Technical Report RS

Number 352

Computer Laboratory

A mixed linear and non-linear logic:
proofs, terms and models

P.N. Benton

October 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1994 P.N. Benton

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-352

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-352

A Mixed Linear and Non-Linear Logic:
Proofs, Terms and Models
(Preliminary Report)*

P. N. Benton!
University of Cambridge

Abstract

Intuitionistic linear logic regains the expressive power of intuitionistic logic through
the ! (‘of course’) modality. Benton, Bierman, Hyland and de Paiva have given a term
assignment system for ILL and an associated notion of categorical model in which the
! modality is modelled by a comonad satisfying certain extra conditions. Ordinary
intuitionistic logic is then modelled in a cartesian closed category which arises as a
full subcategory of the category of coalgebras for the comonad.

This paper attempts to explain the connection between ILL and IL more directly
and symmetrically by giving a logic, term calculus and categorical model for a system
in which the linear and non-linear worlds exist on an equal footing, with operations
allowing one to pass in both directions. We start from the categorical model of ILL
given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent
to having a symmetric monoidal adjunction between a symmetric monoidal closed
category and a cartesian closed category. We then derive both a sequent calculus
and a natural deduction presentation of the logic corresponding to the new notion of
model.

*A shorter version of this paper is to be presented at, and submitted to the proceedings of, the 1994
Annual Conference of the European Association for Computer Science Logic, Kazimierz, Poland.

tAuthor’s address: University of Cambridge, Computer Laboratory, New Museums Site, Pembroke
Street, Cambridge CB2 3QG, United Kingdom. Email: Nick.Benton@cl.cam.ac.uk. Research supported by
a SERC Fellowship and the EU Esprit project LOMAPS.

CONTENTS

Contents
1 Introduction
1.1 Background
1.2 Motivation
1.2.1 Functional Programming
122 Logic
1.23 Semantics
1.3 Overview it e
2 The Categorical Picture

21 AnlIsomorphism
2.2 The Comonad and Comparison with Linear Categories
2.2.1 LNL model Implies Linear Category
2.2.2 Linear Category Implies LNL model
2.2.3 Additives and the Seely Isomorphisms
2.3 The Monad and Comparison with Let-CCCs
23.1 StrongMonads e
24 Examples e e e e e e
2.4.1 w-complete Partial Orders
242 Abelian Groups. e e
LNL Logic
3.1 Sequent Calculus e
3.1.1 TheFirst Wrong Way
3.1.2 The Second Wrong Way
3.1.3 A Well-Behaved Sequent Calculus
3.14 Cut Elimination
3.1.5 Cut Elimination and Semantic Equality
3.1.6 Variations: Introducing Additive Non-Linear Contexts
3.1.7 Variations: A Parsimonious Presentation
3.2 Natural Deduction and LNL Terms
3.2.1 The Natural Deduction Rules
322 Term Assignment e e
3.2.3 Normalisation and Reduction
3.3 Tramslations
331 ILLtoLNLLogic
332 LNLLogictoILL
3.3.3 Further Results on the Translations

Conclusions and Further Work

Acknowledgements

CONTENTS

1 Introduction

1.1 Background

This paper concerns a variant of the intuitionistic fragment of Girard’s linear logic [Gir87].
As is well-known, linear logic does not contain the structural rules of weakening and
contraction, but these are reintroduced in a controlled way via a unary operator, written
! and pronounced ‘of course’, ‘bang’ or ‘shriek’. The sequent calculus rules for ! are the
following:

T'HA I'ArB
——— Promotion ———— Dereliction
THA I'NJA-B
IVIAJIAFB I'-B
—————— Contraction —— — Weakening
rN'AFB I'NV'A+ B

The rules above allow ordinary intuitionistic logic to be interpreted within intuition-
isitic linear logic via (for example) the so-called ‘Girard translation’. In [BBHAP92,
BBHdP93b, BBHdP93a], Benton, Bierman, Hyland and de Paiva formulated a natural
deduction presentation of the multiplicative/exponential fragment of ILL, together with
a term calculus (extending the propositions as types analogy to linear logic) and a cat-
egorical model (a lLinear category). In that work, the multiplicative (i.e. ®,—o) part of
the logic is modelled in a symmetric monoidal closed category (SMCC). That much is
standard and well-understood. The ! modality is then modelled by a monoidal comonad
on the SMCC which is required to satisfy certain extra (and non-trivial) conditions. These
extra conditions are sufficient to ensure that the category of coalgebras for the comonad
contains a full subcategory which is cartesian closed and thus models the interpretation
of IL in ILL.

Whilst the view that linear logic is primary and that ordinary logic is merely a part of
linear logic is appealing (particularly if one takes seriously the claims of linear logic to be
“the logic behind logic”), it is not necessarily always the best way of seeing the situation.
This paper tries to present a more symmetric view of the relationship between IL and
ILL, starting from a model-theoretic perspective, and it seems worth trying to give some
motivation for why this might be worth doing.

1.2 Motivation
1.2.1 Functional Programming

From a practical point of view, there are a number of reasons why the standard linear
term calculus (LTC) of [BBHdP92] might be considered unsuitable as the basis of a linear
functional programming language. Firstly, linear functional programming is verbose and
unnatural — whilst the linear term calculus might well be a useful intermediate language
for a compiler, it is not very appropriate as a language for everyday programming. If
linearity is to be made visible to the programmer at all, it appears preferable to have some
extension of a traditional non-linear language in which one could write the occasional
linear function in order to deal with input/output, in-place update or whatever.

A second, more fundamental, problem is that, despite considerable research effort, the
precise way in which a linear language can help with what we have deliberately referred
to rather vaguely as ‘input/output, in-place update or whatever’ is still not clear. Most
published proposals for using linear types to control or describe intensional features of

6 1 INTRODUCTION

functional programs are either unconvincing or use type systems which are only loosely
inspired by linear logic. Systems in the last category can, pragmatically, be extremely
successful; the most obvious example being the language CLEAN. The type system of
CLEAN [BS93] incorporates a ‘uniqueness’ operator for (roughly) making non-linear types
linear. This is in some sense dual to the ! of linear logic, which allows linear types to be
treated non-linearly. Unique types in CLEAN are used to add destructive updates and
I/O to the language in a clean (referentially transparent) way.

One (currently somewhat speculative) aim of the work described here is to provide
a sound mathematical and logical basis for a type system like that of CLEAN. We are
motivated and encouraged not only by the similarities between CLEAN and the calculus
to be presented here (the LNL term calculus), but also by the fact that other researchers
looking at practical implementations of linear languages have come up with systems which
include aspects of the LNL term calculus. For example, Lincoln and Mitchell’s linear
variant [LM92] of Fairbairn and Wray’s ‘three instruction machine’ [FW87] divides memory
into two spaces corresponding to linear and non-linear objects. Similarly, Wadler’s ‘active
and passive’ type system [Wad92] separates linear from non-linear types in an interesting
way. It should also be mentioned that some of Wadler’s earliest attempts to define a linear
type system for a functional language flagged linear types as the exception, rather than
the rule [Wad90], although he later reverted to ‘belling the cat’ by annotating non-linear
types.

Jacobs [Jac93] has independently described how a sequent calculus inspired by CLEAN’s
uniqueness types may be interpreted using the linear categories of [BBHdP92] under some
extra simplifying assumptions which are sufficient to make the whole Eilenberg-Moore
category of coalgebras be cartesian closed. Jacobs’s logic turns out to be essentially the
same as LNL logic, and we will discuss his work further in Section 3.1.7.

The logic described here is, in a fairly strong sense, equivalent to ordinary ILL. How
then could such a system possibly lead to a better linear programming language? The
first answer is that we refine ILL: there are distinct LNL terms which correspond to the
same LTC term. The second answer is that logical systems which are denotationally
equivalent may still have very different dynamic (proof-theoretic) behaviours. However,
such speculations should only be viewed as motivation for studying the logic. We do
not yet have any formal results concerning, for example, the memory graphs of programs
written in a language based on the LNL term calculus.

1.2.2 Logic

From a more logical point of view, there has recently been much interest in Girard’s system
LU [Gir93] and related systems in which the (multi)sets of formulae occuring in sequents
are split into different zones. Formulae in some zones are treated classically, whilst those
in other zones are treated linearly. :

Intuitionistic logics inspired by LU have been proposed by Plotkin [P1093] and Wadler
[Wad93]. It is desirable to study the proof and model theory of such systems directly,
rather than treating them as syntactic sugar for, for example, ordinary linear logic (if only
to verify that it is possible to treat them as such syntactic sugar). The logic of this paper
should turn out to be equivalent to a subsystem of LU, though there are some superficial
differences of presentation such as the fact that LNL logic has no zones — the formulae
themselves are either linear or conventional.!

1Though we, perhaps unwisely, abuse notation by writing a semicolon between formulae of different

1.3 Overview 7

1.2.3 Semantics

From the categorical perspective, it seems natural to explore the more symmetric situation
where one starts from an SMCC and a CCC with (adjoint) functors between them, rather
than an SMCC with sufficient extra structure to ensure the existence of such a CCC.
This is particularly true in the light of the fact that the definition of a linear category in
[BBHAP92] was arrived at mostly from the proof theory of linear logic, but also (and this
was something of a ‘hidden agenda’) from a desire to have enough structure to be able
to derive an appropriate CCC from the model.? It is also fair to say that the definition
of a linear category is surprisingly complicated, so looking for simpler models, or simpler
presentations of the same models, is a good idea. Pratt has also suggested that the
comonad modelling ! might be less fundamental than the adjunctions from which it arises
[Pra92].

1.3 Overview

The initial motivation for the present work comes from the categorical picture sketched
in the previous section, and it is this which is explored first in Section 2. Once the
definition has been made a little more precise, we shall show that such a situation leads
to a comonad on the linear part of the model which automatically satisfies all the extra
conditions required of a linear category, and thus gives a sound model of ILL including
the ! operator. Furthermore, the converse holds — every linear category gives rise to such
a pair of categories. Thus we have an alternative, simpler, definition of what constitutes
a model for ILL. This can be seen as giving a purely category-theoretic reconstruction of
I, in that a linear category (a model for ILL with !) is exactly what one obtains if one
attempts directly to model an interpretation of IL in ILL without the !

Another interesting feature of the model is that it gives rise to a strong monad on the
CCC part. Thus one obtains a model not just of the lambda calculus, but of Moggi’s
computational lambda calculus [Mog89, Mog91]. This may shed further light on the
‘monads versus comonads’ debate which has occasionally arisen in programming language
theory. As we shall see, however, not all strong monads arise in this way, so the connection
is not quite as neat as one might hope. A

Section 3 then looks at the logic and term calculus which are associated with our new
notion of model. After a brief description of two unsatisfactory versions of the logic, we
formulate a sequent calculus presentation which satisfies cut-elimination and then give
an equivalent natural deduction system. This then gives, by the Curry-Howard corre-
spondence, an interesting term calculus which combines the usual simply-typed lambda
calculus with a linear lambda calculus. We also consider translations in both directions
between this new term calculus and the linear calculus introduced in [BBHdP92].

This paper is fairly self-contained and assumes only a basic knowledge of category
theory (up to, say, adjunctions), some familiarity with linear logic and an understanding
of typed lambda calculus and the Curry-Howard correspondence. A nodding acquaintance
with previous work on the linear term calculus and categorical models of ILL is also
desirable.

kinds.

2This is not to say that there is anything in the model which is not justifiable in terms of the proof
theory (given a proper proof-theoretic account of 7-rules), but merely that, given that a translation of IL
proofs into ILL proofs exists, any correct model for ILL must be able to reflect the translation semantically.

8 1 INTRODUCTION

This is a preliminary report, and doubtless contains errors and omissions. It certainly
leaves plenty of obvious questions unanswered. Comments, questions and suggestions for
improvement are welcome.

2 The Categorical Picture

Our aim is to present a logic/terms/categories correspondence, similar to that between
intuitionistic logic, simply-typed lambda calculus and cartesian closed categories, in which
the categorical vertex of the triangle consists of (essentially) the following;:

1. a cartesian closed category (C,1, X, —);
2. a symmetric monoidal closed category (£,I,®,—o) and

3. a pair of functors G : £L = C and F : C — L between them with F G (i.e. F is the
left adjoint to G).

Intuitively, the requirement that the two functors be adjoint should be understood as
saying that there is an interpretation of IL (the CCC) into ILL (the SMCC).

We will, however, need our categorical model to satisfy some extra conditions before
we can have any hope of it modelling a logic or term calculus. It is necessary for the
two functors and the unit and counit of the adjunction to behave well with respect to
the monoidal structures of the two categories. The reason for this is that we have to
handle contexts correctly, and the multicategorical structure implied by the comma in a
context will be represented by the appropriate tensor product. The need for such extra
structure also arises in, for example, models of the computational lambda calculus (the
monad must be strong) and linear categories (the comonad must be symmetric monoidal).
The extra conditions which we shall impose are not ad hoc, but are just what is required
to ensure coherence.? Although the present paper gives all the definitions and proofs in an
elementary form, it should be noted that morally we should regard everything as taking
place in the 2-category of symmetric monoidal categories, in which context the extra
monoidal conditions arise more naturally. Indeed, this view is an instance of a general
principle concerning the categorical modelling of programming languages expressed by
Moggi in [Mog91]*

when studying a complex language the 2-category Cat of small categories,
functors and natural transformations may not be adequate; however, one may
replace Cat with a different 2-category, whose objects capture better some

fundamental structure of the language, while less fundamental structure can
be modelled by 2-categorical concepts.

Definition 1 A monoidal category is a category M equipped with a bifunctor ® : M x
M — M, and object I of M, and natural isomorphisms

axyz: (XQY)®Z > X® (Y ® %)

lX:I®X—)X

rx: X®I -+ X

3 As has become traditional, however, we shall say very little about this important issue...

“Thanks to Ian Stark for bringing this quote to my attention.

10 2 THE CATEGORICAL PICTURE

which satisfy the following pair of coherence diagrams:

(WRX)®Y)® Z a®l WeXeY)eZ
WeX)®((Y®2) o
We(Xe (Y ®2) Toa W®((X(’®Y)®Z)
(XY o X®(I®Y)
r®1l 11
XY

and for which If =ry.

Definition 2 A symmetric monoidal category (SMC) is a monoidal category (M, ®,I,a,l, 1)

together with a natural transformation oxy : X ® Y = Y ® X satisfying the following
three coherence conditions:

(X®Y)Z—%+X(¥Y®2)—2—+(Y®2Z)®X

c®1 o
YRX)®Z—5+Y®(X®2) 1®0Y®(Z®X)
XeY I®X g XeI
o 1 [T

Y®X red XY X

Note that every cartesian category (i.e. with finite products) is an SMC.

Definition 3 A symmetric monoidal closed category (SMCC) is a symmetric monoidal
category (M, ®,1,a,l,7,0) such for each B € My the functor —® B : M — M has a
(specified) right adjoint. Thus there is for every A,C € My an object (B —oC) and a
natural bijection

M(A® B,C) = M(A4,B —oC)

11

Symmetric monoidal closed categories are also sometimes called autonomous categories.

Definition 4 A cartesian closed category (CCC) is an SMCC for which the tensor product
is cartesian.

Whilst one might wish to consider functors between SMCs which preserve the structure
on the nose or up to natural isomorphism, we shall take the class of functors between SMCs
to be those preserving the structure up to a comparsion. We thus make the following
definitions.

Definition 5 Given monoidal categories (M, ®,1,a,l,r) and (M', &', I',o/,l',7"), a monoidal
functor F : M — M' is a functor from M to M' equipped with a map my : I' — F(I)

in M' and a natural transformation mxy : F(X) @' F(Y) = F(X ®Y) which satisfy the
following coherence conditions:

(F(X) &' F(Y)) & F(2) -2~ F(X) &' (F(Y) & F(2))

me'1 1®'m
F(X®Y)®' F(Z) F(X)®' F(Y ® 2)
m m
A

m®'1 F(l) 1®'m F(r)

F(I) ®' F(X) FI®X) FX)® F() F(X®I)

m m

Definition 6 If M and M’ above are symmetric monoidal, then F is a symmetric
monoidal functor if it is monoidal and in addition satisfies the following coherence condi-
tion:
!
F(X)®' F(Y)-Z2— F(Y)® F(X)

F(X®Y)

Fo FY @ X)

In the definition of a symmetric monoidal functor, one of the coherence diagrams for
[and r is redundant, as it follows from the other and the diagram for o. Note also that

12 2 THE CATEGORICAL PICTURE

the identity functor is (symmetric) monoidal and that (symmetric) monoidal functors
can be composed in an obvious way - if (F,m) : M — M’ and (G,n) : M' - M"
then their composite is given by the usual composition of functors together with the
comparison natural transformation pxy : GFX ®" GFY — GF(X ® Y) where pxy =
G(mx,y) o npx,ry (and similarly for the nullary version). It is then routine to check
that (GF,p) is indeed a (symmetric) monoidal functor, and that (symmetric) monoidal
categories and (symmetric) monoidal functors form a category.

Definition 7 If (F,m) and (G,n) are monoidal functors from an MC M to an MC M,
then a monoidal natural transformation from (F,m) to (G,n) is a natural transformation
fx from F to G which is compatible with the comparison maps in the sense that the
following two diagrams commute:

FX)® FY) -2 —F(XQ®Y)

fx® fr fxey
GX)Q GY)—F7—GCG(X®Y)
P(I) 1 G(I)
m n
r

Definition 8 If M and M’ are (symmetric) monoidal categories then a (symmetric)
monoidal adjunction between them is an ordinary adjunction in which both of the functors
are (symmetric) monoidal functors and both the unit and the counit of the adjunction are
monoidal natural transformations (with respect to the natural monoidal structure on the
two composite functors, as defined above).

Having made the basic definitions, we are now in a position to define more precisely
the categorical model sketched earlier.

Definition 9 A linear/non-linear model (LNL model) consists of
1. a cartesian closed category (C,1,x,—);
2. a symmetric monoidal closed category (L£,I,®,—0) and

3. a pair of symmetric monoidal functors (G,n) : L — C and (F,m) : C — L between
them which form a symmetric monoidal adjunction with F 4 G.

We shall usually use A, B,C to range over objects of £ and X,Y,Z for objects of
C. Spelling the definition out in a bit more detail, this means that we have a pair of

2.1 An Isomorphism ‘ 13

natural transformations 7 : 1c—GF and € : FG-1. which satisfy the triangle laws for an
adjunction:

GA GA__, GFGA FX Fix | porx
Gea EFX
lga 1px
GA FX

That n and e are monoidal natural transformations means that the following four
diagrams commute:

NGA,GB

X xY X XVapx x GFY FGA® FGB 2252 (GA x GB)
NXxy nrx,ry €A®E€R F(na,B)
n GF(1) FG(I)

VARV

2.1 An Isomorphism

An important consequence of the definition of an LNL model is that as well as the natural

transformations
7nX)'LFXT®1ﬁ/—#F1X><Y)

naB:GAXGB - G(A® B)
and their nullary versions, the maps
m:I— F1
n:l—GI
we have a family of maps
pxy : F(XxY) > FXQFY
given by the transpose of nrx ry o nx X ny:

F(nx x ny)

F
» F(GFX x GFY) Flrrxry)

F(X xY) FG(FX ® FY)

EFXQ®FY

FXQ®FY

14 2 THE CATEGORICAL PICTURE

and a map p : F1 — I given by

Fl n___ | par el .y

It is straightforward to check that the px y are the components of a natural transformation.

We do not, however, get a collection of maps in the other possible direction, viz. from
G(A® B) to GA X GB.

Proposition 1 In an LNL model (in fact for any monoidal adjunction), the maps mxy
are the components of a natural isomorphism with inverses pxy and, furthermore, the
map m s an isomorphism with inverse p:

F(X)®F(Y) & F(X xY)
I= F(Q)

Proof. We shall just prove the first of the isomorphisms above as the second is very
similar. Firstly, we need to show that mxy opxy =1 F(XXY):

F
F(GFX x GFY) (nrxry) | FG(FX @ FY) — FX8FY FX®FY
FG(mX,y)
F(nx xny) FGF(X xY) mx,y
F(nxxy)
ER(XxY)
F(X xY) T »F(X xY)

The square on the right commutes by naturality of &, whilst that on the left commutes as
it is ' applied to the earlier square which says that 7 is monoidal. The triangle on the
bottom is one of the triangles for an adjunction and so the path up the left hand side, °
along the top and down the right hand side is equal to that along the bottom, as required.

Secondly, we claim that pxyomyy = lpxgry, which follows from a similar diagram:

F F
F(X xY) (1x X7%) | pgarx x GFY) (nrx.ry) FG(FX ® FY)
MGFX,GFY
mxy FGFX @ FGFY EFXQFY
F(nx)® F(ny)
. EFx Q EFRyYy
FX®FY o1 FXQ®FY

2.2 The Comonad and Comparison with Linear Categories 15

The square on the left commutes by naturality of m and that on the right because ¢ is
monoidal. The triangle on the bottom commutes by two applications of one of the triangle
laws for an adjunction and so the outer path is equal to that along the bottom, which is
trivially equal to the identity. a

So F preserves the monoidal structure up to an isomorphism rather than merely up to
a comparison. That is to say, F is a strong functor. This has a converse — given a strong
functor with an adjoint, the adjoint (in fact the whole adjunction) has a unique monoidal
structure. In our case, this means that instead of taking n as part of the definition of an
LNL model and deriving p, we could equally well have started with p and defined n4 g to
be the composite

G(ea ®eB) 0 G(PGA,GB) © NGAXGB

This fact will crop up again in Section 3.1.2.
There is, of course, a lot more interesting structure in an LNL model. To begin with,
the adjunction induces a comonad on £ and a monad on C. We discuss each of these below.
_Given one of the categories and the appropriate monad (triple) or comonad (cotriple), the
other category and the adjunction arise as a resolution of the triple (cotriple). In contrast
with some other proposed models of intuitionistic linear logic, we do not assume that this
is initial or terminal in the category of all resolutions.

2.2 The Comonad and Comparison with Linear Categories

The comonad on £ is (FG,e : FG — 1,6 : FG — FGFQG) where ¢ is the counit of the
adjunction and ¢ is the natural transformation with components d4 : FG(A) - FGFG(A)
given by 64 = F(ng(4)). Writing ! for F'G, we obtain the usual comonad diagrams:

I(ea) 1(04)

1A £14 A 1A MA < A
1 04 1 014 04
14 A 5 1A

Lemma 2 The comonad (1,€,0) is symmetric monoidal, i.e. ! is a symmetric monoidal
functor and ¢ and § are monoidal natural transformations.

Proof. Clearly ! is a symmetric monoidal functor. The monoidal structure is given by a
natural transformation g with components g4 p :!AQ!B —!(A® B) and a map ¢ : I —!I
whose definitions are

ga,B = F(na,p) omgacn
g=F(n)om

That € is monoidal is part of the definition of an LNL model. The case of § requires some
easy checking. O

In [BBHAP92], we defined a model of the multiplicative/exponential fragment of intu-
itionistic linear logic as follows:

16 2 THE CATEGORICAL PICTURE

Definition 10 A linear category is specified by the following data:
1. A symmetric monoidal closed category (L, ®,I,—o).
2. A symmetric monoidal comonad (},¢€,d,q) on L.
3. Monoidal natural transformations® with components
eqg A —1T

da 1A —1AQ!A
such that
(a) each (1A,ea,dn) is a commutative comonoid,

(b) e and da are coalgebra maps®, and

(c) all coalgebra maps between free coalgebras preserve the comonoid structure.

2.2.1 LNL model Implies Linear Category

Now, any LNL model includes, by definition, part 1 of Definition 10, and we have just
seen (Lemma 2) that it also satisfies part 2. Furthermore, there are plausible candidates
for e4 and dga:

def
€A§poF(*GA)

where *G4 is the unique map from G A to the terminal object 1 of C, and

¢
dAdépGA,GA o F(Aga)

where Ag4 is the diagonal map from GA to GA x GA in C. We now embark on showing
that these satisfy all the conditions which ensure that we have a linear category. The
reader who is prepared to take this on trust may prefer to skip straight to Corollary 8.

Lemma 3 ey and d4 as defined above are the components of natural transformations.

Proof. This is obvious as a result of general facts about composition of, and application

of functors to, natural transformations. For example, we have to check that for any
f:A— B,

IA— %4 14014

If Ifo!f
'B 'BR!B

SNote that this only makes sense because the functors A — I and A —!A®!A are themselves (symmetric)
monoidal, but this is easily seen to be true. See the proof of Lemma 4 below for the details.

®Exactly what this means is spelled out in the proof of Lemma 6.

2.2 The Comonad and Comparison with Linear Categories 17

which expands to give

Foa—LP0p a4 « GaPEASA PG A o FGA
FGf F(Gf x Gf) FGf ® FGf
FGB

Fagyf (6B X OBy 3P OB ® FGB

The left-hand square commutes by F applied to naturality of A and the other by naturality
of p. Naturality of e is similar.]

Lemma 4 e and d are monoidal natural transformations.

Proof. We first have to make explicit the symmetric monoidal structure on the functors
K:Aw— Tand D: A —!A®!A. For K we require a natural transformation s4 p :
K(A)® K(B) -+ K(A® B) and a map s : I — K(I). Clearly we can take s4 g = Iy and
s = 17 and then verification of the coherence conditions showing that (K, s) is symmetric
monoidal is trivial.

For D we need a natural transformation with components

tap: (1A®!4) ® (IBR!B) —+!(A @ B)Q!(A ® B)
together with a map ¢: I =+!I®!I. We take {4 p to be the composite

gA,B ® q4,B l {

(1AR!A4) ® (IBR!IB) — % . (140!B) ® (IA®!B) (A® B)®!(A® B)

where iso represents a combination of natural isomorphisms’ and ¢ to be (¢ ® ¢) o I71.
That ¢4 p is natural and that the coherence conditions making D a symmetric monoidal
functor are satisfied is trivial.

The lemma is thus the statement that the following four diagrams commute:

I ° I
1A®'B 45, \(4 © B)
q 1
es®ep €A®B
I®I I T
Ir
IAQ!B 245 -1(A® B)
dy®dp dAgB
(lA®!A) ® (I1B®!B) e (A® B)®!(A® B)

"There is actually a choice here, but it doesn’t matter which iso we pick.

18 2 THE CATEGORICAL PICTURE

dr

7 elr

I

We will verify a couple of these. Firstly, the triangle for e expands and fills in as follows:

I

F1 1

F(n) F(1)

FGI ~F1 I
F (*G I) p
The triangle commutes because it is ' applied to a triangle which commutes by the
uniqueness of maps into 1. The square commutes because F is a functor and m = p~!
(Proposition 1).
The square for e expands and fills in like this (omitting subscripts on natural transfor-

mations):
FeAeFGB—TWOFH pom p®p 1ol
1lom

1
m FloFl<"%®l 1er1 !

m
F(GA x GB) — 1t X %) F(lx1) I

!

F(n) F(l) L 1
FG(A® B)) F1 > I

The top left square commutes by naturality of m, and the bottom left one by the fact
that 1 is terminal. The triangle at the bottom of the right hand side and the quadrilateral
at the top of the right hand side both commute because p = m~1. The triangle in the

2.2 The Comonad and Comparison with Linear Categories 19

middle at the left of the right hand side of the diagram commutes because F is a monoidal
functor, and the remaining quadrilateral by naturality of I.

Filling in the two diagrams for d is left as an exercise in diagram chasing for the reader.
They are rather larger, but fundamentally similar to those for e. O

Lemma 5 For any A, (14,e4,d4) is a commutative comonoid.

Proof. This requires the following three diagrams to commute:

1A 1AQIA 1AQ!A
,,.—1
d d s
AT+ l40l4 1A
1A da AQIA
da 1®dy
4614 ——— (1Asl4)eld 14® (1A314)

These are all fairly straightforward. For example, the first diagram can be expanded and
filled in as follows:

FGA 1 FGA

F(A) /
! F(1 x)

F(GA x GA) —L—+ F(GA x GA) F(GAx 1)
m T
p n FGA® F1
1 \
FGA® FGA - FGA® F1 FGA®I

1® F(x)

Taking the regions clockwise from the top, the first is a consequence of obvious facts about
cartesian products (in fact, that they give a commutative comonoid structure in C). The
second commutes because F' is a monoidal functor. The third and fifth because p = m™1,
and the fourth because m is a natural transformation.

The other two diagrams commute by similar reasoning. O

Lemma 6 e4 and d4 are coalgebra morphisms (with respect to the canonical coalgebra
structures on I,!A and 'AQ!A, see Section 2.2.2).

20 2 THE CATEGORICAL PICTURE

Proof. We need the following pair of diagrams:

14 €A I 14 04 1A
da q dg 'da
nAa ea 17 IAQIA YT NARIA A I(1A®!A)
The second of these can be dealt with like this:
FGA &) | peax GA) P FGA® FGA
\ / F(n) ® F(n)
F(GAxGA) FGFGA® FGFGA
F(n) F(n) m
F(nxn) |
F(GFGA x GFGA)
F(n)
FG(FGA® FGA)
FG(m)
/ 1

The large square on the left commutes by naturality of 7. The two triangles both commute
because p = m~!. The region on the far right commutes by naturality of m, and that in
the middle because 7 is monoidal.

The other diagram is similar. a

Lemma 7 Any coalgebra map f : (14,64) — (I1B,dp) between free coalgebras preserves
the comonoid structure given by e and d.

2.2 The Comonad and Comparison with Linear Categories 21

Proof. This means that for any such f, the following pair of diagrams commute:

14 f B 14 A4, 143!B
es (] f fef
I 'B o BoIB
The second of these can be expanded out like this:
B f 1A
8 3
B 2 A
d d
d 1Be!B I8 yagua d
q q
!(!B:a!B) e !(!Ac‘z@!A)
/ \
|B®!B 57 IA®IA

Taking the regions in the middle from the top, the first commutes by assumption (that
f is a coalgebra morphism) and the second, third and fourth by naturality of d,q and

€ respectively. The remaining two regions are both easily seen to commute, since they
expand as follows:

F(A)

FGFGA F(GFGA x GFGA)
F(n) \
FGA F(nxn) 1 FGFGA® FGFGA
F(A) /
F(GA x GA) F(GFGA x GFGA)
P F(n)
FGA® FGA - FG(FGA® FGA)

The triangle on the right commutes because p = m™! and that on the top left by naturality
of A. The middle region commutes simply because it is the definition of p. m|

22 2 THE CATEGORICAL PICTURE

Taking the previous lemmas together, we have shown

Corollary 8 Any LNL model is a linear category. O

2.2.2 Linear Category Implies LNL model

In this section we sketch the proof of the converse to Corollary 8. Whilst this is largely
a matter of recalling results which were proved in [BBHdP92] and [Bie94a], by doing this
carefully we obtain a slightly better understanding of the situation.

Assume that £ is a linear category as in Definition 10. We need to show that this gives
rise to a CCC C and a symmetric monoidal adjunction between £ and C as in Definition 9.
Recall that the comonad on L gives rise to two categories of algebras:

e The Eilenberg-Moore category £'. This has as objects all the l-coalgebras (A4, h4 :
A —!A) and as morphisms all the coalgebra morphisms.

e The (co-)Kleisli category L. This is the full subcategory of £' which has as objects
all the free !-coalgebras (14,84 :!A —!1A). (This is not quite the most common
definition of L, but the two definitions are equivalent.)

Each of these categories comes with a pair of adjoint functors F 4 G where G : A —
('A,64) and F : (A,hy) — A, thus (note that we are overloading F and G):

L!

/XN

Ly
where i : £y < L' is the inclusion functor.
Lemma 9 If £ is a linear category then L' has finite products.
Proof. The terminal object is (I,q : I —!I). The unique map from (A4, hy4) to the

terminal object is eqoh4. The product of (4,h4) and (B, hp) is (A®B,qa,o(ha®hB)).
Projections and diagonals are given by the following composites

m = AeB—28"B g _1®€B | g T 4
Ay = 4 ha 14 G4 ypgia —A8EA | 454
These are easily checked to satisfy the relevant conditions. O

In general, there is no reason why the Eilenberg-Moore category should be cartesian
closed, since there is no reason why it should have an internal hom for arbitrary pairs

2.2 The Comonad and Comparison with Linear Categories 23

of coalgebras. There are extra conditions which are sufficient to ensure that this does
happen, such as requiring that £' have equalisers of coreflexive pairs [Bie94a)] or simply all
equalisers [Jac93]. Although there are non-trivial examples in which such conditions hold,
we shall not consider them further since we can find an appropriate CCC without them.

Lemma 10 In L', all the free coalgebras are exponentiable. That is, there is an inter-
nal hom into any free coalgebra (1B,8p). Furthermore, the internal hom is itself a free
coalgebra.

Proof. We claim that
[(4,ha), (1B, 65)] & ((A —0B),64-08)

is an internal hom. This follows from the adjunction between F and G and from the closed
structure on L, since for any coalgebra (C, h¢) there are bijections:

L'((C,hc), (A —oB),84-B))
L(C, A —oB)
L(C® A, B)
L((C® A, hcga), (1B,6B))

for any hcga giving C ® A a coalgebra structure, in particular that arising from the
product on £'. So an instance of the last line is

L'((C,he) x (A,ha), (1B,65))

as required. O

Now, notice that in any cartesian category, if an object X is exponentiable then so is
[Y, X] for any Y, since we can take [Z,[Y, X]] to be [Z x Y, X]. Furthermore, the product
of two exponentiable objects X and Y is exponentiable since we can take [Z,X X Y] to
be [Z,X] x [Z,Y]. Taking this together with the previous lemma, we have:

Lemma 11 The full subcategory Exp(L') of the Eilenberg-Moore category having as ob-
jects the exponentiable coalgebras is cartesian closed and contains the Kleisli category L.
O

Note that the Kleisli category is not, in general, cartesian closed, since the product of two
free coalgebras is not necessarily free. We shall consider a case in which this does happen
in Section 2.2.3. In the general case, we do have the following, however:

Lemma 12 The full subcategory LY of Ezp(L') consisting of finite products of free coal-
gebras is cartesian closed. a

24 2 THE CATEGORICAL PICTURE

The situation can be pictured thus:

L!
q

F 1

Ezp(L)
G

L 7
LY
7
L

We claim that either of these two CCCs will give rise to an LNL model.2 In what follows
we let C stand for either Ezp(L') or L}.

It is easy to see that F" and G are still adjoint functors when regarded as going between
C and £, so it merely remains to show that this is a symmetric monoidal adjunction.

Lemma 13 The forgetful functor F : C — L is symmetric monoidal.

Proof. We need a natural transformation with components mxy : F(X) ® F(Y) —
F(X xY) and a map m : I — F(1) satisfying certain conditions. But if X and Y are
(A,h4) and (B, hp) respectively, this amounts to mxy : A B—+ A®Bandm:I— I.
Taking mxy = lagp and m = 1y is then easily seen to work. O

Lemma 14 The free functor G : L — C is symmetric monoidal.

Proof. We need a natural transformation with components ng4 g : GAx GB — G(AQ® B)
and a map n : 1 = GI satisfying some conditions. Spelling this out a bit, na g is a
coalgebra map:

na,p: (A®!B,ga,80 (04 ® d8)) = ((A® B),d458)

Now the symmetric monoidal structure on ! gives a map between the underlying objects
of these two coalgebras g4 p :!A®!B —!(A ® B), and that this is a coalgebra map follows
immediately from the fact that § is a monoidal natural transformation. The nullary case
is similar. That this definition of n satisfies the conditions making (G,n) symmetric
monoidal is then immediate from the fact that (!, ¢) is symmetric monoidal. O

Lemma 15 The unit of the adjunction 1 : 1c—GF is a monoidal natural transformation.

81t may well be that there is a sensible definition of a category of ‘linear resolutions’ in which £} is
initial and Exp(L') is terminal, but this idea has not yet been followed up.

2.2 The Comonad and Comparison with Linear Categories 25

Proof. This is also straighforward, though we have not so far made explicit what the
definition of n4p,) : (4,ha) = (14,64) is. The answer is that it is just k4, which is
readily seen to be a coalgebra morphism by the definition of coalgebra and to be natural
by the definition of coalgebra map. That h4 is monoidal is then completely trivial from
the definition of the product of coalgebras. |

Lemma 16 The counit € : FG—1. of the adjunction is a monoidal natural transforma-
tion.

Proof. By assumption. O

Taking the preceding results together, we have:

Corollary 17 Any linear category gives rise to an LNL model, though it is not in general
unique. O

Of course, given a linear category L, there may be many choices of C which lead to an
LNL model other than the two given above. One could start with an arbitrary LNL model
comprising some £ and C together with the associated data, and then construct the linear
category (L£,!). In general, there is then no reason why C should be equivalent to either
of Lf or Exzp(L'), although in particular cases the distinction between some or all of these
CCCs can collapse.

2.2.3 Additives and the Seely Isomorphisms

So far, we have concentrated on the relationship between the multiplicative ®, —o fragment
of ILL and the x,— fragment of IL. We now consider briefly what happens when an LNL
model (or, equivalently, a linear category) also has the extra structure required to model
the additive linear connectives &, ® and the non-linear sum +.

The simplest case is when the SMCC part £ of an LNL model also has finite products,
modelling the additive connective ‘with’ (&). The functor G preserves limits because it is
a right adjoint, and in particular

G(A&B) =~ GAxGB
Gl =2 1

IR

(note that we use 1 for the terminal object in both £ and C). Taking this together with
Proposition 1, we obtain the following natural isomorphisms:
'AQ!B I(A&B)
I 2N

IR

These isomorphisms were central to Seely’s proposed model of ILL [See80], which also
proposed interpreting IL in the Kleisli category. See [Bie94a] or [Bie94b] for a critique of
Seely’s semantics; here we shall merely show that a linear category with products does
indeed have a Kleisli category which is cartesian closed.

The isomorphisms ¢4 p :!(A&B) -!A®!B and ¢ :!1 — I can be given explicit defini-
tions in terms of the data determining a linear category thus:
€ \(4&B) dARB |\ g B)@(A%B) — 182 IA®!B
€1

ba,B

¢

def

1 -1

26 2 THE CATEGORICAL PICTURE

(Explicit definitions of the inverses are left as an exercise for the reader.)

Lemma 18 If a linear category has products then the product of two free !-coalgebras is
a free coalgebra.

Proof. This amounts to checking the following diagram:

(48B) —P4P L 14giB
54 ® 05
SasB NAQ!B
QAB
NAEB) —r— (1481B)

which is an easy consequence of naturality and the fact that d is a coalgebra morphism.
O

Corollary 19 If a linear category has products then the Kleisli category Ly is cartesian
closed.

Proof. Lemma, 18 says that £ coincides with Lf, which is cartesian closed by Lemma 12.
O

Products were relatively easy to deal with — the correspondence between linear cat-
egories and LNL models extends trivially to one between linear categories with finite
products and LNL models with products on the SMCC part. Coproducts are slightly
more problematic. Whilst the appropriate extension of an LNL model seems obvious (just
require both £ and C to have finite coproducts), this does not correspond quite as simply
as one might hope to linear categories with coproducts.

The difficulty is that, whilst an LNL model with coproducts certainly gives rise to
a linear category with coproducts, the converse does not appear necessarily to be true.
Assume L is a linear category with finite coproducts, then £' also has finite coproducts as
we can define the coproduct of (4,h4) and (B, hp) to be

(A+ B, [linlo h, linr o hp])

and this is easily checked to satisfy the appropriate conditions. There seems no general
reason, however, why either of the two CCCs which we have already identified as arising
from £ should be closed under this coproduct.

Fortunately, something can be salvaged. There are weak finite coproducts & in the
Kleisli category, obtained by defining

(14,84) ® (1B, 85) & (1 A+B), 614415)

with, for example, the left injection given by !inlo §4. That this is a weak coproduct is
easy to check.

2.3 The Monad and Comparison with Let-CCCs 27

2.3 The Monad and Comparison with Let-CCCs

The monad on C is (GF,n : 1 - GF,p : GFGF — GF) where 7 is the unit of the
adjunction and p is the natural transformation with components ux : GFGF(X) —
GF(X) given by px = G(erx). Writing T for GF, we obtain the usual monad diagrams:

T T
1 X 1 prx| X
TX T2X X TX

It is then easy to see that (T, 7, 1) is a symmetric monoidal monad, in that T' is a symmetric

. monoidal functor and both 7 and p are monoidal natural transformations (this is simply
a monad in the 2-category of SMCs, SM functors and monoidal natural transformations
[Str72]). Cartesian closed categories with (not necessarily symmetric) monoidal monads
have recently been the focus of some interest, as they are the models for Moggi’s com-
putational lambda calculus [Mog89, Mog91, BBdP93]. The definition is, however, more
commonly given in terms of sirong monads, for which we now make a brief digression.
Most of the definitions and results about the various kinds of monads on various kinds of
monoidal categories are due to Anders Kock; the interested reader should see [Koc71] and
the further references cited there.

2.3.1 Strong Monads

Definition 11 If (M,Q®,1,a,l,7) is a monoidal category, and (T,n,u) is a monad on
M, then T is a strong monad if there is a natural transformation 7 (called the tensorial
strength) with components

TAB:A®TB - T(A® B)

such that the following four diagrams commute:

IQTA—T +TUI®4) A®B—21 . AQTB

l T() " 7 T
TA T(A® B)
(A B)@TC T —T(A®B)®C)
a T(a)

A®(BOTC) 153 ABT(B®C) —~T(48 (B8 C))

28 2 THE CATEGORICAL PICTURE

A®T2B—T . T(A@TB)—) T2(A ® B)
1®p p

A®TB

. -~ T(A® B)

If M above is symmetric monoidal (with symmetry o), then there is a ‘twisted’ ten-
sorial strength

Thp: TA®B — T(A® B)

given by
Tj‘l,B = T(O’) o TB,A [oNox

In this case we can also construct a pair of natural transformations ®,®’ which have
components

®4p,9p: TA®TB = T(A® B)

given by
®aB =pagpoT(Typ)oTraB

! !
@y p=pa9BoT(TAB) O TaTE

The monad is said to be commutative if ® = &'.

Proposition 20 If M is a symmetric monoidal category and T is a strong monad on M,
then

1. either of @ or @', together with the map ny : I — TI, makes T into a monoidal
functor;

2. both n and p are monoidal natural transformations with respect to either of these
monoidal structures on T';

3. T is a symmetric monoidal functor iff it is commutative.

O

Now, a model of the computational lambda calculus (what Crole and Pitts call a let-ccc
[Cro92, CP90]) is a cartesian closed category with a strong monad. The above implies
that an LNL model always has a strong monad on the CCC part of the model and thus
includes a let-ccc. The monad is, however, always commutative (because T is a symmetric
monoidal functor). It is not the case that all strong monads on CCCs are commutative;
indeed, some very important monads arising in computer science are non-commutative,
for example the free monoid monad (list,[], flatten) on the category of sets. Thus it
is certainly the case that not all, or even all interesting, let-ccc’s will arise from LNL
models. Having said that, many of the most important monads arising in semantics, such
as lifting and various flavours of powerset/powerdomain, are commutative, so the theory
of commutative strong monads on CCCs is not without independent interest.

24 Examp]es 29

2.4 Examples

The preceding material is all rather abstract, so we now give a couple of concrete examples
of LNL models. The first example is important from a computer science perspective and
was a major motivation for the present work. The second arises from one of the most
common (or at least, most commonly cited) ‘mathematical’ examples of a symmetric
monoidal closed category.

2.4.1 w-complete Partial Orders

Let £ be the category of pointed wcpos (w-cocomplete partial orders with a least element)
and strict (bottom preserving) continuous maps. This is a symmetric monoidal closed
category with tensor product given by the so-called smash product, the identity for the
tensor by the one-point space (which is also a biterminator) and internal hom by the strict
continuous function space. In fact, £ also has binary products and coproducts, given by
cartesian product and coalesced sum respectively.

Given this choice of £, there are a couple of obvious choices for the CCC C which give
an LNL model. One is to take C to be the category of pointed w-cpos and continuous
(not necessarily strict) maps, G to be the inclusion functor and F to be the lifting functor
F : X — X;. The monoidal structure m on F is given by the evident isomorphism
X, ®Y 2 (X xY),. In this case, C is (equivalent to) the Kleisli category of the lifting
comonad on L. Note that the cartesian closure of the Kleisli category follows from the
fact that £ has products. There are strong coproducts in £ but only weak ones in C.

An alternative choice of C is the category of (not necessarily pointed) w-cpos (these
are sometimes called predomains) and continuous maps, again with inclusion and lifting
functors. This is equivalent to the Eilenberg-Moore category of the lift comonad on L, so
it has products and coproducts by our previous general arguments, but it also turns out
to be cartesian closed.

2.4.2 Abelian Groups

Let £ be the category of Abelian groups and group homomorphisms. This is symmetric
monoidal closed with A ® B the Abelian group generated by the set of tokens {a ®b | a €
A,b € B} subject to the relations

(a1 +a2)®b = a1 Q@b+as®b
a®(b1+b) = a®b+a®by

(More categorically, A ® B can be defined by a homomorphism A x B —+ A ® B which
is universal amongst bilinear maps into Abelian groups.) The unit for ® is the group of
integers under addition, Z, and the internal hom A —oB is the group of homomorphisms
from A to B with the multiplication inherited from B. In fact £ also has biproducts — the
direct sum A® B is both a product and a coproduct and the trivial group is a biterminator.

Now let C be the category of sets, which is the prototypical example of a cartesian
closed category, and F and G be the free and forgetful functors respectively. This gives
an LNL model with the monoidal structures on the functors given (in what should be
comprehensible notation) by

nap : GAxGB— G(A® B)
(a,b) ~ [a ® b]

30 2 THE CATEGORICAL PICTURE

n : 1=-GZ
Dokl
mxy FX®FY—)F(XXY)
o [Binims ® Tymyy;] = Bijnimg (i, ;)
m : I—F1
nr—= n.x

It is fairly straightforward to check that this does indeed give an LNL model. The comonad
on L takes an Abelian group to the free group on its underlying set. ¢ is ‘evaluation’ and
7 is the insertion of generators. This is another example of the situation described in
Section 2.2.3, since C is equivalent to the Kleisli category of the comonad on L.

31

3 LNL Logic

LNL-models are, of course, supposed to be models of a logical system. Corollary 8 says
that they are models for intuitionistic linear logic as defined by Girard, but the form of the
definition of LNL-model suggests an interesting alternative presentation of the logic. The
basic idea is that one starts with two independent logics, corresponding to the categories
L and C and then adds operators which correspond in some way to the adjunction between
the two categories. To do this and obtain a logic with a good proof theory is, however,
not entirely straightforward.

Before attempting to be more precise about the rules of LNL-logic, we should perhaps
say a little about what we are aiming for. Different researchers approach logic from many
different backgrounds and with many different motivations, as is at least partly reflected
by the question of whether one describes one’s work as logic, type theory or proof theory
(or even categorical logic, or categorical proof theory). Of course, the very fact that such
a confusion is possible is at the heart of what makes constructive logics exciting objects
of study, but it does seem to lead to a certain lack of consensus about what constitutes a
‘good’ or ‘well-behaved’ system, and about which results are important.

We take propositional intuitionistic logic as our touchstone and the following properties
of that system as our goals: Gentzen-style sequent calculus presentation with (preferably
local) cut-elimination and subformula property; equivalent natural deduction system and
term calculus with strong normalisation; natural class of categorical models which reflects
accurately not just provability, but the equalities on proofs given by cut-elimination and
proof normalisation. On the minus side, we are prepared to accept certain infelicities of
syntax, such as commuting conversions in natural deduction, and we shall, at least in this
paper, ignore Hilbert-style axiomatic presentations entirely. Furthermore we want a logic
which contains both linear and non-linear propositions, treated in a way which reflects the
symmetric presentation of the intended categorical models.

In keeping with our earlier conventions for naming objects of £ and C, we will use
A, B, C to range over linear propositions and X,Y, Z for conventional ones. We shall use
I and A to range over linear contexts (finite multisets of linear propositions) and © and ®
for non-linear ones. We also decorate turnstiles with £ or C to indicate which subsystem
they belong to. Finally, if © is X,..., X, then F® means FXy,...,FX,, and similarly
for GT'. The two classes of propositions with which we shall be dealing are defined by the
following grammar:

AB = Ay|I|A®B|A—oB|FX
X,Y = Xo|1]|XxY|X =Y |GA

where Ag (resp. Xo) ranges over some unspecified set of atomic linear (resp. non-linear)
propositions.

3.1 Sequent Calculus

Sequent calculus rules may be divided into three main classes: structural rules, such as
weakening or exchange; the cut rule, which allows proofs to be composed, and logical
rules. The logical rules are further divided into left and right rules for each connective. In
a well-behaved sequent system there should be a certain symmetry between the left and
right rules which leads to a cut elimination theorem. Furthermore, in many logics the cut
rule is the only rule which can have a formula in the premises which is not a subformula of

32 3 LNL LOGIC

a formula in the conclusion. For such systems, a cut elimination theorem means that any
provable sequent has a proof which only mentions subformulae of the conclusion, which
has important implications for, for example, proof search.

The two logics with which we start are very familiar viz. the exponential-free, mul-
tiplicative fragment of propositional intuitionistic linear logic and the x,— fragment of
ordinary intuitionistic logic. These both have sequent presentations with all the properties
we desire. How should the systems be enriched and combined to give LNL-logic? We shall
approach this question by first outlining two unsatisfactory answers.

3.1.1 The First Wrong Way

The most obvious answer is to take the two familiar sequent calculi and add rules for the
two functors and the unit and counit of the adjunction. Thus we have all the usual linear
rules (including cut) for deducing sequents of the form I' . A and all the usual non-linear
rules (including contraction, weakening and another cut rule) for deducing things of the
form © ¢ X, together with the following four new rules:

A, B OFc X
—— FG-left —
I'NFGAl. B FOF, FX
OFe X ks A
—— GF-right ~——
Otc GFX GI'te GA
Categorically we interpret proofs of conventional sequents
IT
X1y, XnkeY

as maps
[: [Xa] % -+ x [Xn] = [¥]

in C, and proofs of linear sequents
by
Al,---,Am I_EB
as maps
[X]: [A] ® - ® [Am] — [B]

in £, where each of the logical connectives is interpreted as the obviously corresponding
piece of categorical structure. (Thus [A ® B] is [A] ® [B] and so on. Henceforth we will
omit semantic brackets whenever we think we can get away with it.)

The interpretations of the four new rules are as follows:

re ASB
I'® FGA-ZAT @ ASB

FG-left

X1 X x X, BY
FX1® - @ FX, BF(X, X - X X,)Z8FY
I5%X
r5XXGFX

F

GF-right

3.1 Sequent Calculus 33

Al®---® A4, 5B
n, G G
GA; x ++-GA,»G(A1® - ® A,) =35GB

Notice how the monoidal structure of the model is used to interpret the two functor rules.
The coherence conditions on the model are sufficient to ensure that what we have rather
glibly written as m and n above are in fact determined up to isomorphism, and we will
in general be rather sloppy about including all the natural isomorphisms which should
strictly be included in the categorical interpretations of logical rules. The interpretations
of the remaining rules are completely standard, so we omit them for the moment, but note
that the two cut rules are interpreted by composition in the two categories.

From the point of view of provability, this collection of rules is fine — it proves exactly
the sequents we intend. From the point of view of proofs, however, things are not so
good. Whilst the logic allows us to express each of the different intended proofs of a given
sequent (i.e. morphisms in the free LNL-model), the equality of morphisms is not reflected
by a good proof theory. This shows up most obviously in the fact that cut elimination
fails for this formulation of the logic. We should not be too surprised that these rules are
unsatisfactory, as their form is rather strange — the functor rules introduce a connective
on both sides of the turnstile whilst the two other rules introduce two connectives at once.
The failure of cut elimination can be seen by considering the sequent FX -, FX ® FX.
This sequent is certainly provable, but there is no rule which could be the last rule of a
cut-free proof. This particular problem could be fixed in a slightly ad hoc way by adding
contraction for linear assumptions of the form F X, but there are other problems, such as
the following cut:

OFc X o T,FX . A
O tc GFX GT,GFX ¢ GA
©,GT Fc GA

C-cut

This cut cannot, in general, be removed. (There is a rewrite which replaces the cut with
a simpler L-cut, but it also introduces a new cut of the original form for each formula in

0.)

3.1.2 The Second Wrong Way

The second set of rules which we shall consider looks even odder than the first, so the fact
that it too fails to have a good proof theory is no surprise at all. The system is worth
mentioning, however, because it is very simple and has a certain appeal from a categorical
point of view. Like the first system, we start with the two separate logics but now we add
just two rules, each of which is the inverse of the other:

FOolc A "OFcGA

— G-right —— F-left
Okc GA FOlc A

These rules are, of course, syntax for the alternative presentation of the adjunction in the
model in terms of a natural bijection between hom sets

L(FX,A)
C(X,GA)

34 3 LNL LOGIC

and indeed it turns out that this system proves exactly the same sequents as the previous
one. This is because each rule of one system is derivable (or admissible) in the other. For
example, the G rule of the first system is admissible in the second system:

GA; e GA,

—— F-left

FGA g A Al,...,Anl—gB

L-cut
FGA1,As,..., Ay -2 B
GA, Fc GA, :
———— F-left .
FGA, . A, FGA,,...,FGA,_1,A, . B
L-cut

FGA;,...,FGA, V¢ B
GAi,...,GA, Fc GB

G-right

The reader may be surprised by the equivalence of these two systems. In particular,
the way in which the monoidal structures on the two functors arise in the first presentation
is clear, but the second system does not mention G on the left at all. Where, then, does
the monoidal structure on G come from? The answer is in the remark made at the end
of Section 2.1 — the categorical interpretation of the second system uses both m and m™}
(which we called p earlier), and this, together with the adjunction, is sufficient to ensure
that G is monoidal too.

FX,® ---QFX,5A
X1 X X Xp BGF(Xy %+ X Xp) P SG(FX, ® -+ @ FX,)95GA

G-right

X1 % x X, 5GA
FX;1® - @FX, BF(X1 X -+ X Xp)E8FGASA

F-left

That the second systems fails to have cut-elimination may be seen by considering the
following situation:

For A FO' FGAl. B
—— G-right G-right
Okc GA ©',GAlc GB
C-cut
0,0 . GB

or by trying to find a cut-free proof of FX k. F(X x X). Another reason for rejecting
this second system is that even cut-free proofs do not have the subformula property.

3.1.3 A Well-Behaved Sequent Calculus

Fortunately, there is a way to present the logic which has a good proof theory. The trick is
to allow conventional non-linear formulae to appear in the assumptions of a linear sequent.
A typical linear sequent looks, therefore, like this:

X1,y Xm,A1,..., A e B
which is interpreted as a morphism in £ of the form

FXi1@ - QFX, Q41®--- A, — B

3.1 Sequent Calculus 35

Non-linear sequents are still constrained to have purely non-linear antecedents and are
interpreted as morphisms in C as before.’

We will usually abuse notation by writing linear sequents in the form ©;I' . A, even
though there is no need at all for the ‘;’ since linear and non-linear formulae can never
be confused. It is important to understand that there is really just one kind of comma
in the antecedent, and that the exchange rule (which we will supress) really allows linear
and non-linear formulae to be mingled. Once this is understood, however, our potentially
misleading notation seems rather less confusing than the alternative (to which we shall
return) of introducing new metavariables ranging over arbitrary propositions and contexts.
The sequent rules for LNL logic are shown in Figures 1 and 2.

There are several points to be noted about the rules. There are three cut rules according
to the type of the cut formula and of the ultimate conclusion (there is no L£C-cut rule
because a linear formula cannot be cut into a non-linear sequent). Each of the non-linear
left rules (including contraction and weakening) splits into two versions according to the
type of the overall sequent. The rules for F and G look much pleasant than in the two
unsatisfactory systems — each has one left and one right rule, neither of which affect the
rest of the sequent. The annotations on the turnstiles are, strictly speaking, redundant as
they are implicit in the consequent. The following is easy to verify:

Proposition 21 The sequent rules of LNL logic are equivalent in terms of provability to
the two systems presented earlier. To be precise:

e ©F¢ X in LNL logic iff © F¢ X in either of the earlier systems.
e O;TF, A in LNL logic iff FO,T -x A in either of the earlier systems.

a

The interpretation of LNL logic in an LNL-model is fairly straightforward, given what
has gone before. We assume that the reader is familiar with the interpretation of the
standard logical connectives and just give details of the interpretation of one of the cut
rules and the four rules for F' and G in Figure 3.

3.1.4 Cut Elimination

We now turn to the question of cut elimination in LNL logic. As usual, the proof describes
a procedure in which the cuts in a proof are locally rewritten (making the proof, in general,
much larger) so that they percolate up towards the leaves, where they eventually disappear.
As is also usual, the fine details of making the induction go through are slightly delicate.
In particular, we start by replacing the CL-cut and CC-cut rules with the following n-ary
(n > 0) variants, yielding an equivalent system which we call LNL*:

OkFe X X" 0T, A Ole X X" Ol Y
CL-cuty CC-cut,
0,0T'FH, A 0,0FcY

where
n

—f—
xn ¥ X X

9The attempt to make a more symmetric system by allowing linear assumptions in conventional sequents
gives yet another system without cut-elimination.

36

3 LNL LOGIC

Axioms
Atp A L-aziom

Structural Rules

X Fe X C-aziom

0,X,X;Tk A 60, X, XteY
L-contraction ———— (C-contraction
0,X;TH. A 0,XFcY
;' A OFcY
——— L-weakening ————— C-weakening
0,X;TH A 0,XFcY
Cut Rules
Oke X X, o, T A Oke X X, PkcY
CL-cut CC-cut
0,9 T+, A 0,0FcY
O;T'Fc A ;A A, B
£ i £ LL-cut
0,%;I'At, B
x /1 Rules
0,XtcZ 6,Ytc Z
C-x-left1 C-x-left2
0,XxYteZ 0,XxYteZ
0,X;Tk A 0,Y;TH. A
L-x-left1 L-x-left2
0, X xY;Tk, A 0,XxY;T't A
OFc X dtFcY .
¢ ¢ -right 1-right
Q,8Fc X XY Fel
®/I Rules
o;IA, B+, C O;I'k+, A ®; A, B
®-left ®-right
;AR B, C 0,5I'AF A®B
M I-left I-right
O;T, Ik, A Fel

Figure 1: Sequent calculus presentation of LNL logic (I)

3.1 Sequent Calculus 37
— Rules
OFe X Y,®t¢ Z OkFc X Y, oI A
C-—-left L-—-left
0,X Y, ot Z 0,X Y, ®TH A
0,XteY
—— —-right
S |—c X—=Y
—o Rules
;' A+, B O, A ®;A,Bt.C
—o-right —o-left
©;'k; A—oB 0,9;T,A—oB, At C
F Rules
Okc X 0,X;Tk, A
— F-right ————— F-left
OF; FX 0;FX,T k. A
G Rules
©;B, 't A OFc A
-left G-right
©,GB;T'F; A OkFc G
Figure 2: Sequent calculus presentation of LNL logic (II)
Yix-xY9X FX®FoeThi
CL-cut

Fe®1®1

X1 x---x X, 5X
FX1® - @ FX,SF(X; x --- x X)) E8FX

F-right

(FORFX)®T%A
FO® (FX®I)%A

F-left

FORB®I'SA
FO® FGBRTI2® ro@ BI5A4

G-left

FX1® - FX,-%A

[[xi%GF <H Xi> ClomYe) (@ in) CoYe7)

G-right

(@ FYi) ® Fo @ T 22 F (]‘[Yi) o Fo T2y @ Fo @ TS 4
i %

Figure 3: Categorical interpretation of LNL logic (sketch)

38 3 LNL LOGIC

These rules are easily seen to be admissible in LNL, and it is also clear that cut-elimination
for LNL™ implies cut-elimination for LNL. :

Define the rank |A| (resp. |X]|) of a linear (resp. non-linear) proposition to be the
number of logical connectives in the proposition (so in particular, the rank of atomic
propositions is 0). The cut rank c(II) of a proof II is one more than the maximum of the
ranks of all the cut formulae in II, and 0 if IT is cut-free. The depth d(II) of a proof II is
the length of the longest path in the proof tree (so the depth of an axiom is 0). The key
to the proof is the following lemma, which shows how to transform a single cut, either by
removing it or by replacing it with one or more simpler cuts:

Lemma 22 (Cut Reduction)

1. If Iy is an LNL* proof of © k¢ X and II, is an LNLY proof of X™,® ¢ Y with
c(Ily), c(Ilp) < | X| then there exists a proof II of ©,® b¢ Y with c¢(II) < |X|;

2. IfII; is an LNLY proof of © ¢ X and Iy is an LNLY proof of X, &;T' b, A with
c(I1),c(Ily) < |X| then there exists a proof II of ©,®; Tt A with c(I) < | X|;

3. If Iy is an LNL* proof of ©;T Iz A and IIy is an LNL* proof ®; A,A k. B with
c(I11), c(Ily) < |A| then there exists a proof II of ©,®;T', A\ B with c(I) < |A].

Proof. The three parts are proved simultaneously by induction on d(II;) + d(IIs). We
consider cases according to the classes of the last rules used in each of the two proofs:

1. Both proofs end in logical rules which introduce the cut formula (so II; ends in a
right rule and IIs in a corresponding left rule). This is the most interesting case,
and we consider each subcase in turn:

F-right/ F-left In this case we have

m 2
= ke X m,— & X;FX"Tr, A
VE 2T gt 2 T ol
OF, FX & FX"L T . A

By the induction hypothesis applied to the proofs II; and my there exists a
proof I" of ©,®, X;T' t, A with ¢(Il') < |FX| = |X| + 1. Then let II be the
following proof:

T I
OFe X 0,0, X;T'F; A
CL-cuty
0,0, T+, A
0,0:TH. A

where the double line stands for a number of contractions. II has cut rank
max(|X| + 1, e(n1), ¢(I')) which is equal to | X| + 1 = |FX| as required.
Note that there is an obvious simplification in the case that n = 0 as we can
then avoid an appeal to the induction hypothesis altogether by letting I be
simply
st T2
Obe X O, X;TH, A

0,0;TF. A

CL-cuty

3.1 Sequent Calculus 39

G-right/ G-left We have

: T T2
;= ©F£ A I,= ¢,GA"; AT+, B
1= 2 L7 G-right 2 T £ G-left
OFcGA ®,GA™ T, B

By applying the induction hypothesis to II; and w3 we obtain a proof II' of
0,®;A,T' -, B with ¢(Il') < |GA| = |A| + 1. Now let II be

m T
OFrA ©,06;ATH; B
0,0,& Tt B
0 &;TF. B

LL-cut

The cut rank of IT is max(]A| + 1, ¢(71), ¢(Il')) = |A| + 1 so we are done. Again,
there is an obvious simplification when n = 0.

x-right/ C-x-left1 We have

m D)
II; = O ke X Ot Y .
X -right
@1,@2 |—c XxY
and
3
= &, X, (X xXY)"lc Z -
M2 ()" Fe C-x-left1

3,(X xY)" " ke Z

Let II' be the result of applying the induction hypothesis to II; and 73, so IT’
is a proof of ©1,0,,®, X k¢ Z with ¢(Il') < |X x Y| =|X| + |Y]| + 1. Now let
II be
T I
Orbe X ©1,05,0, X e Z
@17 617 625 o I_C Z
01,09,0 ¢ Z

which has a cut rank of max(|X| + 1,¢(m1),c(ll')) < | X x Y.

CC-cuty

e The remaining subcases are similar and left to the reader.

2. The last rule used in II; is not a right logical rule. These are dealt with by simple
permutations of the rules. We consider each remaining possibility for the last rule
in ITy and form of conclusion of Il in turn. A few representative cases:

C-contraction/ C sequent The situation is
m

= 0,X,XkcY I
C-contraction Y*"®lc Z
O,.XteY

40 3 LNL LOGIC

and by induction applied to m; and II; there is a proof Il' of ©,X,X,® ¢ Z
with ¢(Il') < |Y|. Let II be
HI
0,X,X,®tc Z
0,X,8+c Z

C-contraction

Clearly, c¢(II) < |Y| so we are done.
CC-cuty/ L sequent

] Ty

II
_ 0 X X"DlY 2
I ¢ ~ ¢ CC-cut,, Y™ eThH A
0,%kcY

By induction applied to 72 and II; we can form I’ proving X™, &,®";T" I, A
with ¢(II') < |Y'|. Now let II be

m T
OFc X X" ®, 0Tk, A
CL-cut,
0,0, T+, A

By assumption, ¢(Il;) < [Y|, so in particular [X| + 1 < |Y|. This means
c(II) = max(|X| + 1, ¢(m1), ¢(I')) < |Y] as required.
—o-left/ L sequent

T 2

II
= 6;TH. A ®; B Al C 2
I £ £ —o-left e;C I+, D
0,%;I'A—oB, At C

By induction applied to 72 and Ils there’s a proof II' of ®,0'; B,A, IV -, D
with ¢(II') < |C|. Let II be '

T Ir
O;T'k. A ®,0,B,A\ " D

0,9,0T'A—-oB,A,'+, D

—o-left

and ¢(IT) = max(c(m1), c(Il')) < |C| as required.

L-aziom/ L sequent This is one of the base cases for the induction. We have

_ 1L
M=4Fc4 o AT B
and we simply let II be IIp (recall that ¢(IIz) < | A} by assumption).

3. The cut formula is a minor formula of the last rule in IIs. These cases are also dealt
with by fairly straightforward permutations and we omit them.

4. The last rule in II, is contraction on the cut formula. This is why we have the n-ary
cut rules.

3.1 Sequent Calculus 41

C-contraction

st
II; n+2
Ot X 2 - C-contraction
X" oY

By induction on II; and m; there is a II proving ©,® ¢ Y with ¢(II) < | X| as
required.

L-contraction Similar.

5. The last rule in IIp is weakening introducing the cut formula.

L-weakening

m
I X" &:TFp A
OFe X T L-weakening
X" e T, A

By induction on II; and 7 there is a II proving ©, ;I k2 A with ¢(IT) < | X|
as required. There is a simplification if n = 0, in which case II is just

™
;The A
0,8, A

where ¢(II) = ¢(m1) < | X| by assumption.

C-weakening Similar.

6. Il is an axiom on the cut formula. Trivial.

Lemma 23 Let IT be an LNL™ proof of a sequent © ¢ X or ©;T k. A such that
c(Il) > 0. Then there is a proof I of the same sequent with c(II') < c(IT).

Proof. Induction on d(II). If the last inference of II is not a cut then we simply apply the
induction hypothesis. Assume then that the last inference is a cut on a formula A (the two
cases of cuts on non-linear formulae are treated in just the same way). If ¢(II) > |A| + 1

then we can apply the induction hypothesis. This leaves the case where the last rule is a
cut on A and ¢(II) = |A| + 1 so that

II; II,
MI= O;T't, A ;A A, B
£ £ LL-cut
0,0, A, B

Clearly c(II;), ¢(II3) < |A|+1, so by induction we can construct I} proving ©;T . A and
5 proving ®; A, A b, B with ¢(II}), ¢(I15) < |A]. Then by Lemma 22, we can construct
a II' proving ©,®;T', A - B with ¢(II') < | 4] as required. O

42 3 LNL LOGIC

Theorem 24 (Cut Elimination) Let IT be a proof of a sequent © ¢ X or ©;T t, A
such that c(II) > 0. Then there is an algorithm which yields a cut-free proof II' of the
same sequent.

Proof. This follows immediately by induction on ¢(II) and Lemma 23. ad

It is very important to note that the proof of the cut elimination theorem says a lot
more than that the theorem is true as stated. The proof gives a procedure for simplifying
proofs by applying successive rewrites until a cut-free proof is reached. These rewrit-
ing steps are purely local and cut-free proofs also have the subformula property. Note
that the algorithm described by the cut-elimination proof is non-deterministic — there is
some freedom in choosing the order in which rewrites should be applied. On the other
hand, the order in which transformations are applied is constrained rather more than is
strictly necessary in order to make the induction work. In the present work we shall not,
however, consider further the question of the extent to which cut elimination is strongly
normalising.'0

3.1.5 Cut Elimination and Semantic Equality

The cut elimination process gives a notion of equality on sequent proofs, obtained by ex-
tending the one-step proof rewriting relation of the algorithm to a congruence (an equiv-
alence relation which is compositional on proof trees). We intend this syntactic equality
to be modelled soundly by equality in LNL models, and this is indeed the case:

Theorem 25 The cut-elimination procedure described in Section 3.1.4 is modelled soundly
in any LNL model.

Proof. The basic idea is to show that whenever one proof is simplified to another then
the interpretations of those two proofs are equal morphisms in the model. This is done by
modifying the statement and proof of the cut reduction lemma (Lemma 22) to show that
semantic equality is preserved. Rather than go into the tedious details, we just sketch one
of the cases:

G-right/ G-left The cut reduction is

m 2
Ok, &, AT+, B
G-right -left
OFe GA ®,GA T+, B
L-cut
0,%; '+, B

reduces to
Ok A ®;A,T+. B

0,%T'+, B

LL-cut

%0ne of the CSL referees asserted that cut elimination is strongly normalising, but I don’t see how to
justify that without a lot more work.

3.1 Sequent Calculus 43

Now, if © = X1,...,X,, [m] = f and [m3] = g, then this corresponds categorically
to the commutation of

(FX;® - Q@ FX,)® Fd ®T
___—weten
FXyx-+xX,))F®QT
Fnelel feolel
FGF(X1 X+ x X))@ Fo T

FGm)®1e1l

FQFX;® - ® FX,) @ FO T AQFdQT
FG(f)®1®l
FGA® FO QT

e®ll (0]

AQF®QT

B

which is easily seen to follow using one of the triangle laws for the adjunction and
naturality of e.

3.1.6 Variations: Introducing Additive Non-Linear Contexts

There are a large number of possible variations on the sequent rules for LNL logic. One
of the most natural is to treat the non-linear antecedents as additive rather than mul-
tiplicative (though linear antecedents are still multiplicative, of course). This also has
the advantage of a closer correspondence to the natural deduction system which we shall
introduce in Section 3.2 and is one of the reasons for our notational device of separating
the linear and non-linear parts of the antecedents of linear sequents.

The additive variants of those rules which change are shown in Figure 4. The remaining
rules remain unchanged. When we wish to distinguish the additively formulated sequent
system from the multipliciative, we shall refer to LNL® or to LNL™.

44

3 LNL LOGIC

Axioms
O; Al A L-aziom

Cut Rules

OFcX X,0:TFc A

O, k. A

e;l_‘l—[,A

CL-cut CC-cut

0,X k¢ X C-aziom

OreX X,0FcY

OFcY
0;A, Al B

L-cut

©;T,AF. B

x /1 Rules
OFcX OkcY

@l—cXXY

®/I Rules
O:TF, A ©;AF. B

;T A, A®B

— Rules
Oke X Y,Otc Z

0,X>YhrcZ

—o Rules

O,I'+c A

X -right)

®-right

Cr-left

1-right
el g

I-right
CHE W

OFcX Y,0:TH: A
0,X 5Y;THe A

L-—-left

®;A,Bl,C

0,8 T,A—oB,A, C

—o-left

Figure 4: Additive variations on LNL logic

3.1 Sequent Calculus _ 45

The following facts concerning LNL?® are easily verified:
Proposition 26

1. The systems LNL® and LNL™ are equivalent: each rule in one system is admissible
in the other;

2. The weakening and contraction rules of LNL™ are admissible in LNL® without weak-
ening and contraction.

3. Cut elimination holds for LNL®.

3.1.7 Variations: A Parsimonious Presentation

As we have already mentioned, there is another way of presenting the logic by using some
new metavariables: let P, Q) range over either linear or non-linear propositions and Y over
mixed contexts. We can then present LNL™ in a concise way as shown in Figure 5.

This presentation is equivalent to that shown in Figures 1 and 2. It has the disadvan-
tage of obscuring the fact that there are really two distinct kinds of sequent. These rules
are essentially the same as those given by Jacobs in [Jac93], which also contains good ac-
counts of some examples of concrete categorical models. The description of the semantics
in that paper is somewhat different from that given here, however. Jacobs starts with a
linear category L satisfying extra conditions which make the category of !-coalgebras be
cartesian closed. He then interprets all sequents as morphisms in £ by applying F to
the interpretation of non-linear formulae (in much the same way that we have interpreted
linear sequents). This causes problems as it is not clear how to interpret —-right, for ex-
ample. The solution is a mixture of syntax and semantics — one can verify that all provable
sequents which only mention non-linear formulae satisfy what is called the conventional
witness property. This means that they are interpreted by morphisms in £ which are (up
to m) the image under F of coalgebra morphisms. This property, which is necessary to
complete the interpretation, is shown by induction on derivations. Interestingly, the proof
given is incomplete unless one uses the following crucial (and easily verified) fact, which
is never actually mentioned:

Lemma 27 Any provable parsimonious sequent with a non-linear consequent has only
non-linear formulae in the anetecedent.

In fact, for the presentation of the logic given by Jacobs, the lemma above is only true
because I is treated as a derived formula (it is defined to be F(1), ¢f. our Proposition 1).
The left rule for ® is given as

T,A,B+P
T, A9 BFP
but it just so happens that the conclusion P will always be a linear formula C. This would
cease to be true if the left rule for I were given explicitly as the nullary version of that for
®:

TP
T,IFP

for then one could introduce linear antecedents to non-linear formulae and the proof theory
would break down. A slightly subtle point is that the above rule for I appears at first

46

3 LNL LOGIC
Axiom
PHP
Structural Rules
T,X,X+-P YHP
——— Contraction ——— Weakening
T, X+P T, X+P
Cut Rule
THP PY'FQ
Cut
T, T +Q
x /1 Rules
T, XFP T, Y+P
— X-leftl —— X-left2
T,XxYHFP T, XxXYHFP
OFX OFY)
X -right — 1-right
0,FXxY F1
®/I Rules
T,A,B-C THA Y'+B]
—_— ®- ®-right
T, AQBFC T,Y+HA®B
rr4 I-left —— I-right
T,IFA HI
— Rules
OrX Y, T+P 0,XFY
- ————— —-right
0,X Y, T+P OFX Y
—o Rules
THA B,Y'+C Y,AFB
—o-left —— —o-right
Y,A—oB,Y'+C THA—oB
F Rules
T,XFA OFX
——— F-left F-right
T,FXFA OFFX
G Rules
Y,BFA OFA
— G-left G-right
T,GBF A OFGA

Figure 5: Parsimonious presentation of LNL logic

3.2 Natural Deduction and LNL Terms 47

sight to be valid in the semantics given by Jacobs, though it would actually cause the
conventional witness property to fail and thus prevent the interpretation of —.

In any case, once one has observed the importance of the previous lemma, it seems
rather more natural to interpret sequents with non-linear consequents as morphisms in
the cartesian closed category in the first place, as we have done here.

3.2 Natural Deduction and LNL Terms

" In this section we will present a natural deduction formulation of LNL logic and a procedure
for normalising deductions. By applying the Curry-Howard correspondence, we then derive
a term assignment system and a set of reduction rules, i.e. a mixed linear/non-linear
lambda calculus.

3.2.1 The Natural Deduction Rules

The usual way to present natural deductions is as trees, each of which has assumptions
at the leaves and a conclusion at the root. Whilst such a presentation of LNL logic is
possible, we shall just give a ‘sequent style’ natural deduction system. The reason for
this is that, mainly for reasons to do with term assignment, we wish to give the natural
deduction analogue of LNL® (rather than LNL™), and the mixture of shared and distinct
assumption sets which this involves is more clearly shown in the sequent style presentation.
The natural deduction system is characterised by having introduction and elimination rules
for each logical connective, rather than the left and right rules of the sequent calculus.

The natural deduction rules are shown in Figure 6. We will call this inference system
ND.

Note that

e The elimination rule for F, like that for ®, builds in some substitution.
e The introduction and elimination rules for G are exact inverses.

e The G-introduction rule corresponds to promotion in ordinary linear logic. The
restriction that the assumptions in the premiss be all non-linear corresponds to the
restriction on the promotion rule. We do not, however, need to build any substitution
into the G-introduction rule.

e None of the natural deduction rules split into £ and C versions, so the natural
deduction formulation is automatically ‘parsimonious’.

An important fact about the natural deduction system is that it satisfies the sub-
stitution property. This essentially means that the cut rules from the sequent calculus
presentation are admissible in natural deduction:

Lemma 28 The following three rules are admissible in the natural deduction formulation
of LNL logic:

OFe X X,0;TH A Olc X X,0FcY
CL-subs CC-subs
O,I'F, A OtcY

;T A 0;A, A, B
O;'At B

LL-subs

48 3 LNL LOGIC

O; AL A 0,XFec X
Otce X OF:Y .
¢ ¢ X -intro oFn 1 1-intro
O X XY ¢
Ote X xY OFe X XY
—_——— Xx-eliml — X-elim2
Olc X OFcY
;' A ©;Al,. B O;TH, A®B 6;A,A, B, C
®-intro ®-elim
;A A®B O;T, At C
I-intro Ofrel ©AbcA o
ObFcI O;T, Al A
0, XY Ole XY Okc X
— —-intro —-elim
Ole X Y (S] FeY
O;I' A+, B O;'tp A—oB ;A A
—o-intro —o-elim
O;I'z A—oB O;I'At, B
Okc X O;T'+, FX 0,X;AlL A
————— F'-intro F-elim
O, FX O,I,AF A
OFL A Ol: GA
— G-intro ———— G-elim
OFc GA Ok, A

Figure 6: Natural deduction presentation of LNL logic

3.2 Natural Deduction and LNL Terms 49

Proof. Induction on the derivation of the right-hand premiss. a
We will also need:

Lemma 29 The weakening rules of the sequent calculus are admissible in the natural
deduction system. m|

Using the previous lemmas, we can establish a connection between the sequent calculus
and natural deduction formulations of the logic:

Proposition 30 There are functions S : ND — LNL® and N : LNL* — ND which map
a proof in one system to a proof of the same sequent in the other system. Furthermore,
for any natural deduction %, NS(X) is equal to X.

Proof. This is all fairly obvious induction. We start by looking at the definition of S:
e The axioms map to axioms.

e Introduction rules become right rules. For example,

] Yo
OFe X OFeY)
X ~tntro
© |—c XxY
maps to
S(%1) S(X2)
OkFe X OlcY
X -right
C) |—c XxY

e Elimination rules become combinations of left rules with cuts. For example

3 3o
;' A®B O;AA, Bl C
®-elim
;A C
maps to
S(22)
O;AA,Bl.C
S(El) 3 Sy £y L ®-left
;' A®B A AR B, C .
-cU
O; Ak, C

The function A’ mapping sequent proofs to natural deductions is also fairly straight-
forward:

e Axioms are translated by axioms.

e Instances of cut rules are translated by the appropriate admissible substitution rules
(Lemma 28).

e Right rules become introductions.

50 3 LNL LOGIC

e Left rules become eliminations modulo some structural fiddling. For example:

)Y
0,XteZ
C-x-left1
0,XxYtre Z
maps to
N(Z)
0, X xXYFeXXY 0,XtecZ
x-elim1 C-weakening
0, X xXYhkeX 0,XxY,XteZ
CC-subs
0, X xYtcZ
Similarly, the proof
3
0,X;T'k. A
————— F-left
O;FX, T, A
maps to
N(X)
0, FXt, FX 0,X;T'Fc A
F-elim
O;FX,T'F. A
That A o S is the identity can then be verified by induction. The proof is most easily
obtained with the assistance of the term calculus which we are about to introduce. a

Clearly, there is an categorical interpretation of natural deduction proofs in any LNL
model. One way to obtain the interpretation is to apply the S translation and then the
interpretation of sequent proofs which we gave earlier, but it is fairly easy to write down
directly (and one does indeed get the same answer!). Some of the clauses of this direct
interpretation are shown in Figure 7.

3.2.2 Term Assignment

Just as the simply typed lambda calculus arises as a notation for proofs in a natural
deduction system for ordinary intuitionistic propositional logic, we can annotate proofs in
our system ND to derive a mixed linear and non-linear term calculus. The term assignment
system is shown in Figure 8. We use a, b, ¢ for linear variables, e, f, g, h for linear terms,
w, T, Yy, 2 for non-linear variables and s, ¢, u, v for non-linear terms. Distinct linear contexts
are assumed to mention disjoint sets of linear variable names.

As should be obvious, the two of the forms of let and the two kinds of X are variable-
binding constructs. We refrain from giving a detailed definition of free and bound variables

and capture-avoiding substitution as the reader should be able to work them out without
difficulty.

Lemma 31 Terms encode deductions uniquely — if © ¢ s: X or ©;T -, e: A is derivable
then the derivation is uniquely determined by the term. O

Lemma 32 If O;T b e: A is derivable then each linear variable in the context (i.e. each
variable in ') has ezactly one free occurence in the term e.

Non-linear variables in the contezt may appear any number of times (including zero)
in a well-typed term. a

i

3.2 Natural Deduction and LNL Terms 51

X1 X--'XXn—s)Y

F(F-intro
FX1® - ® FXo™F(X1 % - x X,) 2 py

FORTSFX FOQFX®ALA

FOQTe AT o g FoeT o A2 Fo @ FX @ AL 4
where if @ = X3,..., X, dup : FO - FO ® FO is

®: FXi™F (IT; Xi) 24 F ((IT; Xi) » (IT: X)) 253 (@4 FX:) ® (@; FXi)

F-elim

FX1® - ®@FX,%>A

G-intro
G(m™1)

Xy X X Xn BGF(X1 % - x X)) S AP X, @ - - ® FX,) S%GA

X1 % x Xp,>GB

G-elim

FX1® ® FXo,BF(X1 % --- x Xn) 23 FGB-5B

Figure 7: Categorical interpretation of natural deductions (sketch)

Lemma 28 can now be restated to include the terms:

Lemma 33 (Substitution) The following three rules are admissible in the LNL term

calculus:
OFecs: X : X,0; e et A

©,T'Frels/z]: A

CL-subs

OlesuX z:X,0Fct:Y
O ¢ t[s/z]:Y

CC-subs

O;T'Fee A O;a:A, At f:B
;T At fle/a]: B

LL-subs

O

It should be noted that the term calculus contains the usual simply typed lambda
calculus as a subsystem. Note also that, in contrast to the term assignment system for
intuitionistic linear logic, there is no explicit syntax for weakening or contraction in the
calculus.

3.2.3 Normalisation and Reduction

We now look at the process of normalisation on natural deduction proofs in our logic, and
at the associated reductions on terms. The fundamental kind of normalisation step is the
removal of a ‘detour’ in the deduction, which consists of an introduction rule immediately
followed by the corresponding elimination. There is thus a normalisation step for each
intro/elim pair, and we consider each of these in turn:

52

3 LNL LOGIC

O;a:Abra: A O,r:Xbex: X
OFes: X Olet:Y
Okc (s,t): X xY O k¢ ():1
Oles: X XY Oles: X xY
O k¢ fst(s): X O Fe snd(s): Y
O;TFre A O;Ats f:B O;T'tFe:A®B 6;A,a:A,b: Bt f:C
O;NAlce® f:AQ B O;T,Atsleta®b=c¢in f:C
O Tteel O;AlF, fA
OFp =l O;T, Ak letx=ein f: A
0,2: X Fes:Y Otes: XY Obct: X
OFe (Az:X.5): X -Y OtestY
O;T,a:Alse: B O;T'F,se:A—oB ;AL f:A
O;T Fz (Aa: Ae): A —oB O;I'Atsef:B
Otes: X O;'tre FX O0,5: X;A b, f:A
Ok F(s): FX O;TAtbsletF(z) =ein f: A
Olre A OFcs:GA
O k¢ Gle):GA © b derelict(s): A

Figure 8: LNL term assignment system

3.2 Natural Deduction and LNL Terms 53

e The deduction

pRY p
Ok X Ot Y
X -tntro
Ol X XY
——— x-eliml
Oke X
normalises to
Y]
OFce X
e The case of x-intro followed by Xx-elim2 is similar.
e The deduction |
21 22
CHER W CH Y] .)
®-intro 3
©;T,I's - A®B O;T3,A4,Bt, C
®-elim
O;I, 2, I3 C
normalises to the deduction denoted by
P I
O;I's 2 B 0;3,A,Bt, C
e rzlk A 2 0:T5, T3, A l—3 c LL-subs
L1 07L 112,13, L L -subs

O;T,T9, T3 C

Note that this is not as asymmetric as it appears — the subs rule is only an admissible
rule, and the actual deduction intended by the above shorthand is exactly the same
as the one obtained by substituting the derivation of A first.

I-intro Y
Ot T ;' A
I-elim
oL+ A
normalises to
=
;' A
[]
3
0,XtkcY
o er —-intro g
Ol X —>Y OFc X
—-elim
OkeY
normalises to
b)) %1
Ote X 0,XtcY
CC-subs
OlcY

54 3 LNL LOGIC

Y]
60;,T1,Al. B
i £ —o-intro iz
@;Fl |—£A—0B @;FQI—LA
6;I‘1,I‘2 g B

—o-elim

i normalises to
Yo Y2
CHNYYW: 0;Th,A+. B

@;Fl,rz |—£ B

LL-subs

3

Okle X >
—— F-intro 2
Ok, FX 0,X;I't. A

O;TH. A

F-elim

normalises to
%1 b3
Oke X 0,X;T'F, A

O, A

CL-subs

bY
OFc A

Ote GA
Ok A

normalises to
b))
Ok, A

The normalisation steps on natural deductions induce S-reductions on the associated
terms. These are shown in Figure 9.

As often happpens with natural deduction systems, there is also a secondary class of
reductions — the commuting conversions, which are caused by rules which have a ‘parasitic
formula’. In LNL logic there are three such rules, the elimination rules for ®, I and F.
Such a rule can artificially prevent an introduction/elimination pair from reacting unless
we explicitly add certain commutations. The basic pattern is that a natural deduction
looking like

: c
C

— any-elim
D

r

3.2 Natural Deduction and LNL Terms 55

fst(s,t) =g s
snd(s,t) =g ¢
leta®b=e® fing —g gle/a, f/b]

letx =xine —=ge

(Az: X.8) t —p s[t/z]

(Aa:A.e) f —p €e[f/a]

let F(z) = F(s) ine —4 e[s/z]
derelict(G(e)) —p e

Figure 9: Term calculus g-reductions

where 7 is a rule with parasitic formula C and any-elim is any elimination rule, commutes
to

o ”
5 any-elim
T
D

In the case of LNL logic, the parasitic formula C' is always linear, so any-elim can only
be the elimination of one of the four linear connectives ®, I, —o and F'. This means that
we have 3 X 4 = 12 commuting conversions. Rather than give the conversions explicitly
on proofs, we merely list the induced commutations on terms in Figure 10. The proofs
are easily reconstructed by Lemma 31.1!

The reduction relations —g and — are defined as the precongruence closures of the
clauses given in Figures 9 and 10 respectively. We write =3, for -5 U —.. As we have
avoided all mention of raw terms (sometimes also known as preterms), the following is
almost a complete triviality:

Proposition 34 (Subject Reduction) Reduction is well-typed:
e IfO;TFre:A ande =g e then ©;T g e A
o IfOFcs:X and s »p. s then © k¢ s': X.
O

Somewhat more interesting is the fact that when a term is reduced its categorical
interpretation remains unchanged (cf. Theorem 25).

Theorem 35 Both the B-reductions and the commuting conversions are soundly modelled
by the interpretation of the natural deduction system in any LNL model.

1 A small technicality is that the conversion for F-elim against itself is not an entirely local rewrite, but
uses the admissible weakening rule. This would not be the case for an entirely multiplicative formulation
of the natural deduction system, however.

56 3 LNL LOGIC

leta®@b=(letx=einf)ing =, letx=cin(leta®b= fing)
let* = (letx=einf)ing = let+ =ein (let* = fing)
(letx=einf) g = letx =ein(f g)
let F(z) = (let+ =ein f)ing =, let x = ein (let F(z) = f ing)
leta®@b=(letc®d=cinf)ing 2. letc®d=cin(leta®b= fing)
let+ = (leta®b=-¢einf)ing —ocleta®b=cin (let*x = fing)
(leta®b=c¢€inf)g > leta®b=cein(fg)

let F(z) = (leta®b=c¢inf)ing . leta®b=cin (let F(z) = fing)

let x = (let F(z) = ein f)ing — let F(z

ein (let* = fing)

9)
ein(let F(y) = fing)

ein

(
(
(f
(
leta®@b=(let F(z) =ein f)ing =, let F(z) =ein(leta®b= fing)
(
(f
(

) (z)
(let F(z) = ein f) g = let F(z)
)= (z) =

let F(y) = (let F(z) =ein f)ing —. let F(z

Figure 10: Term calculus commuting conversions

e IfO;TFse:A and e =g € then
[O;T kg e A] = [6;T g € A]
e IfOF¢ s: X and s =g s’ then
[OFcs:X] = [¢ s X]

3.3 Translations

We already know from Section 2 that LNL models and linear categories are equivalent.
What we have not yet done is show any direct relationship between provability (or proofs)
in LNL logic and in ordinary ILL. Such questions could be approached from the semantic
point of view if we had a completeness result for LNL models, but for the moment we shall
just argue proof-theoretically.!? In this section we will relate LNL logic to ILL, restricting
attention to the natural deduction formulations (equivalently, the term assignment sys-
tems). Comparable translations for the sequent calculus are straightforward to obtain,
but omitted.

We begin by recalling in Figure 11 the linear term calculus (LTC) which corresponds
to the natural deduction presentation of ILL [BBHdP92].

121 conjecture that the natural completeness theorem is true, and see no particular reason why the proof
should not be by a standard term-model construction — I just haven’t done it yet. The first step is to
list all the term equalites given by the category theory. These comprise the 3, ¢ equalities from the proof
theory together with a number of naturality and 7 (uniqueness) equalities.

3.3 ‘Translations 57

a:AFa:A(Az)

T'a:AFe: B I'Fe: A—oB AFf: A
(o) (—o¢)
'k (Aa:Ae): A—oB I Atef:B

I'kFe:A AFf:1I
l—*:I(II) - (Ig)
P,AFlet f =xine: A

T're:A A+ f:B I'Fe: A®B Aa:Ab:BFf:C
(®1) . (®¢)
AlFe®f: AQB FAbFlete=a®binf:C
Arber:ld; - Anlke, A, ay Ay, ...,an 1A i B
Promotion
Ay,...,Ap - promoteey, ..., e, foray,...,ayin f :!B
I'ke:lA Aya:lAb:IA-f: B)
Contraction
['AFcopyeasa,binf:B
I'ke:lA A+ f:B F'ke:ld
Weakening - Dereliction
I'YAtdiscardein f : B I’ - derelict(e) : A

Figure 11: The linear term calculus (LTC)

3.3.1 ILL to LNL Logic

The translation of ILL into LNL logic is not particularly difficult. If A is an ILL proposi-
tion, define the linear LNL proposition A° inductively as follows:

Ay = Ay (A atomic)
(A®B)° = A°®B°
(A—oB)° = A°—oB°
Ir =1
(14)° = FG(A°)

Theorem 36 IfT'F e: A in ILL, then there is an e° such that T'° e e A°.

Proof. This is done by induction on the derivation in ILL (that is, on the structure of
the linear term e). The exponential-free rules are completely straightforward, so we just
detail the translations of the one introduction and three elimination rules for I. The easiest
way to present the translations is just to give the translation from terms to terms, as that
determines the translation of proofs.

Promotion The (—)° translation of
promote e;,...,e, foray,...,a, in f

is

let F(y1) = €] inlet F(y2) = € in - FG(f°[F(y:)/ai])

58 3 LNL LOGIC

where the y; are fresh. One might be tempted to simplify the translation to
FG(f°lei/ai])

but a moment’s consideration reveals that this latter expression is not well-typed.
It is interesting to note how the ‘boxing’ behaviour of the promotion rule is thus
maintained by its translation into LNL logic, even though neither of the introduction
rules for ¥ and G themselves involve a change of variable names. Note also that the
translation makes use of an admissible substitution rule.

Dereliction

(derelict(e))® = let F(z) = €° in derelict(z)
where z is fresh. (Which version of derelict() is meant should usually be clear from
context.)
Weakening

(discard ein f)° = let F(z) =¢€°in f°

where z is fresh.
Contraction

(copy easa,bin f)° = let F(z) = e€°in f°[F(z)/a, F(z)/b]
where z is fresh. Again, note that this is not just f°[e°/a,€°/b].
a

So we can translate ILL into the linear-only part of LNL logic in such a way that
provability is preserved. That it is also reflected will follow from the translation from LNL
logic to ILL which we are about to give.

3.3.2 LNL Logic to ILL

This direction is more interesting. The basic idea is to translate the linear part of LNL
logic essentially unchanged and to translate the non-linear part by using a variant of the
Girard translation. There is a small technicality concerning atomic propositions, in that
LNL logic has both linear and non-linear atoms. We will thus translate into an ILL theory
which has an extra atomic proposition Ay, for each non-linear atomic proposition Xy in
the LNL theory. Given this, we can define the ILL proposition A* or X* for each LNL
proposition A or X inductively as follows

Ay = Ay (Ap atomic)

(A B)* = A*@B*
Irr =1
(A—oB)* = A*—oB*
(FX)* = (X%
Xy = Ax, (X atomic)
(X xY)* = (X*)QUY™)
1* =1
(X = Y) = I(X*)—oY*

(GA)* = 4

3.3 Translations 59

Note that what is usually called ‘the Girard translation’ of IL to ILL uses the &
connective (‘with’) to translate conjunction in IL, but we have not done this as we are
dealing only with the multiplicative fragment of ILL at the moment. Were we to include
additives, then obviously an alternative translation would be possible.

Theorem 37
1. If © k¢ s: X in LNL logic, then there is an LTC term s* such that

0% | s*: X*
2. If ©;T Fr e: A in LNL logic, then there is an LTC term e* such that
0%, T |- e*: A*

Proof. This is proved by induction on the LNL derivation. The translation is slightly more
complicated than it might be because of the fact that we have treated the conventional
parts of LNL contexts in an additive way, and this does not easily match the purely
multiplicative contexts used in ILL. For this reason, as well as the way in which the
translation depends upon context, we will present this translation on derivations in the
logic rather than on terms. The reader should be able easily to supply the missing term
annotations so as to prove the theorem as stated.

e The translation of an axiom

0,XtFeX
is
IX*HX*
———— Dereliction
IX*FX*
_ Weakening*
0% 1X* - X*
e The translation of an axiom
O;AFL A
is
A* - A*
=————— Weakening*
0%, A* - A*

e If the LNL derivation ends in
Ot X OkeY
C] }—c XxY

where © = Y3,...,Y,, then by induction we have ILL derivations of !©* I X* and
1©0* - Y™ so that we can form the following (omitting rule names for reasons of
space):

X -intro

DEl =) 2ETE) Al =) A A S o Yy HY? - IYFHYY 190 Yt
T A N T A
10*,10* HIX*®IY*
10" HIX*QIY*

Contraction*

60 3 LNL LOGIC

e If the LNL derivation ends in
Ol X >2Y OFe X
OtcY

where © = Y7,...,Y,,then by induction we have ILL derivations of !©* FI1X* —oY™*
and '©* - X* so we can form

—-elim

Y HEY? - W HIYY 0%+ X~
Promotion
10* FIX* —oY™ . LY HLX
—o-elim
0%, 10* Y™
————— Coniraction*
e* Y™
e If the LNL derivation ends with
OFc X
— F.intro
OF, FX
where © =Y7,...,Y,, then by induction there is a derivation of 10* - X* so we can
form
YrHY! - WX HYY lo* - X*
Promotion

DZUN Al b &
as required.

e Because of the fact that the G operator of LNL logic translates to nothing in ILL,
the translation of both the G-introduction and G-elimination rules is the identity.

e The remaining rules are similar.

3.3.3 Further Results on the Translations

We now have translations both ways between LNL logic and ILL which preserve provability.

There are probably other translations one could use, but these two seem to be the most
natural.

Clearly, if one starts with a judgement of LNL logic and translates it to ILL and then
back to LNL logic, one will not, in general, get back to the original judgement. This
is because the final judgment will be in the purely linear fragment of LNL logic. Going
around the cycle the other way, however, is the identity:

Theorem 38 For any ILL judgement I' - A, the result of translating it into LNL logic
and then back to ILL, viz. ‘

1‘\0* |_ Ao*

is equal to the original judgement. As a corollary, the (—)° translation of ILL into LNL
logic reflects, as well as preserves, provability in that

T'FA

is provable in ILL iff
T A°
is provable in LNL logic.

3.3 Translations 61

Proof. A trivial induction shows that for all ILL formulae A, A = A°*, from which the
first part of the theorem is immediate. The second part then follows by Theorems 36 and
37. O

A natural question is whether the previous result extends to proofs (rather than just to
provability). It is certainly not the case that the result of mapping an ILL proof into LNL
logic and back again is syntactically identical to the original proof, but it turns out that it
is equal to the original proof under the equality on ILL proofs given by linear categories.
The easiest way to state and prove this result is by using the linear term calculus:

Theorem 39 IfT'Fe: A in LTC, then not only is ' I e°*: A provable, but e ~ e°* where
~ 1is the categorical equality relation on LTC terms given in [BBHAP92, Figure 11, page

40].

Proof. This is an induction on the structure of e, but we omit the rather hairy details
(which in any case would require the repetition of too much material from the earlier
work). One first has to fill in the missing terms in the proof of Theorem 37 and then
prove a number of lemmas concerning the way in which the (—)* translation behaves with
respect to the admissible rules of weakening, contraction and substitution in the LNL
term calculus (because these rules are used in defining the (—)° translation). The terms
arising directly from the composite translation (—)°* are in general very large, but, given
a certain amount of care over variable names, they simplify fairly easily. O

62 4 CONCLUSIONS AND FURTHER WORK

4 Conclusions and Further Work

We have given a new and intuitively appealing characterisation of categorical models of
intuitionistic linear logic. We then used this presentation of the models as the basis
for defining a new logic which unifies ordinary intuitionistic logic with intuitionistic linear
logic. The natural deduction presentation of the new logic then gave, by the Curry-Howard
correspondence, a mixed linear and non-linear lambda calculus.

At first sight, one might be tempted to regard LNL logic as “a logical atrocity without
interest” [GLT89]. I hope, however, that I have shown that this is not the case. LNL logic
has a very natural class of categorical models and a well-behaved proof theory in both its
sequent calculus and natural deduction formulations. Given this, and the links with other
research which were mentioned in the introduction, LNL logic certainly seems to merit
further study.

On the theoretical side, much remains to be done. We have not proved a completeness
theorem, nor have we proved that the LNL term calculus is strong normalising. The strong
normalisation proof should be relatively easy to do via a translation argument like that
which we have previously used for the linear term calculus [Ben95] and the computational
lambda calculus [BBdP93]. It would be nice to have better (that is, less degenerate)
examples of concrete models and one might well find such examples by looking at some of
the categories arising in game semantics.

The connections between LNL logic and other work on LU and related systems should
be looked at more closely. As well as the references cited in the introduction, Schellinx’s
work [Sch94] on decorating conventional proofs to give linear ones seems particularly
interesting in this respect.

It should be noted that although the translations between ILL and LNL logic behave
well with respect to equality, we have not claimed anything concerning the translations
and reduction. I do not yet have any definitive results on whether, for example, reduction
is preserved under either of the translations, but it certainly seems that any positive results
will involve commuting conversions as well as the more conventional 8 rules.

There are also many obvious extensions to the system discussed here. The first of these
is to consider the additive connectives on the linear side, and disjunction (coproducts) on
the conventional side. We touched briefly on this in Section 2.2.3, but more remains to be
done; this should be relatively straightforward, although, as we have already seen, there
is some complication regarding coproducts in LNL models compared with coproducts
in linear categories. Beyond that, one could consider adding inductive or coinductive
datatypes or second-order quantification to the logic. This seems particularly worthwhile

in the light of Plotkin’s work on parametricity and recursion in a logic rather like ours
[P1093].

On the practical side, we should investigate whether or not the LNL term calculus lends
itself more readily to efficient implementation than does the linear term calculus. The hope
is that one can arrange an implementation with two memory spaces, corresponding to the
two subsystems of LNL logic. The non-linear space would be garbage collected in the
usual way, whereas the linear space would contain objects satisfying some useful memory
invariant (such as having only one pointer to them at all times) which could be exploited
to reduce the space usage of programs. Previous experience, however, shows that turning
such intuitively plausible hopes into provably correct implementations is a non-trivial task.

63

5 Acknowledgements

I should like to thank my collaborators Gavin Bierman, Martin Hyland and Valeria de
Paiva for innumerable discussions about logic, terms and categories. Thanks also to Gor-
don Plotkin for making a remark which led directly to the work described here, and to
Barney Hilken for several useful conversations. John Reynolds’s diagram macros and Paul
Taylor’s proof tree macros were used to typeset the paper.

64 REFERENCES
References
[BBdP93] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types

[BBHAP92]

[BBHAP93a]

[BBHAP93b)

[Ben95]

[Bie94a]

[Bie94b)]

[BS93]

[CP90]

[Cro92]

[FW87]

[Gir87]
[Gir93]

from a logical perspective. Preprint, 1993.

P. N. Benton, G. M. Bierman, J. M. E. Hyland, and V. C. V. de Paiva. Term
assignment for intuitonistic linear logic. Technical Report 262, Computer
Laboratory, University of Cambridge, August 1992.

P. N. Benton, G. M. Bierman, J. M. E. Hyland, and V. C. V. de Paiva.
Linear lambda calculus and categorical models revisited. In E. Bérger et al.,
editor, Selected Papers from Computer Science Logic ’92, volume 702 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

P. N. Benton, G. M. Bierman, J. M. E. Hyland, and V. C. V. de Paiva. A
term calculus for intuitionistic linear logic. In M. Bezem and J. F. Groote,
editors, Proceedings of the International Conference on Typed Lambda Cal-
culi and Applications, volume 664 of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

P. N. Benton. Strong normalisation for the linear term calculus. Journal
of Functional Programming, 1995. To appear. Also available as Technical
Report 305, University of Cambridge Computer Laboratory, July 1993.

G. M. Bierman. On intuitionistic linear logic (revised version of PhD the-
sis). Technical Report 346, Computer Laboratory, University of Cambridge,
August 1994.

G. M. Bierman. What is a categorical model of intuitionistic linear logic?
Technical Report 333, Computer Laboratory, University of Cambridge, April
1994.

E. Barendsen and S. Smetsers. Conventional and uniqueness typing in graph
rewrite systems. Technical Report CSI-R9328, Katholieke Universiteit Ni-
jmegen, December 1993.

R. L. Crole and A. M. Pitts. New foundations for fixpoint computations:
FIX-hyperdoctines and the FIX-logic. Technical Report 204, Computer Lab-
oratory, University of Cambridge, August 1990.

R. L. Crole. Programming Metalogics with a Fizpoint Type. PhD thesis,
Computer Laboratory, University of Cambridge, February 1992. Available
as Technical Report 247.

J. Fairbairn and S. Wray. TIM: A simple, lazy abstract machine to execute
supercombinators. In G. Kahn, editor, Proceedings of the 1987 Conference
on Functional Langauges and Computer Architecture. LNCS 274, Springer-
Verlag, 1987. ‘

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic,
59:201-217, 1993.

REFERENCES 65

[GLTS89]

[Jac93]

[Koc71]

[LM92]

[Mog89]

[Mog91]

[P1093]

[Pra92]

[Sch94]

[See80]

[Str72]

[Wad90]

[Wad92]

[Wad93]

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

B. Jacobs. Conventional and linear types in a logic of coalgebras. Preprint,
University of Utrecht, April 1993.

A. Kock. Bilinearity and cartesian closed monads. Math. Scand., 29:161-174,
1971.

P. Lincoln and J. C. Mitchell. Operational aspects of linear lambda calculus.
In Proceedings of the 7th Annual Symposium on Logic in Computer Science.
IEEE, 1992.

E. Moggi. Computational lambda-calculus and monads. In Proceedings of
the 4th Annual Symposium on Logic in Computer Science, Asiloomar, CA,
pages 14-23, 1989.

E. Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55-92, 1991.

G. D. Plotkin. Type theory and recursion (abstract). In Proceedings of 8th
Conference on Logic in Computer Science. IEEE Computer Society Press,
1993.

V. Pratt. Message to the ‘categories@mta.ca’ electronic mailing list 27th
November, 1992.

H. Schellinx. The Noble Art of Linear Decorating. PhD thesis, University of
Amsterdam, 1994.

R. A. G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.
In Conference on Categories in Computer Science and Logic, volume 92 of
AMS Contemporary Mathematics, June 1980.

R. Street. The formal theory of monads. J. Pure and Applied Algebra,
2:149-168, 1972.

P. Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods. North Holland, 1990.

P. Wadler. There’s no substitute for linear logic (projector slides). In
G. Winskel, editor, Proceedings of the CLICS Workshop (Part I), March
1992, Aarhus, Denmark, May 1992. Available as DAIMI PB-397-1 Com-
puter Science Department, Aarhus University.

P. Wadler. A taste of linear logic. In A. M. Borzyszkowski and S. Sokolowski,
editors, Proceedings of the 18th International Symposium on Mathematical
Foundations of Computer Science, number 711 in Lecture Notes in Computer
Science, pages 185-210, 1993.

