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Abstract

We overview the formal verification of an implementation of a self routeing ATM
switching element. This verification was performed using the HOL90 theorem proving
system so is fully machine-checked. The switching element is in use in a real network,
switching real data. Thus, this work constitutes a realistic formal verification case study.
We give an informal overview of the switch and element and give a tutorial on the methods
used. We overview how these techniques were applied to verify the switching element. We
then discuss the time spent on the verification. This was comparable to the time spent
designing and testing the element. Finally we describe the errors discovered.

1 Introduction

Communication networks are rapidly becoming all pervasive. Systems are increasingly
being networked in the local area with applications using non-local services. In the
wide area telecommunications companies are turning to digital networks. As networks
become all pervasive, the consequences of errors in the design or implementation of
network components becomes increasingly important. This is especially so if networks
are used in safety-critical applications where communication problems could cause loss
of life. Errors could cause the network to deadlock, particular links to crash, the service
to be degraded to an unacceptable level, or even the whole network to crash. Network
problems can affect a wide range of users and applications and cause whole systems or
companies to grind to a halt. Indeed such problems do frequently occur, as can be seen be
scanning Peter Neumann’s digest of computer related risks to the public [18]. For example
a telephone network crash could cause loss of life because the emergency services can not be
contacted. The recent problems of the London Ambulance Service computer aided dispatch
system also highlight how problems with communications equipment can lead to loss of
life. It is thus desirable that network components are error free. In reality zero-defect
systems are probably unachievable; rather this is a goal to be striven for. Whilst the
validation of designs is an important area, we are concerned here only with the validation
of implementations. The validation of network components is at best difficult. Testing
cannot hope to uncover all errors in an implementation because only a small fraction of
the possible cases can be considered. Formal verification is a validation technique that
can alleviate this problem. Mathematical methods are used to rigorously investigate all
valid combinations of inputs.

Asynchronous Transfer Mode (ATM) is being hailed as the solution to many
communication problems. In essence it consists of sending data over a packet-switched
network using virtual circuits and short fixed size packets known as cells. It is a flexible
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technology and is being adopted by both the computer and telecommunication industries
in local and wide area networks in response to changing communication demands. It
is likely to be the most important transfer mode of the foreseeable future. However, it
represents a large paradigm shift in communications and there is currently little experience
from which to derive confidence of correct behaviour. An ATM network design is thus a
timely application for verification research.

The work described here is the first step of a larger project to apply formal verification
techniques to an ATM network. The design of a communication network is structured
into layers that can be naturally exploited by hierarchical proof. We intend to perform
a multi-level verification of an ATM network. This contrasts with previous work which
has considered aspects of a network in isolation. The main result of this work will be
an understanding of how formal verification techniques can and should be applied to the
implementation of ATM communication networks.

In the tradition of the Computer Laboratory the investigation is based on a real
network moving real user data: the Fairisle ATM network [16]. Fairisle is an experimental
ATM network designed and built at the University of Cambridge Computer Laboratory. It
is being used as the basis for research into management issues of ATM Networks in addition
to applications such as multi-media. The network forms the experimental apparatus upon
which real experiments take place. It is also used by real users transmitting real data.
It thus provides a realistic case study for the investigation of the formal verification of
ATM Networks. In this report, we describe the first results of this work: the formal
machine-checked verification of the Fairisle 4 by 4 switching element.

The 4 by 4 switching element forms the heart of the Fairisle switch. It performs
the actual switching of cells from input ports to output ports and arbitrates cell clashes.
The switching element was designed and implemented prior to any formal verification
or specification being carried out. The formal verification work has been performed
on completed implementations. This is generally considered to be harder than if the
formal specification and verification is integrated into the design process. This problem
was exacerbated further since there was little informal documentation. The formal
specifications were largely deduced by examining the implementation.

We have formalised both the implementation and its behaviour. We then used
formal logic to rigorously prove that the behaviour suggested by the description of
the implementation satisfies the specified behaviour. In contrast to validation using
inexhaustive testing, the results hold for all valid sets of inputs, not just for some small
subset. Formal verification corresponds in this sense to exhaustive testing. However,
the latter is infeasible for all but very small designs due to the number of cases to
consider. Formal verification is feasible because of the use of mathematics (for example
using induction) to consider the results of many cases at once.

Whereas testing can normally be performed on the actual fabricated hardware, formal
verification can only ever deal with descriptions of the hardware. It corresponds in this way
to performing exhaustive testing using a simulator which interprets a hardware description
language description of the implementation.

There are several tangible results of this work. We have produced a precise,
unambiguous description of the behaviour of the switching element. This will be of use to
the designers of the switch. We have produced a proof of a correctness theorem stating
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that a particular implementation does exhibit that behaviour. As a side effect, we also
have similar results for all of the modules used in the implementation. These results can
be reused if any modules are used in other designs. Finally, it should be possible to modify
the proofs for other designs of the switching element very quickly.

The proofs described were carried out using the HOL90 theorem prover: a Standard ML
implementation of the HOL system [7]. It not only provides mechanical assistance to the
proof process by providing semi-automatic proof tools but also ensures that the correctness
theorem obtained is a theorem. The system will only call something a theorem if it has
been rigorously proved. The critical core of code that allows something to be called a
theorem is relatively small. This reduces the chances of errors in the theorem prover
giving misleading results.

The HOL theorem prover has been used previously to perform machine checked proofs
of network components. Herbert formally verified an ECL chip: a local area network
interface used as part of the Cambridge Fast Ring [12] [11]. Melham performed a proof of
correctness of the T-ring: a very simple ring communication network that was designed
as a formal verification case study [17]. Josephs et al produced a hand proof in a CSP-like
algebraic formalism that switching elements similar to those proposed for the INMOS
Transputer could be connected together in a regular way to implement a router of arbitrary
size [14].

The outline of the remainder of this report is as follows. In Section 2, we overview
the Fairisle network. The purpose of this section is to illustrate the environment in which
the switching fabric operates. In Sections 3 and 4, we informally describe the intended
behaviour and implementation of the switching element. In Section 5 we give a brief
tutorial on formal hardware verification and overview the techniques we employed by
considering very simple pieces of hardware. In Sections 6, 7 and 8, we outline the formal
behavioural and structural specifications of the switching element and their verification.
Complete details of the specifications used and the correctness theorems proved can be
found in a companion report [5]. In Section 9 we discuss the time taken to perform the
formal specification and verification work. This was comparable to the time originally
spent designing, implementing and informally testing the fabric. Finally, in Section 10,
we discuss the errors discovered. None were found in the fabricated implementation. This
was unsurprising as the element had been in service for some time prior to the formal
verification work commencing. Many errors were discovered in the specifications. This
was also unsurprising since documentation of the design and its implementation was sparse.

2 The Fairisle Network

The Fairisle network consists of a series of switches, connected to each other. Each host
is connected to a switch. Hosts communicate by sending fixed size packets known as cells
across the network. The source passes a cell to its local switch. The switch then sends
the cell on an outgoing link appropriate for the cells ultimate destination. In addition
to switching cells from incoming links to outgoing links, the switch performs arbitration
between cells that clash, forwarding the successful cells and queueing the unsuccessful ones
for later transmission.

Fairisle is a fast cell switching network. That is, there is only minimal functionality
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in the network. For example, there is no error protection on a link-by-link basis. Error
detection can be performed outside the network if required. This is possible due to the
high quality of the network links. It has the advantage that the switches are relatively
simple, fast and also flexible: only applications that require error detection need perform
it.

Fairisle is a virtual circuit network. Before data can be sent over the network, a virtual
connection must be set up between the source and destination. This is achieved using a
signalling protocol. The signalling mechanism allows the source to indicate the destination
with which it would like to communicate and also to indicate the bandwidth required. A
control cell requesting a connection is sent by the source to its local switch. The switch
determines if it has sufficient resources to fulfil the request currently available, and if so
forwards the request to subsequent switches. If a route between source and destination
with sufficient resources is found, then the resources are allocated to the connection.
The source is given a virtual circuit identifier (VCI), to include in its data cells on that
connection. Once a virtual circuit has been established, further cells may be sent over the
circuit indefinitely with no further signalling overhead, provided the requested bandwidth
is not exceeded.

Each switch on the successful path, allocates a local VCI to the circuit. It records the
VCI that the next switch on the chosen route is using to identify the circuit in a table
along with the associated outgoing link. When a cell arrives on the incoming link with a
given VCI, the switch looks up the VCI in the table, and replaces the incoming VCI with
that used by the next switch before forwarding the cell. This avoids problems of universal
naming of virtual circuits and also means that the VCI’s can be kept short. This has a
dual advantage. Cells can be kept short and the appropriate outgoing link can be quickly
determined.

The Fairisle switch consists of two types of component: port controllers and a switching
fabric. The port controllers map VCIs, manage queues and determine the appropriate
outgoing links that the cells must be switched to. They also manage the signalling protocol
to set up virtual connections. Each port controller is connected to one input and one
output link of the switch, and to the switching fabric. We can notionally view each
port controller as being made up of two halves: an input port controller and an output
port controller. A cell arrives at an input port controller on an incoming transmission
line. It then passes through the fabric arriving at an output port controller. The output
port controller transmits the cell on its outgoing transmission line. This is illustrated in
Figure 1.

The switching fabric switches cells from input port controllers to output port
controllers. It is a very regular interconnection network and is the place where cells
contend for resources. If different port controllers inject cells into the fabric at the same
time that are destined for the same output port controller, then only one will initially
succeed. The others will be rejected and must retry later. The switching fabric does the
arbitration between such cells. It is also possible in large fabrics, for cells destined for
different output ports to clash. This is termed blocking. It occurs in fabrics which are
not fully connected; that is the internal routes between different input and output ports
share common internal paths. The Fairisle switching fabric consists of a series of identical
switching elements connected in a regular array. The simplest switching fabric consists of
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Figure 2: The Routeing Tag for a 4 by 4 Switch

a single crossbar element. Such a fabric is non-blocking—cells will only clash with cells
destined for the same output port. This is because the elements are fully connected. Each
input of the fabric has a dedicated link to each output.

The fabric is self-routeing. The port controllers append to each cell a routeing tag.
It has the format shown in Figure 2. It indicates the outgoing transmission link the cell
should be transmitted on. The routeing information is removed as the cell passes through
the fabric. The routeing tag also includes one bit of priority information which is used by
the fabric when arbitrating clashes. The fabric does not make use of the information in
the original header which is only used by port controllers. It is just treated as additional
data in the cell. The routeing tag contains all the control information.

Arbitration takes place in two stages. Firstly, high priority cells are always given
precedence over low priority ones. Of the remaining cells, the choice is made on a
round-robin basis. The input port controllers are informed of whether their cell was
successful using acknowledgement lines. The fabric sends a negative acknowledgement to
the unsuccessful input ports, but passes the acknowledgement from the requested output
port to the successful input ports. This means the output port controllers may reject cells
even if they successfully passed through the fabric.

3 The Behaviour of the Fairisle Switching Element

The Fairisle switching element is a 4 by 4 crossbar switch. That is, it connects 4 input ports
to 4 output ports. It can be used on its own as a 4 by 4 fabric or in conjunction with other
elements to give larger fabrics. Its purpose is to detect cells, to detect clashes between
cells, to arbitrate between cells which have clashed with reference to their priorities, to
switch data from the 4 inputs to the outputs, and to send appropriate acknowledgements -
back to the inputs. A cell can be switched from an input port to an output port without
interference with cells travelling from a different input port to a different output port.
However, 2 cells will clash if destined for the same output port at the same time.

The element has four inputs: the clock signal, the data-in, acknowledgement-in, and
frame start signals. It has two outputs: the data-out and acknowledgement-out signals.
Cells arrive from and are transmitted to the input and output port controllers along the
data-in and data-out lines, respectively. There are 4 of each, one per port, consisting
of 8 unidirectional lines. Cells are thus input a byte at a time. The acknowledgement
signals allow acknowledgement information to travel in the reverse direction to the cells.
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Figure 3: The 4 x 4 switching element

There are 4 acknowledgement-in lines and 4 acknowledgement-out lines. Each output port
controller is connected to the fabric by a single acknowledgement-in line. Similarly each
input port controller is connected to the fabric by one of the acknowledgement-out lines.

The port controllers and fabric all use the same clock so bytes are read in on each
link synchronously. They also use a higher level cell frame clock—the frame start signal.
It ensures that the port controllers inject cells into the fabric synchronously so that the
routeing bytes arrive at the same time. The interval between successive occasions when the
frame start signal goes high determines the cell size. Since it is generated externally, the
fabric element is not restricted to any particular cell size. In the current implementation
of the Fairisle switch, the frame start signal occurs every 64 byte clock cycles.

The behaviour of the switching element is cyclic. In each cycle, the element waits for
cells to arrive, reads them in, processes them, sends successful ones to the appropriate
output ports and sends acknowledgements. It then waits for the next round of cells
to arrive. The boundaries of separate cycles are determined by the frame start signal.
Whenever it goes high, a new cycle commences. When cells are not being offered by the
input ports, they must inject zeros into at least the first bit of each byte. This is the active
bit of the cell header. When a new cycle starts (as signified by frame start going high),
the fabric watches this bit from each of the input ports. As soon as one goes high (at the
header time), then that marks the start of the cells from all the input ports. The fabric
does not need to know when this will happen. Indeed it could occur at different times
on subsequent cycles. However, all the input port controllers must start sending cells at
the same time within the cycle, since any which have not set the active bit at the header
time are assumed not to be transmitting cells for the whole of the cycle. If no input port
raises the active bit throughout the cycle then the cycle is inactive—no cells are processed.
Otherwise it is an active cycle.

The way that the fabric is implemented means that in the two cycles prior to the frame
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Figure 5: The timing diagram for an active frame

start signal arriving, the active bits must be low. This is needed for the fabric element
to initialise itself correctly for the forthcoming cycle. Thus, the cell length in bytes must
always be at least two less than the duration of the frame. To ensure that this condition is
met, the input port controllers must receive the frame start signal before the fabric or be
able to predict when it will arrive. Timing diagrams showing the frame start and active
bit for inactive and active cells are given in Figures 4 and 5, respectively.

On receiving a set of headers on a particular cycle, the fabric processes them. Each is
a request for access to some output port. If only one input port is requesting access to a
particular output port then that output will automatically be successful. However, if two
or more input ports are requesting access to the same output port, then only one can be
successful in this frame. The others must retry in a future frame. The fabric performs
the arbitration of such clashes. The first criteria used is that any cell with the priority
bit set in the header will be given precedence over those that do not. Thus, if there are
one or more cells of high priority requesting a given output port, any that are requesting
the output port with a low priority will automatically fail. For those remaining, round
robin arbitration is performed. The fabric remembers which input port was most recently
successful for each output port. For a given output port the new successful input port will
be the next in a fixed cyclic order after the most recently successful one that is making a
request for the output port in question.
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Figure 7: The timing diagram of the acknowledgement signal for an active frame

Once it has been decided which requests are successful, acknowledgements are sent,
and the successful cells switched to the requested output port.

From the time instance after the start of the cycle, the fabric keeps the acknowledgement-
out lines low, indicating that no positive acknowledgement is so far forthcoming. If no cell
was injected into the fabric by an input port, its acknowledgement-out line will remain
low for the whole cycle. Otherwise it will remain low at least until the fabric has com-
pleted the arbitration. For the implementation we consider, this decision is completed 3
time instances after the header time. From that time until at least the end of the cycle,
unsuccessful input port controllers continue to see a low acknowledgement-out line. The
successful input port controllers are forwarded the acknowledgement from the output port
controller that they were requesting (i.e., the signal arriving on the acknowledgement-in of
the requested output port controller is placed directly on the acknowledgement-out line).
This allows the output port controllers to refuse cells when they are running short of buffer
space. The timing diagrams for the acknowledgement signal in inactive and active frames
are shown in Figures 6 and 7, respectively.

From 3 time instances after the start of the cycle until the arbitration is completed,
the data-out bytes contain a zero in at least the active bit. Cells from unsuccessful input
ports are discarded by the fabric element, as are the headers of successful ones. The bodies
of the successful cells are output on the appropriate data-out line from 5 time instances
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Figure 8: The 4 x 4 switching element: I/O buffers

after the header time until 3 time instances after the start of the next cycle. The final
bytes of a cell are thus output after the end of the frame as delimited by the frame start
signal. The last byte output will be the one input just before the frame start signal which
ends the frame in which the cell arrived. This cannot be part of the cell since as discussed
earlier it must have a low active bit. The output port controller must not treat it as part
of either this cell or the subsequent one. It must thus be aware of the length of cells. It
must then always discard the byte arriving immediately after the end of the cell.

4 The Implementation of the Switching Element

The switching element is implemented on a 4200 gate equivalent Xilinx programmable
gate array. The design consists of the basic switching element, with its inputs and outputs
connected to buffers. The data input and output lines are also latched. This is shown in
Figure 8.

The switching element consists of 3 units: an arbitration unit, acknowledgement unit
and dataswitch (see Figure 9). The arbitration unit arbitrates when 2 or more cells
are destined for the same output port, and governs the timing of the other units. The
dataswitch performs the actual switching of data from input port to output port as
demanded by the arbitration unit. It controls the data-out lines. The acknowledgement
unit sends appropriate acknowledgement signals to the input ports. It controls the
acknowledgement output lines.

These units are repeatedly subdivided until eventually the logic gate level is reached,
providing a hierarchy of units. The switching element consists of 43 different elements. At
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its deepest point this hierarchy consists of 10 levels. The design has a total of 441 basic
components where a basic component is a logic gate with any number of inputs (AND,
OR, NOR, inverter, or AND-OR) or a one-bit flip flop. The basic components used in
the formal verification were roughly those considered basic by the Qudos simulator [6]
and that could be used in a Xilinx netlist. The Qudos simulator was used to perform the
original (non-formal) validation. The hierarchy is illustrated in Figure 10.

5 A Tutorial on Formal Hardware Verification

Formal hardware verification consists of mathematically proving that two different
descriptions of a design correspond in a suitable way. The two descriptions are the
structural specification (the implementation) and the behavioural specification. The two
descriptions must be in a formal description language. The meaning of this language must
be well-defined. It is also desirable that formal reasoning tools exist for it. In this section
we give a brief tutorial on hardware verification and overview the techniques we used to
formally verify the switching element using simple examples as illustration.

5.1 Formal Behavioural Specification

A formal specification rigorously describes the intended behaviour of the program. The
specification language must be flexible enough to allow the desired behaviour to be
expressed simply and clearly. It must also have a well-defined semantics. The specifiers
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Table 1: Notation

T truth also used as “high”
F falsity also used as “low”
~t not t-

t1 V to t; or to

t1 A tg t1 and to

t1 DO t2 t1 implies to

t1 = to t1 equals tg

Vx. t[x] for all x, t[x] holds

dx. t[x] for some x, t[x] holds

Vx::itl. t2[x]
dx::tl. t2[x]
t = t; | to

for all x satisfying t1 x, t2[x] holds
for some x satisfying t1 x, t2[x] holds
if t is true then t; otherwise to

t[a/x] substitute a for variable x in term t

ft the application of function f to argument t
|fog the combination of functions f and g

Ax. t . function which applied to an argument a has value t [a/x]
‘let x = t; in tg | let declaration: to[t1/x]

(t1, t2) a pair with first element t; and second element t

(] the empty list

CONS h t the list with head h and tail t

[t1; ... ;tnl the list with elements t1...t,

WORD[t1; ... ;tn] | the word of length n with bits t1...t,

e:t expression e has type t

fium the type of natural numbers

bool the type of booleans

bool signal the type of boolean signals

ty: # tys a pair type

ty:1 — tys a function type

F th th is a higher-order logic theorem

must be able to convince themselves that the formal specification does describe the
intended behaviour. There can be no room for doubt about the meaning of the constructs
of the language. This is not so for informally defined languages. The language must
permit fairly natural descriptions to be given. Otherwise the meaning of a specification
will be much harder to determine. The specification language we use is higher-order logic.
Higher-order logic was first used in the context of hardware verification by Hanna [8].
The logic is “higher-order” because it allows functions and relations to be passed as
arguments to other functions and relations. Higher-order logic is very flexible and has
a very well-defined and well understood semantics. There are several verification systems
based on higher-order logic. We use one such system—HOL90. An overview of the
higher-order logic notation that we use is given in Table 1.

As a simple example of a higher-order logic specification consider an inverter with a
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Figure 11: The Modelling of Signals

single cycle delay. Its specification could be:

INV (inp: bool signal, out) =
Vt. out (t + 1) = ~(inp t)

This defines the behaviour of a piece of hardware, INV. The definition has a single pair of
arguments inp and out. We use the convention that the first entry of the pair represents
the inputs of a device and the second entry represents the outputs. The definition relates
the values on its input inp with those on its output out. The values on these signals at
any given time are “high” and “low”. We model these as the boolean values T and F,
respectively. We then represent the signals by functions from time to a boolean. Time
is represented by natural numbers. The value of the signal at a given time is obtained
by applying the function to the given time. For example, the value of signal inp at time
5 is given by (inp 5): the result of applying function inp to time 5. This is illustrated
in Figure 11. Thus, in the above (inp t) describes the value on input line inp at time
t and (out (t + 1)) describes the value at the following time. The type of the input
and output is specified by the type annotation inp: bool signal which states that inp
is a boolean signa,l. Given this information the type of out is forced to be identical, as
otherwise the definition will not type check. In general in this report we do not include
type information in definitions as it is either clear from the context or from the English
commentary. However, type information must often be supplied for the definitions to be
input to HOL90.

We model the inversion of a signal using the boolean negation operator (~). ~(inp
t) has as value the negation of the value of inp at time t. The expression out (t +
1) = ~(inp t)) states that the value on output line out at some time (t + 1) equals
the negated value on the input line at the previous time. For an inverter we require
this to hold for all values of t. This is the purpose of the universal quantifier, V. The
specification thus states that an inverter INV relates a stream of input values to a stream
of output values if at all times the output value is the negation of the input value at the
previous time. It is a relation specifying the values that can appear on the outputs for
each set of input values. The relation is true for those pairs of input and output sequences
which correspond to a possible behaviour of the device. It is false for values which do not
correspond to possible behaviours. Thus the input sequence [F, T, F, F, T, F ...]
and output sequence [F, F, T, T, F, T, F ...], where T represents a boolean true
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and F a boolean false, correspond to a possible behaviour of the inverter. The sequences
(¢, T, F, F, T, F...Jand [F, T, T, T, T, F ...] do not.

The higher-order nature of the logic was used in this example. The functions inp and
out are passed as arguments to the relation INV. Whilst the use of higher-order relations
is not vital for hardware specification, it can make the descriptions much simpler and
clearer.

The behaviour of a delay unit can similarly be specified by:

DEL_SPEC(inp: bool signal, out) =
Vt. out (t + 2) = inp t

This states that the delay unit outputs values 2 time units after they were input.

The scale of the time unit can be chosen to be whatever is most suitable for the
application. The time scale chosen must be small enough that the behaviour of the device
is accurately modelled. However, a larger time unit often simplifies the specifications,
so if the extra accuracy is not required it should not be used. For example, the above
specifications could refer to un-clocked devices in which the time unit used is the smallest
unit of concern—perhaps in the order of nano-seconds. Alternatively they could refer to
clocked devices in which the clock has been abstracted away. The time unit then refers
to the clock period. In this situation, because it has been abstracted away, the clock
input to the circuit is omitted. It is implicit in the timing aspects of the specifications.
Combinatorial circuits are then assumed to have negligible delay at the clock level. For
example, the specification of an un-clocked inverter used in a clocked environment might

be:

INV(inp, out) =
Vt. out t = ~(inp t)

This states that the inverter has no perceivable delay at the clock level. Of course real
inverters do have some delay, so if enough are connected together, eventually the delay
would be greater than the clock cycle. The formal verification of a circuit using this
specification for combinatorial logic cannot detect such errors. If that were desired, a
more accurate specification using a finer time scale would be needed. In the verification
of the switching element, we have used the simplified model so the results do not show
the absence of such errors. Other methods must be employed to check that the clock
rate is sufficiently long for the design. A formal way of doing this has been given by John
Herbert [13]. However, the timing of the fabricated switching element can not be modelled
directly in the way suggested by Herbert by giving more accurate timing models of the
logic gates. This is because field programmable gate arrays were used to implement the
device. Thus the gates in the design do not correspond directly to pieces of hardware.
Frequently the specification of a piece of hardware requires that a signal holds some
value over some period. This can be specified using a predicate STABLE. The following:

STABLE t1 t2 sig v

is defined to mean that signal sig has value v at time t1 and all subsequent times up to
but not including t2.

Suppose we wished to specify the behaviour shown in the timing diagram of Figure 12.
We can use the formal specification:
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t1 t2 - t3
Figure 12: A simple timing diagram

STABLE t1 t2 sig F A
sig t2 A
STABLE t2 t3 sig F

This states that the signal is initially low, goes high for one cycle as time t2 and then
returns to the low state. We use the conjunction (logical and) operator (A) to join the
separate parts of the specification. The expression (sig t2) is equivalent to (sig t2 =
T)

We also often need to specify that a signal varies with the value of some function over
a given period. This can be specified using a predicate DURING. The following:

DURING t1 t2 sigl sig2

is defined to mean that signal sigl has the same value as sig2 at time t1 and all
subsequent times up to but not including t2. sig2 is not restricted to being just a
named signal such as an input line. It can be a function of other signals. For example we
could specify that the signal sigl was the sum of two signals over a period:

DURING t1 t2 sigl (At. (sig2 t) + (sig3 t))

Here, (At. (sig2 t) + (sig3 t)) is a function which given a time t returns the sum
of the values of the signals sig2 and sig3 at that time. Thus the above specifies that at
any time t in the period from t1 to t2 signal sigl at that time has as value the sum of
the other two signals at that time. In general a lambda expression of the form (\t.

t ...) represents a function which takes as an argument something with the type of t.
When applied to a value, that value is substituted into the body of the lambda expression
in place of t. For example, (At. t + t) represents the doubling function. Thus, ((\t.
t + t) 5) is equivalent to (5 + 5).

5.2 Words

Signals are often logically grouped into words. For example a data line might consist of
8 lines, allowing it to read in a byte at a time. The type of words can be defined in
higher-order logic. The HOL system contains a word library which does this [19]. For
example, a 4-bit word where the values on the lines are F, T, T and F would be represented
by WORD[T; F; F; TJ]. A signal over words is then a function from time to word values.
A 4-bit delay can be specified in a similar way to a single bit one.
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WORD DEL_SPEC(inp: (bool word) signal, out) =
Vt. out (t + 2) = inp t

This states that the register outputs values two time unit after they are input. The only
difference between this definition and that for the single bit delay other than the name is
in the types of inp and out. Here they are specified to be boolean word signals, whereas
previously they were boolean signals. In fact the HOL system uses polymorphic types.
This means that the same definition can be used for both cases. A type variable is used
to specify the type. The type of any instance can then depend on the usage.

Many word operators are predefined in the library. For example, BIT m w returns the
value from position m in the word w. SEG m k w returns a segment of length m starting at
position k from word w. WCAT w; wg concatenates the two words w; and wo. PWORDLEN m
w tests if word w is of length m. There are also various arithmetic and bitwise operators
defined over words. Corresponding operators over word signals are defined in terms of
these. For example, SBIT m sig is a signal consisting of the mth-bit of the signal sig.

As with boolean signals we can specify the value of a word signal over some period
using STABLE and DURING. For example,

STABLE t1 t2 sig (WORDIT; F; F; TI)

specifies that the 4-bit word signal sig has value (WORD[T; F; F; T1) in the interval
from t1 to t2.

Words do not need to contain boolean bits. Any base type can be used. For example
we can have a word of natural numbers. We can also have words of words. Thus a data
line consisting of a bundle of four bytes from different sources could be represented by a
word of length four with elements boolean words of length 8. An example of a value on
such a line is:

WORD [
WORD[T; T; F; F; T; T; F; FJ;
WORD[T; F; F; T; T; F; F; T1;
WORD[F; F; T; F; F; T; T; T];
WORD[T; F; F; T; F; F; T; T1]

5.3 A Formal Structural Specification

Whereas a formal behavioural specification describes the required behaviour of a design,
a formal description of the implementation describes its structure. It specifies how the
components are connected together. Such a description indirectly formally specifies a
behaviour. The components will have associated formal behavioural specifications. The
behaviour described by a structural specification is that obtained by combining the
primitive behavioural specifications in the way indicated by the structure. As with the
behavioural specification it must be given in a formal description language with known
semantics. As with behavioural specifications, structural specifications can be given in
higher-order logic. .

For example suppose we require a behavioural specification of a delay unit that is
constructed from two inverters as shown in Figure 13. We could use the following:
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inp 1 out

Figure 13: A Delay Implemented by Inverters

DEL_IMPL(inp, out) =
31.
INV(inp, 1) A
INV(1, out)

This states that the implementation of the delay unit consists of two inverters INV(inp, 1)
and INV(1, out). Components are indicated by applying their behavioural specifications
to the signals on their inputs and outputs. The actual connections are specified by using
the same signal names as the arguments to different units. The input of the delay unit
inp is connected to the input of the first inverter, and its output out is connected to the
output of the second. The output of the first inverter is connected to a line 1, which is also
connected to the input of the second inverter. The two components are combined using
the logical conjunction operator A: the behaviour of the whole is the conjunction of the
behaviours of the parts. Internal lines are hidden from the outside world using eristential
quantification, 3. Thus the line 1 in the above is internal to the delay unit.

As with a behavioural specification, the structural specification is just a relation. It also
relates an input signal to an output signal. It therefore also specifies a behaviour. It states
that the delay unit relates an input and output signal if there exists some intermediate
signal 1 (31) such that the input signal is related to the intermediate signal as specified by
the inverters behavioural specification (INV(inp, 1)) and (A) the intermediate signal
is related to the output of the delay unit as specified by the inverter’s behavioural
specification (INV(inp, 1)). Thus the input signal [F, T, F, F, T, F ...] and output
signal [F, F, F, T, F, F, T, F ...] are related and so give a possible behaviour. This
is because the signal [F, F, T, F, F, T, F ...] is a possible intermediate signal that
fulfils both inverter specifications.

5.4 Correctness Statements

We have given two distinct specifications for a delay unit. The first is a behavioural
specification. It simply and clearly states how the inputs and outputs of the delay unit are
related. The second specification gives the structure of a particular implementation. This
description is similar to one that might be given in a conventional hardware description
language. A netlist could be generated from such a specification. However, as we have
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seen, it also gives an alternative behavioural description. It is not as easy to see from this
description what the behaviour actually is since the behaviour of a device is not always
obvious from inspecting the implementation.

Formal verification is concerned with showing mathematically that a structural
specification and a behavioural specification of a device do have corresponding behaviours.
The correctness statement states this formally. It describes exactly how the two
descriptions must correspond.

A suitable correctness theorem for the delay unit would be:

Vinp out. DEL_IMPL(inp, out) D DEL.SPEC(inmp, out)

That is we wish to show that the relation giving the structural specification implies (D)
the relation giving the behavioural specification. We must prove that the latter is true for
those values of the input and output signals for which the former is true. This ensures
that the structural specification does not exhibit any behaviour that cannot be exhibited
by the behavioural specification. However, it is possible for the behavioural specification
to exhibit behaviour that the structural specification cannot. In the above example we
could alternatively prove that the two descriptions are equal. This will not be possible in
general, however. For example the specification for a delay unit might say that it must
delay the input by at least 1 time unit. An implementation such as the one above specifies
that the delay is exactly 2 time units. It thus fulfils the specification, but the two are not
equal. Thus, in general the correctness statement for a device will state that its structural
specification implies its behavioural specification. For the purposes of correctness theorems
the D operator can be read as “implements”.

A similar correctness theorem could be used for the word delay, assuming its
implementation was specified using WORD_DEL_IMPL:

Vinp out. WORD DEL_IMPL(inp, out) D WORD.DEL_SPEC(inp, out)

However, this will only hold if inp and out are signals of the same length. We can
specify this using restricted quantifiers. They give a convenient notation for specifying
that a property holds for all values that satisfy some predicate. The notation used is a
combination of that used for normal quantifiers and for type annotations, using a double
colon rather than a single one. For words, if the predicate used is PSIGLEN n, then we are

specifying that the property holds for all signals of length n. Thus, the required correctness
theorem is:

Vn. Vinp out::PSIGLEN n. WORDDEL_IMPL(inp, out) O WORD.DEL(inp, out)

This states that for all values of n and all signals inp and out having length n the structural
specification implements the behavioural one.

5.5 Proof of Correctness

The formal verification of a device consists of mathematically proving that its correctness

statement is true. That is, a reasoned argument must be constructed to show its truth.
Informally, the reason the correctness statement for the delay unit is true is as follows.

The first inverter delays the signal by one time unit, and negates it. Thus the signal on
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the internal line 1 will be delayed and inverted. The second inverter takes this signal and
delays it by a further time unit and negates it again. Thus the signal is delayed by a total
of 2 time units, and is negated twice. A double negation has no effect on the final signal.
Thus the signal output is the same as the signal input but is delayed by two time units.
This is precisely the behaviour specified by the behavioural specification.

In the above simple example, such an informal proof may be sufficient to convince us
that the correctness statement is true. In fact the implementation is “obviously” correct
so even the informal specification appears laborious. However, for a more complex device,
such an informal presentation could easily contain non-obvious errors.

A formal proof attempts to overcome this problem using a rigorously defined inference
system for the specification language used. For our purposes a formal proof is a finite
sequence of inferences in a deductive system. A deductive system consists of a set of
axioms (initial theorems that are assumed to be true) and a set of inference rules (rules
which say how theorems may be manipulated to produce new theorems). A proof is a
sequence of theorems with associated justifications. Each theorem will be either an axiom
or will follow from earlier theorems in the sequence using one of the inference rules. The
Jjustification indicates which axiom or inference rule was used.

A formal proof differs from an informal one in that only well-defined arguments can be
used — those embodied in the inference rules. Furthermore, the arguments are reduced to
“symbol-pushing” manipulations. The inference rules effectively just dictate how strings
of symbols (theorems previously proved) can be manipulated to produce new strings of
symbols (new theorems). In an informal proof it is left to the reader to determine whether
the arguments are convincing as they arise. There is also scope for mistakes to be made
due to ambiguities in the language used. The reader of a formal proof must still ensure
that the inference rules have been correctly applied. However, the inference rules of a
particular deductive system are rigorously defined. Hence, such a check is a mechanical
process. In an informal proof the reader must decide whether the step is valid in the first
place in addition to whether it has been correctly applied. Writing a formal proof rather
than an informal one gives a similar advantage to that of writing a formal specification as
opposed to an informal one. The former defines rigorously what is intended. There is no
scope for confusion to arise due to the ambiguities of the language used.

The main advantages of informal proofs are that large steps can be made, and that the
proof is easy to read. However, these are also its disadvantages. It is when making large
steps that mistakes are most easily made, and proofs that are easy to read by humans are
difficult to read by computers. A formal proof on the other hand can easily be checked
by a computer. It may also be possible for a computer to do some parts of the proof
automatically.

A pragmatic approach is to provide an informal outline of the proof in English that can
be read by a human and a fully formal one that can be machine checked. Little extra work
is involved since when constructing proofs it is useful for the verifier to have an overview
in mind. An informal sketch is a help rather than a hindrance when producing a formal
one.

Hardware verification, whether using formal or informal proof, can be performed using
pencil and paper, just as any form of mathematics can be done in this way. However,
the nature of the proofs makes this undesirable. They tend to be very long with lots of
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fiddly detail. Humans can easily make mistakes. Fortunately, this is precisely the type
of thing that computers can perform accurately and quickly. Thus it is highly desirable
to have some form of machine assistance. The degree of automation in such systems can
vary to a great extent. At one extreme lies the proof checker. It simply checks that a
series of steps given by a user do correspond to a proof of the theorem in question. At
the other extreme, lies the fully automated theorem prover. Given the goal to be proved,
it constructs a proof automatically. Practical theorem proving systems fall somewhere in
between these extremes. The user provides a series of large steps that lead to a proof,
with the theorem prover filling in the details. The way such guidance is given and the size
of the steps varies between provers.

We have used the HOL theorem proving system. This mechanizes a deductive system for
higher-order logic — the language we have used to write our specifications and correctness
statements. It is a very flexible system. It contains many pre-proved general theorems and
comes with a wide range of tools (ie inference rules) which perform proof steps of varying
sizes. However, it also allows the user to program new inference rules on top of these. It is
an LCF-style system; that is, type-checking is used to ensure that such user-supplied tools
do not perform incorrect proof. The system ultimately performs proofs using a very small
set of primitive inference rules. The large step inference rules that provide the interface
to the system just perform sequences of these primitive inferences. User written tools use
this interface. Therefore the tools also ultimately just perform a sequence of primitive
inferences. The type mechanism does not allow something to be called a theorem unless it
has been created by a sequence of primitive inferences. The disadvantage of this approach
is that it is slower than if the large step inference rules were programmed directly rather
than in terms of primitive inference rules. However, this use of primitive inference rules
makes the system very trustworthy. Only the basic set of primitive inference rules must
be correct to ensure that only valid theorems can be proved by the system. If the larger
step ones provided by the system or by the user contain errors, they will either cause
exceptions to be raised, or the wrong theorem to be proved. They will never claim that
something is a theorem when it is not.

In the HOL system a proof can be given in either a forwards manner or a backwards
tactic-based manner. In a forward proof, we start with the axioms and apply rules until
we arrive at the desired theorem. In a backwards proof, we start with a statement of
the theorem (the goal) we would like to prove, and apply the inverse of inference rules
(tactics). A tactic breaks the original goal into subgoals. If they can be proven then the
actual inference rule can be applied to them to give the desired theorem. These subgoals
can then be broken into further subgoals in the same way until axioms, or theorems that
have been previously proved are reached. The actual theorem is obtained by re-running the
proof in the forwards direction, using the actual inference rules rather than their inverses.
This is done automatically.

In HOL a goal consists of a set of assumptions and a conclusion. For example, we can
set the correctness statement for the delay unit as a goal. The statement given previously
is the conclusion of the goal and there are no initial assumptions. We can then apply
tactics, gradually manipulating it until it is in the form of a theorem we have already
proved or of an axiom. An axiom is something that is accepted as being true without
proof. The HOL system has very little trust in something being obviously true: the set of
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axioms is very small. However, the tactics allow us to jump towards these axioms in large
leaps.

A proof is input to HOL as a program in the language ML. Appeals to tactics or
inference rules correspond to function calls. These functions call sequences of functions
corresponding to primitive inference rules. A low-level proof script, consisting of a sequence
of theorems with justifications corresponding to primitive inference rules can be produced
by the system. Such a script could then be checked by an independent proof checker [20].

5.6 Hierarchical Hardware Verification

Hardware designs are often hierarchical in nature. The design is split into a series of levels.
At the lowest level, hardware modules are implemented in terms of logic gates. Modules
on subsequent levels are implemented using modules on lower levels. For example, we
could implement a long delay unit using 2 short delay units. We do not need to know how
they are implemented.

This approach has many advantages and is common practice. It is particularly useful
in the context of formal verification. Firstly, it simplifies the structural specifications.
Rather than providing a single definition showing all the interconnections between the
logic gates in a design, we can specify each module separately. For example, a 4-tick delay
unit constructed from inverters could be specified in terms of that of the DEL units

DEL4_IMPL(inp, out) =
1.
DEL_SPEC(inp, 1) A
DEL_SPEC(1, out)

This is clearer than the corresponding description in terms of inverters

DEL4_IMPL(inp, out) =
Ji1 12 13.
INV(inp, 11) A
INV(11, 12) A
INV(12, 13) A
INV(13, out)

Secondly, the implementation of a module is independent of the implementation of
its components. This means that modules can be independently verified. Only the
behavioural specifications of the components need to be considered, rather than their
more complex structural specifications. For example to verify the 4-tick delay unit, we do
not need to know about inverters. Furthermore, the correctness theorem can be reused if
the long delay is re-implemented using different implementations of the short delay.

The behavioural specification of the long delay could be:

DEL4_SPEC(inp, out) =
Vt. out (t + 4) = inp t

The desired correctness theorem has the form:
Vinp out. DEL4_IMPL(inp, out) D DEL4_SPEC(inp, out)
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This could be proved directly by expanding the definitions and reasoning about the fact
that each inverter causes one unit of delay and negates the signal once. This involves more
work than is necessary, however. In particular, we would be effectively giving the argument
about the effects of placing 2 inverters in sequence twice. For this simple example, this
overhead is not too great. For real designs, the verification would become intractable.
Instead we can mirror the modular structure of the design in the proof. In particular, we
can formulate a structural implementation of the long delay in terms of the behavioural
specification of the DEL units.

DEL4_SIMPL(inp, out) =

J1.

DEL_SPEC(inp, 1) A
DEL_SPEC(1l, out)

This says nothing about the underlying structure of the DEL units. By using their
behavioural specifications we have “black boxed” them.
We can then prove a correctness theorem:

Vinp out. DEL4_SIMPL(inp, out) O DEL4._SPEC(inp, out)

We do not make any reference to inverters in this proof. We just use the fact that a DEL
module causes a 2 unit delay.

We can then prove a theorem which states that the two structural specifications of
DEL4 correspond.

Vinp out. DEL4_IMPL(inp, out) D DEL4.SIMPL(inp, out)

The two versions of the structural specification differ only in the use of DEL_SPEC rather
than DEL. To prove it, it is therefore sufficient to prove that the DEL structural specification
satisfies its behavioural specification. This is precisely the correctness theorem we have
already proved about DEL.

We can now combine the above two theorems by chaining the implications. If a
implements b and b implements ¢ then we can deduce that a implements c. We thus
obtain the desired correctness theorem:

F Vinp out. DEL4_IMPL(inp, out) D DEL4(inp, out)

This is illustrated in Figure 14. Behavioural specifications are shown as black boxes —
they hide the details of the implementation. Structural specifications are shown as open
boxes. A structural specification defined in terms of the behaviour of its parts is thus
shown with those parts black-boxed. Similarly a structural specification defined in terms
of the structure of its parts is shown with those parts as open boxes.

We thus split the task of verifying a design into the sub tasks of verifying each module
with respect to the specification of its components. This has the added advantage that if we
reuse sub-modules in other modules we do not repeat work unnecessarily. Also if we change
the implementation of some modules, we do not have to reverify the whole design. We just
prove correctness theorems for the new implementations of the modules, and recombine
the correctness theorems. A further advantage is that separate subtrees of the design can
be verified independently by different people. The interface between teams occurs at the
point where the subtrees are joined. Here, provided the behavioural specifications of the
modules are agreed on, the upper levels can also be verified independently.
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Figure 14: Splitting the proof of a module containing non-primitive sub-modules
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5.7 Duplication of Components

Hardware often consists of a series of identical components, wired together in some way.
For example, an n-bit adder might be constructed from a series of one bit adders with
the carry-out from one bit connected to the carry in of the next. A simpler example is
of a word delay, constructed from single bit delays. The structural specifications of such
designs could be given by specifying each component separately. SBIT is used to specify
individual bits. For example, that of the delay unit might be given by:

WORD_DEL_IMPL(inp, out) =
DEL_SPEC(SBIT 0 inp, SBIT 0 out)
DEL_SPEC(SBIT 1 inp, SBIT 1 out)
DEL_SPEC(SBIT 2 inp, SBIT 2 out)
DEL_SPEC(SBIT 3 inp, SBIT 3 out)

However, this is inconvenient if the component is duplicated many times. Instead we
provide a duplication construct FOR. The delay can then be specified using:

WORD_DEL_IMPL (inp, out) =
FOR i :: TO 4 . DEL_SPEC(SBIT i inp, SBIT i out)

FOR introduces an index, here i. It ranges over values from zero up to but not including
the value of the expression after TO, here 4, in the body which follows the full stop. Thus
the above specifies that there are four occurrences of DEL_SPEC, with inputs and outputs
wired according to the index of each. More complex wiring is also possible, by performing
arithmetic on the index for example.

A further advantage of using FOR is that the specification can be parametrised over
the number of copies to be placed.

WORDDEL_IMPL n (inp, out) =
FOR i :: TO n . DELSPEC(SBIT i inp, SBIT i out)

The number of copies n is passed as an argument. Thus this one definition describes
implementations of delay units of any size. Alternatively, the number of copies can just
be specified to be the size of the words involved.

WORD_DEL_IMPL(inp, out) =
FOR i :: TO (SIGLEN out) . DEL.SPEC (SBIT i inp, SBIT i out)

SIGLEN returns the length of a signal. Thus, this definition also describes implementations
of delay units of any size, but now the size is fixed to be that of the output word.

5.8 Formal Verification versus Testing

The results of formal verification are stronger than can be obtained by inexhaustive testing
because they apply to all combinations of input and output values, rather than to just
those combinations chosen by the validater. However, it should be noted that the results
relate to descriptions of the implementation and specification. If the description of the
implementation does not correspond to the actual design then the results will tell us
nothing about that design. We have formally verified an implementation down to the
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gate level. That is, the lowest level units referred to are logic gates. However, the design
is actually implemented on a Xilinx programmable gate array so the logic gates in the
verified design do not correspond to the reality of the implementation. If the gate array
is incorrectly programmed, then the implementation will not correspond to the actual
implementation. The same problem arises when using a simulator to test a piece of
hardware. If the hardware description used by the simulator does not correspond to
the design actually fabricated then the results will not apply to the actual design. The
simulator used in the original validation of the design we verified used the same logic gate
model. However, tests can normally be rerun on the actual fabricated hardware. Formal
verification can only ever apply to mathematical models of the hardware.

Similarly, if the description of the specification does not correspond to the specification
actually intended, then even though the implementation has been formally verified it may
still not be correct. However, in this case we will at least have an unambiguous description
of what the implementation does actually do. If we have proven that the two radically
different descriptions correspond, this gives us a fairly strong assurance that they are both
correct. More importantly, in the act of formal verification we examine the implementation
and specification very closely. Thus, there is a good chance errors will be picked up. We
must have a very thorough understanding of why the implementation implements the
specification, as without it formal verification would not be possible. This is a major
difference to testing where no such understanding is needed.

A more detailed discussion of the limitations of formal verification is given by Cohn [4]

5.9 Hardware Description Languages

In the above discussion of formal hardware verification, we used higher-order logic
as a hardware description language for giving both the behavioural and structural
specifications. An alternative would be to use a more conventional HDL, such as VHDL or
ELLA. However, to perform formal verification a deductive system would be required for
the language used. A prerequisite is that the description language has a formal semantics.
This is not so for most hardware description languages, though formal semantics do exist
for subsets of ELLA, VHDL and SILAGE, for example [2]. If the formal semantics is
given in a logic for which a theorem prover exists, then that theorem prover can be used
to perform the formal verification. The hardware description languages described above
all have formal semantics written in higher-order logic so the HOL system could be used.
To facilitate such proofs additional proof tools can be added to a general purpose system
such as HOL, so that the prover does not need to be so aware of the underlying logic.
This was done fairly successfully for the ELLA subset [1][3]. However, these languages
were not designed with formal methods in mind. As such they contain idiosyncrasies that
make reasoning about designs more difficult than necessary.

This contrasts with the use of higher-order logic as a hardware description language.
It is very expressive and does not have the problems associated with using a conventional
HDL. It does not contain ambiguities. It is also the language used by the theorem prover
HOL. Therefore the prover is already tailored to proving facts about descriptions in the
language. The disadvantage of using higher-order logic is that it is less familiar to engineers
than a conventional HDL, and descriptions cannot in general be simulated (though it is
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possible to use a subset of the language that is simulatable).

Qudos HDL was used by the designers of the switching element. It is a very simple
hardware description language which permits structural implementations to be described
but has no facilities for giving behavioural descriptions. It is also very inexpressive. It
does provide a simple module facility, allowing hierarchical design. Also a simulator was
available for it, so it was possible to validate the design using simulation. Unfortunately,
Qudos HDL, has no formal semantics. The meaning of hardware descriptions is effectively
defined by the simulator.

One approach would have been to define a formal semantics for Qudos HDL in
higher-order logic as described above. Due to the simplicity of the language, this should
not have been too difficult. However, the Fairisle designers had expressed reservations
with the language. It was too simple. The main problem was the lack of facilities for
specifying multi-level words. For example, the data input lines of the switching element
consist of 4 words of 8 lines each. In Qudos HDL, this had to be described as a word
of 32 single bit lines. This and other similar problems, such as the lack of arithmetic
expressions, meant that the description of the design was not as clear as it might have
been. The designers were therefore keen to obtain a formal specification which overcame
these problems. Also, theorem proving tools for reasoning about the constructs of that
language would have been needed. Whilst being straightforward to develop, this would
have been time-consuming.

Instead we used a subset of higher-order logic that was similar to Qudos HDL as the
hardware description language. Constructs such as DUP described earlier were defined to
mimic those of Qudos HDL. We also gave formal definitions of the behaviours of the Qudos
primitive components used in the design of the switching element—Ilogic gates, flip-flops
and buffers. These descriptions form the basis of the proof. We did not formally verify
the implementation of these components. We assumed they were correct and that their
specifications provided sufficiently accurate models of their behaviour. In a similar way,
when using the simulator to validate Qudos HDL designs, it is assumed that the code
implementing these same primitive components in the simulator accurately reflects their
actual behaviour. We thus performed verification down to the gate-level. This level was
chosen because it is the same level as used by the Qudos simulator. As noted previously,
the implementation actually uses a gate array; we thus must trust the process by which
the gate array is programmed from the logic gate description. This is also the case if the
simulator is used for validation. Fears that the silicon compiler could introduce errors
could be allayed by formally verifying the silicon compiler. Hardware compilation is an
active area of research. For example, work is in progress at Oxford University in this
area [10].

The resulting hardware description language (which we will refer to as HOL-HDL)
was very similar in structure and semantics to that of Qudos HDL, though more flexible.
The surface syntaxes differed somewhat. This could be largely overcome by providing
pretty-printing and parsing support as has been done for other hardware description
languages. On the whole hardware descriptions in the two languages could easily be
related even without such support. Producing HOL-HDL descriptions from the Qudos
HDL consisted largely of global editing. The extra flexibility of the former, however,
meant we could make some of the descriptions much cleaner than the originals. This
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made them easier to understand and facilitated formal reasoning about them. We discuss
this further in Section 7.

A disadvantage of HOL-HDL is that no simulator exists for it. However, it should be
possible to write a translator from HOL-HDL (annotated with values for the sizes of words
where this had not been specified and with names for each occurrence of components) to
Qudos HDL. This would allow the Qudos simulator to be used. It has not however been
done, so the HOL-HDL specifications were not simulated prior to formal verification. The
only validation performed prior to verification on the modified descriptions was that of
type-checking.

6 The Formal Behavioural Specification of the Switching
Element

The formal behavioural specification of the switching element is given by a predicate
FABRIC4B4 SPEC. The inputs of the element are represented in the formal specification
by signals, data_in, ack_in and frameStart. The outputs are represented by data_out
and ack_out. The inputs and outputs are passed as arguments to the definition. The
switching element retains state about the last successful input for each output. This is
represented by a signal last which is passed as a further argument. Finally, the definition
is parametrised by the default data value output, default_data_out. This is the value
sent on the data_out line when the data of a cell is not being output. To allow the
specification to be applicable to implementations which use different values, the default
value is given as an argument to the definition rather than being rigidly specified. The
definition therefore has the form:

FABRIC4B4_SPEC default_data_out last
((data-in, frame_start, ack_in), (data_out, ack.out)) = ...

We have omitted the clock input. It is implicit in the specification since all the other
inputs and outputs are represented by sequences of values sampled when the clock signal
occurs.

The behaviour of each output signal is specified separately. That of data_out is
specified by the predicate FABRIC4x4 DATA_OUT, whilst that of ack.out is specified by
FABRIC4x4 ACK. The state at each time instance, which records the last successful input
for each output, is specified by a further predicate, FABRIC4x4 LAST. The full definition
is:

FABRIC4B4_SPEC defaultDataOut last
((dataIn, frameStart, ackIn), (dataOut, ackOut)) =
FABRIC4x4 DATA_OUT defaultDataOut (dataln, last, dataOut) A
FABRIC4x4_ACK (dataln, last, ackIn, ackOut) A
FABRIC4x4 LAST (dataln, last)

We will briefly overview the specification for the acknowledgement out signal. The others
are similar.

Since the behaviour of the fabric is cyclic, we can give the specification in terms of a
cycle or frame. We can specify that if some interval represents a frame, then the element
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will have some given behaviour over that period. We differentiate between inactive frames
and active frames. During the former no cells arrive, so no arbitration need be performed.
During the latter at least one input port injects a cell into the fabric.

An inactive frame is characterised by two times: the start time and end time.
These times are not under the control of the element, but are totally determined by
its environment. For two points in time to represent a frame, the frame start signal should
be high at the start and end times and low at all times in between. The active signals
from all the input ports should also remain low throughout the frame: that is no cells
arrive. We model an inactive frame using a predicate IFRAME. The predicate is true of a
start time, end time, frame start and word of active signals if the above conditions hold
and is false otherwise. Its formal definition is:

IFRAME ts te fs active =
FRAME ts te fs A
STABLE ts te (SEXISTSABIT I active) F

The first clause gives the requirements on the frame start signal f£s. It is formalised
in a predicate FRAME. We do not give its definition here. The second clause gives the
requirements on the active signal: each bit in the word of active signals must have the
constant value F (or low) during the interval from time ts to time te. The expression
SEXISTSABIT I active represents a signal that is true at a given time if any of the bits
on signal active is true at that time and false otherwise.

An active frame is characterised by three times: the start time and end time, as for an
inactive frame, and an active time. The active time is the time at which the first byte of
the cells arrive. The active signal should then remain low up until the header time when
it should go high. It is formalised by the predicate AFRAME:

AFRAME ts ta te fs active =
FRAME ts te fs A
STABLE ts ta (SEXISTSABIT I active) F A
SEXISTSABIT I active ta A
ts <= ta A
ta + 1 < te

This definition is similar to that of IFRAME, except the active signals must be low only until
the active time ta. At that time it must be true (SEXISTSABIT I active ta). Nothing
is stipulated about the active cycle from that point until the end of the frame. The active
time must not be earlier than the start time (ts <= ta) and must be at least two cycles
before the end time (ta + 1 < te).

The specification for the acknowledgement signal then has the form:

FABRIC4x4_ACK (dataln, fs, last, ackIn, ackOut) =
Vts te th. .
(IFRAME ts te fs (Actives o dataIn) D ...) A
(AFRAME ts th te fs (Actives o dataln) D ...)

That is, for all times ts, th and te, if they represent an inactive frame then one behaviour
holds. If they represent an active frame another behaviour holds. The expression (Actives
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o dataln) represents a signal made up of the active bits from the dataln signal (which is
a word of four bytes; one from each input port). If applied to a time t, the result would
be Actives (dataln t). _

The specification does not place any restrictions on the behaviour if the times do not
represent a frame. Provided the environment is maintaining the frame structure, the end
of one frame is the start of the next. Therefore this covers all time from the first frame
occurring for as long as the frame structure is maintained. The fabric is only designed
to work provided the frame structure is maintained so we are not required to specify its
behaviour when it is not.

The timing diagram for an inactive frame was given in Figure 6. The ackOut signal
must be kept low throughout the cycle from time ts+1 until time te+1 (where the frame
start signal arrives at time ts). We formally define this behaviour as below.

(IFRAME ts te fs ...) D
STABLE (ts+1) (te+1) ackOut (ZEROW (SIGLEN ackOut))

This states that for an inactive cycle the ackOut signal (which is made up of one bit per
input port) is low. ZEROW returns a word of Fs of a given length. SIGLEN ackOut returns
the length of signal ackOut. Thus (ZEROW (SIGLEN ackOut)) represents a word of Fs
having the same length as ackOut.

The timing diagram for an active frame is shown in Figure 7. Now the ackOut signal
must be kept low until time ta+3 (where the headers arrived at time ta). Thereafter, the
ackOut signal to an input port must be kept low if the cell from that port was rejected
by the arbitration process. The ackOut signal is identical to the ackIn signal from the
requested output port (indicated by the dark shading in the timing digram) if it was
accepted. The formal specification is split into two parts: one describing the behaviour
prior to an arbitration decision being made and one describing the behaviour afterwards.
Prior to the decision, the ackOut signal must be low, as for an inactive frame. The
specification is thus similar:

(AFRAME ts ta te fs ...) D
STABLE (ts+1) (ta+3) ackOut (ZEROW (SIGLEN ackOut)) A ...

We specify the final part of an active cycle using DURING which describes the value
of the signal ackOut over the cycle in terms of a function (A\t. ...) from time to a
four bit word—one acknowledgement bit per input port. We do not give the full details
here but note that during this period the value of ackOut depends on three things. It
depends on the value of the data injected into the fabric at the time the header arrives,
ta, since the header holds the requests that are behind made. It depends on the value of
last at time ta+2, since this holds the information about the last successful inputs for
each output port used in the round robin arbitration. Finally, it depends on the value of
the acknowledgements coming in from the output ports, since these are passed on to the
successful input ports.

(AFRAME ts ta te fs ...) D... A
DURING (ta+3) (te+1) ackOut
(At. ... (d ta) ... (Qast (ta+2)) ... (ackIn %) ...)
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The function (At. ...) decodes the headers, filters cells destined for the same output
port based on the priority fields in the headers and performs round-robin arbitration on
the results. This is performed separately for each output port. The bit of ackOut for a
particular input is low if it was not selected by the output port it was requesting, or if
it were not making a request, and is the acknowledgement from the output port it was
requesting otherwise.

The function is defined in terms of several independent functions which, for example,
specify what it means for priority requests to be filtered and what round-robin arbitration
is. These functions are also used in the specifications of the data out signal and the state
holding the last successful requests.

As an example, we will describe the definition of round-robin arbitration. It is
specified by a function RoundRobinArbiter which has several arguments: the number
of input ports, n; a set giving the input ports making requests for the output port under
consideration, request._set; and the last successful input port for this output port, last.
It returns either an indication that it cannot make a selection if the request set is empty
(NO_RESULT). Otherwise it returns the result of round robin arbitration.

RoundRobinArbiter n request_set last =
((request_set = {}) =
NO_RESULT !
RESULT(RoundRobin n request_set last))

The notation (a = b | ¢) is a 2-branch conditional. If a is true then the result is b,
otherwise c¢. The function RoundRobin does the actual work. It is defined recursively
on the numeric argument provided. In the base case when this argument is zero, zero
is returned. This should never arise however. The numeric argument is initially higher
than any value in the request set. Its purpose is simply to ensure that the recursion
terminates. However, it should never be called in such a way. It is given the value of the
last successful input and must find the next highest one. It therefore adds 1 modulo 3 to
the last successful input (SUC_MODN 3 last) giving a possible candidate, trynext. As the
value 3 is explicitly used in the definition, it is only applicable to round robin arbitration
over 4 choices. It could be made more general by using a variable in place of the 3. If
trynext is in the set of requests, then it is the new successful input. Otherwise, it recurses
repeating the process, though with trynext as the new “last successful input”. Provided
the set of requests is not empty and only contains values less than 3, then after at most
4 attempts it will have found the correct result. Thus by giving it a counter with initial
value of 4, it will return the required result without reaching the base case.

(RoundRobin 0 request_set last = 0) A
(RoundRobin (n+1) request_set last =
let trynext = SUCMODN 3 last
in
trynext IN request_set =
trynext
RoundRobin n request_set trynext)
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7 The Formal Structural Specification of the Switching
Element

To formally verify the switching element, we needed a structural description of the
implementation in a language with a formally defined semantics. Without this no formal
reasoning about the behaviour of the circuit is possible. As we intended to perform the
verification using the HOL theorem proving system, we ultimately needed a semantics in
higher-order logic. :

We manually translated the original Qudos HDL descriptions to HOL-HDL. On the
whole this was a mechanical process, involving the changing of surface syntax. We did
however make some changes to the description. These changes were largely superficial.
They did not alter the design, only the description of it. Both descriptions describe
the same collection of logic gates. This could be checked by comparing the netlists
resulting from the two versions. The changes made the descriptions clearer and made
formal reasoning about the design much more tractable. Two kinds of changes were made:
adding extra layers to the hierarchy and making use of features of HOL-HDL which were
not available in Qudos HDL.

When giving the structural specification of the switching element we added several
levels of hierarchy that were not used in the original Qudos description. This was done
to facilitate the formal verification. For example, in the original description the top level
module described the fabric in terms of input and output buffers, latches, a header decoder,
priority filter, timing unit, arbiter, dataswitch and acknowledgement unit. We grouped all
but the latches and buffers into a single unit at the top level. It was then subdivided at
the next level into the arbitration unit, acknowledgement unit and dataswitch, with the
arbitration unit further subdivided into a header decoder, priority filter, timing unit and
arbiter.

In Qudos HDL there is no facility for describing multi-level words. Thus the data-in
lines are modelled as 32 individual lines. Multi-level words can be used in HOIL-HDL.
Therefore, the data-in line was modelled as a group of 4 8-bit bytes. This is closer to the
designers’ mental model.

In some modules, the design was not dependent on the word sizes used. In Qudos-HDL,
the number of input and output signals must be fixed. The Qudos loop construct which
is used to define a set of identical components must be given a value for the number of
copies. Thus an n-bit adder cannot be described using Qudos HDL. A separate description
must be given for adders of each different size. The HOL-HDL loop construct allows the
number of copies to be left as a variable or restricted to being the same as the size of a
given word. Furthermore, the word sizes do not always have to be specified. This means
that generic descriptions can be made, such as an n-bit adder, where n is not specified.
The correctness theorems for some modules of the switching element are therefore directly
applicable to switching elements of different sizes. A

The different copies of a duplicated component can be wired in more general ways
using HOL-HDL than with Qudos HDL. In particular, arithmetic can be used to specify
which bit of an input word is connected to which bit of an output word. This meant that
the duplication construct could be used in the HOL-HDL version where the copies had to
be written out in full in the Qudos version.
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To illustrate the kinds of changes made, we will consider the Qudos HDL and
HOL-HDL structural descriptions of one of the components of the dataswitch - DMUX4T2.
It is a multiplexor. We first give the Qudos HDL.

DEF DMUX4T2 (d[0..3], x: IN; dOut[0..1]: 1I0);
xBar : 1I0;

BEGIN

Clb := XiCLBMAP5i2o (d[0..1], x, d[2..3], dOut[0..1]);

InvX := XiINV(x, xBar);

B[0] := A0 (a[o], xBar, d[1], x, dOut[0]);
B[1] := A0 (d[2], xBar, d[3], x, dOut[11);
END;

The description starts with a declaration part. This first line states that we are defining
the module DMUX4T2 and that it has two inputs: d which is 4 bits long (with bit positions
numbered from 0 to 3) and x which is one bit. It has one two bit output dOut. The second
line declares a local variable xBar. We then have the description of the layout, enclosed
by BEGIN and END. The first statement, is a dummy statement that provides information
about the way design should be mapped onto a Xilinx gate array. It provides no semantic
information. The next statement describes a Xilinx inverter XiINV. It has input x and
output xBar. This particular inverter is given the name InvX. This name is used by the
simulator. There then follows two AND-OR logic gates, AD. They each produce one bit
of the dOut output, using differing bits from d and the x and xBar signals. They are
given the array name B, each being one entry. The separate components are delimited by
semicolons. The individual bit positions are given in square brackets.
This description can be mimicked in HOL-HDL.

DMUX4T2 ((d, x), dOut) =

JxBar.
XiINV (x, xBar) A
A0 ((SBIT 0 4, xBar, SBIT 1 d, x), SBIT 0 dOut) A
A0 ((SBIT 2 d, xBar, SBIT 3 d, x), SBIT 1 d0ut))

We use the convention that definitions of modules take a single pair argument. The
inputs form the first part of this pair, and the outputs the second. Multiple inputs and
outputs are grouped into a tuple in the appropriate part of the pair. The local variable
xBar is introduced using an existential quantifier. The three components are then given
separated by conjunctions A. The CLB definition of the Qudos HDL is omitted as are the
names of the components. They provide no semantic information and are not needed to
perform formal verification. If a specification were to be originally written in HOL-HDL
and translated to Qudos HDL for simulation, this additional information could be provided
in the form of annotations or dummy definitions that throw away the extra information.
The bit positions are indicated using the function SBIT, and the inputs and outputs have
the structure described above, but otherwise the component descriptions are the same. ‘

In HOL-HDL, we can do better than the above. d can be thought of as being two
signals each two bits wide. The input x chooses either the first bits of each of these
signals or the second. We cannot describe this in Qudos HDL as structured signals are
not supported, but we can in HOL-HDL.
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DMUX4T2 ((d, x), dOut) =

JxBar.
XiINV (x, xBar) A
A0 ((SBIT O (SBIT 0 d), xBar, SBIT i (SBIT 0 d), x), SBIT 0 dOut)
A0 ((SBIT O (SBIT 1 d), xBar, SBIT 1 (SBIT 1 d), x), SBIT 1 dOut))

Now d is a two level signal. The low level bits are accessed using two calls to SBIT.
The use of the two level signal makes the description closer to the designers’ mental
model. Furthermore, whilst making the structural specification look superficially more
complex, it simplifies the behavioural specification. This makes that specification much
easier to understand and also simplifies the verification task. We can now simplify the
structural specification further. The two AD gates are performing identical functions, the
only difference is in the bit positions. We can therefore introduce the duplication binder
FOR. It introduces an index variable i, to range over the different values of the bit positions,
from zero up to, but not including, the value after the keyword TO.

DMUX4T2 ((d4, x), dOut) =
JxBar.
XiINV(x, xBar) A
FOR i :: TO 2 .
A0 ((SBIT O (SBIT i d), xBar, SBIT 1 (SBIT i d), x), SBIT i dOut)

The body of the duplication binder FOR describes the replicated components in terms of
the index, here i.

8 The Formal Verification

Each module in the design was formally verified separately. The correctness theorems
for modules implemented in terms of primitive components were proved directly. Those
constructed from non-primitive modules were proved in three steps using the structural
specification based on the behavioural specifications of the modules. This approach was
outlined in the tutorial section. The proofs were roughly of two kinds. The simplest were
for the low level modules. Their specifications were in the form of an equation stating
that the outputs at some time were a function, say £, of the inputs at earlier times:

value of output at some time = f (values of inputs at earlier times)

The specifications of the sub-modules had a similar form. The proof proceeded by rewriting
the specification of the module with the specifications of its sub-modules. This involved
replacing occurrences of outputs in the specification with functions of the input values.
This was done automatically. It yielded an expression of the form:

g (values of inputs at earlier time) = f (values of inputs at earlier times)

That is: one function g of the inputs was equal to the original function, g of the inputs.
The proof was then completed by showing that the two sides of this equality were the
same. This was generally straightforward, typically requiring lemmas about words.

A second kind of proof involved modules with specifications based on timing diagrams
over the period of a frame. For example, the value of an output in the interval up to the
header time and after that time within a frame were given.
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STABLE ts th output F A
STABLE th te output T

In general, a separate proof was performed for each output over each interval. These
proofs normally involved considering a typical point within the interval, and showing that
at that time the output in question had the value specified. In some cases, the start of
an interval was treated separately, because at that point a change of behaviour occurred.
The reason for the change of behaviour was often different for the reason the behaviour
then remaining constant—for example, the frame start signal might trigger the change in
behaviour at the start of the interval putting the module into a different state. Once in
that state it remains there as long as no active signal occurs. The reasoning required in
these cases is different so they are proved separately.

For modules with sub-modules specified as equations, the proof was split into two
parts. A second equational specification of the module was written. The implementation
of the module was first verified against this behavioural specification. The proof was of
the first kind described above. The second behavioural specification was then shown to
satisfy the original. This was easier than to prove the implementation satisfied the original
because the equational specification was simpler than the implementation.

Separate proofs were also performed for active and inactive frames. The proofs of the
latter were virtually identical to the proofs for the start of the interval of an inactive frame.

As with proofs about equational specifications, the proofs of interval specifications
involved an initial, largely automatic part concerned with expanding definitions and
rewriting the values of output signals using the specifications of the sub-modules. This was
followed by a user-guided part, which involved proving that two expressions on the input
values were the same. These proofs were more tricky, due to the more complex notions
being reasoned about: for example, modules involved with arbitration require reasoning
about round-robin arbitration.

The higher level modules often had several outputs, with each output described in
terms of up to three intervals. Thus there were many cases to consider. In addition, each
case dealt with complex notions. Consequently these proofs tended to take longer than
proofs of lower level modules.

9 Time taken

The project made use of the new HOL word library. Unfortunately, it was not available
in the version of HOL used from the start of the project. This meant that initially only
specification could initially be done rather than proof. It was therefore decided to write
all the specifications first. By the time this was done the word library was available and
so verification could proceed.

Prior to the verification work, over a month was spent writing the formal specifications,
(both behavioural and structural) for each of the 43 modules. No detailed breakdown of
this time has been kept however. Much of the time was spent attempting to understand
the design. The structural specifications were adapted directly from the Qudos HDL. The
behavioural specifications were more difficult. The specifier had no previous knowledge
of the design or of the Fairisle Network. Documentation was minimal. There was a good
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English overview of the intended function of the switching element. This also outlined the
function of the major components. Whilst it gave a good introduction, it was not sufficient
to construct an unambiguous behavioural specification of all the modules. The behavioural
specifications were constructed by analysing the HDL due to the lack of documentation.
This was very time-consuming. It also meant that the formal specifications described what
the implementation did, rather than describing what the designer intended it to do. This
leaves open the possibility of errors in the design becoming “features” of the specification,
rather than being identified as errors. However, since the switching element was designed
and in use prior to the formal specification and verification being carried out, this is
unavoidable. The behavioural specification must be studied by the designers to ensure
that the behaviour described does not contain undesirable features. This is easier than
just studying the structural specification, because the behavioural one is a much simpler
and clearer description. Ideally, formal specifications should be written by the designers
of the module. This would also aid the design process.

Approximately two man-months were spent performing the verification. Of this one
week was spent proving general purpose theorems about, for example, machine words and
signals, that were needed for the proof. These theorems will be of use in further proofs.
They had not previously been proved by others because they concerned the new word
library. This had only been used on one other verification project and contained only the
theorems required there. In particular there were no definitions or theorems concerning
multi-level words. Approximately 3 weeks were spent verifying the upper modules of the
arbitration unit, and a further week was spent on the top 2 modules of the switch. 3.5
days were spend combining the correctness theorems of the 41 modules to give a single
correctness theorem for the whole circuit. The remaining time of just over 2 weeks was
spent proving the correctness theorems for the other 36 units. These proofs were largely
automated using tactics which were developed throughout the verification, though in most
cases additional human effort was required to finish the proofs. The breakdown of the time
is given in Figure 15. It shows the cumulative time taken as each module was verified. The
time spent proving general word theorems mentioned above is not included. On the whole,
the simpler modules were verified first. The latches and buffers were particularly easy as
they all had very similar structures. Tactics developed for the early proofs were then used
in the later proofs, thus speeding up the more difficult ones. Also, the verifier had not
previously performed a hardware verification and was not initially familiar with the word
library, though was a competent HOL user. Proof times were consequently reduced as
experience was gained.

Much of the effort was expended in understanding informally why the implementation
was correct. This was hampered to some extent by the delay between writing the
specifications for a module and doing the proof. This meant that much time was wasted
re-understanding the specifications and working out how the implementations actually
worked. It would have been much better to perform the proof of a module when it was
specified had this been possible.

Errors in the specifications slowed progress. When an error was present in a module,
some time was spent attempting to prove theorems that were untrue. When this was
discovered, the error had then to be located. The manner in which the proofs failed
usually gave a strong indication as to the location of the error. However, it was not always
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Figure 15: Time taken to verify the switching element
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immediately clear whether the error was in the behavioural or structural specification of
the module, or because a component module’s specification was too weak. Determining
which involved examining the specifications of other modules as well as the faulty one. The
specification then needed to be corrected and the proof completed. The main errors were
in the modules DMUX2B4CA1l, and ARBITRATION, where there are corresponding plateaus
in the graph. The original behavioural specification for the latter contained several minor
errors and some more serious ones. It was largely rewritten during the verification. We
discuss the errors found in the next section.

After the proof had been successfully completed the behavioural specification was
reviewed. Major changes had been made to the behavioural specification of the element
during the course of the verification. Consequently, some aspects of the specification were
overly complex. The specification was therefore changed and the proof redone. In the
original version, a single predicate had been used to specify that a set of times represented
either an active frame or an inactive frame. It was originally thought that this would
simplify the specification as an inactive frame is just a degenerate case of an active frame.
However, the two cases did ultimately need to be specified separately. The specifications
were therefore modified to use two predicates one for an inactive frame and one for an
active frame as described earlier. This involved the major reworking of the proofs for
the timing module, the upper level modules of the arbitration unit, and the upper level
modules of the fabric itself. Due to the modular nature of the design and proof, only
the modules which were affected needed to be reverified. It took a total of one month to
complete the original proofs of these modules. It took less than three days to modify the
specifications and redo the proofs. Re-doing the proof was quicker for several reasons. The
proofs were split into a series of lemmas. Many lemmas were not affected by the changes
and so their proofs did not need to be redone. The new specifications did not contain
errors. The reason why the design was correct was well-understood because at an abstract
level it was unchanged from the original. Most proofs that did need to be changed only
needed to be changed in small ways. Thus the scripts could be rerun with only a few
modifications. Some proofs were even simplified by the changes.

No detailed record of the time spent originally designing and testing the element was
recorded. The design evolved from earlier designs, and several different designs were
produced at the same time, making it difficult to accurately estimate the time scale
involved. However, the designer estimated that had it been designed from scratch the
initial design time would have been in the order of several months. The time spent testing
would have been in the order of several weeks. However, errors were discovered after the
testing process had been completed when the fabric was in use. Thus the time spent to
formal specify and verify the design was not unreasonable. Had it been performed as
an integral part of the design, it is unlikely that it would have unduly slowed the design
cycle. Furthermore, it is likely that the formal specification and verification would have
been much quicker if done as the element was designed since much of the time was spent
attempting to understand the design. Had formal verification been applied to the ancestors
of the design, the formal verification could possibly have tracked the changes made, with
a minimal amount of time spent adapting the proof for the new generation. Similarly
the proof could have been quickly adapted to the other versions of the element that were
designed at the same time.
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10 Errors Found During Formal Verification

In this section we give an overview of the errors discovered during the formal verification
process in the various descriptions of the switching element. We outline the various kinds
of errors which occurred. In the more interesting cases, we give an indication of why they
occurred and how they were discovered. Our aim is to give a flavour of the wide range
of errors that can occur in formal specifications as well as in implementations and how
formal verification can help in their detection. All errors found during the course of the
verification were corrected and the proofs completed successfully.

10.1 The Implementation

No errors were discovered in the actual implementation of the switching element. This is
not surprising, since the fabric has been in use for some time. Also as noted above, the
behavioural specification was written by examining the implementation. It is therefore
possible that discrepancies between the implementation and designers’ intended behaviour
have become “features” of the behavioural specification.

10.2 The Structural Specification

Several errors were found in the HOL structural specification. These were introduced in
the translation from Qudos HDL, due to the introduction of multi-level words, etc. For
some errors this was due to the specifier misunderstanding the original description.

In several places the wrong number of copies of a unit was specified. For example,
in DMUX4T2, (FOR i :: TO 1 ...) was originally used to replicate the AD module. This
created only one copy rather than the required two. This was because Qudos HDL takes
an initial index and final index rather than the number of copies we used. This could
have been avoided if the duplication construct of HOL-HDL had been defined to mirror
the HDL more closely. This had originally been intended. The length was eventually
used since this made generic specifications simpler. In other modules, where a piece of
hardware was duplicated using the length of one of the signals, the length of the wrong
signal was used. In séveral modules, the sizes of the local signals were not specified, and
this information was needed in the proof.

In FAB4B4, 2 bytes of a signal were selected when actually it should have been 2 bits
from each byte.

In DMUX2b4CA1l and ARBITER, two signals were incorrectly wired. This was discovered
because the subgoal ([T, F] = [F, T]) was generated in the proof attempt. One side
of this equality originated from the behavioural specification and one from the structural
specification. This illustrates how the discovery of an error can give a strong indication of
its cause. It was clear from the proof attempt that two signals had been swapped and also
which signals they were, from the context of the subgoal. It was not immediately clear in
which specification they had been swapped.

10.3 The English Commentary

An English commentary was given with the behavioural specification of each module. Such
a commentary is useful as it gives a brief, if not precise, overview of the behaviour of the
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module. This is of use to a formal verifier, to help keep a mental picture of the purpose
of each module. It would also be of use to engineers who are not familiar with the formal
notation.

An error was discovered in the English commentary of PRIORITY_DECODER. It mistak-
enly stated that the priority decoder outputs one word per output port, when in fact it
returns one word per input port. The formal specification was correct. The confusion
arose because other components output one word per output port. The error was discov-
ered during the formal verification because the commentaries were being used to construct
informal arguments to guide the formal proof.

10.4 The Behavioural Specifications

Many errors were found in the behavioural specifications of the modules, though most
involved the incorrect specification of word lengths. Such errors were generally easy to
detect and correct.

The specification of the NOR gate was correct only for 2 input gates, but was used for
gates of varying sizes. When originally specified it had been assumed that only 2 inputs
would be used. This error was noted the first time an incorrect NOR gate was used.

One of the primitive word operators, WSEG, which selects a segment from a word, was
incorrectly used. This was because the specifier had misunderstood its definition, assuming
it took the end points of the segment as arguments, when it took one end point and a
length. Again this was spotted in the first proof where it was used.

The timing of several modules was incorrectly specified. For example, in the
specification for the module TIMING, an event was stated to occur at the same time as the
frame start signal when it actually occurred on the subsequent cycle. Such errors were
normally easy to detect and correct. Goals of the form (ts = ts + 1) were obtained.
In fact in the specification for the upper modules, the timing was purposely worked out
in this way. Educated guesses were made about when events occurred and used in the
specification. The actual values were then discovered during the proof and corrections
made. This was quicker than attempting to get the timing right from the start.

It was assumed that the two bits of the grant signal for an output port were sampled
at the same time in the specifications for the dataswitch to determine which input was
successful. In fact the implementation samples them at different times. This meant that
the number of the successful input was not just a function of the grant signal at a time,
but depended on its values at two consecutive times.

When initially writing the specifications it was assumed that the same definition of a
time frame between successive frame start signals could be used for all modules. However,
the frame start signal is passed to all modules with no delay, whereas other signals suffer
delays at various points in the circuit. In particular the active signal is delayed at several
points. This means that the definition of a frame must vary between modules to account
for the different relative times of the frame start and the active signal arriving at a module.

In several modules, the structure of the signals output was confused in a similar way
to the error in the English commentary mentioned earlier.

Some of the specifications contained redundant information that either was not
required for the proof, or was essentially stated twice within the specification. Whilst this

40




did not effect the proofs for the modules in question, having unduly complex specifications
would have complicated the proofs of the upper levels.

The specification of the arbiter did not specify its behaviour on the last cycle of the
frame in the case when no cells arrived. This was discovered because a subgoal had to be
proved about the value of the grant signal at this time, but no information was available.

The initial specifications for the upper modules in the hierarchy did not consider empty
frames as a special case. It was believed that empty frames were covered in the behaviour
given. However, this was not so. Consequentially an extra case needed to be added.

In several places the expression SBIT k which selects the k-th bit of a signal was used
when what was needed was ($= k o BNVAL) which converts the word to a number and
then tests if it was equal to k. This arose due to confusion over the form in which the
data was being stored on the outputs of those modules.

10.5 The Correctness Statement

An additional assumption needed to be added to the correctness statements of some
modules. This concerned the effect of the active signal arriving close to the frame
start signal. It had initially been thought that the switching element would function
correctly irrespective of when the active signal arrived. This was not so. An assumption
stating that the active signal did not arrive at an inopportune moment was needed. This
assumption appeared in various forms for various modules as well as in the full correctness
statement for the element. The fabric has no control over when these signals arrive as
they are determined by the external environment. The design of the port controllers
must ensure that the assumption is upheld. The assumption could have been included in
the specification of the modules concerned rather than being explicitly in the correctness
theorem. This would have made little difference to the proofs.

10.6 Overview of Errors

Many errors were found in the original formal specifications. This highlights the fact that
specifications can be just as hard to get right as implementations. This is eased by using
an expressive specification language such as higher-order logic. However many errors still
occur.

The large number of errors in the original formal specifications of the switching element
are due to the fact that the specifier was not originally familiar with the designs being
specified and very little informal documentation was available. The specifications would
probably have contained fewer errors if written by the designers during the design process,
or if they had produced informal documentation for each module. Errors corresponding to
those found in the behavioural specification could just as easily have been in the structural
specification. The formal verification would have found such errors in the same way.

The exercise does illustrate how well formal verification can discover errors and ensure
that their correction does not introduce new errors, whether they are in the implementation
or specification.

Many errors concerned the sizes of words. These might have been discovered earlier
if the sizes of the words could have been included in the type information — dependent
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typing. Then some of the errors might have been discovered during type-checking. Some
systems such as VERITAS [9] and Nuprl [15] have this ability, though HOL does not.

Several errors arose due to the different representation of the request information in the
headers of cells used by different modules. For example, initially the request information
has the form of two bits per input port giving the binary version of the output port
number. This information appears as 4 bits per input port. Each bit is then a flag
indicating whether a particular output port is making a request for an input. Elsewhere it
is in a similar format except with 4 bits per output port with flags indicating whether an
input port is making a request for the output. Furthermore, in the top level behavioural
specification, ports are also referred to by natural numbers since this is a higher level
view. With more complete informal documentation of the implementation, such errors
would have been less likely.

11 Design for Verifiability

The element was not designed with verification in mind. Despite this we did not need
to change its implementation to complete the verification. However, we did change the
description of the design; adding extra layers of hierarchy for example. These changes made
the verification much more tractable. Had the element been designed with verification
in mind, these changes could have been incorporated into the original description, thus
simplifying the verification task from the outset. More complete informal documentation
of each module could also have been produced which would have significantly reduced the
time spent writing the formal specifications.

The verification suggested ways that the implementation could have been changed that
would have simplified the verification. In particular, with a small amount of additional
logic the assumption that the frame start and cell headers do not arrive close together
would not have been needed. As the element was never intended to be used in this
situation, and was not originally intended to be verified, it was perfectly reasonable for
the designers not to add the extra logic. However, had it been included, the verification
would have been simplified. Because the behaviour would have been more uniform, the
formal behavioural specifications of several modules would have been simpler. Less time
would have been spent determining what the intended behaviour was. The proofs would
also have been simpler and easier to produce.

Making the change would have had other advantages too. The re-usability of the
design would have been increased. Designers of switches which used the element would
not need to worry about invalidating the assumption. Furthermore, the design would be
more fault tolerant. A rogue short cell created by a transient or design error in a port
controller would cause less damage.

It would not have been a failure for formal methods if the change had been made just
to simplify the verification. Design for testability is a well respected methodology. Design
for verifiability should be similarly respected.
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12 Conclusions

We have demonstrated that a fully machine-checked formal verification of a real piece of
communications hardware can be conducted in a time scale comparable to that required
for its original design, implementation and informal testing. This was despite the formal
specification and verification only starting after the design had been implemented, the
documentation being sketchy and the verifier having no previous knowledge of the design
or its application.

Whilst no errors were found in the implementation, problems were found in the
original versions of the formal specifications. These were corrected and the verification
completed. We now have a rigorous description of the behaviour of the element, and of all
its constituent modules. Having formally verified the implementation against it, we can
have a high degree of confidence that the element does have that behaviour, provided it
was correctly fabricated from the HDL description.

The formal specification provides a rigorous description of the behaviour of the element,
and in particular its timing behaviour. This will be of use if changes are made to the design,
and when interfacing the fabric to other components of the switch. Having formally verified
that it corresponds to the current implementation means that it can be assumed to describe
the behaviour of the element with a high degree of confidence.

We verified all modules down to the gate level. This was done to illustrate the
feasibility of such a complete formal verification. However, the hierarchical method allows
a more pragmatic approach to be taken if desired. Modules that are simple enough to
be exhaustively simulated, or for which there is already a high degree of confidence for
other reasons do not need to be formally verified. They can be taken as being basic
modules, as was done with the specifications of the logic gates. Their formal specifications
are then assumed to be correct. The formal verification of the rest can be carried out
as normal. This allows more effort to be expended on the verification of modules where
errors are thought most likely to occur. However, if this approach is taken, it must be
remembered that it is not only the implementation of the module that must be correct.
The formal specification must be an accurate description of it. As the errors discovered
in our formal specifications illustrate, errors can just as easily be made in specifications
as in implementations.

Traditional networks are designed to throw away data when congestion occurs. Thus
all that can be said about a network is that transmitted cells may or may not arrive some
time later. Complex and time-consuming protocols must then be employed to provide
a reliable service to the end-user. This may be unacceptable in asafety critical and
possibly real-time situation. However, it need not occur with an ATM network. One of
the many advantages of ATM over traditional transfer modes is the ability to provide
quality of service guarantees. That is, users of the network can request a certain amount
of bandwidth. The network grants the request only if suitable resources are available. The
appropriate bandwidth is then reserved. Critical applications can be allocated sufficient
resources in advance. If the resources are not available, this is discovered before the
problem occurs rather than after cells have been discarded. It may then be possible for
alternative arrangements to be made. It is thus theoretically possible for an ATM network
to be designednot to lose cells from the outset. In addition, large improvements have been

43




made in the reliability of transmission links, so transmission errors are increasingly rare.
Thus it may be possible for an ATM network of the future to be designed to meet even the
high standards required for safety-critical applications. Even if the network is designed
so that cell loss should not happen, errors in the implementation could still cause this to
occur in reality. If no cell loss is desired, stringent validation is required. Thus techniques
such as formal verification would be vital.

13 Further Work

The behavioural specification used in the formal verification was a byte-clock level
description. That is, cells are perceived to consist of a series of bytes. A more abstract
description would be based on the frame start clock. A cell would then be perceived
as a single atomic entity which could be switched in one high level cycle. In this
way the byte-clock timing details could be abstracted away from. Such a description
could be formal verified against the byte-level specification. Since we have verified
the implementation against the byte-level description we could then conclude that the
implementation implements the high level specification.

We have suggested that given we now possess a machine-checked proof of an
implementation of the switching element it should be possible to track further evolution
of the design within a similar time scale to that required to make the changes. A
demonstration of this claim is required.

We have verified the implementation of one part of the Fairisle switch: the switching
element. The next stages in the wider project to verify an ATM network are to verify a
larger switching fabric made of elements and to verify the port controllers of the switch.
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