Technical Report VAN

Number 327

Computer Laboratory

A new application for
explanation-based generalisation
within automated deduction

Siani L. Baker

February 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1994 Siani L. Baker

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A New Application for Explanation-Based

Generalisation within Automated Deduction®

Stani L. Baker
Computer Laboratory, University of Cambridge

Abstract

Generalisation is currently a major theorem-proving problem. This paper
proposes a new method of generalisation, involving the use of explanation-
based generalisation within a new domain, which may succeed when other
methods fail. The method has been implemented for simple arithmetical
examples.

Key words. Generalisation, proof transformation, automated theorem proving.

*Research funded by the SERC (grant RF/1389).

CONTENTS

Contents

1 Introduction
1.1 Generalisation v . v v v i e
1.2 The Proposed Generalisation Strategy

2 The Constructive Omega Rule
2.1 Automation of thew-ruleo L

3 Explanation-Based Generalisation Applied to w-Proofs
3.1 The Problem of Generalisation
3.2 AnInitial Solution o
3.3 Generalisation using Explanation-Based Generalisation
3.4 Comparison with Related Work

4 Linearisation

5 Conclusions

1 Introduction

1.1 Generalisation

Generalisation is a powerful tool in automated theorem proving with a variety of
roles, such as enabling proofs, defining new concepts, turning proofs for a specific
example into ones valid for a range of examples and producing clearer proofs. Van
der Waerden’s account of how the proof of Baudet’s conjecture was found [25] il-
lustrates how generalisation lies at the heart of mathematical discovery, and how
generalised theorems may be easier to prove than the original goal (because the
induction hypothesis is also made stronger when the goal is strengthened by gen-
eralisation). If induction is blocked for an expression!, generalisation may be used
as a step to convert this expression into a new, more general, expression which may
be proved by induction. In order to verify a goal ®, one may instead prove its
generalisation W. Indeed, it might actually be necessary to adopt this approach in
cases where ® is a theorem of a system S but it is not the case that ® may be
proven by induction within S (although ¥ may be found such that ¥ is provable
by induction within S, and such that ¥ is a generalisation of ®). Heuristics are
needed for the suggestion of U since there is no appropriate algorithm for finding
suitable generalisations.? A suitable suggested generalisation must be just general
enough to provide a proof by induction whilst not being too general, for not only
may generalisations ¥ be computed such that it is not the case that W is provable by
induction, but overgeneralisations may also be computed (where ¥ is not a theorem
of S).

Although generalisation is an important problem in theorem-proving, it has by
no means been solved. It is important and still being investigated for reasons which
relate to cut elimination and the lack of heuristics for providing cut formulae. A
cut elimination theorem for a system states that every proof in that system may be
replaced by one which does not involve use of the cut rule?. Uniform proof search
methods can be used for logical systems, in sequent calculus form, where the cut
rule is not used. In general, cut elimination holds for arithmetical systems with the
w-rule, but not for systems with ordinary induction. Hence in the latter, there is
the problem of generalisation, since arbitrary formulae can be cut in. This makes
automatic theorem-proving very difficult, especially as there is no easy or fail-safe
method of generating the required cut formula.

When discussing generalisation I have so far referred to goal generalisation, which
is the proof step described above which allows the postulation of a new theorem as
a substitute for the current goal, from which the latter follows easily (for example,

Induction is said to blocked if, after all available symbolic evaluation has been carried out,
the induction conclusion is still not an instance of the induction hypothesis, and hence remains
unprovable.

20f course, an algorithm could be used which tried every possible option, but the search required
might be infeasibly large, and the conclusion that there was no suitable generalisation would not
be allowed: this trivial approach is not what is required.

3See [22], for example.

2 1 INTRODUCTION

backward application of the V-elim rule of a natural deduction calculus). Yet gener-
alisation may be carried out on proofs as well: it has a different emphasis, namely
on providing a more general proof, and although goal generalisation may involve
generalisation of the proof of a theorem in order to generalise the theorem itself,
this need not be the case.

1.2 The Proposed Generalisation Strategy

A New Approach to Generalisation

Individual proof
instances of P(x)
are generated

¥y
Proof of the universally User input Other means
quantified formula is of proof for P(x) of input

derived using inductive >

inference
proof autolmatically
derived by ega rule

*General Proof" is checked for correctness

generalisation other types of
by vars apart generalisation

Candidates for cut formulae A cut formula is generated
are generated by an by a linearisation procedure
explanation-based learning

algorithm

Figure 1: Generalisation Strategy

Generalisation of proofs has the advantage that more information may be available
than for goal generalisation. The method proposed in this paper exploits this fact
by enabling goal generalisation by means of carrying out explanation-based general-
isation on proofs. The problem of generalisation is tackled by use of an alternative
(stronger) representation of arithmetic, in which proofs may be more easily gener-
ated. The “guiding proofs” in this stronger system may succeed in producing proofs
in the original system when other methods fail (cf. Table 2). This method has been
automated for simple arithmetical examples and results in the suggestion of an ap-
propriate cut formula. More specifically, in order to carry out generalisations of
the form Yz A(z) to VzQ(z), individual proof instances of A(z) are generated, and
then generalised to a proof of the arbitrary case A(r) using some inductive inference
process (which presents algorithms to obtain a general pattern from individual in-
stances). The latter proof can be generalised via explanation-based generalisation
to the most general proof using the same rule set. The new proof can be shown to
be of a linear form. Hence the formula for which this is a proof provides a suitable
cut formula for A(z), since it satisfies the properties of being a more general form of

which A is a specific case, and such that induction may be performed upon it. Fig-
ure 1 represents the overall strategy for generalisation: a “general proof” (of A(r))
is provided by some means (one possible option being an automatic derivation using
the w-rule), and a suitable cut formula is suggested by inspection of this proof.

The following section presents w-proofs, from which it is possible to read off
appropriate cut formulae, and the semi-formal system of arithmetic in which they
are derived. Section 3 discusses how the explanation-based generalisation method
may be applied to these proofs in order to suggest cut formulae. Section 4 discusses
how conventional inductive proofs are related to w-proofs, and in particular how the
explanation-based generalisation method linearises w-proofs, and hence provides a
cut formula which is provable by induction. Finally, conclusions are given.

2 The Constructive Omega Rule

In order to describe the generalisation method proposed, it is first necessary to
provide a description of the ‘stronger’ system mentioned above. A suitable rule
other than induction which might be added to Peano’s axioms to form a system
formalising arithmetic is the w-rule:

A(0),AQ)) ... Al). ..
Ve A(z)

where n is a formal numeral, which for natural number n consists in the n-fold
iteration of the successor function applied to zero, and A is formulated within the
language of arithmetic. This rule is not derivable in Peano Arithmetic (PA)*, since
for example, for the Gédel formula G(z), for each natural number n, PA - G(n)
but it is not true that PA F VzG(z). This rule together with Peano’s axioms gives
a complete theory — the usual incompleteness results do not apply since this is not
a formal system in the usual sense.

However, this is not a good candidate for implementation since there are an
infinite number of premises. It would be desirable to restrict the w-rule so that
the infinite proofs considered possess some important properties of finite proofs.
One suitable option is to use a constructive w-rule. The w-rule is said to be
constructive if there is a recursive function f such that for every n, f(n) is a Gédel
number of P(n), where P(n) is defined for every natural number n and is a proof of
A(n) [24]. This is equivalent to the requirement that there is a uniform, computable
procedure describing P(n), or alternatively that the proofs are recursive (in the sense
that both the proof-tree and the function describing the use of the different rules
must be recursive) [27], which is the basis taken for implementation (as opposed to
a Godel numbering approach). The sequent calculus enriched with the constructive
w-rule (let us call it PA,,) has cut elimination, and is complete [23]. Moreover,
since the w-rule implies the induction rule, PA., + IND is a conservative extension
of PA.,. There are many versions of a restricted w-rule; this one has been chosen

4See for example [22] for a formalisation.

4 2 THE CONSTRUCTIVE OMEGA RULE

because it is suitable for automation. Note that in particular this differs from the
form of the w-rule (involving the notion of provability) considered by Rosser [20]
and subsequently Feferman [9]. Implementation of a proof environment with the
constructive w-rule is described in [2]; this provides a basis for the implementation
of the generalisation method described in this paper.

In the context of theorem proving, the presence of cut elimination for these
systems means that generalisation steps are not required. In the implementation,
although completeness is not claimed, some proofs that normally require generali-
sation can be generated more easily in PA., than PA.

2.1 Automation of the w-rule

The constructive w-rule may be used to enable automated proof of formulae, such as
Vz (z+)+ = 2 + (2 + &), which cannot be proved in the normal axiomatisation
of arithmetic without recourse to the cut rule. In these cases the correct proof could
be extremely difficult to find automatically. However, it is possible to prove this
equation using the w-rule since the proofs of the instances (0 +0) +0 = 0+ (0 +
0),(1+1)+1=1+(1+1),... are easily found, and the general pattern determined
by inductive inference. Automated proof in such a system might be seen as a goal
in itself, but the concern of this paper is rather how it is possible to use this system
as a guide to the provision of difficult proofs in more conventional systems.

One way in which the constructive w-rule may be put into effect is to require that
there is an enumeration of the derivations which prove the premises — for example
one could code proofs by numbers, by means of a primitive recursive function which
generates them. But I have not used such a traditional representation; it was suffi-
cient for my purposes to provide (for the nth case) a description for the w-proof of
A, namely P(n), in a constructive way (in this case a recursive way), which captures
the notion that each P(n) is being proved in a uniform way (from parameter n).
This is done by manipulating A(n), where Yz A(z) is the sequent to be proved, and
using recursively defined function definitions of PA as rewrite rules, with the aim
of reducing both sides of the equation to the same formula. The recursive function
sought is described by the sequence of rule applications, parametrised over n. In
practice, the first few proofs will be special cases, and it is rather the correspondence
between the proofs of P(99), say, and P(100), which should be captured.

The w-proof representation represents P(n), the proof of the nth numerator
of the constructive w-rule, in terms of rewrite rules applied f(n) or a constant
number of times to formulae (dependent upon the parameter n). (For more technical
details regarding the representation of w-proofs, see [2] and [3].) As an example, the
implementational representation of the w-proof for Yz (¢ +) + 2 = 2 + (z + @)
takes the form given in Figure 2 (although it may be represented in a variety of
ways) presuming that, within the particular formalisation of arithmetic chosen, one
is given the axioms of addition of Figure 2.

By s™(0) is meant the numeral n, ie. the term formed by applying the succes-
sor function n times to 0. The next stages use the axioms as rewrite rules from
left to right, and substitution in the w-proof, under the appropriate instantiation of

2.1 Automation of the w-rule 5

Axioms
O+y =y (1)
s@) -ty = s(o+y))
Proof
(n+n)+n=n+(n+n)
n = s"(0) (s*(0) + 57(0)) + s™(0) = s™(0) + (s"(0) + s"(0))
USE (2)n TIMES ON LEFT ([1,1]) s*(0+4s"(0)) + s™(0) = s™(0) + (s"(0) + s™(0))
USE (1) ON LEFT ([2,2,1,1]) s"(s™(0)) + s™(0) = s*(0) + (s*(0) + s*(0))
USE (2)n TIMES ON RIGHT ([2]) s*(s™(0)) + s™(0) = s™(0 + (s™(0) + s™(0)))
USE (1) ON RIGHT ([2,2,2]) s"(s™(0)) + s™(0) = s™(s™(0) 4 s™(0))
USE (2)n TIMES ON LEFT ([1]) ((0)+57(0)) = 57(5(0) +5(0))
EQUALITY ’

Figure 2: An w-Proof of Vz (z 4+ 2)+ ¢ =2+ (¢ + 2)

variables, with the aim of reducing both sides of the equation to the same formula.
The subpositions to which the rewrite rules are applied are given in parentheses,
according to the exp_at notation of Clam [26]. The w-proof represents, and high-
lights, blocks of rewrite rules which are being applied. Meta-induction may be used
(on the first argument) to prove the more general rewrite rules from one block to
the next: for example, Vn s"(z) + y = s"(z + y) corresponds to n applications of
axiom (2) above.

The processes of generation of a (recursive) w-proof from individual proof in-
stances, and the (metalevel) checking that this is indeed the correct proof have
been automated (see [4]). Any appropriate inductive inference algorithm®, such as
Plotkin’s least general generalisation [19], or that of Rouveirol [21], could be used
to guess the w-proof from the individual proof instances.

Note that such inductive inference algorithms for generating generalisations pro-
duce a proof for an arbitrary instance: it is suggested below how explanation-based
generalisation can be applied using this information to find the proper induction
formulae for inductive theorem provers. The problems involved in the inductive in-
ference process differ from those involved in (goal) generalisation because inductive
inference generalises a proof of A(k) where k is some number to a proof of A(n),
whereas generalisation involves finding a formula C such that C' A and in addition
such that C' may be proven by induction. Inductive inference may be carried out by
a relatively simple algorithm (such as updating a guess). However, there is no such
known algorithm for goal generalisation.

In the implementation, the theorem under consideration is proved for a few cases,

5Explanation-based learning permits learning from a single example, whereas inductive learning
usually requires many examples to learn a concept.

6 3 EXPLANATION-BASED GENERALISATION APPLIED TO w-PROOFS

and then learning induction is used to guess the w-proof from these cases; next it is

verified that the guessed w-proof is correct.® As an alternative, the user may bypass

this whole stage by specifying the w-proof directly. Further details of the algorithms

and representations used, together with the correspondence between the adopted

implementational approach and the formal theory of the system are described in [3].
The next section discusses how w-proofs may be generalised.

3 Explanation-Based Generalisation Applied to
w-Proofs

There is a class of proofs which are provable in PA only using the cut rule but which
are provable in PA,, [3, 14]. I shall consider whether the proof in PA,, suggests a
proof in PA, and in particular, what the cut formula would be in a proof in Peano
Arithmetic.

3.1 The Problem of Generalisation

To illustrate the general principle, consider the simple example for ¥ = Ve (¢ +2) +
¢ = x + (¢ +). The problem is to find ® such that ® should be a more general
version of the goal ¥, in order to prove ® F ¥, but on the other hand it should be
suitable to give an inductive proof of ®.

dFVz(z+a)+e=c+(z+2) +HO

T
FVz(z+a)+e=z+(z+c) cv

Ordinary induction does not work on ¥, primarily because the second, third and
sixth terms in the step case may not be broken down by the rewrite rules correspond-
ing to (1) and (2) above, and hence fertilisation (substitution using the induction
hypothesis) cannot occur. Hence it is necessary to use the cut rule.

3.2 An Initial Solution

In order to suggest a cut formula from an w-proof, one method already proposed is
to see what remains unaltered in the nth case proof, and then write out the original
formula, but with the corresponding term re-named [5]. So, for the example in
Figure 1, the variable corresponding to A would be rewritten as y. In this case, this
would give

O=VeVy (z+y)+y=a+(y+y)

® could then be proved by induction on z. Note that what is meant by ‘unaltered’
is defined by what is unaffected in structure by the rewrite rules. This procedure
has been automated (all that is required is detection of the unaltered terms), and

6Verifying that the guessed w-proof works for all n involves mathematical induction at the
meta-level; however, the induction required for this differs from that required to prove the original
theorem directly, and is usually simpler, so there is no circularity.

3.3 Generalisation using Explanation-Based Generalisation 7

so the cut formula may be produced automatically. This method of generalisation
will allow the proof of some theorems which pose a problem for other methods, such
as ¢ # 0 —= p(z) + s(s(z)) = s(z) + , where p is the predecessor function (detailed
comparisons of this ‘unaltered term’ method with other generalisation methods with
regard to this example are given in [5)).

3.3 Generalisation using Explanation-Based Generalisation

A new development of this solution, which produces a more general generalisation,
is to look at the rules of the w-proof, and work out what the most general statement
could be which was proved using these rules. This process has been applied in var-
ious other domains (see for example [7]), and is the approach of explanation-based
generalisation (denoted ‘EBG’ as an abbreviation). EBG is a technique for formu-
lating general concepts on the basis of specific training examples, first described in
[16]. The process works by generalising a particular solution to the most general
possible solution which uses the rules of the original solution. It does this by apply-
ing these rules, making no assumptions about the form of the generalised solution,
and using unification to fill in this form.

Original Problem Rule Used Generalisation
[5.2%dz [S.af#1de
() Rulel : [R.F(z)dz = R. [F(z)dz 0
5. [z2dz S, [af# 1dx
J Rule2 : [2% 1dg = “;f:ll 1
5.2 S. [G(z)de

Figure 3: An Example of Explanation-Based Generalisation in LEX2

Figure 3 illustrates the EBG method, where the domain comprises (partial) inte-
gration proofs [17], and constraint back-propagation is used to enable explanation-
based generalisation. With reference to this figure, the most general form of the
expression for which the rules would be applicable may be calculated as follows:
The form of an expression to which Rulel is applicable must be [S.G(z)dz, and
afterwards S. [G(z)dz, for any rational number S and first-order function G. For
Rule2 to be applicable, G(z) must be zX#-!, for any rational number K. Any
such information derived will then be filtered back to the original expression, to
give a most general generalisation (using the rules used on the original problem) of
[S.ae8F1de.

Figure 4 shows how the EBG method applied to an individual example A(k)
fails to provide a generalisation appropriate for direct use as a cut formula for
A(z). In particular, the individual proof of P(k) k € nat will at best generalise
to Q(k,y) where @ is a specialised form of a suitable generalisation (for the proof
of A(k) may be specialised with respect to k, and not general enough to capture
for instance the correspondence between the proof for P(k) and P(k + 1). The

8 3 EXPLANATION-BASED GENERALISATION APPLIED TO w-PROOFS

Original Problem Rule Used Generalisation
(5+8)+5=5+(5+5) B5+Y)+K=5+ (Y +K)
J Rulel : s(X)+Y = s(X +Y)
I Rule2:04+Y =Y 0
EQUALITY ' EQUALITY

Figure 4: EBG on Proof of an Individual Example

rules of w-proof generalised w proof instantiations

(2) ntimes at [1,11 fnO([s"(X) +YI|K]) =W original

(1) once at [2,2,1,11 frO([s"(X +Y)|K]) =W

(2) n times at [2] fo([s"(Y)|K]) =W X=0

(1) once at [2,2,2] f0([s"(V)|IK]) =s"(P+Q) W=s"(P)+@Q
(2) n times at [1] s"(Y+ K) =s*Q) P=0, fn0=+
EQUALITY s"(Y+K) =s"(Y+K) Q=Y+ K

Figure 5: Illustration of Explanation-Based Generalisation on Rules of w-Proof

final result of EBG does not lead to the required generalisation: it is necessary
to generalise this again. One needs also to introduce a correctness check for the
suggested generalisation. In addition, the required generalised proof will involve
rewrite rules applied a parametrised number of times (because of the structure of
the database). However, by providing a correct initial proof using parametrised
rules, it is possible to carry out EBG directly in order to produce a suitable cut
formula (cf. Figure 5).

The EBG method is applied in this instance to a new domain, namely that of
w-proofs. As an illustration of the method, let us apply explanation-based generali-
sation to Figure 1, to give the process shown in Figure 5. The right hand column is
the instantiations of variables, which are finally to be filtered back up into the origi-
nal expression. Essentially what is happening is that each application of the rewrite
rules of the original w-proof is matched with the latest line of the new w-proof to
see the necessary form of a generalised w-proof. If (2) is applied m times, this will
match with the form

sSM(X)+Y = sM(X+Y)

Nothing more is supposed about the original form of the w-proof than that it is of
the form U = W. The rule application blocks on the left hand side of this figure are
identical with those of the w-proof given in Figure 1. The procedure is to form the
most general w-proof which could use those same rules to achieve equality. Hence,
these same rewrite rules are applied at the specified subpositions to give a new w-
proof. In so doing the structure of U and W is revealed. For instance, the fact that
rule (2) may be applied n times at subposition [1,1] of U = W reveals that U must
be of the form fn0([s"(X) + Y|K]) (which represents some functor fn0 of as yet

3.3 Generalisation using Explanation-Based Generalisation 9

Vz 2 + s(x) = s(z +2) 3
Ve(z+2z)+a = z+(z+2) 4

Ve +s(z) = s(z)+z 5

Vez.(z4+2) = zetze

Ve (2+2z)+z = 2+ (2 +2)
VeVy (z+y)+z = z+(y+=e)
Ve o #0— p(z) +s(s(z)) = s(z)+e

Vo even(z +z) = true

oo

= o~ N N N N TN
Ne) (>

(=) -~
NN 22N NN NP N

—

Note that induction is blocked for the above expressions, but they may
all be proved by the EBG method proposed and a correct cut formula
produced as appropriate.

Table 1: Some Examples of Theorems Proved

unknown arity with initial argument s"(X)+Y and additional arguments K') before
the rule application, and of the form fr0([s"(X + Y')|K]) afterwards. This process
is repeated until all the given rules are exhausted. Finally, the left-hand side and
the right-hand side of the w proof are unified (since the original proof resulted in
equality). Throughout this process, information will have been obtained regarding
the structure of some of the postulated variables in this new w proof, such as that
presented in the final column of Figure 5.

Feeding such variable instantiation information back to the original expression
U = W shows that it must be of the form:

(n+Y)+ K=n+ (Y +K)
This gives the most general generalisation as being
VeVyVz(z+y)+z=a+(y+2)

By means of this method, the generalisations are found by recognising patterns, and
a uniform approach for generalisation is provided.

Although the heuristic of replacing unaltered terms is suitable for implementation
(and was successfully implemented), the method of explanation-based generalisation
extends this idea to provide a uniform algorithm based on the underlying structure
of the proof. The implementation of EBG, in which the previous “w-rule” environ-
ment was extended to include generalisation tactics, follows the unification process
described above, and thus subsumes the implementation of the heuristic method.
[4] provides full details of the implementational environment, which will automati-
cally suggest cut formulae for examples such as (3)—(9) of Table 1.7 Most of these

"Definitions of the predicates involved may be found in [3].

10 3 EXPLANATION-BASED GENERALISATION APPLIED TO w-PROOFS

examples involve generalisation of variables apart, or else generalisation of common
subexpressions. In these cases both the heuristic of replacing unaltered variables
and the explanation-based generalisation method work fairly straightforwardly. Al-
though the examples listed in the table are of a similar simple form, these methods
may also be applied to complicated examples containing nested quantifiers, etc., for
the w-rule applies to arbitrary sequents. Example (8) provides an instance of nested
use of the w-rule, which carries through directly. For example (10), the cut formula
of even(2.z) could possibly be extracted by a user from the form of the w-proof (see
[5]), which is an improvement over other generalisation methods. However, in some
cases where an w-proof may be provided, it is not clear what the cut formula might

be.

3.4 Comparison with Related Work

These methods involving manipulation of the w-proof should be compared with cur-
rent generalisation methods. Of these, perhaps the most famous is that implemented
by Boyer and Moore in their theorem-prover NQTHM [6]. The main heuristic for
(goal) generalisation is that identical terms occurring on both the left and right side
of the equation are picked for rewriting as a new variable (with certain restrictions).
This may be a quick method if it happens to work, but may also entail the proofs
of many lemmas, which might need to be stored in advance in anticipation of such
an event in order to be more efficient. The problems inherent in Boyer and Moore’s
approach have led Raymond Aubin to extend their work in this field [1]. Aubin’s
method is to “guess” a generalisation by generalising occurrences in the definitional
argument position, and then to work through a number of individual cases to see
if the guess seems to work. If it does work, he will look for a proof. If it does not,
then he will “guess” a different generalisation. However, Aubin’s solution does not
work in all cases. In particular, if a constructor such as a successor function appears
in an original goal, together with individual variables, Aubin’s method may result
in over-generalisation or indeed no solution at all. These methods are used as the
basis for generalisation in many different theorem-proving systems. Related work
in proof generalisation has been carried out by Masami Hagiya, who has consid-
ered generalization of proofs in type theories. Hagiya approaches the problem of
proof generalisation by synthesising a general proof from a concrete example proof
by higher-order unification in a type theory with a recursion operator [12]. Rather
than the w-rule, he uses ordinary recursion terms for representing inductive proofs.
In order to make recursion terms more expressive, he has extended the calculus with
implicit arithmetical inferences [11]. However, the degree of automation provided is
not very high, and he has not addressed the issue of ensuring that the proofs from
which one generalises are in the form required to produce a suitable result.

The generalisation method proposed in this paper provides a uniform approach
and does not have to check extra criteria, nor work through individual examples.
Moreover, it is not possible to overgeneralise to a non-theorem (the method is sound
but not complete — it does not always provide a solution, nor necessarily the best
solution possible). Table 2 provides a comparison between cut formulae suggested

3.4 Comparison with Related Work

11

Methods

Selection of Types of Example

(z+a)+e=a+(z+2)

Boyer & Moore
Aubin

fail
e.(y+y)=vyt+ay

y+e=a+y
(e+y)+y=ec+ (y+y)

)
EBG Method (y+z)_my+mz @+y)+zr=a+(y+2)
¢+ s(z) = s(e) + even(z +)
Boyer & Moore r+y=y+z fail

Aubin fail fail

EBG Method c+s(y)=s(@)+y even(2.z) 2.
v # 0 p(a) +5(s(v)) = s(@) +y 2.(y.0) = y.(y.0)

Boyer & Moore fail fail

Aubin fail fail

EBG Method | z # 0 — p(z) + s(s(y)) = s(z) +y w-proof only 3.

1. Solution achieved by testing various possibilities after initial failure of method.
2. Generalisation algorithm fails, but this cut formula is ‘suggested’ from the w-proof.

3. Generalisation algorithm fails, but user might be able to suggest a generalisation
from the w-proof.

Table 2: Cut Formulae Suggested Using Different Generalisation Methods

by the various methods, and demonstrates that the EBG guiding method works
much better on some examples.

By the EBG method, the most general generalisation of an expression is achieved,
in a uniform manner. This is a new and desirable achievement: Hesketh writes [13,
P271] that for her generalisation method “The generalisation from Ve.z 4 (2 +2) =
(z + @) + & will be found as VaVy.z + (y+y) = (z+y) +ynot VaVyVz.a + (y+2) =
(z +y) + 2 but I know of no theorem prover that can find this last generalisation in
a principled way, ie. other than with just trial and error.” Note also how if an w-
proof is provided, even without a generalisation being suggested, something has still
been achieved, in the sense that a pattern might still emerge for the user. Thus the
method may still be useful within a co-operative environment if it breaks down (cf.
note 3., Table 2). This contrasts with alternative methods of generalisation, which
do not provide much information if they fail. Moreover, because the suggested
method explicitly exploits general patterns, it has a higher-level structure and thus
greater potential for extension than other more special-purpose approaches.

The EBG method proposed in this section will succeed in the sense that there
does exist some w-proof such that a correct cut formula could be found by EBG
(so long as inductive proof by generalisation apart, that is, generalisation by means
of renaming some occurrences of the same variable in an expression, is possible).
However, it will not necessarily work if generalisation apart is not appropriate for
the example under consideration.

12 4 LINEARISATION

Note that it is possible to carry out explanation-based generalisation on proofs in
other systems such as Peano arithmetic, in order to give a more general expression.
However, if inductive proof is not possible in these systems (because induction is
blocked) and hence application of the cut rule is needed in order to obtain a proof,
then such a method will not work. However, it is possible that an w-proof may be
returned, and in this case explanation-based generalisation may be applied to the
latter in order to obtain a solution.

The explanation-based generalisation method proposed in this paper can be used
in a more general context for lemma generation, regardless of the way an w-proof
was obtained, so long as one can represent in the particular system of interest
the notions of nth-successor, parametrised applications of rewrite rules and also
the correctness check. Hence, although the learning device for cut formulae is not
reliant upon the given proof system involving use of the w-rule, in practice suitable
proof environments such as HOL [10] would require extension, and moreover the
user would have to input the proof directly unless some other method of generation
could be provided. Hence, if the w-proof were represented directly in higher-order
logic, one would still be faced with the problems of application of rewrite rules a
parametrised number of times, and a method of provision of the w-proof (solved by
inductive inference in the case of PAg,).

4 Linearisation

This section briefly explains what linearisation is, and then discusses how conven-
tional inductive proofs are related to w-proofs in the context of EBG. It shall be
shown that EBG linearises w-proofs (and therefore, the initial formula of the gen-
eralised w-proof may be proven by induction). When the EBG method (relying
on generalisation of variables apart) is not appropriate, there are other ways of
linearising w-proofs.

The general form of a linear proof involving a single use of the constructive w-
rule is given in Figure 6,® with the proviso that there may be additional leaves if the
P(3) consist of branching proof rules. Any proof which is of the form of Figure 6
(with additional leaves in the case of inductive proofs with branching in the step
proof) shall be called linear, with the constraints that A(k) is reduced to Ak —1)
in a uniform way for each k, and that the proof is cut-free. In the case of the
constructive w-rule operating on V& A(z), the A(¢) are uniformly generated, and
there will be a relationship between their proofs — otherwise, this may not be the
case. An w-proof is a parametrised version of an arbitrary subtree of a proof in
PA,, of a universal statement; thus, a “linear” w-proof will correspond to the kth
subtree of Figure 6.

Tt shall be shown that w-proofs may be turned into a linear form, which will
suggest that induction can be done on the original formula (that is to say that
this formula is a suitable cut formula). Hence it is necessary to recognise) such

8Use of two inductions should be compared with P. Madden’s transformations which linearise
proofs defined by functions with two inductive variables [15].

13

A(0)
kth subtree
A(0) Ak =1)
P(0) - P(1) - P(k)
A0) AQ) ... AR) »
constructive w rule
Ve A(z)

Figure 6: Form of Linear Proof in PA,,

that an original w-proof for P(z) may be transformed into a “linearised” w-proof
of form Q(s(n)) reducing in a uniform manner (via rewrite rule block 7) to Q(n) to
Q(n — 1) down to Q(0), which reduces to an equality using a rewrite rule block j.
The required proof of V& P(z) in PA is:®

CLOSES — CLOSES

2 Lt
FQO) @)k Q(S(?’)Z_nd(m)
Vo Q(z) F VeP(z) F Ve Q(x) ot

FVa P(z)

If the w-proof is of a linear form, it is the case that V& P(x) may be proved in
this manner. The fact that a proof of T, A(k) F A(s(k)) exists provided there is
a derivation of ' F A(s(k)) from ' + A(k) (in the sense of there being a natural
deduction proof of the former from the latter, possibly using additional axioms)
forms an analogue of the deduction theorem.®

Theorem 1 (Deduction Theorem for Sequents) The sequent ', A+ B is prov-
able in PA., if and only if there is a derivation in PA., of

T }— A

T+ B
Proof 1 =: Suppose 'y A + B is provable in PA.,. The cut rule may be used to
dertve '+ B from '+ A and T', A+ B. Hence, given I'y A & B, then there is a
derivation of ' = B from I' = A. By the cut elimination theorem, there must be a
cut-free derivation (in PA.,) of I'F B from ' - A.
& Suppose that there is a proof in PAy, of 't B from I' = A. By using the same

rules, there must be a proof of T,AF B fromT,A+ A. However, I,/ A+ A is an
aziom. Hence, there is a proof in PA., of ' AF B. a

Theorem 2 (Linearisation Theorem) @ can be proved using a single induction
if and only if there is a linear w-proof of Q)

9The stages i and j apply rewrite rules on a formula, rather than structural manipulations on
a sequent,.

01 ' B bx A, then T' Fx B — A, for some logical system K [8, P127].

14 4 LINEARISATION

Proof 2 =: By Theorem 1.
& Given an w-proof of the form:

—J
equality

then Q(s(k)) reduces to Q(k) for all numerals such that k < n, where n was arbitrary
— hence k is arbitrary. The rules i(k) here form a repeated rule-block (parametrised
over k): this is what has been described above as a linearisable w-proof. By the
soundness of the w-proof representation with respect to PAu, (cf. [3]), there is a
proof in PA., of

FQ(k)

- Qs (k)

and by Theorem 1, there is a proof of Q(k) Q(s(k)), for each numeral k. By the
form of the original linear proof, each proof segment P(k) is obtained by taking the
same shape of proof with a numerical parameter that is replaced by the appropriate
value of k. So, there is a uniform correspondence between how the different instances
of the numeral k are treated in each proof of Q(k) F Q(s(k)), which suggests that the
free variable version Q(r) - Q(s(r)) is provable. The final lines of the general proof
provide a proof of Q(0), and therefore the prooftree in PA using induction may be
completed. O

The argument above suggests that if the EBG method linearises the w-proof, then
it also suggests a suitable cut formula. It remains to be shown that the EBG method
does linearise the w-proof. Recall that the w-proof of the generalisation is the EBG
proof with the final (instantiated) result. By doing EBG, the parts of a proof which
should not be altered when using induction are renamed. This puts the w-proof into
a linear form, in that (for inital line P(n)) P(n) reduces to P(n — 1), whereas it did
not before. More specifically, if differentation of variables apart is a suitable method
of generalisation, the initial theorem (P(n)) must be of the form Q(7) where each
argument of Q is n (although there might be additional free variables in) which
are not being represented in this notation).) may have an arbitrary number of .
argument positions, but for clarity let us consider the simple example when there
are three, and when Q(n1,n,,n3) reduces in the w-proof to @(ny — 1,n9,n3). The
second and third arguments will renamed by the EGB process, thus giving a linear
form. A corresponding argument applies given different argument positions of the
altered variable, or varied arities of Q. Thus, EBG is a way of linearising the w-proof,
and if a solution is possible by generalisation of variables apart, then this method
will find it (so long as a correct w-proof is given initially). In conclusion, when a
cut formula, is suggested by the EBG method proposed, it will have been shown via

15

linearisation of the w-proof that induction may be successfully carried out upon it.
Hence, it is not necessary to actually carry out the induction to know that the proof
may be completed by using the cut rule and induction.

The EBG proof provides a most general generalisation of the initial formula
which can be proved using the rules given in the w-proof. However, in some cases
(eg. VI len(rev(l)) = len(l)), such a generalisation will be the same, and still not
provable by induction, since what is needed is the addition of new structure (ie.
an ‘accumulator’). However, this additional structure is apparent in the w-proof,
and by means of linearising the w-proof by looking for repeated structure while
allowing some generalising, a correct cut formula may again be suggested [3]. The
general proof is put into a form such that there is a repeated rule block i: thus
the rth line after r uses of i is Q(r), such that Q(r) reduces to Q(r —1). In
this way, correct cut formulae are suggested for many difficult examples [3]: in
particular, one generalisation provided by this method of Va VI len(rev(l) <> a) =
len(rev(a) <> 1) (from len(rev(l)) = len(l)) is a better result (since it only requires
one induction) than the only alternative suggestion provided for this example of
Va Vi len(rev(l) <> a) = len(a <> {)*! (requiring two inductions).

5 Conclusions

In summary, an w-proof is constructed using some inductive inference process (the -
individual proofs being easily generated using basic tactics), or obtained by some
other means. Unification is used for the stage of constructing a generalised w-proof
and information about unification is fed through various stages of the construction
using back propagation. The result is a proof of a generalisation of the original
expression, which is linear in form, and hence suggests an appropriate cut formula.
The approach also applies generally to other data-types. Not only is it the case
that certain new structural patterns may be seen in the w-proof which may guide
generalisation, but also that the general representation of an arbitrary object of
that type (eg. s*(0) for natural numbers, [z, 2s,... &n] for lists, etc.) enables the
structure of that particular data-type to be exploited, in the sense that rewrite rules
may be used which would not otherwise be applicable.

The new method for generalisation which has been proposed is robust enough to
capture in many cases what the alternative methods can do (in some cases with less
work), plus it works on examples on which they fail. Implementation of this method
has been carried out within the framework of an interactive theorem-prover with
Prolog as the tactic language, in which the object-level logic is replaced by classical
and constructive theories of arithmetic [2]. Current work involves implementation
of an analogous generalisation tactic for the Isabelle proof environment [18]. This
approach works for theories other than arithmetic and logics other than a sequent
version of the predicate calculus, and may rather be regarded as suggesting a general
framework. So long as a procedure for constructing a proof for each individual of
a sort is specified, universal statements about objects of the sort could be proved.

Hcf, [13].

16 REFERENCES

Thus it appears that the approach described in this paper may be an aid to auto-
mated deduction, and provides a mechanism for guiding proofs in more conventional
systems.

Acknowledgements I would like to acknowledge the help of Alan Smaill, and
many others, from the Mathematical Reasoning Group in Edinburgh University,
together with the Isabelle group at the Computer Laboratory, Cambridge University.

References

[1] Aubin, R.: Some generalization heuristics in proofs by induction. In
G. Huet and G. Kahn, editors, Actes du Colloque Construction: Amélioration
et vérification de Programmes. Institut de recherche d’informatique et
d’automatique (1975)

[2] Baker, S., Smaill, A.: A proof environment for arithmetic with the omega
rule. Research Paper 645, Dept. of Artificial Intelligence, Edinburgh (1993) To
appear in Proceedings of Computer Science Logic *93 Swansea, Springer Lecture
Notes in Computer Science.

[3] Baker, S.: Aspects of the Constructive Omega Rule within Automated Deduc-
tion. PhD thesis, University of Edinburgh (1992)

[4] Baker, S.: CORE manual. Technical Paper 10, Dept. of Artificial Intelligence,
Edinburgh (1993)

[5] Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega rule
within automated deduction. In A. Voronkov, editor, International Conference
on Logic Programming and Automated Reasoning — LPAR 92, St. Petersbury,
Lecture Notes in Artificial Intelligence, Springer-Verlag 624 (1992) 214-225

[6] Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press ACM mono-
graph series (1979)

[7] Donat, M.R., Wallen, L.A.: Learning and applying generalised solutions using
higher order resolution. In E. Lusk and R. Overbeek, editors, Lecture Notes in
Computer Science Springer-Verlag 310 (1988) 41-60

[8] Dummett, M.: Elements of Intuitionism. Oxford Logic Guides. Oxford Univ.
Press, Oxford (1977)

[9] Feferman, S.: Transfinite recursive progressions of axiomatic theories. Journal

of Symbolic Logic 27 (1962) 259-316

[10] Gordon, M: HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis Kluwer (1988)

REFERENCES 17

[11] Hagiya, M.: A Typed A-Calculus for Proving-by-Example and Bottom-Up Gen-
eralisation Procedure. Algorithmic Learning Theory 93, Lecture Notes in Arti-
ficial Intelligence 744 (1993)

[12] Hagiya, M.: Programming by example and proving by example using higher-
order unification. 10th Conference on Automated Deduction Lecture Notes in
Artificial Intelligence 448 (1990) 588-602

[13] Hesketh, J.T.: Using Middle-Out Reasoning to Guide Inductive Theorem Prov-
ing. PhD thesis, University of Edinburgh (1991)

[14] Kreisel, G.: On the Interpretation of Non-Finitist Proofs. Journal of Symbolic
Logic 17 (1952) 43-58

[15] Madden, P.: The specialization and transformation of constructive existence
proofs. In Sridharan, editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence Morgan Kaufmann (1989)

[16] Mitchell, T.M.: Toward combining empirical and analytical methods for in-
ferring heuristics. Technical Report LOSR-TR-27, Laboratory for Computer
Science Research, Rutgers University (1982)

[17] Mitchell, T.M., Kellar, R.M., Kedar-Cabelli, S.T.: Explanation-based general-
isation: a unifying view. Machine Learning 1(1) (1986) 47-80

(18] Paulson, L.: Natural Deduction as Higher Order Resolution. Journal of Logic
Programming 3 (1986) 237-258

[19] Plotkin, G.: A note on inductive generalization. In D Michie and B Meltzer,
editors, Machine Intelligence 5 Edinburgh University Press (1969) 153-164

[20] Rosser, B.: Godel-theorems for non-constructive logics. JSL 2 (1937) 129-137

[21] Rouveirol, C.: Saturation: Postponing choices when inverting resolution. In
Proceedings of ECAI-90 (1990) 557-562

[22] Schwichtenberg, H.: Proof theory: Some applications of cut-elimination. In
Barwise, editor, Handbook of Mathematical Logic North-Holland (1977) 867—
896

[23] Shoenfield, J.R.: On a restricted w-rule. Bull. Acad. Sc. Polon. Sci., Ser. des
sc. math., astr. et phys. 7 (1959) 405-7

[24] Takeuti, G.: Proof theory North-Holland, 2 edition (1987)

[25] Van der Waerden, B.L.: How the proof of Baudet’s conjecture was found. In
L. Mirsky, editor, Papers presented to Richard Rado on the occasion of his
siaty-fifth birthday, Academic Press, London-New York (1971) 252-260

18 REFERENCES

[26] van Harmelen, F.: The CLAM proof planner, user manual and programmer
manual: version 1.4. Technical Paper TP-4, DAI, Edinburgh (1989)

[27] Yoccoz, S.:. Constructive aspects of the omega-rule: Application to proof sys-
tems in computer science and algorithmic logic. Lecture Notes in Computer

Science 379 (1989) 553-565

