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Abstract

This paper re-addresses the old problem of providing a categorical model for Intuition-
istic Linear Logic (ILL). In particular we compare the now standard model proposed
by Seely to the lesser known one proposed by Benton, Bierman, Hyland and de Paiva.
Surprisingly we find that Seely’s model is unsound in that it does not preserve equal-
ity of proofs—we shall give some examples of equal proofs which do not seem to be
modelled as equal morphisms in the category. We shall propose how to adapt Seely’s
definition so as to correct these problems and consider how this compares with the
model due to Benton et al.




1 Intuitionistic Linear Logic

For the first part we shall consider only the multiplicative, exponential fragment of Intu-
itionistic Linear Logic (MELL). Rather than give a detailed description of the logic and
associated term calculus we assume that the reader is familiar with other work [18, 5].
The sequent calculus formulation is originally due to Girard and Lafont [9] and is given

‘below.
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Sequents are written as I' — A, where A, B represent formulae and I', A represent multisets
of formulae. Where I' represents the multiset Ay, ..., Ap, then !T" is taken to represent the
multiset !41,...,!A4x.

The natural deduction presentation proved harder to formalize and early proposals [1,
15] failed to have the vital property of closure under substitution. A natural deduction
system which has this property was given by Benton et al. [5] and is given below.
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The main difference between this and earlier presentations is in the Promotion rule where
here substitutions are ‘built-in’.

The Curry-Howard correspondence [10] provides a systematic process for attaching
names, or terms, to proof trees from the natural deduction formulation of a given con-
structive logic (a clear description is given by Gallier [7]). We can apply it to get the
following term assignment system for MELL, which rather than presenting in a tree-like
fashion, we choose to present in a sequent style.
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Subsequently, others have suggested different natural deduction formulations which have
the property of more compact syntax for the Promotion rule. The reader is referred to
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work by Troelstra [16] and Wadler [17] for details of two proposals.

Normalization is the process of removing ‘detours’ from a proof in natural deduction.
At the level of terms it can be seen as providing a set of reduction rules, which are known
as B-rules. For MELL there are six f-rules which are given below.

1 (Az: AM)N ~p5 Mz :=N]
2 let x be x inM ~g M
3. let M®N bez®yin P ~p Plz:= M,y := N]
4. derelict(promote M for Zin N) ~s5 N[Z := M)
5 discard (promote M for Zin N) in P ~g discard MinP
6. copy (promoterorzE’in N)asy,zinP ~p copy M as @, ¥ in
P[ y:=promotedforZinN,
z 1= promote ¥ for Z in N|

In addition there are other term equalities: commuting conversions, which arise from
consideration of the subformula property, as well as the those suggested by the process of
cut elimination for the sequent calculus formulation.! For the purposes of this paper these
need not be considered here. The interested reader is again referred to other work [6, 5].

2 Two Categorical Models

The fundamental idea of a categorical treatment of proof theory is that propositions
should be interpreted as the objects of the category and proofs should be interpreted
as morphisms. The proof rules correspond to natural transformations between appropri-
ate hom-functors. As mentioned above, the proof theoretic setting will reveal a number
of reduction rules, which can be viewed as equalities between proofs. In particular, these
equalities should hold in the categorical model.

Let us fix some notation. The interpretation of a proof is represented using seman-
tic braces, [—], making the usual simplification of using the same letter to represent a
proposition as its interpretation. Given a term I'> M: A where M ~p N, we shall write
> M= N:A.

Definition 1 A category, C, is said to be a categorical model of a given logic, L, iff
1. For all proofs T'vp M: A, there is a morphism [M]:T' — A in C.

2. For all equalities Tor M = N: A it is the case that [M] =c [N] (where =c represents
equality of morphisms in the category C).

Given this definition we shall now consider two proposals for a categorical model of Linear
Logic. Firstly that proposed by Seely [14] and secondly that of Benton et al. [5]. First
let us recall Seely’s definition (where for clarity we have named the natural isomorphisms
relating the tensor and categorical products).

Definition 2 (Seely) A Seely category, C, consists of:

1. A symmetric monoidal closed category (SMCC) with finite products, together with a
comonad (!,¢,9).

1n fact there are other term equalities due to the interaction between our formulation of the Promotion
rule and the fact that we are suppressing the Fzchange rule.
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2. For each object A of C, (1A,da,ea) is a comonoid with respect to the tensor product.
3. There exists natural isomorphisms n:!1A®!B —3!(A x B) and p: I 1.

4. The functor ! takes the comonoid structure of the cartesian product to the comonoid
structure of the tensor product.

Tt is instructive to consider this definition in more detail. The naturality of n amounts to
the following diagram commuting for morphisms f: A — C and g: B — D.

IA®IB — I(A x B)
Ifelg (f xg)
081D — 1(C x D)

Condition 4 (which seems to have been overlooked? by Barr [3] and Troelstra [15]) amounts
to requiring that the following two diagrams commute.

A — M 4sia IA—A L
1A " T P
I(A x A) 11

Now let us consider the model proposed by Benton et al. (the version given here is taken
from my thesis [6] and is a slight adaptation from the original definition [5]).

Definition 8 A Linear category, C, consists of:

1. A SMCC, C, together with:

2. A symmetric monoidal comonad (!,&,6,ma B, mr) such that

(a) For every free -coalgebra (1A,64) there are two distinguished monoidal natural
transformations with components ea:!A — I and da:'A —IA®!A3 which form
a commutative comonoid and are coalgebra morphisms.

(b) Whenever f:(1A,64) = (1B, 0p) is a coalgebra morphism between free coalge-
bras, then it is also a comonoid morphism.

Let us consider in detail the conditions in this definition. Firstly requiring that (!,m4,5, mr)
is a symmetric monoidal functor amounts to the following diagrams commuting.

2 Asperti and Longo [2, Lemma 5.5.4] (falsely) claim it holds automatically.

3This necessitates showing that !®! and I are monoidal functors, but this is trivial and omitted.
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Requiring that € is a monoidal natural transformation amounts to the following two com-
muting diagrams.

A0 B 1A (A®B) I
£ m
EARER ABEB ! \\
A®B 17 I

€T
Requiring that § is a monoidal natural transformation amounts to the following two com-
muting diagrams.

mA,B
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54®8p P=y:,
NAR!B |(14®!B) — !(A@B)
MiAIB Ima,B
— M g
my 51
W — I
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Requiring that e4:!A — I is a monoidal natural transformation amounts to requiring that
the following three diagrams commute, for any morphism f: A— B.

1A
It cA
\B I
eB
I 1418 “A%°E 1a1
mr AN mA,B A1
I T (A®B) I
€r CARB

Requiring that d4:!A —!A®!A is a monoidal natural transformation amounts to requiring
that the following three diagrams commute, for all f: A — B.

-1
14—, 1Agia I el
If Iflf my mz®my
'B 'B®!B ¥ 1R
B dr
d ~
1AwiB -8 (1 4e1 )0 (1BoIB) - (1A®!B)®(IAG!B)
MA,B mA,B®MA B
(A®B) + (A®B)®!(A®B)
dan

Requiring that (14,da,e4) forms a commutative comonoid amounts to requiring that the
following three diagrams commute.

1A
p-l ClA }\——1
1ART IA®1A - I®IA
idia®ey eA®idig




da

14 ~ 1A®IA
da idia®da
IAQIA —— (IASIA)®IA A0 (1A®!A)
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a0, MALA
1AR!A

Requiring that e is a coalgebra morphism amounts to requiring that the following diagram
commutes.

4—A
6A my
NA \r
lea

Requiring that d 4 is a coalgebra morphism amounts to requiring that the following diagram
commutes.

1A %4 - 1A
da ldg
1A®IA NARNA 1(1A®!A)
0AR04 migta

Finally all coalgebra morphisms between free coalgebras are also comonoid morphisms.
Thus given a coalgebra morphism f, between the free coalgebras (!4,4d4) and (!B, B), Le.
which makes the following diagram commute.

f

1A 'B
da 0B
A 'B

Then it is also a comonoid morphism between the comonoids (14, e4,d4) and (!B, ep, dp),
i.e. it makes the following diagram commute.




1A 1ARA
€A
I f fof
eB
'B '1BR!B

B

These amount to some strong conditions on the model and some of their consequences are
explored in my thesis. It is, however, reasonably straightforward to show the following,.

Theorem 1 A Linear category, C, is a categorical model for MELL.

Proof. The first condition is proved by a trivial induction on the structure of the proof
T'> M: A. The second condition is proved by checking that the six S-rules from earlier. m

The main difference between these two models is that a Seely category critically needs
categorical products to model the exponential (!). Consider the interpretation of the
Promotion rule. With a Seely category this is interpreted:

[C1,...,Tp > promote My, ..., My for z1,..., oy in N:1B]
def [C1o Myl A]® ... @[T > My: lAn]; n; 65 =L Y([z1: 141, . .., 2p: 1A > N: B])

With a Linear category this is interpreted:

[C1,..., > promote My, ..., My for z1,..., 2y in N:1B]
e [C1o M 1A]®. .. @[Ty > My 14,];6® ... @8 m; !([21: 141, . ., 20t 1 An > N: B])

Let us consider whether a Seely category is a categorical model for MELL. Seely showed
that the first requirement is satisfied.

Proposition 1 (Seely) Given a Seely category, C, for all proofs ' > M: A there is a
morphism [M]:T — A in C.

However the second condition is not satisfied.

Fact 1 Given a Seely category, C, it is not the case that for all term equalities
I'> M = N: A that [M] =c [N].4

A counter-example is the sixth S-rule from earlier. In fact we only need use a simplified
version where the promoted term, N, has only one free variable.

41t should be noted that the term equalities were not generally known when Seely proposed his model.




I'>  copy (promote M for z in N) asy,zin P
= copy M as z', 2" in P[y := promote z' for z in N, z := promote &" for z in N]: C

This term equality implies the same commuting diagram for a Linear category as for a
Seely category.

IAR!IA —— NAQIA ——— |BQ!B c
d®d In®!n

p

For a Linear category we can complete the diagram in the following way.

™ a8 g B

C

IAQIA —— 1ARIA —— |BRIB
d®4 In®!n

The left hand square commutes by the condition that all free coalgebra morphisms are
comonoid morphisms. The right hand square commutes by naturality of d. Unfortunately
it is not clear how to make diagram 1 commute for a Seely category.

At this stage we might try adding the condition that all (free) coalgebra morphisms
are comonoid morphisms to Seely’s definition. This proves still to be incomplete as we find
that neither the sixth nor the fifth term equalities are modelled correctly in the cases when
the promoted term, N, has zero or more than one free variable. One might be further
tempted to add additional ad-hoc conditions to make a Seely category a model for MELL.
However, as shown in my thesis, this is by no means simple and rather it would seem more
prudent to consider a more abstract view. Let us consider some of the motivation behind
the Seely construction.

First we shall recall a construction, the dual of which (i.e. that generated by a monad)
is known as the “Kleisli category” [13, Page 143].

Definition 4 Given a comonad (1,€,8) on a category C, we take all the objects AinC
and for each morphism f:!A — B in C we take a new morphism f:A — B. The objects

aAnd morphisms form the co-Kleisli category Cy, where the composition of the morphisms
f:A— B and §: B — C is defined by the following:

A A d f ———
fis E (©alfig)
Our interest in this construction is that this has strong similarities with the Girard trans-
lation [8] of Intuitionistic Logic into Intuitionistic Linear Logic where the intuitionistic
implication is decomposed: (A D B)° dof I(4°)— B°. In fact, as first shown by Seely [14],

the co-Kleisli construction can be thought of as a categorical equivalent of the Girard
translation in the following sense.




Proposition 2 (Seely) Given a Seely category, C, the co-Kleisli category C is cartesian
closed.

Proof. (Sketch) Given two objects A and B their exponent is defined to be !A—oB. Then
we have the following sequence of isomorphisms.

G (A x B,C) = C({(AxB),0) By definition
~ C(IAQ!B,C) By use of the n isomorphism
~ ((!4,!B—C) By C having a closed structure
= C(A,!B—0C) By definition

We know from Kleisli’s construction that we have the following adjunction, where G is the
functor defined by g: A — B — (g; g) and F is the functor defined by f: A — B+ da;!f.

G
FlH|G

C

Seely’s model arises from the desire to make the co-Kleisli category a cartesian closed
category (CCC), which is achieved by including the n and p natural isomorphisms. This
means that there is an adjunction between a SMCC (C) and a CCC (Cy). As a CCC is
trivially a SMCC, there is then an adjunction between two SMCCs. We might expect that
this is a monoidal adjunction.

Definition 5 An adjunction (F,G,n,¢€):C — D is said to be a monoidal adjunction when
F and G are monoidal functors and 1 and € are monoidal natural transformations.

Let us now state a new definition for a Seely-style category and then investigate some of
its properties.

Definition 6 A new-Seely category, C, consists of
1. a SMCC, C, with finite products, together with
2. a comonad, (!,¢,6), and
3. two natural isomorphisms, n:!A®!B —!(A x B) and p:1 —!1
such that the adjunction, (F,G,n,¢), between C and C; is a monoidal adjunction.

Assuming that F' is monoidal gives us the following morphism and natural transformation:

mp:l — F1
ma p: FA®FB — F(A x B)

Assuming that G is monoidal gives us the following morphism and natural transformation;

mi:1 = GI
m'y 3! GA x GB — G(A®B)
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By assumption € and 1 are monoidal natural transformations.
It is easy to see that m; is Seely’s morphism p and my p is Seely’s natural transfor-
mation n. In fact, we can define their inverses:
my def Fmijepr F1 -1
~1 def
m4's = F(na xnp); Fp, ppicragrp: F(A x B) » FAQFB
Hence the monoidal adjunction itself provides the isomorphisms !A®!B =!(4 x B) and
I =211, As the co-Kleisli category is a CCC it has a trivial commutative comonoid structure,
(A, A\, T), on all objects A. We can use this and the natural transformations arising from
the monoidal adjunction to define a comonoid structure, (F(A),d, e), on the objects of C:
def —
d = F(A);myl: F(A) - F(A)RF(A)
e = F(T) m;l:F(A) - 1T
It is easy to see that these definitions amount to condition 4 of Seely’s original definition.
Thus there is at least as much structure as in Seely’s original definition but with the extra

structure of the monoidal adjunction. Some consequences of this adjunction are given in
the following lemma. '

Lemma 1 Given a new-Seely category, C, the following facts hold:

1. The induced comonad (FG, Fng,€) on C is a monoidal comonad (FG, Fng,e, ma,p, mr).

2. The comonoid morphisms e: FG(A) — I and d: FG(A) — FG(A)®FG(A) are
monoidal natural transformations.

3. The comonoid morphisms e: FG(A) — I and d: FG(A) — FG(A)®FG(A) are coal-
gebra morphisms.

4. If f:(FG(A), Fnga) — (FG(B),Fnag) is a coalgebra morphism then it is also a
comonoid morphism.

Proof. For part 1 we take the following definitions:
my ¥ mpFml I o FGI)
map ¥ maac; Fmly g FG(A)®FG(A) - FG(A®B)

The rest of the lemma holds by construction. u

Corollary 1 Every new-Seely category is a Linear category.

(It is clear that the converse is not true, as the Linear category need not have finite
products.) We can hence show that a new-Seely category is a sound model for the MELL.

Theorem 2 A new-Seely category, C, is a categorical model for MELL
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3 Including the additives

Now we shall consider the whole of ILL by adding the additive connectives to MELL.
Logically these are given by the following sequent calculus rules (we shall ignore the
additive units).

rLAwvC ) I,BwC (
EE—— _  (Xp—
T AxBwrC ' T, AXBrC £-2)
T+ A Fl—B( )
X
T+ AxB ®
I'NMAwC LBw+C
(®c)
IAeB+C
T4 ( ) I' - B ( )
——— (DR~ —_—— (Dr—
I-AeB TrA@B

There are a number of ways of formulating the additives in a natural deduction system
which are discussed in my thesis. However, this is not the place for such discussions and we
shall simply take the term assignment system which is familiar from that of the A-calculus.
The term assignment rules as well as the S-rules for the additives are given below.

ToM:A ' N:B

X
T'v(M,N):AxB (x2)
I'sM:AxB ) I‘DM:AXB( )
——— (Xg— ———— (Xg—
[ofst(M): A et I'>snd(M): B £
I'sM: A ( ) 'sM:B ( )
Dz Dz
Toinl(M:A®B Toin(M):A®B "
A>-M:A® B L,z:A>N:C I‘,y:BDP:C( )
7
I', Apcase M of inl(z) — N | inr(y) = P:C £
fst((M,N)) ~p M
snd((M )) ~p N
case (inl(M)) of inl(z) — N||inr(y) ~g Nz := M]
case (inr(M)) of inl(z) — N |inr(y) — ~g  Ply:= M]

To model these additive connectives we shall add finite products and coproducts to a
Linear category and finite coproducts to a new-Seely category. As might be expected
both models are sound.

Theorem 3 Both a new-Seely category with finite coproducts and a Linear category with
finite products and coproducts, are models for ILL.

Somewhat surprisingly, we find that the so-called Seely isomorphisms (n and p) exist in a
Linear category with products.
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Lemma 2 Given a Linear category with finite products we can define the following natural
isomorphisms:

n € @8 mim; (L) ((id®ep) x (e4®id));!(p x N);!(e x €): I ARIB —!(A x B)
n=t ¥ g4 p fst®lsnd: (4 x B) - A®!B

p def mp T T =11
p! def eVl =1

Thus the co-Kleisli category associated with a Linear category is also a CCC. Given our
earlier calculations we might consider the adjunction between a Linear category and its
co-Kleisli category, where we find the following holds.

Lemma 3 The adjunction between a Linear category, C, with finite products and its co-
Kleisli category, Cy, is a monoidal adjunction.

Thus when considering the complete intuitionistic fragment, the new-Seely and Linear
categories are equivalent.

So far we have followed others [14, 11] and only considered whether the co-Kleisli
category C; generated by the comonad is cartesian closed. It is should be noted that
alternatively one can consider the full Eilenberg-Moore category of coalgebras ((C!) instead.
In other work [5, 6], various subcategories of C! are shown to be cartesian closed. An
important feature of these (sub)categories is that the underlying category C need not
necessarily have products, in contrast to the situation for C;. The interested reader is
referred to these other works.

An interesting question is whether the co-Kleisli category C; has an induced coproduct
structure given a strong coproduct structure in C. Seely [14] showed that C; does not have
a strong coproduct structure. It is possible however to identify a weak coproduct structure.
We use the following well-known fact about the co-Kleisli category [12, Corollary 6.9].

Fact 2 The co-Kleisli category of a comonad is equivalent to the full subcategory of the
category of coalgebras consisting of the free coalgebras.

Lemma 4 Given two free coalgebras (\A,64) and (!B, dp), we define their coproduct to be
({(1A®!B), diaqip). We define the injection morphisms to be inl &f d4;linl: 1A =11 A®!\B)
and inr & §g;linr: 1B —!(LA®!B), which are (free) coalgebra morphisms. Given two (free)
coalgebra morphisms f:1A —=\C and g: !B —IC, then the morphism (![f, g]; 'ec): I(1A®!B) —
IC is a (free) coalgebra morphism and makes a coproduct diagram commaute.

Proof. By simple construction. u

4 Conclusions

In this paper we have considered the definition of a categorical model for ILL. Surprisingly,
Seely’s now standard definition [14] was shown to be unsound, in that it does not model
all equal proofs with equal morphisms. A model given in our earlier work [5] was shown
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to be sound. We have also considered a method for improving Seely’s original definition
so as to be sound. In fact both (sound) models turn out to be equivalent.

Lafont [11] also proposed a categorical model for ILL, which amounts to requiring an
adjunction between a SMCC and a category of commutative comonoids. In my thesis [6]
it is shown that this model is a categorical model of ILL by proving that every Lafont
category is a Linear category.

In Lemma 1 it was proved that a monoidal adjunction between a particular SMCC (a
new-Seely category) and CCC (its co-Kleisli category) yielded the structure of a Linear
category. Lemma 3 shows that a Linear category also has the structure of a monoidal
adjunction between it (a SMCC) and its associated co-Kleisli category (a CCC). Thus the
notion of a Linear category is in some senses equivalent to the existence of a monoidal
adjunction between a SMCC and a CCC. This was observed by Benton [4] in his work on
a mixed linear and non-linear \-calculus, where the calculus is modelled by a monoidal
adjunction between a SMCC and a CCC.
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