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Abstract

This paper describes a fast, reliable, scalable and efficient propagation protocol
for weak-consistency replica management. This protocol can be used to implement a
bulletin board service such as the Usenet news on the Internet. It is based on organizing
the nodes in a network into a logical hierarchy, and maintaining a limited amount of
state information at each node. It ensures that messages are not lost due to failures
or partitions once they are repaired and minimizes redundancy. Further, the protocol
allows messages to be diffused while nodes are down provided the parent and child nodes
of a failed node are alive. Moreover, the protocal also allows nodes to be moved in the
logical hierarchy, and the network to be restructured dynamically in order to improve
performance while still ensuring that no messages are lost while the switch takes place
and without disturbing normal operation.

1 Introduction

Data is replicated in distributed systems to improve system availability and performance.
There are two approaches for managing replicated data: synchronous protocols that en-
force strict serializability by means of quorums [Gif79, CAA90, Kum91], and asynchronous
protocols where updates and queries can occur at any replica. Synchronous protocols are
impractical for large networks as they suffer from high latency and low throughput since
links tend to be slow and unreliable and a large number of replicas generate considerable
traffic over the network. Asynchronous protocols would provide higher availability and give
better response time. Such an approach should provide a propagation scheme which ensures
that updates are efficiently and reliably propagated to all replicas even if the communication
network does not provide such a guarantee. However, this approach is based on the assump-
tion that the applications can tolerate some inconsistency and reconciliation methods are
available to resolve conflicts.




The semantics of some applications are such that they do not require strict serializability,
and weaker forms of consistency are adequate and acceptable. For instance, in a bulletin
board application, the main consistency requirements are that messages generated by a node
must be seen by all other nodes in the same order they were generated, and if a single node
receives a message and posts a response or a follow-up message, it should be seen by all other
nodes after the original message to which the follow-up relates. Hence, what is required is
a method that can asynchronously propagate messages generated at any node to all other
nodes in a network while respecting the above ordering constraints. In a large network such
as the Internet with nearly 2 million host computers, the challenge lies in ensuring that
such asynchronous propagation is fast, reliable and scalable. Other applications that have
used weak consistency are air traffic control [QP93], resource discovery systems e.g. archie
[ED92], stock exchanges and so on.

In this paper we describe a propagation protocol for managing replicated data asyn-
chronously. This method is especially suited for the bulletin board application mentioned
above. Grapevine [SBN84] and the Global Name Service [Lam86] were among the first
systems to use weak consistency. Other weak consistency protocols were presented in
[DGH*87, DGP90, Gol92, LLS90, QP93, WB84]. These protocols are useful and inter-
esting; however, they assume that while propagating messages any pair of nodes can com-
municate with one another as easily as any other pair of nodes in the network. This
assumption, though appropriate for small networks with a few replicas, is unrealistic for
wide area networks like the Internet. Moreover, most of these proposals involve redundancy
during normal operation in varying degrees, and, thus increase communications overhead
and waste network bandwidth. Our scheme is based on a logically hierarchical arrangement
of the nodes in a network, such that pairs of nodes with faster communication between them
are nearer to one another in the hierarchy. It does not involve redundant messages to be
sent during normal conditions; and, by maintaining minimal state information, it minimizes
redundancy in a novel manner in case failures or restructuring occur.

Hierarchies are a natural and logical way of organizing a group of nodes for message
propagation. The root node of the hierarchy could send a message to each of its child nodes;
and, these nodes in turn would propagate the message to their child nodes. In this way,
every node in the network would receive the message. A message generated at any other
node (which is not the root node) of the hierarchy could also be propagated similarly. In
this case, the originating node would send the message to its child nodes and the parent
node, and each receiving node would further send the message to its parent and child nodes,
except the node from where it came. The nice property of such a propagation scheme is that
it is scalable, because each node sends a message to only a few other nodes, and the burden
of propagation is distributed quite uniformly throughout the network. Another factor which
makes this scheme scalable is that each node needs to keep information only about its own
parent and child nodes, and need not know anything about the rest of the network. It is
also efficient because the communications overhead is low and can be reduced even further
by batching messages together. Moreover, it is fast because, if N nodes are arranged in




a hierarchy such that the root and each successive non-leaf node has n child nodes, then
there would be log,, N levels in the hierarchy, and even in the worst case, propagation in
this manner would require 2log, N steps.

The disadvantage of a scheme based on hierarchies, however, is that it does not ensure
immediate (or prompt) message delivery if failures occur. Since there is only one path by
which the message can propagate from a source node to a destination node, any node or
link failures along this path can cause the message propagation to stop until the failure is
restored. This is by far the biggest drawback of a hierarchical propagation scheme. The
message propagation on the Usenet takes place in a somewhat hierarchical manner using
flooding techniques. Propagation is based on the notion of “upstream” and “downstream”
sites. A site can attach itself (with permission, of course) to one or more sites and start
receiving news feeds from them. The receiving site becomes a “downstream” site for the
sending “upstream” sites. The sending site might itself be a “downstream” site for another
“upstream” site which feeds it. This approach creates a hierarchy indirectly, and therefore,
it suffers from the same problem just mentioned. For instance, if any one node in the path
from an upstream site to a downstream site is down, the downstream site will not receive
feeds. In the Usenet, this problem is overcome by having more than one “upstream” sites
and receiving simultaneous feeds from them, and then eliminating duplicates. However,
this causes a large amount of redundant traffic since a message is received from multiple
upstream sites. Moreover, messages can still get lost because various sites have different
message deletion policies. Finally, sometimes follow-up or reply messages can get posted
even before the original message to which the follow-up relates. If the original message is
lost, it might never be posted.

Our goals in designing a new hierarchical propagation scheme are as follows. First, it
should be reliable, i.e. messages must not get lost. Second, it must minimize redundancy.
Third, it must be scalable and efficient. This means that the workload should be uniformly
distributed and no node should have to maintain a global view of the network. Fourth, it
must allow messages to propagate in spite of failed nodes. Our failure model enables such
propagation to occur by means of diffusion past any failed node provided its parent node
and child nodes are up. Fifth, it must ensure that messages are seen in the same order
that they are posted and replies or follow-ups are seen after the original message. Finally,
it must also allow the network to be reorganized dynamically without any loss of messages.
This means, for instance, that a node anywhere in the hierarchy should be able to move to
a new position elsewhere in the hierarchy without losing any messages during the time it
switched positions and without affecting the operation of other nodes in the network.

Another proposal based on hierarchies was given recently by one of the authors of this
paper in [Adl93, ANB93]. However, that proposal requires global state information to be
maintained, while the present scheme relies on local state information and does not involve
exchange of global information. A more detailed comparison between these two proposals
is given in Section 6.




This paper describes in detail our propagation protocol called HPP (Hierarchical Propa-
gation Protocol) for managing replicated data. The organization of this paper is as follows.
Section 2 briefly reviews the overall system model, and states our assumptions about the
processors and the communications network. Then, Section 3 describes the operation of our
propagation algorithm during normal conditions. Section 4 turns to explain how network
reorganization and restructuring take place. Next, Section 5 describes operation in failure
mode. Section 6 reviews the strengths and limitations of the protocol in detail, and Section
7 concludes the paper.

2 System model

The system consists of N nodes connected by an internetwork. Processors may fail, then
restart; however, fail-stop processors only are assumed, and byzantine failures do not occur.
The communication network is unreliable: it may lose or duplicate messages and does not
guarantee any order of delivery. Link failures can cause the network to be partitioned.
These partitions are eventually merged again. In the special case where a node loses its
communication with all other nodes in the network, it is treated like a node failure. Messages
are delayed due to transmission over the network, but a finite delay is assumed. Therefore,
a node can eventually send a message to any other node by retransmitting the message if
it does not receive an acknowledgment after a certain timeout period.

Nodes are organized in a logical hierarchy, where a node i at level [ has a parent at level
I-1, a grandparent at level -2, n children at level I+1, n X n grandchildren at level [+2 and
so on. Neighbors are nodes with the same parent node. Each node communicates only with
its parent and children, which are together referred to as its correspondents. We use the
notation P(i) to denote the parent node of node ¢, and Cj(%) to denote the j** child of node
i (see Figure 1).

Messages on the network are classified into one of three categories: normal, reply or
control messages. Normal messages are assumed to be messages that are unrelated to any
previous messages. These are treated slightly differently from reply messages which relate to
a previous message. This distinction is necessary to maintain the correct ordering between
a normal message and a reply message that might relate to it. Finally, control messages
are special messages which are propagated through the network like other normal and reply
messages, but these messages only perform a control function, such as the join_request and
drop messages described in Section 4.

3 Propagation during normal operation

The basic scheme for propagation is very simple: a node generating a message sends it to all
its correspondents (parent and children). A node receiving a message from a correspondent,
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Figure 1: A multi-level hierarchy of nodes

sends the message to all correspondents except the one the message is coming from. This
works recursively and a message originating at any site will eventually propagate every-
where. A node receives each message only once, so there is no redundancy during normal
operation,

Every message m must have the identity of the originator m_orig (i.e. the node that cre-
ates the message) and a corresponding sequence number m_seq. The combination (m_orig,
m_seq ) creates a unique message identifier. Also, a node tags every message it sees with
two values W and W', where W is a sequence number of messages sent downwards, and
W' is a sequence number of messages sent upwards by the node. Messages are also tagged
with an indication of the previous sender m_prev (m_prev = —1, if the message came from
the parent; m_prev = k, if it came from the k** child; and m_prev = 0, if the node itself
originated the message). A bit map is kept with each message (number of bits = n + 1) to
keep track of which correspondent has acknowledged the message.

Each node ¢ keeps the following state vectors:




e V;, a vector describing what messages node 7 has generated or received from its own
correspondents.

Vi= (Ua DI)D% ---»Dn,L,W, W/), where

U = the number of the last message received by ¢ from up i.e. from the parent P(¢)
D; = the number of the last message received by i from down i.e. from child C;(%)
L = the number of the last local message generated by node i itself

W = sequence number of the downward stream i.e. a sequence number assigned by ¢
to messages sent to its child nodes.

W' = sequence number of the upward stream i.e. a sequence number assigned by i to
messages sent to its parent.

(In the rest of the paper, we use the notation V;.z to denote entry 2 in the vector V;.)

e VP avector describing node i's view of its parent’s V vector: V' = (U, Dy, Dy, ..., Dn, L, W).
The definition of each entry is the same as V; but w.r.t the parent.

e V¥, a vector keeping track of received messages that were originated by child nodes

of node 1.
VC = (Ll, L2, L3, ----- y Ln) where

1
VE.Lj= the number of the last message generated locally by the child C;(i) and
received by i.

e Fach node maintains a separate Message Vector MV which keeps track of the last
message number received from every other node in the network. This vector is local to
each node. An entry MV;[j] in this vector means that node ¢ has received all messages
generated by node j up to message number MV;[j].

Therefore, state vector V; contains information about messages received by node 1 itself,
and V¥ and V¥ contain information that node i maintains about the states of its parent
and child nodes respectively. By aggregating messages this way, in terms of local (L’s),
received from down (D’s), and received from up (U’s), these three vectors encapsulate a
large part of the information that ¢ needs to maintain. The MV vector is used to detect
duplicate messages.

The state vectors V, V¥, V¢ and MV are updated upon the generation or receipt of
any message. The details of updating the state vectors are shown in Figure 2. The figure
lists the steps that a node must perform depending upon whether it originates a message,
receives a message from the parent node, or receives a message from a child node. In the
figure, we assume that node ¢ is the r** child of its parent P(3).

When node ¢ sends messages to correspondent j, j receives these messages in the same
order they were sent from i, i.e., in FIFO order. Messages received out of order are inserted




When node 7 generates a message m, it takes the following steps:

{

increment V;.L, V;.W, V,.W' and MV;[i];

set m_prev =20 ;

send m to child nodes;

send m to parent and increment Vz-P.D,,;

On receiving acknowledgment from parent, increment ViP.W and V,.U;

}

When a node ¢ receives a message m from its parent, it performs the following steps:

{
If m_seq < MV;[m_orig] Then

discard m (it is a duplicate) ;

Else {
increment V;.U,VE.W,V,.W and MV;[m_orig] ;
If m_prev = —1 Then increment VF.U ;
If m_prev =k Then increment VF.Dj ;
If m.prev =0 Then increment ViP.L ;
set m._prev = —1;
send m to child nodes ;
}

}

When node i receives a message m from its j%* child C;(4)

{

If m_seq < MV;{m_orig] Then

discard m (it is a duplicate) ;

Else {
increment MVj[m_orig), V; W,V;.W' and V;.D; ;
set m._prev=7 ;
If m_orig = C;(i) Then increment V°.L; ;
send m to its Cy(i), Vk#J ;
send m to parent and increment Vi .D, ;
send acknowledgment to Cj(7) ;
On receiving acknowledgment from parent, increment V. W and V,.U;

}

Figure 2: Algorithm for updating the state vectors upon originating or receiving a message




in a queue for later processing. We call these queues FIFO queues. In general, there are
n + 1 such FIFO queues kept by each node, one per correspondent, and this ensures that
messages are received in the same order that they were sent between a pair of correspondent
nodes.! Since all nodes observe FIFO order while propagating messages, and there is only
one unique path for a message between any pair of nodes, causal ordering is maintained
during normal operation, i.e., if a node i receives a message m; at time ¢; and generates a
message mg at time tg s.t. t9 > t1, then every other node in the network receives the two
messages in the order: my, mg. Theorem 1 given below formally proves that causal order
is achieved during normal operation.

Definition 1 A path from node ¢ to node j is the set of nodes that a message traverses
while propagating from node t to node j by following the hierarchical propagation protocol.

Corollary 1 There is a unique path between any pair of nodes i and j.

Proof: The proof follows directly from the propagation algorithm. Node 7 sends a message
to its correspondents, which in turn send the message (recursively) to their correspondents
until it reaches j. Since the nodes are organized in a tree hierarchy, messages from node ¢
to node j must take the same, unique path. |

Theorem 1 If every node observes FIFO order while propagating messages, then causal
order is achieved provided the tree hierarchy is not reorganized and no node failures occur.

Proof: Assume node o originates a message mq; node ¢ receives m; at ¢ = t; and then
posts mq after it sees m;. We shall show that all nodes in the network will see my after
my. There are two cases:

Case 1: i1 =0
From Corollary 1, all other nodes (correspondents of 4, their correspondents, etc.) will
receive both m; and mq from node ¢ by the same path. Since every node along a path
processes messages in FIFO order, it follows that all nodes will see m; before mo.

Case 2: i # o
Consider S, the set of nodes along the unique path (see Corollary 1) from node 7 to
node o. For any node ¢ € S, at t = t; = has already received my, and therefore, it will
see my after my. Any node & ¢€ S will receive both m; and my from a node y, where
y € §. From Corollary 1, the path between @ and y is unique. Since every node along
a path processes messages in FIFO order, z will see my after m;.

'To support FIFO order , each node should maintain two vectors V'S and V R where V 5[4] = last sequence
number sent to correspondent j, and V R[j] = last sequence number received from correspondent j, When
node ¢ sends a message to correspondent j, it increments V.S[j] by 1 and tags the message with this value.
When node ¢ receives a message from correspondent j it checks the order by comparing V R[j] with the tag
on the message.




Therefore, every node in the network sees my after my. a

Each node must know the identities of its own correspondents (i.e., its parent node and
all child nodes) and their correspondents. Therefore, each node maintains a [n + 2][n + 1]
matrix View, where, row 1 holds the id’s of its own correspondents, row 2 gives the id’s of
its parent’s correspondents, and row 3 thru n+2 gives the id’s of the correspondents of its
children (i.e., child nodes 1 thru n, respectively). In each row, the first entry denotes the
id of the parent and entries 2 thru n+1 are the id’s of the child nodes 1 thru n, respectively.

Messages are kept in a log. A message is inserted into the log when received (in FIFO
order) and removed from the log when

1) all correspondents have acknowledged the receipt of the message, and
2) a timeout T has elapsed after the last acknowledgment was received

The duration of T has to be specific to each site at the discretion of the site manager.
We anticipate that a value of anywhere between 1 and 7 days would be reasonable. A
summary of the data structure maintained at each node ¢, their descriptions and their sizes
is presented in Table 1.

| Variable name | Description | Size |
View;[n + 2][n + 1] | Partial view of the tree (n+2)(n+1)
V; Vector describing ¢’s state n+3
7 Vector describing ¢’s record of its parent’s state n+3
ve i’s record of messages originated by its child nodes | n
MV,[N] Message Vector N
log; Log keeping received messages variable
n+1 FIFO queues | Queues maintained for FIFO ordering messages variable
VSin+1] Vector keeping sequences of sent messages n+1
VR;[n+1] Vector keeping sequences of received messages n+1

Table 1: Summary of various data structures, their descriptions and sizes

4 Reorganization

This section describes an algorithm that allows a node v to change its parent node without
affecting normal operation. The moving node v must either be a leaf node or it should
move all its descendants along with it to the new position. Reorganization of the hierarchy
helps to maintain a higher level of performance and overcomes various problems such as
link congestion.




The reorganization scheme is designed so as to guarantee that no messages will be lost
while the switch is taking place. To achieve this, the moving node acts as if it is in two
positions simultaneously; for a short duration, it receives messages from both its old and new
parent nodes, and discards duplicates. Consider a node v with an old parent OP that wishes
to join a new parent NP. v sends a join_request message to NP. NP, on receiving join_request,
will send a drop message to OP so that OP can cease being the parent of v, add v to its
View, inform all its correspondents about the new child, and send an acknowledgment ack
to v. The join_request and drop messages are special control messages which will travel
through the hierarchy exactly like a normal data message. When OP receives the drop
message, it can stop sending further messages to v, discard v from its View and inform
its own correspondents of the change. Therefore, for a certain time period (between NP
receiving the join_request message and OP receiving the drop message), both NP and OP
will have v in their View and consequently, v will receive messages from both of them. This
will ensure that v will not miss any messages due to the move. The move is considered
complete when node v receives both the ack and drop messages.

It should be noted that the scheme does not need synchronization between all nodes to
commit a change and it does not disturb normal operation. This feature of the reorgani-
zation scheme enhances scalability. The details of the protocol are given in Figure 3. This
description assumes that v is the r** child of OP and will become the n + 1** child of NP.

It can be shown that no messages will be lost as a result of the reorganization by
arguing that OP and NP will receive all messages v receives from below, and that v will
receive all messages that NP has received before the move or will receive after the move.
Assume v initiates the change at time ¢y. Then, NP will receive from v every message
received by v from below at time ¢ > t;. All messages received by v at t < ¢ from below
would be propagated by it to OP, and then OP will further propagate them to NP by the
normal propagation mechanism. Therefore, NP receives all messages received by v from
below. Similarly, OP receives from v all messages it has received from below at t < ;.
All messages received by v from below at ¢t > t; will be sent to NP and NP will further
propagate them to OP by the normal propagation mechanism. Therefore, OP receives all
messages received by v from below.

Assume NP received v’s join request at time t,. Messages received by NP at t >
to will be sent to v. Meanwhile, OP continues sending messages to v until it receives
the drop. NP sends the drop at ¢ = t2 (NP sends the drop immediately after receiving
join_request; this happens atomically). Since the drop propagates through the network like
other normal messages and since the FIFO order is preserved in transmitting messages
between correspondents, any message that is received by NP at ¢ < ¢ will be received by
OP before receiving the drop. Then, v is guaranteed to receive all messages that NP received
at t <ty from OP and no messages are missed. A complete proof is given in Section 5.

To preserve the causal order while the switch is taking place, node v does not process
messages received directly from NP until the drop has been received. This ensures that
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Node v
send join_request(Viewn,[1]) to NP;
wait for acknowledgment from NP;
on receiving ack(Vyp, Viewyp[l]) from NP,
set old_View = Viewy[2]; old VY = VP
set View,[2] = Viewnyp[l]; VE = Vyp; ViU = VnpW;
on receiving drop from OP,
discard old View and old VFT;

NP on receiving join_request(View,,[1])
send the special control message drop(v) ;
add v to its list of child nodes: set Viewnp[l,n+2]=m;
set Viewnyp[n+ 3] = Viewy[l]; Vp.Dpy1 =0; V]\C,'P.LnH =0;
send add_child(v) to its correspondents;
send v an acknowledgment ack(Vyp, Viewyp[l]);

Correspondent k of NP on receiving add_child(v)
update Viewr to include v as a child of NP;
If k is a child of NP then add an entry V{.Dpiq;

OP upon receiving drop(v)
remove v from Viewop[l], Vop and V§p ;
remove row r+2 from Viewpop and rearrange the rows ;
send del_child(v) to its correspondents;

Correspondent k of OP on receiving del_child(v)

remove v from Viewp;
If k is a child of OP then remove the entry V{.D;

Figure 3: Reorganization algorithm
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v processes all messages sent to v before the move (and received from OP) first, then it
processes the new messages sent after the move. Further, since join_request propagates
through the network like normal messages before changing correspondents, then NP and
OP receive join_request after receiving all messages propagated by v before the move. Since
NP starts receiving new messages directly from v after v receives the ack, then the ordering
is preserved. The following theorem shows that the causal order is not violated while the
change is taking place.

Theorem 2 If no node failures occur, then the causal order is preserved while reorganiza-
tion takes place.

Proof: The causal order may be violated due to the fact that while the change is taking
place, messages sent from node v may follow different paths to reach NP or OP and vice
versa. The proof is based on showing that even if messages follow different paths:

1) nodes NP and OP will still receive messages sent by v in their correct order, and
2) node v will still receive messages sent by NP or OP in their correct order.

Case 1: For messages received by NP and OP from v:

Assume node v sends a message my to OP for propagation at ¢, and then sends the
control message join._request at t;. Subsequently, it sends a message my to NP for
propagation at 3 (to < t1 < t3). NP receives my and mg through different paths: my
is received through OP while my is received directly from v. Similarly, OP receives
my directly from v while my is received through NP. We shall show that both NP
and OP receive m; before mg. Since the join_request propagates through the network
like a normal message, from Theorem 1, both NP and OP must receive my before the
join_request. Since v will not send mqy except after receiving ack from NP, this means
that v sends mo to NP only after NP and OP have received m;.

Case 2: For messages received by v from NP or OP:
Assume NP sends a message m, for propagation at tp, then it receives a join_request
and sends a drop at t;. Subsequently, it sends a message mqy for propagation at ¢,
(to < t1 < t2). We shall show that although v receives the messages via different
paths (i.e., my from OP and mgy from NP), it will still process mgy after my. Since v
receives both my and drop from OP, from Theorem 1, v must receive m; before the
drop. Since v does not process messages received directly from NP (i.e. mg) until
v has received the drop, then v will first process my, then mj;. The same argument
holds for messages sent to v by OP while the change is taking place. O

5 Failures

In this section we describe how the protocol circumvents failures, i.e. messages can be
propagated past a failed node in both directions. This is important because in a logical
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hierarchy even one failed node can prevent messages from being propagated across it and
result in a partition. Our protocol can bypass one failure per correspondent group, i.e., if
node ¢ fails, and none of its correspondents are down, it is possible to propagate messages
past ¢ in spite of the failure. We call this process by which messages propagate past a failed
node as diffusion. The basic idea behind this algorithm is that when a node fails, all its
child nodes would elect a coordinator CO, and CO would take over all the functions of the
failed node until the failed node recovers. When the failed node recovers, it would take back
its normal functions from the coordinator CO. The information in the state vectors kept
by the various nodes is adequate for a transition to be made which enables a coordinator
to take over the functions of a failed parent. Failures are detected by a standard failure
detection mechanism such as timeouts. The various steps required to be performed after a
failure have been grouped into four phases. Assume the failed node is f. Once all its child
nodes agree that f has failed, they elect a coordinator (election phase). The coordinator
then performs actions to take over the role of f and bring all correspondents of f up-to-date
as of the time f failed (transition phase). In the next phase, CO assumes the role of the
failed node (diffusion phase), and finally when f recovers, it takes back its function from
CO (recovery phase). These four phases are summarized below:

e Phase 1: Election
Child nodes of f elect one of them to act as a co-ordinator CO.

e Phase 2: Transition
CO contacts all correspondents of f and a transition algorithm is run which is respon-
sible for propagating any message f failed to successfully send to all its correspondents
before failing,

e Phase 3: Diffusion
CO takes over the responsibilities of node f and acts as a temporary parent for each
child of f, C;(f), and as a temporary child for P(f) to ensure the continuity of
propagation flow while f is down.

e Phase 4: Recovery
When f comes up, f runs a recovery algorithm to bring itself up-to-date and resumes
its functions.

In the first phase, it is assumed that a standard election algorithm is run (see [GM82]).
In the following, details of the next three phases are described.

5.1 Transition

Assume f was in the process of sending a message to its correspondents when it failed.
The transition algorithm ensures that even if these messages were sent to a subset of the
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(1)Ask node P(f) for Vp f) W, VP(f) L;j and Vp(y).Dj;
(2) Ask nodes Ci(f) for VG(), i=1.
(3) Let Max_Ly = Maw{VP(f) LJ,Mawz{VC ()" L}};
If (Max_Ly —Vp(f) .L;) Then i*=0;
Else i* =1 s.t. MG/(L__L_f—VC(f)L
(4) Construct the vectors VFPMax and VMmN g ¢,
VPuax[i] = VE (5)-Dir Vi;
VPuin(i] = Mini{VL ) .D;} , Vi
(6)Ask P(f) to send C(f) Vi, the last (Vp(yW — VC (s)U) messages sent downwards;
(6) If (+* = 0) Then
Ask P(f) to send Ci(f), Vi, the last (Ma:v_Lf—Véj(f).L) messages
received with m_orig=f;
Else {
Ask node i* to send P(f) the last (Maw_Lf—Vlg(f).Lj) messages
received with m_orig= f;
Vk # ¥,
Ask node ¢* to send Ci(f) the last (Maw_Ly —Vcli(f).L) messages
received with m_orig=f;

}

(7) Ask nodes C;(f), Vi, to send to their neighbors their last (VPMax[j]— VPmin[j])
messages sent upwards;
(8) Let y = EkV£(f).Dk — (Vp(f).Dj — Maz_Ly);
If y > 0 Then
Ask C;(f), Vi, to send the last y messages sent upwards to P(f);

Figure 4: Transition algorithm

correspondents (in the worst case to only one of them), still they will be delivered reliably
everywhere. The algorithm is initiated by CO after being elected.

Without loss of generality, assume that f is the j** child of its parent P(f). The
algorithm is run by CO and the steps in the algorithm are listed in Figure 4, In the first
four steps, CO gathers the state information it needs. In the next four steps, it instructs
some nodes to send to other nodes messages that the latter have missed. The objectives
of this exercise are: (1) to find out which node has the most current information as of the
time node f failed, and (2) to arrange for that node to send messages to other nodes which
are behind. At the end of this phase, all nodes are current as of the time node f failed, and
then CO is ready to assume the functions of its parent node f.

In steps 1 and 2, CO gathers the relevant state information from the parent and child
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nodes of f. In step 3, it determines which correspondent of f (among f’s parent and child
nodes) has received the largest number of messages that were generated locally at f and
keeps this number in Max_L¢. Since each child node maintains a view of its parent’s V
vector, and these views could be different, step 4 compares these vectors maintained by the
child nodes of f. The objective is to determine the highest numbered message received by f
from each of its child nodes until failure, and also to determine for all messages received by
f from each child node, how far behind the other child nodes are (since f must propagate
messages received from one child node to all other child nodes). Consequently, VPMax[i] is
the highest numbered message f has received from its child node ¢; VFMIN[§] is the number
of messages out of these that have reached the child node that is most behind.

The subsequent steps of the algorithm can be explained better by examining all possible
ways in which f might send a message to, or receive a message from, one of its corre-
spondents and then fail before propagating the message to all its other correspondents. In
all such cases, our transition algorithm must ensure that such a message does reach all
correspondents of f. We divide this problem into four cases depending upon whether the
correspondent of f is a parent node or a child node, and also depending upon whether f
has sent a message to, or received the message from, the correspondent. These four cases
are:

e f receives a message from P(f), and then f dies.
o f receives a message from a child node Cj(f), and then f dies.
e f sends a message to P(f), and then f dies.

o f sends a message to a child node C;(f), and then f dies.

Each of these four cases is discussed separately below, and in each case we explain how
the appropriate step from our algorithm ensures that a message that falls in that case is
propagated to all other correspondents of f (the step numbers below refer to Figure 4).?

e Case 1: P(f) generates a message itself (or receives a message from a child or a
parent node), sends it to f, and then f dies (denoted P(f) — f, f dies)
Since P(f) has the message, then it will get propagated upwards in spite of the failure
of f. However, to ensure that it will also be propagated downwards, CO must compare
Vp(s)-W with Véj(f).U: if Vp(y) W > Véji(f).U, then, Vp(f).W—VC}vJ‘(f).U is the number
of messages missed by C;(f), and CO asks P(f) to send those messages to C;(f) (see
Step 5).

>The parameter T which influences the deletion policy of a node (as described in Section 3) is large
enough to ensure that a correspondent of f has not already deleted a message that it received from f, and
may need to diffuse,
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e Case 2: f has generated a message, sent it to P(f), and then died (denoted by f —
P(f), f dies)
Since P(f) has received the message, it will again get propagated upwards in spite of
the failure of f. To ensure that it is propagated downwards, CO compares V}g( f).Lj
with Vg:(f).L: if Vlg(f).Lj > Vc}'j(f)'L’ then C;(f) has missed some messages and CO
asks P(f) to send C;(f) the missing messages (see Step 6 ).

e Case 3: f has generated a message, sent it to one of its child nodes (say, C;(f)), and
then died (denoted f — Cji(f), f dies)
In order to ensure that such messages are propagated upwards, CO compares V£ ( f).L
with V}g(f).Lj: if Vé?i(f).l} > Vlg(f).Lj, then P(f) has missed one or more messages
and CO must ask C;(f) to send the missing messages to P(f). In order to ensure
that the messages are propagated downwards, CO compares VCI;( f).L with V(i ( f).L:
if Vc}z(f)'L > Vcl,jk(f).L, then Ci(f) has missed some messages and CO asks C;(f) to
send the missing messages to Ci(f) (see Step 6 ).

e Case 4: C;(f) generated a message locally (or received a message from below), sent
it to f, and then f died (denoted Ci(f) — f, f dies).
To ensure that such messages are propagated downwards, CO compares VCI‘J.-( f).D,-
with V(g(f).Di: if Vé?(f).Di > VCI.JJ,(f).D,', then C;(f) has missed some messages sent
by C;(f) and CO asks C;(f) to send those messages to C;(f) (see Step 7). To ensure
that such messages are propagated upwards, CO checks if: (Vp(s).D; — Maz_L 7) <
EkVéjk ( f).Dk. If so, then P(f) is missing some messages sent by child nodes and CO
asks them to send those messages to P(f) (see Step 8 ).

The different cases along with the conditions used to detect the need for upwards and
downwards propagation are summarized in Table 2. A “-” in Table 2 means that the
message has already been propagated in that direction and no action is required.

| Case l Upwards | downwards I
P(f) — f, f dies - Vp(f).W > Véji(f).U
= Ci(f), f dies VC}'Je(f)'L > VIE"m.Lj Véfi(f).L > VC’fk(f).L
f = P(f), f dies - VEipLi > VoL
Ci(f) — f, f dies Vp(f).Dj — Maz_ Ly < Ekvci(f).Dk Vév:(f).Di > Vclfk(f)-Di

Table 2: A summary of failure scenarios and conditions to detect upwards and downwards
propagation.

Since missing messages can fall in only one of the four cases described above, and since
all of them are detected and propagated, it follows that: if a node fails and it has sent a
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message to at least one of its correspondents before failing, then this message will be reliably
propagated to all its other correspondents and consequently, will be reliably propagated to
every other node in the network.

CO assembles all requests to P(f) or C;(f) into one message including the total number
of messages that each of them is supposed to receive from others. P(f) or C;(f) receiving
diffused messages treat them exactly as if they were coming from f. The only change is
that the child nodes C;(f) (i = 1...n) need not update Véfz ) since it represents f’s state,
and that is frozen because f is down. Further, the batch of diffused messages should be
sorted such that normal messages are processed first, followed by reply messages, and, lastly,
control messages. This sorting step is necessary because now it is possible that a message
and its follow-up might be received by a node through different paths such that the follow-
up reaches before the original message, thus disturbing the causal order. In such a case,
sorting will ensure that the ordering requirements are still satisfied.

5.2 Diffusion

While node f is down, CO takes over the responsibilities of f temporarily until f comes
up again. That is, C;(f)’s and P(f) send messages to CO, and CO will diffuse them to the
other correspondents of f. Therefore, it is ensured that the flow of propagation will continue
while f is down. Messages are transmitted in FIFO order between CO and correspondents
of f. This phase starts once the transition phase is terminated, i.e., when P(f) or C;(f)’s
have received and processed all messages they were supposed to receive during the transition
phase. Then, each node can move into the diffusion phase independently.

CO, on receiving a message m from a correspondent of f, treats it as if it is coming
from a parent node, and performs the algorithm described in Section 3 (see Figure 2), i.e.
CO must update MVgo, increment Voo .W and Vgo.U, send m to its own correspondents,
etc. Additionally, it must also send the message to correspondents of f, other than the one
the message is coming from.

If CO generates a message locally, or receives a message from one of its own correspon-
dents, it treats it normally (see Figure 2), but, in addition, sends it to all correspondents of
f also.

A correspondent of f, on receiving a message from CO, acts as follows: if the corre-
spondent is P(f), then it treats the message as if it is coming from a child (see Figure 2);
if the correspondent is a child node of f, then it treats the message as if it is coming from
a parent (again see Figure 2), but does not update V& )"

The following theorem shows that no messages are lost if a reorganization occurs even

if a failure occurs while the reorganization is taking place.

Theorem 3 If a node v changes its parent from OP to NP, then it is guaranteed that no
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messages are lost as a result of the move, even if a failure occurs along the path from OP
to NP while the reorganization takes place.

Proof: The proof is based on arguing that OP and NP will receive all messages v receives
from below, and that v will receive all messages that NP has received before the move or
will receive after the move.

Node NP: Assume v initiates the change at time ¢;.
Every message received by v from below at time ¢ > ¢; will be received by NP
directly from v. All messages received by v at ¢ < ¢; from below, OP receives them
directly from v and OP will further propagate them to NP by the normal propagation
mechanism. If a failure occurs along the path from OP to NP while messages are
propagating, the transition and diffusion phases guarantee that no messages will be
missed by NP. Therefore, NP receives all messages received by v from below.

Node OP: Similarly,
Every message received by v from below at ¢ < ¢; will be received by OP directly
from v. All messages received by v from below at ¢ > ¢; will be sent to NP and NP
will further propagate them to OP by the normal propagation mechanism. If a failure
occurs along the path from NP to OP while messages are propagating, the transition
and diffusion phases guarantee that no messages will be missed by OP. Therefore, OP
receives all messages received by v from below.

Node v: Assume NP receives v’s join request at time . r.t.p:

(1) v receives every message received by NP at ¢ > ¢y

(2) v receives every message received by NP at ¢ < ¢,

The proof of (1) is trivial since NP will consider v as a correspondent at ¢ = ¢, and
will start sending it any message generated or received. To prove (2), we need to prove
that any message that NP has received at ¢ < ty, v will receive it from OP. Assume
that NP has received a message m at t < t5. Since NP generates the drop at t =t
and since OP continues sending messages to v until it receives the drop, then we need
to show that OP will receive m before receiving the drop. Three cases can occur while
m and drop are propagating:

Case 1: while m and drop are propagating, there were no failures nor reorganization
all along the path to OP, Then, from Theorem 1, OP will receive m before
receiving the drop.

Case 2: while m and drop are propagating, a failure occurs in their path of propaga-
tion towards OP.
If the failure occurs after m reaches OP, then whether drop is sent during the

transition phase or the diffusion phase, it will be received by OP after m anyway.
If the failure happens before m reaches OP, there are four cases:
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Case 2.1: m and drop are diffused by the transition algorithm
If OP was one of the failed node’s correspondents, then sorting m and drop
-such that drop comes last- guarantees that OP will process m first, send it
to v then process the drop.
If OP was not one of the failed node’s correspondents, then OP will receive m
and drop through normal propagation. Since each correspondent of the failed
node sort messages, such that drop comes last, before processing and further
propagating them and since they maintain the FIFO order in propagation,
then OP will receive m first then the drop.

Case 2.2: m and drop are sent during the diffusion phase.
Since the coordinator CO becomes a correspondent of the failed node’s cor-
respondents and each node maintains FIFO order then Theorem 1 applies
and OP will receive m before the drop.

Case 2.3: m is diffused by the transition algorithm while drop is sent during the
diffusion phase.
Since the diffusion phase starts only after the transition phase is over, then
m will precede drop in propagation.

Case 2.4: drop is diffused by the transition algorithm while m is sent during the
diffusion phase
This case cannot occur. Assume that the failure occurs at time ¢;. For this
case to occur, then at time ¢ < ¢y, one or more correspondents of the failed
node should have received the drop but not m. Since Theorem 1 applies for
t < ty, this is a contradiction and this situation cannot occur.

Case 3: while m and drop are propagating, a reorganization takes place.
From Theorem 2, since the causal order is preserved while a reorganization oc-
curs, then OP receives m before receiving the drop. 0

5.3 Recovery

When node f comes up, two functions should be performed:

1. f must check if there is any message in its log which has not been acknowledged by a
correspondent 7, and if so, send this message to i. Node 7 might have already received
this message during the transition algorithm. Therefore, on receiving such a message,
node % checks whether it is a duplicate, and, if so, discards it; otherwise, it accepts the
message and updates V;. Node ¢ must also check whether it is holding any pending
messages in the FIFO queue for f and flush the queue. This function ensures that the
diffusion process is completed e.g. if a node had received a message from f but had
deleted it from its log before the transition algorithm starts and hence the message
was not diffused, or, if f has generated a message but did not send it to any other
node before failing. Further, this function is essential for correspondents of f, who
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might or might not have received these messages, to flush any pending messages in
the FIFO queue each of them keeps for f.

2. f should bring itself up-to-date and resume its functions. While f is down, each
correspondent of f, on generating a new message, or receiving a message from its own
correspondents, inserts it in the log, marks it as not acknowledged by f and sends it
to CO. When f comes up, each correspondent extracts from its log all messages not
acknowledged by f and sends them to f. This ensures that f will receive all messages it
missed during the failure. Node f, on receiving such messages from a correspondent 4,
accepts non-duplicate messages but does not forward them to its other correspondents
as they already have them. It increments its V.U, if ¢ is a parent, or V;.D;, if 1 is
the j** child, by the number of non-duplicate messages received from correspondent i.
At the end of this process, f increments V;.W by the total number of non-duplicate
message received from all correspondents.

Recall that, while f was down, its child nodes were not required to update their Vc}‘j )
vector. Therefore, on recovering, f sends its V; vector to all its child nodes C;(f) so
that they can use the incoming vector as their new Véfi ) Further, f needs to update

its record of its parent’s state; so, f requests P(f) for its Ve and calls it VfP .

Afterwards, normal operation of f is resumed. (If, CO receives a message from a
correspondent of f after f comes up, then CO returns the message back to the sender
noting that f is alive and the sender must resend the message directly to f.)

5.4 Partitions

In large scale systems, link failures can occur frequently. A sequence of link failures leads to
partitions. It is assumed that an external process is responsible for maintaining link status,
i.e., detecting when partitions occur and are restored.

When partitions are detected, correspondents in one partition mark in their view their
correspondents in the other partition as being isolated in order not to attempt sending them
messages. However, messages generated or received by correspondents in one partition
are kept in the log for the isolated correspondents. When the partition heals, each pair
of previously isolated correspondents exchanges messages that were kept for each other,
update their state vectors and propagate received messages as usual. This will ensure that
any messages that were missed during the partition will be received. Afterwards, normal
operation is restored.
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6 Discussion

Three major advantages of the HPP protocol over the Usenet are higher reliability, ability
to restructure without messages being lost and minimum redundancy. Restructuring has
implications for performance. For instance, if a node is not receiving good response time
from its parent node, it could move to another location (i.e., find another parent). After a
series of such moves, the overall performance of the network would improve. One perfor-
mance criterion could be the average delay in receiving messages from other nodes. If this
measure is continuously above a threshold for a given period of time, then a node would
consider relocating. Minimizing redundancy leads to lower communication overhead and
efficient use of network bandwidth. In the Usenet there is trade-off between redundancy
on the one hand, and lost messages and delay on the other. By having contact with sev-
eral “upstream” nodes, a node could minimize the number of lost messages and delay, but
only at the cost of greater redundancy. In our model, due to the hierarchical pattern of
propagation that updates follow, a node receives each message only once, and so there is
no redundancy during normal operation, and yet reliable delivery is assured.

As mentioned earlier, basing the propagation scheme on a logical hierarchy allows the
system to scale well, since each node communicates with only its correspondent nodes.
This leads to lower communications overhead and a more even distribution of the burden
of propagation among all nodes. One unique feature of the HPP protocol is that it allows
aggregation and encapsulation of the important aspects of the state into a few state vectors
containing minimal information. These aggregate state vectors provide enough information
for the determination of missing messages. In the absence of such aggregation, any pair of
nodes would have to compare very long vectors in order to determine what messages either
node is missing.

The limitation of our protocol lies in the fact that messages can be diffused past a
failed node only if its parent and all child nodes are alive. This means that “successive”
failures (i.e., where a pair consisting of a parent node and a child node are down) will cause
the diffusion to stop. Of course, no messages will still be lost, and all messages will be
delivered when the failures are restored. Moreover, messages can also be diffused in spite of
other kinds of multiple failures that do not involve a parent-child pair. However, to handle
successive failures, more information needs to be kept in the state vectors by each node.
The state information kept at each node at present is able to handle one level of failure; if
additional state information is maintained at each node, then the solution can be extended
to handle successive failures. In this case, there is then a trade-off between the probability
and associated cost of such successive failures and the cost of maintaining the additional
information. However, the same general approach can be extended to cover such scenarios
also.

In [Ad193, ANB93], a propagation scheme based on hierarchies is described. HARP
adopts a more general hierarchical structure, where nodes are grouped into clusters and
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clusters are organized into a tree. A node communicates with the members of its clusters
as well as its parent and child nodes. This allows messages to propagate slightly faster,
since a node sends messages to its neighbors also. Having multiple nodes at the root of
the hierarchy offers better availability and reliability than the scheme described here where
there is only one node at the root. But, reorganizing the hierarchy incurs more overhead
since the structure is more complex. The most important difference between HARP and
HPP, however, is that HARP maintains global state information and does not encapsulate
the state information as in HPP. By encapsulating the state information, the HPP protocol
requires each node to maintain only local information and this is an important feature in
a wide area network. HARP, on the other hand, consumes more storage by keeping global
state information. Also, it produces more communications traffic because large vectors
which maintain the global state have to be exchanged in case failures or reorganization
occur. On the other hand, HARP tolerates any pattern of failures (including successive
failures), and provides several orders of delivery (unordered, FIFO, causal and total order),
from which an application may choose one depending on its requirements. Therefore, other
than both being based on the notion of a logical hierarchy, HARP and HPP have little else
in common,

ISIS [BJ87, BSS91] is a distributed programming toolkit that provides atomic, inter-
active delivery with total or causal message ordering. It is based on virtual synchronous
process groups and has been used to develop a variety of applications including replicated
file systems. However, ISIS is aimed towards small systems and ensures strong consistency
of group views at the expense of latency and communication overhead. Causal order is
maintained by timestamping each message with ordering information, of size IV, represent-
ing message ids already seen by the sender. When a message m arrives at a destination,
if one or more of m’s predecessors’ messages have not arrived, then m’s delivery is delayed
until the appropriate messages arrive. However, the overhead of piggybacking with each
message a timestamp of size proportional to the total number of nodes in the network can
be quite expensive, especially for a large number of nodes.

7 Conclusions

This paper has described a weak-consistency replica control protocol called HPP which
efficiently and reliably propagates messages in wide area networks and can be used to im-
plement a bulletin board service on a large network such as the Internet. This is already
an important service on the Internet and is becoming increasingly popular on commercial
networks such as Prodigy and Compuserve. The current implementation of Usenet News
on the internet is not very reliable. The HPP protocol is based on organizing the nodes in
the network into a logical hierarchy, and is both scalable and efficient. It ensures reliable
eventual delivery of messages in spite of failures or partitions. Further, it minimizes redun-
dancy which makes efficient use of network bandwidth. It also allows nodes to dynamically
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change their position in the hierarchy to improve performance while ensuring that messages
are not lost, Finally, each node maintains only local state information by encapsulating
information about itself and its parent and child nodes into state vectors. This reduces
communication traffic and makes the scheme more scalable.

Our protocol is able to tolerate various failures of one or more nodes in the network in
that it can diffuse messages past them in the hierarchy. However, this diffusion is possible
only if the parent and child nodes of the failed node are alive. If a parent-child pair of nodes
fails, then we call it a successive failure, and in this case messages would not be diffused past
the failed nodes until at least one of them recovers. On the other hand, if failures are such
that the failed nodes are at alternate levels and a parent-child pair is not involved, then
the algorithm is able to bypass the failed nodes and diffuse messages in spite of multiple
such failures. It would be possible to extend the protocol to withstand more failures pro-
vided additional state information is kept. Clearly there is a trade-off between the amount
of additional information stored and the ability of the protocol to tolerate failures. We
expect to study this issue in future research. A more detailed performance comparison of
the HPP algorithm with some of the other techniques described in this paper is also planned.
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