning about conditional
correctness possible (see Section 4.4).

4 Functional abstraction

We now propose a method for using HOL to verify imperative programs that are built using
functional procedures. The HOL theory of this section is listed in Appendix E.




4.1 A function call operator

We assume that a program c is supposed to compute a function £. We take the view that
functions are uncurried and they always have at least one argument. This means that we
can without loss of generality assume that £ has type x1->*2. In an instantiation, the initial
state *1 contains one component for each argument of the function, while the final state *s2
has only one component (the result returned by the function). Since this component may
contain subcomponents, a multi-valued function can be treated as a single-valued function
whose value is a tuple.

Now assume that we have written a program fragment ¢ of which we can prove the
following:

F ¢ = assign f

Then it is fair to say that c is an implementation of the function £, and that any
occurrence of £ in a program can be replaced by a call to c.

This idea has been formalized in the following way. We define an operator fcall, which
extracts the function £ from a command c in the case when ¢ = assign f holds.

The definition of the fcall operator is not very illuminating:

Faef fcall ¢ = (Qu. ev. glb(Ag.c q wWv)

However, the important thing is that we can prove the crucial theorem:

F fcall (assign £) = £
In fact, we can prove a theorem which is easily used as a proof rule:

F conjunctive ¢ A strict ¢ A
(Vu0. correct (Au.u = u0) ¢ (Av.v = £ u0))
= (fcall ¢ = £)

Using this theorem, we can prove that a given program ¢ implements a function £. Once
this is done, we can replace any occurrence of £ by fcall ¢, which models the call to the
functional procedure c.

When the above theorem is used as a proof rule, the conjunctivity and strictness condi-
tions can be proved automatically (we have implemented HOL tactics for this), so we are
left with a total correctness condition. This can be proved using the rules in Section 3.

4.2 Example: list membership

As a small example, we implement a list membership function. List membership can be
defined in HOL as follows:

Fdef (Vx. MEMBER(x,[]) = F) A
(Vx h t. MEMBER(x,(CONS h t)) = (h = x) V MEMBER(x,t))




(note that this is an uncurried version of the membership function).
The program that we propose to implement this function with is defined as follows:

Fdef TMEMBER =
(assign A(x:%,1:(¥)1list).(F,x,1)) seq
(do (A(r,x,1).=(1=[1) A =)
(assign A(r,x,1).((x = HD 1),x,TL 1)) ) seq
(assign A(r,x,1).r)

Note how this program is built up. The global state components (i.e., the reference param-
eters) are x and 1; the element and the list. The first assign command initializes the local
boolean variable r to the boolean value F. The main body of the program is the iteration,
which checks the elements of the list, one by one, until either the list is empty or until a
match is found, in which case r is set to the boolean value T. The final assign command
returns r as the result. In a Pascal-style syntax this function would be something like

function £MEMBER (x:%,1:(%)1ist) :bool;
var r:bool; begin r = F;
while (not(1=[]) and not r) do begin
r,1:= (x = HD 1),TL 1
end;
fMEMBER := r
end;

(in fact, it should be possible to do such a translation automatically). The correctness of
the £MEMBER procedure is proved in the theorem

i fcall £MEMBER = MEMBER

which shows that any occurrence of the MEMBER function can be correctly replaced by a call
to £tMEMBER.

Note that in the program £MEMBER we use other function that HOL can recognize: HD
and TL. These can either be assumed to be built-in, or else we can write separate programs
that implement them,

4.3 Conditional correctness

In some cases we only want to be sure that a functional procedure correctly implements a
function in the case when a given precondition holds. We call this conditional correctness
(not to be confused with partial correctness, which does not require termination).

We have derived the following rule for proving conditional correctness assertions:

F conjunctive ¢ A strict ¢ A
(Vu0. p u0 = correct(Au. u = u0d)c(Av. v = £ u0))
= (Vu. pu = (fcall cu = £ uw))

Here p is the precondition that the implementation is proved under.

For example, we may want to implement a function which retrieves a value from an
association list, provided that the given argument occurs in the list.

Such a function ASSOC can be specified as follows:




F ASSOC(x0,(CONS(x,y)1)) = ((x = x0) — y | ASS0C(x0,1))

(note that this is a partial specification; we do not specify what happens in the case when
the value is not found in the list).

If x0 occurs as a first component of some pair in a list 1 then ASS0C(x0,1) returns the
corresponding second component. Otherwise, its behaviour is unspecified.

The procedure £ASSOC implements this function, under the precondition that we can
find the given element in the association list.

- £ASSOC =
(assign(A(x,1).((er.T),x,1))) seq
(do (A(r,x,1). =1 = [
(cond (A (r,x,1).x = FST(HD 1))
(assign A(r,x,1).(SND(HD 1),x,[1))
(assign A(r,x,1).(x,x,TL 1)) ) ) seq
(assign(A(r,x,1). 1))

The first assign command initializes the local component r to an arbitrary value (since
the type of r is polymorphic, the only way to choose an arbitrary value is by using the
Hilbert operator @). Then the list is searched until it is empty. If a match is found then the
corresponding value is stored in r and the list is nulled. The final assign command then
returns the value of r. In Pascal-style syntax, the function can be written in the following
way:

function fASSOC(x:*,1: (#it¥*)1ist) :bool;
var r:¥*; begin
while (not(1=[])) do begin
if x = FST(HD 1) then
r,1 := SND(HD 1), []
else begin

1 :=TL 1
end
end;
fASSOC := r
end;

The initialisation of the local variable is not modelled here (for a comment on this, see Sec-
tion 5.2). The correctness theorem that we have proved for this procedure is the following:

I MEMBER(x, (MAP FST 1)) = (fcall fASSOC(x,1) = ASSO0C(x,1))

This means that an occurrence of ASSOC can be replaced by a call to £ASS0C provided that
we have a guarantee that the membership condition holds.

4.4 Using assertions

We now show how the assert command can be used to introduce calls to conditionally
correct procedures,

First of all, we note the following theorem which shows how assertions can be introduced
in a program:




F conjunctive ¢ A correct true ¢ g = (¢ = ¢l seq (assert g))

We use the above example to show how this works. For simplicity, we assume that we
are working in a three-component state space of type #*it*# ((xit**))1ist. We consider
the following program P:

F P = c seq (assign A(y,x,1).(ASS0C(x,1),x,1))

We want to replace the occurrence of ASSOC by a call to the procedure £ASSOC. To do this,
we first prove the correctness of the following assertion introduction:

F ¢ = ¢ seq (assert A(y,x,1) .MEMBER(x,1))

Together with the associativity of sequential composition this theorem permits us to rewrite
the original program as '

P =c seq
((assert A(y,x,1) .MEMBER(x,1)) seq
(assign A(y,x,1).(ASS0C(x,1),x,1)) )

The conditional correctness theorem for the £ASSOC procedure states that a call to fASS0OC
is equivalent to ASSOC whenever the membership predicate holds. This theorem can now
be used to prove the following equivalence:

t (assert A(y,x,1) .MEMBER(x,1)) seq (assign A(y,x,1).(ASS0C(x,1),x,1))
= (assert A(y,x,1).MEMBER(x,1)) seq
(assign A(y,x,1).(fcall £ASS0C(x,1),x,1))

Now this fact is used to rewrite the original program:

F P = ¢ seq
((assert A(y,x,1) .MEMBER(x,1)) seq
(assign A(y,x,1).(fcall £ASSOC(x,1),x,1)) )

Finally we rewrite using the associativity of seq and the theorem that introduced the
assertion again to get

F P = ¢ seq (assign A(y,x,1).(fcall £ASSOC(x,1),x,1))

This method for introducing calls to conditionally correct procedures cannot be formal-
ized in a single theorem, since the functions can have an arbitrary number of parameters
and they may occur in arbitrary places in the state tuple. Hoever, it is possible to write a
standard proof strategy for proving the correctness of such call introductions, leaving the
user only to prove the assertion introduction theorem.

5 Nondeterminism and refinement

So far, we have not consider any nondeterminism in our notation. We have also considered
only equivalences between programs. We now show how nondeterminism can be used to
give more natural specifications of functional procedures in some situations.




5.1 A nondeterministic assignment

We extend our notation with the nondeterministic assignment construct nondass. Let
P:*s1->%82->bool be a relation between the initial and the final state space. Intuitively,
nondags P is a command which for the initial state v chooses an arbitrary final state v’
such that P v v’ holds. If there is no such state, then the command is miraculous, i.e., its
behaviour is not specified. This means that the nondass command is not necessarily strict.
It is always monotonic, conjunctive and terminating, though. For example, the following
command increases the first component of a two-component state space arbitrarily:

nondass A(x,y)(x',y). (X'>x) A (y'=y)

Formally, the definition of the nondeterministic assignment is the following;:
Fdef mondass P g = (Av., W'. P v v/ = q v/)

The nondeterministic assignment is useful in a situation where an ordinary assignment
is over-specific. For example, we often do not care how a local variable is initialized. If we
use the assign construct to introduce the variable, we are forced to supply an initial value.
On the other hand, the nondass construct permits us to introduce the variable without
restricting its initial value.

As an example, we consider a functional procedure for the ASSOC function, defined as
follows:

F £ASS0C =
(assign(A(x,1).((er.T) ,x,1))) seq
(do (A(r,x,1). =(1 = [1)
(cond (A(r,x,1).x = FST(HD 1))
(assign A(r,x,1).(SND(HD 1),x,[1))
(assign A(r,x,1).(r,x,TL 1)) ) ) seq
(assign(A(r,x,l). r))

In this function, we can replace the initial assignment by the nondeterministic assignment
nondass A(x,1)(r,x’,1’). (x'=x) A (1'=1)

which introduces the local component r without restricting its initial value. Thus our
alternative procedure £ASSOC’ is defined as follows:

b £ASS0C' = ‘
(nondass A(x,1) (r,x',1). (x'=x) A (Q'=1)) seq
(do (A(r,x,1). =1 = [1)
(cond (A(r,x,1).x = FST(HD 1))
(assign A(r,x,1).(SNDCHD 1),x,[1))
(assign A(r,x,1).(r,x,TL 1)) ) ) seq
(assign(A(r,x,1). r))

This procedure avoids the use of the arbitrary initialization to @r.T used in £ASS0C, The
two procedures are equivalent when the membership precondition holds: we can prove the
same correctness theorem for £ASSOC’ as for £ASSOC and thus deduce that any occurrence
of ASSOC can be replaced by a call to £ASS0C’.
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5.2 Refinement

It can be argued that an occurrence of nondass makes a procedure difficult to implement,
since most programming languages do not contain any nondeterministic constructs.
However, if we use nondass only to introduce an uninitialized local variable, then we
can consider it to be implemented, e.g., by the var-initialization in a Pascal-program.
Alternatively, we can make refinements to a procedure before we implement it. The
refinement relation ref on commands is defined as follows:

Faef Vo /v c ret ¢’ = (Vq. (¢ @) implies (¢ q))

The refinement relation is reflexive, antisymmetric and transitive (i.e., it is a preorder). An
equivalent characterization of refinement is the following:

b Ve ¢!, cref ¢! = (Vp q. correct p ¢ q = correct p ¢’ q)

i.e., refinement means preserving total correctness. This means that if we have proved a
total correctness theorem for a procedure ¢ and we then refine ¢ into ¢’, we know that the
correctness theorem holds for ¢’ also.

In particular, we can refine any implementation of a function and the result will still
be an implementation of the same function, as long as the strictness and conjunctivity
conditions are not violated. Since the nondeterministic assignment is not always strict, we
have to be a bit careful. In particular, the command

nondass Au v. false

(the miracle command) is a correct refinement of any command.

Refining a nondeterministic assignment The following simple rule shows how we can
refine away a nondeterministic assignment:

F VP e. (Vu. P u (e u)) = (nondass P) ref (assign e)

Thus we can always replace a nondeterministic assignment with an ordinary assignment,
provided that the value assigned is one of the values permitted in the nondeterministic
assignment.

Furthermore, it is easy to prove that refinements of subcommands are always permitted.
The following theorems show this:

F ¢l ref c1’ A c2 ref c¢2' = (cl seq c2) ref (c1’ seq 2’
F cl ref cl’ A ¢2 ref c2' = (cond g ci ¢2) ref (cond g c1’ c2')
F cref ¢ = (dog c) ref (do g c')

Thus we can easily (in fact automatically) prove the theorem

b £ASS0C’' ref £ASSOC

11




from which follows

F ((assert A(x,1). MEMBER(x,(MAP FST 1))) seq £ASS0C")
ref ((assert A(x,1). MEMBER(x,(MAP FST 1))) seq £ASS0C)

From this, and the correctness theorems for £ASSOC and £ASSOC’, it is not too difficult
to prove that under the membership precondition, the procedures fASSOC and £ASSOC’
implement the same function:

 MEMBER(x, (MAP FST 1)) = (fcall £ASS0C'(x,1) = fcall ASS0C(x,1))

We could have proved the same thing without the notion of refinement. However, the
proof that £ASSOC’ and £ASSOC are equivalent under the membership precondition would
then have been much harder. This equivalence holds, but in order to prove it we have
to consider both procedures as wholes. The proof of refinement is simple, because it only
requires a trivial proof on the subcomponent level.

Removing assertions Another application of refinement is in the removal of assertions.
Assertion commands are introduced using the rule

F conjunctive ¢ A correct true ¢ g = (c = cl seq (assert g))

After they have been used in the reasoning, we usually want to remove assertions. If we
work only with equivalence, removing an assertion may require a non-trivial proof, if it is
permitted at all. However, removing assertions is always a correct refinement step, as the
following two theorems show:

b Vg c. (c seq (assert g)) vref ¢
F Vg c. ((assert g) seq c) ref ¢

6 Procedures

We will take the view that a procedure is a program fragment which implements (refines)
a specification. A specification, in turn, is generally a nondeterministic assignment.

In this section, we will show how procedures can be handled in our HOL notation.
We define a procedure call operator pcall and we show how parameters are handled.
The definitions and theorems of this theory can be found in Appendix F (procedures and
recursion).

6.1 A construct with local variables

Procedures generally have local variables, so we extend our command notation with a new
construct for handling them smoothly, The command block p ¢ stands for a block with
a local state component (added as the first component of the state). The first argument p
is an initialisation predicate and c is the body of the block. Intuitively, the execution of a
block can be described as follows. Initially, the local state component is given a value such

12




that p is established. Then c is executed and finally, the local component is removed from
the state.
The definition of the block construct is as follows:

F block p ¢ g = (Av. ¥x. p(x,v) = <&, v). q v)(x,v))

The block does not add anything new to the language; we can always simulate it using
assignments and sequential composition:

F block p ¢ =
(nondass Av(x',v/).p(x,v) A (v'=v)) seq ¢ seq (assign A(x,v).v)

The advantage of using the block construct is that it corresponds closely to the handling
of local variables in ordinary programming languages.

6.2 A procedure call with reference parameters

A procedure works on a state space that only involves the necessary state components.
When we make a call to the procedure, we must indicate which state components are to
be mapped into the state space of the procedure. The execution of a procedure call should
work on the indicated state components and leave the rest of the state unchanged.

In order to show how this works, we consider a simple example. The procedure (program
fragment) pREVERSE is defined as follows:

I pREVERSE =
block (A(rl,1). rl=[1)
((do (A(rl,1).(A=[1))
(assign A(rl,1).(CONS(HD L)rl,TL 1))) seq
(assign A(rl,1).r1))");;

Internally, this procedure works on a state with two components. However, from the exter-
nal point of view, the state space has only one global component (a list of arbitrary type).
When the loop is exited, the local variable contains the reversed list. This reversed list is
copied into the global state component before the local variable is removed. Note that the
global state component is at the same time a reference parameter of the procedure.

Now we want a call to pREVERSE to give the following result: the state component that
is passed as a parameter should be reversed while all other state components should be
unchanged.

Imagine that we make the call from a four-component state space and the second com-
ponent is a list which we want reversed. We indicate this by the parameter expression

Ax,y,z,u). ¥y
We also have to indicate which state components are unchanged:
Alx,y,z,0). (x,z,u)
(it is not possible to define one of these in terms of the other inside HOL). The call is then

pcall pREVERSE (A(x,y,z,u).y) (A(x,y,z,u).(x,z,u))

13




6.3 Procedure correctness

The definition of the procedure call operator is as follows:

 pcall ¢ PR q =
du, (Gp. (V. p(P W) A Ru' =Ru) = qu) Acp(u)

Here c is the procedure, P is the parameter expression and R indicates the unchanged part
of the state (the Rest).

There is no single theorem that can convincingly show that this captures the idea of
a procedure call (it is possible to give a theoretical argument, but it is quite elaborate).
However, we have a small ML program (prove_pcall_ref) which proves the correctness of
the call for each case separately (it also calculates the R parameter given the P parameter).

To show how this works, we consider the list reversal example again. we assume that
we have proved the following theorem (which states that pREVERSE actually reverses a list):

i (nondass A1 1’. 1’ = REVERSE 1) ref pREVERSE

We call this theorem pREVcorrect. We invoke our ML program by typing
#prove_pcall_ref pREVcorrect "A(x,y,z,u).y";;

and the result is the following theorem:

F (nondass A(x,y,z,0) ',y ,z',u).
(y' = REVERSE y) A (x,z,u = x',2',u’))
ref (pcall pREVERSE (A(x,y,z,w.y) (A(x,y,z,u).(x,z,0)))

This theorem shows that the procedure call is a command which refines a certain nondeter-
ministic assignment specification. By considering what this specification says, we see that
the procedure call in fact reverses the second component of the state space.

6.4 Procedures with value parameters

Reference parameters are handled elegantly by the method shown above. Value parameters
can be handled by adding new local variables and storing the values that passed in these
variables. However, for this to work, the calling program would have to store each value in
a variable before making the call. This is not acceptable, since we want to use expressions
as value parameters.

To make this work, we have implemented a separate call to procedures with value
parameters, Values are passed using an expression similar to the parameter expression for
the reference parameters. In this case, the procedure is a command with an argument, i.e.
a function from some type (the type of the value parameter) to commands.

As an example, we consider a procedure which removes all occurrences of a given value
from a list. The value is given as a value parameter and the list as a reference parameter.
The procedure is defined as follows:
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+ PREMOVE a =
block (A (x,1). x=[1)
((do (A (x,1).~Q=[1))
(cond (A(x,1). HD 1 = a)
(assign A(x,1).(x,TL 1))
(assign A(x,1).(SNOC(HD L)x,TL 1))))) seq
(assign A(x,1).(x,x)))

which corresponds to something like

procedure pREMOVE(var 1:(#)1list; a:*);
var x:(*)list; begin x := [];
while not(1=[]) do begin

if HD 1 = a then
1:=TL1
else begin
x,1 := SNOCCHD 1)x,TL 1
end
end;
1l = x
end

Once we have defined the operation REMOVE in HOL we can prove the correctness theo-
rem

F Va. (nondass AL 1'. 1’ = REMOVE a 1) ref (pREMOVE a)

which we assume is called pREMcorrect. Note that pREMOVE can be seen as a family of
procedures; one for each possible value of the value parameter a.

Now imagine a three-component state space where the second component is a list of
numbers and we want to remove SUC z, where z is the third component. We get the
correctness theorem for the procedure call by evaluating

#prove_pvcall_ref pREMcorrect "A(x,y,z).y" "A(x,y,z).SUC z";;

The last argument here is the value parameter expression which shows how the value pa-
rameter is calculated from the current state.
The correctness theorem is the following:

F (nondass (A(x,y,z)(x,y',2z"). (y = REMOVE(SUC z)y) A (x,z=x',z')))
ref (pvcall pREMOVE (A(x,y,2).y) (A(x,y,2).(x,2)) (A(x,y,z).SUC z))

Here pvcall is the procedure-with-value-call operator. Its definitions is

F pvcall c G RV q =
Au, (Fp, (W, pG W) A Ru =Ru) = qu) Ac (Vu) p (Gu)

which differs from the definition of pcall in that the first argument to ¢ is the value of the
value parameter expression V in the current state.
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7 Recursion

Although iteration is generally sufficient for writing arbitrary procedures, a specification
using recursion is often much more natural. This section describes how recursion is added
into the command notation. We also show that using recursion in functional procedures is
not problem-free. The results on recursion are part of Appendix F.

7.1 The recursion operator

It is well known that any monotonic function on a complete lattice has a least fixpoint.
Since the commands (predicate transformers) of a given type are a complete lattice, we can
define a least fixpoint operator mu:

Faef mu £ = Dch(Ac. monotonic ¢ A (£ ¢) ref ¢)

(Dch is demonic choice, a greatest lower bound operator on commands). We can now show
that mu £ is in fact the least fixpoint of the function £, provided that fis regular. Regularity
is defined as follows:

F regular f =
(Yc. monotonic ¢ => monotonic(f c)) A
(Ye ¢’. monotonic ¢ A monotonic ¢/ A ¢ ref ¢/ = (f ¢) ref (£ c'))

i.e., T is regular if it maps monotonic commands to monotonic commands and it is mono-
tonic, viewed as a function on monotonic commands.
The crucial fixpoint theorems are the following;:

F regular f = (f(mu £) = mu £f)
F Vc. monotonic ¢ A (f ¢) ref ¢ = (mu £) ref ¢

which show that mu is in fact a least fixpoint operator,

As an example, we show how iteration can be expressed in terms of recursion (this is
in fact how we have defined iteration; the “definition” shown in Section 2.2 is derived as a
theorem):

F do g ¢ = mu(Ax. cond g (¢ seq x) skip)

7.2 Recursion introduction

The following theorem shows how a specification can be implemented by a recursive con-
struct:

F Yc. regular £ A monotonic ¢ A
(3t .Vi. ((assert(Au.t u=1i)) seq ¢) ref (f((assert(iu.(t u)<i)) seq c)))
= ¢ ref (mu f)

Assume that we want to refine command ¢ by introducing a recursion. We then start
from
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(assert(Au.t u=1i)) seq c

where t is a termination function on the state and i is a free variable. Now we try,
through a sequence of refinement steps, to end up with a command of the form

f((assert (Au. (t u)<i)) seq c))

If we succeed, then the above theorem tells us that mu f is in fact a refinement of c.

7.3 Recursive procedures

Our verification methodology works for recursive procedures as well as nonrecursive ones.
As an example, we consider a recursive list reversal:

F pREV = mu AX.
block true
(cond (A (x,1).1=[1) skip
((assign A(x,1).(HD 1,TL 1)) seq
(pcall X (A(x,1).1) (A(x,1).x)) seq
(assign A(x,1).(x,8NOC x 1))))

(this procedure could well be derived using the method described in Section 7.2, using
general refinement laws [1, 5]).

The list reversal procedure declares a local variable to hold the head of the list while
the procedure is called recursively to reverse the tail (it bottoms out when the empty list
is reached). After the recursive call, the head is added to the end of the reversed tail. Note
that the command variable X occurs inside a pcall; this is the recursive call.

In Pascal-style syntax, the procedure could be written as

procedure pREV(var 1:(%)1list);
var x:*; begin
if 1=[] then
skip
else begin
x,1 = HD 1,TL 1;
PREV(1);
x := SNOC x 1
end
end

The correctness theorem for this procedure is exactly as for the previous one:
+ (nondass Al 1’. 1’ = REVERSE 1) ref pREV

and we get the automatically proved theorems that shows the correctness of the procedure
call in the same way (here in a three-component state):

- (nondass A(x,y,z)(x',y',2").(y' = REVERSE y) A (x,z = x',2'))
ref (pcall pREV (A(x,y,z).y) (A(x,y,2).(x,2)))
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8 Conclusion

We have shown how modular programs can be verified using the HOL system. The language
used is a simple Dijkstra-style language with a weakest precondition semantics, extended
with procedures and procedure calls.

The idea of embedding simple languages in HOL is not new. We build on earlier work
embedding the refinement calculus [1, 5] in HOL [2, 4]. However, we are not aware of any
work similar to the verification methodology that we propose.

We have assumed post hoc-verification, i.e., that the programmer starts the verification
only after the code for a procedure is already written. However, as we indicated in Section
7.3, these procedures can well be developed using refinement methodology. In fact, there
is a contribution (a kind of inofficial library) in the HOL system, specifically dedicated to
program refinement in HOL.

In modern programming methodology, the importance of modular program structure
is often stressed. Large programs are built from a number of smaller procedures that
make calls to each other. Since our verification methodology works well for such modular
programs, we hope to demonstrate in future case studies that it can be used to verify larger
(more than just a few dozen lines of code), nontrivial programs.
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Appendix A: A theory of predicates

The Theory RCpredicate

Definitions ——
false DEF t false = (Av. F)
true DEF + true = (Av., T)
not_DEF F Vp. not p = (Av, -p v)
and DEF F Vpq. pandq = (Av. pv A q W)
or DEF +Vpgq. porq= (Av. pvVqmw)
imp_DEF F Vp q. p imp q = (Av. p v = q v)
implies_DEF F Vp q. p implies q = (Vv. p v = q V)
glb_DEF + VP, glbP = (Av. Vp. Pp =>p V)
1ub_DEF F VP, lub P = (Av. dp. Pp A p v)
monotonic_DEF

F V£. monotonic f = (Vp q. p implies q = (£ p) implies (f q))

fix_DEF F V£. fix £ = glb(Ap. (£ p) implies p)
gfix _DEF F Vf. gfix £ = lub(Ap. p implies (f p))

Theoremsg —-—
shunt F (b and p) implies q = p implies ((not b) or q)
implies_prop
F (Vp. p implies p) A
(¥p q. p implies q A q implies p = (p = q)) A
(Yp q r. p implies q A q implies r = p implies r)
and_glb F p and ¢ = glbQp'. (' =p) V @' = q))
glb_bound F VP p. P p = (glb P) implies p
glb_greatest F VP q. (Vp. P p = q implies p) = q implies (glb P)
fix_least I Vp. (£ p) implies p = (fix £) implies p
f£ix_fp * monotonic £ = (£(fix f) = fix f)
fix_char
F monotonic £ A (f a) implies a A (Vx. (£ x = x) = a implies x) =
(a = fix £)
gfix_greatest I Vp. p implies (f p) = p implies (gfix £)
gfix_fp F monotonic f = (£(gfix f) = gfix £)
gfix_char
F monotonic £ A a implies (f a) A (Vx. (£ x = x) = x implies a) =
(a = gfix £)
or_into_glb F q or (glb P) = glb(Ap'. dp. P p A (p' = q or p))
glb_and
FVEg. glb(. Idp. Pp A (q = (£ p) and (g p))) =
(glb(. Ip. Pp A (q = £ p))) and
(glb(. Ip. Pp A (@ = g pP)))

®kkkkkksdkdckkdokkokrokkk ROpredicate skikkkkokkkkkskdokkkkokk
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Appendix B: A theory of commands

The Theory RCcommand
Parents —— RCpredicate

Definitions —— :
ref DEF + Ve ¢, ¢ ref ¢’ = (Vq. (c q) implies (¢’ q))
guard_DEF F ¥b q. guard b q = b imp q :
dch_DEF F Vel c2 q. (cl dch ¢2)q = (c1 q) andd (¢2 q)
Dch_DEF + V€ q. Dch € q = glb(Ap. Je. Cc A (p = ¢ q))
ach_DEF F Vcl c2 q. (ci ach ¢2)q = (c1 gq) or (c2 q)
Ach_DEF F V€ q. Ach C q = lub(Ap. dc. Cc A (p = ¢ q))
dolib_DEF
b Vg ¢ q. dolib g ¢ q = gfix(Ap. (g or q) andd ((not g) or (c p)))
skip_DEF I Vq. skip q = q
assert_DEF + Vg q. assert g ¢ = g andd q
assign DEF F VE q. assign E q = (Av. q(E v))
nondass_DEF F VP q. nondass P ¢ = (Av. YWv'. Pv v/ = q v)
seq DEF F Vcl c2 q. (¢l seq ¢2)q = c1(c2 @)
cond_DEF
F Vg ct c2 q.
cond g ¢1 ¢2 g = (g andd (cl q)) or ((not g) andd (c2 q))
mu_DEF F Vf. ma £ = Dch(Ac. monotonic ¢ A (f ¢) ref ¢)
do_DEF F Vg c. do g ¢ = mu(Ax. cond g (c seq x) skip)
strict _DEF | Vc. strict ¢ = (c falgse = false)
terminating DEF I Vc. terminating ¢ = (¢ true = true)
biconjunctive DEF
F VYec. biconjunctive ¢ = (V¥p q. ¢(p andd q) = (c p) andd (¢ q))
uniconjunctive_DEF
F Ve,
" uniconjunctive ¢ =
(VP. c(glb P) = glb(. 3p. Pp A (q = ¢ p)))
conjunctive_DEF
F Ve,
conjunctive ¢ =
(VP. (3p. P p) = (c(glbP) = glb(. Ip. Pp A (@ = ¢ p))))
pmonotonic_DEF
F vt
pmonotonic £ =
(Ve ¢’
monotonic ¢ A monotonic ¢’ A ¢ ref ¢’ = (f ¢) ref (£ <))
mono_mono_DEF -
F Vf. mono_mono £ = (Vc¢. monotonic ¢ => monotonic(f c))
regular _DEF G Vf. regular £ = pmonotonic £ A mono_mono f

20




Theorems ——
ref_prop
F (Ve. ¢ ref ¢) A
(Ve ¢’ cref ¢’ Ac' ref c= (c =cH) A
(Ve ' &' cref ¢’ Ac' ref ! = c ref )
mono_Dch F (Vc. € ¢ => monotonic ¢) = monotonic(Dch C)
Dch_bound F VC c¢. € ¢ = (Dch C) ref ¢
Dch_greatest K V¢ c. (V¢'. ¢ ¢’ = ¢ ref ¢') = ¢ ret (Dch C)
mono_mu | Vf. monotonic(mu f)
mu_least F Vc. monotonic ¢ A (f ¢) ref ¢ = (mu £) ref ¢
mu_fp F regular £ = (f(mu f) = mu £)
mu_char
F regular £ A
monotonic a A
(f a) ref a A
(Vx, (£ x = x) = a ref x) =
(a = mu £)
do_thm
F Ve.
monotonic ¢ =
(do g ¢ q = £ix(Ap. (g andd (c p)) or ((not g) andd q)))
do_expand
b monotonic ¢ =
(do g c p = (g andd (c(do g ¢ p))) or ((not g) andd p))
do_implies
b monotonic ¢ =
((g andd (c q)) or ((not g) andd p)) implies q =
(do g ¢ p) implies q '
seq_assoc F cl seq (c2 seq c3) = (cl seq c2) seq c3
mono_subuniconj
t monotonic ¢ =
(c(glb P)) implies (glb(. dp. P p A (@ = c p)))
conj_biconj I conjunctive ¢ => biconjunctive c
conj_mono F conjunctive ¢ = monotonic ¢
uniconj_conjterm F uniconjunctive ¢ = conjunctive ¢ A terminating c
uniconj_conj F uniconjunctive ¢ => conjunctive ¢
uniconj_mono F uniconjunctive ¢ => monotonic c
mono_skip F monotonic skip
mono_assert F VYb. monotonic(assert b)
mono_assign F Ve. monotonic(assign e)
mono_nondass t Vp. monotonic(nondass p)
mono_seq
F Ve ¢/. monotonic ¢ A monmotonic ¢’ => monotonic(c seq c¢')
mono_cond
F Vg cl c2,
monotonic ¢1 A monotonic ¢2 = monotonic(cond g ci c¢2)
mono_do F Vg c. monotonic ¢ => monotonic(do g <)
do_dolib
biconjunctive ¢ F do g ¢ q = (dolib g ¢ q) andd (do g ¢ true)
conj_skip F conjunctive skip
conj_seq
t Ve ¢’. conjunctive ¢ A conjunctive ¢’ => conjunctive(c seq c')
conj_do F Vg c. conjunctive ¢ => conjunctive(do g c)
nondass_complete
F uniconjunctive ¢ => (¢ = nondass(lu u’. glb(. ¢ q Wu'))

sk kkokokokkksokokokkokk ok RCcommand sskskskokskskakkkskok kb ok okoksk k
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Appendix C: A theory of well-founded sets

The Theory RCwellf

Parents —— HOL
Definitions ——
order_DEF
F Vpo.
order po =

(WVx y. poxy = (x=1y)) A
(Vx yz. poxy Apoy z = po x z)
minimal_DEF F Vx M po. minimal x Mpo = M x A (Vy. My = —-po y x)
wellf_DEF
F Vpo.
wellf po = order po A (VM. (Ix. M x) = (Ix. minimal x M po))

Theorems ——
wellf_INDUCT .
wellf po F (Vx. (Vy. poy x = P y) = P x) = (Vx. P x)
strong_induct + VP, (Vn. (Vm. m < n = P m) = Pn) = (¥n. P n)
nunm_wellf F wellf $<

skokok ok ok ok kb kb kkdokkdok ROWQLLE skokokskakskskskokokokkokokkokskokokk
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Appendix D: A theory of total correctness

The Theory RCcorrect
Parents —— RCcommand RCwellf

Definitions ——
correct DEF I Vp c q. correct p ¢ q = p implies (¢ q)

Theorems ——
correct_assign F (Vv. p v = g(e v)) = correct p(assign e)q
correct_seq
F Vel ¢2 p q r. monotonic ¢l A correct p ¢l q A correct q c2 r =
correct p(cl seq ¢2)r
correct_cond
Vg ¢l ¢2 p q. correct(g and p)cl q A correct((not g) and p)c2 q =
correct p(cond g cl c2)q
wellf_do_inv_rule
F monotonic ¢ A
(dpo inv t. wellf po A p implies inv A
((not g) and inv) implies q A
(Vx. correct (inv and (g and (Au. t u = x)))
c
(inv and (Au. po(t wWx)))) =
correct p(do g c)q
num_do_inv_rule
F monotonic ¢ A
(Finv t. p implies inv A ((not g) and inv) implies q A
(Vx. correct (inv and (g and (Au. t u = x)))
<
(inv and (Au. (t w) < x)))) =
correct p(do g c)q
impl_assign
F monotonic ¢ A (Vu0. correct(lu. u = ud)c(Av. v = e u0)) =
(assign e) ref ¢
assert_intro
F Vg c.
conjunctive ¢ A correct true ¢ g = (¢ = c seq (assert g))

kxkkdkkkkkkkpkkrkkk ROcorrect dksokmksmsbkkskkkokskokkkkk
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Appendix E: A theory of functional abstraction

The Theory RCfunction

Parents —— RCcorrect
Definitions —— fcall DEF F Vc. fcall ¢ = (Au. ev. glb(, ¢ q Wv)
Theorems ——
assign_call F fcall(assign e) = ¢
fcall_thm
F Ve f.

conjunctive ¢ A
strict ¢ A
(Vud. correct(Au, u = ud)c(Av. v = £ ud)) =
(fcall ¢ = f)
fcall_rule
F Ve £,
conjunctive ¢ A strict ¢ A (assign f) ref ¢ = (fcall ¢ = £)
fcall_thm_pre
k- Vg ¢ £,
conjunctive ¢ A
strict ¢ A
(Vu0. g u0 = correct(Au. u = ul)c(Av. v = £ u0)) =
(Vu. g u= (fcall c u = f u))
fcall_rule_pre
F Vg c £.
conjunctive ¢ A strict ¢ A ((assert g) seq (assign £)) ref ¢ =
Mu., gu= (fcall cu = 1f w)

Il
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Appendix F: A theory of procedures and recursion

The Theory RCprocrec
Parents —- RCcorrect

Definitions ——
pcall _DEF
F VYcGR qu.
pcall c GR qu =
(Gp. (W, p@u) A Ry =Ru = qu) Acp(@u)
pvcall_DEF
FVYcGRVqu.
pvcall c G RV qu =
(Fp. W, p@u)Y A Ru =Ru) = qu) AclVupldu)

Theorems —~—
nu_thm
F VE c.
regular £ A
monotonic ¢ A
(3t. Vi.
((asgert(Au. t u = i)) seq c) ref
(f((assert(Au. (t u) < i)) seq ¢))) =
¢ ref (mu f)
regular_const F Vc. monotonic ¢ = regular(Ax. c)
regular_id F regular(ix. x)
regular_seq
F Vf £'. regular £ A regular ' = regular(Ax. (f x) seq (£ x))
regular_cond
- vg £ .
regular £ A regular £ = regular(ix, cond g(f x) (£ x))
pcall_mono
F Ve c’. ¢ ref ¢/ = (VG R. (pcall ¢ G R) ref (pcall ¢’ G R))
regular_pcall F VG R, regular(Ax. pcall x G R)
pvcall_mono
F Ve ¢\
(Va. (c a) ref (¢’ a)) =
(VG R V. (xpcall ¢ G R V) ref (xpcall ¢’ G R V))
sokdokkkk Rk ok ok kkiokkkk RCprocrec skkkskkskkikskoksksk ko kkkk
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