Technical Report RSN

Number 355

Computer Laboratory

Two cryptographic notes

David Wheeler, Roger Needham

November 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1994 David Wheeler, Roger Needham

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

A Large Block DES-like Algorithm

David Wheeler
Roger Needham
Computer Laboratory
Cambridge University
England

November 1994

Introduction

DES was designed to be slow in software. We give here a DES type of code which applies
directly to single blocks comprising two or more words of 32 bits. It is thought to be at least as
secure as performing DES separately on two word blocks, and has the added advantage of not
requiring chaining etc. It is about 8m/(12+2m) times as fast as DES for an m word block and
has a greater gain for Feistel codes where the number of rounds is greater. We use the name
GDES for the codes we discuss.

The principle can be used on any Feistel code.

Ideas behind the Derivation.
The action of DES on step n is
x=x XOR {(n,y)

swop x and y
increase n

where f includes the effects of the permutation and key schedule.
By using a vector rather than two registers we can express the action as

Vnt+1=Vp—1 XOR f(n,v,)

where the two words are placed in vo and v; and the encoded values taken from vi¢ and vy7. To
obtain identical results to DES we should permute the digits of the first two words and reverse
permute the last two words. Let us omit considerations of that till later.

Assumptions

If we cyclically change the key schedule to start at m and go to m+15 mod 16 then GDES
remains as strong.

Extra rounds do not decrease the strength of GDES.

If extra independent elements are included in earlier stages by an addition or XOR the final
encypherment is not made weaker.

If we combine two words by XOR or addition before a stage and one has undergone m
rounds and the other n rounds then the combined input may be considered to have gone at
least max(m,n) rounds.

The latter assumption may be partially justified by the type of argument below.

Let 1/2—t, and 1/2 —t,, be the probability of a set of initial changes affecting one result
digit after n or m stages. The resultant probability is

1/2 =t = (1/2 + ta)(1/2 = tm) + (1/2 = ta)(1/2 +)

so t, = 2t,t,,
but t,,t, < 1/2
sot, <t, and i, <in

The above assumes the probabilities ¢, and t,, are independent, which cannot be com-
pletely true.

We can, by these assumptions, use the modified formula
Vn1 += Vpo1 XOR f(n,v,)

where n, n+1 and n-1 are taken modulo m.

If m=2 then n-1=n+1 and we omit n-1 from the formula.

The formula is applied for n=1 until n=2m+12 inclusive.

The block is loaded with plain text and after 2m+12 steps, the block contains the encyphered
text.

We note that from the last two words of the given text to the first two words of the output 16
steps are done. In fact from any two consecutive words of the plain text to any two consecutive
words of the output there are at least 16 steps of GDES, with additional non linear mixing. We
may expect therefore that the large block has most of the properties of a smaller DES block
and expect its safety to be similar or even better. We have been unable to prove this assertion.

It is generally thought that the initial permutation of DES gives little extra safety. That
permutation can be applied to all double words if it is thought that this gives extra safety. If
fact we can use it to make the two word version compatible with DES itself.

Each step is precisely reversible, so as in DES the decoding is done by doing all the steps
in reverse order. The start back position of the key schedule will be different from the start
position unless the block size is 2 mod 8.

Implementation

The method was tried using TEA as the Feistel code. The extra complications caused the cycle
time to be doubled, so the case of m=2 was done using the original code for TEA. The final
column gives times for WAKE [Wheeler 1994] using 100 word blocks for comparison purposes.

Code/Decode times per word in 1/10th microsecond units on DEC computers Nene (5000
model 133) and Ely (5400).

m| 2 4 6 12 60 480 WAKE@100 Computer
222/228 271/412 177/295 100/156 39/59 25/41 30/33 Nene
350/344 326/518 218/351 120/193 48/75 34/52 41/48 Ely

m gives block length in words

The extra complications in the cycle caused the cycle speed to be more than halved compared
with TEA. The assymptotic gain was thereby reduced from 16 to about 8.

The DES cycle which was not implemented, would scarcely be slowed by the extra work
in the cycle so almost the full gain is attained. We would expect at m=4 the speed to be
multiplied by 1.6, and at m=6 the speed to multiplied by 2.

Conclusions

The above method applies to all Feistel codes, and is thought not to reduce safety. The
asymptotic benefit is greater for Feistel codes with more simpler rounds and can give an order
of magnitude improvement in both decoding and coding.

It may be considered an extra method of chaining, with the advantage of taking less time
rather than more and without the weaknesses of some of the chaining methods. In many cases
it is easier for a user as he can omit considerations of chaining. When a complete block is coded,
a one single bit change propagates throughout the cypher block and makes most differential
attacks at least as hard as the underlying code.

It is better than DES for tamper detection but suffers equally from the fact that the same
block will always be coded to the same cypher block when using the same key. However the
larger block used mitigates the problem. Low entropy blocks when the number of possible
messages is not large will still need extra precautions, such as extending the message by the
message number.

References

E. Biham and A. Shamir, Differential Analysis of the Data Encryption Standard, Springer-
Verlag, 1993

National Institute of Standards, Data Encryption Standard, Federal Information Processing
Standards Publication 46. January 1977

B. Schneier, Applied Cryptology, John Wiley & sons, New York 1994.

David Wheeler, Roger Needham, TEA, This Computer Laboratory Technical Report , Cam-
bridge UK., November 1996.

David Wheeler, WAKE, A Bulk Data Encryption Algorithm,Lecture Notes in Computer Sci-
ence 809,pp 127-134 1994, Springer-Verlag

TEA, a Tiny Encryption Algorithm.

David Wheeler
Roger Needham
Computer Laboratory
Cambridge University
England

November 1994

Introduction

We design a short program which will run on most machines and encypher safely. It uses a
large number of iterations rather than a complicated program. It is hoped that it can easily be
translated into most languages in a compatible way. The first program is given below. It uses
little set up time and does a weak non linear iteration enough rounds to make it secure. There
are no preset tables or long set up times. It assumes 32 bit words.

Encode Routine
Routine, written in the C language, for encoding with key k[0] - k[3]. Data in v[0] and v[1].

void code(long* v, long* k) {
unsigned long y=v[0],z=v[1], sum=0, /* set up */
delta=0x9e3779b9, n=32 ; /* a key schedule constant */
while (n-->0) { /* basic cycle start */
sum += delta ;
y += (2<<4)+k[0] = z+sum "~ (2>>5)+k[1] ;
z += (y<<4)+k[2] " y+sum ~ (y>>5)+k[3] ; /* end cycle */
}
viol=y ; v[1]==z ; }

Basics of the routine

It is a Feistel type routine although addition and subtraction are used as the reversible oper-
ators rather than XOR. The routine relies on the alternate use of XOR and ADD to provide
nonlinearity. A dual shift causes all bits of the key and data to be mixed repeatedly.

The number of rounds before a single bit change of the data or key has spread very close
to 32 is at most six, so that sixteen cycles may suffice and we suggest 32.

The key is set at 128 bits as this is enough to prevent simple search techniques being
effective. :

The top 5 and bottom four bits are probably slightly weaker than the middle bits. These
bits are generated from only two versions of z (or y) instead of three, plus the other y or z.
Thus the convergence rate to even diffusion is slower. However the shifting evens this out with
perhaps a delay of one or two extra cycles.

The key scheduling uses addition, and is applied to the unshifted z rather than the other
uses of the key. In some tests k[0] etc. were changed by addition, but this version is simpler
and seems as effective. The number delta, derived from the golden number is used where

delta = (v/5 — 1)2%

A different multiple of delta is used in each round so that no bit of the multiple will not change
frequently. We suspect the algorithm is not very sensitive to the value of delta and we merely
need to avoid a bad value. It will be noted that delta turns out to be odd with truncation
or nearest rounding, so no extra precautions are needed to ensure that all the digits of sum
change.

The use of multiplication is an effective mixer, but needs shifts anyway. It was about twice
as slow per cycle on our implementation and more complicated.

The use of a table look up in the cycle was investigated. There is the possibility of a delay ere
one entry of the table is used. For example if k[z&3] is used instead of k[0], there is a chance
one element may not be used of (3/4)%?, and a much higher chance that the use is delayed
appreciably. The table also needed preparation from the key. Large tables were thought to be
undesirable due to the set up time and complication.

The algorithm will easily translate into assembly code as long as the exclusive or is an
operation. The hardware implementation is not difficult, and is of the same order of complexity
as DES, taking into account the double length key.

Tests

A few tests were run to detect when a single change had propagated to 32 changes within a
small margin. Also some loop tests including a differential loop test to determine loop closures.

A considerable number of small algorithms were tried and the selected one is neither the
fastest, nor the shortest but is thought to be the best compromise for safety, ease of implemen-
tation, lack of specialised tables, and reasonable performance. On languages which lack shifts
and XOR it will be difficult to code. Standard C does makes an arithmetic right shift and
overflows implementation dependent so that the right shift is logical and y and z are unsigned.

Usage

This type of algorithm can replace DES in software, and is short enough to write into almost
any program on any computer. Although speed is not a strong objective with 32 cycles (64
rounds) on one implementation it is three times as fast as a good software implementation of
DES which has 16 rounds.

The modes of use of DES are all applicable. The cycle count can readily be varied, or even
made part of the key. It is expected that security can be enhanced by increasing the number
of iterations.

Analysis

The shifts and XOR cause changes to be propagated left and right, and a single change will
have propagated the full word in about 4 iterations. Measurements showed the diffusion was
complete at about six iterations.

There was also a cycle test using up to 34 of the bits to find the lengths of the cycles. A
more powerful version found the cycle length of the differential function.

d(x)=f(x XOR 27) XOR f(x)

2

which may test the resistance to some forms of differential crypto-analysis.

Conclusions

We present a simple algorithm which can be translated into a number of different languages
and assembly languages very easily. It is short enough to be programmed from memory or a
copy. It is hoped it is safe because of the number of cycles in the encoding and length of key.
It uses a sequence of word operations rather than wasting the power of a computer by doing
byte or 4 bit operations.

Acknowledgements

Thanks are due to Mike Roe and other colleagues who helped in discussion and tests.

References

E. Biham and A. Shamir, Differential Analysis of the Data Encryption Standard, Springer-
Verlag, 1993

National Institute of Standards, Data Encryption Standard, Federal Information Processing
Standards Publication 46. January 1977

B. Schneier, Applied Cryptology, John Wiley & sons, New York 1994.

Appendix

Decode Routine

void decode(long* v,long* k) {
unsigned long n=32, sum, y=v[0], z=v[1],
delta=0x9e3779b9 ;
sum=delta<<b ;
/* start cycle */
while (n-->0) {
z-= (y<<4)+k[2] = y+sum ~ (y>>5)+k[3] ;
y-= (z<<4)+k[0] = z+sum ~ (2>>5)+k[1] ;
sum-=delta ; J}
/* end cycle */
viol=y ; v[1l=2z ; }

It can be shortened, or made faster, but we hope this version is the simplest to implement
or remember.

A simple improvement is to copy k[0-3] into a,b,c,d before the iteration so that the indexing
is taken out of the loop. In one implementation it reduced the time by about 1/6th.

It can be implemented as a couple of macros, which would remove the calling overheads.

