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Abstract

The deployment of high speed, multiservice networks within the local area has meant

that it has become possible to deliver continuous media data to a general purpose

workstation. This, in conjunction with the increasing speed of modern microproces-

sors, means that it is now possible to write application programs which manipulate

continuous media in real-time. Unfortunately, current operating systems do not

provide the resource management facilities which are required to ensure the timely

execution of such applications.

This dissertation presents a 
exible resource management paradigm, based on the

notion of Quality of Service, with which it is possible to provide the scheduling

support required by continuous media applications. The mechanisms which are

required within an operating system to support this paradigm are described, and

the design and implementation of a prototypical kernel which implements them is

presented.

It is shown that, by augmenting the interface between an application and the op-

erating system, the application can be informed of varying resource availabilities,

and can make use of this information to vary the quality of its results. In particular

an example decoder application is presented, which makes use of such information

and exploits some of the fundamental properties of continuous media data to trade

video image quality for the amount of processor time which it receives.
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Chapter 1

Introduction

This dissertation is concerned with the treatment of continuous media by the sys-

tem and application software within a workstation environment. It commences by

describing the factors which motivate the investigation of this topic.

1.1 Motivation

Both the deployment of multi-service networks within the local area and the avail-

ability of suitable network interfaces have made it possible to deliver to a user's

workstation, new classes of tra�c such as digital audio and video, in addition to

the types of network tra�c previously found in LANs. This has prompted much

research into how video and audio are to be treated within a workstation environ-

ment. Video and audio are commonly referred to as continuous media (CM) because,

while they are in fact discrete, their regular, periodic presentation at su�ciently high

frequencies makes them appear smooth and continuous to the human perception.

Until recently, the bandwidth and temporal requirements of even moderate video

formats have meant that special-purpose, dedicated hardware has been used to

handle the video and audio data; the Pandora [Hopper90] project is an example

of such a system. In systems like this, the workstation CPU controls the continuous

media streams indirectly and typically does not directly manipulate the media data.

The increasing power of microprocessors [Geppert93] has made it possible for gen-

eral purpose processors to be used to perform tasks which have previously required

either dedicated hardware or special purpose, digital signal processors. Equipping

a workstation with such a microprocessor and a suitable network interface enables

it directly to manipulate continuous media streams in real-time without the need
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for any special purpose hardware. Work recently done within the Computer Labo-

ratory has produced a system which has much of the functionality of a Pandora's

box, but which runs on an unmodi�ed DECstation 5000/25, containing a 25MHz

MIPS R3000 processor and an interface between an ATM network and the DEC

TURBOchannel [Greaves92].1

While it is anticipated that future workstation hardware will be quite powerful,

even moderate video formats are able to consume a considerable amount of system

resources. For this reason, even though it is possible to handle video streams with

the workstation CPU, it may not necessarily be the case that all of the streams in a

system ought to be handled by the CPU. [Hayter91] presents a 
exible, extensible,

workstation architecture which is based on a switch [Leslie91] rather than a bus and

in which CM streams can be routed either through a processor if they require pro-

cessing or around it if they do not. Both bus-based and switch-based architectures

have in common the ability to present CM data to applications. Consequently, CM

become another data type and the writers of applications can write programs which

store, process and present them similarly to other data types. Current workstation

operating systems do not provide adequate support for applications which handle

such data. This provides the motivation for investigating the treatment of CM data

within such an environment.

1.2 Environment

Many CM applications are distributed [Nicolaou91], and these are in many respects

more interesting than applications which run on a single machine. So the type of

system considered in the following chapters will be based on generic kernel function-

ality which provides the infrastructure for execution of and communication between

active entities (clients and servers). Within the distributed environment, specialised

servers run on machines con�gured for the services they o�er. For example, one ma-

chine might provide a CM �le service [Jardetzky92] and another a synchronisation

service [Sreenan92]. To discuss completely and design such a system would require

the investigation of many areas such as naming, security and reliability which are

beyond the scope of this work. So the work which is described in the following chap-

ters focusses on the development of low-level software which can be used to support

the servers and clients with which such a system can be built.

1The Pandora framework was ported by Timothy Roscoe, the X server and CM stream software

by Paul Barham, and the Base Board Audio driver and AudioFile software by Shaw Chuang.
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1.3 Properties of Continuous Media

CM have two important properties. The �rst property is that their �delity is often

dependent upon the timeliness with which they are presented. This will be referred

to as the temporal property of CM and creates the requirement that code which

manipulates the segments of CM data may need to be executed within suitable

windows of time.

The second property is that they are often tolerant of the loss of some of their infor-

mation content. It is precisely this property which enables compression algorithms

such as those described in chapter 3 to obtain such high compression ratios. This

property will be referred to as the informational property and provides something

which might be exploited by systems which handle CM.

1.4 Issues

While there is a considerable body of experience with building real-time systems

which are able to provide temporal guarantees for the execution of applications

[Stankovic88], the exact relationship between CM and real-time systems is yet to

be determined. Correctness in real-time systems requires that the result of a com-

putation is both logically correct and available by a particular time. In many such

systems, failure to produce a correct result on time is treated as a fatal system er-

ror. Such stringency does not readily accommodate CM applications which might

require timely execution most of the time or only some of the time, and it does not

allow the informational property of CM to be exploited easily.

Much of the current experience with real-time programming derives from the con-

struction of embedded systems. These may be viewed as \black boxes" whose inputs

and corresponding outputs are well de�ned. In such an environment, the scheduler

has a detailed knowledge of system resource availability and application resource

requirements. Applications are written with the assumption that they will always

receive all of the resources which they require and system overload is an exceptional

condition. The design and construction of these systems emphasises the ability to

predict system responses to known inputs.

A workstation, particularly one connected to a network, is a dynamic environment

in which system inputs, resource availability and requirements are not likely to be

known in any detail. The size, complexity and dynamic nature of such systems

makes it di�cult to predict their behaviour exactly, but in order to support CM

applications, they must still be able to maintain the temporal properties of CM
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data. The types of applications which are envisioned are distributed and an exact

description of their resource requirements is likely to be complex. Some means

is needed, whereby an application's resource requirements can be expressed more

simply, and the system scheduler needs to be able to interpret such descriptions.

CM applications can consume large amounts of resources and this can impact the

performance of the rest of a system. It may be, that even in a lightly loaded system,

a user will not want to give an application all of the resources it wants. In an

overloaded system, there are not enough resources available to satisfy all requests,

and the ability to limit the usage of resources by an application can be used to

control the manner in which the system degrades. The operating systemmechanisms

needed to do this are in many respects similar to those used in traditional mainframe

timesharing systems, but they are given a new perspective by requiring that they

maintain the temporal properties of CM and enable exploitation of the informational

properties.

Giving an application fewer resources than it needs a�ects its performance so some

applications may bene�t from being written in a manner which allows them to

adjust the quality of their results according to the resources which are available to

them. Informing an application of the resources which are available to it would help

guide its decisions in such circumstances. Mechanisms suitable for conveying this

information to applications need to be investigated.

In situations of extreme overload, the system may have to refuse to run an appli-

cation on the grounds that running the new application would adversely a�ect the

performance of the system in general. Consideration needs to be given to the de-

velopment of policies for determining when newly arrived applications are allowed

to run, causing the system's performance to deteriorate, and when they ought to be

refused.

1.5 Quality of Service

Maintaining the temporal properties of CM data and applications within an op-

erating system is primarily a resource allocation problem. The model of resource

allocation which is used throughout this dissertation is based on the notion of Qual-

ity of Service (QOS). Within this model, QOS appears in di�erent forms as part of

the interfaces between the layers of a system. At the interface between an applica-

tion and the operating system, the system is viewed as a service provider and the

application is viewed as a service user. The application can then request a certain

QOS from the operating system. As a further example, at the interface between
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an application and a user, the application might be the service provider, with the

user requesting a certain QOS from the application. A QOS speci�cation in this

model is a means by which the usual syntactic and semantic de�nition of an interface

such as a system call may be augmented to incorporate extra requirements such as

timeliness and accuracy.

1.6 Aims

This dissertation aims to investigate mechanisms and policies which can be imple-

mented in an operating system to provide support for CM applications. In partic-

ular, the suitability of QOS as a scheduling paradigm for CM applications is to be

examined and the mechanisms required to support it are to be determined. Also to

be explored are the e�ects which this type of resource allocation strategy has on the

design of applications, their behaviour, and the interface between applications and

the system.

1.7 Synopsis

Chapter 2 presents a summary of some background material covering real-time

scheduling and resource allocation within ATM networks, then compares these with

QOS-based resource management techniques for scheduling CM applications in a

workstation.

Chapter 3 discusses the incorporation of QOS into operating systems as a resource

allocation paradigm.

Chapter 4 presents considerations to be taken into account when designing an op-

erating system which is to provide QOS contracts to CM applications.

Chapter 5 describes a small system called Nemo which was implemented to experi-

ment with some of the mechanisms proposed in chapter 4.

Chapter 6 contains an evaluation of Nemo and shows how applications can be im-

plemented to make use of the features provided by it.

Chapter 7 summarises the work contained in the previous chapters and draws a

number of conclusions.
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Chapter 2

Background

A characteristic of continuous media which distinguishes them from the other types

of data which are currently found in workstations is that they have genuine temporal

requirements. So it is reasonable to expect that the techniques which have been

developed for the construction of real-time systems will be applicable to systems in

which applications handle continuous media.

2.1 Real-Time

A real-time system is one in which the correct operation of the system depends not

only on the logical correctness of any computed result, but also on the time at which

the result is delivered. A system in which all computed results must be delivered

on time is a hard real-time (HRT) system. A system in which the computed results

are sometimes allowed to be late is called a soft real-time (SRT) system.

A task is a single execution of a body of code. The arrival time of a task is the time

at which the system �rst becomes aware that the task has to be executed. Tasks

can be classi�ed in terms of their arrival time characteristics. A periodic task arrives

at regular intervals and is characterised by a �xed inter-arrival time or period T (t)

and a computation time C(t).

Aperiodic tasks are typically characterised by a stochastic arrival rate and may

be bursty in nature. Because aperiodic tasks can arrive at any rate, there is the

possibility that multiple instances of an aperiodic task could arrive within a short

time and overload the system. For this reason, it is commonly assumed that there is

a minimum time between the arrivals of di�erent instances of the same task. Tasks

with such arrival rates are known as sporadic tasks. There is still a chance that in a
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system, multiple sporadic tasks will arrive within a short period of time and there

will not be su�cient resources available to process them all within the required time.

When this happens, a system is said to be experiencing transient overload.

A task's release time is the time after which it is allowed to execute; its deadline

is the time by which it must complete execution. These timing parameters can be

represented on a timing diagram as shown in �gure 2.1. This diagram depicts the

execution of a task with arrival time A, release time R, computation time C and

deadline D. The arrival and release times are indicated by the symbol " and the

deadline by #.

A D

C

Time
R

Figure 2.1: Timing diagram for a task.

2.1.1 Real-Time Versus Fast

With these de�nitions, it is possible to investigate the e�ect of resource utilisation

on real-time problems. Figure 2.2 shows the timing diagram of a periodic process

which runs every 100 milliseconds, requires 20 milliseconds of processing time and

has a deadline of 20 milliseconds after its arrival. The speed of the processor has

been chosen to be just su�cient to complete the task by its deadline.

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 2.2: A periodic task.

Now suppose that another periodic process is introduced, which requires the same

processing time, has the same period, but has a deadline of 40 milliseconds after

its arrival. There is then only one order in which the processor can execute both

processes so that they complete before their deadlines and this is shown in �gure

2.3. The addition of a second task means that the system now has to be able to

decide which of the tasks to run �rst. This is a result of there being some contention

between the two tasks for a system resource (the processor) which can only be used

by one task at a time. Note that the long term processor utilisation in this example
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0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 2.3: Two periodic tasks.

is only 40%, but that during the interval of interest (the �rst 40 milliseconds of every

period) the processor is fully utilised.

Having to make this decision could be avoided by increasing the speed of the pro-

cessor by at least a factor of two. This would halve the amount of time required to

execute each task with the result that, regardless of the order in which they would be

executed, they would both be completed within 20 milliseconds of being requested.

Doubling the processor speed would decrease the overall processor utilisation from

40% to 20%. It is precisely this decrease in processor utilisation which has removed

the necessity of having to execute the tasks in a particular order.

Additionally, if the results of these processes were to be delivered at a particular

time, for example at their deadlines, then even if the processor is so fast that the

order in which the tasks are executed is irrelevant, the system still needs to be

able to arrange for the responses to occur at a speci�ed time. Increasing processor

speed has solved only part of the problem; extra work is required to ensure that the

responses, having been calculated, occur at the appropriate times.

This is a simple example, but it does present some consequences. Firstly, if tempo-

rally sensitive data is to be handled within a workstation, then attention to schedul-

ing will increase the amount of useful work which is achievable with a given piece of

hardware. Secondly, increasing processor speed alone will neither remove nor solve

the scheduling problems presented by CM systems; timely presentation of CM data

can mean that, between its arrival and release times, a process can do little or no

useful work even if the resources it requires are made available to it. Thirdly, the

de�nition of a deadline within a HRT environment implies that the correct result

must be delivered by a task before its deadline and that any result delivered after its

deadline is of no use. When presenting continuous media, it is sometimes the case

that approximate results delivered on time are useful and that correct results have

some use if they are delivered only a short time after their deadlines. This suggests

that continuous media systems may present some problems which have not yet been

completely addressed by the current work on real-time systems.
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2.1.2 Scheduling

Correct implementation of a real-time system involves allocating the available re-

sources to the tasks which require them in such a manner that every task completes

before its deadline. This is the purpose of the system scheduler which, whenever

invoked, executes a scheduling algorithm to determine when and how to allocate

available resources to the known tasks. Such an allocation is known as a schedule.

If the allocation is such that all tasks complete before their deadlines, the resulting

schedule is called a feasible schedule.

In a static real time system, all of the tasks in the system, their arrival times and

resource requirements are known a priori, so the scheduling decisions can be made

o�-line, reducing the run-time scheduling requirements to a triviality. In a dynamic

real time system, no prior information is known about arriving tasks, so the scheduler

has to make all of its decisions online. To do this, the scheduler is invoked at startup

with the initial task set and at various times thereafter. In general, �nding optimal

schedules for all but the simplest of scenarios is di�cult [Mok83].

2.1.3 Periodic Tasks

Periodic tasks are of interest in scheduling because they can be modelled easily and

also because many of the activities which occur in control systems are periodic.

[Liu73] presents the Rate Monotonic (RM) algorithm which provides a means of

scheduling o�-line a set of tasks given the following assumptions:1

(A1) The requests for all tasks for which hard deadlines exist are periodic, with

constant interval between requests;

(A2) Deadlines consist of run-ability constraints only | i.e., each task must be

completed before the next request for it occurs;

(A3) The tasks are independent in that requests for a certain task do not depend

on the initiation or the completion of requests for other tasks;

(A4) Run-time for each task is constant for that task and does not vary with time.

Run-time here refers to the time which is taken by a processor to execute the

task without interruption;

(A5) Any nonperiodic tasks in the system are special; they are initialization or

failure-recovery routines; they displace periodic tasks while they themselves

are being run and do not themselves have hard, critical deadlines.

1These assumptions are quoted directly from [Liu73].
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Using RM, a schedule is e�ected by assigning static priorities to tasks such that tasks

with higher arrival rates have higher priorities. The tasks are executed preemptively

in a system with a dispatcher which always runs the highest priority, runnable task.

The utilisation U of the processor by m tasks can be calculated as U =
Pm

i=1(Ci=Ti).

It is shown that if U < ln 2 then the schedule is feasible. In practice, the constraint

U < ln 2 is conservative, and there are many task sets which can be scheduled using

RM whose utilisation exceeds ln 2. [Lehoczky89] extends these results and provides

a necessary and su�cient condition for determining whether or not a set of periodic

tasks is schedulable using the RM assignment of �xed priorities. [Liu73] also presents

a deadline driven algorithm in which the task whose deadline is nearest is assigned

the highest priority. It is shown that this algorithm produces a feasible schedule for

a given set of m tasks if and only if
Pm

i=1(Ci=Ti) � 1.

Recent developments in the theory of scheduling hard real-time systems have enabled

some of the assumptions made in the development of the RM algorithm to be relaxed.

[Audsley91] provides a schedulability test for tasks whose deadlines are less than

their period, thus removing part of the constraint (A2). Giving a task a tight

deadline can be used to control the maximum amount of jitter experienced by the

task.

Allowing tasks to synchronise via semaphores dispenses with (A3). This can lead

to priority inversion where a higher priority task is blocked on a semaphore which

is held by a lower priority task | a situation which violates the assertion that at

any time the highest priority, runnable task is running. [Sha90] and [Nakamura93]

describe protocols which can be used to limit the amount of priority inversion ex-

perienced by tasks which use semaphores for synchronisation.

Assumption (A4) is still required in many techniques for scheduling hard real-time

systems. For tasks whose run-time varies, the maximum possible run-time required

by the tasks is determined and used in any scheduling calculations.

Assumptions (A1) and (A5) constrain the analysis to periodic processes; dispensing

with them enables the introduction of sporadic tasks into the system.

2.1.4 Sporadic Tasks

[Lehoczky87] presents the Deferrable Server (DS) algorithm for processing sporadic

tasks in a system of periodic tasks which has been scheduled using RM. DS creates

a server task �s with period Ts and computation time Cs, which is allocated a static

priority Ps according to RM. At the beginning of each period, �s is allocated Cs

processor time with which to process any sporadic tasks which may arrive during
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that period. Any time which is remaining at the end of the period is lost. DS

provides a predictable response to sporadic tasks while maintaining the deadlines of

the periodic tasks.

[Dertouzos74] shows that the Earliest Deadline First (EDF) algorithm is optimal in

the sense that if any other algorithm can produce a feasible schedule for a set of

tasks whose request times, computation times and deadlines are known, then so can

EDF. In contrast to static priority algorithms, EDF is suitable for use in dynamic

systems because it requires only a knowledge of the task deadlines to produce optimal

schedules.

2.1.5 Overload Behaviour

It is useful to compare the behaviour of some of these scheduling algorithms when

the system is overloaded. Using RM, the task with the longest period will be the

�rst to miss its deadline as the system becomes overloaded. This may not be what

is wanted and is a result of the priorities used by RM failing to take into account

the importance of tasks. [Sha86] presents period transformation as a solution to this

problem. Using period transformation, the priority which a task is assigned by RM

is controlled by altering its period and computation time. A task with run-time C

and period T which is assigned priority P by RM is transformed into an equivalent

task with shorter run-time C=k and period T=k for some k > 0 to which RM will

assign a priority P � > P . Priorities can also be decreased by increasing C and T .

Using EDF, the manner in which the system degrades is not easily predictable.

[Miller90] presents a predictive deadline scheduler which uses EDF to schedule tasks,

and additionally assigns to each task an explicit measure of the importance of the

task to the system. Tasks are required to maintain an estimate of their execution

times and the scheduler uses these times in conjunction with deadlines and impor-

tance to create feasible schedules during transient overload situations.

Both of these methods are retroactive; they allow the system to overload �rst then

shed load according to some speci�cation. Period transformation is a (somewhat

arti�cal) means of conveying this speci�cation to the scheduling algorithm. On the

other hand, the deferrable server DS is proactive and avoids transient overload by

explicitly controlling the amount of processor time which a sporadic task is allowed

to consume.

Both RM and the predictive deadline scheduler need to know the computation time

of tasks and if these times are bursty, RM will produce schedules with a low processor

utilisation. Both cause less important tasks not to receive any processor time at all
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during overload. The construction of some CM applications can be simpli�ed if

they are given some minimal amount of processor time during transient overloads;

at the very least, they can detect the passing of time and maintain synchronisation.

In principle, DS a�ords such behaviour during overload; regardless of the arrival

rate of the sporadic task, the computation time allocated to DS will always a�ord a

certain minimum amount of service. In practice though, DS is scheduled using RM

and is as susceptible to processor starvation during overload as other periodic tasks.

2.2 Continuous Media and Real-Time

The preceding discussion has presented a number of techniques which have been

developed in the context of HRT systems for handling temporally sensitive applica-

tions. It is necessary to consider the prospect of incorporating into a workstation

operating system, su�cient HRT capability to be able to support CM applications

in addition to the workstation's usual job mix. This could be done by a simple parti-

tioning of the processor resources using priorities. Assigning to HRT tasks priorities

which are higher than best e�ort tasks would enable the HRT tasks to obtain their

execution time guarantees, while enabling the best e�ort tasks to make use of any of

the remaining cycles. Before running a HRT application, a schedulability check such

as that provided with the RM priority assignment could be used to decide whether

running the new application would cause the current schedule to become infeasible.

2.2.1 Hard Real-Time and Best E�ort Job Mixes

It has been shown [Tindell93] that, for a job mix consisting of 50% hard real-time

periodic processes whose deadline equals their period and 40% sporadic soft real-time

load, the response times of the sporadic load would be the same as those observed

if the processor were running only the 40% sporadic soft load. This result could be

applied to the design of a multi-media workstation to produce a system in which,

provided that the multi-media activities consume 50% or less of the processor cycles,

they will not be noticed by someone working on the same machine in a sporadic

manner, such as when using an editor.

An example of a HRT, CM application environment is described in [Je�ay92], where

the YARTOS real-time kernel is being used to support live digital audio and video

within a conferencing environment. The requirements placed upon this system are

that it provide a service as good as that which can be provided by a conventional

analogue system. This means that video frames have to be displayed every 33

milliseconds, bu�ering has to be kept to a minimum, zero or one bu�er being allowed
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within a connection, and great importance is placed on not dropping any frames.

These requirements are extreme and are likely only to be encountered when it is

desired to produce a high quality display of live video. To satisfy them, YARTOS

draws heavily upon the techniques used in the design of hard real-time systems to

provide:

� support for shared resources to ensure that priority inversion does not occur;

� an algorithm for determining whether a given workload can be guaranteed

correct execution and;

� an algorithm for sequencing tasks on a processor which guarantees that tasks

will meet their deadlines.

This system is capable of handling demanding application requirements but obtains

this capability at the cost of a low utilisation of system resources; there are feasible

sets of resource requirements which the schedulability checking algorithm will not

guarantee.

Such approaches may be acceptable in an isolated machine, where high quality CM

presentations are required, but they have a number of drawbacks in a dynamic

environment such as a networked workstation. Firstly, they a�ord only a low level

of resource utilisation for the system's real-time task set. Secondly, the techniques

used in HRT scheduling algorithms assume that the worst case resource requirements

of each HRT process are known. In the case of processing compressed data from a

live video source, it is di�cult to estimate accurately such worst case requirements.

Thirdly, if the applications which are being scheduled make use of a multi-service

network to transport CM, and the network provides temporal and logical guarantees

which are weaker than those which are required by a distributed HRT application,

then the end point applications will be unable to meet their deadlines due to the

data not being delivered on time. Finally, as the HRT load increases, the SRT tasks

become starved of resources. In such a system, the only way to ensure some degree

of timely behaviour from a process is to include it in the HRT task set.

To gain an insight into a more 
exible approach to resource allocation, the following

section examines some of the methods proposed for the allocation of bandwidth in

the multi-service networks which are being designed to transport CM data.
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2.3 Networks

A considerable amount of research is currently being undertaken to develop multi-

service networks which are suited to the timely transport of high bandwidth data

such as CM. This section examines some of the methods used for allocating network

resources to provide a suitable means of transport for CM data.

2.3.1 Transfer Mode

In networking terminology, a channel's transfer mode refers to the manner in which

messages are multiplexed onto the channel. Using Synchronous Transfer Mode

(STM), a �xed proportion of the channel bandwidth is allocated to each of the

messages waiting to be sent. This is done when the network is con�gured by divid-

ing each period of time on the channel into a number of slots, allocating a slot for

the transmission of messages from each source, and sending a slot's worth of data

from each source once every period. Using Packet Transfer Mode (PTM), the whole

of the channel bandwidth is allocated to a message for the duration of its transmis-

sion. Asynchronous Transfer Mode (ATM) is a compromise between these two in

which channel time is divided into a number of small, �xed-length slots or cells.2

Any number of cells may be allocated at the next cell boundary for the transmission

of a message.

Each of these transfer modes corresponds to a particular scheduling strategy. STM

e�ects a preemptive, round-robin strategy, transmitting slices of multiple messages

so that they appear to be being sent at the same rate. PTM corresponds to a non-

preemptive strategy | once the transmission of a message has been started, the

channel is allocated until the entire message has been sent. The regular, frequent cell

boundaries characteristic of the ATM provide points throughout the transmission of

a message at which the transmission may be preempted, so ATM corresponds to a

preemptive scheduling strategy, which allows bandwidth allocation decisions to be

made at every cell boundary.

In their raw forms, continuous media typically exhibit a Constant Bit Rate (CBR);

Audio can be represented as a periodic stream of 8-bit or more samples and video as

a periodic stream of frames of �xed size. They also consume a large amount of band-

width so use is often made of the fact that they contain redundant information to

transform them into compressed representations. Silence suppression within an au-

dio stream is a simple compression mechanism. Video compression techniques such

2A 5-byte header and a 48-byte payload have been chosen for B-ISDN, giving a 53-octet cell

size.
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as H.261 [CCITT90] and MPEG [ISO/IEC91] make use of more complexmechanisms

such as chrominance sub-sampling, quantisation and selective discarding of spatial

frequencies and motion compensation to produce reduced bandwidth representa-

tions of the original stream. These techniques work because of the informational

property of CM. Two important consequences of such encodings are that the data

streams which they produce may not necessarily be periodic and often will have a

Variable Bit Rate (VBR). In the case of silence suppressed audio, the data samples

may only be periodic during the talk intervals. In the case of motion compensated

video, data may not be produced when there is no di�erence between a frame and

a number of its successors; the picture content of di�ering frames may also require

di�erent numbers of bits to encode.

While STM networks are well suited to carrying CBR tra�c and are able to provide

delay and jitter guarantees when doing so, they are less well suited to carrying

VBR tra�c due to their inability to allocate bandwidth dynamically. While PTM

networks are able to allocate bandwidth dynamically, their inability to do so at

short notice and preempt long packets means that they cannot provide the delay

and jitter guarantees which STM networks can. The ability to dynamically allocate

bandwidth at every cell boundary makes ATM networks suitable for carrying VBR

tra�c but in order to maintain delay and jitter guarantees, the network bandwidth

has to be allocated appropriately. Figure 2.4 shows the e�ect of transmitting two

temporally constrained messages m1 and m2 using each of the three transfer modes.

m1 arrives at t = 0, requires 10 units of time to transmit and has a deadline of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

STM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PTM

ATM

m1

m2

m1

m2

m1

m2

Figure 2.4: Transmission of two temporally constrained messages.
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t = 17. m2 arrives at t = 2, requires 5 units of time to transmit and has a deadline

of t = 10.

2.3.2 Bandwidth Allocation

As has been mentioned, the success of ATM networks will depend on how well

network resources can be allocated to the tra�c sources which use it. The following

sections review some of the concepts that have been developed to facilitate this

process. [Bae91] provides a more detailed coverage of the issues.

2.3.2.1 Quality of Service

From the point of view of an application, it is desirable for the network to behave

predictably. For the network to do this, it needs to have some knowledge of the

behaviour of each of the tra�c sources it is carrying; the more detailed the knowledge

about each of the sources, the better the network is enabled to allocate resources to

them in a predictable manner. This situation is commonly abstracted by viewing

the network as a provider of services and applications as users of these services. The

level of service required by an application and provided by the network is described

by a QOS speci�cation. Essentially, a QOS speci�cation has two purposes; �rstly, it

is used by applications to specify the behaviour which they require from any tra�c

they send over the network and secondly, it is used by the network to allocate the

resources it needs to allocate in order to e�ect that desired tra�c behaviour. Typical

QOS parameters include delay, jitter, bandwidth and error rate.

2.3.2.2 Admission Control

Having been presented with a QOS requirement by an application requesting a

connection, the network has to decide whether or not it has available su�cient

resources to provide the desired service quality. If it does, then the application

tra�c can be accepted; if not, the application should be informed. This process of

deciding whether or not to accept a tra�c source is called admission control.

2.3.2.3 Policing

Once the network and application have agreed upon a particular QOS for some

tra�c, a two-way agreement is in force. The network, by accepting the tra�c source

and agreeing to provide the desired QOS to it, should try very hard to maintain
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that level of service to the application. Similarly, the application, having requested a

certain amount of bandwidth in its QOS speci�cation, should not be able to consume

any more bandwidth unless it is available and doing so will not interfere with other

users of the network.3 A policing function is required in the network to prevent this

sort of interference.

2.3.3 Bursty Tra�c

Much of the data handled by ATM networks will be bursty; �gure 2.5 shows a plot

of bits of data per frame of a video sequence which has been coded using an MPEG

encoder.
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Figure 2.5: Bits per frame for video encoded with MPEG codec.

The encoder has produced three types of frames: I frames contain all the information

required to reconstruct a single frame of the original video; P frames contain the

information required to predict one frame of the original video from the previous I

frame and; B frames contain the information required to predict the original frame

3This depends considerably on the viewpoint of the network designers. It may be the intention

that only the requested amount of bandwidth ever be available regardless of the current utilisation

of the network, or it may be that applications may try to make use of any spare bandwidth which

fortuitously becomes available.
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using the previous I or P frame and the next I or P frame. The video has been

encoded using the sequence [IBBPBB]+.4;5 In its original form, each of the frames

of this video sequence is approximately 164 kilobits in size. As shown by the plot, the

bandwidth of the compressed data varies from 3.9 kilobits per frame to 35.2 kilobits

per frame. This burstiness raises the question of how much bandwidth ought to be

allocated within a network to carry such tra�c.

2.3.4 Tra�c Descriptors

A simple strategy for admission control and bandwidth allocation would be to allo-

cate the peak bandwidth required by a tra�c source. This would have the bene�ts

of always leaving su�cient bandwidth available for carrying the tra�c and would

require only one number to specify the tra�c's bandwidth requirements. One dis-

advantage of this as an allocation strategy is that allocation of peak bandwidth

requirements for a large number of bursty sources leads to unacceptably low utilisa-

tion of the overall network bandwidth. Another is that there are applications where

the peak bandwidth requirement of such a stream is unknown; if the source of video

were a camera recording a live scene, for example, then the bandwidth would depend

on the nature of the scene and in such a circumstance, the stream's peak bandwidth

would have to be guessed.

2.3.5 Statistical Multiplexing

Network designers are investigating the use of statistical multiplexing techniques

which allow less than peak bandwidth to be allocated to tra�c sources and rely

on carrying a large number of streams so that the short-term surplus bandwidth

requirements of some of the streams can be met by allowing them to use bandwidth

which is not currently being used by the remainder of the streams. Bandwidth in

such networks can be allocated in a number of ways, each of which will provide

di�erent forms of QOS contracts to an application.

If the peak bandwidth Bp of a stream is known for the lifetime of the stream, then

Ba � Bp could be allocated and the cell loss rate for the stream would be close to

4The syntax [pattern]+ is used to represent one or more occurrences of pattern.
5Note that, because the second frame is encoded as a B frame and this requires the previous I

frame (frame number 1) as well as the next P frame (frame number 4) to decode, the transmission

and decoding order is I[PBBIBB]+ . This accounts for the two adjacent peaks at frames 1 and 2

in the �gure.
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that of the hardware bit error rate.6 Alternatively, some bandwidth Bb < Bp could

be allocated, resulting in a much higher cell loss rate. More often, the problem

is stated in terms of knowing a tolerable cell loss rate, which is dictated by an

application, and having to determine the bandwidth to be allocated, based on some

knowledge of the tra�c source's bandwidth requirements. This may be exact, but

typically it will be in the form of some function of probabilities.

2.3.6 Service Degradation

The very fact that less than peak bandwidth has been allocated to a tra�c source

means that it is possible for such a source to produce more data than can be handled

by the connection that it has established. When this happens, the network is forced

to o�er the user a degraded service quality. The manner in which service quality

degrades is speci�c to the service user, and for this reason should be part of the

original QOS requirement parameters.

For example, a video stream being viewed requires timely delivery of data, but is

able to tolerate some loss of the data for small amounts of time. So an acceptable

method of degrading service quality during bursts in the video tra�c is simply to

discard any excess data.7 File system data, on the other hand, is sensitive to data

loss, but often does not have very strict timeliness requirements, so an acceptable

method of degrading service quality for this type of tra�c would be to wait until

su�cient bandwidth becomes available before sending any more data.

2.4 Real-Time and QOS

The HRT and QOS paradigms might appear to provide two di�erent approaches

to allocating resources in a timely manner | HRT provides stringent, determinis-

tic guarantees that deadlines will always be met, and much of the current research

focusses on the use of QOS to provide a probabilistic assurance that resource re-

quirements will be satis�ed a certain fraction of the time. It is worth remembering

though, that an application's QOS requirement is a means of specifying the QOS

which the application requires from the system, and can encompass requests for

service qualities with such stringent guarantees as are provided by HRT. Given that

6The loss of 1 cell in 109 is a commonly cited �gure.
7This has an e�ect on the coding method used. Coding techniques which strive for high com-

pression ratios tend to be intolerant of errors within the coded data stream. In the example of

�gure 2.5, the e�ects of discarding data will propagate only as far as the next I frame.
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in any real system, there will be a �nite probability of failure due to possible soft-

ware defects and a certain mean time between failures for any piece of hardware,

one might also consider the di�erence between the \guarantees" o�ered by HRT

and those o�ered by QOS when asked to provide an error rate close to that of the

underlying hardware.

A comparison might also be made between SRT and QOS. From the de�nition pro-

vided in section 2.1, a SRT system is one in which deadlines are sometimes allowed

to be missed. Perhaps it is because of the subjective nature this de�nition, or the

perception that SRT systems are generally easier to build than HRT systems and

not as useful, that much of the research in real-time systems has been directed at the

HRT case. Many of the systems which might employ QOS for resource allocation

are SRT. The desire to maintain some form of assertion (albeit one involving proba-

bilities) about the long term frequency with which deadlines will be missed provides

a means to reason about the behaviour of the system. From this perspective, QOS

can be seen as being roughly equivalent to quanti�able, soft real-time.

2.5 Extending QOS

The suitability of QOS as a paradigm for resource allocation for CM tra�c in multi-

service networks has been identi�ed, as has the relative in
exibility of HRT for this

purpose. This will have implications for the software which is running on systems

connected to these networks.

2.5.1 IMAC

[Nicolaou91] presents an extensive survey of multi-media systems and applications,

then uses this to guide the design of an Integrated Multi-media Applications Com-

munication (IMAC) architecture, the aim of the architectural approach being to

describe the components within the system and how they interact. The IMAC

architecture recognises the fact that, by their nature, most CM applications are

distributed and has as one of its major goals the integration of CM data within

a distributed computing environment. So the work presented focusses on system

components for generating and presenting media (devices), transporting media (net-

works and protocols), and distributed processing (providing a base set of services

which applications can use for distributed processing). The scope of the architec-

ture is quite broad, but of particular relevance to the work which is presented in this

dissertation is the treatment of QOS within the architectural design (section 5.2).
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Within the IMAC architecture, the communications system is viewed as a service

provider and applications are viewed as service users. In addition to this, system

servers export interfaces which describe the set of operations which can be performed

on them. The underlying system makes a series of QOS o�ers representing the QOS

it can support. Each operation within an interface has associated with it a QOS

speci�cation, which is used to select the set of QOS o�ers which are acceptable for

use with that particular operation. The invoker of an operation speci�es a QOS

request, which identi�es a single QOS from those selected by the QOS speci�cation

for use with the current operation.

Throughout the system, QOS is speci�ed in terms which are appropriate to the

current level of abstraction, so at the application level for example, QOS appropri-

ate to a video stream might be described simply as compressed pal, while at the

communications protocol level, it would more appropriately be described in terms

of peak bandwidth, maximum acceptable delay and allowable error rate. To imple-

ment the conversion from one form of QOS to another, a number of constructs are

introduced: a QOS domain delineates the scope of QOS o�ers, speci�cations and

requests; QOS domains are implemented as a set of QOS layers, which represent

the points at which QOS is provided; and QOS mapping is provided to convert QOS

speci�cations from one layer to an underlying layer.

Two algorithms are provided for the purposes of negotiating QOS: one takes a

desired QOS and recursively evaluates a set of conforming QOS speci�cations; the

other determines a suitable QOS request from this set. In IMAC, these algorithms

operate on the layers of a communications protocol stack and the results which they

return are a private instance of a protocol stack which will provide the QOS desired

by the application.

Two important points derive from the QOS paradigm presented in IMAC. The �rst

is that QOS is always understood to extend between the end points of any operation;

this is a simple consequence of end-to-end arguments in system design. The second

is that, while the discussion of QOS within the IMAC architecture focusses on the

services provided by a communications system, the algorithms used are quite generic

and allow other system components to be represented as QOS layers for the purposes

of end-to-end QOS negotiation.

2.5.2 QOS-A

[Campbell93] presents an integrated Quality of Service Architecture (QOS-A) in

which QOS is used as the single paradigm for resource allocation and scheduling

throughout a system. The discussion focusses on the provision of QOS guarantees
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to support CM communications and presents a number of requirements for a QOS-A.

A number of points germane to the current discussion are raised.

Within QOS-A, application QOS requirements need to be mapped through all sys-

tem layers to the network so that support for QOS can be provided at all layers

in the form of end-to-end QOS negotiation, admission control, policing and mon-

itoring. To do this will require support from the operating system in the form of

scheduling resources such as processor cycles and memory.

While much of the current work concentrates on the use of QOS in networks and

protocols to provide communications guarantees, a generalised QOS-A ought to be

extensible to include other areas of QOS provision such as real-time control systems.

A consequence of focussing on the use of QOS in networks is that QOS is being seen

as a service provider issue, and little attention is being given to service user issues.

This is illustrated by the observation that current notions of QOS provide little or

no feedback to applications when QOS changes.

2.5.3 End-to-End QOS

Both IMAC and QOS-A emphasise that QOS must be maintained between the end

points of distributed CM applications. There is little point in having the network

deliver CM data according to some QOS requirement if the devices or applications

at the end points are not given the resources to handle the data in a corresponding

manner. This provides the motivation for extending QOS from the network into the

operating system. To this end, the chapters following investigate the consequences

of using within the operating system, resource allocation strategies similar to those

used within the network.

2.6 Summary

The use of HRT and QOS to schedule resources in a timely manner has been re-

viewed, and both have been compared with respect to their suitability for scheduling

CM data. While HRT is capable of satisfying stringent timing requirements, it does

not readily a�ord the 
exibility required to take advantage of the unique properties

of CM. While SRT tolerates missed deadlines, little attention is paid to quantify-

ing the frequency with which deadlines are missed. The use of QOS for scheduling

CM within networks has shown that it proves 
exible enough to accommodate a

wide range of scheduling demands and so is more useful for managing CM. End-to-
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end QOS requirements in distributed applications dictate that the operating system

be able to provide QOS guarantees at all of the layers used by the applications.

This includes scheduling of the system resources used within the communications

protocol stacks as well as those needed by applications. The remainder of this dis-

sertation will consider the use of QOS as a means of scheduling applications within

a workstation operating system.
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Chapter 3

QOS in Operating Systems

The previous chapter has compared QOS with real-time scheduling paradigms and

discussed the advantages of QOS when used to schedule CM applications. The

purpose of this chapter is to investigate in some more detail, the means by which

QOS might be supported within an operating system together with some of the

implications of doing so. To begin with, a simple CM application is described. This

will be used as an example in later sections.

3.1 Example Decoder Application

The example application decodes a compressed video stream and displays it directly

on a memory mapped frame bu�er. Each frame of the video stream is compressed

using the JPEG [Wallace91] still picture compression algorithm and the decoder

performs decompression and display of the frames at the rate at which the video

was originally sampled. The application decodes compressed frames in a number of

steps. The input bit stream is expanded into a sequence of 8 � 8 tiles of Discrete

Cosine Transform (DCT) coe�cients using a Hu�man decoder and a run-length

decoder. Each of the coe�cients in a tile is multiplied by a corresponding entry

in an 8 � 8 quantiser matrix. An 8 � 8 Inverse DCT (IDCT) is performed on the

coe�cients to retrieve a tile of level-shifted pixel values which are then adjusted to

absolute pixel values. The process is repeated until all of the tiles for one frame of

video have been decoded whereupon the frame is displayed.

The encoding process is essentially the reverse of decoding; a tile of absolute pixel

values is level-shifted, transformed using the DCT and each of the coe�cients di-

vided, using integer division, by a corresponding entry in the quantiser matrix. The

quantising step truncates small coe�cients of the higher spatial frequencies, produc-
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ing large numbers of zero-valued coe�cients in the quantised tile. These coe�cients

are run-length encoded then Hu�man encoded to produce the output bit stream.

The degree of compression obtained can be controlled by scaling the quantiser matrix

during the encoding phase. The implementation used in the encoder controls this

scaling by means of the Q factor. Prior to encoding or decoding, each entry qij(1 �

i; j � 8) in the quantiser matrix is scaled by the Q factor so that qQij = (qij�Q)=100

with the resulting values truncated to the range (1; 32767), and the qQij are used

during the encoding and decoding process. The same Q factor is used to decode

an image as is used to encode the image. High Q factors produce high compression

ratios and more distorted images; low Q factors produce low compression ratios and

less distorted images. Typical Q factors used for compressing video range from 30

to 200.

Section 2.3.3 demonstrates that one of the results of compressing a video stream is

that the bandwidth required to transport the compressed representation is bursty.

The JPEG decoder application exhibits this property and reveals another interesting

fact. A video segment was sampled at 15 frames per second and a resolution of 160

pels wide and 112 pels high, each pel being represented by 8 bits of grey-scale

information. In its raw form, this stream requires a bandwidth of 160 � 112 � 8 =

143:36 kilobits per 67 milliseconds to deliver the stream to an application. The

application then requires 653 microseconds of processor time if it is to display each

frame by copying it into a frame bu�er.1 In this case, a CBR stream is being delivered

to an application which requires a �xed rate of processor resource to display the

stream. The usages of the bandwidth and processor resources are both periodic and

constant.

The stream was then compressed using the JPEG encoder and presented to the

JPEG decoder for displaying. The graph in �gure 3.1 plots frame number versus

the number of bits in the compressed frame and the time required to decode the

frame. The graph shows that not only has compression made the bandwidth of

the video stream bursty, but that the execution time required by the decoder to

reconstruct the frames has also become bursty.

The decoder is a simple application, but has the properties which are typical of the

applications which this work is aimed at scheduling. Each frame must be displayed

at the appropriate time and the resource requirements of the application vary con-

siderably with time. The temporal requirement would make it a good candidate for

scheduling using conventional real-time techniques but the burstiness would cause

them to obtain poor resource utilisation. The remaining sections discuss how QOS

can be incorporated into an operating system and how its use interacts with applica-

1The measurements presented in this section were made on a DECstation 5000/25.
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Figure 3.1: Decode time and bits per frame of compressed video.

tions such as the decoder. The discussion commences by presenting some de�nitions.

3.2 A De�nition of QOS

In its common, accepted usage, quality connotes a particular characteristic, as well as

the degree to which a characteristic is present. Within the context of the operating

system being a provider of services such as processor cycles, memory, I/O operations

and so on, quality of service is used to refer both to the kind of a service being

provided, and to the extent to which that service is made available to an application.

This extent is quanti�ed by the amount of the service which is provided and the

times at which it is provided.

The provision of services in a timely manner requires appropriate allocation of

system resources so, in their most basic forms, the QOS qd desired by an ap-

plication will describe the application's resource requirements, and the QOS qp
provided by the system will be the result of the resource allocation scheme used

within the system. qd and qp can be represented by vectors of resource requirements

~qd =
h
rd1(t)r

d
2(t) � � � r

d
n(t)

i
and ~qp =

h
rp1(t)r

p
2(t) � � � r

p
n(t)

i
where rdi (t) is the amount

of resource ri desired by the application and rpi (t) is the availability of resource ri
which was provided by the system. The ri(t) are called QOS parameters.
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3.3 Elements of a QOS Implementation

Figure 3.2 shows how an operating system might be constructed to provide QOS for

its applications. In this diagram, the application is either a client or a server process.

Time Memory I/OCPU

Run Time Resource Allocation

Accounting

Policing

QOS Manager Application

QOS Description

Contract

Parameters
Resource
Allocation

Figure 3.2: QOS management entities and their interactions.

The purpose of the QOS manager is to come to some agreement with processes

about the QOS which will be delivered to them. An application presents to the QOS

manager a description of its requirements and the QOS manager converts this to a set

of parameters. The QOS manager then decides whether or not it can accommodate

this request; it may be able to do this using only the QOS description or it may need

the information provided by the QOS parameters. If the QOS can not be provided,

the application is informed and the user may be informed by the application or the

QOS manager. If the QOS can be provided the resources required to provide that

QOS are noted and the application is informed of their availability. A contract then

exists between the application and the system. The QOS manager communicates the

application's QOS parameters to the Run-Time Resource Allocator (RTRA), which

uses them in conjunction with some knowledge of the current time to allocate the

resources to the application. E�ective resource allocation will require some means

of accounting for the resources used by an application. This will enable the resource

allocator to police an application's use of system resources so that, when resources

are scarce, it cannot use more than it has been allocated.
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3.4 Contracts

Among the most important factors in a QOS implementation is the nature of the

contractual agreement which exists between the system and an application. The

existence of such a contract enables certain assertions to be made about the run-

time behaviour of an application. These assertions are useful to the writers of

applications, because they supplement the semantics of the standard de�nition of

the operating system interface.

3.4.1 Virtual Processors

One view of an operating system is that of a layer of software which abstracts the

physical hardware to a Virtual Processor (VP) more amenable to the applications

which run on it. Applications are written so that they are aware only of the Virtual

Processor Interface (VPI) provided by the operating system and do not necessarily

know about the existence of any other activities within the system. For example,

[Le�er89] describes the unix VPI as consisting of a set of system calls, a vector of

interrupt or signal handlers and a mask for enabling and disabling the delivery of

interrupts. The base semantics of this VPI are de�ned by the programmer's reference

manual. These include neither the time which any of the requested operations will

take nor any notion of the rate of progress which the application will make during

its execution. Without this information it is di�cult for the application writer to

make any assertions about the temporal behaviour of an application.

The purpose of a QOS contract is to augment the semantics provided by the sys-

tem VPI so that stronger assertions may be made about an application's run-time

behaviour whenever the contract is in force. The terms of the contract are speci�c

to a particular instance of an application and determine the assertions which can be

made. To gain a better understanding of the QOS contract, it is worth noting that

the ability of a scheduling algorithm to decide whether or not an application will

run on time is determined by the amount of knowledge which it has about current

availabilities of system resources and the resource requirements of the application.

3.4.2 Hard Real-Time Systems

In a HRT system, application resource requirements are known exactly for all time

so a scheduler can, given su�cient time, determine whether or not a feasible schedule

exists and if so, produce a schedule. In such an environment, the contract between

the system and the application is quite rigid; the application, when it runs, will
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always receive the resources it needs and if it does not, a fatal system error has

occurred. The QOS a�orded by such a contract is always good enough for the

application to behave correctly both logically and temporally. Applications are

written so that, once they are scheduled, there is never any reason to expect that

their resources will not be available at the times they are needed, and timeliness is

always guaranteed.

3.4.3 Best E�ort Systems

A Best E�ort (BE) system, such as is typically run on current workstations, as-

sumes almost no knowledge of application resource requirements and provides no

mechanism for applications to specify their temporal requirements. The schedulers

in such systems make use of multilevel feedback queues to try to improve interac-

tive response times by giving a higher priority to programs which do a lot of I/O,

while also trying to give compute bound programs access to the system resources

for comparitively longer times. The contract which exists between such a system

and an application asserts that the VPI will be logically correct, but does not make

any assertions regarding the timeliness with which resources will be made available

to the application. The QOS a�orded by such a contract is variable and 
uctuates

with system load. Applications are written without any requirement for resources

to be made available to them in a timely manner and the operating system provides

little or no direct support for an application to determine its progress.

3.4.4 Dynamic Real-Time Systems

In between these two extremes lay a range of systems in which less than complete

knowledge of application resource requirements is available. This may be due to

the inability to measure them accurately, or simply the inability to predict the

future. Overall, the exact behaviour of such systems may be unpredictable, but the

applications which they support still have temporal requirements. The nature of the

contract which exists between the system and an application is less than absolute,

in that the application may not always be guaranteed to obtain all of its resources

every time it needs them. The assertions which may be made about the execution

of such an application are of the form \99% of the time, this program will meet

its deadlines," and are less than absolute but do serve to quantify the application's

run-time behaviour.

Application writers will need to keep in mind that the quantity of resources avail-

able to them will change with time. This can be made easier if the system makes
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available to applications some information about the amount of resources which are

being made available to them whenever they are running. The information could

be presented to the application as a sequence of upcalls or signals incorporated into

the VPI for this purpose.

This represents a signi�cant departure from the traditional view of the VPI provided

by real-time systems. Rather than having the system guarantee a required level of

performance to applications and writing applications which assume their resources

will always be available, these systems try to provide resources in a timely manner

informing applications of their availability, and applications attempt to produce the

best results they can using the noti�cation and resources which they are given.

3.4.5 Implications

The de�nition of QOS given in section 3.2 is quite broad and accommodates all three

types of system just described, so it ought to be possible in a QOS based system

to request any QOS ranging from BE to HRT. The former is relatively straightfor-

ward to provide and the ability of a system to provide the latter will depend on

the current knowledge of resource requirements and the scheduling algorithms in

use within the system. Both BE and HRT have been studied extensively and con-

siderable experience has been gained with them [Co�man73] [Stankovic88], so they

will not be considered in any detail in the remainder of this discussion except where

necessary. Rather, attention will be focussed on the more interesting case of the

type of QOS which might be used to support applications with dynamic real-time

resource requirements.

3.5 Negotiation and Renegotiation

An important system parameter is the length of time for which any single QOS

contract remains valid. A system in which contracts remained valid for the lifetime

of all processes would not be suitable for a workstation because of the variability of

the job load in such an environment.

Consider a situation in which 90% of a workstation's processor had been reserved

and the user wished to run an application which requires 15% of the processor;

there are two possible courses of action. The system can recognise that allowing

the new process to run could adversely a�ect the contracts currently in force and

inform the application that, while it can not have its desired 15%, it could be given

the remaining 10%. The application then would have to decide, either by executing
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some default decision or by consulting the user, whether it would want to proceed

with only two thirds of the processor time which it ideally would like and then

accept or reject the contract which it has been o�ered. These actions constitute a

negotiation between the application and the system about the amount of processor

time which will be made available to the application as part of its contract.

If this application could not run with any less than 15% of the processor and con-

tracts were not allowed to be broken, the system would have to refuse to run it. If

contracts are allowed to be broken, then the user can direct the QOS manager to re-

lease resources previously reserved and make them available to the new application.

To help the other applications respond to this, they need to be informed of the fact

that the contract which they held at the time was just broken. They can use this

information to engage in renegotiation with the QOS manager for a new contract.

QOS renegotiation can also be instigated by an application. Consider the decoder

application described in section 3.1. Suppose the input data were being produced

by a camera viewing a live scene and encoding it for delivery to the decoder via a

network. The processor time of the decoder is dependent upon the data which it is

receiving, which is directly related to the scene which the camera is viewing. This

dependency is compounded by the use of encoders which use motion compensation

techniques to achieve high compression ratios. In such circumstances, an initial esti-

mate of processor time which was based upon the data rate produced by a uniform,

motionless scene would be wholly inadequate for decoding the data produced by

a popular music video clip. It would then be appropriate for the decoder to note

the number of frames which are successfully decoded on time, and renegotiate for

more processor time when this number falls below a speci�ed level. To ensure sen-

sible use of system resources, applications ought to aim at maintaining the amount

of processor resource requested as close as is reasonable to their actual processor

requirements.

In the examples just described, scheduling decisions are made at two levels. At

the negotiation phase, long term scheduling decisions are being made and, because

they are made comparatively infrequently, they may be relatively complex and take

longer to make. The RTRA makes only very simple decisions (which process to run

next, for example), based on simple rules such as highest priority, earliest deadline

or as recorded in a state table. Negotiation and RTRA within the operating system

are parallelled in ATM networks by call acceptance control and cell-level scheduling

respectively. Negotiation and call acceptance control both have the e�ect of factoring

out the harder scheduling decisions and amortising their cost over the time between

negotiations. In the limiting case, where an application is required to negotiate

for resources at every arrival, the scheduling problem becomes that of scheduling a

totally dynamic real-time system.
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3.6 Parameters

In the system shown in �gure 3.2 in section 3.3, the QOS manager converts QOS

descriptions into a set of parameters which describe at a low level an application's

resource requirements.

3.6.1 Resources Requiring Parameterization

To describe all of the resource requirements of an application would require a QOS

parameter for each resource. In the case of the video decoder example, two obvious

QOS parameters would describe processor and input bandwidth requirements. Be-

cause paging in virtual memory systems can introduce large amounts of jitter, the

decoder might also like to specify that a certain minimumnumber of frames of phys-

ical memory be made available to it for its execution; this would constitute another

QOS parameter. Some criteria are required for determining the set of resources for

which QOS parameters are needed. An argument similar to that of section 2.1.1

would indicate that if, within a particular system, a resource is so plentiful that its

utilisation remains su�ciently low, then there is no need to reserve it and no cor-

responding requirement to parameterise its usage. This set is speci�c to a system;

resources which are scarce on one system may be plentiful on another and vice versa.

The remainder of this discussion will be concerned with only the processor resource.

3.6.2 Parametric Complexity

Another matter which arises is the amount of detail which ought to be included

in the QOS parameters. In the context of scheduling bandwidth in a network, the

B-ISDN signalling protocol [CCITT92] currently acknowledges peak bandwidth and

end-to-end transmission delay as being signi�cant parameters. Other parameters

such as jitter and burstiness are yet to be decided upon and it is not likely that this

decision will result in an orthogonal set of individual parameters. More realistically,

the service user will be allowed to select from a number of QOS classes. The evidence

suggests that the more accurately the description of resource requirements is known,

the more accurately resources can be reserved, but that doing so will require more

detailed calculations. This motivates the use of simple, parametric descriptions of

service requirements.
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3.6.3 Processor Time Parameters

An application's Processor Bandwidth (PB) can be used to quantify its processor

requirements. Such a bandwidth may be expressed as a percentage of the total avail-

able processor resource to obtain a measure of the utilisation of the processor by an

application. A percentage however, does not provide any indication of when the pro-

cessor resource is required, so the pair (c; t) is used as an equivalent representation,

where c is the processor time allocated to the process every t seconds.

The decoder application is a periodic process and it is straightforward to see how a

bandwidth can be speci�ed for it. The upper timing diagram in �gure 3.3 shows three

arrivals of a sporadic process �1 whose minimum inter-arrival time is 4 milliseconds

and whose deadline is 5 milliseconds after arrival. The process requires 2 milliseconds

of processor time, so its peak processor bandwidth is (2=4)� 100 = 50%. The lower

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time in milliseconds
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Figure 3.3: Sporadic process �1 and execution pro�les �1 and �2.

two timing diagrams show possible execution pro�les �1 and �2 of �1 when it has

been allocated a processor bandwidth of (1; 2). From the �gure, it can be seen that

the processor needs to be allocated to �1 both within a certain minimal time and at

a certain minimum rate for �1 to meet its deadline. This places some restrictions on

the granularity of the bandwidth parameters which can be used for �1 if it is not to

be tardy. If bandwidth is periodically allocated as (c; t), and �1 requires C cycles

after its arrival at timeA to meet a deadline at timeD, then a bound for (c; t) when

t � (D �A) would be b(D � A)=tc � c � C. When t > (D �A), this is no longer

su�cient, and additional constraints that c � C and C of the c cycles be allocated

before D are needed.

While it is possible to meet temporal requirements by simply allocating a su�cient

processor bandwidth, this will not always result in an e�cient use of the processor.

Figure 3.4 shows a feasible schedule for two sporadic tasks �1 and �2. A simple as-
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Figure 3.4: Two sporadic processes �1 and �1.

signment of processor bandwidths to these processes would allocate (10; 16) = 62:5%

to �1 and (4; 8) = 50% to �2 which would overcommit the processor by 12:5%. In

other words, to meet these deadlines by assigning a processor bandwidth to each

task would require a processor which is 1:125 times faster than the one used to ob-

tain the timing diagram of �gure 3.4. Using a faster processor, the execution times

could be reduced by a factor of 1=1:25, so that the bandwidths required would be-

come (10=1:125; 16) = 55:56% and (4=1:125; 8) = 44:44% for �1 and �2 respectively.

In this situation, processor bandwidth is too simple a description of the behaviour

of the processes; use of a constant processor bandwidth assumes that the processes

are periodic, while those in the �gure are sporadic. In the special case of a periodic

process whose deadline is the same as its period, processor bandwidth can be an ac-

curate description of processor time requirements, and the process can be scheduled

using RM. While processor bandwidth provides a convenient means of describing

processor requirements, it must be remembered that, for some applications it is a

simpli�ed description of the actual requirements.

3.7 QOS Description

[Nicolaou91] and [Campbell93] suggest that, when requesting a particular QOS from

a network, an application ought to provide a description of what it requires rather

than how the QOS is to be provided. An example given is that of an applica-

tion requiring a network connection over which a standard format video stream is

to be carried; the application simply requests a video source with a QOS descrip-

tion of StandardVideo and it is left to the network QOS management functions

to map this description to a set of network QOS parameters. This is reasonable

because the network QOS management entities are likely to have some knowledge

of what resources are required to support a frequently requested QOS such as a

StandardVideo stream. Both sources recognise that this will not always be the case

and that applications ought to be able to supply low level QOS parameters whenever

necessary.
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Were the QOS manager able to convert a description as provided by an application

into a suitable set of QOS parameters, a number of advantages would be obtained.

Firstly, an application could be moved among machines of varying speeds with-

out having to concern itself with how much of the processor it needs on each of the

machines; the QOS managers on various machines could contain machine speci�c in-

formation and scale the run time allocated to the application accordingly. Secondly,

it provides a convenient mechanism for isolating the application's data dependent

resource requirements.

3.7.1 Describing the Accuracy of Results

One di�culty when presenting the QOS manager with a description of some desired

QOS lies in actually constructing the description. In the case of a segment of video

or audio, subjective judgements of the quality of presentation need to be quanti�ed.

With respect to the decoder application, the Q factor provides a means of directly

specifying the amount of compression desired, but does not provide any means of

quantifying the image quality.

A simple method of measuring the quality of an image which has been processed

using lossy techniques is to measure the absolute di�erence between the processed

image and the original. This could be averaged over all pixels in the image, or a

maximum value might be used. This would provide a simple, e�cient indication of

how accurately the measured image represents the original.

The temporal requirements of CM, together with the notion of an acceptable ac-

curacy represent a two dimensional space within which the quality of CM may be

quanti�ed. Figure 3.5 shows the region of acceptable temporal and logical error for

a hypothetical CM application. The application is deemed to have computed an

Temporal Error

Logical Error

ε l
+

ε t
+

ε l
-

ε t
-

Figure 3.5: Region of acceptable error for a computation.

output of su�cient subjective quality if the output is within [��l ; �
+

l ] of the logically

correct or ideal output, and it does this within [��t ; �
+
t ] of its deadline.
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3.7.2 Mapping QOS Descriptions

A QOS description is useful if it can be used to infer some indication of the resources

required by an application to process a particular set of data. For live data, a guess

based on some previous experience will have to su�ce. If the data is stored, it is

possible to produce a pro�le of the data o�ine and use this in conjunction with a

model of the application to produce an estimate of resource requirements.

Inspection of the example decoder application reveals that the time required to

decode a frame of video is approximately proportional to the size of the frame.

Figure 3.6 shows a plot of frame sizes in kilobits versus the time required to decode

the frames for 2000 frames of video. Using the method of least squares, the line of
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Figure 3.6: Frame size versus time to decode.

best �t is given by t = 19:3 + 2:4b where t is the time required to decode the frame

and b is the number of kilobits of compressed data in the frame. This line is a model

of the data dependent execution time of the decoder application which, given the

right information about the data which is to be processed, can provide an estimate

of the time required to do so.

Figure 3.7 plots the predicted decode time per frame for a di�erent segment of video

along with the decode time measured. The model tends to predict less decode time

than is required for some of the frames. This is a result of the line derived by the
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Figure 3.7: Predicted and measured decode times.

method of least squares not allowing for the large number of points which lie above

it. While the model is too simple to predict an accurate decode time for a single

frame, it does make reasonable predictions over a large number of frames. Raising

the height of the line by increasing the value of the intercept on the decode time

axis will cause the model to predict times which allow a greater percentage of the

frames to be decoded completely.2 A more conservative model such as t = 25+ 2:4b

can be used to determine an upper bound on the decode times. This particular

model is quite primitive and more accurate models could be constructed based on

a more detailed analysis of the decoding algorithm and data, but it does provide an

estimate of the required processor time which is more realistic than the maximum

value of 67.4 milliseconds.

Such execution time models can be used to map QOS descriptions onto a set of QOS

parameters. For a particular decoder, an execution time model can be constructed.

This model can then be used in conjunction with a stored video segment to predict

the execution times required to decode the frames and these times used individually,

or summarised in the form of a distribution of execution times. The key point

here is that such a distribution would provide more information about the run-time

behaviour of the decoder than just a simple maximum decode time. The prediction

can be stored as a set of metadata associated with the compressed video segment.

2Section 3.8.3 will discuss the usefulness of this.
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When requested to display a video segment, the decoder can identify itself and the

video segment to the QOS manager, which can locate the relevant metadata and

use this in its calculations to map QOS descriptions onto parameters.

For many applications, this amount of o�ine processing may not be warranted, but

it is possible to envisage situations which might make use of it. A video distribution

centre might store online a number of movies in a compressed format, and o�er to

a large number of mass-produced (and therefore identical) client systems a video-

on-demand service. An execution time model can be created for the clients and the

decoder which they run, and the model used to predict the execution time charac-

teristics of the decoder when decoding a speci�c segment of video. The prediction

might be done more quickly than in real-time by machines more powerful than the

clients. In such an application, given the bandwidth required to transport the com-

pressed video, it is not unreasonable to ensure that all of the clients run the same

version of the decoder by storing a master version at the centre and transmitting a

copy to the clients before the video data. A QOS manager within one of the clients

can then be provided with the metadata for a video segment and this can be used

to calculate parameters of the QOS required by the local instance of the decoder.

3.8 Run Time Resource Allocation

The method used by a system implementation to allocate resources at runtime will

determine the type of VP perceived by applications. At the lowest level, the Run

Time Resource Allocator (RTRA) multiplexes the available resources among those

applications which need to use them. It does this using information in the form

of QOS parameters supplied by the QOS manager. In the case of the processor

resource, run time allocation is performed by the system dispatcher, a model of

which is depicted by the diagram of �gure 3.8. The dispatcher sees application

resource requests as a series of task arrivals �i, which are placed in individual queues

to wait until the processor can be allocated to them. Whenever one request has

been serviced, the dispatcher, based on some service discipline which may be inbuilt

or dictated by the QOS manager, selects a task from the head of one of the queues,

then allocates the processor to it for some amount of time. The service discipline

and allotted service times need to be chosen so that application QOS contracts are

honoured.
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Figure 3.8: Run time resource allocation model.

3.8.1 Notation

This is a queueing system whose operation can be described using the notation

W=X=Y=Z, where W is the distribution of interarrival times, X the distribution

of service times, Y the number of servers and Z the service discipline. Among the

values forW andX areD, indicating deterministic times and G indicating stochastic

times. The use of G here is deliberate as there is at present little or no real data

concerning the distributions of execution times and these are likely to be speci�c to

each application. For the purposes of this discussion, the only resource which will be

considered for allocation is processor cycles and the discussion will focus on single

processor systems, so Y will represent the number of processors in the system which

will usually be one. Service disciplines include First Come First Served (FCFS)

and priority based (PR). The latter is extended to include nonpreemptive, priority

based (NPR) and preemptive, priority based (PPR) disciplines.

This type of model has been used extensively in studies of the performance of time-

sharing systems. [Co�man73] provides an introductory treatment of the subject,

proposing that important performance measures for a given system include: the

distribution of the number of tasks in a system; the distribution of the time a task

will be in the system and; the distribution of the lengths of busy periods3 in the

system. In essence, the type of questions answered by performance analyses are

the inverse of those required to maintain QOS contracts. Given a particular system

con�guration, performance analyses can determine the QOS which an application

will receive. In providing QOS contracts, the desired application QOS is known,

and a system con�guration which maintains that QOS needs to be determined.

3A busy period begins when a job arrives to �nd an empty system and ends when the system

again becomes empty.
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3.8.2 Deterministic Models

A system in which arrival and service times are known could be modelled as a

D=D=1=PR queue. This type of model re
ects the behaviour of a hard real time

system such as might be scheduled using the RM algorithm and in which task

arrivals are assumed to be periodic, of known period and task service times are �xed

at the maximum of any of a task's service times. Priorities are assigned to each

of the queues according to RM and the PR service discipline always services the

task of highest priority. In such a system, the contract provided to an application

is absolute.

3.8.3 Stochastic Models

It is often the case that exact or even maximal execution times for an application

are not known; if the video being viewed by the decoder application were produced

by a camera viewing a live scene, it would be di�cult to estimate the maximum

time required to decode a frame.

The frame decode times plotted in �gure 3.1 show a large amount of variation from

a minimum of 19 milliseconds to a maximum of 67 milliseconds; since the video

was sampled at a rate of 15 frames per second giving an interframe period of 67

milliseconds, allocating the peak processor bandwidth of (67; 67) to the application

would consume 100% of the processor resource. The graph of �gure 3.9 plots the run

time allocated to the decoder versus the percentage of frames which it can decode

in that time. It can be seen from this graph that allocating (54; 67) = 79% of the

processor to the application enables 91% of the frames to be decoded on time.

Allocating less than peak resources means that the application now misses some

of its deadlines (9% in this case). Even though the method of resource allocation

is similar to that used by periodic HRT systems with priorities assigned according

to RM, the system has become SRT. In this type of system, resource requirements

(and hence QOS parameters) are not known exactly, but their distributions may

be known. QOS requirements could be described in terms of the probability that

a deadline will be met. Given the distribution of run times either derived from a

model, or as a histogram resulting from a previous run, it is possible to calculate

how much resource to allocate to meet the desired percentage of deadlines.

Allocation of a �xed amount of processor time to an application as done in the

previous section is an example of a reservation strategy. A disadvantage of such

strategies is that, when used in conjunction with bursty resource requests, their use

can result in poor resource utilisation. Figure 3.10 plots frame number versus the
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Figure 3.9: Run time allocated to decoder versus percentage of frames which can be

decoded within that time.

time to decode the frame for two di�erent video streams, along with the total time

to decode both streams (this is just the sum of the two times). From this graph,

it is seen that reserving peak processing times for the two streams would require

67+69 = 136 milliseconds per frame, but the peak total processing time required is

only 120 milliseconds per frame. Statistical multiplexing aims to exploit this prop-

erty by allocating resources based on the combined requirements of a number of

sources rather than their individual requirements. If statistical multiplexing is to

be used for processor allocation, run time resource allocation can be modelled as a

D=G=1 queue, assuming deterministic (periodic) process arrivals and generally dis-

tributed processing times. Within this model, an important QOS parameter would

be the probability that the service time of a given arrival will exceed its deadline.

A typical implementation would select a priority based service discipline on the

grounds that these are known to provide higher resource utilisations. Additionally,

the models presented so far have assumed that the arrival processes are deterministic

and periodic. If CM data are presented to applications as motion compensated video

or silence suppressed voice for example, then arrivals will be sporadic, requiring the

incorporation of stochastic arrivals into the model.
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Figure 3.10: Frame number versus time to decode two compressed video streams.

3.9 Accounting

Ensuring that an application receives the QOS it requested requires a means of

accounting for the resources used by the application. Current monolithic kernels

already do this when they maintain a running total of the time spent by an appli-

cation in both user and supervisor mode. Accounting is performed by charging the

cost of the resources used to the accounting structure which is associated with the

currently executing user-mode protection domain. In the case of a system struc-

tured as a number of clients and servers running on top of a microkernel, accounting

becomes complicated by the fact that a single client may need to interact with a

number of servers during its execution.

3.9.1 Credits

One approach to solving this problem is via a system of credits. An application is

allocated credits at a rate determined by its PB and, whenever it interacts with a

server, it nominates a number of its credits which are to be used for the interaction.

These credits are debited from the application's account and deposited into the

server's account so that the server may do work for each of its clients on the basis

of the credits it has received from them. This approach separates the accounting
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function from a process's address space. Its disadvantages include:

� it is possible for a server to use resources given to it by one client for other

purposes;

� it requires some knowledge of whether a particular server is on the same system

as the client or on a remote one and;

� it increases the overhead required for a client-server interaction.

3.9.2 QOS

Another approach is to have the client request a connection to a server with a

particular QOS. The client and server then perform the negotiation and reservation

actions described in previous sections. Thereafter, if the QOS can be supplied, the

server knows the resources which will be required to service any requests which arrive

on that connection. This has the advantages of not adding to the overhead of client-

server interactions and �tting in well with the notion of end-to-end QOS even when

the client and server are located on di�erent machines. Among its disadvantages

are that a server has to perform some of the QOS management functions itself, and

that these include the policing functions, so poorly constructed servers may promise

qualities of service which they do not deliver. This last problem is common to both

approaches and currently may be addressed by observing that people will tend not

to use badly-behaved servers.

3.10 Policing

Policing occurs at two levels in the system. At the low level, a mechanism is required

to ensure that an application does not exceed its allocation and start consuming

resources which are reserved by another application. An appropriately designed

dispatcher can ensure that processor time is accurately meted out. At a higher level,

a means is required to ensure that the writers of applications do not request excessive

resources to ensure that their applications perform acceptably. Such behaviour will

result in poor resource utilisation and the informed user of a workstation will tend to

prefer programs which are more frugal with workstation resources. In a commercial

environment, being charged for the resources used to run a program may achieve

similar results.
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3.11 Application Design

Since the QOS environment often does not guarantee absolutely to give an applica-

tion all of the resources it requires, applications must be able to produce as good

a result as possible with the resources which they are given. This is in contrast to

real-time approaches of resource allocation, but in many respects is more realistic; to

be able to o�er absolute guarantees requires knowledge of the future. Applications

are written either so that they assume they have a minimal resource availability as

described by their QOS contract and try to make use of resources which fortuitously

become available, or they always assume the best possible QOS and have the means

of producing an acceptable result of poorer quality when peak resource requirements

cannot be met. In either case, applications may be written so that they can produce

results of varying quality.

3.11.1 Temporal Degradation

In timesharing systems, when resources are scarce, process execution degenerates

by taking longer to complete. This form of degeneration is not appropriate for some

CM applications, so an alternative is to decouple the rate at which processing is

performed from the data arrival rate, select the most recent data and process them

to completion. The decoder application could reduce its processor bandwidth from

(67; 67) = 100% to (33; 67) = 50% by halving its frame rate.

3.11.2 Spatial Degradation

The processor bandwidth required by the decoder application could also be reduced

by shrinking the size of the video format being presented. This could be done at

either the video sink or the video source by subsampling.

3.11.3 Logical Degradation

The performance of some algorithms may degrade logically if they are capable of

producing results of reduced but acceptable accuracy on time. These algorithmsmay

be implemented as imprecise computations. [Liu91] identi�es a number of di�erent

types of imprecise computation and presents approaches for scheduling them. A

task is monotone if the quality of its intermediate results does not decrease as it

executes. The milestone method records intermediate results and associated errors
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at de�ned points in a computation, so that the intermediate result of a task is its

value at the last completed milestone. A task can be constructed as a sequence of

seive functions, one or more of which may be skipped during execution to reduce the

amount of time it requires. The multiple version method employs a primary and an

alternate version of a task. The primary version takes longer to produce a precise

result while the alternate version produces an imprecise result more quickly. During

transient overload, the system can execute alternate versions of tasks.

Tasks �i of these types are modelled as a mandatory subtask and an optional subtask

oi. Algorithms are presented for scheduling subtasks such that themi are guaranteed

to run to completion. For each of the oi, a processor time �i is allocated so that

some function of their errors �i = oi � �i is minimised. It is assumed that release

times ri, deadlines di and the computation times required by the subtasks mi and oi
are known a priori. Typically the mi are scheduled using a �xed priority assignment

generated by RM which will guarantee their execution. In a dynamic environment,

the oi may be scheduled using, for example, EDF.

This type of scheduling can be provided by a QOS contract which o�ers applications

a guaranteed minimum processor bandwidth with the condition that, should addi-

tional bandwidth become available, it will be o�ered to the contracted applications.

The success of these scheduling strategies will depend on an application's ability

to make use of them, and the informational property of CM can be exploited to

do this. [Ghanbari89] presents a layered video codec for use on a slotted ring net-

work which is capable of o�ering �xed, guaranteed bandwidths as well as variable,

additional bandwidth. The codec uses a transform based algorithm to produce a

motion compensated stream of guaranteed packets and a DPCM based algorithm

to produce a stream of enhancement packets. The guaranteed packets contain the

basic picture and motion information and are allocated a �xed amount of guar-

anteed bandwidth. The enhancement packets contain the error di�erence between

the original image and the image reconstructed from the guaranteed packets. The

enhancement packet stream is bursty and is transmitted through a VBR channel

when bandwidth is available. When the VBR channel allows transmission of the

entire enhancement stream, a high quality picture can be reconstructed by the de-

coder using both the guaranteed stream and the enhancement stream. At the very

worst, when the VBR channel does not carry any enhancement packets, the received

picture quality degrades to what can be reconstructed from the guaranteed stream.

In the same way that layered coding makes use of the guaranteed and additional

bandwidths in a network, layered processing can be used to take advantage of the

processor time allocations associated with QOS contracts. At the application level,

an example of the use of layered processing would be the presentation of video frames
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to a display application such that each frame is decomposed into a number of layers,

with each layer representing a milestone and successively re�ning the accumulated

image. Another example would be the presentation of stereo audio to an application

as two streams, one containing the sum of the left and right channels (L + R), the

other containing their di�erence (L � R). The audio application can simply use

(L + R) to produce a monophonic signal or, given some extra processing time can

compute a stereophonic signal by adding the two inputs to obtain 2L and subtracting

them to obtain 2R. The advantage of using these types of computations is that they

provide a direct control over the quality of their results by varying the amount of

processing resource they are allowed to use.

Applications which use layered processing can bene�t from a knowledge of the type of

processing time which they are currently receiving. Consider an application holding

a contract which provides it with a guaranteed minimum processor time and a�ords

it additional time should any become available. If the application were informed of

the type of processor time it is about to receive whenever it is given the processor,

it could use this information to decide whether it ought to execute mandatory or

optional code. This information can be provided by the operating system as part of

the VPI seen by the application. Section 4.7 discusses the e�ects which this has on

the design of the VPI.

The fact that CM are amenable to layered processing provides a di�erent perspective

on scheduling problems. Instead of determining the processor time required by

an application and constructing schedulers to accommodate this processing time

completely, layered processing and imprecise computations enable the system to

dictate the processing time which the application will receive, trading o� quality for

computational resources.

3.11.4 Data Representation

The preceding section brings to light an important point about the representation

of data used by applications which can vary the quality of their results. The manner

in which an application degrades is speci�c to the application and this will directly

a�ect the representational requirements of the data with which the application is

presented. A layered coding scheme for video data which is to be viewed by a

human could split the video into high and low frequency components and transmit

these to a decoder. The low frequency components could be reconstructed to form

the minimal quality picture and the high frequency components used to re�ne the

picture. If the observer of the video were a program which did edge detection, then

it might be better to transmit some high and some low frequency components for

the basic picture and use the intermediate frequencies to re�ne it.
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3.12 Summary

QOS has been presented as a paradigm for resource management within an operat-

ing system. It has been shown that QOS can meet a variety of resource allocation

requirements ranging from those of hard real-time to soft real-time applications; in

the case of soft real-time applications, a number of metrics have been presented

which enable their QOS to be quanti�ed. A means of mapping high level QOS de-

scriptions onto low level QOS parameters has also been presented. It is recognised

that the range of QOS which a system can provide is determined by the combination

of the QOS manager and RTRA; the basic mechanisms required within an operat-

ing system to support these types of resource management include accounting and

policing. QOS contracts may give applications fewer resources than they require,

so the quality of any results produced may degrade. Providing applications with a

knowledge of the current availability of their resources can help them control the

manner in which their performance degrades. The remaining chapters describe the

design and implementation of a system which provides this information, along with

an example application which makes use of this information.
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Chapter 4

Design Considerations for QOS

The basic, low level mechanisms required to support QOS in an operating system are

run time resource allocation, accounting, policing and a means by which applications

can determine the QOS which they are currently obtaining. This chapter describes

design of an operating system which incorporates these mechanisms.

4.1 Approach

While it would be possible to take an existing operating system or kernel and add to

it the mechanisms required to support QOS, it is easy in doing so to lose track of the

implementation goals; there is the possibility of having to alter the QOS mechanisms

to �t them into the system thus obfuscating their exact requirements, intentions and

objectives. Once they have been implemented, a large or complex system might also

impede accurate measurement of their performance. Additionally, the mechanisms

being discussed here are present at the very lowest levels of an operating system, so

their use may have repercussions throughout large portions of the system; much of

the time spent propagating these side e�ects could be unrewarding.

Depending on the number and complexity of services provided, the design of a

complete operating system ab initio can be a large task. Since the scope of the

work presented in this dissertation is necessarily limited by time and resources, the

following sections will focus on those issues in the design which are pertinent to

QOS and support for CM. Nevertheless, it is still possible to design and implement

enough basic system functionality to demonstrate the viability of the approach.

This motivates the approach taken in this and the following chapters in which the

design, implementation and evaluation of an experimental kernel is presented. The

48



kernel is tailored to the provision of mechanisms which provide the necessary system-

level support for QOS guarantees.

Current experience with operating system design evinces the advantages of structur-

ing operating systems as a group of client and server processes which are supported

by a microkernel. The microkernel provides exactly the functionality required by the

clients and servers to interact both among themselves and with the system hardware.

This functionality consists of protection between the address spaces of di�erent pro-

cesses, some form of Inter-Process Communication (IPC), resource allocation in the

form of a scheduler or dispatcher and an interface between the hardware and those

processes which require access to it. These basic services are su�cient to support

user level applications and system servers and more complex systems may be devel-

oped from the low level software which provides them. Consequently, in order to

prove su�cient for the construction of systems of a reasonable utility and size, the

design presented in this chapter will have to provide at least this basic functionality.

4.2 Design Goals

A number of supplementary requirements guide the design and are used as ulti-

mate decision criteria to select one from a number of seemingly equivalent design

possibilities should the need arise.

Firstly, the resources used by system software are unavailable to the user, so one of

the goals of any system design ought to be to provide a reasonable environment in

which a user's applications may run while maximising the amount of resource which

is available to the user.

Secondly, at the lower levels, system software ought to provide only the most basic,

necessary mechanisms. Policy decisions ought to be left to the users of the resources

provided by the system.

Thirdly, it is important to keep in mind the environment in which the end system

will be operating; this will aid the derivation of a suitable set of design requirements

and ensure that neither too much nor too little emphasis is placed on any one

aspect of the design. In the case of the design presented here, the environment is

a workstation which is connected to other workstations and server machines via a

high speed network. This does not mean that the design is to be so myopic that the

resulting system is only useful within a workstation; the use of su�cient modularity

in the design ought to make the system amenable to distribution and the basic

kernel functionality ought also to be usable in other applications such as a dedicated

server. Also to be noted is that a server is a relatively controlled environment when
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compared to a workstation, so that some features, such as memory protection, which

are often necessary in a workstation may be dispensed with in a server to obtain

better performance.

4.3 Addressing

Recently, there has been some renewed interest in the construction of systems which

use a Single Address Space (SAS). In the case of systems structured as sets of

processes which communicate among themselves and cooperate by sharing data, the

ability to refer to some data from di�erent processes by using one address enables

certain optimisations to be obtained. In particular, in the case of processes which

communicate, large data structures can be passed between processes as arguments

and return values by simply passing the address of the data. This obviates the

need to convert addresses between address spaces or to copy the data as is done in

some systems [Accetta86] [Hildebrand92] and results in a signi�cant performance

improvement over such systems. Use of a single address space will a�ect the design

of other parts of the system.

4.3.1 Loading Executables

In a Multiple Address Space (MAS) system, program code and data can be bound

to their run time addresses before execution because it is known that each program

will run at the same virtual address. A similar strategy could be used in a SAS

system if addresses are never reused. Whenever a program is linked for execution,

it is allocated a range of addresses by the system, and it will be permanently bound

to that range. The allocation has to remain valid across system reboots, and the

system needs to take great care in remembering where the base of unallocated ad-

dress space is. This approach is less viable in machines with a small (32 bits or

less) address space as the size of the address space will limit the lifetime of the

system. Recently, a number of microprocessors which have much larger (up to 64

bits) address spaces have been developed[DEC92] [MIPS91]. These large address

spaces mean that addresses may not have to be reused in a typical system until it

has been running for a very long time; use of addresses at the rate of 1 gigabyte per

second would exhaust a 64-bit address space after approximately 500 years. It is

important to keep in mind that in such a system, the size of the address space only

determines, for a given rate of address consumption, the lifetime of the system after

which it has to be restarted from its initial state; it is in many respects, unrelated

to the fact that there is only one address space.
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In a system in which addresses may be reused, the binding of programs to their

run time addresses can be left until the programs are executed. At this stage, a

system loader can obtain a suitable range of addresses from the system and relocate

the program to use these addresses as it is loaded. In a small address space, this

can be used in conjunction with some additional code which maintains a map of

unallocated addresses to prolong the lifetime of the system. The ability to reassign

addresses whenever a program is executed for the �rst time removes the need to

remember the pointer to the base of unused addresses across system reboots. This

pointer can be set to the start of the address space at every system initialisation.

4.3.2 Sharing Text

Allowing multiple processes to share a single text segment can improve the utilisation

of memory, so some consideration has to be given to how this might be done in a SAS

system. If all program addresses are resolved just prior to execution, text sharing

can be implemented with the aid of a data segment base register dsb. At link time,

the static data are coalesced into a single data segment and each datum is allocated

an appropriate o�set from the base of the segment. When the program is loaded into

memory, the system allocates space for the data segment and initialises dsb to point

to the base of the segment. Data are referenced from the shared text segment by

using these o�sets to index o� the dsb register. Figure 4.1 shows how two processes

which share a text segment access their own versions of the data segment. For the

Process 1
Context

Process 2
Context

load reg,v(dsb)
Shared Text

Segment

Process 2
Data Segment

Process 1
Data Segment

v

v

dsb

dsb

Figure 4.1: Sharing text in a single address space.

design presented here, a single address space is chosen to obtain the performance

advantages outlined above and to gain some experience with its use. The resulting
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system can also be used in further work to investigate some of the outstanding issues

pertaining to the use of a single address space such as the implementation of more

dynamic systems which allow run time binding to shared library modules.1

4.4 Memory Access Protection

Memory access protection in operating systems is used to limit the scope of the

accesses which can be performed by a program. Typical operations which can be

performed on data by a program are read, write and execute. Appropriate use

of protection mechanisms can prevent both accidental and malicious accesses of

all of these types. The costs of using such protection are that it requires extra

hardware to implement and that a certain amount of time is required to perform

the checking of accesses. Because a workstation is intended to support a single

user,2 the use of protection to guard against malicious access is not always necessary

and many accidental accesses can be prevented by strict compiler checking and

careful programming. Systems have successfully been constructed on these principles

[Swinehart86].

The microprocessors used within current workstations usually provide some form of

hardware memory protection mechanism which is often integrated with the address

translation unit [Kane88]. These typically provide an unprivileged user mode, a

supervisor mode in which it is possible to execute privileged instructions and the

ability to set read, write and execute permissions on areas of memory, down to the

granularity of the hardware page size. Current operating systems use this hardware

in essentially two ways.

Monolithic architectures [Ritchie74] place the whole of the operating system in su-

pervisor mode. In such systems, communication between system modules requires

the cost of a procedure call, the lack of reinforcement of system module boundaries

means that their interfaces can become blurred and more code executes in privileged

mode than is necessary.

Microkernel architectures [Accetta86] [Rozier89] [Hildebrand92] are based on a ker-

nel of reduced functionality which provides a high-level interface to the hardware,

support for processes, memorymanagement and some form of IPC which is typically

based on message passing and implemented within the kernel. In such systems, the

1This subject is currently being investigated within the Computer Laboratory by Timothy

Roscoe [Roscoe94].
2In an environment in which a number of \workstations" are interconnected via a LAN, this is

not always the case.
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operating system software is structured as a set of servers which provide system

services to client programs. Message passing is a low-level facility, so often a Re-

mote Procedure Call (RPC) mechanism is provided as a convenient programming

abstraction. Characteristic of such systems is that the nature of their construction

facilitates distribution over networks of processors, but while the boundaries be-

tween system modules are well enforced, communication between modules requires

one or two message passing operations.

The design attempts to utilise the protection hardware by providing facilities to

share data among protection processes which need access to it. The granularity of

protection domains is such that a protection domain encompasses a system server or

application. Intra-module protection is static and relies on compiler type checking

while inter-module protection is dynamic and requires appropriate hardware. Appli-

cations can interact with the system's memory and protection management server

to arrange to share a part of their domain of protection with other system entities.

The amount of code which executes in supervisor mode is minimised by the provi-

sion of a facility which allows a su�ciently privileged process to request for sections

of its code to be executed in privileged mode. This is motivated by a number of

factors. Moving between user and supervisor mode is becoming less expensive on

modern RISC processors because the hardware does not automatically incur the

overhead of saving the processor state, this task being left to hand crafted exception

management code which is provided as part of the system supervisor. Conceptually,

microkernels contain a small subset of the functionality required of an operating sys-

tem, but in reality this requires a not inconsiderable amount of code to implement.

This code executes in supervisor mode and on some architectures (for example the

MIPS R3000) necessarily has unlimited access to the whole of the system address

space. The ability to request that the processor be placed into privileged mode

means that the majority of the code which usually constitutes a microkernel can

be executed in user mode at a correspondingly lower privilege level, enabling better

use to be made of the available protection hardware. A �nal factor which motivates

this element of the design occurs as a result of having dynamically loadable system

entities such as device drivers. Separating the portions of the driver code which

absolutely must execute in supervisor mode from the rest improves the chances of

being able to check this sensitive code before it is loaded into the system. The long

term goal of this is that if su�ciently clever checkers can be constructed, then the

system can relax its restrictions about who is allowed to use such checked, privi-

leged code to the extent that, certainly system provided libraries and possibly even

user applications, might be a�orded the ability to execute short sections of code in

privileged or uninterruptable mode. Figure 4.2 shows the e�ect which such a design

has on the structure of an operating system. Most of the functionality provided by

a typical microkernel has been moved into a user mode domain; requests to have the
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Figure 4.2: The structure of a system which uses privileged library.

processor placed into supervisor mode which can be identi�ed as originating from

the privileged kernel or system domains are granted. This identi�cation may be

based on a knowledge of the process which is currently running.

4.5 Communication

Within the system being designed, communication occurs between two processes,

between a process and the system and between the hardware and system processes.

These forms of communication will occur frequently, so they ought to cost as little

as possible. Many systems fall prey to lack of performance caused by programming

generality. Not only do many microkernel systems o�er a limited set of message

passing primitives, but the cost of message passing between processes on the same

machine is much more expensive than a local procedure call. In at least one system,

this has resulted in the migration of user mode servers into the kernel and supervisor

mode purely for performance reasons [Bricker91].

Such performance gains in themselves are not directly related to the implementation

of QOS within a system, but the performance of IPC primitives is of great impor-

tance in evaluating the viability of a design. Microkernel architectures o�er the

advantages of well enforced modularity at the expense of more costly inter-module

interactions. Since IPC will be used frequently in a system, it is important that it

be implemented in as e�cient a manner as possible. The ultimate goal of doing so

is to make it of the same cost as a subroutine call.

The aspect of IPC design which will be in
uenced the most by a QOS implementa-

tion is timeliness. Many current systems provide support for the timely scheduling of

processes which communicate via IPC by assigning static priorities to the processes.

The scheduling decisions which are based on these priorities are bound implicitly
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within the IPC mechanism so applications have no means of explicitly expressing

their temporal requirements or of controlling the times at which scheduling decisions

are made. The design should incorporate su�cient 
exibility to enable applications

to express temporal requirements explicitly and allow them control over when then

scheduling decisions which result from IPC operations are to occur.

4.5.1 Components of Communication

Communication between processes consists of two independent actions: data trans-

fer and synchronisation. In an implementation which is based on message passing,

these two actions are combined in the message passing primitives provided by the

system. The manner in which data is transferred is determined by the maximum

message size and the amount of control given to a process over the type of synchro-

nisation desired and varies depending on whether the primitives are synchronous

or asynchronous. Combining these actions into the one message abstraction incurs

unnecessary overhead when it is desired to use only one of them independently. The

use of messages containing no data for synchronisation and of messages to request

the current value of some data between processes which are executing on the same

machine are examples of this.

The desire to provide support for CM streams within the design provides additional

motivation for separating the synchronisation and data transfer aspects of commu-

nication. Applications which need to synchronise their actions with CM streams

often do not need access to the stream data itself. This factor guided the design of

the stream agents presented in [Sreenan92] which can be used to �lter a stream of

CM data and present to an application a sequence of synchronisation events.

Recent advances in the design of workstation architectures emphasise this separa-

tion. [Hayter93] presents the Desk Area Network (DAN), a workstation architecture

which is well suited to handling CM streams. DAN replaces the traditional back-

plane bus with an ATM switch, which is used to interconnect devices such as the

processor, frame store and LAN interface. [Pratt92] presents the \ATM camera"

which converts an analogue video signal into a stream of ATM cells and connects

directly to the switch in the DAN. The switch can be programmed to direct a CM

stream from the camera to the processor if the video data is to be delivered to an

application. If the video data is only to be displayed, the switch can be con�gured

to route the video data stream directly to the frame store, bypassing the processor.

A later version of the camera [Pratt93] produces in addition to the data stream,

a control stream containing synchronisation and timing information. Within the

DAN, separation of the data and synchronisation components of a video stream en-

able the data stream to be routed directly to the frame store and the control stream
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to be delivered to an application.

It can be concluded that, while message passing is a convenient abstraction, useful

for building distributed systems, it can be constructed from more basic primitives

which provide a lower level of abstraction. The separation of these primitives into

data transfer and synchronisation operations makes them better suited to a number

of applications such as the handling of CM streams. It also enables certain optimi-

sations to be made when communication is between entities which are running on

the same machine.

4.5.1.1 Sharing Data

Data can be shared between two processes provided that they can agree which data

to share; the data can be protected according to how much each of the processes

trusts the other and they can synchronise accesses to the data. An example of

the usefulness of data sharing can be found in the information about itself which a

process is able to know and which usually resides within the operating system; the

current time and accumulated processor usage are examples of such information.

When this is resident in the operating system a system call is required to obtain it.

If the operating system made this information available to the process, it could be

read directly, thus avoiding the overhead of a system call. The mechanics of such

operations should be hidden behind suitable interfaces provided by system libraries

so that application portability is not compromised. If the system trusts a process,

the process can be given open access to the data used by the system. If the process

is not trusted, memory management hardware can be programmed to allow the

process only the ability to read the data and not write it. Data consistency can

be provided by the use of atomic updates or some more general synchronisation

primitives as might be provided by the system. The type of synchronisation best

suited to a particular instance is dependent upon the type of data being shared and

not all synchronisation requirements will need to use the mechanisms provided by

the system. The agreement between processes as to what data are to be shared must

therefore also include how it is to be shared.

4.5.1.2 Synchronisation

Synchronisation marks points in the execution of processes where scheduling deci-

sions have to be made. In a message passing system, a scheduling decision has to

be made after a message is sent. A blocking send primitive necessarily suspends the

sending process, surrendering the processor, until a reply is received. A more 
exible

system allows the sender to return, still in possession of the processor. A synchronous
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send can be implemented using asynchronous primitives by atomically implement-

ing a send then a receive. The synchronisation primitives designed ought to provide

at least the functionality of the synchronisation provided by asynchronous message

passing implementations in that after a synchronisation point has been reached, a

process is given the choice of whether or not it wants to retain possession of the

processor.

4.5.2 Events

The synchronisation aspect of communication can be modelled as the signalling

of the occurrence of an event by one process to another. Figure 4.3 depicts the

phases through which the path of execution of a processor passes when processing a

hypothetical event. The event is said to arrive when the system �rst becomes aware

Record Deliver Schedule

Time (t)0 1 2 3 4 5 6 7 8 9 10

System

Event Arrival Event Response

Schedule

P
1

P
2

11 12

Figure 4.3: Arrival, processing and delivery of an event.

of the event's occurrence (time t = 1); in the case of the example, the event may

be generated by a process or as the result of some external hardware interrupt. At

the time of arrival, P2 is running and P1 is the event's target. In response to an

arrival, the system must at the very least make a logical record of the arrival so that

it is not forgotten. Some time later, (time t = 3), this record is examined, the event

is delivered to its target, and a scheduling decision is made. Delivery of an event

does not necessarily mean that the target process is given the processor next; this

decision is made on other information and in the case of the �gure, after delivery

of the event to P1, P2 is given the processor next. Eventually, another scheduling

decision is made, and P1 gets to run, at which stage, it becomes aware of the event

delivery and may choose to respond to it whenever suitable. The model can be

applied with equal success to both hardware generated events and their software
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equivalents.

The ability to postpone delivery and scheduling after an event has arrived enables

the implementation of critical sections. P2 can implement a critical section by setting

a 
ag upon entering it. This 
ag indicates to the event handler that the current

process is not to lose the processor until it has left the critical section. The event

handler, upon seeing this 
ag set, simply records the event and resumes P2. Upon

leaving the critical section, P2 clears the 
ag and then allows any pending events

which may have arrived while it was in the critical section to be processed. In the

case of interrupts, event masking, recording and delivery are implemented by the

machine hardware.

The scheduling decisions made after event delivery (at t = 4 and t = 7) imply that

the model distinguishes between the logical value of any event (i.e. the record that

an event has happened) and the time at which the response to the event occurs. In

cases where the scheduler is provided with some information concerning the temporal

requirements of an event, it can use this information to schedule processes so that

these requirements are met. The ability to make such scheduling decisions extends

to any user level schedulers which might exist within a process; in the example of

the �gure, even though P1 is running at t = 9, it postpones the response to the

event until t = 10, because it has more urgent work to do beforehand.

4.5.3 Design of the Event Mechanism

The design includes a mechanism called an event channel which is a unidirectional

path through which one process can communicate the occurrence of events to an-

other. Within its own domain of execution, a process is free to accumulate records

of events as it pleases, and doing so does not have any direct e�ect on the scheduling

of the process. When it decides to, a process may communicate the occurrences of

events ni on channels ei by executing the call signal(vec), where vec is a vector

of (ei; ni) pairs. After doing this, the events have arrived into the system. For each

event channel ei, the system determines the end point of the channel. This locates

an integer counter within the protection domain of the target process which the

system atomically increments by ni; this increment records the delivery of the ni oc-

currences of the event. A scheduling decision is then made. When the target process

is next executed, it is informed of the arrival of events and may respond to them as

it sees �t. The use of the vector argument vec to the signal call allows signalling

on a single event channel or atomic signalling on a number of event channels. The

latter provides support for a type of multicast signalling facility.

A process which receives events is expected to maintain a record of which events it
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has processed and which are still pending. This can be done by reading the value

of the event to determine the total number of events which have been delivered (d,

say) and comparing this with a locally maintained count of the number of events to

which a response has been generated (r, say). At any time, two invariants hold:

(1) The number of pending events is d� r and;

(2) d� r � 0.

The presentation of events has so far assumed that event channels are in existence

when they are used; a means is required whereby event channels can be created. The

basic problem to be solved in this instance is that before a process P1, say, is allowed

to send events to another process P2, say, P2 must agree to accept events from P1.

The event mechanism is designed to be usable for communications between all of

the active entities in a system, including communications between a process and the

system itself. For this reason, when a process is created, it is provided with at least

the means to communicate with any necessary system entities. An optimisation is

to provide processes with communications channels to all of the frequently required

system servers.3

A process P1 can use these established channels to request a channel for sending

events to another process P2 by executing the system call request(P2), which re-

turns to P1 a channel identi�er e. At this stage, any attempt to signal events on

e will result in an error condition. The request call causes P2 to receive via its

existing interface with the system an asynchronous request for a connection e from

P1 which is identi�ed uniquely by the pair (P1; e). P2 can decide either to accept

or to reject the request. Rejection causes an error return in P1. Acceptance is indi-

cated by calling accept(P1, e, &v) which informs the system that P2 is willing to

receive events from P1 on channel e, and that the event deliveries are to be recorded

in the variable v, whose location is given by &v. This causes the state of the channel

to be updated so that events may be signalled on it and also causes P1 to be noti�ed

that the channel may now be used.

An event channel may be closed by the process at either end; this causes the process

at the other end of the channel to be noti�ed of the closure and any further signals

to return an error status.

3This is the equivalent of the provision of unix processes with the standard I/O connections

stdin, stdout and stderr when they are created.

59



4.5.4 IPC from Primitives

Shared memory and events can be used to implement e�cient IPC within the same

machine. A unidirectional communications path can be established from process

P1 to process P2 using an event and a shared memory segment with protection

which allows P1 permission to read and write and P2 to read. P1 can marshal one

or more sets of arguments directly into the shared memory segment then signal the

appropriate count of events to P2. Operating in conjunction with a similar structure

operating in the reverse direction, this implements a bidirectional communications

path.

4.5.5 Hardware Interface

The IPC abstraction provided by the system can be used to interface user mode

processes to hardware devices. Device driver processes are assumed to be privileged

in that they are allowed access to device registers either by mapping them into their

protection domain or via the execution of privileged code. The interface between a

device driver and the system then consists of the device registers (and bu�er memory

if present) and an event which is signalled by the system as the result of a device

interrupt. In cases where good performance is required, the device driver can export

to other processes an IPC interface in which the shared memory segment maps some

onboard device bu�ers, so that the processes marshal their arguments directly into

the device bu�ers, avoiding unnecessary copying.

The ability to do this e�ectively is determined by the granularity of protection af-

forded by the systemmemorymanagement unit. In the majority of current processor

designs, the control of protection and cacheing is associated with virtual memory

page size. Device drivers however, can utilise a granularity which allows them to

protect down to the size of the device registers and consideration should be given

to this in the design of the system hardware.

4.6 Scheduling

Scheduling occurs at a number of levels, the QOS manager makes long term schedul-

ing decisions such as whether or not to admit a new process or withdraw resources

from one process and give them to another, the system RTRA is responsible for

presenting resources to processes in a timely manner and within the processes which

use them, user-level thread schedulers are responsible for allocating resources to the
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application threads. The mechanisms required to implement this resource manage-

ment strategy need to perform run time resource allocation, accounting and policing;

the implementation of each of these requires some knowledge of the current time.

4.6.1 Time

To allocate resources in a timely fashion, the notion of time has to be ubiquitous

throughout the system. Arithmetic operations on temporal quantities will be fre-

quent, so a sensible representation of time can limit the amount of resources required

to e�ect these calculations. The resolution of the clock ought to be su�cient to mea-

sure the time taken to execute some code on a processor to within a few instructions

for the purposes of accurate pro�ling.

Within the design, all times are represented as 64-bit integers which record the

number of nanoseconds having elapsed since some well known epoch and can distin-

guish events which are less than 264 nanoseconds or approximately 580 years apart.

Maintaining times as a single integer reduces the number of instructions required for

temporal arithmetic over representations which use counts of seconds and decimal

fractions of seconds.

The system clock consists of two registers; the current register stores the time since

the epoch and the alarm register stores the time at which the next clock interrupt

is to be generated. A system clock module uses this (ideally hardware) clock device

to implement a timeout queue which provides equivalent virtual clock devices for all

processes. Processes may request that the clock module signal the occurrence of an

alarm event some time into the future by programming their virtual alarm clocks.

All processes are given direct, read only access to the current register to provide

them with a cheap, accurate value of the current time.

4.6.2 Process Classes and States

The design distinguishes between the various states in which a process exists by

maintaining a number of queues. Qc contains all of the processes which hold con-

tracts awarded by the QOS manager and are runnable. When a contracted process

has used all of its allocated resources and requires more, it is placed in Qw until

more resources become available for it. Processes which have indicated that they

wish to wait for some event are placed into Qb, the queue of blocked processes and

best e�ort processes are placed into Qf .

The most suitable algorithm for determining which process ought to get the pro-
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cessor next will be the result of considerable experience in the everyday use of the

system, so a simple dispatching policy is described to demonstrate the use of the

mechanisms provided. Whenever the process dispatcher is called to give the proces-

sor to the most eligible process, it chooses a process from Qc; this aims to satisfy the

requirements of the contracted processes before any other processes. If this queue

is empty, a process is chosen from Qw, the aim being to give contracted processes

the chance to make use of any resources which become fortuitously available after

they have already received their contracted quota. If Qw is empty, the processor is

o�ered to the best e�ort processes in Qf . This algorithm will be used in the system

presented in this dissertation, but further work is needed to re�ne it.4

For the two classes of processes (the contracted processes in Qc and Qw and the best

e�ort processes in Qf), the RTRA implements a dispatching policy. The best e�ort

processes may be scheduled using some form of multiple level feedback queue. Recall

from section 3.8 that the RTRA dispatching policy has a large impact on the type

of contracts which it is possible to o�er to processes, and that the designer is under

no obligation to choose one particular policy over another, provided that the QOS

manager is aware of the policy which is being used so that it can perform admission

control and that processes are made aware of the nature of the contract which is

being o�ered to them when they are admitted. Section 2.1.1, however, motivates

the use of dispatching policies which take into account the temporal requirements

of the contracted processes on the grounds that doing so will enable the system to

meet more deadlines with a given amount of physical resource than otherwise would

be the case.

A simple static priority scheme could be used in conjunction with the RM algo-

rithm to e�ect some temporal ordering in which the processor is shared amongst the

contracted processes. Static priority assignments have a number of disadvantages.

Firstly, they a�ord a limited 
exibility in expressing temporal requirements; static

assignments may need to be recalculated in a dynamic system when new processes

are given contracts. Secondly, the processes may be running multiple threads, the

temporal requirements of which require more than a single priority to express. The

design instead uses deadlines in conjunction with the EDF algorithm to sequence

the execution of the processes. Each process speci�es its deadline (in the case of

multiply threaded processes, this will be that of the thread whose deadline is ear-

liest) to the RTRA, which uses this information to order the queue of contracted

processes such that the process with the earliest deadline is at the head of the queue.

When the processor is given to a process, the process is informed of the next earliest

4For example, the algorithm presented does not make use of the fact that the response times of

the best e�ort processes in Qf can be reduced by delaying execution of the contracted processes

in Qc for as long as possible while not allowing them to miss their deadlines [Tindell93].
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deadline in the system; a process scheduler then knows that it can execute all of its

threads whose deadlines are earlier than this before having to give up the processor.

This allows processes which want to cooperate to obtain a high utilisation of system

resources.

There are times during the execution of a process when it can do no useful work

even if it is given the processor; a process which is processing a video stream has

no requirement for the processor until the frame of video for which it is waiting

has arrived. A process may also detect that it does not require all of the processor

time which has been allocated to it. In these circumstances, a user level scheduler

may idle and waste processor cycles. The policing mechanism will prevent this from

a�ecting other contracts, but best e�ort processes may bene�t from being able to use

these otherwise wasted cycles. The design allows processes to call into the kernel

when they want to give up the processor until an event occurs. This causes the

process to be removed from one of the runnable queues and placed into Qb until any

event occurs. Arrival of an event when a process is in this state causes the process to

be rescheduled into an appropriate runnable queue. Allocation of processor cycles is

important to an application, but applications which block may not always want to

be informed of it. The mechanism allows processes to specify whether or not they

wish to be informed of processor allocation while they are waiting for an event to

occur.

Having used all of its resources, a process is removed from Qc and placed into Qw

to wait for its next allocation of processor bandwidth. Should additional resources

become available before then, a process can be selected from Qw and given those

resources. This allows processes which are able to make use of additional resources

to do so.

4.6.3 Accounting

The design incorporates a basic accounting mechanism called a timer which records

the accumulated time for which it has been running in nanoseconds. A number of

primitives are provided for operating on timers: timer reset(t) initialises the timer

to zero; timer start(t) starts the timer accumulating elapsed time; timer stop(t)

freezes the timer and; timer read(t) returns the time accumulated by the timer.

The RTRA maintains, for each process, a timer which records the processor time

accumulated by that process.
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4.6.4 Policing

A policing mechanism is required to ensure that contracted processes use no more

cycles than they have been allocated by the QOS manager. The design incorporates

a simple policing scheme which assumes that, if a process has been allocated a

processor bandwidth of (C;T ), then the process is eligible for C units of processor

time every T units of real-time. For every process, a timer ta is maintained which is

reset to zero at the start of each period T and records the processor time accumulated

by the process during that period. Whenever the process loses the processor, either

because it is preempted by another process, or because the alarm clock signals that

it has no more processor time left, ta is stopped. The contracted processor time

which is remaining for that process is calculated as tr = C � ta. If tr = 0, the

process has no more processor time left and it is removed from the runnable queue

and forced to wait until the start of its next period when it is allocated another C

units of processor time. Whenever the process is about to be given the processor,

the system alarm clock is set to interrupt tr into the future, timer ta is started, and

the processor is given to the process.

4.7 Virtual Processor Interface

The resource allocation strategies used to provide applications with various qualities

of service sometimes give the applications fewer resources than they require. Sec-

tion 3.11 describes some ways in which applications can degrade their QOS when

resources are scarce. Applications can do this more easily if they are informed of the

availability or otherwise of resources. This is e�ected within the design by having

the system present applications with this information through the VPI. The inter-

face includes a noti�cation mechanism which informs applications when resources

have been allocated, when they are available and when additional resources have

been made available. The same mechanism can be used to inform processes of the

delivery of events such as timer and communication events.

The purpose of the noti�cation mechanism is to divert the path of execution of a

process into the user level scheduler, which may make the decision of what to do

based on the current resource availability. If the thread which was running when the

noti�cation was delivered is to be suspended and another thread run in its stead,

some means of obtaining the thread's saved context from the system is required as

well as a means of resuming a new thread. Noti�cation will occur asynchronously

with respect to the execution of a process, so some means is required of synchronising

the delivery of such information with access to critical sections.
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4.7.1 Activation

To notify a process of the occurrence of an event, the distinction is made between

process activation and process resumption. Usually, when the processor is given

back to a process, execution is resumed from the previously saved state and pro-

cesses execute unaware that they lose the processor and regain it from time to time.

activation allows a process to specify to the system the address of some code which

is where it would like execution to begin whenever it is given the processor; this is

typically the entry point to some user level thread scheduling code.

EVENT Status Register

Machine Context

Activation Address

NEWAIP

Event Array

Deadline

Received Acknowledged

ALLOCPRMPTEXTRA

Received Acknowledged

Figure 4.4: Activation section of the virtual processor interface.

Figure 4.4 shows the section of the VPI which implements activations; this consists

of an activation address, a status register, and space for a saved machine context.

Table 4.1 describes the functions of the bits in the status and control registers.

When a process is created, its activation handler is set to be the address of the

Bit Meaning

ALLOC Processor time has been allocated

PRMPT Process has been preempted

EXTRA Extra processor time is available

EVENT An event has been signalled

NEW Events occurred during activation

AIP An activation is in progress

Table 4.1: De�nitions of bits in the virtual processor interface registers.

process's initialisation code. As part of its initialisation, a process installs into the

activation address register, the address of some activation handler code. When-

ever a process loses the processor, its context is saved into the machine context �eld.

Whenever the processor is given to the process, the status register is updated to re-
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ect the reason for activation and the process is activated by forcing its execution

to start at the address speci�ed in the activation handler. Figure 4.5 shows the

t0 t1 t2 t3 t4 t5

ALLOC PRMPT EXTRA

C1 C2 Ce

T

Figure 4.5: Execution of a process showing activation points and reasons.

timing diagram of a process which has a reserved processor bandwidth of (C;T ) and

is preempted at time t2, so that it receives the bandwidth in two portions C1 and C2

such that C1+C2 = C. At time t0, the process is allocated C processor cycles and is

eligible to run but must wait for a higher priority process. At t1 the process is given

the processor, and because it has just been allocated more resources, the ALLOC bit

is set in the status register prior to activation. At t2 the process is preempted and

at t3 the process is again given the processor. No resources have been allocated

since the last activation but the process still has C2 cycles available, so the PRMPT

bit is set in the status register to re
ect this. By t4 the process has used all of its

processor allocation, but the system is otherwise idle and decides to give the process

additional cycles so the EXTRA bit is set in the status register is set and the process

is activated.

During the execution of the activation handler, the AIP bit in the status register is

set, causing any further activations to be queued. The activation handler uses the

status register bits EVENT, EXTRA, PRMPT and ALLOC to determine its course of action.

If this involves rescheduling threads, the state of the thread which was running when

the process last lost the processor is available in the machine context area. Before

continuing with the execution of the process, the activation handler must enable

activations by clearing AIP then check the NEW bit in the status register to see if

other events have occurred during the execution of the handler. If so, the handler

must call back into the system to give it the opportunity to present any pending

events.

Critical sections can be implemented using a global, boolean variable which records

entry into any such sections. Before entry to a critical section, a thread sets the

variable to TRUE, should the process be activated while in a critical section, the thread

scheduling code in the activation handler can inspect this variable to determine what

to do with the thread. Possible actions are to resume the thread until it leaves the

critical section, or to suspend it and run another thread which is known not to be in

con
ict with it. Another means of implementing critical sections uses two activation

handlers, the usual handler which contains a thread scheduler and an alternate

handler which always resumes the current thread. Entry to a critical section can be
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e�ected by installing the alternate handler, which makes any activations invisible

during the critical section.

4.8 Summary

This chapter has presented the design of a kernel which incorporates mechanisms

providing support for QOS within the operating system. The design includes an

e�cient IPC mechanism which makes use of a single address space, shared memory

and means of signalling events between processes. The separation of data transfer

and synchronisation aspects within the IPC mechanism make it better suited to

some CM applications such as remote synchronisation with a stream of CM data

than message based IPC mechanisms. The design also incorporates accounting and

policing mechanisms, which are required if QOS contracts are to be maintained.

It also augments the virtual processor interface which is seen by applications that

applications can be informed of the availability of resources within the system over

time.
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Chapter 5

Implementation

This chapter describes the implementation of an experimental system called Nemo

which was built to investigate some aspects of the design presented in the previous

chapter. This implementation runs on a DECstation 5000/25 workstation, which

uses a MIPS R3000 processor.

5.1 System Overview

Figure 5.1 shows the structure of a typical Nemo system. The Nemo Trusted Su-

System Hardware

System
Domains

Application
Domains

Device Driver
Domains

Nemo
Trusted
Supervisor
Code

User
Mode

Supervisor
Mode

Device Stubs

Figure 5.1: Structure of a typical Nemo system.

pervisor Call (NTSC) code implements those functions which are required by user
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mode processes and which need to run in supervisor mode. It is also responsible

for mapping the low level hardware interface onto the VPIs which appear in each

of the processes. The NTSC code provides support for three types of processes.

System processes implement the majority of the services provided by the operating

system. Device driver processes are in many respects similar to system processes,

but are distinguished by the fact that they are attached to device interrupt stubs

which execute in supervisor mode and hence are part of the NTSC code. Application

processes contain user programs. Processes interact with each other via the system

IPC facilities which are implemented using events and, if required, shared memory.

The following sections describe the operation of the main system entities.

5.2 NTSC Code

The NTSC code is about 2.5 kilobytes in size, written entirely in assembler and

implements the routines which provide the support for VPs. Processes gain entry to

the NTSC code via the standard system call mechanism and, once they have entered

it, their execution is not preempted. Code is placed into the NTSC for a number of

reasons:

� it needs access to privileged instructions and needs to execute within supervisor

mode;

� it is executed as the result of an exception such as an interrupt, in which case

the hardware has forced execution of the exception handler to be initiated in

supervisor mode or;

� the code implements commonly used functionality which needs to be run with-

out preemption.

The routines which are provided for use by processes to implement activation han-

dlers and which will be discussed in a later section are examples of the latter. NTSC

calls are separated into two classes, one containing calls which may only be executed

by a suitably privileged system process such as the kernel, the other containing calls

which may be executed by any process. Table 5.1 lists the NTSC code segments

which currently exist and their functions. Of these segments, sc activate and

sc halt are executable only by the kernel, the rest may be executed by any pro-

cess. sc halt causes the system to be halted, and execution to enter the bootstrap

monitor. sc ici and sc dci allow a range of addresses in the instruction and data

caches respectively to be invalidated. The function of the remaining code segments

is described in later sections.
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Name Purpose

sc activate Activate a process

sc halt Halt the processor

sc rfa Return from activation

sc rfar Return from activation, restore context

sc kernel Activate the kernel

sc deliver Deliver any pending events

sc ici Invalidate a region of the instruction cache

sc dci Invalidate a region of the data cache

Table 5.1: NTSC code segments.

The NTSC maintains a small amount of data which include: kvp, the address of

the kernel's VP; cvp the currently active VP and; ccx the address of the structure

into which the machine context is to be saved when a process loses the processor.

These are maintained as a result of the execution of NTSC code by the kernel and

user processes.

5.2.1 Device Interrupt Stubs

The NTSC code is also responsible for providing an interface between device hard-

ware and its associated driver process; an example of this is provided by the clock

device. The DECstation 5000/25 provides a periodic source of interrupts which have

an inter-arrival time of 1 millisecond; this source is used by the NTSC to implement

the system clock. Figure 5.2 shows the interface to the Nemo system clock, which

consists of two registers called current and alarm. current contains the number of

Interrupt

Current
Time

Alarm
Time

(Current >= Alarm) ? 1 : 0

Figure 5.2: Nemo clock device interface.

milliseconds which have elapsed since the epoch. alarm contains the time at which

the system next wants to receive a clock interrupt. The clock driver will generate an
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event whenever the value of the current register is greater than or equal to the value

of the alarm register. The NTSC stub for the periodic interrupt is implemented as

a fast and a slow path. The entry to this code saves the minimum number of reg-

isters required, increments the current register and compares the updated value

with the value of the alarm register. If the alarm has not expired, the fast path is

taken; the partially saved state is restored and execution returns from the exception.

If current is greater than or equal to alarm, the alarm has expired and the stub

needs to generate an interrupt. In this case, the remaining context is saved and the

interrupt is delivered to the kernel in the form of an event.

The current and alarm values are maintained within the NTSC code, but are made

available to processes as shared memory segments. The current register can only

be modi�ed by the NTSC code, but may be read by any other process. Processes

are given the address of this register at initialisation time and so have ready access

to the current system time to millisecond resolution at the cost of a memory read

operation. In addition to the address of the current register, the kernel is informed

of the address of the alarm register, which it may write with the time at which it

would next like to be sent an event by the NTSC.

This device driver implementation exempli�es a number of important aspects of

the mechanisms whose design was presented in chapter 4. Firstly, in the case of

devices which present only a low level hardware interface to the system software,

code can be implemented within a device driver stub to implement a higher level

interface; this allows the system implementor to trade hardware complexity and cost

o� against the processor cycles required to implement a high level device interface.

Secondly, the implementation of the interface between the clock device registers and

the processes which use them provides extremely e�cient accesses to the register

values without compromising the basic shared memory IPC abstraction. Thirdly,

the same shared memory and event mechanisms which are used for communications

between processes are also used to provide the interface between hardware devices

and their device driver processes.

5.3 Processes

Processes are the active entities within a Nemo system and consist of a domain of

protection and a thread of execution. A process may be multi-threaded, in which

case it will implement its own thread scheduling algorithms in addition to the process

scheduling which is done by the system.
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5.3.1 The Virtual Processor Interface

Of interest in this discussion is the interface between a Nemo process and the system.

Nemo provides each process with a virtual processor (VP); resources are allocated

to each VP by the RTRA and resource availabilities are communicated to processes

via the Virtual Processor Interface (VPI), which is de�ned by the code segment

in �gure 5.3. Within a process's VPI, activate contains the address at which

/*

* Virtual processor interface

*/

typedef struct {

void (*activate)(); /* Activation handler */

u_int status; /* VP status (see below) */

u_int disable; /* Disable activations */

context_t ecx; /* Execution context */

context_t acx; /* Activation context */

char *kpm; /* Kernel call shared memory */

char *pkm; /* Upcall shared memory */

} vp_t;

/*

* Status register

*/

#define VP_STS_ARMSK 0x0F /* Mask for activation reason */

#define VP_STS_PRMPT 0x01 /* Process was preempted */

#define VP_STS_ALLOC 0x02 /* Been allocated some time */

#define VP_STS_EXTRA 0x04 /* Obtained extra resources */

#define VP_STS_EVENT 0x08 /* Events have been delivered */

#define VP_STS_NEW 0x10 /* New events are pending */

#define VP_STS_AIP 0x20 /* Activation in progress */

Figure 5.3: Nemo virtual processor interface.

execution is started whenever the processor is given to the process. This �eld can

be altered with a single write by the process. Whenever a process is activated, the

status �eld is updated to re
ect the reason for activation as explained in section

4.7.1.

While not executing an activation handler, the NTSC code saves a process's machine

context in the ecx �eld of the VPI whenever the process loses the processor. If the
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machine context needs to be saved while executing an activation handler, it is saved

in the acx �eld and this context is resumed when the process is again given the

processor. This removes the need to write reentrant activation handlers, but also

means that a process may not immediately be informed of scheduling events which

occur during activation. kpm and pkm contain the addresses of areas of memory

which are shared between a process and the kernel. To perform the equivalent of a

system call, a process marshals its arguments directly into the memory pointed to by

pkm and then executes a call to sc kernel, which causes the NTSC code to deliver

an event to the kernel and activate it. Conversely, whenever the kernel wishes to

call a process to inform it of the results of a particular system call, it marshals the

results directly into the memory pointed to by kpm and sends an event to the process

to alert it to the presence of the results.

5.3.2 Activation and the VPI

Activation is performed by code within the NTSC as the result of:

� the kernel issuing an sc activate call to give the processor to a particular

process;

� an interrupt causing the NTSC to take the processor from the currently run-

ning process and activate the kernel and;

� a process issuing a sc kernel call to surrender the processor and activate the

kernel.

In the usual case, when a process loses the processor, its context is stored into its

VP's ecx �eld. When NTSC code is called to activate the process, its cvp variable

is updated to point to the VP to be activated, and ccx is set to point to the acx

�eld of the current VP. The reason for activation is updated in the VPI status �eld,

the VP STS AIP bit is set, and execution is continued at the address speci�ed by the

VP's activation �eld in user mode.

The activation handler can now process any pending events and make any scheduling

decisions which it requires. If it decides to select a new thread for execution, the

savedmachine context of the thread which was running when it last lost the processor

is available in ecx. Any external occurrences which would ordinarily result in an

activation cause the VP STS NEW bit to be set if they occur while an activation is in

progress.

To leave an activation handler, a process executes a call to either sc rfa() or

sc rfar(). Both of these NTSC calls check to see if any new activations arrived
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while the previous activation handler was executing and if so, clear the VP STS NEW

bit and reactivate the process. If no new activations had arrived, cvp is set to point

to the current VP's ecx �eld. After this, sc rfa() causes execution to return to the

instruction following the call to sc rfa(). sc rfar() takes one argument which is

a pointer to a context which is to be resumed. A thread scheduler may use this to

resume its previous execution context by calling sc rfar(&vpp->ecx), where vpp is

a pointer to its VPI, or it may nominate the address of the saved context of a new

thread.

5.4 Building a Nemo System

The NTSC code and the code for each of the processes is a separately compiled

and linked object module. A machine dependent con�guration utility called build

is used to read a con�guration �le and bind the speci�ed modules together to con-

struct a system image. Figure 5.4 shows an example con�guration �le. In this

#

# Configuration file for Nemo

#

# File Name Period Cycles

#

ntsc /ntsc

kernel /kernel

dir /lib/dir

video0 /proc/0 67 30

video1 /proc/1 67 30

Figure 5.4: Example Nemo con�guration �le.

con�guration �le, entries in the �rst column contain the unix pathname of the

linked object modules which are to be used to build the system. The second column

contains the ASCII strings which are used to locate the modules. In the case that

the entity is a user process, its name begins with the string /proc/ and the third and

fourth columns of its entry in the con�guration �le respectively contain the period

with which processor time is allocated to the process and the amount of processor

time which is allocated. The example shows that there are two contracted processes,

one called video0 and the other called video1 which are both allocated a processor

bandwidth of (67; 30) milliseconds.
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In addition to calculating the �nal addresses of the processes and relocating them,

build also initialises the important system data structures. Information from the

con�guration �le along with the �nal addresses of the object modules are used to

initialise the directory database. A process control block (PCB) is allocated and

initialised for each process in the system, and each process's VP is initialised. The

activation �eld of each VPI is set to point to the �rst instruction in the process's

program space. The nexus contains a list of addresses which are required by the

system at startup. These include the address of the �rst byte of memory after the

end of the image, the address of the kernel's VP and the address of the directory

data and operations.

Figure 5.5 shows the layout of the bootable image created by build.

NTSC Code Nexus Directory
Data

Initial
PCBs

Kernel video0 video1

Unused
Memoryvp

program
+

data
vp

program
+

data
vp

program
+

data
Directory

Operations

Figure 5.5: Layout of a Nemo system image as constructed by build.

5.5 The Bootstrap Sequence

The built image is loaded into memory and execution starts at the �rst instruction in

the NTSC code. This code extracts the address of the kernel's VP from the nexus

and activates the kernel, passing to it the address of the nexus as an argument.

The kernel locates the directory data and operations from the information which it

retrieves from the nexus and uses this to locate the PCBs of the processes which

were loaded as part of the system build. Each of the PCBs found is entered into the

current schedule and initialisation is completed by entering the dispatcher.

5.6 Resource Management

The Nemo scheduler is part of the kernel and maintains four process queues cq, wq,

fq and bq. cq holds the current schedule of contracted processes sorted such that the

most eligible process is at the head of the queue. wq contains those processes which

have consumed their contracted amount of processor time and are able to make use

of more time should it become available. fq contains any best e�ort processes and

bq contains processes which are blocked, waiting for some event to occur.
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Each process's PCB contains a number of �elds which are used to maintain re-

source management information. These �elds include period, cycles, pnext and

remaining. period and cycles express the processor bandwidth which is allocated

to the process. pnext is the time at which the process will next be allocated more

resources and remaining contains the amount of contracted processor time which

the process has remaining at any time.

5.6.1 Accounting and Policing

When a process is given the processor, the time is recorded from the clock current

register and an entry is made in the clock driver timeout queue so that a policing

procedure will be called at current+remaining should the process still be running

when its contracted processor time has been consumed. When the processor is taken

away from a process, the policing timeout is removed and remaining is decremented

by the amount of time which the process consumed while it had the processor. If

remaining is zero, the process is moved from cq to wq.

5.6.2 Allocation

For each contracted process, a periodic software timer is used to allocate processor

time to the process by setting remaining to cycles every period milliseconds and

updating the status �eld in the process's VPI. This timer also checks to see if the

process is in wq because it had used all of its contracted time and if so, moves it

from wq to cq.

5.7 Events

Support for signalling between processes is provided by the Nemo event mechanism.

5.7.1 Creating an Event Channel

Suppose process A wants to create an event channel for signalling events to process

B, whose process identi�er is 2. A can issue the system call ev create("/proc/2",

rid). rid is an integer which identi�es a particular instance of the system call; in

a multithreaded process, rid would typically be the identi�er of the thread issuing

the system call.
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ev create locates the named process and obtains a pointer to B's PCB if the named

process exists. It then allocates an entry from an array of structures which is held

in A's PCB. Figure 5.6 shows the structure of one of these entries. The �elds of

/*

* PCB data required for an event

*/

typedef struct {

struct pcb *pp; /* Process receiving events */

u_int *recp; /* Address of event record */

u_int state; /* State flags - see below */

u_int rid; /* Result identifier */

} pcb_ev_t;

#define PCB_EV_WACC 0x1 /* Waiting for accept */

#define PCB_EV_OPEN 0x2 /* Channel is open */

Figure 5.6: PCB event structure.

this structure are then initialised the state set to PCB EV WACC and the kernel upcalls

both processes. Process A receives a return value which identi�es the event channel,

along with a copy of the rid given in the ev create call so that it can match the

upcall results with the request. Process B is upcalled with a request to receive

events and is given both a pointer to A's PCB and the identi�er of the PCB event

structure in A. This aims to provide enough information to enable B to identify the

possible source of events and decide whether or not it is willing to receive events

from that source. If it does not want to receive events from A, B issues the system

call ev reject(pp, ev id) which causes the event structure to be deallocated in

A's PCB and A to be upcalled with an error status. If B is willing to receive events

from A, it issues the system call ev accept(pp, ev id, &value) where &value is

the address of an integer which is used to record the deliveries of this particular

event. This causes the state of the PCB event structure to be set to PCB EV OPEN

and A to be upcalled with a good return status and the appropriate rid.

5.7.2 Signalling Events

Once an event channel is in place, A can signal the occurrence of n events to B

by issuing the ev signal(e, n) system call. Figure 5.7 shows the signalling of

an event. The signal call uses the event identi�er to locate the event channel's

77



A B

ev_signal(e, n);

e

v += n RECD
ACKDv

VP

PCB

VP

PCB

status
1

VP_STS_EVENT

Figure 5.7: Process A signalling the occurrence of n events to process B.

structure in A's PCB. It uses the information contained in this structure to locate

the address of the event record, updates the number of events received by B and

sets the VP STS EVENT bit in B's VP status �eld. The scheduler is alerted that B

has received an event, so that if B was in bq, waiting for an event, B is rescheduled.

5.8 Summary

An implementation of the design presented in the previous chapter has been pre-

sented in the form of the Nemo kernel. The description of Nemo has demonstrated

how the mechanisms which are required to provide support for QOS within an op-

erating system might be realised. The implementation also demonstrates that the

primitives such as shared memory and events which were proposed in the design for

use by application processes are also able to be used within the system itself. These

primitives provide a level of abstraction which is not as high as that of message

passing. However, they are better suited to a number of CM applications and their

use for IPC also a�ords some performance gains over message passing.
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Chapter 6

Evaluation

Earlier chapters have described the design and implementation of mechanisms which

can be used within an operating system to provide QOS contracts between the

system and applications. These mechanisms are evaluated with respect to their

ability to be used by applications. The work presented is then compared with other,

related work.

6.1 Experimental Assessment

Two important areas of the system which have to be evaluated are the suitability

of the VPI for providing applications with the information they need to meet their

own QOS requirements and the QOS mechanisms. The application which is used

to test the system is a variant of the JPEG video decoder which was described in

section 3.1.

6.1.1 Application Use of the System VPI

The aim of this section is to evaluate the usefulness of the VPI in terms of the ease

or otherwise with which applications may make use of it. Such an assessment is

necessarily subjective but does serve to demonstrate basic functionality.

When the system is built, the activate �eld of the decoder's VPI is set to point to

the address of the decoder's �rst instruction. The code at this address initialises the

application's environment and installs the initial activation handler. The decoder

runs in two phases. While initialising its internal data structures, it arranges to

have its saved context resumed by installing a default activation handler. When
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initialisation is completed, the decoder arranges to be informed of the resources

which are allocated to it by installing a second activation handler which decodes and

displays video frames. Activation handlers typically consist of an assembler stub

/*

* Default activation vectoring code

*/

.globl jd_avec_default

.ent jd_avec_default

jd_avec_default:

la gp,_gp /* Init global pointer */

la sp,jd_astack /* Init stack pointer */

jal jd_act_default /* Call handler */

.end jd_avec_default

Figure 6.1: Assembler part of default activation handler.

and a body which is written in C. Figure 6.1 shows the default activation vectoring

code used while the decoder is initialising itself and �gure 6.2 shows the code which

implements the body of the handler. Whenever the decoder loses the processor,

vp_t *my_vpp; /* Pointer to application's VPI */

void

jd_act_init()

{

if (my_vpp->status & VP_STS_EVENT) {

ev_handle();

}

sc_rfar(&my_vpp->ecx);

}

Figure 6.2: Body of default activation handler.

its context is saved in the ecx �eld of its VPI by the NTSC code. When the

decoder regains the processor, the vectoring code initialises the minimum amount of

environment required then calls the body of the handler. gp is reserved by the MIPS

R3000 register usage convention and is used by the compiler to refer to data held in a

global data segment. Since, in this design, activation handlers are not reentrant, an

execution stack can be statically allocated and its address used to initialise the stack
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pointer with twomachine instructions.1 The default activation handler checks for the

arrival of new events and handles any which are pending then resumes the context

saved in its VPI's ecx �eld. Using this default activation handler, the decoder

executes in the same manner as a conventional process, resuming its context from

where it was saved when the processor was taken from it. There is an important

distinction to be made between using the default activation handler to restore the

state of a process and having the system do it; use of the activation handler allows

an application to decide whether or not it wants to restore its saved state, rather

than having this action always forced upon it by the system. An example of when

an application sometimes does not want to resume its saved context is provided

by the activation handler which is used by the decoder when its initialisation has

completed and it is decoding and displaying frames.

Processor cycles are allocated to the decoder periodically at the frame display rate.

At the start of each period, the decoder displays the results of its attempt to decode

the previous frame and then begins decoding the next frame. This strategy allows

the decoder to maintain temporal correctness by sacri�cing the logical correctness of

its results. Logically incorrect results manifest themselves as frames of video which

are displayed on time but which are not completely decoded.

The vectoring code for the decoding activation handler is similar to that of the

default activation handler shown in �gure 6.1. Figure 6.3 shows the body of the

handler. When the handler is entered, the decoder's previous context is saved in

the VPI's ecx �eld. After detecting and processing any pending events, the handler

determines the reason for the current activation by examining the bits in the status

�eld of its VPI.

If the VP STS ALLOC bit in the VPI status register is set, the decoder has just been

allocated some processor cycles to decode the next frame. sc rfa is called to leave

activation mode and discard any context which was saved in the VPI's ecx �eld.

The results (possibly incomplete) of the attempt to decode the previous frame are

presented on the frame bu�er by a call to jd show and jd frame is called to initiate

the decoding of the next frame. If the current contract a�ords su�cient time to

decode the frame completely, the kernel is informed that the decoder wants to give

up the processor until the next time cycles are allocated. This is done by marshalling

the argument KC WAIT ALLOC into process/kernel shared memory and executing the

NTSC call sc kernel which re
ects the call in the kernel process as an event. This

call does not return to the activation handler as would the invocation of a normal

C function.

1The la (load address) opcode is expanded by the assembler into a lui (load upper immediate)

followed by an addiu (add immediate unsigned).
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char *fr; /* Buffer for one decoded frame */

vp_t *my_vpp; /* Pointer to application's VP */

vd_t *vd; /* Video stream descriptor */

pk_t *pkp; /* Decoder/kernel shared memory */

void

jd_act_display()

{

if (my_vpp->status & VP_STS_EVENT) {

ev_handle();

}

switch (my_vpp->status & VP_STS_ARMSK) {

case VP_STS_ALLOC:

sc_rfa();

jd_show(fr, vd->wp, vd->width, vd->height);

jd_frame(vd);

pkp->op = KC_WAIT_ALLOC;

sc_kernel();

case VP_STS_PRMPT:

case VP_STS_EXTRA:

sc_rfar(&my_vpp->ecx);

}

}

Figure 6.3: Body of the decode/display activation handler.

If the activation was caused by another process preempting the decoder, then

VP STS PRMPT will be set, causing the decoder to resume its previous context from

ecx. If, having used its contracted cycles, the decoder is allocated extra cycles by

the system, VP STS EXTRA will be set, which also causes the decoder to resume its

previous context.

The overall e�ect of these actions on execution of the decoder is that jd frame is

called whenever the application is allocated its share of the processor and continues

to execute until either the application is next allocated resources or until it completes

decoding of the current frame and calls sc kernel to return any unused resources to

the system. This allows the decoder to maintain the timeliness with which it delivers

frames even when it does not have su�cient resources to decode them completely.

In more general terms, it also demonstrates that the system can provide applications

with both QOS contracts and su�cient information to enable them to control their

82



behaviour when they do not receive all of the resources which they require.

6.1.2 Interaction With QOS Mechanisms

To demonstrate the behaviour of the basic QOS mechanisms, the decoder is allo-

cated a processor bandwidth of (40; 100) milliseconds and executed on an otherwise

unloaded system. The decoder is written so that, should it not require all 40 mil-

liseconds to decode a frame, it returns any unused processor cycles to the system.

Should the system �nd that it has any unused idle time, it will choose a process

which is capable of using more cycles and o�er them to the process. The kernel

was instrumented with code to log the occurrence of events during a run and dump

the log after completion of the run. During execution, the cycles accumulated by

the decoder during the 100 millisecond period assigned for decoding frame f were

logged at times tpf , when the policing function was activated and tsf when the decoder

surrendered the processor to the kernel to wait for the next allocation of resources.

Figure 6.4 shows a summary of this data. The solid line plots minf(tsf ; t
p
f) versus
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Figure 6.4: Contracted and additional processor times versus frame number.

frame number for 2000 frames of a video sequence. This represents the decoder's

use of its contracted processor cycles and the fact that this line never exceeds 40

milliseconds demonstrates the actions of the system policing mechanism. The stip-

pled line plots the tsf versus frame number which were recorded in the same run.
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This represents the total time required by the decoder to display the previous frame

and completely decode the next frame.

At point A on the graph, the decoder has decoded the frame within its contracted

40 milliseconds and surrendered the processor before it was policed. With reference

to the activation handler shown in �gure 6.3, execution of the handler has reached

the sc kernel call within the contracted amount of processor time.

At point B on the graph, the decoder was unable to decode all of the next frame

within its contracted time, causing the policing mechanism to intervene while the

decoder was executing the jd frame routine. The system saved the current context

in the ecx �eld of the decoder's VPI and tried to give the processor to another, con-

tracted process. Since, in this experiment, there were no other processes to execute,

the system allocated extra time to the decoder. This resulted in the decoder being

activated with VP STS EXTRA set in its VPI's status �eld. The handler resumed the

saved context and the decoder continued executing until the call to jd frame com-

pleted, when it surrendered the processor to wait for the start of the next resource

allocation period. This graph demonstrates the nature of resource allocation within

the system. Applications will always obtain a minimum amount of processor time,

and may receive additional time if the system has nothing better to do.

In the case where multiple contracted processes are able to make use of additional

resources, some algorithm for choosing the processes most eligible to receive extra

processor time is required. The current implementation simply gives this time to

processes in a �xed order, but it is anticipated that within a workstation environ-

ment, the user will be provided with an interface which enables this order to be

modi�ed according to their directions. Figure 6.5 shows the processor times in mil-

liseconds which were accumulated by ten decoders, each decoding the same video

stream, plotted against the frame number within the stream. The stream consists of

the �rst 100 frames of the stream used to obtain the graph of �gure 6.4 and each of

the decoders was allocated a processor bandwidth of (30; 400) milliseconds, giving a

total contracted processor bandwidth of (30� 10; 400) = (300; 400). The maximum

processor time which can be allocated to each of the decoders before the system is

overloaded is 400=10 = 40 milliseconds. Three sections of this graph are of interest.

Point A marks a frame which requires less than 30 milliseconds to decode, so all

applications return their unused processor time to the system and the system idles.

Point B marks a frame which requires a processing time which is between 30 and 40

milliseconds; each of the decoders has consumed its contracted 30 milliseconds and

then been 
agged as a candidate for extra resources should they become available.

The system then o�ers idle time to the decoders in order starting with number 9

and working down to number 0. For this frame, the system has su�cient idle time

for all of the decoders to complete decoding the frame. Point C marks a frame which
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Figure 6.5: Processor time obtained by ten decoder applications.

requires more than 40 milliseconds to decode, so that there is insu�cient processor

bandwidth in the system to completely decode all 10 copies of this frame and the

system experiences transient overload. Each decoder obtains its contracted 30 mil-

liseconds, then additional time is o�ered in order of descending number. This frame

requires so much time to decode completely, that only four of the decoders succeed

in doing so; the rest can only decode part of the frame.

At point C, this graph also demonstrates a number of important properties which

the system exhibits as a result of using QOS mechanisms to allocate resources:

� even though the system is overloaded, all of the decoders still receive their

minimum contracted PB on time and;

� not only is the system degrading gracefully, but the manner in which it de-

grades can be directly controlled by allowing the user to specify the algorithm

used for allocating extra processing time to contracted processes.

6.1.3 Varying Application QOS

It has been shown how the system can control the resources used by applications, and

also how applications can detect when they are not receiving enough resources. The

usefulness of such a system depends on the ability to construct applications which
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are capable of producing acceptable results when resources are scarce. This section

describes an implementation of the decoder application which has these properties.

6.1.3.1 Layered Processing

The video decoder uses the JPEG algorithm, an outline of which is given in section

3.1. At the centre of this algorithm is a loop which converts the incoming compressed

bit stream into a sequence of 8�8 tiles of DCT coe�cients. An IDCT is performed on

each of these tiles to obtain an 8�8 array of pels. When the decoder is sequentially

processing tiles, a shortage of processor time during a sequence of frames causes

areas at the bottom of the picture not to be updated. For many video presentation

applications, this form of degradation may not be acceptable.

An alternative method of processing the sequence of tiles representing one image

uses layered processing. As each coe�cient tile is reconstructed from the incoming

bit stream, its individual coe�cients are recorded and an approximation to the pic-

ture elements represented by the tile is generated and stored into the resultant array

of image pels. When all of the tiles have been received, the decoder has an initial

approximation to the image which it can further re�ne as more cycles are allocated

to it. A version of the decoder was constructed in which the �rst layer of process-

ing generates its approximation by taking the �rst non-zero coe�cient in the tile,2

setting all other coe�cients in the approximation tile to zero and calculating the

IDCT of this. An optimisation in the IDCT implementation means that calculating

the IDCT of a tile containing only one non-zero coe�cient can be done reasonably

cheaply.

The second layer of processing re�nes the picture by recalling all of the tiles which

contain more than one non-zero coe�cient3 and calculating their corresponding pic-

ture elements exactly. Figure 6.6 shows an image in which the �rst layer processing

has completed and the decoder has been given enough time to re�ne roughly half of

the tiles in the second layer. In this image, there are a total of 64� 64 = 4096 tiles,

347 of which contain a single non-zero coe�cient. In terms of the types of imprecise

computations discussed in section 3.11.3 this version of the decoder is using the

milestone method, each layer in the processing representing a milestone. This is to

some extent an improvement on only processing part of the picture completely, but

the lower areas of the image still need re�ning. The picture quality could be im-

proved by increasing the number of DCT coe�cients processed in the �rst layer; this

would increase the cost of computing the �rst layer and, correspondingly increase

2In zigzag order.
3Tiles containing only one non-zero coe�cient will have been processed completely by the �rst

layer; the \approximation" in these cases being the desired result.
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Figure 6.6: Partially decoded frame: milestone version.

the minimum amount of processor time below which the decoder can do little useful

work. The fundamental problem with the second layer processing as just described

is that it re�nes the picture from left to right and from top to bottom, so some of

the extra processing time is spent re�ning \uninteresting" areas of the image.

Recognising this, a second version of the decoder was produced in which the �rst

layer processing sorts tiles into a number of classes according to the number of

non-zero coe�cients they contain. At the same time, the coordinates of the tile

within the resultant image are also recorded. Second layer processing then re�nes

the tiles starting with those which have the most non-zero coe�cients and working

down towards those which have the least.4 Figure 6.7 shows the image which results

when the decoder has spent the same amount of time in second layer processing

as was spent in �gure 6.6. Ordering the processing of the second layer has con-

verted a computation with two milestones (layers) into one which has one milestone

4These will be the tiles with two non-zero coe�cients.
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Figure 6.7: Partially decoded frame: milestone/monotone version.

(the �rst layer) and after reaching this milestone becomes monotone. This type of

computational requirement is easy to schedule within Nemo by allocating a proces-

sor bandwidth which ensures that the �rst milestone will be met (or exceeded by

some required amount), then using any spare processor time to re�ne the remaining

monotone part of the computation.

The aim in choosing the second layer heuristic was to process �rst those parts of the

picture which contain the most information, thus focussing the remaining processor

time on those areas of the picture which will bene�t from it the most. This is a

rather arbitrary heuristic which is seen to work well in practice when applied to

a number of di�erent video streams, but there is clearly scope for further work in

the development of such heuristics for use in layered processing applications. This

is especially the case if the video is stored. While the decoder applies its simple

heuristic in real-time as tiles are reconstructed from the input stream, the ability to

preprocess a stored video stream o�ine allows more complex algorithms to determine
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a (possibly optimal) processing order for the bits which comprise a frame and to

present these bits to applications in this order.

6.1.4 User Level Threads

The decoder application does not make full use of the activation mechanism; a more

complex application might want to make use of a user-level thread package. In

such a case, the activation handler can be written to call into the user level thread

scheduler, passing it a pointer to the context which was saved at the time the process

last lost the processor. The thread scheduler can decide, based on which external

events have been received, whether to use the context saved in ecx to save it and

resume that of another thread. Whatever the decision, the chosen context can be

resumed at the end of the handler by calling sc rfar.

6.2 Comparison With Related Work

Support for continuous media applications is an active area of research and there is

a considerable corpus of related work. The work selected for comparison in the fol-

lowing sections was chosen for its direct relevance to the work presented in previous

chapters.

6.2.1 Scheduling

[Coulson93] describes work which aims to provide a set of low level abstractions

for programming distributed CM applications and provide them with pre-speci�ed,

guaranteed QOS constraints. The basic system support for these abstractions is the

Chorus [Bricker91] microkernel, which provides a number of real-time facilities such

as page locking, preemptive scheduling, system call timeouts and scheduling classes.

It is noted that, while the Chorus microkernel is in use within a number of real-time

systems, it does not provide facilities for controlling application QOS or reserving

resources to meet QOS guarantees and that, while it is possible to specify thread

scheduling constraints relative to other threads, there is no way to specify absolute

thread scheduling requirements. Within the system described, thread scheduling

uses an EDF policy and does not guarantee that deadlines will be met, so QOS

guarantees may be violated when the system becomes overloaded. The suggestion

is made that this could be avoided by using a suitable admission control algorithm.

The success of such an algorithm will depend on the amount of information available
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about the resource requirements of the threads being scheduled. The incorporation

of a policing mechanism could help prevent QOS guarantees from being violated

when thread resource requirements are underestimated.

[Mercer93] describes the processor capacity reserve mechanism. A reserve repre-

sents access to a certain processor capacity, expressed as a computation time and a

reservation period. Processes with reserves are given the processor in preference to

time sharing processes. Processes present the system with requests for reservations

and the system determines whether it can accommodate their requests using a rate

monotonic admission test. At the beginning of every reservation period, a process

with a reservation is allocated its reserved processor capacity. When this has been

consumed, the process is scheduled under the time sharing policy until it receives its

next allocation. Accounting for the use of reserves by server threads is performed by

passing the client's current reserve to the server which charges its computation time

to the client. This resource allocation strategy is similar to that used by Nemo, with

processor capacity equating to PB. Relegation of processes which have consumed

their reserved capacity to the time sharing scheduling policy loses the ability to

focus additional processing time on a favoured process as might be required to take

advantage of any of the bene�ts of statistical multiplexing.

6.2.2 Virtual Processor Interface

Viewing an operating system as a provider of a VPI is a well established concept in

computing systems work; [Le�er89] describes the development of the unix virtual

machine and the modi�cations which were required to remove race conditions in

the signal delivery mechanism and provide signal masking facilities. This version

of unix also makes certain kernel information available to applications by mapping

their u areas into their address spaces and allowing them read only access to it.

The use of threads as a means of obtaining concurrency and clarity has motivated

further changes in the VPI, primarily to facilitate the implementation of user level

threads. [Anderson92] describes scheduler activations, which closely resemble kernel

threads. Typically, there is one active scheduler activation per physical processor;

user level threads are multiplexed on a scheduler activation by the user level thread

scheduler. The kernel informs the user level scheduler of scheduling events by allo-

cating a new scheduler activation and upcalling the user level code at a �xed address,

passing the context of any blocked activations as arguments. The user level sched-

uler informs the kernel of user level events by calling into the system. Scheduler

activations were implemented on a uniform memory architecture multiprocessor,

so among the scheduling events are indications of: when a process loses or gains

processors and; when a process has idle processors. A process which has a single
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processor and loses it does not �nd out that it lost the processor until it is next

given another processor, whereupon the kernel allocates a scheduler activation and

upcalls the user level scheduler. Nemo provides the same information to a process

by activating the process and informing the process that it has been activated be-

cause it has just obtained the processor. In the scheduler activation scheme, when a

user level scheduler �nds itself with an idle processor, it is obliged to surrender that

processor by calling into the system; failure to do this results in an unfair usage of

system resources by the process. No direct mechanism is provided for limiting the

impact of such sel�sh processes on the rest of the system. Instead, the reactions

of the multilevel feedback scheduler are relied upon to identify the process as com-

putationally bound and prevent it from interfering with more interactive processes.

Nemo's policing mechanism can be used to limit the impact of such processes on

the rest of the system.

Psyche [Marsh91] provides another example of a virtual processor interface which

has been augmented to provide support for large scale user level parallelism. Kernel

threads are used to implement virtual processors of which typically one is allocated

per physical processor. User level schedulers multiplex threads on top of these virtual

processors and are informed of scheduling events by the kernel via virtual processor

interrupts. These are generated in response to kernel events including: virtual

processor initialisation; threads blocking and unblocking in the kernel; signals from

other virtual processors and; an interrupt warning of imminent preemption. User

level schedulers and the kernel communicate via a piece of shared memory which is

part of the virtual processor interface. The use of shared memory to interface the

user and kernel schedulers reduces the number of protection domain crossings and

advantage is also taken of this mechanism in Nemo. Of particular interest in Psyche

is a \two-minute warning" interrupt which alerts a process that it is about to lose

the processor. This aims to provide a virtual processor with a hint so that it can

clean up when it is about to lose a physical processor. This is not a guarantee that

there will be enough time to complete the clean up, but it is intended to minimise

the likelihood of inopportune preemption.

[Govindan91] describes the ACME continuous media I/O server as a typical CM

application along with its performance when running under a typical workstation

operating system. The observations are that the application's behaviour su�ers from

timing errors and lost data when running concurrently with other system activity,

and cannot meet the low delay requirements of even moderate audio data formats.

It is claimed that these problems are due in part to the overhead of the user/kernel

interaction mechanisms by which user level programs invoke system functions such

as CPU scheduling and I/O. Split Level Scheduling (SLS) is proposed as an operat-

ing systemmechanism for supporting CM applications. SLS presents to applications

a virtual processor which is implemented as a kernel thread and incorporates time in
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the form of deadlines into the interface between the Kernel Level Scheduler (KLS)

and the User Level Scheduler (ULS). Incorporation of thread deadlines into the

virtual processor interface means that it is possible for the kernel to allocate the

processor to the address space which contains a runnable thread with the earliest

deadline and similar functionality is achieved within Nemo. The SLS interface is

quite complex; for example, it allows the kernel to examine the contents of thread

descriptor queues and I/O descriptors. This gives rise to synchronisation require-

ments which are met by enabling the application to disable its preemption from user

level code. Interrupts presented by the SLS to the ULS include INT RESUME which

occurs when the address space is given the processor and INT TIMER which occurs

when the address space's software timer expires. The means by which interrupted

thread context is made available to the ULS is not speci�ed.

Scheduler activations, Psyche's virtual processors and the Split Level Scheduler all

have the common goal of providing an e�cient means by which a kernel thread

scheduler can communicate with a user level thread scheduler so that the overall cost

of providing user level parallelism is reduced. The incorporation of deadlines into the

SLS interface makes this goal more applicable to use within CM applications. While

Nemo's virtual machine interface is similar in many respects to these, the reasons

for it being so are in many respects quite di�erent. The Nemo kernel does not

know about process's threads; its sole responsibility is to apportion the available

processor cycles to processes in the manner dictated by the QOS manager. I/O

is performed by device driver processes, and applications wishing to perform I/O

communicate directly with those processes via IPC rather than through the kernel.

This obviates the problem of what to do when a thread blocks in the kernel because

it is waiting for slow I/O to complete. Nemo threads do not enter the kernel as

do the usual kernel thread implementations. Threads are scheduled at user level

within processes and when a user level thread scheduler decides that it can do no

more useful work because all of its threads are blocked or because it must wait

until the right time, it surrenders the processor to the kernel using the sc kernel

NTSC call. Execution within the kernel occurs only as part of the kernel itself and

is not done as part of a user process's execution. Consequently there is no need

for a process to have an associated kernel stack and all the NTSC requires of a

process is a place to store a process's context when that process is deactivated. In

contrast to the systems reviewed which use the scheduling information provided by

virtual processor interrupts solely to implement e�cient user level threads, Nemo

applications can additionally make direct use of this information to control their

QOS as illustrated by the example of section 6.1.1.
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6.2.3 QOS

[Coulson93] describes abstractions for providing and maintaining QOS guarantees

to distributed CM applications. These mechanisms include rtports which are end

points for CM communications and handlers. Whenever data is sent to an rtport,

any associated handler is invoked. It is claimed that real-time programming is

simpli�ed by structuring applications to react to events which are generated by

the system, and that the use of handlers reduces the number of protection do-

main crossings required to deliver data to an application; the requirement of having

the application call into the system to request data is removed. The functionality

provided by rtports and handlers can be implemented directly from the shared

memory and event mechanisms provided by Nemo. Since rtports which are bound

between address spaces5 use the standard Chorus IPC mechanisms, they incur the

overhead of copying or remapping their data. Shared memory IPC and an appropri-

ate event mechanism can obviate these. The QOS of data associated with an rtport

can be speci�ed as a vector of parameters including: guarantee, the desired degree

of certainty with which the requested QOS is to be provided; delay and jitter

which specify the temporal requirements of the rtports's data, and determine the

scheduling requirements of the handler. These QOS speci�cations correspond to

the low level QOS parameters described in section 3.2. The discussion does not

contain any information on the exact e�ects of the guarantee parameter or on how

the guarantees it o�ers may be quanti�ed.

[Tokuda92] presents the Capacity Based Session Reservation Protocol (CBSRP),

which reserves system resources for CM applications in order to guarantee their QOS.

Qualities of CM services are expressed in terms of temporal and spacial resolution:

temporal resolution may be mapped to frames per second of video or samples per

second for audio and spacial resolution may be mapped to bits per display pixel or

maximum spacial frequency resulting from a video compression algorithm. In their

terminology, spacial and temporal resolution are QOS parameters, and are chosen

so that they may easily be mapped onto a reasonable set of lower level system

attributes such as processor and memory allocations. As a result of this, the user

is presented with a selection of QOS classes from which to choose. This de�nition

of a QOS parameter is equivalent to what is referred to as an application or high

level QOS parameter in Nemo, and the low level system attributes correspond to

system or low level QOS parameters. A possible advantage of identifying system

QOS parameters as such is that, if there is no mapping from an application to a

system QOS parameter, then QOS may be speci�ed directly in terms of system

QOS parameters. The system entities which are involved in the provision of QOS

guarantees are the Session Manager (SM), which handles creation, termination and

5
Actors in Chorus terminology.
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recon�guration requests from users and renegotiates with remote session managers,

System Resource Manager (SRM) and Network Resource Manager (NRM) which

handle admission control and resource management. The session manager performs

the equivalent function to Nemo's QOS manager, the functions of SRM and NRM

being performed by equivalent management entities within the system and network

domains. [Nicolaou91] makes a strong case for the construction of QOS management

facilities as a collection of subsystem management domains such as SRM and NRM

which engage in negotiation in terms of QOS parameters. The establishment of

interfaces which are well de�ned in terms of QOS parameters and classes between

QOS management subsystems can improve the modularity of the resulting system

and, in the case of the pseudo code presented for the SM, would remove the need

for a high level entity to have to calculate subsystem speci�c resource requirements

such as MAC layer bandwidth requirements.

6.3 Summary

Nemo is evaluated with respect to both its ability to provide the resource manage-

ment facilities required to support application QOS and the usability of the VP

interface which it presents to applications. Correct behaviour of the resource man-

agement mechanisms is demonstrated, and an example video decoder application is

presented as an example of how an application can make use of the resource avail-

ability information provided to it by the system via the VPI. The work presented in

this dissertation is then compared with other, related work. It is shown that, while

the facilities provided by the Nemo VPI are similar to those provided in other sys-

tems, Nemo di�ers in its use of the VPI to provide resource availability information

for applications to use in maintaining their application-level QOS.
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Chapter 7

Conclusions and Further Work

The original aim of this dissertation was to investigate how support for CM applica-

tions can be provided within a workstation operating system. It was noted that the

increasing speed of microprocessors has made it possible to write programs which

handle video and audio in real-time, so that CM become another data type.

7.1 Contributions

In chapter 2 it was shown that fast processors, while necessary, are not su�cient

to support CM applications. If CM applications are to produce acceptable results,

then their temporal requirements need to be taken into account when they are

scheduled. The possibility was then explored of employing conventional real-time

techniques within a workstation operating system and scheduling CM applications as

a separate class of real-time processes. It was demonstrated that these techniques

are not well suited to coping with the dynamic resource demands made by CM

applications, or with the 
uctuating resource availabilities typical of a workstation

environment. Their behaviour during transient overload may be predictable, but can

lead to processor starvation, which is not desirable. While hard real-time techniques

allow programmers to make strong assertions about the run-time behaviour of their

programs, they often lead to unacceptably poor resource utilisations when used to

schedule CM applications. Soft real-time techniques are tolerant of timing errors,

but they allow only weak assertions about run-time behaviour to be made.

The root cause of these shortcomings lies in the nature of the CM data themselves.

Their unique temporal and informational properties set them apart from other data,

and the resource allocation techniques used in conventional real-time systems do not

readily allow these properties to be exploited. Within the ATM networks used to
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transport CM data, resource allocation techniques based on QOS are used. QOS is

in many respects better suited to handling CM data in that not only does it encom-

pass the requirements of real-time and best e�ort tra�c, but it also accommodates

resource requirements which are less than absolute but stochastically quanti�able.

This provides the motivation for investigating the suitability of QOS as a resource

allocation paradigm within an operating system.

Chapter 3 shows how QOS can be supported within an operating system using a

number of mechanisms including accounting, policing and suitable run-time resource

allocation. In addition to this, it is shown that QOS may expressed as a high level

description or as a set of low level parameters, and that it is possible to convert from

one to the other. The suitability of QOS for scheduling processes whose resource re-

quirements are bursty and may not be known exactly is demonstrated. The success

of these techniques rests on an application's ability to produce results which are less

than perfect, but still acceptable when it is allocated fewer resources than it would

desire. Imprecise computations are presented as a means of exploiting the informa-

tional property of CM to allow programs to trade the quality of their results for the

amount of processing resource which they receive. The construction of programs

which make use of imprecise computations can be greatly simpli�ed if, at run-time,

they are provided with some knowledge of their current resource availabilities.

Chapter 4 presents the design of an operating systemwhich incorporates mechanisms

required to support QOS and extends the traditional concept of the virtual processor

interface to incorporate information about the computational resources which are

being made available to a process. The design includes an IPC mechanism which is

constructed from shared memory and event mechanisms. These mechanisms provide

a lower level of abstraction than message passing, but they re
ect more accurately

the separation of data transfer and synchronisation which is common in many CM

applications.

In chapter 5, Nemo is presented as an implementation of some of the mechanisms

designed in chapter 4. This implementation is evaluated in chapter 6 where the

e�ectiveness of the QOS mechanisms is demonstrated. It is shown that the system

is capable of providing an application with a minimum level of service even when

overloaded. Whenever it is available, any unreserved processor time can be allocated

to a process in addition to that received as part of its contract. It is shown that the

QOS mechanisms allow the behaviour of the system during transient overload to

be controlled. A subjective evaluation of Nemo's virtual processor interface shows

that it is straightforward to use and can provide applications with the resource

availability information they require. This is demonstrated by the construction of

a real-time video decoder which uses this information in conjunction with imprecise

computations to trade run-time for video image quality.

96



7.2 Further Work

While it would be possible to incorporate QOS mechanisms into an extant operat-

ing system, the approach chosen within this dissertation has been to build a new

operating system from the ground up. A number of factors motivate this choice.

Firstly, CM data have properties which make them di�erent from other data, and

the environment provided by an existing operating system might sti
e attempts to

exploit these properties. Secondly, current operating systems have not kept pace

with recent advances in the design of operating systems mechanisms, workstation

and processor architectures and network host interfaces. Incorporation of this tech-

nology will be essential if an operating system is to realize the full potential of CM

applications. Thirdly, the current corpus of experience in building operating systems

provides considerable guidance in the matter.

While this dissertation presents a set of resource allocation mechanisms suitable for

scheduling CM applications and it is believed that they are complete, they form

only the lowest layer of an operating system. Further work is required to complete

the system and validate the design. At the system level, a QOS manager needs to

be implemented which is capable of evaluating QOS contracts over multiple QOS

domains, taking into account resource requirements other than just processor time.

The integration of network and operating system QOS for the provision of end-to-

end QOS along a path spanning multiple machines and applications needs to be

investigated. At the application level, suitable representations of CM data need

to be found which enable applications to exploit their temporal and informational

properties. Many algorithms which manipulate CM data in real time have been

designed for direct implementation in hardware. These may need to be redesigned if

they are to perform well on a general purpose processor. It is also hoped that future

experience will reveal the extent to which imprecise computations can be employed

in applications more complex than the real-time display of video.
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