Technical Report T e

Number 34

Computer Laboratory

Recent developments in LCF:
examples of structural induction

Larry Paulson

January 1983

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1983 Larry Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Recent Developments in LCF:
Examples of Structural Induction

by Larry Paulson
University of Cambridge
January 1983

Abstract

Manna and Waldinger have outlined a 1large proof that probably

exceeds the power of current automatic theorem-provers. The
proof establishes the unification algorithm for terms composed of
variables, constants, and other terms. Two theorems from this
proof, involving struotufal induction, are performed in the LCF
proof assistant. These theorems concern a function that searches
for an occurrence of one term inside another, and a function that

lists the variables in a term.

Formally, terms are regarded as abstract syntax trees,. ~ LCF

automatically builds the first-order theory, with equality, of

this recursive data structure.

The first theorem has a simple proof: induction followed by
rewriting. The second theorem requires a cases split and substi-
tution throughout the goal. Each theorem is proved by reducing
the initial @goal to simpler and simpler subgoals. LCF provides
many standard proof strategies for attacking goals; the user can
program additional ones in LCF's meta-language, ML, This flexi-
bility allows the user to take ideas from such diverse fields as

denotational semantics and logic programming.

Recent Developments in LCF:
Examples of Structural Induction

by Larry Paulson
University of Cambridge

January 1983

1. Introduction

An interactive proof assistant should be able to reason about a
variety of data structures and algorithms, and automatically per-
form simple proofs, It should be flexible, allowing experimenta-
tion with different ways of expressing and performing proofs.

These are the goals of the proof assistant Edinburgh LCF (Gordon,

Milner, Wadsworth [19791).

In view of the success of the Boyer and Moore [1979] theorem-
prover, why should a proof assistant excite any interest? Manna
and Waldinger [1981, page U7] man&ally prove the Unification
Algorithm and remark, "Although the above proof may be beyond the
power of current automatic systems, a partially interactive sys-
tem could be wused to produce it with known techniques. This
approach requires more human effort, but it still would convey
many of the benefits of automatic synthesis." This paper presents

two theorems from Manna and Waldinger's theory.

2. Essential Background

LCF relies on one fundamental principle: proofs are conducted in

a meta-language, ML. ML is a general-purpose functional program-

Recent Developments in LCF 2

.ming language whose data values include terms,‘ formulas, and
theorems of the logic, Inference rules are ML functions that map
theorems to theorems., The only way an ML’ program can prove a
theorem is by applying inference rules to axioms or previously

proved theorems,.

LCF's logic, PPLAMBDA, uses Scott's theory of continuous partial

orders (Stoy [19771). PPLAMBDA has the usual introduction and
elimination rules for each connective. Please note its ASCIi

representation of logical formulas (Figure 1).

PPLAMBDA Terms

c constant, where ¢ is a constant symbol

X . variable

\x.t lambda-abstraction over a term

t u combination (application of function to argument)
uu "bottom" or "undefined" element

TT truth-value "true"

FF truth-value "false"

PPLAMBDA Formulas

c

equality of t and u
universal quantifier
existential quantifier
conjunction

. disjunction

"implication
if-and-only-if
negation

1> I 3> B e) o= o
M o=
AN~ N o
H N~ =0
ARV
w w
[seluy]

D
[
Q

Figure 1. Syntax of the logic PPLAMBDA

Recent Developments in LCF 3

3. Axiomatising a Structure: Combinator Terms

Let us formalise Manna and Waldinger's [1981] theory of the Unif-
ication Algorithm, which concerns substitution over combinator
terms. These are like PPLAMBDA terms without lambda-abstraction,

For proofs we are only concerned with their abstract syntax:

term = CONST const
VAR var
COMB term term

To axiomatise this structure in LCF, we introduce the abstract
types "const", "var", and "term", then axiomatise them using

LCF's structure package. LCF stores the types and axioms on a

theory file, which can become part of a theory hierarchy.

%percent signs enclose comments$%

new_type 0 “var';; %declare the types var, const, term?
new type 0 “const ;;
new type 0 “term ;;

st .

struct _axm (":term", %build the theory of terms?
“strict’,
["CONST', ["c:const"];
VAR, ["v:ivar"]l;
TCOMBY, ["til:term"; "t2:term"1]);;

The resulting theory includes the constructor functions CONST,
VAR, and COMB, and axioms stating that these are distinct, one-
to-one, etec. The constructor functions are all strict: for
instance, CONST UU == UU. To build a theory that includes infin-
ite and partially defined structures, call struct axm with argu-

ment " lazy' instead of " strict .

Recent Developments in LCF]

4, The Occurrence Relation

Our proofs concern the ordering relation "t OCCS u", an infix
function that tests whether t occurs in u as a sub-structure.

This requires a theory of the infix equality function, =, The

structure package «can prove theorems describing the outcome of

the equality test1 for various arguments; for instance, if v, t,
u, t', u' are all defined, then

(COMB t u)=(COMB &' u') == (t=t') AND (u=u')

(VAR v)=(COMB t u) == FF

Figure 2 shows how to axiomatise the 0CC3 and OCCS_EQ functions,
binding the axioms +to ML names. The function OCCS_EQ tests

"equals or occurs in." The function 0OCCS is defined as a set of

clauses, one for each possible input:2 a term cannot occur in a
constant or variable, and occurs in COMB t1 t2 exactly if it
equals or occurs in t1 or t2. This style of defining functions,
reminiscent of Prolog'kClocksin and Mellish [1981]) or HOPE (Bur-
stall et al. [1981]), eliminates the need for destructor and

discriminator functions.

! Do not confuse the function = with the predicate ==, The
formula "x==zy", which may be proved using inference rules, as-
serts that x and y are equal. The term "x=y" represents a com-
putable equality test applied to x and y. Likewise, do not con-
fuse the truth-valued functions AND, OR, and NOT, with the logi-
cal connectives /\, \/, and ~

2 The first clause asserts that 0CC3 is strict; the other uses
of UU confine the clauses to defined values only. Our theorems
contain similar definedness hypotheses, a reflection that they
were originally formulated for a first-order logic, mnot for
PPLAMBDA.

Recent Developments in LCF 5

let 0CCS _EQ =
new axiom (T0CCS_EQ’,
"1t £2. t OCCS_EQ t2 == (t=t2) OR (t 0CCS t2)");;

let 0CCS_CLAUSES =
new axiom (°0CCS CLAUSES ™,

"It. t 0OCCS UU == UU
/\
(te. 7 e==UU ==>
t 0OCCS (CONST c¢) == FF)
/\
(tv. 7 v==UU ==>
t 0CCS (VAR v) == FF)
/\
(1t1 t2. 7 t1==U0U == ~ t2==UU ==
t 0CCS (COMB t1 t2) == (t OCCS_EQ t1) OR (t OCCS_EQ t2))");;

Figure 2, Axioms for the infix functions 0CCS_EQ and OCCS.

5. The Variables Proposition

Our first theorem concerns a function VARS OF, which computes a
list of all the variables in a term. (We use a theory of lists,
with constructors NIL and CONS, and infix operators APP for

append, MEM for membership test.)

let VARS OF CLAUSES =
new axiom (VARS OF CLAUSES’,

" VARS OF UU == UU
/\
(Ye., 7 e¢ == UU ==
VARS OF (CONST c¢) == NIL)
/\
(tv., 7 v == UU ==
VARS_OF(VAR v) == CONS v NIL)
/\
(it u. ~ t == UU ==> 7 u == UU ==>
VARS_OF(COMB £ u) == (VARS_OF t) APP (VARS_OF u))"s

Let us prove that a variable v occurs in a term t exactly when v

is a member of the list VARS OF(t). We give LCF the goal:

Recent Developments in LCF 6

set goal ([],
"ly, 7 v==UU ==>
° 't. v MEM (VARS_OF t) == (VAR v) OCCS_EQ t");;

We will work backwards from the goal, by applying subgoaling
functions, called tactics, to 1it. A tactic returns a list of

subgoals, paired with a proof function that maps proofs of the

subgoals to a proof of the original goal. By applying further
tactics we reduce all the subgoals to trivial ones. Then we

assemble the complete proof from the proof functions,

One simple tactic is GEN _TAC, which reasons that to prove Ix.A(x)
it suffices to choose a new variable x' and prove A(x'), since

this theorem can then be generalised over x'. Another tactic 1is

DISCH TAC, which reasons that to prove A==>B, it suffices to
prove B under the assumption A, since this assumption can then be
discharged. Notation: the double bar means "suffices to prove'";
assumptions are enclosed in [square bracketsl; other assumptions

of the goal are implicitly passed to the subgoals.

'x.A(x)
it ergiben S e S fie g i oo GEN_TAC
ACx")
A==>B
oDz EzZSzZD=s=2z DISCH—TAC
(Al B
For interactive proof, LCF's subgoal package 1s convenlent: it

stacks pending and solved subgoals, displays the current goal,
and applies the proof functions in the correct order. You can

apply tactics and back up from faulty steps.

Recent Developments in LCF 7

5.1. The structural induction tactic

The structure package provides a tactic, TERM INDUCT TAC, to per-

form structural induction on a goal tt.A(t). This produces four

subgoals: t may be a COMB (the step case); t may be a VAR or
CONST (the ©base cases); t may be UU (the undefined case). The
subgoals include induction hypotheses and assumptions that the

sub-structures are defined.

Pt. ACt) TERM_INDUCT TAC
[ACt1) 3 ACE2) 3 = t1==0U ; ~ t2 ==0U] A(COMB t1 £2)
[~ v == UU] A(VAR v)
[~ ¢ == UU] A(CONST o)
A(UU)

Let us ask the subgoal package to expand the current goal using
TERM_INDUCT TAC. The induction variable t is submerged inside
the goal, so the tactic calls GEN_TAC and DISCH TAC before apply-

ing induction,.

expand (TERM_INDUCT TAC "t");;

5.2. The rewriting tactic

LCF prints the four resulting subgoals and their assumptions
(Figure 3). We can prove each one by rewriting: if we have a
theorem t==u, change the goal by replacing every instance t' of t

by the corresponding instance u'., For implicative rewrites, a

theorem A==>(t==u) may be used to rewrite an instance t' by u' if

the antecedent A' can be proved.

Recent Developments in LCF 8

v MEM (VARS_QF(COMB t1 £t2)) == (VAR v) 0CCS _EQ (COMB t1 t2)"
n-~ - — 1"

v == Uuv J
v MEM (VARS_OF t1

== (VAR v) OCCS EQ t1"]
"y MEM (VARS OF t2) ==

(VAR v) 0CCS_EQ t2"]

e

LA N UU"—]
nog2 == yuUn]
"v MEM (VARS_OF(VAR v')) == (VAR v) OCCS_EQ (VAR v')"
[" v == UuU"]
["~ y' == yu"]
"v MEM (VARS_OF(CONST e)) == (VAR v) OCCS_EQ (CONST c)"
["~ v == Uyu"]
[" ¢ == UyuU"]
"v MEM (VARS_OF Uu) == (VAR v) 0CCS _EQ UU"
[" v == yu"]

Figure 3. Subgoals after applying induction.

The most interesting case involves terms of the form
(COMB t1 t2), with induction hypotheses for t1 and t2. The left

and right sides converge:

v MEM (VARS OF (COMB t1 t2))

unfolding the definition of VARS OF --->
v MEM ((VARS OF t1) APP (VARS OF t2))
by a theorem about MEM, APP, and OR --->

(v MEM (VARS OF t1)) OR (v MEM (VARS_OF t2))

(VAR v) 0CCS_EQ (COMB t1 t2)

unfolding the definition of 0CCS EQ --->
(VAR v)=(COMB t1 t2) OR B
(({VAR v) 0CCS_EQ t1) OR ((VAR v) OCCS_EQ t2))

since any VAR is distinct from any COMB --->
(C(VAR v) OCCS_EQ t1) OR ((VAR v) OCCS_EQ t2))
by the induction hypotheses --->

(v MEM (VARS OF t1))-0R (v MEM (VARS_OF t2))

The other goals converge similarly. To perform such reasoning,
LCF ‘provides the tactic ASM _REWRITE _TAC. This rewrites the goal
using its assumptions and a list of theorems furnished by the

user. The symbols AND CLAUSES, OR_CLAUSES, etc., denote axioms

Recent Developments in LCF 9

and theorems from parent theories.

expand (ASM_REWRITE TAC
TAND CLAUSES; OR_CLAUSES;
TERM_EQUAL_ALL;
MEM CLAUSES; MEM_SINGLE; MEM_APP;
VARS OF CLAUSES; VARS OF TOTAL;
0CCS_EQ CLAUSES])i

LCF reports that the subgoal is solved and prints those that
remain. The above call of ASM_REWRITE TAC includes enough

theorems to solve any of the four subgoals.

5.3. Summarising the proof

Now that the interactive proof is complete, let wus combine the
tactics we used 1into a composite one that performs the entire
proof. For combining tactics, LCF provides functions called tac-

ticals., The basic ones are THEN, ORELSE, and REPEAT.

TAC1T THEN TAC2
calls TAC1, then applies TAC2 to all resulting subgoals

TAC1 ORELSE TAC2
calls TAC1, if it fails then calls TAC2

REPEAT TAC
calls TAC repeatedly on the goal and its subgoals

The tactic that proves the Variables theorem is

TERM_INDUCT_ TAC "g" THEN
ASM_REWRITE _TAC [AND CLAUSES; OR_CLAUSES; etc.]

In words, the proof is induction followed by rewriting. Many

proofs have this simple form -- for instance, properties of 1list

Recent Developments in LCF 10

utilities (append, map, membership), and totality of recursively

de{ined functions.

Given a set of theorems, ASM REWRITE_TAC strips off universal
quantifiers, splits apart conjunctions, and decides which of the

resulting pieces are useful for rewriting or for solving implica-

tive rewrites. It accepts not only term rewrites, t==u, but also
formula rewrites, A<=>B. After rewriting, it removes tautologies
from the goal ~-- perhaps solving it completely, returning an

empty subgoal 1list.

Edinburgh LCF provided a similar tactic, SIMPTAC, consisting of
seven inscrdtable pages of ML. Since SIMPTAC was impossible to
modify, Avra Cohn [1982] spent considerable effort adapting her
proofs to its 1limitations. 1In contrast, ASM_REWRITE_TAC has a
modular construction, Its apparently baroque strgtegy is con-
trolled by a twelve-line ML function that calls tactics, pattern
matchers, canonical form translators, rewriting functions, and
tautology checkers, Ihese components can easily be changed to

suit individual needs or correct shortcomings.

6. Transitivity of the Occurrence Relation

Let us prove a more difficult theorem, that the ordering relation

OCCS is transitive:

fta. 7 ta==UU ==>
ftb, ta 0CCS tb == TT ==>
'te, &b 0CCS te == TT ==> ta 0CCS tc == TT

Recent Developments in LCF 11

If we induct on the variable te, rewriting solves only three of

3

its four subgoals.” The COMB case remains:

"((tb = t1) OR (tb 0OCCS ©1)) OR
((tb = t2) OR (tb 0CCS t2)) == TT
((ta = t1) OR (ta 0CCS t1)) OR
((ta = t2) OR (ta 0CCS t2)) == TT"
[" ta == yu"]
["ta 0CCS tb == TT" 1]
["tb 0CCS t1 == TT ==> ta 0OCCS t1 == TT"]
["tb OCCS t2 == TT ==> ta OCCS t2 == TT"]
{ "~ £t1 == UU"]
[" t2 == UU"]

The goal has the form A==>B, sSo we can use DISCH TAC to attempt
proving B by assuming the antecedent A. Since B has the form
b1 OR b2 OR b3 OR bl == TT, it suffices to prove that one of b1,
b2, b3, or bl equals TT. The antecedent A has the form
al OR a2 OR a3 OR al == TT, and, by studying the assumptions, we
realise that if any ai equals TT, then the corresponding bi must

equal TT.

If A were a disjunction A1 \/ A2 \/ A3 \/ Al4, then we could split
into four subgoals, proving B in each case of whether A1, A2, A3,
or A4 held. ©Now A uses the truth-valued functions OR and =,
rather than the 1logical <connectives \/ and ==, but we have
theorems to correct this, using a weaker kind of formula rewrit-
ing:

OR_EQ_TT !'p gq. p OR ¢
EQUAL TT Ix y. X=y

(S]]
non
non

mun
AVAR Ve
> T
nou
m o

=
3 -3

3 These three hold vacuously, by contradicting the antecedent
tb OCCS tec == TT.

Recent Developments in LCF 12

The inference rule MP CHAIN, given a list of implications, recur-

sively modifies a theorem using Modus Ponens on it and

its parts.

With the above theorems, it can change our antecedent to a dis-

junction of equalities.

((tb :'t1) OR (tb 0OCCS t1)) OR
(Ctb = t2) OR (tb 0CCS t2)) == TT

\/ tb 0CCS t1 \/

1
2 \/ tb 0CCS t2

o
—3
e M|

1ot

This theorem has the proper form for the tactic SUBST_

CASES TAC.

This splits the goal into four cases, and substitutes each equal-

ity through the corresponding goal and its assumptions.
shows the first two cases; the other two are similar.
isk (*) marks those assumptions which, altered by the
tion, match part of the goal. Now ASM_REWRITE_TAC

each case,

Figure 4
An aster-
substitu-

can finish

"((ta = t1) OR (ta 0CCS t1)) OR ((ta = t2) OR (ta 0CCS
[" ta == UU"]
["ta 0CCS tb == TT"]
["TT == TT ==> ta 0CCS t1 == TT"]
["¢tb OCCS t2 == TT ==> ta 0OCCS t2 == TT"]
[" t1 == UU"]
[" t2 == yyn]
"((ta = t1) OR (ta 0OCCS t1)) OR ((ta = t2) OR (ta 0OCCS
["~ ta == UUH]
* ["ta 0CCS t1 == TT"]
["t1 0OCCS t1 == TT ==> ta 0OCC3S t1 == TT"]
["t1 0OCCS t2 == TT ==> ta 0OCCS t2 == TT"]
[" t1 == yu"]
[n~ t2 == uu"]

t2)) == TT"

t2)) == TT"

Figure 4. Two cases after substitution in the assumptions.

Recent Developments in LCF 13

In the goal A==>B, how do we grab hold of the antecedent A, to
put it through MP_CHAIN and SUBST_CASES TAC? During the interac-—
tive search for a proof, we might use DISCH TAC to put A on the
assumption list, then use one of LCF's tacticals for manipulating
assumptions. But we have a slick way of expressing the completed
proof, Instead of the tactic DISCH TAC, we can use the tactical
DISCH THEN, which binds the antecedent A +to a variable for

further use,.

TERM_TAC "te® THEN

ASM_REWRITE TAC [0CCS_CLAUSES; 0CCS_EQ]

THEN

%solves all base cases, but the COMB case remains%

DISCH THEN %binds antecedent to a variable?

(\ante. SUBST CASES_TAC (MP_CHAIN [OR EQ TT; EQUAL_TT] ante))

THEN -

%splits into four cases®

ASM_REWRITE TAC [OR_CLAUSES; OR_R_TT; OR_TOTAL;
TERM_EQUAL_TOTAL: OCCS_TOTAL]

In the jargon of denotational semantics (Stoy [19771), the argu-

ment to DISCH_THEN is a continuation that tells what to do with

the antecedent. Only time will tell whether such a high-powered
approach can be justified; flexibility to try different styles is

the hallmark of LCF.

7. Postsoript

We can prove many similar theorems. The ordering relation O0CCS

is anti-reflexive: it is also monotonic with respect to substitu-

tion.

Recent Developments in LCF Y

't., 7 ¢t 0CCS & == TT
Isl., 7 8l==UU ==>
tt, 7 t==UU ==>
fu, t 0CCS v == TT ==>
(t SUBST s1) 0OCCS (u SUBST sl1) == TT
Most of these proofs are straight-forward inductions, but some

reveal weaknesses in LCF. For instance, we plan to extend the
backwards—~chaining primitives to handle existential implications
such as (?x.A)==>B. This would be executing PPLAMBDA theorems as

a Prolog program (Clocksin and Mellish [19811).

LCF's methods apply to any logic. The logic PPLAMBDA can compli-
cate first-order problems, adding cases about undefined elements.
However, the extra cases are usually trivial. PPLAMBDA is essen-
tial for proofs about denctational semantics, compiler correct-

ness, lazy evaluation, and higher-order functional programs,

In such a short paper it is impossible to document, motivate, or
even mention all the techniques ~- particularly experimental
ones. You may not see how LCF helped £6 discover the proofs
shown here, since I have omitted the fruitless first attempts.
Look again at the subgoals in Figures 3 and U4, which LCF printed.
Imagine writing them out by hand. With computer assistance, we
can hope to prove theorems involving increasingly complex data

structures.

Acknowledgments. I would 1like to thank Gerard Huet for porting

the Lisp sources, and Mike Gordon for daily discussions. Robin

Milner wrote the first structure package.

Recent Developments in LCF 15

References

R. Boyer, J. Moore. A Computational Logic. Academic Press,
1979,
R. Burstall, D. MacQueen, D, Sannella., "HOPE: An Experimental

Applicative Language." Technical Report CSR-62-80, University of

Edinburgh, 1981.

W. Clocksin, C. Mellish., Programming in Prolog, Springer-Verlag,

1981.

A. Cohn, R. Milner,. "On using Edinburgh LCF to prove the
correctness of a parsing algorithm." Technical Report CSR-113-82,

University of Edinburgh, 1982.

A. Cohn. "The correctness of a predecence parsing algorithm in

LCF." Technical Report No. 21, University of Cambridge, 1982,

M. Gordon, R. Milner, C. Wadsworth. Edinburgh LCF. Springer-

Verlag, 1979.

Z. Manna, R. Waldinger. "Deductive Synthesis of the Unification

Algorithm." Science of Computer Programming, 1981, pages 5-48,

J. Stoy. Denotational Semantics: the Scott-Strachey Approach to

Programming Language Theory, MIT Press, 1977.

