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Formalising a Model of the A-calculus in HOL-ST

Sten Agerholm
October 31, 1994

Abstract

Most new theorem provers implement strong and complicated type
theories which eliminate some of the limitations of simple type theories
such as the HOL logic. A more accessible alternative might be to use
a combination of set theory and simple type theory as in HOL-ST
which is a version of the HOL system supporting a ZF-like set theory
in addition to higher order logic. This paper presents a case study on
the use of HOL-ST to build a model of the A-calculus by formalising
the inverse limit construction of domain theory. This construction is
not possible in the HOL system itself, or in simple type theories in
general.

1 Introduction

The HOL system [GM93] supports a simple and accessible yet very powerful
logic, called higher order logic or simple type theory. This is probably a main
reason why it has one of the largest user communities of any theorem prover
today. However, it is heard every now and then that users cannot quite do
what they would like to do, e.g. due to restrictions in the type system of
higher order logic. Some ‘hack’ their way around the problems with great
inconvenience and some move to a stronger type theory, or simply give up.
A problem with stronger type theories is that they are not at all simple and
easy to learn and there are quite a lot of different ones to choose among. On
the other hand, set theory is also more powerful than simple type theory.
It was invented many years ago, is well-established and is intuitive to most
people. Hence, set theory might be useful for theorem proving.

As an experiment, Mike Gordon is currently developing a system, called
HOL-ST, which supports both a ZF-like set theory and higher order logic
[Gor94]. Combining the expressive power of set theory with the benefits
of higher order logic, such as e.g. type checking, HOL-ST might provide a




simple alternative to systems based on type theories, and a more powerful
alternative to the HOL system as well.

In this paper we present a case study on the use of HOL-ST with an
application taken from domain theory. This work was motivated by previous
work on formalising domain theory in HOL [Age93, Age94a, Age94b] where
it became clear that the inverse limit construction of solutions to recursive
domain equations cannot be formalised in HOL easily. The type system of
higher order logic is not rich enough to represent solutions directly though
some difficult hacking might make their formalisation possible indirectly.

This paper shows that this non-trivial construction can be formalised in
HOL-ST directly. The crucial difference between HOL and HOL-ST is that
HOL-ST supports general dependent products of the form

Il Y(2)

zeX

whereas HOL does not.
The inverse limit construction can be used to give solutions to any re-
cursive domain (isomorphism) equation of the form

D = F(D)

where F is an operator on domains like sum, product and (continuous)
function space, or any combination of these. Thus, the right tools based
on the present formalisation might allow very general recursive datatype
definitions in HOL-ST.

As an illustration of this, we present the construction of a domain D,
which satisfies the recursive domain equation

Doo Z [Doo — Do)

where [D — E] denotes the domain of all continuous function from D to
E. Hence, Dy provides a model of the untyped A-calculus. In fact, we
have derived a parametrised class of solutions to the above equation. Any
domain (with an appropriate embedding) can be used as the initial element
of a certain “chain” of domains (cpos), obtained by iterating the function
space. The inverse limit construction provides a kind of “least upper bound”,
an inverse limit, of any such chain.

The present formalisation of the inverse limit construction employs the
categorical method using embedding projection pairs, see e.g. [SP82, P1o83).
This was suggested by Plotkin as a generalisation of Scott’s original inverse




limit construction of a model of the A-calculus in the late 60’s. The formali-
sation is based on Paulson’s accessible presentation in the book [Pau87] but
Plotkin’s [P1o83] was also used in part (in fact, Paulson based his presenta-
tion on this).

The paper is organised as follows. In Section 2 we provide an overview
of set theory in HOL-ST. Section 3 introduces the formalisation of the basic
concepts of domain theory and Section 4 presents the formalisation of the
inverse limit construction. The continuous function space is considered as
an operator for recursive domain equations in Section 5. Tt is proved to be
a continuous covariant functor. This allows a class of models and in turn a
concrete model of the A-calculus to be constructed in Section 6. Section 7
contains some concluding remarks.

2 Set theory

One good thing about set theory is that most people know it. From our early
years of education we are taught to think in terms of sets and we all have
an intuitive understanding of set theoretic notions such as set membership,
union, intersection and so on. This makes it easy to introduce set theory in
a paper like this because, in fact, it is not necessary to do it, and therefore
I won’t. What I will do, however, is to say a little bit about how set theory
technically was made available in HOL, the right paper to read about this is
Gordon’s [Gor94], and introduce some of the less well-known concepts of set
theory as well. (Section 2.3, partly, and Section 2.6 present a few extensions
of HOL-ST made by the present author.)

2.1 Basic concepts

HOL is extended with set theory by declaring a new type V and a new
constant €: V x V — bool and then postulating eight new axioms about
V and €. The exact shape of these are not important here. The axioms
justify the claim that terms of type V' can be interpreted as sets and € can
be interpreted as the membership predicate on such sets. They also allow
new constants to be defined (or specified) such as @) for the empty set, U for
the union of two sets, |J for the union of a set of sets, P for power set, and
so on. Sets can also be written using standard notation like

{z1,%9,...,2,} and {z € X | P[z]}

which denote a finite set (of sets) and a subset of a set specified by a pred-
icate. Furthermore, sets can be constructed by taking the image of a HOL




function on some set:
Yy € |magefXd§f3m. zeXANy=7Ffz.

Here, f has type V — V. Generally speaking, new sets must be constructed
from existing sets some way, in principle starting from the empty set and
then using the axioms.

2.2 Pairs and functions

Set theory is not built with standard notions such as pairs and functions.
These must be derived. For instance, the ordered pair of two sets is defined

as follows o
(@,9) = {{z}, {z,y}}
which allows the characteristic property of pairs to be proved:

Vzizayiye. ((T1,y1) = (22,92)) =21 = 22 Ay1 = yo.

The cartesian product of two sets X and Y can then be defined as the set
of all pairs of elements in X and Y, respectively:

XxY ¥ {(z,y) ePPXUY))|z€XAyeY].

This uses the power set twice to yield sets of sets of elements of X and Y,
a subset of which contains pairs only (by the definition of pairs).
We can take the power set once more and get the set of all relations

between two sets:
XY ¥pxxy).

We shall not be interested in such relations directly but note that certain
relations can be interpreted as functions. These are called set functions
when we want to distinguish them from logical functions of higher order
logic. Set functions are single-valued relations:

def
X»YS{feX Y |Vany. (z,0) € fA(z,0) € f = y1 =12}
This set contains both partial and total functions. Here, we shall only use
the subset of total functions:

XY {feX»Y|VseX yeY (z,y)€f)

Note that a set function (total or not) has HOL type V since it is a set. We
use the notation Vzy € A. t to abbreviate the term Vz. £ € A = Vy. y €
A = t. A similar notation is used for existential quantification and the
choice operator.




2.3 Identity and composition

The two most basic functions, the identity function and the composition
function, can be defined in set theory. Of course, the identity function is
the simplest of the two

ldX ¥ {(z,9) e X x X |z =y}
and it is not difficult to prove that it is a total set function:
YX. ldX eX = X.

Note that it is not possible to define a set for |d without the set argument
since sets must be build from existing ones.

The composition function could be defined in the same way, yielding a,
composition function which takes three sets and two functions as arguments:

ComposeFun(X,Y, Z)f g.

This would be rather inconvenient to work with due to the set arguments
so fortunately we are able to exploit the presence of the function arguments
to define a simpler composition function:

fOg def {{z, 2) € domaing X range f | Jy. (z,y) € g A (y,2) € f}.

Here, domain and range are defined using !mage by taking the first and
second components of each pair in a set function. Note that the composition
function is a logical function, it has type V. — V — V. If we needed a
composition function which was a set function then we would have to make
use of the set arguments.

2.4 Function abstraction and application

We can introduce a A-abstraction to write functions of set theory. Roughly
speaking, function abstraction is defined as follows

(M e X.fx) et {{z,y) € X X ImagefX |y = fz}

where f is a logical function of type V' — V. Indeed, this yields a total set
function:

VIXY. Vz.zeX=>fzeY)=>(MzeX. fz)e X =Y.




Note that in general the body of the abstraction can be any term, not only
applications of the form f z.

A set function can be applied to an argument by using a special function
application, written as ¢. HOL function application by juxtaposition does
not work since a set function has type V. The new function application is
defined by:

forEey (zy)€f.
If f is a set function in X — Y and z € X then f oz is an element of Y.
Furthermore, we have

VXfr.zeX=>(MeX. fz)oz=fx

so function abstraction works as desired.

2.5 Natural numbers

The natural numbers can be represented in set theory by the set

{0,{03,{0,{0}}, {0, {0}, {0, {0}}},...}.

This set is called Num. The number zero is the empty set and the successor
is defined by
Sucn ¥ nu {n}.

The set Num represents the type of natural numbers num in a precise sense:
there is a function num2Num of type num — V which is a bijection on
Num, with inverse Num2num of type V' — num. These allow us to translate
theorems about HOL numbers to theorems about numbers in set theory.
The latter usually have assumptions of the form n € Num, as in

Vn. n € Num = n |< Sucn,

because num2Num is a bijection on Num only (not on all sets). Above we
have used the arrow in the term |< to say that the ordering relation is a
version of the HOL relation < in set theory.

2.6 Dependent sum and product

Until this point the HOL user is perhaps quite unimpressed by set theory
which may seem only to make things more complicated. Hence, here are
some goodies!




Many HOL users have been in a situation where they would have liked to
have dependent types. Regarding ordinary HOL predicate sets as types it is
possible to solve simple problems of this sort but more general constructions
like dependent sum and dependent product are impossible to define, even
using predicate sets. They are straightforward to define in set theory.

The dependent sum is a generalisation of the relation set introduced
above where we defined X < Y to be the set of all relations between X and
Y. In the dependent sum, the second set may depend on the first set:

Sve¥ ) U e}

zeX zeX yeYx

Here, Y x can be any term of type V containing z or not. In the same way,
the dependent product is a generalisation of the total function set introduced
above and written as X — Y

H Vo {f € Z Yz |VzeX Ty (z,v) €[}
zeX z€X

Clearly, both the relation set and the function set could have been ob-
tained as special cases of the dependent sum and the dependent product,
respectively. In fact, the function abstraction we introduced above yields an
element of the dependent product:

VIXY.(Vz.z€X = fzeYa)=> Nz X fa)e [[ Ya
z€eX

In the present application of HOL-ST we shall make essential use of the
dependent product to overcome limitations in the type system of the HOL
logic.

3 Basic concepts of domain theory

Domain theory is the study of complete partial orders (cpos) and continuous
functions between cpos. A pair consisting of a set and an ordering relation is
called a complete partial order when it is a partial order and contains least
upper bounds of all chains. A continuous function is a monotonic function
(w.r.t. the relation) which preserves such least upper bounds. This section
very briefly introduces the semantic definitions of the central concepts of
domain theory in HOL-ST.




3.1 Complete partial orders

A partial order (po) is a HOL pair consisting of a set and a binary rela-
tion such that the relation is reflexive, transitive and antisymmetric on all
elements of the set:

poD def

Ve €setD. rel Dz A
Veyz €setD. relDzyAvrel Dyz = rel Dz z A
Vey €setD.relDzyArelDyz = 2 =y.

The constants set and rel equal FST and SND respectively. The constant po
has type V#(V — V — bool) — bool.

We often confuse a (complete) partial order with the underlying set.
Hence, we say a term is an element of a (c)po when we should really say
that it is an element of the underlying set. The constants rel and set support
this confusion.

A chain of elements of a partial order is a non-decreasing sequence of

type num — V:
chainD X & (Vn. X n € set D) A (Vn. rel D(X n)(X (n + 1))).

An upper bound of such a chain is an element of the po which is approxi-
mated by all elements of the chain:

isubD X 5 % 7 € set D A Vn. rel D(X n)z.

We are interested in the least such element, called the least upper bound
(lub):
islubD X z ¥ isubD X AVy.isubD Xy =relDzy.

When a lub exists we can use the choice operator to select this lub:

lubD X & ez, islub D X z.

A lub is unique by antisymmetry of partial orders.
A partial order in which all chains have least upper bounds is called a
complete partial order:

cpoD et poD AVX. chainD X = 3Jz. islubD X z.




From the definition of complete partial order we can prove the theorem
VDX. chain D X = cpo D= islub D X (lub D X)

which says that for any cpo and chain of elements in the cpo, the constant
lub gives the least upper bound.

We do not require cpos to have a least element, also called a bottom (or
an undefined) element. A cpo is called pointed if it has a least element:

pcpo D def cpo D Adz €setD. Vy € setD. rel Dxy.

The choice operator can be used to select a bottom element:

bot D % ¢z € set D. Yy € setD. rel Dz y.

The constant bot works for any pointed cpo:
VD. pcpo D = Vy € set D. rel D(bot D)y.

By antisymmetry, the bottom is unique if it exists.

3.2 Continuous functions

So, cpos are partial orders which contains the lubs of all chains. We define
the set of continuous functions as the subset of monotonic functions which
preserve lubs of chains:

mono(D, E) &

{f €setD — set E |

Vzy € set D. rel Dz y = rel B(f o z)(f ¢ y)}

cont(D, E) def

{f € mono(D, E) |
VX. chainDX = fo(lubD X) =lubE(n. f o (X n))}.

Note that monotonic and continuous functions are functions in set theory,
not in HOL. Hence, the type of a continuous function is V' (functions are
sets). The second lub of the last definition makes sense since the result of
applying a monotonic function to each element of a chain is itself a chain.

The continuous function space construction on cpos is defined as the
pair consisting of the set of continuous functions between two cpos and the
pointwise ordering relation on functions:

f(D, B) ¥ cont(D, E), \fg.Vz € set D. rel B(f o z)(g ¢ ).




The construction always yields a cpo if its arguments are cpos:
VDE. cpo D = cpo E = cpo(cf(D, E)).
The continuous function space is sometimes called the cpo of continuous
functions, or just the function space.
Least upper bounds are calculated pointwise in the function space since
the underlying relation is:
VYDEX.

chain(cf(D, E))X = cpoD = cpo E =

lub(cf(D, E))X = Az € set D. lubE(An. X n o z).
Besides, the cpo of continuous functions is pointed if the codomain is pointed

VDE. cpo D = pcpo E = pcpo(cf(D, E))

and its bottom element is the constant function which equals bottom every-
where.

3.3 Identity and composition

There are two standard constructions for writing continuous functions which
are central to the present development. The identity function of set theory
is a continuous function on any cpo:

VD. cpo D => ld(set D) € cont(D, D).
And the composition function preserves continuity:
VfgDD'E.
f € cont(D', E) = g € cont(D, D'} = cpo D =
fOg € cont(D, E).
From these theorems we may conclude that cpos form a category with con-
tinuous functions as the arrows though this has no direct importance in this
paper. (Note that in order to prove the second theorem it is enough to
assume that the domain of the first function is a cpo.)
In fact, the composition function not only preserves continuity it is also
itself a continuous function. It is monotonic, as stated by
Vfgf'd DD'E.
f € cont(D', E) = g € cont(D,D') =
f' € cont(D',E) = ¢’ € cont(D,D') = cpo E =
rel(cf(D', B))f f' = rel(cf(D, D'))g g’ = rel(cf(D, E))(f O g)(f' Og'),
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and it preserves lubs of chains of continuous functions:

VXYDD'E.
chain(cf(D', E))X = chain(cf(D,D"))Y = cpoD = cpoD' = cpo E =
lub(cf(D', E)) X Olub(cf(D, D"))Y = lub(cf(D, E))(An. X nOY n).

These theorems were used several times in proofs. Note that it is not pos-
sible to state the continuity of O as membership of the set of continuous
functions since O is a logical function (as noted in Section 2.3). It is the
logical function which takes two set functions as arguments and returns a
set function as a result.

3.4 Notes on alternative formalisations

The formalisation presented above is similar to the formalisation presented
in [Age94b, Age93], yet slightly different. First of all, the type used to
represent cpos is different. Earlier it was

(@ = bool)#(a = a — bool),

now it is

V#(V = V = bool).

Note an important difference here: in pure HOL the type representing sets
of elements of some type is different from the type of the elements. This
is not the case in the HOL-ST representation where elements of sets are
themselves sets.

Another minor difference is that the present formalisation is less verbose.
We have changed the notion of upper bound of some set to upper bound
of some chain. Hence, we avoid taking the sets of elements of chains and
the knowledge that elements of chains are always elements of a cpo also
simplifies matters a bit. Besides, we do not introduce po and cpo conditions
unless necessary. For instance, in the definition of continuous functions we
do not require the domain and codomain to be cpos.

Some might feel that representing cpos as relations and defining the set
of a cpo as the elements for which the relation is reflexive would be a simpler
formalisation (cf. the discussion on alternative formalisations in [Age94bl]).
This approach is not possible when relations are HOL functions which take
arguments of type V because none of the valid ways of forming sets seem
to be applicable (a set must be constructed from other sets). Alternatively,
we could have represented relations as relations of set theory (i.e. as sets of
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pairs). In this case, it would be possible and perhaps even natural to partly
ignore the set component of cpos.

We did not attempt this, however, since in the formalisation presented
in this paper we wanted to try to exploit higher order logic as much as
possible. Hence, cpos are HOL pairs, ordering relations are HOL functions
and chains are HOL functions from the HOL type of natural numbers num.
Alternatively, we could have chosen to do more work in set theory. For
instance, the natural number argument of chains could have been in the
set Num and cpos could have been represented by relations of set theory as
indicated above.

It is not essential whether one uses a relation of set theory or a certain
pair of higher order logic to represent cpos. In both cases, I think that the
constants rel and set should be used to support the view that a cpo is a
set with an associated relation. However, it does make a difference whether
one uses natural number of set theory or higher order logic, and in general,
whether one uses sets of HOL-ST or types of pure HOL. Using the latter type
assumptions are avoided and furthermore, type checking is done automatic
in ML. Using sets in HOL-ST, type checking, i.e. checking terms are in the
right sets, is performed (late) by theorem proving.

Obviously, if we wish to exploit the additional power of set theory we
sometimes have to leave higher order logic and pay the price. It is an
interesting and difficult question which parts of the formalisation should be
done in set theory and which should be done in higher order logic. The
question is discussed further in the following section.

4 The inverse limit construction

Just as chains of elements of cpos have least upper bounds we can consider
“chains” of cpos which have “least upper bounds”, called inverse limits.
The ordering relation on elements is replaced by the notion of embedding
morphisms (determined in embedding projection pairs). A certain constant
Dinf parametrised by a chain of cpos can be proven once and forall to yield
the inverse limit. Dinf is defined as a subcpo of an infinite cartesian product
of cpos. Hence, the elements of Dinf are infinite tuples with components
which may be in different cpos. In this section, we present the definitions
and theorems which formalise the inverse limit construction in HOL-ST.

12




4.1 A cpo of infinite tuples

The infinite cartesian product of an infinite sequence of cpos is defined using
the dependent product construction on sets. Before the infinite product
construction can be defined we must make a decision: Should sequences of
cpos, written as D, be formalised as functions from the ¢ype of numbers or
from the set of numbers. The latter choice seems most obvious since the
elements of the dependent product

HY:L’

zeX

are functions of set theory mapping elements z € X to elements y € Y z.
Hence, the infinite product could be defined as follows:

H set(Dn).

neNum

The alternative would be

H set(D(Num2num n))

neNum

which seems awkward at first because though the sequence takes arguments
in num we must still use Num in the dependent product. And indeed,
the first of the many theorems we wish to prove about the formalisation
of infinite products and inverse limits become more complicated when we
choose this second approach. However, in the long run it is worth paying the
price of inconvenience in the beginning since things become quite horrible
later on if we choose the first approach. In fact, we did both developments
to test out which approach was the simpler. Since the latter was, this paper
will only present it.

There are perhaps three main reasons why the num approach was sim-
pler. First, we avoid explicit type assumptions of the form n € Num and
furthermore, we avoid type checking such assumptions by theorem proving.
Second, we avoid redeveloping parts of the HOL theory of natural numbers
in set theory (addition, ordering relations, recursive function definitions)
though this can be done in a straightforward way, I guess, using the iso-
morphisms (see Section 5 of [Gor94]). A third reason is that in the previous
section we chose to represent ordinary sequences (chains) of elements of cpos
as functions from the type of numbers num. This was natural since there
is no need to use Num here, and in general, using HOL types is simpler as
discussed above. If we chose to use the set Num for sequences of cpos this

13




would give an unfortunate mismatch. We would have to do a lot of transla-
tion between the two kinds of numbers and for convenience we would have
to define alternative versions of chain and lub to work on Num. For these
reasons, chains of cpos are represented as functions from HOL numbers.

Now, we should be ready to define the infinite cartesian product con-
struction on cpos which associates the pointwise ordering with elements of
the dependent product:

iprod D et
H set(D(Num2numn)),

neNum

Azy. Yn. rel(D n)(z o (hum2Num n))(y ¢ (num2Num n)).

Note that all number conversions could be eliminated if we used Num rather
than num to represent sequences. This illustrates how difficult a decision it
was to choose the num approach. Elements of the infinite product can be
viewed as infinite tuples of elements since they are functions from natural
numbers to some cpo (dependent on the number argument). Indeed, iprod
does yield a construction on c¢pos and on pointed cpos as well:

VD. (Vn. cpo(D n)) = cpo(iprod D)

VD. (Vn. pcpo(Dn)) = pcpo(iprod D).
Actually, the fact that we have been able to define iprod is interesting in
itself. This is not possible in pure HOL for instance since dependent types
are not available. Finally, note that if we had represented sequences as

functions from Num then the quantifications ‘Vn’ above would have to be
restricted to Num (otherwise they would be quantifying over all sets).

4.2 Embedding projection pairs

The ordering on elements of a cpo is generalised to the notion of embedding
morphism on cpos. Embeddings come in pairs with projections, forming the
so-called embedding projection pairs:

projpair(D, E)(e, p) def

e € cont(D, E) Ap € cont(E, D) A

pOe = ld(set D) Arel(cf(E, E))(e Op)(ld(set E)).
An embedding projection pair (e,p) between cpos D and E may be pic-
turised as follows:




The conditions make sure that the structure of F is richer than that of D
(and can contain it). An embedding is one-one and a projection is onto.
Furthermore, if the cpos are pointed then both functions are strict.
Embeddings uniquely determine projections and vice versa:
VDEepe'p'.
cpo D = cpo E = projpair(D, E)(e,p) = projpair(D, E)(¢',p') =
(e=¢€)=(p=p).
Hence, it is enough to consider embeddings
emb(D, E)e %ef Ap. projpair(D, E)(e, p)

and define the associated projections, or refracts as they are often called,
using the choice operator:

R(D, E)e def ep. projpair(D, E)(e, p).

When we wish to be less formal, we will sometimes write emb(D, E)e using

the standard mathematical notation e : D < E. Similarly, R(D, E)e is

sometimes written as efl.

The identity function is a simple example of an embedding:

VD. cpo D = emb(D, D)(ld(set D))
VD. cpoD = R(D, D)(ld(set D)) = Id(set D).
Obviously, the associated projection is the identity function itself.

In order to prove a continuous function is an embedding we sometimes
have to display the associated projection explicitly, but not always. For
instance, once we have proved that composition preserves embeddings

Vee' DD'E,
emb(D, D")e = emb(D', E)e’ = cpoD = cpo D' = cpo E =
emb(D, E)(e' O¢)
we can derive new embeddings directly without displaying the projection.
However, it is often useful to be able to calculate what the associated pro-
jections are:
Vee DD'E.
emb(D, D')e = emb(D', E)e’ = cpoD = cpo D' = cpo E =
R(D,E)(¢' Oe) = R(D,D"e OR(D', E)é'.
Hence, the projections of compositions of embeddings are obtained by com-
posing the projections of each embedding in the reversed order.
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4.3 Embedding projection chains of cpos

Embeddings are used to form chains of cpos in a similar way that the or-
dering on elements of cpos is used to form chains. A chain of cpos is a pair
(D, e) consisting of a sequence of cpos D, and a sequence of embeddings e,
where e, : Dy <0 Dy for all n: num:

€n—1

€0 ey en
Do<D1 v 4 Dy Qe

For convenience, we use D and e for sequences and, perhaps confusingly,
D, and e, for each of their respective elements. The notion of embedding
projection chain of cpos is formalised as follows in HOL-ST:

emb_chainD e & (Vn. cpo(Dn)) A (Yn. emb(D n,D(SUCn))(en)).

We shall introduce a generalisation of the embeddings associated with
chains of cpos since these just convert between two consecutive cpos of a
chain. Exploiting that composition preserves embeddings, we can define a
function eps to convert between any two cpos D,, and Dj:

en10 - 0ep ifm<n
epsDemn = ¢ Id(set D) ifm=n

eF0 ... 0eft | ifm>n.

If m < n then eps gives an embedding:

VDe.
emb_chainDe =
Vmn. m < n = emb(Dm,Dn)(epsDemn).

If we use Num instead of num then this theorem would be stated as follows:

VDe.
(Vn. n € Num = cpo(Dn)) =
(Vn. n € Num = emb(D n,D(Sucn))(en)) =
Ymn. m € Num=>n € Num=>m|<n=
emb(Dm,Dn)(epsD emn)

where | converts a relation to set theory. Note the additional type assump-
tions (the definition of emb_chain is expanded for illustration). Much effort
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was put into defining and reasoning about eps. In particular, the following
two important theorems had quite long and messy proofs:

VDe.

emb_chainDe =

Ymnk. m <k=epsDemn=epsDeknOepsDemk
VYDe.

emb_chainDe =

Vmnk. n <k =epsDemn =epsDeknOepsDemk.

The theorems state how the function eps D e mn mapping elements of Dy,
to element of D, can be split to go via Dy for certain k. We shall not go
into the boring details of proving properties of eps here but just mention
that it was defined by two primitive recursive definitions on num. Using
Num to represent sequences complicated reasoning about eps a lot since its
definition and properties rely heavily on natural numbers. For instance, at
the moment there is no way to define primitive recursive functions or do
induction in set theory so a lot of translation from num to Num had to be
done. On the other hand, using induction in set theory one would have the
inconvenience of proof obligations due to typing assumptions.

4.4 Dinf—the inverse limit

Given a chain of cpos (D, e), the inverse limit is defined as a subcpo of the
infinite cartesian product of D. First, we introduce the notions of subcpo
and subpcpo (‘p’ for pointed) briefly:

subcpo D K def

set D CsetEArelD =rel EAVX. chainDX = lubE X € setD
subpcpo D E def subcpoD E AbotE € setD.

A constructor can be introduced for defining both subcpos and subpcpos
mkepo D P % {z €setD | Pz}, rel D
as stated by the following two theorems:

VDP.
(VX. chain(mkcpo D P)X = P(lubD X)) = cpo D =
subcpo(mkepo D P)D
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VDP.
(VX. chain(mkepo D P)X = P(lubD X)) = P(bot D) = pcpo D =
subpcpo(mkepo D P)D.

Hence, using mkcpo it is enough to prove that the specified subset of a
(pointed) cpo contains lubs (and bottom).

By defining Dinf using mkcpo we are therefore able to obtain quite easily
that it yields cpos and pointed cpos because iprod does. The definition is:

DinfDe def

mkcpo
(iprod D)
(Az.Vn.
R(Dn,D(SUCn))(en) o (z o (num2Num(SUCn))) =

z o (num2Num n)),

where the annoying num2Num conversions could be avoided if we had chosen
to use Num instead of num. Informally, the underlying set of Dinf is defined
as the subset of all infinite tuples z on which the n-th projection ef maps
the (n + 1)-st index to the n-th index for all n: ef(z,41) = z,. The fact

that Dinf always yields a cpo is stated as follows:
VDe. emb_chain D e = cpo(Dinf D e).

We can replace cpo by pcpo in this theorem to obtain the same result for
pointed cpos.

Given a chain of cpos, we wish to prove that the pair consisting of Dinf
and a certain family of embeddings from D, to Dinf is an inverse limit, i.e.
this pair satisfies a certain commuting diagram condition and is universal
with this property. The desired family of embeddings is defined using the
eps mappings as follows:

thoDen % Az € set(Dn). \m € Num. eps D en(Num2numm) o

So, given an element z € D,, the function rhoD en returns a tuple of the
following form:

("'? 67‘?——2(6111{—1($))7 6713“1(113), T, en(w)? en+1(€n($)), )

where the n-th element is z. The projection associated with rho D e n simply
takes the n-th component of the tuple so obviously we have

rhog)’e)n O rho(p ¢yn = Id(setDy,)
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Figure 1: The commutivity of the inverse limit Do, with embeddings p,.

where we have subscripted D and e for convenience (we shall continue to do
this a few times below). Furthermore, we can prove that rho D en indeed is
an embedding from D, to Dinf:

VDe. emb_chainD e = Vn. emb(D n,Dinf D e)(rho D e n)

Hence, we have defined a family of embeddings from D,, to Dinf. Next, we
must prove Dinf (with this family) enjoys the desired properties: commu-
tivity and universality.

4.5 Commutivity

The commuting diagram property that we wish to prove about Dinf and rho
can be picturised as in Figure 1 and written as

VDe. emb_chainD e => commute D e(Dinf D €)(rho D €)

where commute is defined by

def
commuteDe Er &

(Vn. emb(Dn, E)(rn)) A (Vmn. m <n=rnOepsDemn =rm).

The main step of the proof is the use of the fact that eps can be split (see
above).

19




A
1
1
: =117)
bm ! on
Do
Pm Prn
D Emn N
— LUm > D, B

Figure 2: Universality of Do, with embeddings pp,.

4.6 Universality

The more difficult part of proving that Dinf (with rho) is the inverse limit is
proving that it is universal. This property can be picturised as in Figure 2
which informally states that for any cpo G which satisfy the commuting dia-
gram condition with a family of embeddings ¢, there is a unique embedding
0 : Dinf(p ¢) — G such that 6 factors ¢n: ¢p = 6 Orho(p e)n for all n : num.
An embedding with this property is called a mediating morphism:

mediating(E, G, r,f)t dof emb(E,G)t AVn. fn=1¢0rn.

The mediating morphism which ensures Dinf is universal appears in the
following theorem:

YDeGTt.
emb_chainDe = cpoG = commuteDeGf =
mediating
(Dinf D e, G, rhoD e, f)
(lub(cf(Dinf D e, G))(An. £ n O R(D n, Dinf D e)(rho D en))).

The uniqueness has also been proved though it is not stated here. It takes
some amount of effort to prove the desired properties of this mediating
morphism which is the lub of a sequence of functions. First of all, the
sequence must be proven to form a chain of continuous functions, otherwise
the result of applying lub is not necessarily a least upper bound. Next, the
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associated projection must be constructed and the pair must be proved to be
an embedding projection pair. Hence, the proofs involve a lot of reasoning
about lubs and composition.

A main part of proving the universality of Dinf with rho is realising that
the functions rhon O rho®n form a chain which converges to the identity
function on Dinf:

VDe.
emb_chainDe =
lub(cf(Dinf D e, Dinf D €))
(An.rhoD en O R(D n, Dinf D e)(rho D en)) = Id(set(Dinf D e)).

Then the universality follows from the fact that this condition implies univer-
sality in general, i.e. any commuting diagram with this property is universal:

VDeFErGrt.

emb_chainD e =

cpo B = commuteDe Er =

lub(cf(E, E))(An.rnOR(Dn, E)(rn)) = ld(set ) =

cpo G = commuteDeGf =

mediating(E, G, r,f)(lub(cf(E, G))(An. £ n OR(D n, E)(rn))) A

Vt. mediating(E, G, r,f)t =

t = lub(cf(E, G))(An.f n O R(D n, E)(rn)).

This theorem is called the lub-implies-universal theorem below. The impli-
cation can be strengthened to equality but it has not been necessary to do
this in the present development.

We have now completed the formalisation of the inverse limit construc-
tion in HOL-ST. A cpo Dinfip o) has been defined and proved to be the
inverse limit of an arbitrary chain of cpos (D, e). Our next step is to show
how this result can be used to solve recursive domain equations in HOL-ST.
We will focus on one example, namely D 2 [D — D], but the inverse limit

construction can be exploited for any equation defining a functor on the
category of cpos which preserves embeddings and the universal property.

5 Continuity of the continuous functions space

In general, a recursive domain (isomorphism) equation can have the form

D = F(D)
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where F is a continuous covariant functor. This means that F is a pair con-
sisting of a construction on cpos and a construction on embeddings which
satisfies certain conditions. As a constructor on embeddings, it must pre-
serve identity and composition to be a covariant functor (a term of category
theory). And to be a continuous covariant functor it must preserve univer-
sality which implies that it preserves inverse limits of chains of cpos.

We should remark that a domain equation is stated using the cpo con-
struction part of a functor, for instance, using the continuous function space

construction as in
D =[D — Dj,

and the associated construction on embeddings is only implicit here. Yet,
the construction on embeddings is very important. If D is a cpo which
satisfies the commutativity and universality properties with some family of
embeddings then the construction is used to construct a family of embed-
dings which makes the domain F(D) satisfy the same two properties. As a
consequence, the inverse limit, formalised as Dinf in HOL-ST, yields a kind
of ‘semi-solution’ of the isomorphism equation. More precisely, the functor
F preserves inverse limits. For instance, to continue the example above,
the fact that the function space preserves inverse limits is stated roughly as
follows in the HOL-ST formalisation:

Dinf(___) = Cf(Dinf(D’e), Dinf(D,e)),
where the notion of isomorphism between domains is defined as usual:

D= EY 3fg. f € cont(D, E) A g € cont(E, D) A
g Of =Id(set D) A fOg = Ild(set E).

The arguments of the first Dinf, written as dots above, is not the chain (D, e)
and therefore Dinf does not yield a real solution directly. However, a solution
is obtained fairly easily from this fact. The main result of this section is a
slightly more general version of this theorem which states precisely that the
functor for the continuous function space preserves inverse limits of chains
of cpos.

5.1 Covariance

The functor for the continuous function space consists of a construction on
cpos and a construction on embeddings. We already defined the construc-
tion on cpos, called cf. The other part of the functor, the construction on
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embeddings, is defined as follows:
cfemb(D, D', E)(e,e') & \f € cont(D, D').¢' O f OR(D, E)e.

The cpo construction takes two cpos as arguments and similarly the con-
struction on embeddings takes two embeddings as arguments. The idea is
that if e is an embedding of D into F and €’ is an embedding of D’ into E’
then cf_emb(p pr my(e, ') is an embedding of the continuous function space
cf (D, D’) into the continuous function space cf (E, E'):

Vee! DED'E'.
emb(D, E)e = cpoD = cpo E =
emb(D', E')e' = cpoD' = cpo E' =
emb(cf(D, D), cf(E, E'))(cf_.emb(D, D', E)(e, €')).

Hence, cf_emb preserves embeddings. Furthermore, as a function on embed-
dings it preserves the identity function in each argument

VDE.
cpoD = cpo E =
cf_emb(D, E, D)(ld(set D), ld(set E')) = Id(cont(D, E))

and the composition of two embeddings, which is itself an embedding, is
also preserved in each argument:

Veieseleh DD1ED' DI E'.
emb(D, Dy)e; = emb(D1, E)eg = cpoD = cpoD; = cpo E =
emb(D', D})é} = emb(D}, E')e} = cpo D' = cpo D} = cpo E' =
cf_emb(D, D', E)(es Oey1,¢e, 0¢)) =
cf_emb(D1, D1, E)(e2, eh) Ocf_emb(D, D', D1)(ey, €}).

This justifies that cf_emb is a covariant functor. If we were working with a
construction of only one argument then the theorems would be less complex
and only have half the assumptions.

5.2 Continuity

As a first step towards proving continuity, i.e. commutivity and universal-
ity, of the functor for the function space we must derive that given two
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embedding chains of cpos (D, e) and (D’,e') the continuous function space
construction can be used to construct another chain of cpos

An. cf(Dn, Dp), An.cf_embp, pr p..1)(€ns€n)
as stated by the theorem:

Vee'DD'.
emb_chainD e = emb_chainD’e’ =
emb_chain(An. cf (D n, D’ n))
(An.cf_emb(D n, D' n,D(SUCnR))(en, e n)).

Assuming next that there are cpos E and E' with families of embeddings
rn : Dp < E and rl, : D], < E' which satisfy the commuting diagram
condition then these families and cf_emb can be used to construct a family
of embeddings such that cf(E, E') satisfies commutivity with this family:

Vee'rrDD'EE'.
emb_chainDe = cpo F = commuteDe Er =
emb_chainD’e’ = cpo E' = commute D' e’ E' v’ =
commute
(An.cf(Dn,D'n))
(An.cf_emb(Dn, D’ n,D(SUCn))(en, e’ n))
(cf(B, E'))
(An.cf_emb(D n, D' n, E)(rn,r' n)).

Furthermore, cf(F, E') is universal. This is obtained from the following
theorem

Vee'rr DD'EE'.
emb_chainD e = cpo £ = commuteDe Er =
lub(cf(E, E))(An.rnOR(D n, E)(rn)) = ld(set E) =
emb_chainD' e’ = cpo E' = commuteD' &' E't’' =
lub(cf(E', E"))(Mn.r' nOR(D' n, B')(x' n)) = Id(set E') =
lub(cf(cf(E, E'),cf(E, E")))
(An.cf_emb(Dn,D'n, E)(rn,r'n)O
R(cf(Dn,D'n),cf(E, E'))(cf.emb(Dn, D' n, E)(rn,r' n))) =
|d(set(cf(F, E')))
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by employing the lub-implies-universal theorem and the chain and commu-
tivity results presented above. (It is left to the reader to generalise the
universality situation presented in Figure 2 to two chains instead of one.)

5.3 Inverse limits

Finally, we shall state the main result of this section which follows from
the universality of the functor for the continuous function space, i.e. the
universality of cf with the family c¢f _.emb. The result states that this functor
preserves inverse limits:

VYee'DD'.
emb_chainD e = emb_chainD’ e’ =
Dinf(An. cf(D n, D' n))(An.cf_emb(D n, D' n,D(SUCn))(en, e n)) =
cf(Dinf D e, Dinf D’ &)

In the next section this theorem is used to give a model of the A-calculus.

In order to prove the theorem we do not only use the universality of
the continuous function space but the universality of Dinf as well. Since
the function space yields a chain of cpos and satisfies commutivity we are
able to use the universality of Dinf to obtain an embedding from Dinf to the
function space, and vice versa, since Dinf yields a chain of cpos and satisfies
commutivity we can use the universality of the function space to obtain an
embedding in the other direction. Though this is not enough to establish the
isomorphism result (see Exercise 3 of [P1o83]) we are able to prove that the
embeddings returned by the universality theorems are each others inverses.
A main step of the proof of this is to use the continuity of composition, i.e.
the fact that it preserves lubs of chains.

6 Dy —a model of the A-calculus

Until this point we have worked with assumed embedding projection chains
of cpos and most constants and theorems have been parametrised with such
assumptions. We shall now construct one specific but still parametrised
chain by iterating the continuous function space construction starting at any
cpo D with an embedding e : D <« cf(D, D). From this chain we obtain a
partially concrete instantiation of Dinf which, due to the fact that the functor
for the function space preserves inverse limits, yields a parametrised model
of the A-calculus (obviously, the parameters are D and e). Choosing one
concrete starting point, e.g. the “bottom” cpo void and a certain embedding
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void_emb which is equal to bottom for all arguments, we obtain a concrete
non-trivial (i.e. non-empty) model Dy, of the A-calculus.

Just as in the previous section, everything that is done in this section for
the function space could have been done for any recursive domain equation
D = F(D) where F is a continuous covariant functor. Starting from the
“bottom” cpo void, for convenience written as L, and from the everywhere
undefined embedding € : D < F(D), the chain

Fey) .7:2(€J_)
q q “ v

LGFWL) <G FHL)

which is formed by iterating F has an inverse limit (usually called Dq).
Note that this construction of a solution to a recursive domain equation
resembles the fixed point theorem.

6.1 Constructing a parametrised model

We shall define a sequence of cpos and embeddings by iterating the cf con-
struction on cpos and the cf.emb construction on embeddings using any cpo
as the initial cpo element and any embedding of this cpo into its own func-
tion space as the first embedding element of the sequences. The sequence of
cpos is defined by a primitive recursive definition

iter cf D0 DA

iter_cf D(SUCn) ¥ cf(itercf D n, iter.cf D n)

and the sequence of embeddings is defined in a similar way:

itercf_emb D e0 % e A
iter_cf_emb D e(SUCn) &
cf _emb(iter_cf D n,iter_cf D n,iter_cf D(SUCn))

(itercf_emb D en,iter cf_emb Den).

Using induction on the natural numbers, it is not difficult to prove that
these definitions yield a chain of cpos

VDe.
cpo D = emb(D, cf(D, D))e =
emb_chain(iter_cf D)(iter_cf_emb De),

provided the parameters enjoy the simple properties just mentioned infor-
mally above.
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So, we have constructed a chain of cpos which we can match against
both assumptions of the theorem stating that the functor for the continuous
function space preserves inverse limits. This yields the following theorem:

cpo D,emb(D, cf(D, D))e
F Dinf
(An. cf(iter_cf D n, iter_cf D n))
(An. cf _emb(iter_cf D n, iter_cf D n,iter_cf D(SUCn))
(itercf_emb D en,iter_cf_emb Den))
cf(Dinf(iter_cf D)(iter_cf_emb D e), Dinf(iter_cf D)(iter_cf_emb D e)).

The right-hand side of this theorem has the desired form. Note that we
have assumed a cpo D and an embedding e : D < cf(D, D). Now, rewriting
the left-hand side of the theorem by folding the definitions of iter_cf and
iter_cf_emb we obtain

cpo D,emb(D, cf(D,D))e
F Dinf(An. iter_cf D(SUCn))(An. iter_cf_emb D e(SUCn)) =
cf(Dinf(iter_cf D)(iter_cf_emb D e}, Dinf(iter_cf D)(iter_cf_emb D e)).

The next step is to use that the inverse limit of a chain is unaffected if we
take a suffix of the chain, and as a special case, if we ignore the first element
of the chain:

VDe. emb_chain D e = Dinf D e = Dinf(An. D(SUCn))(An.e(SUCn)).

Instantiating this with the chain of cpos derived above and using transitivity
of & we obtain

cpo D,emb(D, cf(D, D))e
F Dinf(iter_cf D)(iter.cf_emb De) =
cf (Dinf (iter_cf D)(iter_cf_emb D e), Dinf(iter_cf D)(iter_cf_emb D e))

which is the desired result. However, let us define a constant Dinf_cf to
abbreviate the Dinf term above

Dinfcf D e % Dinf(iter_cf D)(iter cf_emb De)

and use this to simplify the appearance of the previous result. Let us also
discharge the assumptions and generalise the variables, obtaining a theorem
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which gives a parametrised model of the \-calculus:

VDe.
cpoD = emb(D,cf(D, D))e =
Dinf_cf D e = cf(Dinf_cf D e, Dinf_cf D e).

6.2 A concrete model derived using void

In order to illustrate how the previous result can be used to derive a concrete
model of the A-calculus, we shall consider a very simple yet non-empty cpo,
called void:

void & {{}b ey z =y.

It contains just one element, the empty set, which trivially is a bottom

element of the cpo:
botvoid = {}.

Furthermore, it is easy to define a function void_emb
void_emb D % )z € setvoid. bot D
which embeds void into any pointed cpo D:
VD. pecpo D = emb(void, D)(void_emb D).

This is the everywhere undefined embedding. Of course, the associated pro-
jection maps all elements of D to the empty set. The last theorem can be
used to instantiate the parametrised model if we observe that cf(void, void)
is pointed because void is pointed. Hence, defining a constant Dy, to abbre-
viate the Dinf_cf term of the instantiated model

Deoo & Dinf_cf (void, void_emb(cf(void, void)))

the desired concrete and non-trivial model of the A-calculus can be stated
as follows:

Doo & cf(Dooy Doo)-
7 Concluding remarks

Combining set theory and higher order logic (simple type theory) in the
same theorem prover provides a useful system for doing mathematics. The
simplicity and convenience of higher order logic can be exploited as well

28




as the expressive power of set theory. This paper has demonstrated this by
presenting a formalisation of a model of the A-calculus in HOL-ST. This was
done via the inverse limit construction which is not possible in higher order
logic. However, rather than working in set theory only it was shown that
set and type theoretic reasoning can be mixed to advantage by exploiting
set theory only to the extent of which it is necessary and working in higher
order logic the rest of the time.

One of the main disadvantages of set theory is the presence of explicit
type assumptions. This means that type checking is done late by theorem
proving whereas in higher order logic type checking is done early in ML. Fur-
thermore, type checking is automatic in HOL but cannot be fully automated
in set theory and was done manually in the present development.

The paper has discussed the issue of whether to use higher order logic
or set theory when both approaches are possible. A main problem was
to decide when to use the fype of natural number num and when to use
the set of natural numbers Num to represent certain sequences. Of course,
due to the benefits of type checking it would be desirable to use num only
but this was not possible. The set Num had to be used in the dependent
product. The situation was further complicated by the fact that when the
decision had to be made we were already using num for related things. To
make a long story short, we tried to use both num and Num for the entire
development from that stage and the funny thing is that though the first
definitions and theorems were simpler using Num it was much simpler to use
num in the long run. Hence, the paper presented this approach. A third
alternative would be to use Num only, i.e. to change the initial definitions
where num was used, but this would complicate the entire development with
type assumptions occurring everywhere. It is difficult to say which approach
to choose in the general situation but I feel that the benefits of type checking
should not be underestimated.

The inverse limit construction is only one method of solving recursive
domain equations. Another is via universal domains like Pw in which do-
mains are encoded as retracts [Sco76, Sto77, Bar84]. A third technique is
information systems providing a representation of domains for which equa-
tions are solved by the fixed point method [Sco82, LW91, Win93]. There
is also some recent work by Pitts [Pit93, Pit94]. Both Pw and information
systems could probably be formalised in HOL, in fact, Petersen formalised
Pw in HOL [Pet93] proving that it is a reflexive cpo and hence provides a
model of the A-calculus. However, both techniques would construct sepa-
rate worlds where domains and HOL types do not share any elements. This
would introduce the inconvenience of having translation functions between
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the two worlds. Though set theory suffers from the same problem its ad-
vantage is that it is more general so translation functions could probably be
defined for more general use.

Bernhard Reus is doing similar work in the LEGO system which supports
a very strong intuitionistic type theory (ECC) with dependent families. This
is work in progress which has not been reported anywhere. He has formalised
the inverse limit construction of synthetic domain theory [RS94] but has not
continued from this to solve recursive domain equations (he plans to consider
streams).
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