
Technical Report
Number 330

Computer Laboratory

UCAM-CL-TR-330
ISSN 1476-2986

Interacting with paper
on the DigitalDesk

Pierre David Wellner

March 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 1994 Pierre David Wellner

This technical report is based on a dissertation submitted
October 1993 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Interacting with Paper on the DigitalDesk

Pierre David Wellner

Clare Hall

University of Cambridge Computer Laboratory

A dissertation submitted for the degree of Doctor of Philosophy

October, 1993

To Linda

i

Abstract

In the 1970’s Xerox PARC developed the “desktop metaphor,” which made com-
puters easy to use by making them look and act like ordinary desks and paper.
This led visionaries to predict the “paperless office” would dominate within a few
years, but the trouble with this prediction is that people like paper too much. It is
portable, tactile, universally accepted, and easier to read than a screen. Today, we
continue to use paper, and computers produce more of it than they replace.

Instead of trying to use computers to replace paper, the DigitalDesk takes the
opposite approach. It keeps the paper, but uses computers to make it more power-
ful. It provides a Computer Augmented Environment for paper.

The DigitalDesk is built around an ordinary physical desk and can be used as
such, but it has extra capabilities. A video camera is mounted above the desk,
pointing down at the work surface. This camera’s output is fed through a system
that can detect where the user is pointing, and it can read documents that are
placed on the desk. A computer-driven electronic projector is also mounted above
the desk, allowing the system to project electronic objects onto the work surface
and onto real paper documents — something that can’t be done with flat display
panels or rear-projection. The system is called DigitalDesk because it allows
pointing with the fingers.

Several applications have been prototyped on the DigitalDesk. The first was a cal-
culator where a sheet of paper such as an annual report can be placed on the desk
allowing the user to point at numbers with a finger or pen. The camera reads the
numbers off the paper, recognizes them, and enters them into the display for fur-
ther calculations. Another is a translation system which allows users to point at
unfamiliar French words to get their English definitions projected down next to
the paper. A third is a paper-based paint program (PaperPaint) that allows users to
sketch on paper using traditional tools, but also be able to select and paste these
sketches with the camera and projector to create merged paper and electronic doc-
uments. A fourth application is the DoubleDigitalDesk, which allows remote col-
leagues to “share” their desks, look at each other’s paper documents and sketch on
them remotely.

This dissertation introduces the concept of Computer Augmented Environments,
describes the DigitalDesk and applications for it, and discusses some of the key
implementation issues that need to be addressed to make this system work. It
describes a toolkit for building DigitalDesk applications, and it concludes with
some more ideas for future work.

ii

Preface

Except where otherwise stated in the text, this dissertation is the result of my own
work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any that I have submitted for a
degree or diploma or other qualification at any other university.

No part of this dissertation has already been, or is being currently submitted for
any such degree, diploma or other qualification.

This dissertation is copyright 1993 by Pierre D. Wellner.

iii

Acknowledgments

I am grateful for the generous support of Rank Xerox Cambridge EuroPARC.
This dissertation is in many ways a product of EuroPARC’s excellent and unique
work environment. I also thank the University of Cambridge Computer Labora-
tory for access to its people and facilities.

I thank my supervisor, Peter Robinson for his encouragement, insight, and sup-
port, and the many other colleagues and friends who have contributed inspiration,
help getting systems to work, and insightful comments. The following deserve
special mention: Dan Bloomberg, Stu Card, Kathy Carter, Ian Daniel, Mike
Flynn, Steve Freeman, Quentin Stafford-Fraser, Gifford Louie, Bill Gaver, Austin
Henderson, Mik Lamming, Wendy Mackay, Allan MacLean, Linda Malgeri,
Mike Molloy, Tom Moran, William Newman, Z Smith, Roy Want, Mark Weiser,
Marcel Wellner, and Alex Zbyslaw.

iv

Chapter 1

Introduction..1

The dual desk...1
Different interaction styles...2
Different functionality..2
Lack of integration...2

Aiming for the best of both..2
Computer Augmented Environments..3
Example work in computer augmented environments....................4

Ken Knowlton ..4
VideoDraw ...5
Myron Krueger ..6
Mandalla..6
Team Workstation...6
Clearboard...7
Ubiquitous computing..7
See-through head-mounted displays..7
Chameleon ...7
BrightBoard ...8
Head-up displays ...8
Consumer products ..8
Entertainment ..9

Augmenting real paper...9
Camera obscura and lucida...9
Shadow Parallax..10
Barcoding textbooks ..10
PaperWorks..10
The DigitalDesk...10

This Dissertation..11

Contents

Table of Contents

v

Chapter 2

The DigitalDesk...12

Description...12
Interaction on the desk...14
Projected Display...15
Reading Paper Documents...16

Image capture ..16
Thresholding ..16

Summary..17

Chapter 3

Example Applications..18

Working Prototypes...18
Calculator ..18
Desktop Translation...20
PaperPaint...21
PaperPaint II ...23
DoubleDigitalDesk ..23
Multi-Device DDD...25
Digital Drawing Board..25
Mosaic..25

User Experiences...26
Handedness..26
Obscuring Selections ...27

Video Simulations..27
Taking Notes ..29
A Paper Spreadsheet..31
Sketching..33

Reactions to video..37
Summary..37

Chapter 4

The DigitalDesk Toolkit.......................................38

Introduction..38
History of the toolkit..38
Architecture...39
Frame grabber interface...40
Basic image processing and pixrect support..................................41
Image identification...42
Optical character recognition...43

Evaluation..43

Window system and user interface widgets...................................44
VideoVBT ...44
SelectionVBT..44
Cut and paste between applications ..45

Pointing device interface...45
Synthesizing X events...45

Table of Contents

vi

Tout ..46
Coordinating multiple pointing devices...46

Pointing with the finger..46
Use of the toolkit..48
Summary..48

Chapter 5

Adaptive Thresholding...50

Introduction to the problem...50
Global Thresholding..51
Adaptive Thresholding..55
Adaptive thresholding based on Wall’s algorithm.........................56
Quick Adaptive Thresholding..57
Summary..64

Chapter 6

Calibration...65

Introduction to the problem...65
Calibrating the tablet to the display...66

Two point warping ...66
Four point warping..67

Calibrating the frame grabber to the display.................................69
Precisely locating a projected cross...69
Mathematical Morphology..71

Dilation ..72
Erosion...73
Opening and Closing ...73

Finding the calibration mark..74
Dynamic Calibration..77
Summary..78

Chapter 7

Future directions and conclusion.........................79

Future Directions...79
Getting rid of the tablet..79
Tivoli ..79
Real use studies..80
Pen-based computing & PenPoint...80
Electronic Annotation of paper documents80
Multiple display surfaces of arbitrary size and resolution80

Summary and conclusion...81

Table of Contents

vii

Appendix A
Modula-3 interface for Grabber..........................82

Appendix B
Modula-3 interface for Warping..........................84

Bibliography..86

Introduction - The dual desk

1

Chapter 1
Introduction

We interact with documents in two separate worlds: the electronic world of the
workstation, and the physical world of the desk. Each world has advantages and
constraints that lead us to choose one or the other for particular tasks (see Figure
1-1).*

At one time it seemed that paper might become obsolete, and visionaries pre-
dicted the “paperless office” would dominate within a few years. But the trouble
is peoplelike paper. According to some studies, paper in the office has increased
by a factor of six since 1970, and is now growing at 20% annually [Seyb92].
Like electronic documents, paper has properties that people just cannot seem to
give up, making it “resilient” in the face of computer-based alternatives
[Luff92].

The dual desk

As a result we have two desks: one for paper pushing and the other for pixel
pushing. Although activities on the two desks are often related, the two are very
separate. They have different interaction styles, different functionality, and they
are isolated from each other.

* Many of the figures in this dissertation as well as some of the text have previously been published
in [Well93b].

Figure 1-1: Electronic and paper documents.

Three dimensional,
universally accepted,
cheap, portable,
familiar, high resolu-
tion, easier to read.
Tactile, can use both
hands and fingers to
manipulate, and can
doodle on with pencil.

Quick to edit, copy,
transmit, share, file
and retrieve.
Allows keyword
searching, spell
checking, instant
calculations.

Paper documentsElectronic documents
on a virtual desk. on a real desk.

Introduction - Aiming for the best of both

2

Different interaction styles

The physical desk, paper documents, and the tools we use to manipulate them
have evolved over the course of thousands of years to match our motor and per-
ceptual abilities. The ways we physically interact with electronic documents is
limited compared with how we interact with paper, pencils, erasers, rulers, and
other traditional tools on the desk [Hews90]. When interacting with objects in
the physical world, we take advantage of natural skills developed over our life-
times. We use our fingers, arms, 3D vision, ears and kinesthetic memory to
manipulate multiple objects simultaneously, and we hardly think about how we
do this because the skills are embedded so deeply into our minds and bodies.
Workstations do not take advantage of this, so the skills and habits acquired to
master one desk are of very little use for mastering the other.

Different functionality

Paper documents have no direct access to the spellchecking, database queries,
and spreadsheet calculations available on electronic workstations. Electronic
documents, on the other hand, lack the portability, tangibility, and universal
acceptance of paper. Reading from a screen is slower than reading paper
[Fren90, Hans88], and this is particularly noticeable with longer documents. If
the two desks were better integrated, then this difference in functionality would
matter less because users could easily move back and forth between paper and
electronic media. As it stands, however, there is often a penalty for choosing the
“wrong” medium at the outset.

Lack of integration

Integration between the physical and electronic desks is limited. Printers pro-
vide a way out of the electronic desk, and scanners provide a way in. Although
desktop printers and hand-held scanners exist today, these devices are not very
interactive. Instead, they are primarily used in batch mode to move entire docu-
ments in or out of the electronic desktop. This process is inconvenient; for
example, Wang Freestyle (a classic paperless office system) was sometimes set
up to coexist with partially paper-based processes. A key factor found necessary
for successful adoption of the system was to minimize the printing and scanning
required. Too much of these tasks would cause the process to revert entirely
back to paper [Fran91].

Aiming for the best of both

Choosing to interact with a document in one world generally means forgoing
the advantages of the other. A great challenge to office system designers is to
provide the best of both, and this has long been a goal of research in human-
computer interaction.

The classic approach to this problem is represented by the “desktop metaphor,”
developed in the 1970’s [Smit82, John85, John89]. This approach allows people
to usedirect manipulation [Shne83] of virtual objects on the electronic desktop
in order to accomplish their tasks. By making electronic workstations analogous
to the physical desk, users can take advantage of their knowledge of the physical

Introduction - Computer Augmented Environments

3

world, the computer becomes more familiar, and less learning is required. This
approach has remained successful, and today electronic documents are still
gaining more and more properties of physical documents:e.g. high resolution
colour, portability, pen-based interaction,etc. (see for example [Bles88] and
[Walt89]).

Where the physical world has an advantageous property over the computer,
human computer interaction researchers tend to try and find a way of enhancing
the computer with that desired property. Not only are desktops and paper docu-
ments put into the computer, but many other things as well. This tendency, taken
to an extreme, isVirtual Reality (VR), where users abandon the real world to be
completely surrounded by the computer [Rhei91] using, for example, 3D head-
mounted displays and data gloves. Enthusiasts of this approach believe that all
constraints of the real world can be overcome in VR, and physical tools can be
made obsolete by more flexible, virtual alternatives. A weakness of data gloves
and most other computer input devices, however, is that they provide no tactile
feedback when manipulating virtual objects. This “kinesthetic contact” is an
important channel through which we experience the world [Kay91]. It is possi-
ble to construct input devices that provide tactile feedback for manipulating spe-
cific virtual objects [Broo90, Mins90, Buxt85], but this is difficult to do in
general, so kinesthetic sensations in virtual reality are usually lacking.

The rest of this chapter introduces an alternative approach that aims for the best
of both worlds:Computer Augmented Environments. It then describes some
examples of work in the area and discusses how this approach could be used to
augment paper. The rest of the dissertation describes the DigitalDesk, a com-
puter augmented environment for paper that is built around an ordinary desk
with overhead video cameras and a projector.

Computer Augmented Environments*

We live in a complex world, filled with myriad objects, tools, toys, and people.
Our lives are spent in diverse interaction with this environment. Yet, for the
most part, our computing takes place sitting in front of, and staring at, a single
glowing screen attached to an array of buttons and a mouse. Our different tasks
are assigned to homogeneous overlapping windows. From the isolation of our
workstations we try to interact with our surrounding environment, but the two
worlds have little in common. How can we escape from the computer screen
and bring these two worlds together?

One view of the future that has captured the popular imagination is Virtual Real-
ity. VR allows us to escape from the computer screen by letting us use our
whole bodies and a rich variety of (virtual) objects to interact with the computer,
replacing the physical world with a computer-generated one. The result is very
useful for purposes such as visualization and simulation, but of course, the arti-
ficial world is much simpler than the real world; it has lower resolution, leaves
out details, and is limited in its behaviour and extent. For certain kinds of enter-

* Much of this section is taken from [Well93a] (coauthored with Rich Gold and Wendy Mackay).

Introduction - Example work in computer augmented environments

4

tainment, and for tasks like learning to land an aeroplane in a blizzard, the VR
approach is invaluable. But for helping us with everyday tasks, VR — even
more than the workstation — cuts us off and excludes us from the world in
which we live, work, and play.

Another view of the future of computing is emerging that takes the opposite
approach from Virtual Reality. Instead of using computers to enclose people in
an artificial world, we can use computers to augment objects in the real world.
We can make the environment sensitive with infra-red, optical, sound, video,
heat, motion and light detectors, and we can make the environment react to peo-
ple’s needs by updating displays, activating motors, storing data, driving actua-
tors, controls and valves. With see-through displays and projectors, we can
create spaces in which everyday objects gain electronic properties without los-
ing their familiar physical properties. Computer Augmented Environments
(CAEs) merge electronic systems into the physical world instead of attempting
to replace it. Our everyday environment is an integral part of these systems; it
continues to work as expected, but with new integrated computer functionality.

Computer Augmented Environments emerge from the confluence of a number
of disciplines. Recent work has been called names such as “Ubiquitous Comput-
ing” and “Augmented Reality.” Although the technologies differ, they are
united in a common philosophy: the primacy of the physical world and the con-
struction of appropriate tools that enhance our daily activities.

Example work in computer augmented environments

Ken Knowlton

One early system that combined the flexibility of a computer-generated display
with the “tactile and kinesthetic feel” of physical buttons was developed by Ken
Knowlton at Bell Labs [Know77]. In this system, a semi-transparent mirror and
computer monitor were placed above a keyboard in such a way that computer-
generated labels appear superimposed on the physical keys (see Figure 1-2).

The labels would change to show what operations were possible from moment
to moment. The system even made it possible to perform operations on text
being edited by pressing the keys associated with the text. Although this system

Keyboard

semitransparent
mirror

computer monitor

Figure 1-2: Knowlton’s system.

Introduction - Example work in computer augmented environments

5

successfully combines the tactile buttons with screen-based graphics, it does not
augment anything except the keyboard. In Knowlton’s paper he does not men-
tion calibration as an issue, but it probably was not trivial to properly align the
graphics with the buttons.

VideoDraw

VideoDraw and VideoWhiteboard [Tang91a, Tang91b] are shared drawing sys-
tems that combine the physical and electronic in a way that provides a sort of
computer augmented environment. In both these systems, users draw on a video
screen with ordinary whiteboard pens while their marks are transmitted to their
collaborator’s screens (see Figure 1-3 and Figure 1-4). One advantage of these
systems over workstation-based shared drawing tools is that writing, erasing,
and drawing different colours uses the same “interaction techniques” and “input
devices” as an ordinary physical whiteboard. The system adds electronic func-
tionality in a way that is compatible with a real whiteboard.

There are two problems with these systems, however. One is the difficulty in
setting them up. It takes a lot of fiddling about to get the cameras calibrated with
the monitors or projectors in such a way that images are aligned properly and
video feedback is tolerable, then once set up they cannot be moved. Another
restriction is that although the pens are standard, the writing surface is not. It is

Figure 1-3: VideoDraw

Figure 1-4: VideoWhiteboard

camera

tv screen

rear projection screen

projector

camera

Introduction - Example work in computer augmented environments

6

impossible to use of an ordinary whiteboard, and it is impossible to share and
draw on ordinary paper documents.

Myron Krueger

Myron Krueger is one of the pioneers of virtual reality, having done his work in
the 70’s and early 80’s before VR became trendy. His philosophy has always
been more akin to that of Computer Augmented Environments rather than the
completely immersing VR, but his priority is creating works of art more than
creating useful tools. He likes to say he hates being “encumbered” by devices.
He will not wear a wrist watch, let alone such devices as data gloves and head-
mounted displays (HMDs), so his systems rely on sensors such as video cam-
eras that users do not have to wear. He calls his field “Artificial Reality”
[Krue83, Krue91], and probably his most important work is VIDEOPLACE
[Krue85]. In this environment “participants” (Krueger uses this term instead of
“users”) can see a real-time coloured outline of their bodies on a video screen,
along with other objects with which they can interact. These other objects can
be computer generated, or they can be the outlines of other people’s bodies or
hands that may be located at another site. In some versions of VIDEOPLACE,
one participant’s body is shrunk to a tiny size relative to the other, and swung
from a thread hanging on another participant’s finger. This allows the finger to
swing and even throw the tiny person. An animated creature called “critter”
crawls along the edge of a participant, and climbing to the top where it “does a
little jig of celebration.” Krueger has also made a desk-based version of this
environment (called VIDEODESK) with which a participant can interact with
objects on the screen with the silhouettes of his or her hands and fingers.

Although users are unencumbered in VIDEOPLACE, interaction does not truly
happen in the “real” world. Users see their silhouettes interact with virtual
objects on the screen rather than truly interacting with real world devices and
objects such as paper.

Mandalla

The Mandalla system [Vinc90] is essentially a commercial version of VIDEO-
PLACE, but simpler. A number of active areas can be defined on a video scene,
and the user can touch them with his or her silhouette to trigger programmable
events of various types. One popular way to use it is to control a MIDI synthe-
sizer. This makes an impressive performance instrument, because it combines a
video show with music and a form of dancing.

Team Workstation

The TeamWorkStation [Ishi91] is another example of a system that “fuses” the
physical and electronic desks. It combines computer-generated images with
video images of the physical desk, and like the DigitalDesk, one of its goals is to
remove the “seam” between traditional and electronic media. With this system,
a calligraphy instructor can draw using real brushes and paint, and the work
appears on a video monitor superimposed with the computer-generated work of
a student. This system, therefore merges the real and virtual worlds in the (vir-
tual) screen rather than on the (real) desk.

Introduction - Example work in computer augmented environments

7

Clearboard

The Clearboard systems (versions 0 - 3) are all based on the metaphor of two
people talking to each other through a clear class board where they can see each
other and both draw on the glass with markers [Ishi92]. There is a video-only
version of Clearboard that uses ordinary markers and erasers, and there is a dig-
ital version of Clearboard that uses digitizing pens and a computer-based shared
drawing tool. Like VideoWhiteboard, Clearboard-2 allows the use of traditional
drawing tools, but it has the additional advantage of allowing eye contact and
“gaze awareness.” It does not, however, support the use of real paper.

Ubiquitous computing

Ubiquitous computing (or “ubicomp”) makes computers of all size and shapes
available to people throughout their physical environment [Weis91, Weis93].
Mark Weiser has decided to pursue this vision through devices of three sizes:
inch, foot and yard, so he describes how an office of the future will be filled with
“tabs, pads and boards.” Tabs are palm-sized computers with a touch-sensitive
display that can be brought with you everywhere, and they are connected to the
greater computing infrastructure through infra-red communication. Pads are
similar devices but notebook-sized, pen-based, X Windows compatible, and
connected by radio communication. LiveBoards [Elro92] are like workstations
with huge displays the size of whiteboards. They use untethered infra-red pens
and run special drawing software for meeting support [Pede93].

This vision of ubiquitous computing has influenced a great number of research
projects at Xerox PARC. The work described in this dissertation has also been
influenced by this vision, but it is worth mentioning how it differs. Ubicomp is
an approach to Computer Augmented Environments that is centred on creating
new electronic devices of all shapes and sizes. The approach taken by the Digi-
talDesk, in contrast, is about augmentingexisting traditional tools — in particu-
lar the desk and paper documents. Ubicomp envisages an office full of hundreds
of electronic tabs, pads and boards. The approach represented by the Digi-
talDesk aims toaugment the existing post-it notes, paper notebooks, and white-
boards instead of replacing them by electronic equivalents.

See-through head-mounted displays

Ivan Sutherland’s pioneering research on head-mounted displays (HMDs)
inspired current virtual reality systems, but his first HMD was a see-through
system [Suth68]. Each eye viewed a miniature vector CRT, whose synthesized
graphics were merged with the user’s view of the real world by means of a beam
splitter. More recently, graphics researchers at University of North Carolina
have used non-see-through displays combined with video cameras to create “see
through” HMDs [Baju92]. One application of this display is to allow a doctor to
view the sonogram of a foetus in context of the woman’s abdomen. Another
approach, taken by the KARMA [Fein93], system is to use the Private Eye
[Refl92] to present 3D objects in alignment with real world objects.

Chameleon

Yet another approach to augmenting the physical world is through a small palm-
top computer that can precisely sense its position and orientation in 3D space.
George Fitzmaurice at the University of Toronto has developed a prototype

Introduction - Example work in computer augmented environments

8

which can act as a window on what he calls a “3D-situated information space”
[Fitz93]. The user of such a system can leave electronic objects anywhere in the
physical world: along the edge of book cases, by a wall-mounted map or near
various pieces of equipment. These objects are always present but normally
invisible. To see and access them, one simply needs to move the palm-top dis-
play to their locations.

His prototype is implemented with a tiny video screen attached to an Ascension
Bird [Asce92] which provides precise six degrees of freedom tracking within a
three foot cube. The screen shows the image from a video camera pointed at an
SGI workstation monitor, so all the intelligence and 3D computer graphics hap-
pens in on the SGI instead of in the palmtop display. In principle, however, the
technology necessary to implement a wireless version of this idea is not that far
off. Accurate large-area tracking technology, for example is described in
[Azum93].

BrightBoard

BrightBoard [Staf93] is a computer augmented whiteboard. Instead of replacing
the whiteboard with a computer-based system, BrightBoard is based on an ordi-
nary whiteboard and can be used as such, but a video camera is pointed at the
board and allows certain zones on the board to trigger actions on a computer.
This work was partially inspired by the DigitalDesk and makes use of the Digi-
talDesk Toolkit.

Head-up displays

Head-up displays (HUDs) are commonly used in aeroplanes to allow pilots to
see computer-generated information without needing to look down at the con-
trol panel [Wein92]. Usually the information displayed is not calibrated to be
superimposed on the world outside. This is possible, however, and done in some
cases (e.g. runway approaches).

Consumer products

Although not so well recognized within the computer science research commu-
nity, there is a strong trend in consumer electronics now to include microproces-
sors in a wide range of every-day products. As we interact with our cars,
watches, stereos, and telephones, for example, we are controlling sophisticated
computer systems, but the interaction techniques we use are often exactly the
same as those we used with older non-computerized technology. In most cases
these devices do not yet communicate with each other except in specially built
environments such as cars and aeroplane cockpits. Soon our houses will provide
ways for various appliances and products to communicate with each other
(descendents of the X-10 protocol for example [Pina93]), and some of today’s
home security systems could be considered computer augmented environments.
Many toys now use computers — not just video games. Some dolls have micro-
processors in them to play recorded speech, and many toys play sampled sounds
when you interact with them. Research at MIT with communicating program-
mable lego-style “bricks” [Resn93] give insight on what to expect toys to be
like in a few years.

Introduction - Augmenting real paper

9

Entertainment

Also somewhat outside the research community is a long history of using tech-
nology to create augmented environments for artistic or entertainment purposes,
starting right back with the earliest shadow plays through to current theatre and
laser light shows. One very spectacular (truly multi-media) computer aug-
mented show in regular use is at Disneyworld. The “Fantasia” show happens
several times a night and includes films projected onto spraying sheets of water,
music and speech coming from dozens of sources, animatronic characters of
multiple shapes and sizes, fog, boats, explosions, fireworks, sheets of fire on
pools of water and live actors just to mention some of the elements that are all
synchronized by a sophisticated computer control system.

Augmenting real paper

Trade-offs between electronic and paper documents can make the choice of
medium difficult, but imagine if we did not have to choose, and we had a space
where documents could be both paper and electronic at the same time. Instead
of putting the user in the virtual world of the computer, we could do the oppo-
site: add the computer to the real world of the user and create a Computer Aug-
mented Environment for paper. Instead of replacing paper with computers, we
could enhance paper with computation. This has already started to happen in a
limited way through the use of barcodes and the Xerox PaperWorks product.

Camera obscura and lucida

Probably the oldest technology for augmenting ordinary paper are the camera
obscura and camera lucida [Hamm87]. These devices are optical, and did not
make use of computer technology, but they both were used to superimpose
images onto paper for the purpose of helping the user sketch this image in
proper proportion and perspective (see Figure 1-5).*

* William Wollaston, who invented the camera lucida in 1807, was a fellow of Caius College at the
University of Cambridge. His original wooden model is now in the Whipple Museum of the His-
tory of Science, less than a hundred metres away from the Computer Laboratory.

”

Figure 1-5: Two basic types of camera lucida.

subject

semi-transparent
mirror

mirror

subject

“see through” “split pupil”

four-sided prism

Introduction - Augmenting real paper

10

Shadow Parallax

The patent search for DigitalDesk uncovered a technique patented by IBM
[Edga84] for projecting an image and detecting a pointing device that uses a
double flying spot scanner made up from a projected CRT display and two pho-
tocells (see Figure 1-6).Two images from different perspectives taken by video

cameras are difficult to register for the purpose of calculating parallax, but the
pixels of images produced from the photocells are perfectly registered by the
flying-spot scanning technique, making it easy to use parallax on the shadow of
the pen to detect when it makes contact with the projection surface. Aside from
the patent, nothing else seems to have been published about this system, so it is
unclear whether it actually worked. The patent does not mention any working
prototype applications, but in it, Edgar does mention the fact that this system
could be used to augment ordinary paper.

Barcoding textbooks

One way to enhance paper documents with computer functionality is the tech-
nique of barcoding text books [Mill91]. This allows a reader to scan a barcode
with a laser wand and automatically play a particular track in a videodisk
recording.

PaperWorks

The Xerox PaperWorks product [John93, Xero92] also augments ordinary paper
with computer functionality, with its fax-based paper user interface to a storage
and retrieval system. With this system, ordinary paper forms are enhanced to
control a PC through a fax machine. The forms are recognized by means of a
“glyph” (a sort of 2-dimensional very dense bar code) [Hech90, Bloo90b,
Schr92], and pre-defined areas on the page are examined to see if they have
been check marked by the user, and handwritten tables can also be lifted off the
page and used as file names. These paper documents gain some important prop-
erties of electronic documents, but fax machines are slow compared to computer
screens. Response time is limited by the delay it takes to scan and print a page,
so this limits the range of interaction techniques possible.

The DigitalDesk

Another way to enhance paper with computation is to do the opposite of the
desktop metaphor. Instead of making the workstation more like a desk, we can

CRT “flying spot” projector

photocell photocell

projection surface (could be paper)
Figure 1-6: Edgar’s shadow parallax system.

Introduction - This Dissertation

11

make the desk more like a workstation. This is the aim of the DigitalDesk. On
this desk, papers gain electronic properties, and electronic objects gain physical
properties. Rather than shifting more functions from the desk to the workstation,
it shifts them from the workstation back onto the desk.

This Dissertation

The following chapter (Chapter 2) describes the DigitalDesk, its important char-
acteristics, and gives an overview of how it is implemented. Chapter 3 describes
a set of novel applications enabled by the DigitalDesk. Many of these have been
prototyped and tested, while others were simulated in video. Chapter 4
describes the DigitalDesk Toolkit which was used to build the prototype appli-
cations. Most major components of the toolkit are described here except for
thresholding, which is the subject of Chapter 5, and calibration, which is the
subject of Chapter 6. These two components of the toolkit are discussed in
greater depth because their implementation is not obvious, and anyone who may
want to build a DigitalDesk will need to solve the same problems. Chapter 7
ends the dissertation with suggestions for future work and a conclusion.

The DigitalDesk - Description

12

Chapter 2
The DigitalDesk

Description

The DigitalDesk is a real physical desk on which you can stack your papers, lay
out your favourite pencils and markers, and leave your coffee cup, but it is
enhanced to provide some characteristics of an electronic workstation. A com-
puter display is projected onto the desk, and video cameras pointed down at the
desk feed an image processing system that can sense what the user is doing (see
Figure 2-1 and Figure 2-2). No desktop metaphor is needed because it isliter-
ally a desktop.

The DigitalDesk has the following three important characteristics:

• it responds to interaction with pens or bare fingers (henceDigitalDesk),
• it projects electronic images onto the desk and onto paper documents, and
• it can scan and recognize paper documents placed on the desk.

The following sections briefly discuss some of the implementation issues due to
these three characteristics along with strategies for addressing them. Further dis-
cussion of implementation can be found in Chapter 4: The DigitalDesk Toolkit.

Figure 2-1: Schematic diagram of a DigitalDesk.

electronic document

paper document

computer and image
processing system

DigitalDesk

Camera(s)Projector

Optional digitizing
tablet and pen

The DigitalDesk - Description

13

Figure 2-2: The first DigitalDesk prototype was
cobbled together from an 1120 x 780 “ScratchPad,”

display, an overhead projector, some spare video
cameras, a cooling fan, polarizing filter, cardboard, and

a lot of tape. Slicker versions based on commercial
computer projection units have since been built.

The DigitalDesk - Interaction on the desk

14

Interaction on the desk

One aim of the DigitalDesk is to go beyond so called “direct manipulation” with
a mouse (which in fact is not direct at all) and to explore the possibilities of
“tactile interaction” with real and electronic objects using the fingers. The Digi-
talDesk merges paper and electronic documents not only by adding electronic
properties to paper documents, but also by adding physical properties to elec-
tronic documents. We use pens and fingers to interact directly with paper on our
desks, so we should be able to interact with electronic documents on the Digi-
talDesk in the same way.

One way of interacting with electronic objects with bare fingers is through
video-based finger tracking. For some applications, obscuration of fingers by
other fingers or parts of the body can be a problem [Stur91], but with desk work
this does not seem to be a significant difficulty because the hands have a limited
range of motion and they mostly remain in a two-dimensional plane. Pointing
out things to the computer is much like pointing them out to another person, so
it is easy for users to learn not to cover the object being pointed to. A bare finger
is too thick, however, to indicate small objects such as a single letter, so the user
must also be able to point precisely with a pen or other thin object.

A wide range of interaction techniques are possible using video-based finger
tracking, as demonstrated, for example, by Myron Krueger [Krue91]. His sys-
tem as well as the Mandalla system [Vinc90], rely on the hands being viewed
against a plain background in order to make them easier to distinguish. Unfortu-
nately, this is impossible on a DigitalDesk because there are various paper docu-
ments, pens and pencils present in addition to the user’s hands. It is difficult to
distinguish these objects from fingers and pointers by shape only. A more effec-
tive strategy is to look for motion, assuming that most objects seen on the desk
do not move except the user’s hands and the objects they are holding. An effec-
tive way to pick out moving objects from the background is to capture succes-
sive frames and to examine the image produced by subtracting successive
values of each pixel in the two frames. The result, when applied to images of a
moving hand, for example, is shown in Figure 2-3. This is a better image to start
from than the original cluttered image, but further processing is required to
remove noise and to locate the precise position of the fingertips. In the future,
more sophisticated techniques will be necessary to track multiple fingers and to
recognize gestures (see for example the finger and hand gesture recognition
work in [Magg93] and [Sege93]).

Determining when users tap on the desk is difficult when only processing
images from the overhead camera. One potential solution to this problem may
be to use shadow parallax as described in Chapter 1 and in [Edga84]. Another
(used for the calculator application described later in Chapter 3) is to detect fin-
ger taps in the same way a person might: by listening. A microphone is attached
to the bottom of the desk and the system monitors the signal’s amplitude to
determine when the user taps on the desk. This technique works well, but some-
times it confuses other taps, bumps on the desk, or hand claps with a finger tap.
Another way to detect tapping is to use a pressure-sensitive mat. Unlike the
microphone, it can provide dragging information as well as extra location data.
A problem with desk-based touch screens, however (named the “Midas Effect”

The DigitalDesk - Projected Display

15

by Steve Freeman), is that users tend to rest their hands on it and everything
touched can be interpreted as input.

Projected Display

Having discussed issues on the input side of desk top interaction, we turn now
to output: the projected display. Projection from above provides similar capabil-
ities to a large flat display screen and faces the same sizevs. resolution trade-off,
but it has the key advantage that computer-generated images can be superim-
posed onto paper documents. This is necessary for creating merged paper and
electronic documents, and for providing feedback when making selections on
paper. Overhead projection, however, does have some problems. One potential
problem is shadows; it is not possible, for example, to lean down to look at a
projected image too closely. In practice, however, shadows are hardly noticed
when the projector is mounted above a horizontal desk (see section onUser
Experiences on page 26), but special measures must be taken to avoid shadow
problems on a nearly vertical surface such as the Digital Drawing Board
[Cart93].

Another issue with projection is the brightness of the room. The projectors used
in these experiments work quite well with normal fluorescent lights, but a bright
desk lamp or direct sunlight can make the display unreadable, so this may limit
the desk’s usability in some settings. One last problem with projection is that
not all surfaces make good screens. The projection area should be white in order
to see images most clearly, and some executives may be reluctant to hide their
polished mahogany under a piece of paper or other screen.

Figure 2-3: The difference
between two frames in which

the finger has moved.

The DigitalDesk - Reading Paper Documents

16

Reading Paper Documents

For the DigitalDesk to read selected portions of paper documents the following
steps are necessary: image capture, thresholding, and (in the case of text) char-
acter recognition.

Image capture

Document images are captured through an overhead video camera, but a diffi-
culty with standard video cameras is their low resolution compared to scanners.
One way to solve this problem, used by the Marcel document recognition sys-
tem [Newm92], is to pre-scan documents at high resolution and then use the low
resolution camera image to look up the corresponding scanned image. Pre-scan-
ning is inconvenient for many interactive applications, however, so most of the
prototypes described in this dissertation instead use two cameras, one of which
is zoomed in close to the desk to obtain a high resolution image (about 200 spots
per inch). This means that only a portion of the desk is used for capturing docu-
ment images in high resolution, so a window is projected onto the desk to indi-
cate the active area to the user. More cameras could easily be added to cover the
whole desk, but this has not yet been necessary, because the applications tried so
far only use small parts of a document at a time, and sliding a piece of paper into
the camera’s window is so easy. In the long run, higher resolution video cam-
eras, high definition television, and advances in low cost, integrated digital cam-
eras will make this approach more economical.

Thresholding

The image produced from a video camera and frame grabber is grey-scale (typi-
cally eight bits-per-pixel), even when it represents a white sheet of paper with
black ink. This grey-scale image must be thresholded, or converted to a one bit-
per-pixel black and white image before it can be used for character recognition
or any of the other example applications described above.

Simple global thresholding is not adequate for obtaining an image suitable for
character recognition. In normal office lighting, the range of brightness on dif-
ferent parts of the desk varies greatly, so a global threshold creates large patches
of black and white with indistinguishable text. In order to make a good one-bit-
per-pixel image of a black and white document, the system must use an adaptive
thresholding algorithm which varies the threshold value across the image
according to its background value at each pixel. Some adaptive thresholding
algorithms produce very good results but require more than one pass through
the image, and are too slow to support user interaction. It is possible to get
nearly as good a result in a single pass, however, by calculating the threshold
value at each point from an estimate of the background illumination based on a
moving average of local pixel intensities (seeAdaptive Thresholding section in
Chapter 5). This method is fast and can also be combined with a scaling opera-
tion if necessary.

Finally, when dealing with text, the thresholded image is skew-corrected and
recognized by an optical character recognition (OCR) server (e.g. Xerox Imag-
ing System’s ScanWorX [XIS93]). If the resolution is high enough relative to
the text size, then it returns the associated ASCII string. Because this process is
not guaranteed to be accurate, it is important to provide both quick feedback and

The DigitalDesk - Summary

17

a simple way for the user to correct unrecognized characters (as in the calculator
example below).

Summary

This chapter has given an overall description of the DigitalDesk and briefly
described some of its implementation issues. The next chapter discusses appli-
cations that can be built on this desk, then subsequent chapters describe key
implementation issues in more detail.

Example Applications - Working Prototypes

18

Chapter 3
Example Applications

The DigitalDesk provides a Computer Augmented Environment in which paper
gains electronic properties that allow it to overcome some of its physical limita-
tions. This chapter explores the range of applications made possible by the Dig-
italDesk. It begins by describing a set of working prototypes, implemented to
varying levels of robustness. It describes some of the user experience and feed-
back from the prototypes that were tested on relatively naive users, and finally,
it describes some video envisionments that were not fully implemented but sim-
ulated up in video. The simulations proved extremely useful to obtain feedback
and criticism of the ideas, and to help decide which aspects of the DigitalDesk
seemed most promising to pursue in the short term.

Working Prototypes

Many different ways to enhance ordinary paper documents are possible on this
desk. The following subsections describe four working prototype applications: a
calculator, PaperPaint, a French to English translation system, and the Dou-
bleDigitalDesk. Two more applications (Mosaic and Digital Drafting Table) are
also discussed; these were implemented by other researchers using DigitalDesk
ideas and the DigitalDesk Toolkit.

Calculator

The calculator is a simple and familiar application that can benefit from the Dig-
italDesk, and it was the first prototype implemented on the desk to prove feasi-
bility of the concept. People using calculators often enter numbers that are
already printed on a piece of paper lying on the desk, and they must copy the
numbers manually into the calculator in order to perform arithmetic on them.
Transcribing these numbers can constitute a large proportion of the keystrokes
when using a calculator, and a large proportion of the errors.

The DigitalDesk Calculator (previously described in [Well91]) addresses this
problem by providing another means of entering numbers. It allows people to
place ordinary paper documents on the desk and simply point at a printed num-
ber to enter it into the calculator. In the working prototype, users can point with
a pen or bare finger, and a rectangle is projected in front of the finger to indicate
which number is selected. When the user taps, the system reads this number
with a camera, recognizes the digits, and treats them as though they had been

Example Applications - Working Prototypes

19

typed into the calculator (See Figure 3-1). Users can then do an operation on the
number such as add it to others on the paper, or multiply it.

This example application shows how a paper document can become more like
an electronic document by allowing selection of numbers for calculation. Of
course, it is also possible to scan a paper receipt or annual report through an
optical character recognition (OCR) program to convert the entire paper docu-
ment to electronic form, but this is a less interactive, more batch-oriented pro-
cess, and the resulting electronic document has lost all physical properties of the
original. The purpose of the DigitalDesk is not to convert paper into electronic
documents; its purpose is to support rapid and direct computer-based interaction
with selected regions of paper documents.

In this prototype, numbers are entered into a projected calculator tool, but it
would also be possible to use a physical calculator that was connected to the
DigitalDesk by wire or infra-red. Another possibility is to leave out the calcula-
tor, and project results back onto the paper. A “paper spreadsheet” could be
designed on which pen-based interaction techniques would operate in the same

Figure 3-1: (Calculator) This photograph was taken just
after the user selected the number 4834 on a piece of paper
and the number was recognized and put into the projected

calculator as though it had been typed.

Example Applications - Working Prototypes

20

way on both ink and projected numbers (See the section below on video simula-
tions or [Well92] for a video of how this and other possible applications might
work).

The system uses image differencing to follow the finger or pen, and it detects
taps by listening with a microphone attached under the desk. The smaller win-
dow that is visible in Figure 3-1 shows the field of view of the high-resolution
camera used for OCR, while the camera used for finger following covers the
entire desk surface. The OCR used in this case is not yet the ScanWorX system,
but a crude single-fount recognizer that is built into the application. Notice also
the projected rectangle that follows the tip of the user’s finger to indicate the
number selected.

Desktop Translation*

Another example of an application that can benefit from this desk is foreign lan-
guage translation. Looking up words in a dictionary can take up a substantial
amount of a reader’s time when reading documents in a foreign language. The
time spent looking up words also makes it more difficult to remember the con-
text of the word or the passage. Some readers find this delay so disruptive to
their reading that they prefer to read on despite the presence of many unknown
words.

With William Newman, a system was implemented in which French documents
can be read at a desk in their paper form and the user can simply point at
unknown words. The system extracts the root of the word, looks it up in a
French-to-English dictionary and displays the definitions in an electronic win-
dow projected onto the desk, allowing the user to point to the location where the
translation should be placed on the desk (see Figure 3-2). Any number of words

* This application was featured on the BBC television program Tomorrow’s World on 29 January,
1992.

Figure 3-2:Translation on the DigitalDesk.

Step 1:
User points at unknown word.

bureau [N]:study
bureau [N]:section, division, department, unit
bureau [N]:bureau, agency
bureau [N]:office, business premises
bureau de redaction [N]:main office, head office, head-

Papier en
Français . . .

bureau

document [N]:act, deed, document, record, legal instrument, paper

document justificatif [N]:proof, exhibit

Definition from previous interaction:

 Step 2: User points at where to project (electronic) definition.

➀

➁

Example Applications - Working Prototypes

21

can be looked up, and the user can slide the windows around on the desk or
remove them when they are no longer needed.

From an interaction point of view, this translation application could be consid-
ered very similar to the calculator application. Both support selection of text on
a paper document, performing an electronic operation on the recognized text,
and getting the result projected back down on the DigitalDesk. From an imple-
mentation point of view, however, the two applications use very different strate-
gies. The calculator does the OCR on the actual image that it gets from the
zoomed-in camera. The translator, however, uses a pre-scanned image of the
paper document which is OCRed ahead of time. William Newman’s Marcel sys-
tem [Newm92] uses the low resolution image it gets from the overhead camera
to recognize which of the pre-scanned images it corresponds to. It uses the
shape of text margins, gaps between paragraphs and gaps between words to rec-
ognize documents in a resolution-independent way. This means the camera does
not need to be zoomed in close to the desk, and the single wide-angle view of
the desk can be sufficient to access the finest details of recognized pre-scanned
documents. In principle Marcel does not have to be limited to pre-scanned
images. It could also recognize documents that originated from within the com-
puter system, or any document that has been through a fax machine recently, or
a digital copier. The current version of Marcel makes assumptions about how a
page looks; it assumes a single column of pure text, so many typical documents
cannot be recognized. In principle, however, this is not a fundamental limita-
tion. A more general-purpose resolution-independent representation of docu-
ment images could be developed which could be very useful to DigitalDesk
applications.

There is a fundamental restriction to relying purely on the Marcel approach,
however. Any paper document must be scanned or somehow entered into Mar-
cel’s database at high resolution before it can be used on the DigitalDesk. In
some cases, users might feel that if a document is in the workstation anyway,
why not just use it there instead of in its paper form. The interaction necessary
to scan a piece of paper into the workstation eliminates many of the advantages
of the overhead camera. For small bits of text or numbers, it will often be much
more convenient to be able to simply put the paper on the desk and point at the
text without first having to scan the page in. Also a sketching application like
the one described in the next section would be awkward to use if it relied on this
approach. It is much better for users if they can immediately interact with the
sketches they make on paper without needing to make an explicit scanning step.

PaperPaint

Although “select and paste” is now a standard feature of electronic documents,
the same operation is awkward to perform with real paper, requiring a photo-
copier, scissors, and some glue or tape. The DigitalDesk, however, makes it pos-
sible to select and paste paper documents in the same way that we select and
paste electronic documents. A simple paint program has been implemented
(PaperPaint) in which a sketch on paper can be electronically selected by

Example Applications - Working Prototypes

22

sweeping out an area of the paper with a stylus; the projector displays a rectan-
gle on the paper to indicate what is selected (see Figure 3-3).

When the stylus is raised, the system snaps a picture, and the projected rectangle
is replaced by a thresholded electronic copy of the area. This copy can then be
moved about and copied to other parts of the paper. Sliding this electronic copy
over the drawing to place it somewhere else is very similar to sliding a paper
copy (see Figure 3-4). This application allows users to construct a mixed paper

Figure 3-3: The user selects
the hand-drawn sketch of the

window with the digitizing
pen, and the projector

displays a rectangle for
feedback.

Figure 3-4: (PaperPaint) This user has made
two copies of the window to layout the facade.
Now he is about to move a copy of the flower

that he drew.

Example Applications - Working Prototypes

23

and electronic drawing. Currently, the system cannot move the projected image
to follow the paper when it moves, so users must keep the paper still. A com-
bined scanner/printer (not yet implemented, but simulated in the video) would
be necessary to make the projected marks permanent and allow users to take the
merged document away. Even without such a printer, the system could be made
to recognize papers whenever they are placed on the desk (using a system such
as Marcel) and fill in the appropriate electronic parts.

User testing of PaperPaint revealed another (unexpected) way of using this tool
which is also very powerful. Instead of constructing a mixed paper and pro-
jected drawing, some users noticed they could construct a purely projected
drawing from selected portions of their paper sketches. They can sketch a figure
on paper, move it and rotate it to the desired location in the projected drawing,
then select it so that it remains “pasted down” in that location after moving the
paper away. The effect is like that of dry-transfer lettering or rubber stamping,
but from any piece of paper onto projected electronic drawings. This encourages
the use of hand-sketched or printed templates ofpaper-based “clip art” that can
be naturally placed and rotated into position with the fingertips. This interaction
technique is quite different from the standard “select and paste” found on most
workstations and takes advantage of unique qualities of the DigitalDesk: using
both hands for manipulating and pointing as well as the superimposition of
paper and electronic objects.

PaperPaint II

Although PaperPaint has features unavailable anywhere else (e.g. the ability to
electronically paste down and copy selected areas of paper documents), it lacks
most of the features commonly found in traditional paint tools (e.g. electronic
sketching with lines of various thickness). Lionel Lopez-Welsch has taken the
PaperPaint code and enhanced it to provide many of these basic features. His
system, PaperPaint II [Lope93], allows sketching with projected ink using the
digitizing stylus, selective deleting of copied objects, or-ing selected images
into the background instead of always having them overwrite the background as
in PaperPaint, inverting bitmaps, flipping them from left to right or top to bot-
tom, etc. These types of features are, of course, important reasons why users
would be motivated to use a tool like PaperPaint. A proper version would have
all the features of programs such as MacDraw and MacPaint, but provide this
seamless access to real paper sketches, potentially giving users the best of both
worlds.

DoubleDigitalDesk

People often use documents when working together, and they often need to
simultaneously see and modify these documents. Two people on separate conti-
nents cannot normally write on, point at, or otherwise manipulate the same
paper document, but this is another constraint of physical paper than can be
addressed by the DigitalDesk.

Shared editing of documents has been the focus of a number of research projects
(see [Olso90], [Ishi92] and [Minn91] for examples). Most of this work has con-
centrated on screen-based documents, but the DoubleDigitalDesk makes it pos-
sible to share real paper documents. It allows users in two separate locations to

Example Applications - Working Prototypes

24

“share” their physical desks, both seeing, editing and writing on each other’s
paper documents.

In this application, each DigitalDesk continuously grabs images from its local
desk and projects scaled, thresholded images from the remote desk. The result is
that both users see what is on both desks. When a paper document is placed on
desk A, its image is projected onto desk B andvice versa. The projections are
digitally scaled and positioned to provide the same view to each participant.
This is possible because each desk is first calibrated using the techniques
described in Chapter 6. The contrast and ambient light is adjusted so that feed-
back (the image of your own desk transmitted back from the remote desk) is
minimized. Both users can draw with a real pen on both paper and electronic
documents, and the other user will see these marks appear in the corresponding
places. Hand motions are also transmitted, enabling users to see each other point
to certain areas on the documents (see Figure 3-5). The partner’s hands block

the view of what’s underneath them, just as with an ordinary desk, so this must
be dealt with through social protocols and speech. Not pictured in the figure is
an audio link through telephones or speakerphones. Another useful addition is a
face-to-face audio-video link through, for example, the EuroPARC RAVE sys-
tem [Gave92].

Figure 3-5: (DoubleDigitalDesk) The local
user is drawing on paper with real ink, while
the remote user’s paper and hand can be seen

having just finished drawing an “O.”

Example Applications - Working Prototypes

25

This system could scale up to support three or more shared desks by “or-ing” all
the remote thresholded images together, or by displaying each desk’s image in a
different colour. Of course, as more people share the space, participants will
need to be more careful not to interfere with each other’s documents and writ-
ing.

DDD has an important advantage over some of the other DigitalDesk applica-
tions in terms of possible commercial value. The extra expense of the Digi-
talDesk hardware is much easier to justify if it can be used instead of making
aeroplane trips. It only takes a few plane tickets, rental cars and hotel rooms
before you’ve paid for a couple of DigitalDesks.

The implementation of DDD as described above could be implemented purely
with analog hardware, and the performance would be much better. Precise cali-
bration, positioning, and scaling (the trickiest parts of this implementation)
could be done with high quality optics, but keystoning could be hard to handle,
and it would require a much more time consuming setup that is awkward to
change (as in VideoDraw and VideoWhiteboard [Tang91]). Analog hardware
would not handle projectors of varying sizes and resolutions so easily, and con-
necting more than two sites would be more complicated.

Multi-Device DDD

Another way the computers can add value to this system, however, is by allow-
ing users to share the capabilities of PaperPaint. A shared version of PaperPaint
would not only allow sharing of paper documents, but it would also provide an
electronic shared drawing tool. For this, support for multiple remote input
devices is necessary, and Steve Freeman has extended the basic DDD system to
support this [Free93]. Another important reason to support multiple pointing
devices on the DigitalDesk is so that multiple uses at asingledesk can easily
use it to share applications such as drawing programs or outliners.

Digital Drawing Board

Kathy Carter has applied the ideas of the DigitalDesk to a very large, drafting-
table-sized surface. Architects, map-makers, electrical engineers and industrial
designers, for example, all need large surfaces on which to sketch their ideas
and refer to blueprints and other drawings. The Digital Drawing Board [Cart93]
provides this environment with a colour projector. A prototype application grabs
images that the designer sketches, and uses them as texture maps for rendering
the surfaces on solids of revolution. Designers, such as glass engravers often
find it difficult to visualize how their sketches will look when placed on a three-
dimensional solid. This tool shows how they could very quickly get from their
paper sketches to a three-dimensional image of the final result, all in their pre-
ferred working environment.

Mosaic

Another application of the DigitalDesk is being explored by Wendy Mackay.
The initial Mosaic application [Mack93] is designed to support video producers
who use a combination of video-editing equipment and paper storyboards to
manage the development of their videos. A storyboard consists of a set of ele-
ments, each containing a sketch or image of the “best frame” of the video, asso-
ciated text, and notes that describe the action. Storyboards provide an efficient

Example Applications - User Experiences

26

way to sketch action sequences and develop “what-if” scenarios. They are flexi-
ble, portable, and easily annotated. The designer can lay out a large number of
storyboard elements and view multiple alternatives at the same time.

Normally there is no easy way to associate the off-line storyboard with the
video that has been created on-line, so producers must move to a completely dif-
ferent system to view and edit the moving video. Mosaic, however, uses the
DigitalDesk to provide a new interface that combines the benefits of paper
story-boards with computer-controlled video. The producer can lay out the
paper storyboards in any order, the video camera recognizes them, and the video
clips (digitally stored on optical disk) are reorganized accordingly and immedi-
ately shown at the desk.

User Experiences

Although no formal experiments have been conducted with the DigitalDesk, a
number of people have performed tasks on it using these prototypes, and their
reactions were noted. All subjects had used traditional workstations or PCs
before, and they all said they found the desk generally comfortable and natural
to work with. One unexpected result of the tests was that no one was bothered
by the projection system and the shadows cast by hands and other objects. In
fact, after using the desk for almost fifteen minutes, one user asked if it was
made of glass and looked under it to see where the display was coming from! It
may be that people are so used to the shadows cast by overhead lights and desk
lamps that these types of shadows are hardly noticed. At the end of each session,
subjects were asked how they felt about using the desk compared to a traditional
workstation. Their overall reaction was that it was quite similar, but they com-
mented specifically that they had “more space,” it was “more healthy than a
screen,” “easier on the eyes,” and “more manual.”

Handedness

Unlike on a traditional workstation, user interfaces on the DigitalDesk must take
account of handedness. If feedback is projected to the lower left of the pointer,
for example, then a right-handed person has no trouble seeing it, but a left
handed person does have trouble because it is projected on the hand. Of course,
handedness affects the use of any pen-based system, but with a projected dis-
play, shadows strengthen the effect. Not only is feedback affected, but also the
general layout of applications. The French to English translation application, for
example, inadvertently assumed that users were right-handed, with paper docu-
ments on the left, and projected definitions on the right. Left-handed subjects
were inconvenienced by this setup because it required them to reach their arm
farther than right-handed subjects, and at the same time, their arms hid the paper
they were reading. These handedness issues could be addressed by using the
overhead camera to automatically detect with which hand the user is pointing,
and this information could be used by applications. A pop-up menu, for exam-
ple, would be projected to the left of the pointer for a right-handed person, and
to the right of the pointer for a left-handed person.

Example Applications - Video Simulations

27

Obscuring Selections

Subjects also noticed a difference between selecting pixels with a workstation
and selecting marks on paper with a DigitalDesk. On a workstation, we can
obscure something with the pointer as we select it, but the system still knows
what is underneath. When pointing at paper with the DigitalDesk, however, the
system must be able to see the paper, and this means that fingers and other
pointing devices must be out of the way. It may be possible to address this issue
by storing previously snapped (or scanned) images; the Marcel system, for
example, does not face this problem. A solution may be unnecessary, however,
because people do not seem to have much difficulty learning how to interact
with the system in a way that keeps selections visible. When sweeping out a
rectangle in the PaperPaint application, for example, there are four ways of
doing this (see Figure 3-6). If right handed people use method➀, or if left-

handed people use method➁, they end up with a picture of their pen in the
selections. They usually have no difficulty switching to one of the other three
methods instead, and they do not seem to repeat the mistake (except sometimes
just for the fun of selecting their own finger or hand to watch it get copied). In
general, the system cannot see the selection unless the user can see it too, and
that is easy to learn.

Selection feedback can also play an important role in preventing users from
obscuring their selections. If a fixed selection rectangle is centred about the
pointer, to use an extreme example, then it is impossible to get the pointer out of
the way. If the selection rectangle floats slightly ahead of the pointer, however,
then it is easy to avoid placing the pointer inside. If the system had handedness
detection, then it would even be possible to adapt the selection feedback so that
it prevented users from sweeping out a rectangle the wrong way.

Video Simulations*

The following pages show storyboards from a video [Well92] that simulates
how the DigitalDesk might be used in the future. The video uses minimal soft-
ware implementation with a lot of “smoke and mirrors” techniques to illustrate
how it would work, and the word “Envisionment” appears throughout to remind
viewers this is not an implemented system. This video was done after the calcu-
lator and translator prototypes, but before any of the other prototypes in order to

* I am grateful for the acting talents of Steve Freeman, Sian Wicklow, and Linda Malgeri.

4

1 2

3

Figure 3-6: Four ways to sweep
out a selection rectangle.

Example Applications - Video Simulations

28

help guide further progress. HCI researchers often spend a great deal of effort
building partially working prototypes that are useful for “demo-ing” the idea,
but not robust enough to test on users. If the purpose is to explore implementa-
tion issues and technical feasibility, then a rough prototype (such as the calcula-
tor) is more useful than a video tape. But sometimes the purpose is only to
illustrate the idea and demonstrate how a novel interaction technique might look
before spending the substantial effort necessary to make it work well enough for
user testing. In this case, a simulation video is a much more efficient means to
accomplish this goal because it is easier to make than a demo, and it can be
shown to large numbers of people to solicit comments and discussion. This way
a researcher can get useful initial feedback about an idea before spending the
effort necessary to implement it.

In the original video, each scenario is shown twice: once in use and the second
time with a voice-over that explains what technically is supposed to be happen-
ing behind the scenes. In this paper version, however, each scenario is only
described once, both from the user’s perspective and with a description of how
it would be implemented. The three scenarios illustrated aretaking notes, a
paper spreadsheet, andsketching.

The DigitalDesk Toolkit - Introduction

38

Chapter 4
The DigitalDesk Toolkit

Introduction

The DigitalDesk Toolkit (DDT) is designed to support a variety of DigitalDesk
applications. Early prototypes (e.g. the calculator) were implemented in such a
way that made it difficult for people who might want to implement other appli-
cations to benefit from existing code. The variety of applications built and pro-
posed for the DigitalDesk so far (see Chapter 3) have a certain set of common
requirements. This toolkit attempts to provide the most important functions
required by a variety of applications. Its purpose is to enable other researchers to
explore applications on the DigitalDesk without having to reimplement the
same functionality themselves, and to enable them to concentrate on aspects that
are unique to their own work. This goal has largely been met, and the toolkit has
helped several people to explore the design space of interaction techniques and
applications made possible by the DigitalDesk.

This chapter gives a brief history of the toolkit, an overview of the architecture,
then describes key modules and interfaces provided by the DigitalDesk Toolkit.
It leaves out discussion of two very important issues: adaptive thresholding and
calibration. Each of these is treated in a separate chapter following this one.

History of the toolkit

The initial implementation of the calculator prototype was done in C and C++
on a pair of workstations: a Sun 4/110 and a SPARCstation. This was because
the Itex FG100 image processing board [Imag89] plugs into a VME bus (avail-
able only on the Sun 4), while the projected LCD display plugs into a SPARCs-
tation Sbus. Figure 4-1 illustrates how the software modules interfaced to each
other and to the hardware (note key in the bottom right corner). Although this
implementation served well to demonstrate the feasibility of building a Digi-
talDesk, it was not suitable for giving to other researchers, or for building more
complex facilities such as self-calibration.

At the time, there was a growing interest in Modula-3 [Nels91] among research-
ers at EuroPARC, Xerox PARC, and the Computer Laboratory, so it seemed that
potential users of the toolkit would be familiar with this language. More impor-
tant, it was clear that Modula-3’s lightweight thread facilities would make
implementing the toolkit easier than in C, and its clean interfaces would make
sharing code with other researchers easier.Version 2 of the toolkit was therefore
substantially written in Modula-3 and provided M3 interfaces to necessary C
code. This version was immediately put to use by Kathy Carter and William
Newman, both of whom found several bugs in it. Without going into the details
of each release, the toolkit went through two more versions, gaining new func-
tionality and new users with each release, and keeping up with new versions of

The DigitalDesk Toolkit - Architecture

39

Modula-3. The sections below give an overview of the architecture, then
describe key modules and interfaces provided by the current release (Version 4).
Thresholding and self calibration are treated in separate chapters.

Architecture

Figure 4-2 shows how some of the major components of the toolkit depend on
each other. Modules higher up in the graph import interfaces to modules that are
connected lower down.

The tout program allows a user to interact with the projected display using a
digitizing pen instead of a mouse. Thefout program is equivalent, but allows
the use of a finger. The selection service allows a user to select an area on the
desk (with projected feedback), and it returns the grey-scale image taken
through the video camera of precisely that area. A client program then has a
choice of what to do with this image. It can use it as is, or it can threshold the
image by calling the quick adaptive thresholding routine described in Chapter 5.
Then it can use the thresholded image as is, or it can use the image processing
library to scale it so that when projected, it appears the same size as the original
on the desk (this is what PaperPaint does). One last possibility is to send the

data

projected
LCD display

sound level
thresholder

Sun 4/110

SPARCstation

kicker

calculator
application

moveptr numbersbuttonpress

numbersbuttonpress

finger
locator

fingerlocations (TCP/IP)tap!

Itex100 image processor
image subsampling and differencing

set up with lookup tables and registers

VME bus

Sbus

X Windows client

X Windows server

camera

microphone
& amplifier

signal

hardware
software

read block
of pixels

character
recognizer

threshold and
locate text

Figure 4-1: Architecture
for original DigitalDesk

calculator application.

The DigitalDesk Toolkit - Frame grabber interface

40

thresholded image to the Xerox Imaging System ScanWorX server [XIS93]
through the OCR interface, where it is de-skewed and recognized, and the corre-
sponding text string is returned to the caller (e.g. the calculator or translation
application).

This basic functionality: converting a selected area on the desk to a grey-scale
image, a thresholded image, or text string is the basis for a great number of Dig-
italDesk interaction techniques and applications. The following sections
describe each of the components behind this functionality in more detail.

Frame grabber interface

The frame grabber boards are used for several different purposes, in different
configurations, and by different processes. There are programs which do finger-
following, optical character recognition, self-calibration and various tracing/
debugging functions. In some cases, multiple concurrent processes must

morphology image processing grabbers

self calibration

selection service

warping

pinpoint plus marks

tout

tablet calibration

serial port & tablet

synthesize X events

fout

finger follower

selection feedback

OCR interface

Trestle

Trestle

VideoVBT

Figure 4-2:
Architecture

of DDT.

tap detection

The DigitalDesk Toolkit - Basic image processing and pixrect support

41

synchronize their calls to the board in such a way that they don’t interfere with
each other. In the first (C and C++) implementation, this was accomplished in a
very crude way with signals, and it did not work reliably or very fast. The cur-
rent implementation, however, makes use of Modula-3’s lightweight threads
and locking mechanisms to support multiple clients with shared memory. This
makes it possible, for example, to have one thread looking through camera A for
finger following while another thread can periodically grab an image from cam-
era B to do OCR. The multi-threaded ability is also used in the DoubleDigi-
talDesk, where at each site there are at least two threads that access the frame
grabber. One continuously updates the image from the remote desk, and the
other occasionally grabs an area from the local desk for copy-and-paste opera-
tions. Each thread uses the same frame grabber board, but uses a different port
on the board, and a different Warping.T (see Chapter 6 and appendix B). The
threads never interfere with each other (except in terms of speed) because each
one has its own Grabber.T object through which it access the board. (See Grab-
ber.T interface in appendix A.)

Another requirement of the Grabber interface is that it be hardware-
independent. DigitalDesk applications run on two different types of frame grab-
ber boards: Itex FG100 and Sun VideoPix [Sun91]. They are also planned to run
on the Itex S2200 board [Data92] in the future. These boards all have very dif-
ferent APIs (application program interfaces), but this is all hidden under the
Grabber interface, implemented through the Modula-3 subclassing mechanism.
There is an Itex subclass of Grabber.T, and there is also a VideoPix subclass.
Client programs can explicitly create an object of either subclass, but they are
not required to. There are two libraries that Modula-3 programs can link to: the
default Grabber.T constructed in one library is of type Itex, and the default of
the other is of type VideoPix. This means that in order to run a program with a
different frame grabber, no source code needs to be changed; only a different
library needs to be linked. Unfortunately, recent versions of Modula-3 carefully
check which library (or Unix archive) programs are compiled with, so usually
all source code which imports Grabber interfaces needs to be recompiled in
order for the Modula-3 linker to allow linking with a different library. This can
be tedious, but can be avoided by including the bulk of this code in with the two
libraries. The advantage of this arrangement it is that it is not necessary to main-
tain different source code when using different frame grabbers. [See appendix A
for the Grabber.T interface specification.]

Basic image processing and pixrect support

DigitalDesk applications all require some image processing capabilities. One of
the most important is a way to threshold unevenly lit images, and this is dealt
with in a separate chapter (Chapter 5). Other functions include simple manipula-
tion of bitmap images, such as calculating histograms, scaling, displaying,
copying, trimming, storing and reading from disk. Scaling is needed, for exam-
ple, because the projector resolution is different from the camera resolutions,
and it is necessary in an application like PaperPaint to compensate for this when
displaying a grabbed bitmap. The Trestle toolkit has some support for bitmap
images, namely a data structure (Pixmap.Raw) for storing them, selecting small

The DigitalDesk Toolkit - Image identification

42

areas of them, and a way to display 1-bit-per-pixel pixmaps on the display.
There exist many commonly available applications and libraries for manipulat-
ing digital images, and they use various image file formats such as tiff or Sun’s
rasterfile format [Sun90b]. It is necessary, then, to be able to store and retrieve
images in one of these formats. Included in the toolkit is a way to do this with
rasterfile images (compressed or uncompressed, one or eight bits per pixel). On
Sun workstations, this format is accepted by nearly all applications, and conver-
sion tools exist for any application which does not support it.

Some image processing libraries written in C, such as Dan Bloomberg’s
morphology libraries (seemathematical morphology section in chapter 6),
provide functions very useful to DigitalDesk applications. The problem with C
libraries is that they do not use Modula-3’s garbage collected data structures for
storing images, so this can make them tricky to integrate with Modula-3. As a
solution, we can declareUNTRACED Modula-3 data structures that match the C
data structures, and use them to interface with the libraries, but abandoning the
use ofTRACED storage reduces one of the advantages of using Modula-3. It also
makes it impossible to use existing Modula-3 libraries that use the Pixmap.Raw
structure.

The solution implemented in DDT is to provide both anUNTRACED and a
TRACED version of the C data structures, along with procedures for converting
between them and Modula-3’s Pixmap.Raw structure. In most cases, when the
image originates from within the Modula-3 program, then theTRACED version
of the C data structure can be used. The cost of converting to it from Modula-3’s
Pixmap.Raw structure to C’s Pixrect structure is very low (only copying a hand-
ful of words). It is necessary to make sure to freeze any pointers within this
structure before passing it to a C routine, otherwise the Garbage collector will
occasionally move these structures while the C routine is working on it. In situ-
ations when the image originates from the C program, then it must come into
the Modula-3 program as anUNTRACED structure. In this case, the programmer
has a choice to continue using it this way and accept the inconvenience, or it can
convert it to the equivalent TRACED data structure before “letting it loose” into
the system. This usually makes the program simpler, but the cost is that the
entire data structure (including image data) must be copied into freshly allo-
cated (TRACED) storage.

Image identification

Some applications, such as Mosaic [Mack93] and electronic annotation of paper
documents (See Chapter 7 onfuture directions) need the ability to identify paper
documents when they appear under the camera. The Marcel system [Newm92]
does this in a resolution-independent way by looking at the shape of margins of
text columns on a page. If several pages have identical patterns, then it can look
at the spacing between words on the first few lines of the page. Unfortunately,
this system only works on pages with a single column of text, but there may be
other ways of doing this. One way might be to crop the image, de-skew it,
reduce it to a standard size (say 64x64 pixels), then use this canonical resolu-
tion-independent form of the image to match against others. A simpler way to
identify an image that could be much more robust is to use Xerox glyphs

The DigitalDesk Toolkit - Optical character recognition

43

[Hech90, Bloo90, Schr92] or a bar code [Pavl90] to print an identifier on each
page that needs to be recognized. It may not even be necessary to do that if there
is some unique text on the page that can be recognized with OCR (see next sec-
tion). Although not provided in the released DDT, this capability is an important
component of a DigitalDesk toolkit. Currently, developers must either use OCR
or William Newman’s Marcel system.

Optical character recognition

A key ability that some DigitalDesk applications require is to perform optical
character recognition (OCR) on selected portions of paper documents. Once an
area has been selected, captured, and thresholded, it must be OCRed to convert
it to text. The current implementation uses RPC to call the Xerox Imaging Sys-
tems ScanWorX server [XIS93], one of the best available OCR programs. It can
recognize a wide range of typefaces in a wide range of sizes. It can also learn
how to recognize typefaces better as it goes along.

The ScanWorX documentation recommends that for “very accurate” text
recognition, the rule of thumb is that

point sizex resolution in pixels per inch must be greater than or equal to 2400

This means, for example, that to accurately recognize the 11 point text on this
page, the resolution must be at least 218 spots per inch. The VideoPix frame
grabber has a resolution of 640 pixels across, so this requirement is met as long
as the camera is zoomed into an area no more than three inches wide. The
rectangle on this page has the right size to provide “very accurate” recognition
on text of this size. A larger field of view for the camera produces less accurate
recognition unless a higher resolution grabber/camera combination is used, or
larger point size text is to be recognized.

Paper documents may not necessarily be lined up with the video camera, so the
grabbed image may need to be de-skewed before getting recognized. Dan
Bloomberg’s image processing library provides routines for deskewing, and this
capability also exists within the ScanWorX server.

Evaluation

The initial Calculator application used a crude OCR program that only worked
with a specific numerical font, but the current version of DDT is able to call the
ScanWorX server.* None of the applications described in Chapter 3 except for
Mosaic uses it, however, so experience with this is limited. Initial tests indicate
that even when following the above rule of thumb, recognition is less than “very
accurate” for most fonts, though it is quite good for others. ScanWorX does a
much better job on scanned images than on video images. To make video based
OCR work well requires more work. The new version of ScanWorX has a mode
for low resolution images, which may work better, and perhaps the thresholding
algorithm (described in the next chapter) could be tuned to produce better out-
put for ScanWorX. Also, see [Cush90] for a discussion of how to evaluate OCR.

* Thanks to Chao Ying Ma and Giles Velay for writing C ScanWorX clients that I could modify.

The DigitalDesk Toolkit - Window system and user interface widgets

44

Window system and user interface widgets

DigitalDesk applications must display a graphical user interface and respond to
pointing devices in much the same way as any screen-based application on an
ordinary workstation. This means the standard window systems and user inter-
face toolkits on ordinary workstations can be very useful for DigitalDesk appli-
cations. There is no reason to build a separate window system or UI toolkit for
the DigitalDesk, except perhaps because the standard systems do not have much
support for pen-based interaction. The best window system and UI toolkit to use
on the DigitalDesk would be one specifically designed to support pen-based
interaction. Go PenPoint [Carr91] is probably the best example of this (see
appendix discussing it), but Microsoft PenWindows might be good too. The cur-
rent implementation, however, is based on the X Window system [Gett90] and
Trestle (Modula-3’s user interface toolkit) [Mana91]. Although it does not sup-
port many interaction techniques possible with pens (e.g. handwriting character
recognition and gestures), its support of mouse-based interaction covers an ade-
quately large subset of what is possible with a pen that this does not cause much
difficulty, and more pen-specific interaction techniques can be implemented on
top of it (see, for example, work by David Goldberg [Gold91] and Kathy Carter
[Cart93]).

Many user interface “widgets” or interaction techniques on the DigitalDesk can
be the same as standard ones on ordinary workstations. Push buttons, menus,
reshapable windows,etc. are all useful. There are a whole set of interaction
widgets better suited to pen-based systems than the ones currently used with
mice; this is a separate research area, but one from which the DigitalDesk will
benefit greatly. A few widgets were built on DigitalDesk for general use by a
variety of applications. One is the VideoVBT (built for the DoubleDigitalDesk),
and another is the SelectionVBT

VideoVBT

The VideoVBT is connected to a Grabber.T object, and it continuously grabs an
image and displays it. The VideoVBT can display video cropped and scaled to
any size. It has a couple of unique features useful for DoubleDigitalDesk
applications: absolute position, and the ability to pause and resume it. It is
possible to place a VideoVBT in an absolute position relative to the display.
This makes it appear in a fixed location on the desk so that even if the VBT is
moved or resized, the Video image remains in the same place. It might get
cropped by the VBT or it might appear in the middle of it somewhere, but it will
not move. This is useful for the DoubleDigitalDesk when the projected video
image must correspond exactly to the field of view of the camera. The exact
position of the camera relative to the display is determined by the SelfCalibra-
tionVBT, described in Chapter 6.

SelectionVBT

One fundamental interaction techniques supported by the DigitalDesk is the
ability to select a specific area on a paper document and get the frame-grabbed
image of that area. This interaction technique is supported by using a
SelectionVBT in combination with a Grabber.T. The SelectionVBT is a Trestle
filter which takes any other VBT as its child, for example a VideoVBT or a

The DigitalDesk Toolkit - Pointing device interface

45

simple blank area. When the user presses the pen down in this VBT it draws a
rubber-band rectangle that follows the pen until it is lifted. When the pen is
lifted, the SelectionVBT calls a callback function with the area that the user
selected. Other interaction techniques can be implemented as subtypes of
SelectionVBT. A “lasso” interaction technique, for example, could be used to
select non-rectangular regions. In order to grab the selected area on paper, this
area is converted to a global coordinate space (usually the display coordinate
space instead of the VBT coordinate space), and this area is passed to the
grabRect method of a Grabber.T object. From this grey-scale image a thresh-
olded image can be generated which can optionally be sent to the OCR server to
get text.

Cut and paste between applications

Another capability usually provided by the window system that DigitalDesk
applications can benefit from is inter-client communications. This is used to cut
and paste data between applications. In X windows there is an ICCCM
(Interclient communications conventions manual) [Wide90] which specifies
how to do this. These conventions are widely followed for text, and DDesk
applications can provide text to other X applications using standard Trestle
interfaces. For graphical and bitmap data, however, the conventions are not
generally used yet. Different windows in a single DDesk application can cut and
paste bitmap images between them, but no source code for an ICCCM-
compliant bitmap cut and paste application was found on which to base DDT
code, so it currently does not yet support inter-application bitmap cut and paste,
except through the use of files.

Pointing device interface

The simplest way for DigitalDesk applications to access pen events is through X
windows, in just the same way that they normally access mouse events. The
only disadvantage of this approach is that it makes it difficult for applications to
access both the pen and the mouse at the same time. It makes development and
testing much easier, however, because everything can be done on an ordinary X
workstation, and the pen must be used only when it is specifically needed.

Synthesizing X events

Currently, the DigitalDesk uses two different ways to generate synthetic mouse
events. The first way uses the journalling facility in versions 2.x of Sun’s
XNeWs server [Sun90a]. XNeWS is an X server and NeWS server [Gosl89] all
in one; clients can connect to it using either protocol. The journalling facility is
implemented only in the NeWS component. If the window system is started up
with the-defeateventsecurity flag then it allows clients to send Post-
Script commands that move the mouse and generate other input events. Appli-
cations have no way of detecting the difference between real mouse events and
synthetic events.

The disadvantage of this approach is that it depends on Sun’s XNeWS 2.x
server, which has some bugs and has not kept up with the latest features of
X11R5. Most people do not commonly run this server, so it would be much

The DigitalDesk Toolkit - Pointing with the finger

46

better if events could be synthesized for applications running on the standard
MIT X server. This is possible to a limited extent, using theXWarpPointer()
and XSendEvent() Xlib calls [Nye90]. This can work very well on any X
server, but the X server sets a special flag on events generated byXSendE-
vent() . This means that applications can detect the difference, and some appli-
cations (such as our version of mwm) choose to ignore these events.

A third, potentially better, way to integrate pointing devices with X is to use the
X input extension [Patr91]. This would require building a special version of the
X server that includes device-specific code, but it has not yet been necessary for
current DDT applications.

Tout

tout uses the first two approaches described above to connect the digitizing
tablet to X. It first tries to connect to the server through a NeWS connection, but
if that fails it uses an ordinary X connection. Before running, however, it must
calibrate the tablet coordinate system to the display coordinates. Due to various
distortions and rotations, it needs to obtain four tiepoints from the user (see
Chapter 6 for more discussion of calibration), which it does by projecting four
crosshairs on the desk and waiting for the user to click on each one. From these
tiepointstout constructs a warping and sets the resolution of the tablet to be no
greater than the size of the displayed pixels; then it continuously reads events
from the tablet over the serial port, and synthesizes a corresponding mouse
event. Kathy Carter recently improved the original version oftout by
integrating the calibration step into the main application, and by providing a
graphical user interface for changing the mappings between the different
possible states of the stylus and the different mouse buttons. The stylus has a tip
switch and a side switch, giving it four possible states. The standard mouse has
three buttons, giving it eight possible states. Fortunately most applications only
use four of those eight states, because chording (holding down more than one
mouse button at a time) is rarely used, so it is usually possible to use a stylus
with standard applications that expect mouse-based input.

Coordinating multiple pointing devices

The current setup has a finger-following “pointing device,” a mouse, and a
digitizing tablet. With the current system, output from the tablet or the finger
follower moves the X pointer to absolute locations on the display. At the same
time, the relative motions of the mouse (if any) are responded to in the normal
way. There is only one pointer, and only one pointing device is used at a time. It
is easy to quickly switch back and forth between the mouse and one of the
absolute pointing devices. Switching between the tablet and camera is more
difficult, but can be done when the digitizing stylus goes in and out of range of
the tablet.

Pointing with the finger

Interacting with computers through video-based finger or pen tracking is a very
promising area of human-computer interaction, and this technique is especially
appealing for the DigitalDesk, because it already has the hardware required to

The DigitalDesk Toolkit - Pointing with the finger

47

do this. Computer vision has traditionally been more concerned with robotics
applications rather than human-computer interaction, but there are a few good
examples of work being done in this area. In addition to the pioneering work
done by Myron Krueger, two more examples are [Magg93] and [Sege93].
Because these ideas are being pursued elsewhere, a decision was made not to
put much effort into video-based finger tracking for the DDT. An initial
prototype was developed for the calculator application, but it was not refined
well enough to make it truly useful.

As mentioned in Chapter 2, the finger follower on the DigitalDesk uses a
microphone to detect tapping, and it cannot rely on a plain bright background to
pick out the fingers because it must work with the cluttered background of a real
desk. It therefore makes use of frame differencing (see Figure 2-3 on page 15) to
locate moving objects to pick out the finger. The Itex FG100 board has an image
loop-back feature that allows real-time frame-differencing with a lookup table.
The top-most moving point is used as the pointer. This means that if the hand
points down or sideways, then the tip of the finger won’t be used as the pointer,
but this is not much of a problem, because it’s uncomfortable to point this way
anyway.

The performance bottleneck is copying bits from the frame grabber into host
memory, so the less data can be copied per cycle, the faster the system will
track. In order to reduce the amount of copying, the system only reads a small
square around the point where the pointer was last seen. If the pointer moves too
fast, then it can go out of range and no motion is detected. If this happens the
system reads a larger part of the image, but subsamples, so it can still copy over
the same amount of data and retain its frame rate.

The accuracy of this method is surprisingly good. When a sharp pen is used
instead of a finger, it’s possible to point with very high precision. The zooming
in and out causes some problems, however, because if the finger stops moving,
the system thinks it might have moved out of range, and it zooms out to a
coarser resolution. Then small movements can cause the cursor to jump around
a little (one pixel at the coarsest resolution represents 64 pixels at the finest
resolution) before the system zooms back in and the cursor rejoins the finger.
The only way to get really good, accurate pointing with the current system is to
continuously move the finger or pen just enough that the system can find it. This
is awkward. With a higher performance image processing board this problem
might not occur because subsampling would not be necessary. But there is still
the problem of noise and shadows, however. These can cause the system to
think the finger has jumped somewhere else when in fact it is just resting.

Use of the camera/microphone combination to implement tapping revealed an
unexpected problem. In order to tap, it is necessary to lift the finger or pen. The
raised finger does not show up in exactly the same spot as after it has been
(swiftly) put down. Because of the delay in image processing, when the tap is
heard, the system often thinks the finger is in a slightly different spot. At the
expense of response-time, this can be solved by giving the image processing an
extra cycle or two to catch up after a tap is heard.

There is a general problem with pointing to things that the camera is looking at,
and that is simply that the pointer may block or interfere with what is being

The DigitalDesk Toolkit - Use of the toolkit

48

pointed to. This applies not only to finger pointing, but also when pointing with
a digitizing stylus. One potential solution to this problem is to offset the
projected feedback (i.e. cursor or rectangular box), but experiments show that
different people hold their finger or stylus differently, (the most extreme
example is handedness) so one kind of feedback does not work for all people.
Feedback positions must be configurable for individuals. A more ambitious
solution (not tried in the DDT) is for the image processing system to adjust the
feedback based on how it sees users holding their fingers or pen. For example, if
it sees that the person is left-handed, it could project feedback to the right and
vice versa. One last approach that would be interesting to try is shadow parallax,
as described in Chapter 1 and in [Edga84].

Use of the toolkit

Several people have made use of DDT:

Kathy Carter’s Digital Drawing Board uses most of the toolkit. Wendy Mack-
ay’s Mosaic project [Mack93] and the EuroCODE project [ESPR93] have been
using pieces of it (e.g. the adaptive thresholding code andtout). William New-
man and I combined his Marcel system with DDT code to make the French to
English translation application, and Marcel uses the Grabber.T interface
[Newm92]. tout has been used by Simon Anstey to do experiments with on-
line handwriting recognition [Anst92]. The underlying connection to XNews
and X for synthesizing events is in regular use by Tabbit, the program for con-
necting X windows to PARC Tabs [Weis93]. It has proven very reliable and use-
ful not only for DigitalDesk work. Steve Freeman has taken pieces of the DDT
and extended them to make remote versions of the Grabber interface, and he has
used the warping code in his pointing device servers. He has also taken the
entire PaperPaint and DDD application code and used it to make a multi-device
version [Free93]. Quentin Stafford-Fraser has been using the Grabber interface,
the image processing libraries, and the adaptive thresholding routines to help
him with his Brightboard project [Staf93]. Also, Lionel Lopez-Welsch built a
more sophisticated version of PaperPaint on top of the original version and
DDT [Lope93].

Summary

The DigitalDesk Toolkit provides a set of modules and interfaces to support
building of DigitalDesk applications. It has evolved through several versions
and been used by its author and several other people to build the variety of
applications described in Chapter 3. The current version of the toolkit, including
the PaperPaint application, thresholding, calibration, and useful test utilities is
made up of 28 Modula-3 interface files (with a total of 7164 lines of code), 38
M3 implementation files (18534 lines), 15 C files (10126 lines), and 10 .h files
(2464 lines). The total number of lines of code (including comments and
whitespace) is therefore a bit less than 40,000.

The DigitalDesk Toolkit - Summary

49

Overall, DDT is not mature enough yet to post on the net and expect hundreds
of people to easily make use of it, but a significant number of people have used
it successfully. It has therefore passed one of the most basic tests for a toolkit
worthy of the name, which is that other people besides its author find it useful.

The following chapters describe two more components of DDT: thresholding
and calibration.

Adaptive Thresholding - Introduction to the problem

50

Chapter 5
Adaptive Thresholding

Introduction to the problem

The image produced by a video camera pointing at black printing on a white
sheet of paper is not truly black and white. This image is grey-scale (or colour)
no matter where the camera is pointed. Unless lighting on the desk is carefully
controlled, video images of paper lying on the desk are poor representations of
the originals. Unlike the inside of a scanner or photocopier, it is very difficult to
guarantee even lighting across the surface of a desk. This open space may be
exposed to desk lamps, overhead lights, windows or moving shadows, all of
which can cause varying brightness across the page. Human vision compensates
for this, but when the image of paper on the desk is manipulated by machine
without taking these variations into account the results can be very bad. In Fig-
ure 5-1, for example, the background of the right hand “in case of emergency”
box does not match the surrounding background, leaving a distinct edge. The

box on the right appears lighter than the box on the left, even though it is an
exact copy (fold this page if you want to check). The only difference is in the
brightness of the surrounding background. It gets darker from left to right
because the light was on the left side of the paper from which this image was
grabbed.

Figure 5-1: Copy & paste with
 an unevenly lit grey-scale image.

Adaptive Thresholding - Global Thresholding

51

This problem is most noticeable when dealing with high contrast line art or text
because the original document is genuinely black and white, yet the camera pro-
duces an image of varying levels of grey. Many applications prototyped on the
DigitalDesk must clearly determine which parts of the image are meant to be
black or white in order to project line art back onto the desk, or to pass text
images to an optical character recognition (OCR) server. The system cannot use
the grey images (typically 8 bits per pixel), so it must convert them to black and
white images (one bit per pixel). There are many ways to do this. In some cases,
when the resulting black and white image is meant to be viewed by people, it
should look as much as possible like a grey-scale image and the image isdith-
ered or half-toned(using a technique such as [Floy76]) to produce a result like
Figure 5-1. Although this image looks like a grey-scale image, it is made up of
small black and white spots of varying patterns, densities and sizes. Human
vision makes sense of these images almost as well as the grey images and the
original black and white images. But for machine processing operations, such
as character recognition, select & paste operations, and merging together of
many different images, the system cannot use dithered or half-toned images.
Although only one bit per pixel, these images are even less suitable for machine
processing than the original grey-scale images. The system needs simple pat-
terns of lines, characters, and relatively large patches of black and white. The
process by which these types of black and white images are generated from grey
images is commonly referred to asthresholding, and it is an important require-
ment for any digital desk system.

There are many ways to threshold an image, but the basic process is to examine
each grey pixel and decide whether to make it either black or white. This chap-
ter describes the various techniques that were developed and tested for thresh-
olding on the DigitalDesk, and it ends with the description of an algorithm that
was found to be suitable. This algorithm (here called “quick adaptive threshold-
ing”) may not be the best possible, but it works well enough that other problems
of the DigitalDesk became more important when the work reached the stage
described here.

Global Thresholding

In a way, thresholding can be seen as an extreme form ofcontrast enhancement,
or making light pixels lighter and dark pixels darker. The simplest (and most
common) way to threshold an image is to set all pixels below a certain grey-
level to black, and to clear all others to white. The question then is how to select
this grey-level. One possibility is to pick the centre of the range of possible val-
ues, so if pixels are eight bits deep (ranging from 0 to 255), for example, then
128 would be selected. This approach works well if all the “dark” pixels of the
image really do have values under 128, and light pixels have values above 128,
but if the image is over or under exposed, then the result might be all white or
black. It is better to look at the range ofactual values instead ofpossible values
to determine the threshold. The maximum and minimum values for each pixel in
the image can be found, then the midpoint used as the threshold. An even better
way to select the threshold is not just to look at the range of actual values, but
also their distribution. If, for example, you expect the image to be of black line

Adaptive Thresholding - Global Thresholding

52

art, or text on a white background then you expect that most pixels will be the
intensity of the background and a smaller but significant proportion will be of
the dark ink. A histogram of the pixel intensities should look something like
Figure 5-2.

A large background peak should be visible, as well as a smaller peak for the
dark ink. The whole curve might be shifted to the left or right depending on the
ambient light level, but in any case, the best value to pick for thresholding is the
local minimum between the two peaks. This is fine in theory, but how well does
it work in practice? Figure 5-3 shows a frame-grabbed image and its histogram
for which the technique works well. The smoothed histogram shows two promi-
nent peaks, and it would not be difficult to calculate a near-ideal threshold by fit-

Figure 5-2:
Theoretical histogram.

Figure 5-3: Grabbed image with clearly bimodal histogram.

ideal threshold

dark ink peak

light background peak

pixel
intensity

no. of
pixels

Adaptive Thresholding - Global Thresholding

53

ting a curve to this histogram or even taking the midpoint between the two
peaks. This is not a typical image, however, because it has large amounts of both
black and white. The DigitalDesk must also be able to threshold images like the
one in Figure 5-4. In the histogram of this image, the smaller “dark” peak is
almost lost in the noise, so it is impossible to reliably locate a local minimum
between peaks

In any case, a large (background) peak is always present and easy to find, so a
useful strategy for thresholding an image is the following:

1) Calculate the histogram (shown by the points in Figure 5-4).
2) Locate the large peak by finding the maximum value of a moving aver-

age of the histogram curve. The moving average smooths out the effects
of noise on the maximum value, as shown by the curves in Figure 5-3
and Figure 5-4.

3) Select the threshold value at a certain proportion of the distance
between this peak and the minimum value (excluding zero counts).

Experimentation seems to indicate that 1/2 of this distance produces quite good
results in a broad range of lighting conditions ranging from very bright to
almost completely dark. In Figure 5-4, for example the peak is at 215 and the
lowest recorded value is 75, so a threshold of 145 would be used. The figures on
the next page (Figure 5-5) show an image grabbed under four different lighting
conditions and the result from applying this histogram-based global threshold-
ing algorithm to each. Despite the wide range of lighting (as can be seen from
the histograms) this algorithm selects an appropriate threshold in each case, and
the thresholded result for each is almost identical.

Figure 5-4: Grabbed image with “dark” peak almost lost in the noise.

Adaptive Thresholding - Global Thresholding

54

Figure 5-5: Histogram-based global thresholding at various intensities.

threshold at 62

threshold at 94

threshold at 116

threshold at 134

Adaptive Thresholding - Adaptive Thresholding

55

This histogram-based global thresholding technique works quite well for
images that are evenly lit or, as in the examples above, for images that represent
very small parts of paper where the light does not vary much. But it fails to pro-
duce good results for larger areas and in normal office lighting where the range
of brightness varies greatly across the desk. Because a single global threshold
value is used for the entire image, some parts of the image become too white
and others too dark. Much of the text then becomes unreadable, as illustrated in
Figure 5-6.

Producing good thresholded images from paper that is unevenly lit requires an
adaptive thresholding algorithm. This technique varies the threshold value
across the image according to the background illumination at each pixel. The
discussion below is illustrated with the results of algorithms applied to the
image in Figure 5-6. This is a challenging test because the image is lit from the
side, and it has black text on a white background (the word “PaperWorks”),
white text on a black background (“XEROX”), grey text on a white background
(“The best way...”), various shadows, and a thin horizontal black line under the
word “PaperWorks.”

Adaptive Thresholding

An ideal adaptive thresholding algorithm would produce the same result when
applied to an unevenly lit page as a global thresholding algorithm would pro-
duce when applied to a perfectly evenly lit page. The brightness of each pixel is
normalized to compensate for being more or less illuminated, and only then is a
decision made as to whether the result should be black or white. The question
then, is how to determine the background illumination at each point. One simple
way to do this is to grab the image of a blank page before grabbing the page to
be thresholded. This blank page can then be used as a reference image. For each
pixel to be thresholded, the value of the corresponding pixel in the reference
image is subtracted before applying the threshold.

Figure 5-6: Global thresholding of unevenly lit image.

Adaptive Thresholding - Adaptive thresholding based on Wall’s algorithm

56

This method produces very good results as long as the lighting does not change
between the time when the reference image and subject image are each grabbed.
On a desk, however, the lighting changes frequently as the user's shadow moves
across the desk or doors, lamps and other objects are moved about. If there is a
window in the room, then the lighting also changes throughout the day. One
solution might be to immediately precede each grab with a reference grab of a
blank page at the same location, but this would be almost as inconvenient to use
as a scanner, thus defeating an important reason for using an overhead video
camera in the first place.

Another solution is to try to estimate the background illumination at each pixel
by making some assumptions about what the image should look like. We could
assume, for example, that the image is mostly background (e.g. white), and that
dark markings make up a smaller part of the image. Another assumption we
could make is that the background lighting changes relatively slowly across the
page compared to the changes in light and dark due to marks on page. Many
algorithms based on such assumptions are possible. There is no mathematical
theory of adaptive thresholding, and as a consequence, there is also no standard
or optimal method for doing it [Prat91] (p. 597). Instead, there are several ad
hoc methods, some of which are more popular than others. Because the methods
are ad hoc, it would be useful to be able to measure their performance. For this,
Haralick and Shapiro [Hara85] propose the following guidelines: regions should
be uniform and homogeneous with respect to grey tone; region interiors should
be simple and without many small holes; adjacent regions should have signifi-
cantly different values; and boundaries of each segment should be simple, not
ragged, and must be spatially accurate.

According to Pratt, no quantitative performance metric has been developed for
image thresholding. It seems the main way to evaluate an algorithm is simply to
look at the result and judge whether it looks right. For images of text, there is a
quantitative possibility. The result of various algorithms under various lighting
conditions could be fed to an OCR system, and the text produced from this can
be compared to the original text. Although potentially useful, this approach was
not systematically used for the algorithms described below, because it was
judged unlikely to give a different evaluation from the “looks better” criteria.

For interactive applications of the DigitalDesk, users must wait for thresholding
to finish when completing interaction techniques such as “copy and paste” of
text or graphics. So another important quantitative performance metric is speed.
The following sections describe various adaptive thresholding algorithms and
show the results they produce.

Adaptive thresholding based on Wall’s algorithm

One technique for calculating a threshold that varies across the image according
to background illumination was developed by R. J. Wall and is described in
[Cast79]. The following algorithm is loosely based on this description. First, it
breaks up the image into smaller tiles and calculates a histogram for each tile.
Based on the peaks of these histograms, a threshold is chosen for each tile.
Then, every point in the image is assigned a threshold by interpolating between

Adaptive Thresholding - Quick Adaptive Thresholding

57

the values chosen for each tile. Figure 5-7 was generated from the same grey
image as Figure 5-6, but using this technique. The image was divided into nine

tiles (3x3) and for each tile a threshold was selected 20% below the peak. From
these values, 16 tiles were formed with their corners at the centre of each of the
9 tiles, and the threshold values were interpolated across each of these tiles from
the corners. The result is much better than global thresholding, but because it
requires more than one pass through the image, it is quite slow. Another prob-
lem with this technique is that with some images, the local histograms can be
fooled by a large amount of black or white, causing the threshold not to vary
smoothly across the image, and the result can be very bad (see in Figure 5-8.)

Quick Adaptive Thresholding

Most algorithms in the literature are more complex than Wall’s algorithm,
require more passes through the image and would take even longer to rune.g.
[Hara85, Prat91, Wesz78]. It seems possible to implement a much simpler and
faster algorithm for adaptive thresholding, so this section describes the steps
taken so far in that direction for the DigitalDesk.

The basic idea is to run through the image while calculating a moving average
of the lasts pixels seen.When the value of a pixel is significantly lower than this

Figure 5-7: Result of adaptive thresholding based on Wall’s algorithm.

Figure 5-8: Local histograms can be fooled.

Adaptive Thresholding - Quick Adaptive Thresholding

58

average it is set to black, otherwise it is left white. Only one pass through the
image is necessary, and the algorithm is simple enough to be implemented in
hardware. It is interesting to note the similarities between the following algo-
rithms and the one developed at IBM using analog hardware in 1968 [Bart68].

Let pn represent the value of a pixel at pointn in the image being thresholded.
For the moment we treat the image as though it were a single row of pixels com-

posed of all the rows in the image lined up next to each other. This gives rise to
some anomalies when starting a new raster line, but less than starting each line
from scratch (later we will carry information down as well as across).

Let fs(n) be the sum of the values of the lasts pixels at pointn.

The value of the resulting image T(n) is either 1 (for black) or 0 (for white)
depending on whether it is t percent darker than the average value of the previ-
ouss pixels.

Using 1/8th of the width of the image for the value ofs and 15 for the value oft
seems to yield the best results for a variety of images. Figure 5-9 shows the

Figure 5-9: Moving average scanning
from left to right.

Figure 5-10: Moving average scanning
from right to left.

pnpn-3
. . .pn-s pn-1pn-2

fs n() pn i−
i 0=

s 1−

∑=

T(n) =

1 if pn

fs n()
s

() 100 t−
100

()<

0 otherwise

Adaptive Thresholding - Quick Adaptive Thresholding

59

result of using this algorithm scanning the rows of pixels from left to right. Fig-
ure 5-10 is exactly the same algorithm except the moving average scans from
right to left. Notice in this image, that the left-most letters of the smaller text are
incomplete, and there are more holes in the word PaperWorks. Also, the right-
most black edge is much narrower. This is all because the background lighting
of the image gets darker from left to right.

A fast way to calculate an approximate (weighted) moving average is to subtract
1/s part of it and add the value of only the latest pixel instead of using alls pix-
els. Thusg(n) is an approximation off(n) where

The main difference between f(n) andg(n) is thatg(n) puts more weight on the
pixels that are closest ton, which is good (in fact the weighting function is
exponential). Notice that if all values ofpn are the same, theng(n) = f(n). For
example, ifs = 2, then

and g2(n) = f2(n) = 2pn because g2(n-2)= 2pn.

A remaining question is how to start the algorithm, or what value to use forg(0).
One possibility is to usesp0, but because of edge effects,p0 is not always a rep-
resentative value, so another possibility is 127s (based on the midvalue for 8 bit
pixels). In either case, this choice only affects the first few values ofg. The
weight of g(0) relative to the total of all weights used in calculatinggs(n) is

gs n() gs n 1−()
gs n 1−()

s
− pn+=

pn= 1
1
s

−()+ gs n 1−()⋅

p= n 1
1
s

−() pn 1− 1
1
s

−()
2
pn 2−+ + . . .

1
1
s

−()
i
pn i−

i 0=

n

∑=

g2 n() pn

pn 1−
2

g2 n 2−()
4

+ +=

1
1
s

−()
n

1
1
s

−()
n

i 0=

n

∑

Adaptive Thresholding - Quick Adaptive Thresholding

60

so if s = 10, for example, then for anyn > 6,g(0) contributes less than 10% of
g10(n); for anyn > 22,g(0) contributes less than 1%. For s = 100, the 10% level
is passed after 8 pixels, and the 1% level is passed after 68 pixels.

The results from using this approximate moving average are similar (actually
better) than the precise moving average, as can be seen in Figure 5-11 and Fig-
ure 5-12.

It would be good if the moving average did not work better with lighting from
one direction or an other. Figure 5-13 shows the result of using another method
to calculate the moving average. Instead of using the trailing line behind each
pixel, it uses (an evenly weighted, not approximate) moving average that is cen-
tred about thenth pixel. This uses a definition off(n) where

Figure 5-11: Approximate moving average
scanning from left to right.

Figure 5-12: Approximate moving average
scanning from right to left.

fs n() p
n

s
2

i−+i 0=

s 1−

∑=

Adaptive Thresholding - Quick Adaptive Thresholding

61

Using this method there are still some significant gaps in the letters, however,
and it is also slower to calculate.

Instead of traversing the image from left to right or right to left, another possi-
bility is to traverse it alternatively from the left and from the right as illustrated
in Figure 5-15, addressing the line-end problem alluded to earlier.* It makes

very little difference with the centred average (as seen in Figure 5-14), but if we
go back to using the approximate moving average defined byg(n), then alternate
scanning improves things. The only anomaly is in the “grey” regions of an
unevenly lit image, where going in one direction can produce the opposite result
from going in the other, producing an every-other-line effect. (See Figure 5-16

* This way of scanning was called by the ancient Greeks boustrophedon, or “as the ox ploughs.”

Figure 5-13: Centred moving average scanning
from left to right.

Figure 5-14: Centred moving average scanning
in alternate directions.

Figure 5-15: Traversing pixels in alternate direction every other line.

pn

Adaptive Thresholding - Quick Adaptive Thresholding

62

which is printed a little larger to show the effect better.) Superficially, this image

may not look as pretty, but it is better than any of the previous algorithms in
important ways because there are no big holes or parts of letters missing. The
result is basically a combination of Figure 5-9 and Figure 5-10, but the right-
hand shadow has the every-other-line effect because when coming from the left,
the background gets darker and the intensity of the shadow falls below the
threshold, producing black. When the moving average wraps around the edge
and includes the dark black edge (due to over-scanning), the threshold falls
below the intensity of the shadow and the result is white as it traverses from
right to left.

A small modification of this algorithm gets rid of the every-other-line effect and
produces consistently good results across a wide range of images. The modifica-
tion is to keep the previous line of approximate averages (which were calculated
by scanning in the opposite direction) and to average the current line’s average
with the previous line’s average, so we use

Figure 5-16: Moving average alternatively from left to right and from right to left.

h n()
g n() g n width−()+

2
=

Adaptive Thresholding - Quick Adaptive Thresholding

63

This lets the threshold take some account of the vertical axis and produces the
results in Figure 5-17. Notice how well-formed all the letters are. Also, this is

one of the few algorithms that does not eliminate the thin horizontal line below
the word “PaperWorks.” Images whose intensity change mainly in the vertical
direction are not as challenging as ones that change horizontally, but for the
record, Figure 5-18 shows the result for the rotated image with the illumination

Figure 5-17: Moving average alternatively from left to right and from
right to left and averaging the two together.

Adaptive Thresholding - Summary

64

now varying from top to bottom. It seems unlikely that further developments

would produce a technique that generates significantly better results, so this is
currently used for the DigitalDesk. The maximum amount of time it takes to run
(for a full 768 x 575 image) is about 2 seconds on a SPARCstation 2 without
paying special attention to optimization. Steve Freeman has modified this algo-
rithm to go about 6 times faster by hard-coding multiplications and divisions to
use powers of two so that shifting can be used instead. Further optimizations are
possible, but will not make much difference for most interactions because they
typically only operate on a small part of the image. For thresholded full-frame
video as used by the DoubleDigitalDesk, and BrightBoard [Staf93] however,
these optimizations will be more important.

Summary

This chapter describes the thresholding problem which must be overcome by
DigitalDesk applications. A number of techniques are explored, leading eventu-
ally to a quick adaptive thresholding algorithm that has proven to be quite suit-
able for current purposes and which possibly could be implemented in
hardware.

Figure 5-18: Thresholding an image with vertical lighting variation.

Calibration - Introduction to the problem

65

Chapter 6
Calibration

Introduction to the problem

The DigitalDesk has one or more cameras that point down at the desk, and users
can select areas in a camera’s field of view to perform operations such as “copy
and paste” or character recognition on selected areas of paper documents. This
chapter describes how the system supports the ability to indicate a specific point
or region precisely in the frame-grabber’s coordinate system through a pointing
device and projected display.

Relative pointing devices such as a mouse or trackball allow the user indirectly
to position a cursor and make selections on the screen. The absolute position of
the pointing device does not matter because the user dynamically calibrates it
with the display by superimposing the cursor on desired screen points. With
absolute pointing devices, such as a transparent digitizing tablet or touch screen,
the user points directly to the screen, so the pointing device must be calibrated
to map the pen or finger position to screen coordinates. The DigitalDesk uses
absolute pointing devices because it aims to be as much like an ordinary desk as
possible. When we use paper documents on an ordinary desk, we do not need to
look at a video monitor to see where we are pointing: we simply point directly at
the paper.

The DigitalDesk requires a two step calibration process. First, absolute posi-
tions of the digitizing tablet must be mapped to positions on the display (e.g. to
provide feedback when the user points at something). Second, positions on the
display must be mapped to corresponding positions in the frame grabber (e.g. to
support grabbing of selected areas on the desk). If finger tracking is used for
pointing instead of a tablet, however, then only the second step is necessary.

There are two ways to calibrate an absolute pointing device to the display: let us
call them dynamic and static. A dynamic approach is only possible with certain
device-display combinations; it continuously adjusts the pointer to the display,
much as a person does when positioning a cursor on screen with a mouse.
Although this approach has promise, it was not tried with the DigitalDesk and is
only briefly discussed at the end of this chapter. Instead, devices on the Digi-
talDesk are calibrated using a static method which has two essential steps:

1) Obtain a number of knowntie points that map from device space to dis-
play space.

2) Calculate awarping that generalizes the mapping from the tie points to
all points.

The following sections describe first how the tablet is calibrated to the display,
and then how the display is calibrated to the video cameras.

Calibration - Calibrating the tablet to the display

66

Calibrating the tablet to the display

The system obtains tie points for calibrating the tablet and display by prompting
the user with a cross-hair for each point at which the user points with the stylus.
The displayed location of the crosshair is paired with the data returned by the
tablet. Because this is a manual process, we would like the user to enter the min-
imum number of tie points necessary for accurate calibration. This number of
points depends on the type of warping that needs to be calculated.

Two point warping

When both the pointing device and the display use rectangular coordinate sys-
tems, it is often enough to obtain just two sets of tie points: (x1, y1), (x1’ , y1’)
and (x2, y2), (x2’ , y2’) as illustrated in Figure 6-1. From these, the system can

map any device coordinate (x, y) to the corresponding screen coordinate (x’, y’)
by using linear interpolation with the following simple formulae:

In practice with the DigitalDesk, this technique is only an approximation at best.
Unfortunately, the projected display is not a perfect rectangle. There are optical
distortions such as “keystoning” (see Figure 6-2), and it is difficult to rotate the

Figure 6-1: Two point warping.

Figure 6-2: “Keystoning” due to projecting a rectangular image at an angle.

(x1, y1)

(x2, y2)

(x1’, y1’)

(x2’, y2’)

(x’, y’)

(x, y)tablet coordinates

screen coordinates

x'
x x1−() x'2 x'1−()

x2 x1− x'1+=

y'
y y1−() y'2 y'1−()

y2 y1− y'1+=

Calibration - Calibrating the tablet to the display

67

tablet and display so they are perfectly aligned. With this two point method, the
tie points are mapped correctly, but as the pointer moves farther from a tie point,
the cursor displayed at the warped screen coordinate moves farther away from
the pen. The error depends on how large the optical and rotational distortions
are, but it was not possible to maintain acceptable results with the current equip-
ment, so more than two tie points are necessary. Calculating a warping from
more than two points is a bit more complex and is described in the following
sections.

Four point warping

If we obtain four pairs of tie points, as illustrated in Figure 6-3, then we can cal-

culate a warping by using the following equations:

For each of these two equations, we can find the values ofcn by solving the set
of four simultaneous equations obtained from plugging in values of the four tie
points. These sets of simultaneous linear equations can be quickly and exactly
solved (no need for statistical methods) by using Gauss-Jordan Elimination or
Gaussian Elimination [Press88]. The following section shows how this solution
not only compensates for translation and scaling of coordinate systems (as the
two point warping does) but it also compensates for keystoning and rotation.

Why these particular equations? We need to have at least as many simultaneous
equations as unknowns, so if we have only four points, then we must not have
more than four unknown terms forx’ or y’. Let us look at the six possible terms
in a second order polynomial:

Figure 6-3: Four point warping.

(x, y) (x’, y’)

x' c1x c2y c3xy c4+ + +=

y' c5x c6y c7xy c8+ + +=

x' c0 c1+ x c2y c3xy c4x2 c5y2+ + + +=

Calibration - Calibrating the tablet to the display

68

The diagrams below (Figure 6-4) illustrate the effect of increasing each term on
a simple square centred about the origin. These only look at terms affecting the
x coordinates, but effects ony coordinates are symmetrical.

Of these terms,c0, c1, c2, and c3 are responsible for the most important distor-
tions found in the projection system, so they were chosen as the terms to use in
the warping equations. A shear in thex direction combined with a shear in they
direction rotates the coordinate space.

Another advantage of this four point warping is that it can be used to recursively
break up a plane of coordinates to use as many points as necessary to make the
warping more accurate over a larger area with more complex distortions. If four

Original square

change due tocn

c0 c1uniform translation scaling

o

o

o
o

o

c2 c3shear keystone

o

o

c4 c5non-uniform scaling bending

o

o

Figure 6-4: Second order polynomial distortions.

Calibration - Calibrating the frame grabber to the display

69

points are not enough, then the plane can be broken up into more tiles, each of
which has its own four point warping. Although it was the intention to do this
for the DigitalDesk, four points worked well enough that more turned out not to
be necessary. See appendix B for the interface to the Warping.T object.

Calibrating the frame grabber to the display

The projector displays feedback directly on the page, so users can see exactly
what is selected, but how does the system know what pixels in the frame grab-
ber correspond to the area displayed by the projector? A precise warping is nec-
essary to map pixels in the projected display to pixels in the frame grabber.

Unfortunately, the same problems that make calibrating the tablet difficult (e.g.
keystoning and rotation) also make it difficult to calibrate the camera. In addi-
tion, there are specific factors due to the camera: it may view the display at an
angle, it may frequently need to be zoomed or pointed at a new position, and it
is sensitive to vibrations caused by air conditioners or slamming doors.

Whereas obtaining tie points for calibrating the tablet is relatively straight for-
ward, obtaining them for calibrating the camera is a little more complex. One
obvious way to do this is to adjust the size and shape of a projected rectangle on
the desk while looking at its image on a video monitor, and this rectangle can be
aligned with the edges of the monitor. This provides only two tie points, and if
there is any keystoning, rotation, or under-scanning by the video monitor the
result is poor, even after performing this tedious manual procedure. To obtain
multiple tie points, users could control a cursor on the digitized video image
seen through the camera; then they could point at projected cross hairs in much
the same way as users calibrate the tablet. A better approach, however, is for the
system to locate these crosshairs without any assistance from the user: for the
system toself calibrate. The camera is connected to an image processing sys-
tem, so it precisely locates marks projected by the display, then for each mark
the system knows the screen coordinates and its corresponding frame grabber
coordinates. These coordinates are the tie points needed to calculate a warping.

Precisely locating a projected cross

The basic steps in locating a projected mark through the video camera are as fol-
lows:

1) Prompt the user to place a projected window on the desk to give the sys-
tem an approximation of where the camera is pointing.

2) Inside each of the four corners and in the centre of this window:
a) project a thick “plus mark;”
b) pause to allow the display system (X windows and the LCD

panel) to catch up;
c) grab the image through the camera and threshold it;
d) perform mathematical morphology operations on the image

to locate the mark;
e) pinpoint the centre of the mark.

Calibration - Precisely locating a projected cross

70

3) Use the four corner point pairs located in this way to calculate a warp-
ing.

4) Use the warping to predict where the centre point should appear.
5) Test if the centre point is close to its prediction. If it’s not then try again,

else use the calculated warping.

Now let us go through each of these steps in a bit more detail:

Step 1: This step is necessary to ensure the system can project a mark that can
be seen by the camera. The camera may be zoomed into a small part of the dis-
play, or it may be zoomed out to cover the entire display. The image processing
system expects the apparent size of the marks (in frame grabber pixels) to be
within a certain range, so if the camera is zoomed out, then the marks must be
projected larger than if the camera is zoomed in. The size of the window the
user sweeps out indicates to the system how large to make the projected marks.
This manual step is not strictly necessary, because it is possible for the system to
discover this approximate rectangle on its own, but this facility has not yet been
implemented. A way to do it would be to start by grabbing two frames: one with
the entire display white, and one with the entire display black. If there is no dif-
ference between the frames, then the camera cannot see the display and an error
message would be generated. If there is a difference, then a smaller part of the
display would be changed. The goal of this algorithm would be to find the larg-
est rectangular area of the display on which a change is noticed by the camera,
and where enlarging this area makes no additional difference.

Step 2: This step finds 5 tie point pairs (display coordinates ↔ grabber coordi-
nates). The four corner points are projected 1/4 of the distance in from each cor-
ner, and the 5th test point is placed in the centre.

Step 2a: this mark is designed to be easily found using morphological tech-
niques, even in the presence of substantial noise. Another approach that was
tried was to XOR the mark into the display. The idea here was that no matter
what was currently being displayed, the camera would be able to subtract the
before and after images and detect a mark, and the hope was that the system
could periodically (or continuously) self-calibrate even while it was being used.

This worked well on a background of mostly solid black and white areas, but
because of the sometimes large difference in resolution between the camera and
display, XORing the mark into a complex or patterned background often did not
show up (on a fine gray background, even the human eye can hardly detect an
XORed mark). Another problem with the mark was that it did not work well
when projected onto paper with black marks on it. There is very little difference
between projected black and projected white when projected onto black ink. So
to make things simple and reliable, the current system requires the user to clear
the area below the camera (e.g. by putting down a blank sheet of paper), and it
only projects black marks onto a white background.

Step 2b: If the program does not pause long enough after displaying the mark
and before grabbing the image, then the mark does not appear in the frame grab-
ber, or it may appear only very faintly, because the LCDs have not had enough
time to finish changing state.

Calibration - Mathematical Morphology

71

Step 2c: Simply grab the entire field of view of the camera as a gray-scale image
and threshold it using the quick adaptive thresholding technique described in the
previous chapter.

Step 2d: Mathematical morphology and how it is used to locate calibration
marks is described in the next section.

Step 2e: The end result of the morphological analysis is a bitmap with all bits
clear except for the central part of the plus mark. This step finds the north-west
and south-east corners of this small rectangle. If the corners are farther apart
than expected, then something has gone wrong;e.g. more than one mark was in
the camera’s field of view. Otherwise, the midpoint between these two corners is
used as the position for the mark.

Step 4: The four pairs of tie points are used to calculate a warping as described
above, by solving the simultaneous linear equations. Then it is used to calculate
where a mark displayed in the centre of the four displayed tie points should
appear in frame grabber coordinates.

Step 5: The predicted location is compared to the measured location. This is
done by calculating the sum of the squares of the differences between the x
coordinates and the y coordinates. The current system uses 4 as the upper
bounds for this. If something goes wrong during the calibration process (e.g. the
user moves a piece of paper under the camera), and it was not detected before,
then the problem is usually discovered at this point because this distance is too
great. Even if a little noise, vibration, or changing lighting conditions caused
inaccurate readings, then the system will go around and locate the five points
again. In normal circumstances, however, the system usually finds the sum of
the squares of the errors at this point to be 1 or 2,i.e. neither x or y coordinate is
more than one pixel off.

The original intention was for this algorithm to continue recursing down into
each of the four quadrants and to continue refining the warping, but a single set
of four points turns out to be more than precise enough to allow the user to
select areas on the desk and rely on the displayed feedback to precisely indicate
what will appear in the grabbed image. The process could be made significantly
faster, however by displaying and locating all five points at once.

Mathematical Morphology

A proper description of mathematical morphology (sometimes called image
morphology) is outside the scope of this chapter (for this see [Hara87]), but this
section briefly introduces the concepts and walks through how they are applied
to the problem of locating the calibration mark.

Mathematical morphology is an approach to image processing that is based on
set theory and shape. Two basic operations aredilation anderosion.In the fol-
lowing discussion, A and B are sets of points that represent binary images; for

Calibration - Mathematical Morphology

72

each black pixel in the image, the corresponding point is an element of the set
(See Figure 6-5 for example).

Dilation

The dilation of A by B is denoted by A⊕ B and is defined below, treating the
pointsp, a, andb as vectors for the purpose of addition.

Α ⊕ Β = {p | p = a + b for somea ∈ Α andb ∈ Β}.
See Figure 6-6 for an example.

Although A⊕ B = B ⊕ A, by convention they are handled quite differently. The
first operand A represents the image bitmap, and B represents a smallerstruc-
turing element which is thought of as a single shape parameter for the dilation
transformation.

Figure 6-5.

Figure 6-6.

BA x
y

A = {(0,1), (1,1), (2, 1), (2, 2), (3, 0)}

B = {(0,0), (0, 1)}

A ⊕ B x
y

A ⊕ B = {(0,1), (1,1), (2, 1), (2, 2), (3, 0)
(0,2), (1,2), (2, 2), (2, 3), (3, 1)}

Calibration - Mathematical Morphology

73

Erosion

The erosion of A by B is denoted by A θ B and is defined by

Α θ Β = {p | p + b ∈ Α for everyb ∈ Β}.
See Figure 6-7 and Figure 6-8 for an example

Opening and Closing

Dilation and erosion are often applied in pairs.

A

B

B = {(0,0), (0, 1)}

x
y

A = {(1,0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (3, 1), (4, 1), (5, 1)}

Figure 6-7:

A θB x
y

A θ B = {(1,0), (1, 1), (1, 2), (1, 3), (1, 4)}

Figure 6-8:

Calibration - Finding the calibration mark

74

Theopening of an image A by structuring element B is denoted by A ° B and is
defined by

 A ° B = (A θ B) ⊕ B.

Theclosing of an image A by structuring element B is denoted by A• B and is
defined by

 A• B = (A ⊕ B) θ B.

As proven in [Hara87], these two operations are idempotent,i.e. applying them
a second time does not make further changes. Their effect is to eliminate spe-
cific details of the image smaller than the structuring element without distorting
larger features. For example, opening an image with a disk structuring element
smooths the contours, breaks narrow isthmuses, and eliminates small black
islands. Closing an image with a disk structuring element also smooths the con-
tours, fuses narrow breaks, and eliminates small white holes.

Finding the calibration mark

This section describes the use of morphological operations to find the calibra-
tion mark in the presence of noise and other bits of black in the image. The basic
strategy is to eliminate all pixels in the image other than long horizontal areas
and long vertical areas, then to look at the intersection between them. The code
calls mathematical morphology routines implemented in C by Dan Bloomberg
[Bloo90, Bloo91] through a Modula-3 interface.

Calibration - Finding the calibration mark

75

Figure 6-9 illustrates the type of image (after thresholding) in which the system
must locate the thick “plus” mark. This example is the picture of a final test

mark projected in the centre of the calibration window to check if it appears in
the location predicted. In this example, a paper with text and graphics was left
on the desk under the camera to make the location of the cross a bit more chal-
lenging— normally it is best for the desk to be completely clear of extraneous
marks. Also, the projected self calibration window is a bit too small for the field
of view of the camera, so some projected text appears near the top of the image.
In addition, the camera and display are slightly rotated relative to each other, as
can be seen by the angle of the (fuzzy) projected window borders on the left
side. All these features must be filtered out by the morphological operations in
order to locate the cross in the centre.

The first step is to erode the thresholded image by a square structuring element 5
pixels by 5 pixels with its origin in the centre. This leaves a mark only in black
areas at least this big, but removing 2 pixels off the top, bottom, left and right
sides these areas. The size of the projected plus mark should be about 50 frame
grabber pixels high and wide and 20 pixels thick to comfortably survive an ero-
sion by this structuring element. Of course this could be any number of projec-
tor pixels depending on how far the camera is zoomed, so the user is asked to
approximate the camera’s field of view with the self-calibration window, and the
projected cross size is based on this window size. In an image less noisy than

Figure 6-9: Thresholded image of the final test point.

Calibration - Finding the calibration mark

76

this one, most other marks would disappear completely. The result is shown in
Figure 6-10.

The next step is to open the image with a structuring element 32 pixels tall, 1
pixel wide, and with its origin in the centre. This has the effect of removing all
marks except those composed of vertical lines 32 or more pixels tall. The verti-
cal stroke of the plus mark and the over-scanned left edge are the only features
which survive this operation (see Figure 6-11). As long as the camera and dis-
play are not rotated more than about 30 degrees relative to each other, then this
stroke should survive.

Figure 6-10: Result after encoding with a 5x5 structuring element.

Calibration - Dynamic Calibration

77

The following step is to open the eroded image with a structuring element 32
pixels wide and 1 pixel tall, preserving only marks that are 32 or more pixels
wide (see Figure 6-12).

Finally, these two images are ANDed together to produce the result in Figure 6-
13, where the only pixels remaining are from the centre of the plus mark. The

system uses the midpoint of this mark to determine the frame grabber coordi-
nates of the displayed cross.

Dynamic Calibration

The DigitalDesk currently uses static calibration technique, with a warping that
is initially calculated from a set of tie points and then used, unchanged, until the
system is calibrated again. Although this works well with the current equipment
and set of applications, the disadvantage of this method is that users must stop
everything whenever the system needs to be recalibrated. A future implementa-
tion of the DigitalDesk may allow users to adjust the camera and the display fre-
quently depending on the resolution required or on the part of the desk in use. If

Figure 6-11 Figure 6-12

Figure 6-13

Calibration - Summary

78

users must frequently pause to recalibrate, this can make the system much less
usable. It would be much better if the system could continuously calibrate itself
without needing to stop working.

In principle, this should be possible with a fast enough image processing sys-
tem. The key is for the system continuously to recognize and locate what it dis-
plays on the desk as part of the user interface. This can be especially useful
when displaying dynamic feedback to the user such as a cursor or rubber-band
rectangle.

Finger following might also be implemented with dynamic calibration instead
of the current static method; the basic process would be simple. When the sys-
tem locates the user’s finger in the image processing system it would guess,
based on current information, what display coordinate this position corresponds
to, and the system would display a cursor at that point. It then would quickly
grab another frame, locate this cursor and see how far it appears from the finger-
tip. Based on this error, it moves the cursor closer to the finger and checks again.
To determine where to move the cursor, the system can use a crude warping
(perhaps a two point warping) that is dynamically updated based on recent local
cursor positions. The process is essentially the same one a person would use
with a mouse to follow someone’s finger pointing at a workstation screen. If this
loop can be executed at video rates, the cursor might appear to follow the finger
very smoothly and precisely. For this, not only a fast frame grabber and image
processing system are necessary, but also an LCD panel that can change the
state of its pixels at video rates. This method could work even while the camera
and display are moving.

Summary

Calibration is necessary both for mapping the tablet to the display and for map-
ping the display to the frame grabber. In both cases, a variety of distortions must
be dealt with, so a two point warping is not adequate. A four point warping
based on solving simultaneous linear equations does a good job, however. A
second order polynomial without thex2 andy2 terms works well, and it was not
found necessary to recursively break the warping down into smaller parts.
Mathematical morphology allows a projected mark to be accurately located on
the desk even in the presence of noise, and these projected marks provide the
four tiepoints necessary to automatically calculate the display to grabber warp-
ing with minimal user input.

Future directions and conclusion - Future Directions

79

Chapter 7
Future directions and
conclusion

Future Directions

This chapter discusses potential directions for continuing work on the
DigitalDesk and Augmented Environments. It describes a set of possible
projects ranging from untested new ideas to relatively well understood software
engineering. Some of these are simply continuation of work that has been
started, and others represent relatively new directions. The DigitalDesk has
opened up a large new design space, and future work should both continue to
explore new regions of this space, and it should refine some of the specific
interaction techniques and applications that have been introduced. Future work
can focus on getting more out of each device and interaction technique, and it
can continue to introduce new ones. The brief descriptions below illustrate some
possibilities.

Getting rid of the tablet

A limitation with the current DigitalDesk system is that it requires a digitizing
tablet to allow pointing at projected images. This currently makes it harder to
use on whiteboards and ordinary desks. Clearly, a better way to point is with
unencumbered fingers or pens as observed by the system through the video
camera(s). Although early prototypes demonstrated the feasibility of finger
following, the current implementation is too crude to be useful for real
applications. Usable finger-following should be fast, accurate, and ideally
should track multiple fingers at the same time. It may be easier to do this first by
wearing something on the fingers (or finger nails) before implementing bare-
finger following. It could also be very interesting to experiment with a version
of Edgar’s shadow parallax [Edga84], but using an infrared laser instead of a
CRT. Sound and voice input could also help.

Tivoli

Tivoli [Pede93] has advanced pen-based interaction techniques, and it can run
almost without modification on the DigitalDesk. But as it stands, Tivoli has no
support for using real paper documents or real pens, markers, and erasers. An
interesting project would be to incorporate the basic features of PaperPaint into
Tivoli. This would allow users to sketch with real pens on real paper (or bring in
preprinted documents), and paste the physical sketches into the electronic
background of Tivoli. This may not require much modification of Tivoli or of
the DigitalDesk software, and it would provide some of the best features of both
in a single application. With finger following in place, this system could also be
used to augment an ordinary whiteboard.

Future directions and conclusion - Future Directions

80

Real use studies

Some office tasks involve a lot of cutting and pasting of paper documents before
distributing them. A clipping service, for example cuts out articles from various
newspapers and magazines, collects them for specific clients, and makes copies
for redistribution. A DigitalDesk application might make this task much easier
(e.g. the “taking notes” scenario in the simulation video). It should be possible
to find some people whose jobs could be made much easier by this application
and to let them try a real working system, then study the system’s impact on its
users. Another option for a “real use” application might be a version of the
translation system, or a collaborative application making use of the
DoubleDigitalDesk.

Pen-based computing & PenPoint

Commercial pen-based computing is maturing, especially for notepad-sized
computers, but its also an intrinsic component of the DigitalDesk and the Live-
Board. It may be that the best way of implementing the DigitalDesk (e.g for the
application above) is on top of the PenPoint operating system. This would give
DD applications all the pen-based interaction techniques and applications avail-
able in PenPoint such as character recognition, gesture recognition, and the
notebook metaphor. Also, the embedded documents of PenPoint seem
appropriate for the DigitalDesk. The aim of this system would be allow
computer augmented interaction with physical notebooks in the same ways that
PenPoint already supports electronic notebooks.

Electronic Annotation of paper documents

With a document identification system, the DigitalDesk could provide a way to
make electronic annotations on paper documents that would be useful for a
number of applications. A text book could be read in its paper form on the
DigitalDesk, but the projector could add some electronic buttons to the paper
pages that when pressed, follow hypertext links or play video clips. Another
way of using this is for people who have copies of the same paper document to
share their annotations. Each person would show his or her marked up paper
document to the DigitalDesk, and it could project the marks that other people
made on their copies of the document. EuroCode is beginning to explore some
of these ideas now [ESPR93].

Multiple display surfaces of arbitrary size and resolution

Imagine that your drafting table, your walls, your whiteboards and even your
ceiling could be a computer display as large and as high-resolution as you want.
The LiveBoard and DigitalDesk have started exploring this concept, but it is
still impractical to have large displays all over your office. This proposal is for a
device and interaction technique that could make it practical.

A fundamental problem with large projected displays is the sizevs. resolution
trade-off: the larger the display, the lower the resolution. But, imagine that on
your desk, your whiteboard and your walls there were electronic objects:e.g.
computer applications, video screens, and electronic documents. Normally you
would not see them, but when you point your DigitalDeskLamp at these sur-
faces, then the objects appear. If the lamp illuminates a large area then you can-
not seem them in much detail, but all you need to do in order to see the objects

Future directions and conclusion - Summary and conclusion

81

in more detail is to move the lamp closer. The electronic objects remain the
same size and in the same location, but details appear, and tiny text becomes
readable.

This display would require a small light-weight projector on an articulated arm,
a means for sensing its position and orientation, and software to scale, translate,
rotate, and otherwise distort the projected image. Ideally, these distortions
should occur in real time response to projector movements.

Summary and conclusion

This dissertation has described the DigitalDesk, a computer augmented environ-
ment for paper that enables a set of novel human-computer interaction tech-
niques. A number of working prototypes were developed that demonstrate both
the utility and the feasibility of the DigitalDesk. These prototypes and the simu-
lation video have generated significant interest at other research labs (e.g. at
least five unsolicited invitations to give talks) and interest from the press (e.g.
[Chev92, BBC92, Metc92, Wise92, Gale93 and Imai92]). The DigitalDesk has
inspired other researchers to work in the same area (e.g. [Cart93, Mack93,
ESPR93, Staf93 and Lope93]), and the DigitalDesk Toolkit has made it easier
for them to do so by providing input device support, an architecture on which to
build applications, and implemented solutions to the problems of thresholding
and calibration.

Instead of making the electronic workstation more like the physical desk, the
DigitalDesk does the opposite: it makes the desk more like the workstation, and
it supports computer-based interaction with paper documents. Experience so far
with this desk is encouraging. It enables people to do useful tasks with paper
documents that are more awkward to do in other ways: tasks such as copying a
long number into a calculator, translating a foreign word, replicating part of a
sketch, or remote shared editing of paper documents. The interaction style
supported by this desk is more tactile than “direct manipulation” with a mouse,
and it seems to have a wide variety of potential applications, well beyond those
described in this dissertation.

This work can be seen as a step towards better integration of paper documents
into the electronic world of personal workstations, making paper-based infor-
mation more accessible to computers. The motivation for this work, however, is
just the opposite. The goal is not to enhance computers by giving them better
access to paper; it is to enhance paper by giving it better access to computers.
There is a difference between integrating the world into computers and integrat-
ing computers into the world. The difference lies in our perspective: do we think
of ourselves as working primarily in the computer but with access to physical
world functionality, or do we think of ourselves as working primarily in the
physical world but with access to computer functionality? Much of the research
in human-computer interaction seems to emphasize the former perspective, yet
many useful ideas can be gained from the latter. Instead of makingus work in
the computer’s world, let us makeit work in our world.

Appendix A Modula-3 interface for Grabber -

82

Appendix A
Modula-3 interface for Grabber

INTERFACE Grabber;

(**
 * Pierre Wellner
 * $Revision$
 *
 * The purpose of this object is to provide an abstraction for frame
 * grabbers that works with several different grabbers with different
 * resolutions and with multiple cameras attached to the same board.
 * Even though there may only be one physcial frame grabber, there can be
 * many Grabber.T objects, representing different frame grabber
 * configurations. These configurations are not actually applied to the
 * grabber until a call such as grabRect() is made (in this way a
 * Grabber.T is a bit like a graphics context). Some frame grabbers have
 * advanced features (such as image loopback) that are not supported by
 * the top-level object.
 *
 * Each Grabber.T object has a Warping. The purpose of this warping is so
 * that many instances of T can exist, corresponding to different cameras
 * and different zoom factors, etc, but clients can specify pixels in a
 * global coordinate space and each Grabber.T instance will warp them to
 * it’s own coordinate space. On a digital desk with multiple cameras
 * pointing at it, the global coordinate space could be that of the
 * display. By default this Warping is equal to Warping.Identity.
 *
 * Each Grabber.T object also has a bounds rectangle that clips the points
 * after they have been warped. This clipping rectangle corresponds to the
 * field of view of the camera, and so limits the extent that can be
 * grabbed.
 *
 * If the Grabber’s warping is NIL, GrabRect treats its argument as a
 * rectangle in the hardware coordinate space, and simply clips it to the
 * bounds and returns a Pixmap.Raw. This is equivalent to passing a
 * warping equal to Warping.identity
 *
 * If the Grabber’s warping is non-NIL, then GrabRect() treats the Rect.T
 * as a parameter in global coordinate space. It Warps each corner of this
 * rectangle to hardware coordinate space and finds the smallest rectangle
 * that contains all four warped points. This new rectangle is then
 * clipped to the bounds actually covered by the grabber.
 *
 * To grab the maximum resolution image supported by the Grabber, you can
 * pass it the argument Rect.Full
 *
 * Normally grabRect should be called with the result argument set to its
 * default of NIL. If the result argument of grabRect is non-NIL, however,
 * then grabRect will fill result up and return it instead of allocating a
 * new Raw, but result must be big enough to hold the resulting image. One

Appendix A Modula-3 interface for Grabber -

83

 * way to create it, for example, could be by calling ScrnPixmap.NewRaw(8,
 * Grabber.getBounds()) or if you grab the same size image over and over in
 * a loop, you can do the following:
 * raw := grabber.grabRect(..., result := raw);
 * If raw starts out as NIL, the right amount of storage will be
 * allocated, and subsequent grabs will save the garbage collector from
 * having to work too hard.
 *
 * getBounds(rect: Rect.T) returns the bounds of the Pixmap.Raw that
 * would be returned if rect were passed to grabRect. The default
 * argument is Rect.Full which will return the size of the grabber in
 * hardware pixels. This method is useful to find out the size of an
 * image (if any) that would be grabbed when you know the rect in global
 * coordinate space. When the sampling factor is half or quarter, this has
 * the same effect as though the hardware was of lower resolution. Note
 * that half and quarter sampling factors to not always produce images
 * that are exactly half or quarter size of full images, so it is neccessary
 * to call getBounds() to find out. To find what the bounds of the grabber
 * correspond to in global coordinate space you would have to do
 * something like the following:

 Warping.FromPointPairs(
grabber.getSettings().warping).unwarp(grabber.getBounds())

 *)

IMPORT Rect, ScrnPixmap, ExceptionArg;
IMPORT GrabberParms;

EXCEPTION Failed(ExceptionArg.T);

TYPE Settings = GrabberParms.Settings;

CONST
 DefaultSettings = Settings{
 port := 1,
 warping := NIL,
 imageType := GrabberParms.ImageType_Grey,
 sampling := GrabberParms.Sampling_Full,
 instanceName := NIL
 };
TYPE
 T <: Private;
 Private <: Public;
 Public = MUTEX OBJECT
 METHODS
 init(READONLY settings := DefaultSettings): T RAISES {Failed};
 getSettings(): Settings;

 getBounds(READONLY rect := Rect.Full): Rect.T RAISES {Failed};

 grabRect(READONLY rect := Rect.Full;
 result: ScrnPixmap.Raw := NIL
): ScrnPixmap.Raw RAISES {Failed};
 END;

END Grabber.

Appendix B Modula-3 interface for Warping -

84

Appendix B
Modula-3 interface for Warping

INTERFACE Warping;

(*
 * Pierre Wellner
 *
 * A Warping provides a mapping between two coordinate spaces: one
 * “unwarped” and the other “warped.” The mapping is calculated based on
 * a set of tiepoints where each tiepoint is a PointPair that maps a
 * single unwarped point to a single warped point. The init() methods
 * determine how many tiepoints the Warping is based on, and return the
 * appropriate subtype of Warping.T. These tiepoints are then set by
 * the various set methods. The implementation of the warping
 * (or subtype returned by init) depends on the number of points. Only
 * 2 and 4 point warpings are currently supported, although this interface
 * is meant to support warpings based on arbitrary numbers of points.
 *
 * The Types Points and PointPairs should be the same as those in
 * GrabberParms.i3 generated from the .x file. Also see the file warping.x.
 *
 * T is a MUTEX and all methods lock self to prevent thread conflicts.
 *
 * ReadPointPairs() uses the Sx package to parse a lisp-like nested
 * parenthetical expression that specifies a list of PointPairs, e.g.
 *
 * (((0 0) (100 100)) ((10 10) (200 200)) ((1 2) (3 4)) ((5 6) (7 8)))
 *
 * To initialize a Warping.T from a file, you could do something like this:

 TRY
 pointPairs := Warping.ReadPointPairs(warpingFile);
 w4 := NEW(Warping.T).init(NUMBER(pointPairs^));
 EVAL w4.setPairs(pointPairs^); (* if it’s not full then it will fail later,
 or you can check and raise an error here *)
 EXCEPT
 | Warping.Failed (arg) => Utils.PutText(arg.info);
 | Warping.BadFormat =>
 Utils.PutText(
 Fmt.F(“badWarpingformatfile\”%s\”\n”, warpingFilename));
 RTMisc.Exit(1);
 | Rd.Failure =>
 Utils.PutText(Fmt.F(“can’t read file\”%s\”\n”, warpingFilename));
 RTMisc.Exit(1);
 END;

 *)

IMPORT Point, Rect, Rd, Wr, ExceptionArg;

Appendix B Modula-3 interface for Warping -

85

EXCEPTION
 BadFormat(Failure);
 Failed(Failure);

TYPE
 Failure = ExceptionArg.T BRANDED OBJECT END;
 FullFailure = Failure BRANDED OBJECT size: CARDINAL; END;
 NotReady = Failure BRANDED OBJECT minimum: CARDINAL; END;

TYPE
 PointPair = RECORD
 p : Point.T;
 wp: Point.T; (* warped point *)
 END;

 PointPairs = REF ARRAY OF PointPair;

 T <: Public;

 Public =
 MUTEX OBJECT
 METHODS
 init (READONLY numberOfTiepoints: CARDINAL): T RAISES {Failed};

 set (READONLY p, wp: Point.T): BOOLEAN RAISES {Failed};
 setPairs (READONLY tiepoints: ARRAY OF PointPair): BOOLEAN
 RAISES {Failed};
(*set and setPairs reset existing PointPairs if either the point or warped point

equal a corresponding tiepoint. This means that it is impossible to have the
same point tied to two different warped points or vice versa.
These procedures return TRUE when the Warping is ready, FALSE otherwise.

*)

 getPairs (): PointPairs;
 (* returns a all tiepoints as a value suitable for passing to init *)

 warp (READONLY p: Point.T): Point.T RAISES {Failed};
 unwarp (READONLY pw: Point.T): Point.T RAISES {Failed};
 warpRect (READONLY rect: Rect.T): Rect.T RAISES {Failed};
 unwarpRect (READONLY rect: Rect.T): Rect.T RAISES {Failed};
 END;

PROCEDURE ReadPointPairs (sx: Rd.T): PointPairs
 RAISES {Failed, BadFormat, Rd.Failure};

PROCEDURE WritePointPairs (sx: Wr.T; pps: PointPairs)
 RAISES {Wr.Failure, Failed};

VAR
 Identity: T; (* initialized at start up and should never be changed.
 Treat this like a constant. *)

END Warping.

86

Bibliography

[Anst92] Anstey, SimonA. Stylus-driven Symbol Recognizer. Part II CST
Project report, University of Cambridge Computer Laboratory,
Cambridge UK.

[Akam92] Akamatsu, Motoyuki, and Sigeru, Sato “Mouse Type Interface
Device with Tactile and Force Display: Multi-modal Integrative
Mouse.” Proceedings of the Second International Conference on
Artificial Reality and Tele-Existence (ICAT’92). July 1-3, 1992,
Tokyo, Japan.

[Asce92] Ascension Technology Corp.The Ascension Bird, Burlington VT,
1992.

[Azum93] Azuma, Ronald. “Tracking Requirements for Augmented Reality.”
Communications of the ACM. Vol 36 No 7, July 1993.

[Baec87] Baecker, R. and Buxton, W.Readings in Human-Computer Interac-
tion - A Multidisciplinary Approach, p. 606. Morgan Kaufmann,
Los Altos, California, 1987.

[Baju92] Bajura, M., Fuchs, H., and Ohbuchi, R. “Merging Virtual Objects
with the Real World: Seeing Ultrasound Imagery within the
Patient.” Computer Graphics, 26, 2, July 1992.

[Bart68] Bartz, M.T. “The IBM 1975 Optical Page Reader. Part II: Video
Thresholding System.” IBM Journal of Research and Development,
Sep. 1968; pp. 354-363.

[BBC92] British Broadcasting Corporation.Tomorrow’s World, 29th January,
1992.

[Beck89] Beck, K., Cunningham, W. “A Laboratory for Teaching Object-Ori-
ented Thinking”Proceedings of OOPSLA’89, October 1-6 1989.

[Bewl83] Bewley, W. L., Roberts, T. L., Schroit, D., Verplank, W. L. “Human
Factors Testing in the Design of Xerox’s 8010 “Star” Office Work-
station.” InProceedings of CHI’83, ACM, New York 1983.

[Bier93] Bier, Eric A. and Buxton William, “Toolglass” SIGGRAPH ’93,
Aneheim California.

[Bles88] Bleser, Teresa W., Sibert, John L, and McGee, Patrick “Charcoal
Sketching: Returning Control to the Artist” ACM Transactions on
Graphics, vol. 7, no. 1, January 1988, pp 76-81.

[Bloo90] Bloomberg, D., and Maragos, P. “Generalized Hit-Miss Opera-
tions” In Proceedings of SPIE Conference 1350: Image Algebra

87

and Morphological Image Processing, San Diego, CA, July 1990.
(Also available as Xerox PARC Technical Report EDL-90-1.)

[Bloo90b] Bloomberg Dan S. “Self-Clocking Embedded Digital Data.” US
Patent 5,168,147.

[Bloo91] Bloomberg, D. “Connectivity-Preserving Morphological Image
Transformations.” Xerox PARC Report EDL 91-1 Xerox Palo Alto
Research Center, Palo Alto California (1991).

[Brit92] Brittan, David “The Promise of Multimedia Connections,” Tech-
nology Review, May/June 1992, MIT.

[Broo88] Brooks, Frederick P. “Grasping Reality Through Illusion - Interac-
tive Graphics Serving Science.” InProceedings of the Conference
on Computer and Human Interaction (CHI ’88) 1988

[Broo90] Brooks, F.P., Ouh-Young, M., Batter, J.J., Kilpatrick, P.J. “Project
Grope -- Haptic Displays for Scientific Visualization.”ACM Com-
puter Graphics, vol. 24, no. 4, August 1990, pp. 177-185.

[Buxt85] Buxton, W., Hill, R., and Rowley, P. “Issues and Techniques in
Touch-Sensitive Tablet Input.” SIGGRAPH ’85 Vol, 19, no. 3, San
Fransisco, July 22-26 1985.

[Bux86] Buxton, W., and Myers, B. “A Study in Two-Handed Input.” In
Proceedings of the Conference on Computer and Human Interac-
tion (CHI ‘86) 1986.

[Buxt90] Buxton, W. “Smoke and Mirrors.” Byte vol. 15 no. 4 July 1990.

[Carr91] Carr, Robert, and Shafer, Dan.The Power of PenPoint, Addison-
Wesley, Reading, MA 1991.

[Cart93] Carter, K. “Computer Aided Design: Back to the drawing board.”
In Proceedings of Creativity and Cognition, Loughborough, Apr.
1993.

[Cast79] Castleman, K.Digital Image Processing. Prentice-Hall Signal Pro-
cessing Series, 1979.

[Chev92] Chevin, Denise “The art of finger-painting elevated to the science
of communication.”Building magazine, August 28, 1992, p. 44.

[Chun89] Chung, J.C., Harris, M.R., Brooks, F.P., Fuchs, H., Kelley, M.T.,
Ouh-young, M., Cheung, C., Holloway, R.L., and Pique, M.
“Exploring virtual worlds with head-mounted displays.” InPro-
ceedings of SPIE Vol 1083 Three-Dimensioal Visualization and
Display Technologies, 18-20 January 1989.

88

[Cush90] Cushman, W., Ojha, P.S., and Daniels, C.M. “Usable OCR: What
are the Minimum Performance Requirements?” InProceedings of
CHI’90. April 1-5 1990, Seatle, Washington.

[Data92] Data Cell,ITEX s2200 Programmer’s Manual. Data Cell Ltd. Read-
ing, UK 1992.

[Dewi82] DeWitt, T., and Edelstein, P., “Pantomation: A system for position
tracking.” InProceedings of Second Symposium on Small Comput-
ers in the Arts. Oct 1982.

[Edga84] Edgar, Albert D. “Apparatus and Method for Remote Displaying
and Sensing of Information using Shadow Parallax.” United States
Patent 4,468,694 Aug. 28, 1984.

[Elro92] Elrod, S. Bruce, R,et.al. “Liveboard: A large interactive display
supporting group meetings, presentations, and remote collabora-
tion.” In Proceedings of CHI‘92 (Montrey, Calif. May 3-7, 1992),
ACM, New York 1992.

[Elro93] Elrod, S., Hall, G., Costanza, R., Dixon, M., des Rivieres, J.
“Responsive Office Environments”Communications of the ACM.
Vol 36 No 7, July 1993.

[Eric91] Erickson, T., and Salomon, G. “Designing a Desktop Information
System: Observations and issues.” InProceedings of CHI’91.
ACM, New York 1991.

[ESPR93] ESPRIT Project 6155 “EuroCODE: A CWCW Open Development
Environment.” 1993.

[Fein93] Feiner, S., MacIntyre, B., and Seligmann, D. “Knowledge-Based
Augmented Reality.”Communications of the ACM. Vol 36 No 7,
July 1993.

[Fish86] Fisher, S., McGreevy, M., Humphries, J., Robinett, W. “Virtual
Environment Display System.” ACM 1986 Workshop on Interac-
tive 3D Graphics, October 23-24 Chapel Hill, North Carolina.

[Fitz93] Fitzmaurice, George W. “Situated Information Spaces and Spatially
Aware Palmtop Computers.”Communications of the ACM. Vol 36
No 7, July 1993.

[Floy76] Floyd, R. W. and Steinberg, L. “An Adaptive Algorithm for Spatial
Greyscale.” InProceedings of the S.I.D. 17,2 (Second Quarter
1976); pp 75-77.

[Fran91] Francik, E., Rudman, S., Cooper, D., and Levine, S. “Putting Inno-
vation To Work: Adoption Strategies for Multimedia Communica-
tion Systems.”Communications of The ACM. vol 34, no 12,
(December 1991).

89

[Free93] Freeman, Steven M. G.An Architecture for Distributed User Inter-
faces PhD Dissertation, University of Cambridge Computer Labo-
ratory, Pembroke Street, Cambridge, England, 1993.

[Fren90] Frenckner, T. “Legibility of Continuous Text on Computer Screens
- A Guide to the Literature.” TRITA-NA-P9010 IPLab-25, June
1990. Department of Numerical Analysis and Computing Science,
Royal Institute of Technology, S-100 44 Stockholm, Sweden.

[Gale93] Gale, David. “Meeting in a Virtual World.”New Scientist,13
March 1993.

[Gave92] Gaver, W., Moran, T., MacLean, A., Lövstrand, L., Dourish, P.,
Carter, K. and Buxton, W. “Realizing a video environment: Euro-
PARC’s RAVE system.” InProceedings of CHI‘92 (Montrey, Calif.
May 3-7, 1992), ACM, New York 1992.

[Gave93] Gaver, W. “Synthesizing Auditory Icons” InProceedings of
INTERCHI‘93 (Amsterdam April 24-19, 1993).

[Gett90] Gettys, J., Karlton, P., and McGregor, S. “The X Window System,
Version 11.”Software Practice and Experience October Vol 20 No
10, 1990.

[Gold91] Goldberg, D. and Goodisman, A. “Stylus User Interfaces for
Manipulating Text.” InProceedings of the ACM Symposium on
User Interface Software and Technology (UIST ‘91), November 11-
13, Hilton Head 1991.

[Good91] Goodisman, Aaron.A Stylus-Based Interface for Text: Entry and
Editing. Master’s thesis, Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science, May
1991.

[Gosl89] Gosling, J., Rothenthal, D., and Arden, J.The NeWS Book: an
introduction to the Network Extensible Window System, Springer-
Verlag, New York 1989.

[Hala82] Halasz, F. and Moran, T. “Analogy Considered Harmful.” InPro-
ceedings of Human Factors in Computer Systems, March 15-17,
1982 Gaithersburg, Maryland.

[Hamm87] Hammond, J.H. and Austin, J.The Camera Lucida in art and sci-
ence. Adam Hilger, Bristol 1987.

[Hans88] Hansen, W. J., and Haas, Christina. “Reading and Writing with
Computers: A Framework for Explaining Differences in Perfor-
mance.”Communications of the ACM, vol. 31, no. 9, September
1988.

90

[Hara85] Haralick, Robert M. and Shapiro, Linda G. “Image Segmentation
Techniques.” Computer Vision Graphics and Image Processing, 29
January 1985; pp. 100-132.

[Hara87] Haralick, R., SternBerg, S., Zhuang, X. “Image Analysis Using
Mathematical Morphology,”IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. PAMI-9, no. 4, July 1987; pp.
532-550.

[Hecht90] Hecht, David L. “Method and means for reducing bit error rates in
reading self-clocking glyph codes.” US Patent 5,221,833.

[Hews90] Hewson, R. “Sketching by numbers: is typographic design possible
in the electronic paradigm?” Center for Information Technology in
Education (CITE) Report no. 108. Open University, Walton Hall,
Milton Keynes MK7 6AA UK.

[Imag89] Imaging Technology.Series 100 Product Brief: Real-Time Digital
Image Processor(47-B10006-08) Imaging Technology Incorpo-
rated Corporate Communications Department, Woburn, Massachu-
setts 1989.

[Imai92] Imai, Takuji. “The Next Generation User Interface: From GUI to
Multimodal.” Nikkei Electronics July 20, 1992, p. 121. (Japanese
version); September 1992, pp. 24-25 (English version).

[Ishi91] Ishii, Hiroshi and Miyake, Naomi. “Toward an Open Shared Work-
space: Computer and Video Fusion approach of TeamWorkSta-
tion.” Communications of the ACM, vol. 34, no. 12 (December
1991).

[Ishi92] Ishii, H., Kobayashi, M, Grudin, J. “Integration of Inter-Personal
Space and Shared Workspace: ClearBoard Design and Experi-
ments.” InProceedings of the ACM Conf. on Computer Supported
Cooperative Work,(CSCW’92) Toronto, September 1992.

[John85] Johnson, Jeff. “The Desktop Metaphor as an Approach to User
Interface Design.” (Panel) InProceedings of ACM Annual Confer-
ence, Denver, Colorado, Oct 14-16 1985.

[John87] Johnson, Jeff. “How Faithfully Should the Electronic Office Simu-
late the Real One?”SIGCHI Bulletin, October 1987 vol. 19, no. 2.

[John89] Johnson, J., Roberts, T., Verplank, W., Smith, D., Irby, C., Beard,
M., Mackey, K. “The Xerox Star: A Retrospective.”IEEE Com-
puter vol. 22, no. 9, September 1989.

[John93] Johnson, W., Jellinek, H., Klotz, L., Rao, R., Card, S. “Bridging the
Paper and Electronic Worlds: The Paper User Interface.” InPro-
ceedings of INTERCHI‘93 (Amsterdam April 24-19, 1993).

91

[Kay91] Linderholm, Owen “Mind Melding: How far can the human/com-
puter interface go?” (Interview with Alan Kay). Byte Special Edi-
tion Vol 16, No 11, 1991.

[Know77] Knowlton, K. “Computer Displays Optically Superimposed on
Input Devices.” Bell System Technical Journal, vol. 56, no. 3,
March 1977.

[Koba92] Kobayashi, M. and Ishii, H. “DispLayers: Multi-Layer Display
Technique to Enhance Selective Looking of Overlaid Images”
CHI’92 Poster session, 1992.

[Krue83] Krueger, M.Artificial Reality. Addison-Wesley, 1983.

[Krue85] Krueger, M. “VIDEOPLACE -- An Artificial Reality.” InProceed-
ings of CHI ’85.

[Krue91] Krueger, M.Artificial Reality II. Addison-Wesley, 1991.

[Krue93] Krueger, M. “Environmental Technology: Making the Real World
Virtual.” Communications of the ACM. Vol 36 No 7, July 1993.

[Laki89] Lakin, F., Wambaugh, J., Leifer, L., Cannon, D., and Sivard, C.
“The electronic design notebook: performing medium and process-
ing medium.” The Visual Compter, Springer-Verlag pp. 214-226
1989.

[Lamm92] Lamming, Mik and Newman, W. “Activity-based Information
Retrieval: Technology in Support of Personal Memory”Personal
Computer and Intelligent Systems, Information Processing ’92 Vol-
ume III Elsevier, 1992 IFIP.

[Lope93] Lopez-Welsch, Lionel, “A Painting Tool for Real Paper.” Univer-
sity of Cambridge Computer Lab diploma project report, 1993.

[Luff92] Luff, P., Heath, C., and Greatbach, D. “Tasks-in-interaction: Paper
and screen based documentation in collaborative activity.” InPro-
ceedings of the ACM Conf. on Computer Supported Cooperative
Work,(CSCW’92) Toronto, September 1992.

[Mack93] Mackay, W., Velay, G. Carter, K., Ma, C. and Pagani, D. “Augment-
ing Reality: Adding Computational Dimensions to Paper”Commu-
nications of the ACM. Vol 36 No 7, July 1993.

[Magg93] Maggioni, Christoph “A Novel Device for Using the Hand as a
Human Computer Interface.” In Proceedings of HCI’93, Loughbor-
ough, England, 1993.

[Malo83] Malone, Thomas W. “How Do People Organize Their Desks?
Implications for the Design of Office Information Systems.”ACM
Transactions on Office Information Systems, Vol 1, No. 1, 1983.

92

[Mana91] Manasse, Mark S. and Nelson, Greg.Trestle Reference Manual.
Digital Equipment Corporation Systems Research Center, Palo Alto
California. December 1991.

[Metc92] Metcalfe, Bob “WANs, MANs, LANs, and now DANs: Desk Area
Networks.”Communications Week Feb 24, 1992.

[Meye92] Meyer, Kenneth and Applewhite, Hugh “A Survey of Position
Trackers.”Presence, vol. 1, no. 2, Spring 1992.

[Mill91] Miller, R. “Behold the Humble Barcode.”Multimedia and Video-
disk Monitor. Arlington VA, Sept. 1991.

[Minn91] Minneman, S.L. and Bly, S.A. “Menaging a Trois: a study of a
multi-user drawing tool in distributed design work.” InProceedings
of the Conference on Computer and Human Interaction (CHI ‘91),
New Orleans, LA, April 28-May 2, 1991.

[Minn93] Minneman, S.L. and Harrison, S.R. “Where Were We: Making and
Using Near-synchronous, Pre-narrative Video.” InProceedings of
ACM Conf. on Multimedia, Anaheim California, 1993.

[Mins90] Minskey, M., Ouh-Young, M., Steele, O., Brooks, F.P., Behensky,
M. “Feeling and Sensing: Issues in Force Display.” ACM Computer
Graphics, vol. 24, no.2, March 1990, pp. 235-243.

[Monk92] Monkman, G.J. “An Electroheological Tactile Display.”Presence
Vol 1. No 2. Spring 1992.

[Mori91] Morita, H., Hashimoto, S., and Ohteru, S. “A Computer Music Sys-
tem that Follows a Human Conductor.”IEEE Computer, July 1991.

[Nels91] Nelson, Greg,Systems Programming with Modula-3, Prentice-Hall,
Englewood Cliffs, NJ 1991.

[Newm92] Newman, W., and Wellner, P. “A Desk Supporting Computer-based
Interaction with Paper Documents.” InProceedings of CHI‘92
(Montrey, Calif. May 3-7, 1992), ACM, New York 1992.

[Niel93] Nielsen, Jakob, “Noncommand User Interfaces”Communication of
the ACM vol. 36, No 4. 1993.

[Nye90] Adrian Nye (ed.) Xlib Reference Manual O’Reilly & Associates
1990.

[Olso90] Olson, J.S., Olson, G.M., Mack, L.A. Wellner, P.D. “Concurrent
Editing: The Group’s Interface.” InProceedings of the IFIP TC 13
Third International Conference on Human-Computer Interaction
(INTERACT’90) Cambridge, UK 27-31 August, 1990. (North Hol-
land).

93

[Patr91] Patrick, M. Sachs, G.X11 Input Extension Library Specification,
MIT X Consortium Standard X Version 11, Release 5, 1991.

[Pavl90] Pavlidis, T., Swartz, J., and Wang, Ynjiun “Fundamentals of Bar
Code Information Theory.”IEEE Computer, April 1990; pp. 74-86.

[Pede93] Pedersen, E.R., McCall, K, Moran, T.P., Halasz, F.G. “Tivoli: An
Electronic Whiteboard for Informal Workgroup Meetings.” InPro-
ceedings of INTERCHI‘93 (Amsterdam April 24-19, 1993).

[Penn92] Pennisi, Elizabeth “Talking Maps: Technologies to give the visually
impaired a sense of space.”Science News vol. 142, no. 23. Decem-
ber 5, 1992.

[Pina93] Pina, Larry “Third Generation Home Controller: HomeBase offers
X-10 plus infrared control.”Electronic House, September-October
1993.

[Prat91] Pratt, W.Digital Image Processing. John Wiley & Sons, 1991.

[Pres88] Press, William H.,et.al. Numerical Recipes: The art of Scientific
Computing. Cambridge University Press, 1988.

[Pitt91] Pittman, James A. “Recognizing Handwritten Text.” InProceed-
ings of the Conference on Computer and Human Interaction (CHI
‘91), New Orleans, LA, April 28-May 2, 1991.

[Purc85] Purcell, Patrick “Beyond the Keyboard.”Computer Bulletin, Sep-
tember 1985.

[Refl92] Private Eye product litterature, Reflection Technologies, Waltham
Mass 1992.

[Resn93] Resnick, Mitchel “Behavior Construction Kits”Communications of
the ACM. Vol 36 No 7, July 1993.

[Rhei91] Rheingold, H.Virtual Reality. Secker & Warburg 1991.

[Rhyn87] Rhyne, Jim. “Dialogue Management for Gestural Interfaces.”Com-
puter Graphics, vol. 21, no. 2 April 1987.

[Schm83] Schmandt, C. “Spatial Input/Display Correspondence in a Stereo-
scopic Computer Work Station.”Computer Graphics, vol. 17, no.
3, July 1983.

[Schr92] Schrage, Michael “Xerox’s challenge: Intelligently integrating
paper into digital world.”San Jose Mercury News, Monday, August
17, 1992.

94

[Sege93] Segen, Jakub “Controlling Computers with Gloveless Gestures.” in
Proceedings of Virtual Reality Systems 93, New York City, March
15-17, 1993; pp. 2-6.

[Seyb92] Seybold, A. “The DOCIT.”Andrew Seybold’s Outlook on Profes-
sional Computing 11, 2 (Sept 1992).

[Shne83] Shneiderman, B. “Direct Manipulation: A Step Beyond Program-
ming Languages.”IEEE Computer, August 1983.

[Smit82] Smith, D.C., Irby, C., Kimbal, R. and Harslem, E. “The Star user
interface: an overview.” InProceedings of National Computer Con-
ference 1982 pp. 517-528.

[Staf93] Stafford-Fraser, Quentin.Controlling Computers by Video, First
Year Report and Project Proposal, University of Cambridge Com-
puter Laboratory, July 30,1993.

[Stur91] Sturman, David J.Whole-hand Input. PhD Thesis, Massachusetts
Institute of Technology December 20, 1991.

[Sun90a] Sun Microsystems.NeWS 2.1 Programmer’s Guide, Sun Microsys-
tems Inc., Mountain View, California, 1990.

[Sun90b] Sun Microsystems.4.1 Pixrect Reference Manual, Sun Microsys-
tems Inc., Mountain View, California, 1990.

[Sun91] Sun Microsystems.Using VideoPix (Part Number 800-5099-10).
Sun Micorsystems Inc, Mountain View, California, 1991.

[Suth65] Sutherland, Ivan E. “The Ultimate Display.” InProceedings of IFIP
Congress 65. New York City, May 24-29 1965.

[Suth68] Sutherland, Ivan E. “A head-mounted three dimensional display.”
In Proceedings of Fall Joint Computer Conference, 1968.

[Tang91a] Tang, J., Minneman, S. “VideoDraw: A Video Interface for Collab-
orative Drawing.”ACM Transactions on Information Systems vol.
9, no. 2, April 1991, pp. 170-184

[Tang91b] Tang, J., Minneman, S. “VideoWhiteboard: Video Shadows to Sup-
port Remote Collaboration.” InProceedings of the Conference on
Computer and Human Interaction (CHI ‘91), New Orleans, LA,
April 28-May 2, 1991; pp. 315-322.

[Tani92] Tani, M., Yamaashi, K., Tanikoshi, K., Futakawa, M., and Tanifuji,
S., “Object-Oriented Video: Interaction with Real-World Objects
Through Live Video.” InProceedings of the Conference on Com-
puter and Human Interaction (CHI’92), (Montrey, Calif. May 3-7,
1992), ACM, New York 1992.

95

[Tapp88] Tappert, C.C., Suen, C.Y., Wakahara, T. “On-line Handwriting Rec-
ognition - A Survey”9th International Conference on Pattern Rec-
ognition. Rome, Italy 14-17 November 1988.

[Tyso92] Tyson, Philip J. “The Desk as a Social Institution” EuroPARC
Technical report 1992.

[Vinc90] Vincent, J. V., MacDougall, F. “The Mandala System.” CHI ’90
Interactive experience, April 1-5 1990. Seattle, Washington.

[Wein92] Weintraug, D.J. and Ensing, M.Human Factors Issues in Head-Up
Display Design: The Book of HUD, CSERIAC State-of-the-Art
Report, Wrigh-Patterson Air Force Base, Ohio.

[Well91] Wellner, P. “The DigitalDesk Calculator: Tangible Manipulation on
a Desk Top Display.” InProceedings of the ACM Symposium on
User Interface Software and Technology (UIST ‘91), November 11-
13, Hilton Head 1991.

[Well92] Wellner, P. “Tactile manipulation on the DigitalDesk.” (video) In
CHI’92 Special Video Program, ACM SIGGRAPH Video Review
no. 79.

[Well93a] Wellner, P. Mackay, W., and Gold, R. “Computer-Augmented Envi-
ronments: Back to the Real World.” Guest editors’ introduction to
special issue ofCommunications of the ACM. Vol 36 No 7, July
1993.

[Well93b] Wellner, P. “Interacting with Paper on the DigitalDesk”Communi-
cations of the ACM. Vol 36 No 7, July 1993.

[Weis91] Weiser, M. “The Computer for the 21st Century.”Scientific Ameri-
can, September 1991.

[Weis93] Weiser, M. “Some Computer Science Issues in Ubiquitous Comput-
ing.” Communications of the ACM. Vol 36 No 7, July 1993.

[Wesz78] Weszka, Joan S. “A Survey of Threshold Selection Techniques.”
Computer Graphics and Image Processing, 7 April, 1978; pp. 259-
265.

[Wide90] Widener, G. “The X11 Inter-Client Communication Conventions
Manual.” Software Practice and Experience. Vol 20(S2) October
1990.

[Wise92] Wise, Deborah “New lease of life for desks and in-trays.”The
Guardian, Thursday April 23, 1992, p. 33.

[Wolf89] Wolf, C. G., Rhyne, J. R., and Ellozy, H. A., “The paper-like inter-
face.” In Designing and Using Human-Computer Interfaces and

96

Knowledge Based Systems,eds. Salvendy, G. and Smith, M.J.,
Elsevier, Amsterdam 1989.

[Xero92] Xerox, Using PaperWorks from a Fax Machine. Xerox Corpora-
tion, Palo Alto, CA, 1992.

[XIS93] Xerox Imaging SystemsScanWorX API Programmer’s Guide (Part
no. 00-07570-00), Peabody, Massachusetts, Feb. 1993.

