Technical Report RS

Number 358

Computer Laboratory

Multithreaded processor design

Simon William Moore

February 1995

. : 15 JJ Thomson Avenue
This report was also published as a Cambridge CB3 OFD

book of the same title United Kingdom
(Kluwer/Springer-Verlag, 1996, ISBN phone +44 1223 763500
0-7923-9718-5). https:/lwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1995 Simon William Moore

This technical report is based on a dissertation submitted
October 1994 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-358

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-358

Abstract

Multithreaded processors aim to improve upon both control-flow and data-flow proces-
sor models by forming some amalgam of the two. They combine sequential behaviour
from the control-flow model with concurrent aspects from data-flow design.

Some multithreaded processor designs have added just a little concurrency to
control-flow or limited sequential execution to data-flow. This thesis demonstrates that
more significant benefits may be obtained by a more radical amalgamation of the two
models. A data-driven microthread model is proposed, where a microthread is a short
control-flow code sequence. To demonstrate the efficiency of this model, a suitable
multithreaded processor, called Anaconda, is designed and evaluated.

Anaconda incorporates a scalable temporally predictable memory tree structure
with distributed virtual address translation and memory protection. A temporally pre-
dictable cached direct-mapped matching store is provided to synchronise data to micro-
threads. Code is prefetched into an instruction cache before execution commences.
Earliest-deadline-first or fixed-priority scheduling is supported via a novel hardware
priority queue. Control-flow execution is performed by a modified Alpha 21064 styled
pipeline which assists comparison with commercial processors.

i1

Preface

Except where otherwise stated in the text, this dissertation is the result of my own work
and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for a degree or
diploma or any other qualification at any other university.

No part of this dissertation has already been, or is being currently submitted for any
such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words, including tables, footnotes and
bibliography, but excluding appendices, photographs and diagrams.

Publications

The paper entitled “Scalable Temporally Predictable Memory Structures” was pre-
sented, by the author of this thesis, at the 2°¢ IEEE Workshop on Real-Time Appli-
cations, Washington D.C., July, 1994. This paper contains the early ideas which form
chapter 5 of this thesis.

Trademarks

Alpha and VAX are trademarks of Digital Equipment Corporation
CM2 is a trademark of Thinking Machines, Inc.

DAP is a trademark of ICL

HEDP is a trademark of Denelcor Corporation

Hobbit is a trademark of AT&T

Motorola is a trademark of Motorola, Inc.

PowerPC is a trademark of IBM, Motorola and Apple Corporations
Tera is a trademark of Tera Corporation

Transputer and T800 are trademarks of INMOS Litd.

Acknowledgements

I would Iike to thank my supervisor, Derek McAuley, for his guidance and encourage-
ment. Eoin Hyden has been a great friend and colleague, offering sound advice and
copious comments on several drafts of this dissertation. Brian Graham’s skills in for-
mal methods have been invaluable and his work, in appendix A, is suitably accredited.
Thanks are also due to Timothy Roscoe for his lively comments on single address space
operating systems and memory management techniques. I would also like to thank
Alan Jones, Peter Robinson and David Wheeler for may thought-provoking discussions
during the hardware discussion group meetings.

For reading and commenting on drafts of this dissertation, I am also indebted to
Richard Black, Paul Byrne, Shaw Chuang, David Evers, Robin Fairbairns, Daniel Gor-
don and Johanna Stiebert. .

The Computer Laboratory, and particularly the Systems Research Group, has
proven to be a stimulating environment in which to work. Special thanks go to: Jean
Bacon, Paul Barham, Ralph Becket, Simon Crosby, James Hall, Mark Hayter, Mike
Hinchey, Andy Hopper, Naecem Khan, Ian Leslie, Ken Moody, Roger Needham, Arthur
Norman, Ian Pratt, Martin Richards, Cormac Sreenan, Quentin Stafford-Fraser and Neil
Wiseman.

In 1993 I spent a most enjoyable summer at Digital’s Western Research Laboratory
under the guidance of Jeremy Dion. My thanks go to them all for honing my knowledge
of processor design and simulation techniques.

Many members of my college, Trinity Hall, have also provided encouragement and
support. I would particularly like to thank: William Clocksin, Stephen Hodges, Mari
Jones, David Moore, Andrew Pauza and Ishtla Sing. I am also indebted to Martin
Atkins, Gary Morgan and David Pumfrey, formelly from my undergraduate days at the
University of York, who continue to encourage my work. My parents, Rosalie and Pe-
ter, and my sister, Helen, have also been a tower of strength.

This work was supported by a studentship from the UK Science and Engineering
Research Council.

vil

Contents

1

2

Introduction 1
1.1 Hardware motivations 1
1.2 Software motivations 2
13 Aims e 2
14 Synopsis 2
Design Motivations 3
2.1 Imtroduction 3
2.2 Software motivations 3
2.2.1 General primitives to support software 4
222 Besteffortsystems. 5
2.2.3 Hard real-time system requirements 6
2.2.4 Multi-media and quality of service requirements 7
2.2.5 Multi-processor computers 8
2.3 Hardware motivations 8
2.3.1 Signal transmission limits 8
2.3.2 Activecomponent limits 10
233 Circuittechniques 10
2.4 Summary of hardware and software requirements 13
Current Processor Models 15
3.1 Imtroduction 15
3.2 Control-flowprocessors 15
3.2.1 Memory structure and data locality 16
322 Imstructioncoding 17
3.23 Instructionparallelism 18
324 Dataparallelism 19
3.2.5 Concurrency and synchronisation primitives 20
3.2.6 Memory protection mechanisms 20
3.2.7 Assessment of the control-flowmodel 21

3.3 Data-flowprocessors 21

3.3.1 Staticdata-flow e e 22
3.3.2 Coloured dynamicdata-flow 23
3.3.3 Tagged token dynamic data-flow 23
3.34 Assessment of tagged token data-flow 25
3.4 Multithreaded processors 25
34.1 Multiplecontexts 26
342 Communication, 26
3.4.3 Synchronisation and scheduling 27
344 Memory e 28
345 Microthreadsize 28
35 Summary. 29
Hardware Scheduling 31
4.1 Introduction 31
42 Background e 31
4.2.1 \Variationsontheheapsort. 32
422 Thereboundsorter. 32
423 Theup/downsorter 34
43 Thetaggedup/downsorter 36
4.3.1 Abstracting the up/down sorter algorithm 36
432 Ensuring FIFOordering 36
4.4 Clocked digital implementation of the tagged up/down sorter 40
44.1 Controlling the single cycle implementation 42
4.4.2 Discussion of the operation of the single cycle implementation 42
45 Conclusions e 44
Memory structure 45
5.1 Imtroduction 45
5.2 Memoryperformance 45
5.3 Memory hierarchy for control-flow processors 46
531 Caching 46
532 Scoreboarding L 47
5.4 Maintaining memory access frequency 47
5.5 Virtual addressing for the memorytree 48
5.6 Scalable memory protection, 49
5.7 Treerouters e 50
58. Summary. 51

Anaconda — a multithreaded processor 53
6.1 Introduction 53
6.2 Datadriven microthreads 55
63 Matching 58
6.4 Scheduling 59
6.5 Memorystructure e i 59
6.6 Exceptionsandtypes. e 60
6.7 Imstructions 62
6.7.1 Load, store and write through instructions 62
6.7.2 Integer and bitwise instructions 64
6.7.3 Floating-pointinstructions 64
6.7.4 Branch, jump and descheduling instructions 65
6.7.5 Type modification instruction 65
6.7.6 Imstructionformats. 67
6.8 Cache control and preloading context 67
6.9 Nanokernelsupport 69
6.10 Input,outputandtimers 70
6.11 Executionunitpipeline 72
6.12 Summary 74
Evaluation 75
7.1 Imtroduction 75
72 Assembler L 75
7.3 Simulator 76
74 Memorycopytest 76
7.5 Livermoreloop7test 82
7.6 Signalling and mutual exclusion 90
7.7 Interdomain remote procedurecalls 92
7.8 Conclusions 93
Conclusions 95
81 Review 95
811 Background, 95
812 Anaconda 97
82 Futurework 100
8.2.1 Animplementation 100
822 Policing 100
823 Control-flowecore, 100
824 Languagesupport 100

Xi

8.2.5 Staticcodeanalysis 101

8.2.6 Operating systemsupport 101

8.2.7 Caching for power reduction. [101
Bibliography 103
A Proof of correctness for the tagged up/down sorter 109
Al Imtroduction, 109
A.2 Pormal specification 109
A3 Proofsketch 114
A4 Conclusion 116

B Anaconda instruction formats 117
C Anaconda memory copy program 121

List of Figures»

2.1
22
2.3

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6

Signal fanout and amplification
Sequential vs pipelined — trading latency for frequency
Dual rail encoding of binary numbers

An example of control-flow and data-flow program structure
Example static data-flow instruction format
Example tagged-token data-flow instruction and token formats

Structure of therebound sorter
Anexampleofareboundsort
The up/down sortingelement
Anexample of anup/downsort
Abstraction of the up/downsorter
Ordering problem with the up/downsorter
Using tagging to ensure FIFO ordering
Two stage tagged up/down sorting element
One stage tagged up/down sorting element
Example timing for the one step tagged up/down sorter to perform two

inserts followed by twoextracts

Memory tree structure
Example capability format
Tree mapping of messages going up the tree from the memory modules

totheprocessor

The overall structure of Anaconda
A single logical thread constructed from a sequence of microthreads

Example microthread structure for forks and joins
Data-flow styledbubblesort
Activation frame format

6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12

7.13
8.1

B.1
B.2
B3

Anaconda capability format 0L L. L 60
Anaconda types and their privileges 61
Loadandstoreformats 63
Load address group of instructions 64
Intermicrothread branch instructions 66
Overview of the Anaconda matchingstore 68
Data transfer sequence to an inputdevice 71
Overview of Anaconda’s execution unit pipeline 72
Overview of the simulator 77
Overview of the parallel memory copy routine 79
Memory copy without intelligent instruction caching 80
Memory copy with intelligent instructioncaching 81
Fortran code for the Livermore loop 7 kernel e e e e 82
Data-flow analysis of Livermoreloop7 83
Overview of the Anaconda routine to perform Livermore loop7 . .. 84
Interdependencies between microthreads during several iterations . . . 85
Livermore loop 7 with all 9 microthreads having the same deadline . . 86
Livermore loop 7 with a decreasing deadline for each iteration 87
Livermore loop 7 with microthreads 0, 1 and 2 having a slightly earlier

deadline 88
Livermore loop 7 with the same parameters as figure 7.11 but with in-

telligent instruction caching turnedoff 89
An implementation of Dijkstra’s semaphores 91
Filling the control-flow/data-flowvoid 97
Anaconda additions to the Alpha opcode summary 118
Anaconda instruction formats —part1 119
Anaconda instruction formats —part2 120

xiv

Glossary

CMOS Complementary Metal Oxide
CPU Central Processing Unit
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDF Earliest Deadline First
FIFO First In First Out
FP Fixed Priority
HOL Higher Order Logic
IEEE Institute of Electrical and Electronic Engineers, Inc.
I/O Input/Output
LIFO LastIn First Out
MIMD Multiple Instruction Multiple Data
OS Operating System
PC Program Counter
PE Processor Element
QOS Quality Of Service
RAM Random Access Memory
RPC Remote Procedure Call
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SPEC Standard Performance Evaluation Corporation
TLB Translation Lookaside Buffer
TTL Transistor Transistor Logic
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration

XV

xvi

Chapter 1

Introduction

Multithreaded processors aim to improve upon both control-flow and data-flow proces-
sor models by forming some amalgam of the two. They exhibit sequential behaviour
from the control-flow model and concurrent execution due to data-flow influences. This
dissertation demonstrates the efficiency of a novel multithreaded processor designed to
execute data-driven microthreads, where a microthread is a short control-flow unit of
code.

1.1 Hardware motivations

Whilst control-flow processors dominate the current computer market, they have funda-
mental problems, primarily due to the lack of concurrency supported by the hardware.
Too little concurrency results in processor stalls when waiting for long latency opera-
tions. A particularly thorny problem results from faster processors being used to tackle
larger problems which require larger memory. Unfortunately this prohibits memory
latency scaling with processor performance. Temporal and spatial locality of memory
accesses may be used to cache frequently used values. However, an increasing number
of ever larger caches are required to maintain a statistically low access latency. Fur-
thermore, caches introduce a huge temporal variance which is hard to predict. This is
inadequate for real-time applications.

Data-flow processors offer instruction level concurrency which allows long latency
operations to be tolerated. The lack of sequential ordering, however, makes multiple as-
signment, to the same memory location, difficult. Thus, memory reuse and input/output
operations are complex. Furthermore, instruction level concurrency implies significant
synchronisation overhead which can often be greater than the time to evaluate the in-
struction. Also, there is insufficient time to make sensible scheduling decisions so poor
use is made of the processor resource.

1.2 Software motivations

A significant number of today’s applications only require single threaded best effort
performance. This is reflected in the synthetic benchmark applications which are often
used to assess a computer’s performance. However, with the increasing appearance
of multimedia, and our reliance on hard real-time applications, temporal predictability
is important. Unfortunately, commercial processor designers are heavily motivated by
the current de facto standard benchmarks. Until industrially recognised multimedia and
hard real-time benchmarks are established, processor design will not change direction.
Fortunately, academia is not so short-sighted

Multithreaded languages, and suitable operating system support, are becoming in-
creasingly common, particularly for writing large, user interactive, applications. When
using commercial control-flow processors, significant software support must be pro-
vided for these applications. Also, more concurrency reduces the efficiency of the
cached memory structure. On the other hand, a multithreaded processor should be able
to take advantage of concurrency to tolerate various latencies, including memory access
latency.

1.3 Aims

This dissertation aims to investigate the data-driven microthread model to assess
whether it can successfully underpin a general purpose processor designed with future
hardware and software requirements in mind.

1.4 Synopsis

Chapter 2 reviews the hardware technology limitations and software application re-
quirements which bound and guide successful processor designs.

Chapter 3 presents a commentary on existing processor designs.

Chapter 4 looks at hardware scheduling issues which are paramount for efficient use of
a multithreaded processor resource.

Chapter 5 discusses scalable memory structures, virtual addressing support and protec-
tion mechanisms.

Chapter 6 presents a novel multithreaded processor design called Anaconda.
Chapter 7 evaluates the Anaconda design.

Chapter 8 reviews the work contained in previous chapters, draws a number of conclu-

sions and suggests areas for future work.
2

Chapter 2

Design Motivations

2.1 Introduction

This chapter discusses current and possible future trends in software and hardware to
determine desirable characteristics which processor designs should exhibit.

2.2 Software motivations

All processors are Turing complete (i.e. they can perform all the operations that a Tur-
ing machine can) and so can, in theory, run any application. However, in practice we
must take the run-time into account. A processor must support a range of primitives,
from which applications may be constructed, which allow a desirable performance to be
met. Different application areas suggest different primitives and optimisations; how-
ever, there is some commonality (see section 2.2.1).

Benchmarks are synthetic applications used to assess the various performance char-
acteristics of computers, from integer and floating-point arithmetic to memory and /O
speed. The performance of operating system support operations, like interrupt latency
and context switch time, may be assessed. The efficiency of the compiler and linker
also play an important role. Although benchmarks only allow an estimate to be made
of the execution characteristics for a specific application, they provide essential metrics
for processor designs.

The majority of processors are designed to attain good performance with respect
to current industrial benchmarks. Most of these benchmarks are designed to as-
sess uniprocessor computers where a single application requires best effort perfor-
mance (section 2.2.2). However, computer control of mechanical machines, and other
hard real-time applications, require temporally predictable performance (section 2.2.3).
Other application areas — like multi-media — require some temporal predictability,

but not the temporal guarantees imposed by hard real-time systems; an alternative is to
guarantee a certain minimum quality of service [35] (section 2.2.4).

As processors become cheaper, multiprocessor computers become more practical.
The software implications are discussed in section 2.2.5 and new areas to benchmark
are proposed.

2.2.1 General primitives to support software

It is commonly accepted that some or all of the following collection of functions are
required for many applications. The processor may explicitly provide a primitive for a
particular function, or provide some efficient combination of primitives.

e integer arithmetic — addition, subtraction, comparison, multiplication and divi-
sion; although division may not be supported by a single primitive it is now usual
to provide a multiplication primitive.

e floating-point arithmetic — it is now common to support floating-point arith-
metic, particularly with conformance to the IEEE standard (or some workable
subset thereof).

e logical operations—boolean functions: AND, OR, NOT etc. and bitwise shifting.

e conditionals — to allow data dependent decisions to be made upon which code
is executed.

e subroutines — to allow sharing of subprograms/software functions without code
duplication.

e multiple assignment — allow values to be written to a memory and for old values
to be overwritten. The ordering of reads and writes to a given location is vital if
memory is to be reused. Furthermore, it is a prerequisite for input and output
operations.

e indirect addressing — indirect memory addressing modes are required to allow
calculated addresses to be used without requiring self-modifying code.

e virtual addressing — to assist memory allocation and garbage collection and to
support virtual memory, by allowing paging of memory to some other storage
server (e.g. a disk or a distributed memory structure), if required.

e protection — to prevent undesirable interference between applications execut-
ing concurrently in case one or more of them misbehaves either due to malicious

intent or a bug. This is typically provided by a memory protection subsystem
which prevents applications from accessing memory areas for which they have
not been given permission. As a corollary to this, a supervisor mode (also called
aprivileged mode or trusted mode) must be provided so that the operating system
can initialise protection areas, or domains, and assign them to applications.

e exceptions — a method which invokes software to take care of errors, like divi-
sion by zero, without explicitly having to add instructions to test for an error at
every possible place.

e synchronisation — of external events to appropriate handler code to be executed.
One approach is to extend the exception mechanism so that an exception is taken
whenever an external event occurs; known as an interrupt.

2.2.2 Best effort systems

A typical workstation is used for computational and user interactive applications which
simply require a reasonably short runtime. If, for example, a calculation takes a little
longer than usual or the screen is not redrawn at the same rate, then it is at worst an
annoyance to the user. In other words, the user expects the computer to make the best
effort it can to finish jobs as quickly as possible.

Whilst the computer’s speed places an upper bound on the possible rate of execution
of a single application, the operating system plays an important role in dividing pro-
cessor, memory and I/O resources between applications running concurrently. These
resources are typically allocated on a first come first served basis [14]. The processor
resource is typically allocated on a priority basis where an application is given a base
priority which may be increased if it is waiting for I/O. This is computationally simple
and allows interactive applications, which spend most of their time waiting for user in-
put, to obtain processor resources rapidly. The only hardware that is required is a timer
to invoke a reschedule (known as preemption) so that one task does not monopolise the
processor resource. From an efficiency point of view it is important that the processor
supports a quick method for switching context. Memory and I/O resource allocation is
typically supported by the operating system.

The SPEC! mark suite of benchmarks is, at the moment, widely-used for evaluat-
ing workstations. Only total execution time is measured for each benchmark. Differ-
ent benchmarks emphasise the performance characteristics of different combinations of
the computer’s constituent parts. For example, the compress benchmark tests file I/O
(both hardware and operating system support), memory and integer arithmetic but not

1SPEC marks are produced by the non-profit making company Standard Performance Evaluation
Corporation which is supported by manufacturers of control-flow processors.

5

floating-point arithmetic; where as tomcatv mainly tests memory and floating-point
facilities.

These benchmarks have their deficiencies. For example, the efficiency of concur-
rent execution of several benchmarks is rarely addressed even though this may be more
representative of a typical load. Concurrent execution has profound effects upon mem-
ory performance, particularly if there are several caches in the memory hierarchy (see
section 5.3.1 for a discussion on caches). Also, if a translation look-aside buffer (TLB)
is used for virtual address translation and memory protection, then its efficiency is also
highly dependent upon concurrent activities.

Performance of user interactive applications is also not usually benchmarked, prob-
ably because such statistics are difficult to obtain. However, to a large extent, general
processor, memory and I/O benchmarks give a reasonable indication of the likely in-
teractive performance.

2.2.3 Hard real-time system requirements

Hard real-time systems require output to be produced by specified times in relation to
input stimuli [63]. Furthermore, premature output may also be undesirable. For ex-
ample, a car engine management system needs to cause ignition (via the spark plugs)
at the correct time, neither early nor late. The real-world is inhérently parallel; thus,
in order that there is a clear, logical mapping between the application and its environ-
ment, software is often constructed as a set of parallel tasks or threads (an abbreviated
form of threads of control which makes particular reference to the control-flow model
of computing — see section 3.2).

Real-time applications must be assessed to ensure that not only their functional re-
quirements are met, but also their temporal ones. This is assisted by the fact that most
real-time applications have the whole computer system to themselves. Simple systems
may have a natural periodicity which allows the scheduling of these threads to be deter-
mined off line, or statically. More complex systems with sporadic stimuli require run
time, or dynamic, scheduling. Some of these systems may be scheduled using a pre-
emptive fixed priority algorithm [12] which, as with the best effort scheduler, requires
little extra hardware support. However, other applications require a more sophisticated
scheduler, for example, one which schedules the task with the earliest deadline. An
earliest deadline first (EDF) scheduler requires a priority queue to sort the deadlines of
runnable tasks. This is computationally expensive, but if there are not too many tasks
and scheduling does not need to occur too often, then a software implementation is sat-
isfactory. However, this may not be the case and hardware support may be necessary
(see chapter 4 for further details).

No matter how good the scheduler is, there must be sufficient processor resources
for a schedule to be possible. Missing a hard real-time deadline can be catastrophic, so it
is important that the worst case processor time required for each thread can be assessed.
Furthermore, in a dynamically scheduled application it is vital that the processing time
of threads is independent of the order in which they are scheduled. Unfortunately, as
will be seen in section 3.2 on control-flow machines, this is currently far from the case
and is becoming increasingly bad. One may deduce from this that most processor de-
signers are motivated by the need to produce fast processors in the best effort sense,
rather than making them temporally predictable and fast.

One reason for this may be that there are few standard real-time benchmarks; most
real-time applications programmers opt for their own benchmarks to suit their special-
ist application. This is of little use to the processor designer. The Hartstone bench-
mark [67] is.an exceptidn to this but it is primarily designed for assessing Ada compil-
ers and their associated run time support system rather than processor characteristics.
Experimental results from using Hartstone indicate that a high resolution hardware real-
time clock is of great importance. However, little more can be deduced.

2.2.4 Multi-media and quality of service requirements

Multi-media, and in particular continuous media like audio and video, require end-to-
end guarantees between the source and sink. This encompasses processor, memory,
disk and/or network resources. In order to reduce resource usage, compression tech-
niques are employed, often in a layered form such that low quality, and thus low band-
width, information is sent and processed first followed by several additional layers of
information to improve the quality. This potentially allows an overloaded resource to
drop the higher quality layers first if overloading occurs, thereby providing a degraded
service rather than no service at all. From a processor scheduling viewpoint, applica-
tions require a minimum proportion of the processor resource which may be specified
as a desired quality of service® [35]. If processor resources are left over then applica-
tions may receive extra resources to allow higher layers to be decoded.

As with hard real-time, predictable processor performance is essential. For multi-
media systems, temporal predictability allows accurate calculation of the minimum
amount of processor time required to deliver a desired minimum quality of service. I/O
performance is also critical.

2Quality of service may also be used to schedule network resources to deliver an end-to-end quality
of service [35].

2.2,5 Multi-processor computers

The last three sections have concentrated on applications running on uniprocessors.
Transferring these to multiprocessors poses many problems for the software engineer.
These include the reworking of algorithms to allow partitioning of the processor load
together with problems of efficient movement of data and associated synchronisation
to ensure correct ordering of updates.

Obviously the processor design must provide efficient means to move data to and
from other processors. Message passing is one approach; another is to share memory
using per-processor caches for recently used data. The two methods are equivalent in
that any algorithm could be rewritten to use either method [40]. Which performs best is
largely application specific and so it is advantageous if both models can be supported.
For shared memory some form of cache coherency mechanism is required, e.g. using
a directory [42]. Message passing requires low overhead synchronisation of messages
to threads.

Currently, general purpose benchmarks for parallel computers are difficult to write
because there is no accepted way of coding parallel algorithms so that they run rea-
sonably efficiently on a wide range of parallel computers. Consequently, the current
practice is to hand tune code for particular parallel computers resulting in benchmarks
reflecting the programmer’s ingenuity as well as processor performance and compiler
technology. This obviously makes comparisons problematic.

2.3 Hardware motivations

Computer systems employ a variety of technologies from mechanical and ferromag-
netics to electronics and optics. Consequently there are a huge number of implemen-
tation technology issues, the details of which are beyond the scope of this dissertation.
However, the general problems, relating to signal transmission and active devices, are
pertinent to this discussion (sections 2.3.1 and 2.3.2 respectively). Basic circuit tech-
niques are also briefly reviewed in section 2.3.3 with a slightly more detailed discussion
of self-timed circuits due to their comparative novelty.

2.3.1 Signal transmission limits

The transmission of signals is limited by the speed of light (¢ = 2.99725 x 108 ms™!).
This is a fundamental limiting factor which is becoming particularly significant as cir-
cuit switching frequency moves beyond 1 GHz, since at this speed even light only trav-
els approximately 300 mm in one period (1 ns).

Electrical pulses in a wave guide are somewhat slower at:

_ c

= Jrer

where v, is the velocity of propagation which is dependent upon the speed of light (c),
the permeability (1,) and the permittivity, or dielectric constant, (e,) relative to free
space. By definition, x, and €, must be > 1 but careful design can keep them near 1.
However, capacitance, self and mutual inductance only make matters worse.

The power required to source a signal is dependent upon transmission line atten-
uation and the fanout. A signal emanating from a point source (see figure 2.1a) must
provide sufficient power to each transmission line. For a bus (see figure 2.1b) power is
divided at each junction so the source signal must be strong enough.

Providing a sufficiently large amplifier for a large fanout is problematic. Since am-
plifier gain is finite, a large amplifier requires a proportionately large signal. Conse-
quently, for very large fanouts, a cascade of amplifiers may be required (figure 2.1c).
However, large amplifiers tend to be slow. Alternatively, a tree of amplifiers may be
used (figure 2.1d) but the speed of each amplifier tends to be different due to manu-

source/amplifier sink junction

| (a) point source (b) bus structure
(c) amplifier cascade (d) amplifier tree

Figure 2.1: Signal fanout and amplification

facturing tolerances, resulting in temporal skew. This is obviously undesirable for syn-
chronisation signals, or clocks.

To conclude, it is advantageous if transmission lines can be kept short with little
fanout.

2.3.2 Active component limits

The switching, or active, components (for amplification and boolean function imple-
mentation etc.) which are widely used today, are often based upon complementary
metal oxide (CMOS) very large scale integration (VLSI) technology [47]. For exam-
ple, the Digital’s Alpha series of processors are already available in CMOS with a fea-
ture size of 0.75um and operating at 200 MHz [62]. Whilst feature sizes remain larger
than 0.5pum, every development enabling the feature size to be reduced is rewarded
by significantly improved performance. This is due to capacitance and distance be-
ing reduced whilst voltage remains at 5V to be compatible with other TTL circuits.
For a fixed voltage gate delay o (feature size)?. However, at less than 0.5um the
voltage has to be dropped below the usual 5V to prevent signals tunnelling through
the ever diminishing insulation layers. This reduces the potential performance gain to
gate delay o< feature size because voltage o< feature size. Therefore, it is anticipated
that the density of CMOS circuits will increase but the performance will not improve
as dramatically [38].

It would be foolish to attempt to predict which implementation technology will be
used in the future. If room temperature superconductors become available, then quan-
tum effect devices may be the future [31]. Alternatively, the future may be in nanome-
chanical machines [23]. However, whichever technology is used it is highly probable
that active components will have a spatial locality which in turn enforces a spacial lo-
cality for information and computation. Furthermore, movement of information takes
time and typically consumes power. Therefore, it is advantageous if efficient use can
be made of local storage.

2.3.3 Circuit techniques

Functions to perform data manipulation range from bitwise boolean operations, inte-
ger addition or subtraction through integer multiplication and division to floating-point
arithmetic. The more complex functions take a relatively long time to compute (i.e. the
latency of the operation is long). However, to enable the frequency of data transfer
to match the latency of simple operations, the more complex operations may be bro-
ken down into sequential stages (see figure 2.2). Latches are placed between stages to
store the intermediate results. The resulting structure (a pipeline) allows computation

10

Sequential

— tasko, taskl, task2 —

maximum latency = £, = 37, maztime(task;)

maximum frequency = gl

Pipelined

— task0 > task1 > task2 —

maximum latency = £, = 3 x MAX?_ maztime(task;)

maximum frequency = %
P

Figure 2.2: Sequential vs pipelined — trading latency for frequency

and information flow to be localised. This scales well with decreasing discrete com-
ponent size and increasing components on a chip. In later sections example processor
and memory pipelines will demonstrate more complex structures in which some stages
branch off into two or more pipelines (see section 3.2.3 and chapter 5 respectively).
Currently the most popular technique for controlling information flow between
stages of pipelines is to use one or more global clock signals to trigger the latches to
transfer the information on their inputs to their outputs. The clock rate is determined
by the slowest stage of the pipeline, for example the integer addition/subtraction stage
where the carry has to be propagated. However, transmitting a global clock so that all
the latches update simultaneously is impossible because of the transmission time and
the large capacitances which the global wiring introduces. The timing difference due to
delay is known as clock skew. In practice, using today’s technology, it is still possible
to keep clock skew to a tolerable level across a chip but as chip sizes and clock fre-
quencies increase the problem is going to become worse. These problems can already
be witnessed at the circuit board level where the processor is typically clocked at 2, 4 or
even 8 times the board clock rate because it is impractical to broadcast the higher speed
clock across the whole circuit board. When high speed circuit board clocks are used
(e.g. RAM-BUS [24]) the clock follows a single path along the same route as the data
to ensure equal delays. Alternatively, circuits may be clocked from different sources

11

but this introduces synchronisation problems and overheads. Similar techniques can
be applied to signals across a chip.

Global clocks limit performance because they are set at a rate which always allows
the slowest stage of the pipeline to complete its calculation correctly. Furthermore, by
the time the design has taken into account manufacturing tolerances, and that silicon
performance is temperature dependent, a significant margin of error (e.g. 20%) has to
be allowed. ,

An alternative to global clocks is to use localised clocking to determine when pipe-
line stages have completed. This is known as micropipelines [65] which are a form
of nonclocked, or self-timed, circuit. Local clocks may be derived from critical signal
paths (e.g. the carry propagation of an adder) and by using delay lines which may be
placed close to the associated function. This allows a stage to complete early, for ex-
ample, if the carry propagation takes a fast path. Furthermore, temperature variations
can be allowed for to some extent. However, current practice has shown that often a 20
to 30% margin of error has to be catered for, due to manufacturing variance [27], re-
sulting in delays which have to be longer than one would wish, in order to avoid timing
problems.

Another self-timed technique uses two bits to represent every binary digit of infor-
mation together with a handshaking signal (see figure 2.3) which is known as dual rail
encoding [18]. Functions are evaluated in a two stage process. Firstly, the function’s in-
puts are cleared (each pair set to 00) until the outputs are all cleared. Then, data is placed
on the inputs and when the outputs contain valid data (i.e. not 00 but 01 or 10) this value
may be latched. Thus, the completion signal is encoded with the data. This makes dual
rail encoding a very safe way of building self-timed circuits, because correct operation
is independent of manufacturing tolerances and temperature effects. However, design
methods have to be different from their clocked counterparts. For example, pipeline
designs have to allow clear signals to propagate in the wake of data signals. An inter-
esting example of this is a divider design which employs five pipeline stages arranged
in a circle which allows enough time for clears to have been performed before the data
comes full circle [71]. The primary disadvantage of this technique is that more logic is

Al A® | Meaning
0 O | cleared
0 1 |logical0
1 O | logicall
1 1 illegal

Figure 2.3: Dual rail encoding of binary numbers

12

required than for a clocked implementation but with increasing chip densities and the
problems with fast clocks, dual rail encoding is looking attractive.

Dual rail encoding, micropipelines and variations on the clocking theme are active
research areas and it is unclear which will be the most successful. However, it is possi-
ble to draw the conclusion that whichever method is employed, some form of localised
signalling or clocking domains is essential.

2.4 Summary of hardware and software requirements

The section on software motivations has identified the basic needs to support most ap-
plications’ functional requirements (see list of desirable processor requirements on the
next page). Then more specific application areas were identified and categorised ac-
cording to their temporal requirements. These categories are: best effort, hard real-time
and multimedia or quality of service based. An overview of benchmarks was presented
because they represent the execution requirements which motivate processor designs.
However, to date the majority of standard benchmarks are representative of best effort
applications. Inevitably, this results in processors which are tailored to provide good
best-effort performance even when this is to the detriment of supporting other cate-
gories of application. Consequently there is a vicious circle where the software design-
ers develop languages and coding methods which yield good performance using today’s
processors, leaving commercial processor designers to optimise current designs.

The section on hardware motivations introduced two fundamental problems with
designing computers on large and increasingly dense VLSI technology, namely signal
transmission speed limitations and the fact that the popular submicron CMOS tech-
nology does not become significantly faster as density increases beyond a feature size
of 0.5pum. The problems of transmitting higher frequency global clocks were also ad-
dressed, concluding that control signals benefit from being localised. In the future some
form of self-timed circuit technique may provide the required characteristics. However,
it was also noted that there are many possible technologies on the horizon which will
inevitably introduce different design parameters and techniques.

13

Desirable Processor Attributes

e functional primitives

— arithmetic (both integer and floating-point) and logic primitives
- conditional and subroutine primitives
— synchronisation primitives

® memory structure and access mechanisms

— local storage of intermediate results (to avoid over use of the main
memory)

indirect addressing

virtual addressing

multiple assignment (and support for sequential algorithms)
scalable interconnect (to avoid signal transmission problems)

e protection mechanisms

— memory protection
= supervisor mode (to allow protection domains to be set up)

e concurrency (processor sharing)
- including support for a sensible scheduling policy
e parallelism (multiple processors and multiple pipelines)
— efficient synchronisation of internal and external events

e temporal predictability

e adistributed real-time clock at the highest practical frequency

localised signalling (avoid using global signalling like processor fre-
quency clocks)

14

Chapter 3

Current Processor Models

3.1 Introduction

This chapter is a commentary on current processor models with references to more in-
depth material. To begin with, the control-flow processor model (section 3.2) is pre-
sented because it dominates today’s computer market.

Control-flow processors primarily exhibit sequential behaviour. At the other ex-
treme, there are data-flow processors (section 3.3) which can exploit instruction level
concurrency. Both of these models have their advantages and disadvantages but one
tends to have strengths where the other has weaknesses. Various amalgams of these
ideas, often referred to as multithreaded processors, exhibit improved characteristics
(section 3.4).

3.2 Control-flow processors

The fundamental control-flow processor model was originaliy proposed by Eckert,
Mauchly and von Neumann in 1944 and was based upon the Analytical Engine design
proposed by Babbage in 1838 [69]. Programs are constructed as a linear list of order
codes, or instructions, which control the processing of data. The list is traversed using
a pointer — the program counter. Decisions are supported through changing the flow
of control by conditionally modifying the program counter.

Fundamentally, this model still underpins the ubiquitous control-flow machine of
today. However, many improvements in functionality have been made from the sup-
port of reusable subprograms, or subroutines using the Wheeler jump [68], to inter-
rupts (reputably first introduced on the UNIVAC 1103 [60]) and beyond. There have
been many performance improvements which may be grouped into:

e memory structure and data locality (e.g. the use of a register file and cache)

15

e instruction coding
e instruction parallelism

e data parallelism

Other issues are less performance critical on today’s control-flow machines, when
assessed using many industrially recognised benchmarks, which include:

e concurrency and synchronisation primitives

e protection mechanisms

The following sections briefly review each of these areas. More detail may be found
in the plethora of computer architecture texts, good examples of which are [32, 54, 60].

3.2.1 Memory structure and data locality

A memory is required to store programs and data. To an application the memory ap-
pears as a linear collection of bits, bytes or words which may be indexed by an address.
However, virtual addressing may be employed to simplify memory allocation by allow-
ing blocks, or pages, of virtual addresses to be mapped on to any physical page. If there
are more active virtual pages than physical pages in main memory, then backing store
may be used as an overflow memory, pages being paged between backing store and
main memory on demand. Each application may have an independent set of virtual ad-
dresses. Alternatively applications may reside in a single virtual address space which
is particularly useful if data and code are to be shared. 64 bit address systems are well
suited to the latter approach because the large virtual address space is unlikely to be
totally consumed.

Intermediate results are usually held in a very small multi-ported memory which is
local to the processor (a register file). This allows several values to be read and written
simultaneously and at high speed which is not possible with main memory due to its
large size and distance from the processor (see section 5.2). Instead of a register file,
a stack model may be presented. To allow efficient access to the most frequently used
values at the top of the stack, they must be cached in some small, high speed multi-
ported memory (e.g. Crisp [7], which is the forerunner to AT&T’s Hobbit [5]). Both
register file and stack based approaches usually use some short form of addressing to
reduce instruction size; in the case of a register an index into the register file is used
and for stacks a short offset from the top of the stack suffices.

To bridge the performance gap between main memory and the register file, one or
more levels of caching may be used to store intermediate results. This relies on the

16

principle of locality which is that a few addresses are accessed most of the time (tem-
poral locality) and that many of the accesses are within a few groups of addresses (spa-
tial locality). When caches were first introduced to microprocessors they were often
shared between the instruction and data fetch sections. More recent systems have a
separate cache for instructions and data (e.g. the Motorola MC88000 [49] and Digi-
tal’s Alpha [20]). However, a recent fashion is to have one large wide unified cache
and a short instruction buffer which is capable of reading several instructions from the
cache at once (e.g. the PowerPC 601 [62]). Since data accesses typically account for
40% of instructions executed (at least for RISC processors [54]), the instruction and
data accesses may be successfully interleaved with few occasions when the processor
is starved of instructions. However, when the density of chips increases we are likely
to see the re-emergence of separate caches because the single cache cannot be made
much larger and still be sufficiently fast.

Memory for multi-processor systems is frequently based upon caching data which
is currently being accessed and/or modified. Access mechanisms must be provided to
ensure data integrity is maintained when multiple processors compete over writing to
the same memory area. One approach is to broadcast writes to all processors so that
they may update their cache. A specialisation of this, called snooping, broadcasts the
information on a bus. However, broadcasting information from many sources becomes
increasingly costly as the number of sources increases. Alternatively, a directory may
be used to record which processors have a read only copy of information so that inval-
idation of the information may be achieved by multicasting to the appropriate proces-
sors. For example, the Stanford Dash multiprocessor [42] supports a distributed direc-

tory structure for shared memory between clusters of processors, and snooping within
clusters.

3.2.2 Instruction coding

Typically, instructions consist of one or more operations (specified by op-codes') and
zero or more operands? to specify data source and destination. The type of the operands
may be specified as part of the op-code, some separate field or by the data itself in the
case of typed memory (see sections 6.6 and 6.7). Some operands may be implicit in the
op-code so do not need to be specified. For example, set interrupt mask bit or skip next
instruction if the carry is set instructions do not need to specify any operands. Operands
may be in terms of an index into a register file, an index into a stack or a memory ad-
dress, where the address may be a constant or be calculated using registers or a stack.

! Although an op-code is unnecessary on a single instruction computer, e.g. r-move [48].
2Single operand instructions being referred to as monadic, double operand instructions as dyadic and
triple operand instructions as triadic, etc.

17

When main memory was expensive it was advantageous for instructions to be as
compact and full functioned as possible. This lead to the design of a breed of complex
instruction set computers (CISCs) which relied upon variable length instructions for
compactness, where each instruction could perform some very complex operation. For
example, VAXs had a POLY instruction for evaluating polynomials [43].

Stack based machines also require a variable length instruction because operands
are indexed off the stack, the index often being short but sometimes very long.

Memory became cheaper and it was realised that high level language compilers pro-
duced code which only made frequent use of a subset of the CISC instructions. This
prompted the design of reduced instruction set computers (RISC) where the most fre-
quently used, and also the indispensable, instructions were supported and made as fast
as possible. The infrequent operations were synthesised from a combination of the fre-
quent instructions. In order to make these simple instructions execute as fast as possi-
ble, simple decoding was desirable. Therefore, RISC instructions were fixed length
and came in a few basic forms. Fixed length instructions mean that multiple main
memory operands were impractical because they would make the instruction length
prohibitively long (assuming reasonable offsets need to be specified). This resulted
in the load/store approach where the only instructions which can access memory are
the dyadic load and store, triadic data manipulation instructions being register-to-
register.

3.2.3 Instruction parallelism

Executing an instruction takes some or all of the following steps: instruction fetch,
instruction decode, operand fetch, execution/calculation, memory access, register file
write. Some of these steps may be performed in parallel but many have interdependen-
cies (e.g. instruction fetch must occur before it is known which operands are required)
which imposes some ordering. However, steps for different instructions may be over-
lapped using a pipeline. For example, whilst operands are being fetched the next in-
struction may be fetched. Pipelines may be a simple linear structure but more often
subpipelines are used to process instructions which require more complex processing.
For example, floating point and integer multiply and divide operations require a longer
execution time. This leads on to parallel execution of integer and floating point opera-
tions.

Provided several instructions may be fetched and their interdependencies resolved,
it is possible to simultaneously issue multiple instructions to several integer and float-
ing point pipelines. Such an execution structure is referred to as superscalar. An al-
ternative to the superscalar approach, where the grouping of instructions for parallel
execution is dynamic, is to perform the grouping statically to form a very long instruc-

18

tion word (VLIW). For example, the Multiffiow TRACE 14/300 VLIW computer [59]
with a 512 bit instruction format which takes two cycles to execute but can issue up to
8 integer operations, 4 floating-point operations and one branch operation concurrently.

An alternative to VLIW is to specify the data movements between ALUs, register
files, etc., rather than specifying which operations need to be performed. This technique
is know as transport triggered [17, 16] because data arriving at, say, an ALU triggers
some function evaluation to be performed; the result of which is placed into an output
buffer or FIFO until it is moved by another transport operation. This idea is very similar
to microcode [60] which is composed of instructions with a fairly verbose encoding of
all the hardware control signals required on a cycle by cycle basis.

As we move from the high-level CISC, RISC and superscalar instructions through
to VLIW, transport triggered and low-level microcode instructions, more potential par-
allelism may be elicited. However, the encodings become more verbose which often
results in poor memory usage. Furthermore, the programmer’s model® becomes more
complex as we move from the high-level CISC to the low-level microcode. As the pro-
grammer’s model becomes more processor implementation specific, the code becomes
less portable. However, lower level instructions which are tailored to a particular pro-
cessor implementation (e.g. transport triggered) can be simpler to execute and can allow
more parallelism to be elicited. One solution to the problem of portability of code is to
compile to some intermediate form (either completely general or processor family spe-
cific) which may then be converted into a highly optimised low-level processor specific
form.

Another form of instruction parallelism is exhibited by multi-processor comput-
ers, often called multiple-instruction, multiple-data (MIMD) after Flynn’s classification
[25]. Whilst, for example, superscalar systems offer instruction level parallelism for a
single control-flow program, MIMDs offer a coarse level of parallelism with data com-
munication, either by shared memory or message passing. Of course superscalar and
MIMD approaches may be combined.

3.2.4 Data parallelism

Data parallelism is often achieved as a consequence of instruction parallelism. Flynn’s
classification [25] also identifies single instruction, multiple data (SIMD) computers
(e.g. CLIP7A [26], DAP [53] and CM2 [33]). They tend to be used for specialist tasks,
like graphics and finite element analysis, which can easily be split into many identical
parallel tasks with little data dependency. Vector processing may be considered as a
subset of the SIMD technique (e.g. Cray-1 [34]).

3The programmer’s model is one which is sufficient to enable working code to be written. A more
detailed model may be required to write efficient code.

19

3.2.5 Concurrency and synchronisation primitives

Synchronisation of data between instructions is achieved by the sequential ordering im-
posed by the control-flow model. This makes multiple assignment and access to I/O
relatively easy. Whilst superscalar systems may perform instructions out of order they
may only do so when a change of ordering will not affect the result.

Synchronisation of data coming in from an input device* is commonly achieved
by sending the processor an interrupt signal which causes the thread of control to be
suspended and forces execution to start at a particular address — usually the start of an
interrupt handler routine. Concurrency is also achieved using this mechanism by using
a timer to interrupt the processor at a regular period. The software interrupt handler
determines where the interrupt came from and restarts a thread based upon a scheduling
decision. It should be noted that context switching (changing threads) and scheduling
decisions are typically performed in software.

3.2.6 Memory protection mechanisms

A memory access protection mechanism is provided by most processors to prevent sep-
arate applications from accidently or maliciously modifying or reading another appli-
cation’s data. This is extended to protect /O devices which are often memory mapped.
Protection may be at several levels and at a varying granularity; for example, capabili-
ties [70] and rings [58]. However, complex protection mechanisms do incur costs, both
in terms of execution time and processor complexity.

Multi-level and fine grained protection is typically used for intra-application pro-
tection as well as inter-application protection. However, modern high level language
compilers can statically check many intra-application memory accesses. Furthermore,
inter-application protection is often sufficient at the page level and may efficiently be
combined with the virtual to physical address translation mechanism. Thus, page based
protection is the norm.

Setting up a simple page based memory protection mechanism requires a supervi-
sor mode (sometimes called a trusted mode or privileged mode), where the protection
is turned off. Usually only a trusted part of the operating system (or trusted kernel) is
allowed to obtain the supervisor privilege. Entering supervisor mode usually only oc-
curs when a hardware interrupt, or its software counterpart (a trap or call_pal®), occurs
and usually the code which is invoked is the trusted part of the operating system kernel.
Thus, supervisor mode cannot be obtained subversively, which completes the memory
protection system.

4 Arriving data may simple be placed in an input queue which needs to be read by software, or it may
be transferred directly to the main memory (direct memory access or DMA).
Scall_pal is the Alpha version of a software trap which will be referred to again in chapter 6.

20

3.2.7 Assessment of the control-flow model

Control-flow processors completely dominate the computer industry and so many re-
finements have been made to improve performance. Electronics technology has al-
lowed micro-processors to become more complex so that they can embody many of
the desirable features developed for past mainframe computers. However, many of the
architectural refinements, like the superscalar technique, have limited application. For
example, the instruction level parallelism extracted by the superscalar approach is lim-
ited by data interdependencies which at best is limited by the number of registers.

The MIMD approach may be used to attain more parallelism but is limited by syn-
chronisation and transfer overheads associated with sharing data. In particular, appli-
cation level synchronisation primitives are not usually supported by the hardware. Fur-
thermore, for many applications it is difficult to efficiently divide the program into sep-
arate cause grained tasks, or threads of control.

The inherently single threaded nature of control-flow machines means that the la-
tency of cache misses tends to stall execution due to data dependencies. As memories
become larger, and control-flow processors become faster, there is going to be an in-
creasing reliance on good cache performance. Unfortunately, this means that the tem-
poral characteristics of systems are going to become increasingly nondeterministic.

Despite the problems of the control-flow model it will no doubt continue to be re-
fined and be used for a wide range of applications which require best effort performance
and limited parallelism. The dominance of the control-flow model means than any seri-
ous move towards an alternative paradigm must provide some backward compatability.

3.3 Data-flow processors

Whilst control-flow programs explicitly define the order of execution which ensures
that data is manipulated in the required order, data-flow programs specify the data-
dependencies and allow the processor to choose one of the possible orderings. Data-
dependencies may be represented as a directed graph where instructions form the nodes -
and the data-dependencies form the arcs (see figure 3.1). Any instruction which has
received its operands may be executed, thereby allowing parallel execution. Further-
more, logically separate data-flow routines run at an instruction level of concurrency
which is coordinated by a hardware scheduler.

The next sections present a brief overview of different data-flow paradigms. Then
the preferred paradigm, tagged-token data-flow, is assessed.

21

Example function: f(a,b,c) := a.b + a/c

control-flow data-flow
‘a’ duplicated ?aal b ¢ destination
by source node l |
Y
anode = an 5' multiply I | divide |
instruction

matching G
or joining

return

returned value

Figure 3.1: An example of control-flow and data-flow program structure

3.3.1 Static data-flow

With static data-flow [19] there is at most one foken (datum) on an arc — path between
one data-flow instruction and the next. The values on the arcs, or operands, are stored
with the instruction. To ensure operands are not overwritten before they are used there
are backward signal arcs which inform previous instructions when the instruction has
been executed (i.e. when the operands have been used and the destinations have been
written to). Figure 3.2 presents an example instruction format.

where

| op-code | opl J (op2) ‘ destl + dcl | (dest2 + dc2) l sigl | (sig2) |

() indicates optional parameters

op-code is the instruction identifier

opl and op2 are the spaces for operands (op2 missing for monadic operations)
destl and dest2 are the destinations (dest2 being optional)

dcl and dc2 are destination clear flags (initially clear)

sigl and sig2 are the signal destinations (handshaking arcs)

Figure 3.2: Example static data-flow instruction format

22

There are problems with static data-flow:

e Shared functions are difficult to implement because mutual exclusion must be
enforced upon writing all of the operands to the function. This severely limits
concurrency and is often inefficiently solved by replicating functions either stat-
ically or dynamically.

e The backward signal arcs double the number of tokens to be matched.

3.3.2 Coloured dynamic data-flow

With dynamic data-flow there may be many tokens per arc. In the coloured data-flow
paradigm associated tokens are given an unique identifier, or colour. This allows func-
tions to be represented because each invocation of a function is given a unique colour.
Only operands with the same colour may be matched in dyadic operations. An exam-
ple of coloured data-flow is the Manchester prototype [30]. The RMIT hybrid [1] also
utilises coloured data-flow to encapsulate functions but supports static data-flow within
functions.
The main problems are:

e Matching colours is expensive and temporally unpredictable — often imple-
mented using hashing.

e Uncontrolled fan-out can cause too many concurrent parts to be initiated resulting
in matching store overflow.

3.3.3 Tagged token dynamic data-flow

An alternative paradigm (used for the MIT Monsoon machine [51]) is to remove
operand storage from the instruction and to place it in a data page, or activation frame.
Activation frames effectively store the context of a function. This may be implemented
using a conventional flat memory store with the addition of a presence bit (an empty/full
flag) for each word in memory. The advantage is that each instantiation of a function
has its own separate activation frame which makes matching of operands easy:

e instantiating a function — obtain an unused activation frame and set all of the
flags to empty.

e matching a token to a monadic instruction — the token’s statement pointer (see
figure 3.3) is used to lookup the instruction to be executed which forms an exe-
cutable packet to be queued for execution.

23

e matching a token to a dyadic instruction — the token’s statement pointer is used
to look up the instruction to be executed. The instruction’s r value (see figure 3.3)
is then added to the token’s context pointer value to form an address in the acti-
vation frame (i.e. r forms an offset into the activation frame). If there is a value
in the activation frame then that value is read and matched with the token’s data
value which is sent, with the instruction information, to be executed and the ac-
tivation frame location is set to empty. If there was not a value in the activation
frame then the token’s data value is stored in the activation frame to wait for its
partner and the presence flag is set to full.

The matching scheme may be extended (e.g. the EM4 machine [57]) to allow in-
termediate results to be held in a register file, rather than being passed via a matching
store, whilst instructions are executed in a control-flow manner. In the EM4 implemen-
tation the control-flow sections are limited by the number of input values into one in-
struction (dyadic or monadic) followed by a linear sequence of operations fetching their
operands from the register file (i.e. the control-flow segments are limited to at most two
input parameters).

Example instruction format

| op-code | (r) | dest1 [(dest2) |
where () indicates optional parameters
op-code is the instruction identifier
r is the activation frame offset number for dyadic operations
dest] and dest2 are the destinations (dest2 being optional)

Example tagged token

Iiontext pointer | statement pointer | port | data |

where context pointer = address of the start of the activation frame
statement pointer = address of the target statement
port = indicates if the destination is the left or right operand

data

a word of data

Figure 3.3: Example tagged-token data-flow instruction and token formats

24

The problems with tagged token data-flow are:

e Every time a function is instantiated an activation frame has to be emptied by
setting each of the presence bits to empty (128 words on the Monsoon machine

[51D).

e Matching the first operand for a dyadic operation results in no operation to be
performed and thus a bubble in the pipeline.

3.3.4 Assessment of tagged token data-flow

Tagged token data-flow can support the usual array of arithmetic and logical opera-
tions. However, unlike control-flow, data-flow supports instruction level parallelism.
This fine grained parallelism results in assignment, and thus I/O, being problematic be-
cause a serial ordering is difficult to impose. Execution latency of serial code is long
because an instruction must traverse the pipeline for each operand. The processor only
really becomes efficient when executing more concurrent tasks than there are stages in
the pipeline (8 for Monsoon). Furthermore, the scheduling mechanism has to be very
quick and overly simple which is inadequate for meeting the temporal requirements of
hard real-time systems. However, the inherent parallelism does allow latency to be tol-
erated. Thus, scalable local and distributed memory structures may be utilised.

The direct mapped matching store is an elegantly simple mechanism for joining
dyadic operands. Operands arrive as tokens which may be sent from any of the dis-
tributed processors. This supports low overhead parallelism. However, clearing an ac-
tivation frame in the matching store is an arduous task.

3.4 Multithreaded processors

Multithreaded processors aim to combine control-flow and data-flow ideas to form an
amalgam which exhibits many of the advantages of both paradigms whilst trying to
avoid the disadvantages [66, 50, 51].

Currently, multithreaded processors are in their infancy. Whilst a wide variety of
models have been proposed, they all have some notion of a control-flow section of code,
or microthread, which is often executed nonpreemptively. Many microthreads execut-
ing sequentially form a single logical thread.

At one extreme there have been attempté to add a little control-flow to data-flow
machines (e.g. Monsoon [51] and EM-4 [57]) in order to reduce the load on the match-
ing store by making use of a register file. At the other extreme a little concurrency has

25

been introduced to control-flow machines (e.g. the INMOS Transputer [36]) to sup-
port concurrent languages (e.g. Occam [46]) and communications between processors
(e.g. xT [52], Sparcle [2] and the Transputer [36]). Hiding latency from shared memory
has also been investigated (e.g. HEP [37] and Tera [4]).

The following sections look at the range of mechanisms employed to handle mul-
tiple contexts (section 3.4.1), communication (section 3.4.2), synchronisation and
scheduling (section 3.4.3), memory structure (section 3.4.4) and how they impact upon
microthread size (section 3.4.5).

3.4.1 Multiple contexts

A simple approach to context switching quickly is to avoid having context to switch.
For example, the T800 INMOS Transputer [36] only has six registers worth of state —
three words of evaluation stack, an operand register, a work space pointer (WP) and a
program counter (PC). Furthermore, most context switches can only occur at certain in-
structions (e.g. a jump) where, by definition, the workspace and operand registers may
be discarded. Thus, only the WP and PC have to be saved which may be performed
quickly.

However, having so little state associated with a thread results in context being
continually moved to and from memory rather than making efficient use of a closely
coupled store (e.g. a register file). «T [52] simply takes the approach of loading state
into a register file at the beginning of a microthread and then saving it again before
being descheduled. This is obviously expensive so Sparcle [2] uses a pageable regis-
ter file to store a few active contexts. HEP [37], Tera [4], D-RISC [13], P-RISC [50],
MDFA [28], etc., support a cached pageable register file to allow more context to be
stored. However, in practice the size of a cached pageable register file is severely lim-
ited because it has to have multiple data paths and still perform at the rate of the rest of
the pipeline.

For an efficient context switch, the microthread’s code (or text) must be available
locally to the processor. One could hope that the code was still present in a local cache
from a previous execution (e.g. xT [52] and Sparcle [2]). However, assuming a hard-

ware scheduler is present, it is possible to preload code before a process is queued for
execution (e.g. MDFA [28]).

3.4.2 Communication

Interprocessor communication may be supported by remote memory requests
(e.g. HEP [37], EM-4 [57] and Monsoon [51]) or by message passing (e.g. T,
Sparcle [2] and Transputer [36]). Remote memory requests utilise the usual memory

26

access mechanism but memory may also be tagged with presence bits at each word to
indicate whether the word is empty or full to assist synchronisation (see section 3.4.3).

Communication mechanisms need to be efficient and are, therefore, often posi-
tioned very close to the processor to allow transfer of messages to and from the pro-
cessor’s register file and a message processor’s input and output queues (e.g. xT [52]
and Sparcle [2]).

3.4.3 Synchronisation and scheduling

EM-4 [57] and Monsoon [51] utilise tagged memory to synchronise messages to dyadic
microthreads in the usual data-flow manner. Whilst this is an efficient mechanism, it is
still expensive when compared to the amount of work required to execute many dyadic
microthreads.

Tera [4] has four methods of using tagged memory:

1. wait for full
2. read and set empty
3. wait for empty

4. write and set full

When wait operations hit the memory the presence bit is returned to the particu-
lar processor’s scheduling function unit (SFU) which polls the memory (up to a given
maximum number of times) until the desired answer is returned. The SFU holds the
process status word (PSW) and uses this information to reactivate a thread when the
desired value has been returned by the memory. Whilst this is a simple mechanism,
polling is inefficient even if a task has to wait just a few thousand clock cycles.

HEP [37] uses counters for synchronisation and provides a join instruction which
decrements a counter at a particular address and if the result is not zero then the
thread is descheduled. This mechanism is also simple but assumes that an atomic
read/modify/write cycle can be performed on a counter. This is inefficient if one as-
sumes the counter is stored in a memory with a long access latency.

MDFA [28] also uses counters for synchronisation but has a separate event copro-
cessor to manipulate a signal graph in a static data-flow manner. Like HEP, updating
an event counter unfortunately assumes a low latency memory (e.g. as provided by a
cache). However, having a separate signal graph is an interesting idea. Each node in
the signal graph consists of an event counter, a reset value for the event counter, ac-
knowledgement addresses for backward signalling, forward signalling addresses and a
code pointer. When signals arrive at a node the event counter is decremented. Once

27

the event counter reaches zero, it is reset to the reset value and the microthread pointed
to by the code pointer is executed. Upon completion of the microthread a signal is re-
turned to the node which then sends the forward and backward signals within the signal
graph.

«T [52] does not attempt to use concurrency to tolerate latency so does not need to
synchronise and schedule on memory accesses. However, it does need to synchronise
on incoming messages from other processors, either using conventional interrupts or
by polling the message coprocessor. Thus, matching messages to threads is a software
overhead.

If hardware support is provided for scheduling, then the prioritising mechanism is
usually just in the form of a few FIFO or LIFO queues. For example, the Transputer
has two priorities of FIFO queue. This is inadequate for hard real-time and multimedia
applications.

344 Memory

Typically faster processors require larger memories which prevents memory latency
from scaling with processor performance. However, it is possible to scale memory ac-
cess frequency with processor performance provided a pipelined memory structure is
used (see chapter 5 for a more complete argument). Some multithreaded processors
(e.g. xT [52] and Sparcle [2]) take the control-flow solution of adding caches despite
the side effect of temporal nondeterminism. HEP [37], Tera [4], EM-4 [57] and Mon-
soon [51] all allow concurrency to be used to hide access latency to local and remote
memories. Sparcle [2], with its higher context switch overhead, only supports latency
tolerance of remote memory.

Memory protection and virtual address translation on most current multithreaded
processors relies on a translation lookaside buffer (TLB) (see section 3.2.6). How-
ever, a TLB adds temporal nondeterminism and becomes inefficient when the number
of threads reaches and exceeds the number of TLB entries. Tera [4] uses its memory la-
tency tolerant characteristics to allow a pipelined memory protection and address trans-
lation mechanism to be efficiently used. Using pipelining allows the mechanism to be
much larger than a conventional TLB. However, it still does not provide total memory
coverage because the structure would be prohibitively large.

3.4.5 Microthread size

The data-flow oriented machines (e.g. Monsoon [51] and EM-4 [57]) can perform ef-
ficiently with microthreads which are only one instruction long. Although HEP [37]
is more control-flow oriented, it too deals with single instruction microthreads; one in-

28

struction is picked in FIFO order from each of the runnable threads and is inserted into
the processor’s pipeline. Thus, if there are lots of threads then each stage of the pipe-
line will be executing an instruction from a different thread. However, if there are few
threads then, assuming data dependencies are not violated, several instructions from
the same thread may be in the pipeline at one time.

Other processors (Transputer [36], xT [52], Sparcle [2], MDFA [28], etc.) all ex-
ecute a single microthread at a time which is usually several instructions long. The
desirable length of a microthread for a particular processor is dependent upon the ef-
ficiency of the context switch mechanism and whether a microthread is forced to be
descheduled to access local or remote memory. If a microthread is forced to be short,
then a large number of threads (e.g. around 70 for Tera [4]) are required to ensure that
there is sufficient work for the processor when some threads are waiting due to memory
access latency. However, if microthreads are larger then obviously fewer are required
to hide memory latency. This is advantageous for the many algorithms which exhibit
little parallelism.

3.5 Summary

The control-flow model supports sequential execution which is widely used and well
understood. However, faster processors require larger memories which then do not
scale with processor performance. Caches may be used to hide some of the latency but
in practice they introduce temporal nondeterminism. Furthermore, control-flow pro-
cessors do not support a strong synchronisation model but instead support some form
of interrupt mechanism, relying upon software to complete the task. This obviously
adds overhead which impinges upon performance of multithreaded and multiprocessor
applications.

The data-flow models support instruction level concurrency which allows mem-
ory latency to be tolerated because alternative code can usually be executed whilst
waiting for memory responses. Furthermore, a matching store is provided which not
only allows synchronisation of memory accesses to instructions but also interthread
and interprocessor synchronisation. However, instruction level parallelism makes mul-
tiple assignment problematic. This particularly makes input and output operations
tricky because they must be serialised. Furthermore, instruction level parallelism forces
scheduling decisions to be very rapid, which limits the scheduling policy to being
overly simple, e.g. FIFO or LIFO. This is inadequate for hard real-time and multime-
dia applications. Also, most data-flow models do not support efficient use of a closely
coupled store (e.g. a register file) which results in overuse of a relatively slow remote
memory (usually the matching store) for intermediate results. Extensions to the tagged

29

token data-flow model allow some serial execution so that a register file may be used
but this really moves the model to the edge of the multithreaded processor camp. '

Multithreaded processors aim to overcome the problems of both control-flow and
data-flow by forming an amalgam of these two models. Thus, some sequential compu-
tation, or microthreads, is supported to assist the use of a closely coupled store (e.g. a
register file) to avoid transmitting intermediate results over long distances. Micro-
threads typically represent a larger schedulable unit which potentially allows a more
sophisticated hardware scheduler to be used. However, to date only FIFO or LIFO
hardware schedulers have been deployed. The concurrency potentially allows mem-
ory latency to be tolerated but in practice this is dependent upon the efficiency of the
synchronisation mechanism.

To conclude, various multithreaded processor designs have exhibited some im-
proved characteristics over the control-flow and data-flow models. However, a good
processor design is the result of searching a multidimensional problem space which in-
evitably leads to subtle tradeoffs in order to form a well rounded design. There is little
point in improved characteristics in one area if other areas suffer. The current crop of
multithreaded processors offer some solutions to the following problems but none solve
the entire problem: '

e very low overhead synchronisation and prioritisation of interprocessor and in-
terthread messages

e a hardware scheduler which supports a sensiblevpolicy

e controllable concurrency so that overloading of synchronisation resources can be
avoided

e prefetching of a microthread’s context (both data and text) before being issued
for execution

e reasonably efficient execution of purely serial code and efficient execution of
code which exhibits only a little concurrency

e scalable and temporally predictable memory structure, virtual address translation
and memory protection

e efficient use of closely coupled memory®

SWhere a closely coupled memory is one which the processor can access within a single cycle.

30

Chapter 4

Hardware Scheduling

4.1 Introduction

If real-time requirements are to be met then a simple first-in first-out (FIFO) or last-in
first-out (LIFO) scheduler is inadequate. Instead a more sophisticated mechanism of
either earliest deadline first (EDF) or fixed priority (FP) is required [44]. Both EDF
and FP may be implemented using a priority queue — a specialisation of sorting. For
this application a hardware priority queue is require with the following characteristics:

1. A device which can perform an insert or extract minimum (or as a variant, an
extract maximum) operation every clock cycle.

2. Records with identical keys should be extracted in FIFO order of insertion so that
data-flow style fan-out is predictable.

The rest of this chapter assess current hardware sorting methods and concludes that
none meet the above requirements for a priority qlieue. An extension to the up/down
sorter algorithm [41] is proposed in order to meet the above requirements. Implemen-
tation issues for this new sorter are also addressed. A formal proof of correctness for
the algorithm is presented in appendix A.

4.2 Background

There are many hardware sorting techniques, of which most aim to sort a complete set
of data in the minimum time using as little hardware as possible (e.g. Batcher sorting
networks [6, 22], heap sort on a systolic array [45] and others [9]). Unfortunately these
do not meet our first objective of single cycle insertion and extraction.

In order to meet the first objective it is essential that any number inserted must be
compared (and possibly swapped with) the current minimum value. An obvious solu-

31

tion would be maintain a sorted list but this would require n — 1 compare and swap
units to sort 7 numbers in a single cycle.

4.2.1 Variations on the heap sort

Typically software implementations of priority queues utilise the heapsort technique
which takes O(log (n)) time to insert or extract [15]. Insertions are made at the bot-
tom of the heap and the heap is then massaged into a correct ordering (this process is
sometimes named the heapify function). Extraction of the minimum is from the top and
the hole it leaves is filled by a value from the bottom followed by an invocation of the
heapify function.

A hardware variant to meet the objectives would require insertion and extraction
initiated from the top of the heap. A dedicated processing element (PE) could be placed
at each level of the tree structure within the heap. Thus, large values (assuming an ex-
tract minimum is required) would ripple down through the levels dislodging even larger
values and settling in their place.

The only problem now is to maintain a balanced heap in order to prevent the al-
gorithm degenerating into a sorted list structure. One approach would be to maintain
a count of the number of nodes below every node so that at each level of the tree a
decision about which lower levels should store the next value. This appears to be inef-
ficient in terms of storage but it should be noted that the number of PEs and the size of
the counter for each node would grow O(log (n)). Thus, in terms of silicon real-estate
this would work well for large datasets. Unfortunately an insertion or extraction takes
at least two cycles (read and examine followed by a write).

4.2.2 The rebound sorter

The rebound sorter was proposed by T.C. Chen et al. [9] and improved upon by Ahn
and Murray [3]. Whilst it is unsuitable for this application, it forms the basis for more
suitable approaches.

The basic sorting element (see Figure 4.1) consists of two memory elements capable
of storing one word, a comparator and various data paths. Incoming data consists of
two words: a word of key and a word of associated data to form a record. Records
are inserted key first followed by the data on the subsequent cycle. The comparator
is used to compare keys stored in the Ln and Rn parts of the sorting element in order
to determine the direction in which the (key, data) pairs should take; this is known as
the decision cycle. The values in the following cycle will be the associated data so the
decision made in the current cycle is used in order that the data follows its key; this is
known as the continuation cycle.

32

shift in Input Output
.... l swap
e .- shift out
l T compare
-~ Rn (Ln>Rn)
‘ A Sorting Element The Overall Structure
; Figure 4.1: Structure of the rebound sorter
1 1
4 4 1 1
2 2 4 4 1 1
3 3 2 2 4 4 1 r
¥ v v v v v ¥ v
3 ¥ ? Z 4 4 17
A\ A4 V, A\ V’ A\ 4
3 3 ? 2 144 4T3
A\ A\ \J \ \J | A\ B
3 Y 27 | |222] 413
A\ v < < \4 1
3 33 333’ 3r3
t0 tl 2 t3 t4 t5 6 t7
1
1 1 2
1 1 2 2 3
1 1 2 2 3 3 4
4 : { X X + y 4
i) 2 2|43 X 4 ¢
H] H 1 B
2:;25 2° ..g %’ % 3: ﬂ' 4’
1 1 i 1 i
4I:’<_§ 31»39 3;..,3 3‘5 1‘1 4;
\4 H Ll H
43 44 4114’ 4-r4 4’
8 t9 t10 t11 t12 t13 t14 t15

where n’ = data associated with key n
— result of making a decision
-+ continuation from last decision

comparison point

Figure 4.2: An example of a rebound sort

33

Figure 4.2 illustrates the sorting behaviour. The principle of the algorithm is that
incoming values proceed down the left side until they rebound off the bottom (hence
the name) or hit a larger value on the diagonally lower right.

It can be seen that records take two cycles to insert or extract and all of the insertions
must take place followed by all the extractions. Thus, this algorithm does not meet our
objectives. Furthermore, it should be noted that n — 1 comparators are required to sort
n records and that these comparators are only used every other cycle.

4.2.3 The up/down sorter

The up/down sorting algorithm was originally designed to be implemented in bub-
ble memory technology [41]. It is constructed as a linear array of sorting elements
in a similar manner to the rebound sorter described in the previous section. However,
(key, data) pairs are inserted in parallel and the sorting element (see figure 4.3) is more
complex, primarily because of the implementation technology.

Initially all of the sorting elements contain infinity. An inserted value arrives in A4,,.
Simultaneously a copy of C,, is made to B,,, and D, is transferred to A,,,;. A compare
and steer operation takes place resulting in the maximum of A, and B, being trans-
ferred to D,, and the minimum of 4,, and B, transferred to C,,. Extraction similarly in-
volves C;, being removed or transferred to B,,_1, D,, copied to A, and C,,,, transferred
| to B, followed by the compare and steer operation. An example is given in figure 4.4.

Interestingly this algorithm allows an insert or extract operations to be interleaved
and only requires 7 sorting elements to sort 7 numbers. Unfortunately this implemen-
tation uses four storage areas per sorting element but if implemented in digital elec-
tronics this may be reduced to just two storage areas. The next section abstracts this
algorithm, determines that FIFO ordering of identical keys is not maintained and sug-
gests solutions. Then a clocked digital implementation is presented.

! !

—> swap action:
An =~ Cn Cn=min(An,Bn)
‘ %4 l | Dn=max(An,Bn)
> upward (extract) action
Dn [« Bn . .
— downward (insert) action

| :

Figure 4.3: The up/down sorting element

34

4
1 4
3 1 4
2 3 1 4
| | I
o | [Y]2| (W] [T Key:
]]l 4 1 I 1 4 1
coe= % v :[54_‘ ! v =» sorting action
t o t © Yoo s — downward (insert) action
! |]]
%, v % Y 0101_$ oY --»upward (extract) action
v) v v Jr comparison point
t0 t1 2 t3
1
1 2
1 2 3
A A i 1
ATy <AMRIN
4|4 4 l 4LA @ l
<IN IVEIRIVEINIVE
34, @ l & l @ l
[o0] o8] (:D [0 0]
t4 t5 t6 t7

Figure 4.4: An example of an up/down sort

35

4.3 The tagged up/down sorter

4.3.1 Abstracting the up/down sorter algorithm

The up/down sorting element (see figure 4.3) may be abstracted to two memory ele-
ments which may be swapped, and a comparator (see figure 4.5). The algorithm may
then be described as a two stage process:

1. Insert:

(Ly :=(k = new_key, d = new_data))
AN (Vn>0.(L,,, = Ly))

or extract:

(extracted := Ry) A (Vn > 0.(R], := Rp11))

2. Compare and swap:

Vn> O‘(L;L,R;’L) = (Lp-k < Rp.k = (Rmen) I (LTL’ Rn))
where k=key part of the record
d=associated data part of the record
Ly, Ry =the current left and right records
L;,,R;,=the next left and right records
(¢ = a | b)=if cthen a else b

Whilst this algorithm sorts correctly, the FIFO ordering of records with identical
keys is not maintained (see figure 4.6). This problem arises when records on the right
are swapped back to the left.

4.3.2 Ensuring FIFO ordering

FIFO ordering could be assured by associating an order of entry number with each
record. However, a cleaner solution is to tag records by setting a single tag bit when
they arrive on the right so that if they are swapped to the left they can be forced to swap
back to the right on the next cycle. This works because once a record arrives on the right
it must be sorted with respect to the other keys on the right. If a record gets swapped to
the left, then on the next cycle (regardless of whether an insert or extract takes place) it
will be compared with the right value which was previously physically below it. Thus,
the right key must be either greater than the one on the left or have the same key. How-
ever, the record on the right was inserted later than the record on the left. Therefore, a

36

Input Compare Output Input --....__ l 1 Output

l T Lo?Ro
Li¢R;
Ln Rn
L,?R,
l T L3$.R3
Swap * compare
& swap
(a) single element (b) a four element structure

to sort eight numbers

Figure 4.5: Abstraction of the up/down sorter

swap must be performed if the ordering on the right is to be maintained (see figure 4.7
for an example). This is formally proved in appendix A.
The tagged up/down sorting algorithm may thus be defined as a two stage process:

1. Insert:

(Ly := (k = new_key,d = new_data,t = 0))
A (Yn>0.(Lyyy = Ly))

or extract:
(extracted := (Ro.k, Rg.d)) A (Vn > 0.(R}, := Ry41))
2. Compare and swap:

Vn>0.(Lp, RL) = (Lp-k < Rpk) V (Lpit = 1)) =
(ana (Ln-k, Ly.d,t= 1)) [(Lm an)

where k=key part of the record
d=associated data part of the record
L,,R,=the current left and right records
L},,R! =the next left and right records
(c = alb)=if c then a else b

37

Key:

Insert:

insert
extract

\
4

3
|

or extract

<> swap after insert

3
4
[

o <+ -

~
o < — N+

o
<t — N N

Extract:

342

iy

3¢2

3¢1

Figure 4.6: Ordering problem with the up/down sorter

38

5o <t orp 8> 81'8|'8
§ 8 g
S g =
BEE &%)
c EBE5 [|A]B T dtnhEgite B
S <+t ovtfSPet %8 (" m
g
N &8 — TNty 818 2
1o tte to e {te g
o <+ —poip 8 8 43 8|8 o
2 o
&0
%)
~°o| = [o ~ .a] ¢ .mu
~ »mw +w 12AI,2A+TAIwAlm =
111 ¢ o1& 8
N <+ — n/mAIVZIIV WIVQWIV o 44 w ..m.b
_ -]
- - - o - .e
RIKER: ~ratanaTs &
o <t — Zznu...lv«,mlvfmlvfw{v “J M.. Nw An—.v
=
o 20
.o —— O — By
m 81,8 1,8 m <+ttt 8
2 BN () 2 L e TS
= NN NP8 88 m o | <N

4.4 Clocked digital implementation of the tagged
up/down sorter

A naive two step clocked digital implementation is presented in figure 4.8. Values are
shifted in and compared in the first cycle and if the comparison requires it, a swap is
performed on the next cycle. However, this may be reduced to a single cycle process
by redirecting the inputs and outputs of the latches rather than swapping the values be-
tween the latches (see figure 4.9).

Input t=1 ' Output

| compare |
& control

o
e

t d k

lu+1

Figure 4.8: Two stage tagged up/down sorting element

40

5

s~
it
—
=R

Output

ad

crossbar

btc

compare
A & control

ac be

t!k klt
o) , t

A

crossbar
kS = ’
1S
dkt dkt
L L1

Figure 4.9: One stage tagged up/down sorting element

point at which point at which Key:
value is inserted value is inserted tc = time for comparison
tl = time for control logic

insert) i

L——»L—»I point at which point at which

te t value is extracted value is extracted

extract B A & S

N.B. insert and extract must be non-overlapping

Figure 4.10: Example timing for the one step tagged up/down sorter to perform two
inserts followed by two extracts

41

4.4.1 Controlling the single cycle implementation

The two crossbars are controlled by which maps A, to the left and B, to the right if
z = true, otherwise A, maps to the right and B, to the left. Insertion and extraction
are controlled by insert and extract signals which are mutually-exclusive. An insert
or extract is performed by pulsing the appropriate control line high (see figure 4.10)
which clocks the required latches for A,, B,, and x on the falling edge. ac, atc, bc and
btc control the clocking of the (A, at,,) and (B,, bt,) latches. If z = true then the left
value is in A so ac and atc will be clocked if insert is pulsed. If x = false then the
right value is in A so ac and atc will be clocked if eztract is pulsed; however, to force
tagging of right hand side values, atc will also be clocked if insert is pulsed and the
OR gate arrangement into at,, will set the tag bit. Thus, the tag is set on the following
cycle. The corresponding logic is required for B, but with —z.

The control equations for the one step control logic are defined by (assuming that
the flip-flops are negative edge-triggered, i.e. they latch on the falling clock edge):

let z = control for crossbars:
(louts Tout) = (z = (lina Tin)] (Tin, lin))
oldz = z latched on the falling edge of insert V extract
Ap .k =key part of record in latch A,
Ay .t =tag part of 4,
By,.k =key part of record in latch B,
B, .t = tag part of B,
insert = insertion control signal

extract = extraction control signal

N.B. insert A extract = false

z = ((oldz A (Ap.k = By.k))
V (Ap.k > Bp.k)
V (—oldz A By.t)

)A-(oldz A Apt) M

ac = (z A insert) V (—z A extract) 2)
be = (—z A insert) V (z A extract) 3)
atc =1insert V (—z A extract) ()

btc = insert V (z A extract) ®)]

4.4.2 Discussion of the operation of the single cycle implementation

First we consider the insert operation. The record to be inserted is presented at /,, (see
figure 4.9), the insert signal is pulsed true and extract remains false. The latch used
to hold the record will depend upon the value of z which is determined by the contents

42

of (An, at,), (B, bt,) and oldz before the insert takes place. If, for example, we take
z = true (so the A,, and at,, latches are holding the left record) and perform an insert
(so extract = false) then the control equations (2) through (5) become:
ac = atc = btc = insert
bc= false
Thus, since z = true the new record (at /,,) will be placed on the inputs of A,, and
at, which will be latched into place on the falling edge of the insert signal by ac and
atc (the original record in (A,, at,,) being propagated to the next sorting element). We
can also see that latch B,, is not clocked because bc remains false but that the tag bit
is set by the OR gate arrangement into bt,, and the clocking signal btc.
On the falling edge of insert the current value of x = true is transferred to the
variable oldz and the next value of z is calculated from (1):
z=((An.k = Bpk)V (An.k > Bp.k)) A—Ap.t
Thus, the crossbar only causes a swap (z goes from true to false) if (A,.k <
B,,.k) V at,, which conforms with the algorithm in section 4.3.2. Furthermore, it should
be noted that if a swap has occurred then (B,,, bt,) has been remapped from the right
output (,,) to the left output (/,;1) and that this record has been correctly tagged. Like
wise, if we had started with z = false then similar conformation would be obtained.
Now consider the extract operation. If we start with z = false (so the A, and at,
latches are holding the right record and r,,,, is the input) then equations (2) through (5)

become:
ac = atc = extract

bc =bic = false
Thus, 7,4 will be latched into A, and the tag bit at,, will be set, on the falling edge
of extract. At this point the value of oldz will be set to false resulting in the following
calculation of the next value for z:
z=(Ap.k > Bp.k)V-B,.t
It can be seen that the conditions for z to change from false to true, thereby causing
a swap, correspond with the specification in section 4.3.2 (remembering that oldz =
false so B, was mapped onto the left and A, onto the right). Furthermore, the value
shifted in has correctly had its tag set.

43

4.5 Conclusions

A tagged up/down sorter has been proposed as a suitable mechanism to support EDF
or FP scheduling policies. The algorithm requires just 3 comparators in order to sort
n records. The objectives of single cycle insert and extract operations has been met.
Furthermore, extract always removes the record with the least key, and in the case of
repeated keys FIFO ordering is maintained.

Implementation strategies were also outlined since this is a novel algorithm. The re-
sulting clocked implementation is a regular one which scales reasonably well, although
itis limited by the transmission of the insert and extract signals. It is anticipated that a
self-timed version would scale indefinitely.

A formal specification of the algorithm and a proof of correctness has been under-
taken by a colleague, B. T. Graham, using the HOL system [29]: An outline of the proof
is presented in appendix A.

44

Chapter 5

Memory structure

5.1 Introduction

Historically the implementation of functions and control structures has differed from
those of memory. In the early days of stored program electronic computers [69] valves
(or vacuum tubes) were employed to implement functions and control structures but
valve based memory would have been very large and probably too unreliable. Con-
sequently memory required other technology: first ultrasonic pulses in mercury tanks,
then phosphor persistence on a cathode ray tube (the Williams tube) and later on mag-
netic core memory. Today, main memory (which is still sometimes referred to as core
memory) is constructed using silicon based technology as are the functions and con-
trol structures for processors. However, the large size and regularity of memory allows
different optimisations to be made.

Since processors and memory are typically constructed using similar technology
it might appeér, at first sight, that technology improvements would enable both faster
memories and faster processors. However, faster processors are used to tackle larger
problems which typically require a larger memory. Section 5.2 elaborates this prob-
lem. Solutions for control-flow processors are discussed in section 5.3 and an alterna-
tive structure, which maintains access frequency at the expense of latency, is presented
in section 5.4. Then scalable virtual addressing (section 5.5) and memory protection

(section 5.6) schemes are presented. Finally the memory interconnect is discussed (sec-
tion 5.7). '

5.2 Memory performance

Both static and dynamic memories are constructed as a grid of storage bits. Reading
from the memory is performed by requesting that one row of storage passes its contents

45

down the columns to the bottom where the columns which are required are selected. For
a particular chip density it can be seen that the length of row and dlumn signals are de-

pendent upon \/ (chip area) o \/ (storage capacity). From this approximation we can
see that larger memories have longer row and column lines which take longer to access
data unless the density is increased to reduce the distances and capacitances. However,
improvements in density allow faster processors which are used to tackle larger jobs
which tend to require higher capacity memories. Unfortunately it is then impossible
to scale processor performance with single memory performance since signal speed is
limited by the speed of light (see section 2.3.1).} In practice several slightly smaller
memories are used connected together by a bus. However, this merely makes the inter-
connect topology more complex rather than solving the access speed problem.

5.3 Memory hierarchy for control-flow processors

Today’s RISC based control-flow processors make extensive use of pipelining to over-
lap steps in instruction execution. Typically one stage of the pipeline performs memory
accesses. Whilst it is possible for store instructions to be posted to memory without
stalling, loads soon stall due to data dependencies. Thus, control-flow processors are
dependent upon memory access latency. There are two commonly used hardware so-
lutions to this problem: caching and scoreboarding.

5.3.1 Caching

The processor can be fitted with a small local memory, or cache, to store recently used
results thereby reducing the number of accesses to the large main memory. However,
the cache must be fast enough to keep up with the processor so it cannot be too big.
If there is a large disparity between the performance of the cache and main memory
then further levels of cache may be deployed, thereby forming a pyramid structure, both
spatially and temporally. Unfortunately there is then a huge range of memory accesses
speeds, from the fast access time of the first level cache to an increasingly large access
time for the main memory (which can be > 100 X first level cache latency).
Analysing the temporal characteristics of a cache must take into account memory
access patterns. Whilst this is practical for simple single-threaded stand-alone applica-
tions, it is problematic in a reactive and/or multithreaded applications where memory
access patterns vary wildly with input data and scheduling decisions. It is possible to

1This is backed up by trends in DRAM technology which shows every sign of continuing a four-
fold improvement in density every three years whilst performance improves by only 7% and processor
performance improves by 365% [54]. ‘

46

partition a cache into isolated sections to separate thread interactions[39]. However,
this severely reduces the cache performance, particularly if a large number of threads
are used.

Predictive mechanisms may be used to attempt to prefetch data and code into a
cache [11]. Mechanisms may use either algorithms embedded into the hardware or
fetch instructions inserted into the code. Hardware mechanisms tend to be reactive
where decisions are based upon historical memory reference patterns. Conversely, soft-
ware mechanisms are usually proactive — code is statically or dynamically analysed to
assess memory access patterns and fetch instructions are then inserted at appropriate
points. However, predictive mechanisms tend only to work well in a sequential envi-
ronment. Once scheduling takes place, particularly if at a reasonably high frequency
with sporadic tasks, then the predictive algorithms are crippled because it is too diffi-
cult to determine what will be in the cache when.

5.3.2 Scoreboarding

The impact of a cache miss may be reduced by avoiding stalling the pipeline until the
data from a load is required. This may be performed by marking a scoreboard to in-
dicate which registers are aWaiting a loaded value and only stalling the pipeline if the
register is used before the value has returned from the memory subsystem. With careful
compiler design, 1oads may be performed a few instructions before the result is needed.
However, this limited use of parallelism only softens the impact of cache misses upon
performance rather than removing the need for caches.

5.4 Maintaining memory access frequency

An alternative to caches is to use lots of small high speed memories with a scalable
interconnect rather than a bus which does not scale well. For example, a tree could be
used (see figure 5.1) which forms a pipeline where each router and memory is a stage in
the pipeline. Although this allows the frequency of memory accesses to be maintained,
the latency will be dependent upon the length of the pipeline. However, it should be
noted that the latency only grows logarithmically with the memory size:

total latency = 1+
2x(mazimum pipeline stage time)

total memory size
X I-log(fa“ out) [memory module size-H

Thus, for example, a 264 byte memory (which is probably more memory than has
ever been built to date) made up of 2*® tiny 64 kbyte memories in a tree with a fan out of

47

outward control information

outward address 64

processor
tree
router
A
to other T to other
-“«-- -
routers j 7 routers
tree tree
router router

l l] ~l l l l l the real world,

mass storage,
MEmory| |memory| jmemory| {memory| |memory||(memory|| I/O /O or another

processor

Figure 5.1: Memory tree structure

8 would have a total latency of only 33 machine cycles. Of course, the memory modules
could be bigger and slightly slower than the processor provided memory modules are
interleaved and there is a reasonable spread of address values.

5.5 Virtual addressing for the memory tree

Virtual addressing is very useful for memory allocation but the use of paging is too
temporally unpredictable for many hard real-time systems. The traditional approach
to virtual addressing is to store the translation information in main memory and pro-
vide a cache, or translation look-aside buffer (TLB), to store recently used translations
[54]. Translation is performed by looking up the pair (process id, page number) in the
TLB. The TLB is usually fully associative and, because of space and performance lim-
itations, is often around 64 to 1024 entries. This is likely to be inadequate to map all
of the memory so TLB misses must be expected. Unfortunately, like data and program
caches, the temporal nature of TLBs is hard to predict.

Alternatively the virtual to physical mapping could be performed by a fully asso-
ciative table on each memory module. This table would represent some small fraction

48

(around 2% to 4%)* of the memory module provided that there are no many to one
mappings between (process id, virtual page number) and {physical page number).3
Meeting this requirement raises problems with providing protection for shared pages
but this is not insurmountable (see section 5.6).

5.6 Scalable memory protection

During execution, protection mechanisms are required, at least to provide memory pro-
tection to guard against unwanted inter-application interference. There are two orthog-
onal approaches:

1. Each area of memory has a list of processes and the operations which they are
allowed to perform (e.g. read and/or write). This structure is called an access
list. A translation lookaside buffer may be thought of as an access list cache.

2. Each area of memory has an access capability for each possible operation which
must be presented like a key to unlock the operation.

In the former a memory area has a list of process privileges and in the latter a process
has a list of memory privileges. Either approach could potentially be used to specify
the same level of protection and at any granularity [70]. However, only page-level pro-
tection will be considered here since modern high level language compilers are able to
provide a reasonable level of intra-page protection often without run-time overheads.

Page-level protection allows fire walls to be set up to isolate threads. However,
some areas of shared memory are often desirable to allow message passing, in a con-
trolled manner, between threads. Thus, for example, for message passing one thread
may have read only access to a page of memory whilst another has write only access.
If an access list is used then its size will vary according to the number of threads which
can access each page. This dynamic growth is undesirable if protection is to be com-
bined with virtual address mapping at each memory module. However, if capabilities
are used then each memory module only needs to know what the access capability is
for each of its pages.

21f 8 kbyte pages are assumed and that approximately 20 bytes (8 bytes of virtual address to 4 bytes of
physical address and an 8 byte capability) of fully associative memory is required per page which takes
up approximately 10 times the area per bit then approximately 2.5% of the memory module would be
translation table.

3This restriction should not be confused with a subset of this problem called aliasing, where many
virtual page numbers map onto one physical page number, since if there is no aliasing (a one to one
mapping between all virtual and physical pages) this does not guarantee that the stricter requirement is
met.

49

access bits on a per-type basis

block identifie i code .- system .
1er raw data deadline pointer executable | capability data illegal

readlwxite readlwrite readlwrite read Iwrite readlwrite read | write | read | write
. ~ ~ J
50 bits 14 bits

Figure 5.2: Example capability format

Capabilities for a page-based system are allocated in domains (or strides or blocks)
where each domain requires two capabilities: a read and a write. This delegates the job
of dynamic list management to each thread which must present the correct capability
to perform each memory access. Nevertheless, a thread is likely to only access a few
memory domains and thus the list will be short and manageable.

Protection of executable images (sometimes referred to as fext) is an interesting
problem, particularly if shared libraries are required. An elegant and simple approach
is to allow any application to execute anything and only protect data reads and writes
[56]. This allows free sharing of executables albeit at the risk of making the location
of bugs harder to identify. The underlying mechanism is simple — just allow the in-
struction fetch unit to access any area of memory by allowing it to use the supervisor
capability. Safety is assured because memory modification protection is a property of
the capabilities an application has rather than the code which it is executing.

Some finer grained protection may be added by introducing a few basic types which,
together with the capability, indicate to the processor and memory system what may be
read, written and modified. For example:

0 — raw data 4 — user capability

1 — deadline 5 — system data

2 — code pointer 6 — illegal

3 — executable 7 — system capability

Most of these types have associated read and write bits in the capability to indicate
how the data may be used (see figure 5.2). Further details of the meaning of these types
can be found in section 6.6 and an example of their use in section 7.7.

5.7 Tree routers

Messages going down the memory tree from the processor to the memory need to be
broadcast because the virtual address gives no indication of which memory module will
accept the message. Each memory module receives the request and attempts to perform
a virtual—physical translation followed by a capability check.

50

Inputs Outputs
invalid invalid — invalid
invalid valid — wvalid
valid invalid — valid
valid valid — invalid

Figure 5.3: Tree mapping of messages going up the tree from the memory modules to
the processor

For stores, if the translation and capability check pass then the store is per-
formed, otherwise the store is ignored. Little else can be done without passing addi-
tional information about the sending microthread because the microthread which issued
the store has probably terminated at this point in time. However, the simple approach
does not impinge upon security, it merely makes debugging of programs more diffi-
cult. Of course testing to see if the correct value is as at an address may be performed
by issuing a 1oad immediately after a store.

For loads, if translation and capability checks pass then the valid data and destina-
tion address are passed back up the tree, otherwise null data with type invalid is sent.
Thus, routing of signals going up the tree from the memory to the processor compares
the two inputs and performs the mapping in figure 5.3.

Broadcasting messages down the tree consumes power which increases exponen-
tially with depth, assuming that each router uses the same amount of power to route a
message. By placing the address translation and capability checking a few level up the
tree would allow a physical address to be generated sooner, thereby allowing message
to be routed directly to the appropriate memory module without further broadcasting.

5.8 Summary

A tree memory, consisting of many small memory modules and a tree topology inter-
connect, was proposed. This structure has the property that memory access frequency
may be maintained with increasing processor performance whilst memory access la-
tency increases by only O(log(size)).

Single address space virtual address mapping is supported at the memory module
level. This provides a total address map which grows with the number of memory mod-
ules. i

Coarse grained protection is also provided at the memory module level by provid-
ing read and write capabilities per page. Additional fine grained protection is achieved
using types which control how the processor can use the data.

51

52

Chapter 6

Anaconda — a multithreaded
processor

6.1 Introduction

The motivations in chapter 2 and the review of past processor models in chapter 3 sug-
gest that a multithreaded processor may meet the requirements for high performance
real-time and best-effort computing. This chapter describes a multithreaded processor,
Anaconda, which was designed with real-time and best-effort requirements in mind.
The underlying model is based upon data driven microthreads (further details in the
next section). A microthread, in this context, is a nonpreemptable control-flow unit of
code which accepts up to 16 input parameters, in a data-flow manner, before execution
commences. During execution, data is passed to other microthreads and messages are
posted to the memory system.

Matching parameters to microthreads is provided by a direct mapped matching
store (section 6.3) not dissimilar to that used by tagged data-flow machines (see sec-
tion 3.3.3). A hardware scheduler is required to support this model. The hardware pri-
ority queue, proposed in chapter 4, is used (section 6.4). Memory (section 6.5) and a
protection system (section 6.6) is provided by the memory tree structure, capability and
type system presented in chapter 5. Microthread instructions (section 6.7) are based
upon the Digital Alpha instruction set.

Finally, further details are presented starting with the matching store, code preload-
ing and context switching mechanisms (section 6.8), and moving on to operating sys-
tem support (section 6.9), I/O devices (section 6.10) and the execution pipeline (sec-
tion 6.11).

Figure 6.1 illustrates the interconnectivity of the basic blocks which are discussed
in the following sections. Simulation and evaluation appear in the next chapter.

53

instruction|{ pagable
fetch register
buffers file
cached code
control-flow matching scheduler prefetch
execution unit store cache
router
memory tree
routing network
memory memory [________ memory /0 /0 L to other allargizessors
module module module module module - Viaascalable
interconnect

Figure 6.1: The overall structure of Anaconda

54

6.2 Data driven microthreads

Anaconda is designed to execute data driven microthreads, which can also be thought
of as large grained data-flow where each data-flow node is a microthread. Each micro-
thread consists of a control-flow routine with between 8 and 32 instructions. Micro-
threads have up to 16 input parameters which must be presented before execution can
commence. An instance of a microthread stores its parameters in an activation frame.
Thus, there is a similar relationship between microthreads and activation frames as
there is between functions and stack frames on a control-flow processor. A matching
store is provided for joining parameters to microthreads by writing them to the appro-
priate microthread’s activation frame and recording which parameters have been writ-
ten (see section 6.3). When an activation frame is full it is scheduled by the hardware
(see section 6.4).

A large sequential routine may be broken up into a number of sequentially ordered
microthreads to form one logical thread of control (see figure 6.2). Only one activation
frame is required when executing a single sequence of microthreads because only one
microthread is active at any one time so the activation frame may be reused. Commu-
nication with memory and I/O is supported by posting messages. Stores simply post a
write request to the memory system. Loads do not stall but instead are performed split
phase: one microthread posts a memory request and specifies a destination microthread
using an address into its activation frame. Thus, the data loaded is sent as the input pa-
rameter to an awaiting microthread. Furthermore, the microthread which initiates the

one logical thread input parameters

microthread

updated
parameters ¢
memory or I/O accesses
A Y I

microthread

A\ output parameters

Figure 6.2: A single logical thread constructed from a sequence of microthreads

55

transaction does not need to stall awaiting the memory response.

Conventional multithreaded programs may be constructed from microthreads. For
example, figure 6.3 demonstrates the microthread structure for one thread spawning
(forking) two more threads and then waiting for them to complete before proceeding
(joining). In this instance, just three activation frames are used, one for each thread.

A more data-flow oriented style may also be supported. For example, figure 6.4 il-
lustrates a data-flow styled bubble sort constructed from min/max microthreads which
accept 10 parameters as input, and output the lowest 5 parameters to the left and the 5
highest parameters to the right. Further programming examples appear in the evalua-
tion (see chapter 7).

main thread

thread 1 (waits for both thread 2
threads to
return yalues)

passed parameters — G passed parameters

one or more ! ! one or more
micro-threads ' i micro-threads
executed executed
X Y
returned value —S - returned value

Figure 6.3: Example microthread structure for forks and joins

56

data input
10 10 10 10
[min/max] &ﬁn/maxj [min/max] &nin/max J

5 5 5 5 5 5
C | min/max min/max min/max 3

(o) () (o) §

(e (o) (smem) ()

5

5]

%Jf __J m

SERGKE

(KR
=

)
OO W 8

() (] () ()

data output

Figure 6.4: Data-flow styled bubble sort
57

6.3 Matching

A matching store is required to join up to 16 input parameters (each an 8 byte quadword
long) to each microthread. Storage for a microthread’s parameters is called an activa-
tion frame (see figure 6.5). Activation frames are allocated in memory, like any other
data, but are usually held in a fully associative local cache, one cache line per activation
frame, so the base address of the activation frame must be cache aligned. Caching en-
sures that intermediate results are localised and allows rapid transfer of context because
it is practical to have very wide busses if they are short.

The matching process uses presence bits, one for each quadword of data. Presence
bits are provided in the upper 16 bits of the first quadword of the activation frame (the
lower 48 bits holding the deadline — see the next section). Each presence bit indicates
whether a corresponding quadword is full (1) or empty (0); bit 48 is the flag for quad-
word 0, bit 49 for quadword 1, etc.

Storing presence bits as data allows them to be set and cleared in a single write.
However, this approach does mean that conventional memory stores and stores to the
matching store must be treated differently. This is achieved by providing two forms of
store instructions: conventional data stores and stores to the matching store which have
the side effect of setting the appropriate presence bit. This also allows the differentia-
tion between what should be cached in the matching store and what should be written
through to the main memory.

The activation frame also contains a pointer to the microthread’s code as well as a
home and a temporary capability. These will be explained in the following sections.

When an activation’s presence flags are all set, it is issued to the scheduler. At this
point, the presence flags are also cleared to prevent the odd spurious message (e.g. from
a rogue processes — see section 7.7) causing the microthread to be scheduled twice.

Before a microthread is executed, the activation frame parameters and activation
frame address are preloaded into the register file (see figure 6.6). See section 6.8 for
further details.

di cp he tc pO pll
16 presence bits | micro-thread . temporary
48 deadline bits | code pointer home capability capability or data data quadword 0 data quadword 11

Figure 6.5: Activation frame format

58

& L dl cp he tc p0 pll
5 activation ‘ 16 presence bit icro-thread te;
S at address af nce bits | micro- . mporary
E 48 deadline bits code pointer home capability capability or data data quadword 0 data quadword 11
1s [[
E8
< 3]
R
35 scheduler code cache
B8
58
@ g,
| [[
E&: ©0=d rl=cp 2=he B=tc r4 = p0 rl5=pll
L]

Q ===
'.'5".. ?g E .
FeE)
O
«

rl6=t0 29 =113 130 = af 131 = zero

Figure 6.6: Preloading an activation frame and prefetching code

6.4 Scheduling

Microthreads need to be scheduled so that the processor resource is allocated in a timely
manner. Earliest deadline first and fixed priority scheduling are provided using the
hardware priority queue presented in chapter 4. Obviously, this mechanism must be
provided with a deadline or priority for each executable microthread. On Anaconda
this is contained in the lower 48 bits of each microthread’s first parameter. Deadlines
are measured in 1us intervals so the 48 bits allows deadlines for up to 8.9 years before
roll-over. It is assumed that the computer will be rebooted before roll-over occurs.

The scheduler is also closely linked with preloading data and code before execution
— see section 6.8 for details.

6.5 Memory structure

Anaconda uses the memory tree structure presented in chapter 5. Anaconda’s data
driven microthreads model allows concurrency to be used to tolerate the latency of the
memory tree.

The memory tree uses a page based capability protection system. To perform mem-
ory accesses, the appropriate capabilities must be sourced: one for a store and two for
a load request (one for the data read and one for the write to the matching store). Ana-
conda sources capabilities from one of two slightly specialised registers: home and
temporary (hc and tc respectively — see figure 6.6).

59

access bits on a per-type basis

block identifier rawdata | deadline code | o recutable | capability s?;;m

pointer illegal

read Iwrite read |write read Iwrite read Iwrite read Iwn'te read Iwrite read Iwn'te
\ AL J/
hd Y
50 bits 14 bits

Figure 6.7: Anaconda capability format

Capabilities consist of a block identifier which can be considered as the key for ac-
cessing a block of pages (see figure 6.7). There are also load and store enable bits for
the various data types. The next section discusses how types are used.

6.6 Exceptions and types

Anaconda supports user and supervisor modes. Most code, including much of the op-
erating system, can be executed in user mode. Supervisor mode is provided to allow a
trusted software nanokernel (see section 6.9) to support capability generation, low level
exception handling and other basic house keeping functions, which require protection
mechanisms to be turned off. Entering supervisor mode is achieved either when an ex-
ception occurs or if the home capability of the executing microthread has the system
capability type.

Anaconda has 8 basic data types (see figure 6.8). A 3 bittag is added to every quad-
word — in the memory, matching store and register file — to identify its type. In super-
visor mode, any type of data may be loaded, stored and modified. When in user mode,
however, some operations are totally prevented and others are conditional upon hav-
ing the correct capability including the correct load/store bits for that type. It should be
noted that user capabilities and system data may be loaded and stored but may not be
modified. This inhibits forging of capabilities and system data.

The type of a quadword may be set using the type instruction (further details in the
next section). The result type from a dyadic operation is the type of the input operand
with the most significance (i.e. the one with the highest number — see figure 6.8). How-
ever, if a computation error occurs (e.g. due to a division by zero) then the illegal type
is returned. Operations which attempt to use an illegal datum cause an exception at
the register fetch stage. Thus, all exceptions can be indirectly attributed to a partic-
ular instruction (the exception is said to be precise') but operations which cause er-

Imprecise exceptions cannot be attributed to a particular instruction. For example, on the Alpha
21064, if a floating point divide is issued followed by a floating point multiply, then the divide can cause
an exception after the multiply has completed because divides take much longer. Unravelling out of order
completion is complex, so instead, an imprecise exception is raised.

60

type user privileges supervisor privileges
significance] name load | store | modify || load l store | modify
0 raw data J5) J5} Q o Q a
1 deadline J5) 5} o} «@ @ @
2 code pointer B B e a o o
3 executable Ié) J5} oY oY «@ @
4 user capability I5) B - o a o
5 system data I5] I - @ oY a
6 illegal ‘ Ié] I5} - 1o @ a
7 system capability - - - a a a
where « = can always perform
B = can perform given the correct capability

can never perform

Figure 6.8: Anaconda types and their privileges

rors are only detected when the result is used, i.e. the error is detected late. Whilst this
mechanism does provide slightly more information than imprecise exceptions, simi-
lar software techniques are still required to respond to an exception in a meaningful
manner. However, this approach does allow very long pipelines to be used (e.g. for
floating point divides) with the knowledge that once the instruction has been issued, it
will not cause an exception although it may produce an illegal result. As will be ex-
plained fully in the next section, many instructions can write their results through to
the matching store. Thus, for example, a floating point divide, which writes its result
to the matching store, could be issued down a very long pipeline and a new microthread
could be scheduled before it has finished. If a conventional imprecise exception mecha-
nism were used (e.g. that used by the Alpha) then errors detected later on in the pipeline
could occur after several context switches have taken place. This would make sensible
exception handling very complex.

When operating on floating-point numbers, Alphas cause exceptions to deal with
unusual floating-point problems rather than making the hardware more complex. This
is particularly true with respect to some of the more esoteric aspects of the IEEE
floating-point standard, e.g. handling infinity. On Anaconda, such cases may simply
be dealt with by issuing the floating-point instruction followed by a branch which is
conditional on the result being invalid (bil — see the next section) and the appropri-
ate test of the floating point condition codes register to determine what went wrong.

Parts of the processor expect certain types and cause exceptions if the types are not
correct. When a microthread is preloaded, its deadline and code pointer are checked to

61

ensure they are of the correct type. Capability registers are type checked when used.
Checking the ability to store data of a particular type, given a particular capability, is
performed by the processor. However, checking that loading data of a particular type
is allowed is performed by the memory modules but instead of directly causing an ex-
ception, an illegal type is returned so that an exception occurs indirectly. An example
use for types and capabilities is presented in section 7.7.

6.7 Instructions

Anaconda instructions are based upon the Alpha instruction set [61] because:
1. choosing a commercial instruction set facilitates comparisons?;

2. itis a modern RISC instruction set;

3. there are sufficient gaps in the instruction set to allow additional Anaconda in-
structions.

The only disadvantage with Alpha is that the integer and floating point register files
are separate. This does not fit well with the matching mechanism because activation
frames would have to be partitioned into floating point and integer i)ans to map onto the
appropriate register files. In practice this would result in the size of the activation frame
being increased to ensure that sufficient integer parameters could be passed between
microthreads (this is born out by the results in chapter 7). However, a larger activation
frame would make poorer use of the match cache and increase the amount of work to
perform a context switch. Therefore, Anaconda has a unified register file.

6.7.1 Load, store and write through instructions

Load and store instructions each come in two basic forms: memory or matching store;
and two data lengths: longword or quadword (see figure 6.9).

The mapping between activation frames and the register file means that registers
r0...r15 have their equivalent position in an activation frame. To assist the transfer
of intermediate results between microthreads, all integer and floating point modification
operations are given an alternate form which writes the result through to the matching
store using the current activation frame address® and the destination register number as
an offset. The home (default) capability is automatically used. For example, the write
through to the fnatching store version of the bitwise or instruction:

2 As will be seen later on, to facilitate comparison, not only is the Alpha instruction set used but also
the Alpha 21064’s pipeline [20].
3The current activation frame is the address in the af register — see figure 6.6.

62

Instruction

|

Meaning

1dx r,off (addr) ,cap

ldx_req-m r,off(addr),cap

stx r,off (addr),cap

stx_m r,off(addr),cap

Load from address of £+ [addr] using source capabil-
ity cap, wait for a memory response and place the re-
sult directly into the destination register r. N.B. be-
cause this instruction stalls, it is only available in su-
pervisor mode for system debugging.

Post a load request from source address of £+ [addr]
using source capability cap. The destination address
is set to the matching store at the current activation
frame address with the destination register indicating
the offset within the frame (i.e. r*8+[af]). The home
capability, [hc], is used as the destination capability.

Store to memory the data in register r at address
off+[addr] using capability cap.

Store to the matching store cache the data in register
T at address of f+[addr] using capability cap.

where [r] indicates a dereference of register r

X is either 1 or g to indicate longword or quadword accesses

respectively

Figure 6.9: Load and store formats

63

or.m r3,r4,r5 writestheresultof (r3 OR r4)toregister r5 and also
to the equivalent position in the matching store — the
address being calculated from the current activation
frame base (af) and the quadword offset of 5 to map
to register r5, i.e. address 5x8+ [af]

6.7.2 Integer and bitwise instructions

Anaconda supports all Alpha integer and bitwise instructions (see [61]). However, on
Anaconda, all of them have an alternate form which write the result through to the
matching store.

There is one additional integer operation, 1dap, to allow presence bits to be set.
This extends the load address (1da) group of instructions (see figure 6.10). Of course
each of these three instructions can also be augmented with _m to indicate a write
through to the matching store.

Instruction ” Meaning
lda rd,off(rs) | [rd] off + [rs]

ldah rd,off(rs) || [rd]

(off << 16) + [rs]

ldap rd,off(rs) || [rd] = (off << 48) + ([rs] & ((1<<48) - 1))

where [r] indicates a dereference of register r
a << b means that a is shifted left by b places
a & b means the bitwise operation a AND b

Figure 6.10: Load address group of instructions

6.7.3 Floating-point instructions

Only the T-type (64 bit IEEE) floating point (see [61]) is currently supported because
the register format corresponds to the memory format so an integer load (1dq_req_m
— see below) may also be used to load T-type numbers. The other three Alpha float-
ing point formats could be supported but would require some method for converting
between the compact memory format and the verbose register format. This could be
supported by appropriate conversion instructions or by extending the type system (see
section 6.6) so that the conversion happens automatically.

64

As with integer operations, floating-point instructions may also be suffixed with
‘_m’ so that they write through their result to the current activation frame. As will be
seen in section 6.11, this is particularly useful for long latency operations, like floating-
point, because it allows microthreads to be descheduled before the instruction has com-
pleted. Without this facility the pipeline would have to stall to wait for the operation to
finish before a store instruction could write the result to the matching store.

6.7.4 Branch, jump and descheduling instructions

Branch and jump instructions take the usual Alpha form but cause an exception if the
microthread code boundary is breached. Intermicrothread branches, jumps and func-
tion calls are performed in a more indirect manner by setting the appropriate code
pointer value for the next microthread in the sequence. In the case of a jump, this may
be performed by writing the jump address to the code pointer in the appropriate micro-
thread’s activation frame using a store (stq-m) instruction (see figure 6.9).

Descheduling a microthread may be performed using the next instruction. This is
actually a specialisation of xr r,offset? which writes the [PC]+offset*4 address
value® through to the current activation frame at the r position. Thus, the xr instruction
effectively supports intermicrothread PC relative branches. There are other instructions
in the xr family to support the intermicrothread conditional branches (see figure 6.11)
and xsr which writes the branch address through to the activation frame but, unlike
xr, does not cause a reschedule. Thus, one possible intermicrothread equivalent of a
subroutine call is:

Xsr ra,2 # write through the return address
Xr cp,routine_offset # write the jump address through...
...to the next microthread

To allow the detection of data with the i11egal type, the branch if illegal (bil and
xil and branch if legal (b11 and x11) instructions are added. This replaces the usual
exception mechanism found on the Alpha (see section 6.6).

6.7.5 Type modification instruction

To allow explicit type modification a type instruction is added. Like other operate in-
structions, type has two source operands, one of which may be a constant. The source

‘next = xr zero,0

SPC offsets are given in instruction units and since instructions are 4 bytes long the offset must be
multiplied by 4 to give a byte address.

65

Instruction ||

Meaning

xsr r,off

Xr r,off

xcc r,off

fxcc r,off

As xsr but also results in a reschedule.

Write the address [PC]+off*4 through to the current acti-
vation frame with quadword offset r.

Integer conditional version of xr which tests [r] using
condition cc and if true writes [PC]+off*4 through to the
current activation frame at the code pointer position cp.

Floating-point version of xcc although cc cannot be BC or

BC bit 0 is cleared
BS bit 1 is set

BS.
where [r] indicates a dereference of register r
cc is a condition:
EQ equaltozero)
LT lessthan zero
LE lessthan or equal to zero floating
GT greater than zero \ point ;
" Integer
GE greater than or equal to zero conditions ..
.. conditions
IL datatypeisillegal
LL datatypeislegal)

Figure 6.11: Intermicrothread branch instructions

66

parameters are OR’d together and the lower 3 bits are used to set the type of the destina-
tion register. An exception is raised if in user protection mode and an attempt is made
to convert the type of a register to one which is only available in supervisor mode (see
section 6.6).

6.7.6 Instruction formats

The instruction formats and opcode summary are in appendix B.

6.8 Cache control and preloading context

The matching store cache is fully associative to ensure maximal use. Full associativity
also enables easy prediction of the number of available entries, thus permitting static
analysis of usage patterns so that real-time guarantees can be met. Whilst a fully as-
sociative cache is more complex than a direct mapped one, it need not be slow if it is
pipelined (see figure 6.12). In this figure the associative lookup is separated from the
Cache RAM. The associative lookup could be divided into further pipeline stages if
required.

Stores into the match cache (see figure 6.12) can come from two sources: the pro-
cessor and the memory system. These requests are FIFO buffered and are handled in
round-robin order. In the unlikely event that either of the FIFOs become nearly full
then the processor and memory are stalled. It is important that a stall is issued before a
FIFO is completely full because it will take several cycles before the stall takes effect
(see section 6.11 for details about the execution pipeline). However, it should be noted
that stalling the processor is very serious for hard real-time systems and should be con-
sidered as a real-time error. ‘Fortunately, in practice it is very difficult to overflow the
FIFOs and code which could cause overflow can easily be identified statically. '

Addresses of stores to the matching store are looked up in the associative memory
and if a miss occurs then the cache miss logic is activated which fetches the appropri-
ate activation frame from the memory. The cache victim is selected according to the
following rules:

e if an empty cache line exists then use it;

e failing that, select a cache line which has not been issued to the scheduler on a
not last used basis®;

%A not last used cache miss policy is simple to implement and typically performs better than random
replacement [54]. A least recently used policy would be advantageous but it is hard to implement [54].

67

send the microthread

address to the deadline and code
stall the processor processor scheduler scheduler when all pointer information to pagable
and memory tree requests requests presence flags are set for the scheduler register file
the appropriate presence

bits are inserted to a
cache line on a read

FIFO ~— ,
__| nearty { presence flags ™~
fall -
— — 2
s .
s B 8 2 =3
a5 a5 <3
EA 5 associative memory E 5 Cache RAM J ;,
S E (1024 entries) 2E) (128 KB) C
[sa=3 [SaR=2
29 g o
= g il g =t
8 8 &
5}
FIFO
\—_|neatly .
full) activation frame | J
base addresses
cache miss/victim logic
signal victim write
if the cache is full
memory memory requests write cache line to
return to fill cache line memory if a cache
requests miss occurs and

the cache is full

Figure 6.12: Overview of the Anaconda matching store

o if all the cache lines have been scheduled then an exception is generated and the
nanokernel removes activations from the scheduler and deallocates them from
the match cache (see section 6.9).

Under normal operation, over filling the cache should be avoided since it will be
detrimental to the real-time characteristics. In order to keep the cache clean, activations
may be explicitly deallocated under software control by writing all 1’s to an activation
frame’s deadline/presence bits. This sets the deadline to infinity” and sets all the pres-
ence bits to full. More importantly, this information can easily be passed to the cache
miss logic so that the appropriate cache line may be queued for reuse.

A hit in the associative store produces a cache line number which is then passed
onto the next stage (see figure 6.12). The data is written to the cache RAM and the ap-
propriate presence bit is set. In the case of a store to the deadline/presence bits then the
presence bits are written into the presence flags store. The base address for the activa-
tion frame? is also passed to the next stage and stored so that later on the base address

"The scheduler hardware assumes that a deadline of all 1’s is infinity.
8The base address can be computed by masking off the bottom 7 bits of the store address.

68

may be determined given a cache line number.

When all the presence bits are set (i.e. the activation frame is full) the scheduler
is notified of the appropriate cache line, requests the deadline and code pointer infor-
mation. If the deadline is infinity (all 1’s) then the activation frame has been deallo-
cated so the microthread is not scheduled. Assuming the deadline is not infinity then
the code prefetch is invoked. Each cache line in the match cache has a partner in the
code prefetch cache so the same cache line number may be used as an index. Messages
sent to the memory to fetch the code use the cache line number and offset as the return
address, and use a system capability with a zero block identifier to indicate that the data
is to be consumed by the code cache. This capability also has a system type which turns
off memory protection (see section 6.6).

A completed code prefetch informs the scheduler which reads the deadline informa-
tion and inserts it into the hardware priority queue along with the cache line number.
Scheduling a thread for execution involves reading the appropriate activation frame and
code cache lines, in parallel, into two buffers. The activation frame is then transferred
into one page of the register file and the code into an execution buffer. Thus, when
execution commences all the data and code are available locally.

6.9 Nanokernel support

The nanokernel is much smaller than a traditional microkernel because it only inter-
cepts exceptions and initiates threads, which make up the microkernel, to actually han-
dle exceptions. The following basic exceptions must be supported:

1. activation frames which do not have correctly typed deadline and code pointers
when they are scheduled;

2. exceptions caused by user level microthreads violating type mechanisms;
3. illegal instructions;
4. direct branches beyond a microthread boundary;

5. any out of time signals from a watchdog timer which ensures that microthreads
do not exceed their allocation of 32 processor cycles;

6. software traps;

7. cache overflow because all the match cache lines have been scheduled.

69

The first five exceptions simply cause an operating system thread to be initiated to
clean up the mess.

Software traps (call _pal on the Alpha) are not normally required because user
level calls to the operating system may be performed using an interdomain remote pro-
cedure call (see section 7.7 for an example). However, call _pal is still supported for
reporting serious failures (e.g. the inability to send a message to the operating system).

Cache overflow, due to all the matching store cache lines being scheduled, is a dras-
tic situation which arises when there are too many runnable microthreads. This should
be avoided by careful code analysis. However, to prevent the system locking up the
nanokernel can deallocate some of the cache lines. For example, the last two elements
in the hardware priority queue (those with a distant deadline) could be made accessible
to the nanokernel code. These elements are then removed from the priority queue and
the corresponding activation frames are deallocated from the matching store cache. In
their place, one microthread is generated and pointers to the removed microthreads are
stored in its activation frame. The signal microthread is given the least deadline of the
deallocated microthreads and when it eventually executes it will reallocate the micro-
threads. Thus, two microthreads are replaced by one. This principle could easily be
extended to allow, say, eight microthreads to be deallocated with one replacement.’

A small part of the instruction prefetch and activation frame caches may be allo-
cated to support the nanokernel to ensure that the required data and code are available
locally.

6.10 Input, output and timers

Input and output (I/O) devices are memory mapped and physically positioned at the
leaves of the memory tree at the same level as the memory modules. Memory protec-
tion is also applied to I/O devices to prevent unauthorised accesses.

Input may be mapped directly to an awaiting microthread by sending messages up
the memory tree to the appropriate activation frame in the matching store. Figure 6.13
illustrates the basic sequence of data transfers between the processor and input device.
An output device may be controlled in a similar manner — output device control and
data being written directly to the memory mapped device with completion signals being
sent from the output device to an awaiting activation frame.

This approach to handling I/O ensures that all messages to the processor (input data
and output signals) are synchronised to the appropriate microthread by the matching

9The maximum number of microthreads which could be deallocated is 13 because their activation
frame addresses must be stored in an activation frame and 3 quadwords of the activation frame must be
used to store the deadline, code pointer and system capability.

70

Initialise:
® receiving activation frame

@ input device - sent activation frame
address and capability information

S)

A 4

Input device sends data
to the activation frame

Y

Microthread is scheduled and:

@ initialises the activation frame
for the next message

® signals the input device to indicate
that the next message may be sent

L D,

Figure 6.13: Data transfer sequence to an input device

store and prioritised using the hardware scheduler. Note that no interrupts are required
and the execution unit is not bothered by low priority /O when dealing with high pri-
ority I/O. Furthermore, if the input protocol in figure 6.13 is used then when the pro-
cessor is overloaded, low priority /O will be delayed and potentially low priority input
will be discarded when the input device’s buffer overflows. This is desirable behaviour
because it allows high priority messages to get through and prevents low priority mes-
sages from needlessly consuming memory tree bandwidth.

Timers are also required to ensure that output is produced on time and not early. If
very tight timing is required then this may be supported by a particular output device.
However, most timing is supported by a timer device which makes use of the hardware
priority queue (see chapter 4). Timer requests consist of a time and an address in the
matching store which is inserted into the priority queue. The first element of the priority
queue is compared with the current time and at the appropriate moment it is removed
from the queue and a message is sent to the matching store.

A processor watchdog timer is also required to ensure that each microthread does
not consume more than 32 cycles (see section 6.9).

71

6.11 Execution unit pipeline

Anaconda’s execution unit pipeline is similar to Alpha’s (see figure 6.14 and [20]). To
assist evaluation, the Anaconda pipeline has exactly the same temporal characteristics
as the Alpha 21064 [20] for integer, floating-point and branch operations. Therefore, all
the data feed-forwarding that Alpha performs is also performed by Anaconda although
this is not shown in figure 6.14. The rest of this section primarily explains the Anaconda
modifications to the pipeline and, due to space and copyright limitations, presents little

T . vi...... S

branch prediction

dual issue

logic

decode

l

register file access
and issue check

}

address calculation

I

post message

I

stall and
write back

E-box

!

decode

l

register file access

decode decode
register file access register file access

!

write back and
write through

and issue check and issue check and issue check
2 5
2 2
l ["' l - 1
integer cycle 0 floating-point cycle 0 compute new PC
. . . write back and
integer cycle 1 floating-point cycle 1 write through

|
i
i
i
i
i
i
i
i
l i
|
i
1
i
|
|
i
i

!

floating-point cycle 2

l

floating-point cycle 3

l

floating-point cycle 4

L

floating-point cycle 5

]

write back and
write through

Figure 6.14: Overview of Anaconda’s execution unit pipeline

72

detail on the Alpha (see [20] for details).

The execution unit consists of four pipelines: address calculation (A-box), integer
execution (E-box), floating-point execution (F-box) and instruction fetch (I-box). Two
quadword aligned instructions are fetched at once and, where possible, the dual-issue
logic attempts to issue both instructions down separate pipelines. If only one instruction
can be issued then the next instruction will also be singly issued.

The branch prediction logic is provided but for conditional branches only static
branch prediction is supported on Anaconda to assure predictable behaviour. Thus, as
for Alpha, conditional branches which branch forwards are assumed not to be taken
and those going backwards are assumed to be taken. Of course nonconditional branches
and jumps must always be taken. Further down the instruction pipeline it is determined
whether the branch has been correctly predicted, and if not then incorrectly fetched in-
structions are removed from the pipelines and instruction fetch is restarted at the correct
position.

As with Alpha, stages of the pipelines up to and including the issue check are all
static and may be stalled. However, once an instruction passes the issue check it pro-
ceeds without stalling until it completes. Anaconda makes one exception to this for 1dx
instructions (see figure 6.9) which may stall at the write back stage whilst waiting for a
memory response. This instruction may only be used in supervisor mode and then only
rarely. Most load and store requests are simply posted to the memory without waiting
for a response.

The write back stage in the E,F and I-boxes has been extended so that data may
be written through to the matching store. This has important implications for the effi-
ciency of the pipelines during a context switch. When a next instruction reaches the
issue check stage it is stalled until all instructions preceeding it have been issued. Then
the write backs for the instructions in the lower part of the pipelines may be disabled
because there are no further instructions belonging to the currently executing micro-
thread which may read the register file again. Feed-forward paths which pass informa-
tion back up the pipeline must also be disabled. Thus, the remaining instructions must
store their results through to the matching store. Furthermore, the register bank for the
next microthread may now be switched in and the first instructions may pass the decode
stage.

73

6.12 Summary

Anaconda is a multithreaded processor based upon a data-driven microthread model.
The primary components are (with reference to figure 6.1):

interprocessor communication — using message passing via one or more 1/0
links situated at the leaves of the memory tree.

memory tree — constructed from many small memory modules and I/O units
with a scalable tree interconnect. Single address space virtual addressing and
page based capability protection is provided by the memory modules. Thus,
translation and protection resources are automatically added with more memory.

cached direct-mapped matching store — each active microthread has an activa-
tion frame in the cached direct-mapped matching store for receiving parameters.
Presence bits for each parameter are stored as part of the first parameter so may
be set in a single store.

code prefetch cache — for storing code for runnable microthreads.

scheduler — provided by a hardware priority queue to support either fixed pri-
ority or earliest deadline first policies.

pageable register file — which allows activation frames to be transferred from
the cached matching store before a microthread is executed.

instruction fetch buffer — which buffers code coming from the preload cache.

control-flow execution unit — an Alpha 21064 styled pipeline for executing in-
structions.

The next chapter evaluates the Anaconda design.

74

Chapter 7

Evaluation

7.1 Introduction

An Anaconda assembler and simulator were constructed to allow programs to be writ-
ten, executed and timed (sections 7.2 and 7.3). A memory copying routine and Liver-
more loop 7 were written to evaluate the code efficiency (sections 7.4 and 7.5). Mutual
exclusion, signalling and remote procedure calls are then demonstrated (sections 7.6
and 7.7). Finally, conclusions are drawn (section 7.8).

7.2 Assembler

A simple assembler was built on top of C++ [64]. Thus, assembler programs are written
as a sequence of C++ function calls (see, for example, the memory copying routine in
appendix C). All parsing, expression evaluation and type checking is performed by the
C++ compiler. Furthermore, this allows a variety of code expansion techniques using
simple C++ loops or function calls.

To generate Anaconda code the assembler C++ program is compiled and when ex-
ecuted produces the assembler output. More interestingly, instead of a one for one re-
placement of the assembler instruction by the appropriate binary machine code, it is
also possible to generate a sequence of native Alpha instructions to simulate each Ana-
conda instruction. This proves to be a very fast way of simulating an Anaconda. How-
ever, in order to assess the temporal properties of Anaconda a more detailed simulation
is required.

75

7.3 Simulator

A massively detailed discrete event simulation could have been constructed of the im-
plementation outlined in chapter 6. However, it was anticipated that this would be very
slow. Instead, advantage was taken of the programmer’s model which hides detailed
timing. It is the detailed control structures of a particular implementation which af-
fect timing rather than the functional execution. Therefore instruction execution can
be separated from details of the instruction execution pipeline. So a simple instruction
interpreter was constructed which feeds a stream of completed instructions into a pipe-
line simulation. So, the pipeline simulation only needs to model the control structures
and does not need to consider data movement. For example, feed forwarding of data
does not need to be performed although instruction issuing checks need to be performed
to ensure that the data could have been fed forward.

The only instruction which does not execute correctly using this scheme is rpcc
since it reads the cycle counter which is dependent upon the time at which the instruc-
tion reaches a particular stage in the address calculation unit (A-box). Rather than re-
solve the problem a simple debugging message is emitted by the pipeline simulation
with the correct value but the code being simulated must not expect a correct value.
Thus, rpcc may be used for timing but the answers must be read from the debugging
messages. In fact the simulator has a “silent” mode where only the time between two
rpccs is output which is useful for producing data from repeated runs.

The model of the memory tree, matching store, instruction prefetch cache and
scheduler primarily concentrate on control information. However, some address and
data information is required for setting presence bits in the matching store. Capabil-
ity protection and virtual address translation were not explicitly simulated although the
additional latency to perform these calculations was taken into account.

Figure 7.1 presents an overview of the simulator. Various parts of the simulation
may be removed and replaced by a simpler model. For example, the memory tree and
instruction prefetch cache many be replaced by a simple single cycle memory simula-
tion. This allows Alpha code to be executed as though it was running from cache. Using
this simplified model the pipeline was tested using many sequences of code to ensure
that the timing information obtained was identical to a real Alpha 21064 processor.

7.4 Memory copy test

A parallel memory copying routine, operating on quadword aligned data, was written
to test memory bandwidth, the ability to tolerate memory latency and the overheads in
managing multiple threads. The code is in appendix C and is depicted in figure 7.2.
For efficiency reasons it is important that each microthread copies as large a chunk as

76

loader

data and
instruction storage

3

instruction interpreter < scheduler
A
Y
executi ipeline instruction
eeution pipelin prefetch cache
— FIFO >
[
- >
Y A 4 q
o o * FIFO >
E E matching store
—* FIFO >

memory tree —

Figure 7.1: Overview of the simulator

77

possible. This is limited by the activation frame size and the other parameters which a
copy microthread needs, in this case: a deadline, code pointer, capability, loop counter,
source address and destination address. Thus, from the original 16 quadwords, 9 are
available in the activation frame to perform copying so the copy loop is unfolded 9
times. Code is also required to cope with copying block sizes which are not divisible by
9; in this case a microthread for copying 3 items and another for copying one at a time.
Thus, at the end of the copy up to 2 blocks of 3 quadwords and 2 single quadwords
may need to be copied. This division of work is an optimal trade off between being
able to make use of cached code, the number of microthreads needed to be executed
and total code size. Whilst this may seem overly complex for a simple copy operation
it should be remembered that an efficient implementation on an Alpha requires similar
loop unfolding (typically 4 times when using the Digital C compiler).

A 64 kbyte memory copy was performed using between 1 and 10 threads with intel-
ligent instruction fetch caching turned on or off (see figures 7.3 and 7.4). Without intel-
ligent instruction caching, code is fetched regardless of whether it is still in the prefetch
cache from the previous invocation of the microthread. Thus, additional time is spent
fetching code which results in more threads being needed in order to provide sufficient
work to be able to tolerate a particular memory latency (see figure 7.3). However, with
intelligent caching, fewer threads are required (see figure 7.4). Figure 7.4 also demon-
strates that there is little overhead in running additional threads. If there were then the
execution time would begin to rise again as the number of threads were increased, so
10 threads would take longer than 6 threads.

A typical local memory latency would be around 30 cycles long (see section 5.4).
Assuming that the intelligent instruction prefetch cache is used, then only 3 paral-
lel threads are required for the copying process to become CPU, rather than mem-
ory latency, limited. At this point, 64 kbytes are copied in approximately 27 kcycles
which equates to 3.3 cycles per quadword copy. This compares favourably with an Al-
pha 21064 processor with a fast memory system’ which takes approximately 90 kcy-
cles (10 cycles/quadword) the first time the copy is performed, due to TLB misses, and
64 kcycles (7.8 cycles/quadword) if the copy is repeated. The poor Alpha performance
is due to cache misses. Techniques, like giving hints to the cache using the Alpha fetch
instruction,? could be used but are unlikely to improve much upon Anaconda’s 3.3 cy-
cles/quadword. Furthermore, there are many problems in using hints like fetch — see
section 5.3.1.

1To be precise a DEC3000/500s executing code generated by the Digital C compiler with all optimi-
sations turned on.

2The fetch instruction has no effect on a DEC3000/500s but will probably be supported in future
Digital products

78

spawn a number of copy threads

y

—if at least 9 quadwords to copy then post 9 loads

if at least 3 quadwords to copy then post 3 loads
— if at least 1 quadword to copy then post 1 load
— otherwise exit

> store 9 quadwords
— if at leat 9 more quadwords to-copy then post 9 loads

otherwise go back and see what more needs copying

*> store 3 quadwords
— if at least 3 more quadwords to copy then post 3 loads

if at least 1 more quadword to copy then post 1 load
i— otherwise exit

(_ *> store 1 quadword

<1 otherwise exit

— if at least 1 more quadword to copy then post 1 load

A

synchronise copy threads and exit

Figure 7.2: Overview of the parallel memory copy routine

79

execution time/CPU cycles

number

of threads
300000 l
1
270000
240000
210000
180000 1
150000 1 2
120000
3
90000 1
4
5
60000 - 6
, 7
// 8
30000 1 /\/\ 9
10
0 L T T T T 1 1
[\ w P w (=23 ~ <] — — — — —
[=] (=] o (=] o (=] [« o (=] = [*] w S5
o (=] (=] o o

memory latency/CPU cycles

Figure 7.3: Memory copy without intelligent instruction caching

80

execution time/CPU cycles

300000 7

270000

240000

210000

180000

150000

120000

90000 -

60000

number
of threads

!

1

3
///:4
30000 <5

1§ L} T T T T T L)
8 & 8 3 = 3 8 8 2 =] 2
8 1) S <]

memory latency/CPU cycles

Figure 7.4: Memory copy with intelligent instruction caching

81

obT -

7.5 Livermore loop 7 test

Livermore loop 7 (see the code in figure 7.5) was chosen to demonstrate how an inner-
loop may be unrolled to obtain sufficient concurrency to tolerate memory latency. Cod-
ing began by performing data-flow analysis of the code (see figure 7.6). From this it
can be seen that each iteration of the loop shares some constants but also variables
U[k+1]..U[k+6] may be used in the next iteration as U[k’]...U[k’+5] where k’ is
the value of k for the next iteration. Unrolling the loop assists in reusing the values of
array U and allows a larger block of code to be optimised which facilitates instruction
reordering to make best use of performance. For example, a floating point add or mul-
tiply may be issued every clock cycle but takes 6 cycles before the answer is available.
Therefore, it is advantageous if instructions can be ordered so that data dependencies
do not stall the pipeline. Without loop unrolling the Livermore loop contains too many
interdependencies to avoid stalling the pipeline. However, after loop unrolling there is
sufficient freedom to avoid stalls.

For Anaconda code, a data-flow approach, using a number of concurrent micro-
threads, may be used. This takes advantage of the matching store for intermediate re-
sults from a large number of loop unrolls and facilitates intelligent instruction cache. In
this case the Livermore loop was unrolled six times and the resulting data-flow graph
was regrouped as nine intercommunicating microthreads (see figure 7.7) ina static data-
flow manner (i.e. with data going forward and completion signals going backward).

During execution several iterations of the loop tend to run in parallel (see figure 7.8).
However, according to the memory latency and the scheduling policy used, different or-
derings appear. Furthermore, the ordering which emerges affects the amount of avail-
able work to tolerate memory latency. If there is insufficient work then lower prior-
ity (later deadline) threads may execute. To test this the program was executed with
varying scheduling policies, different sizes of lower priority dummy microthreads and
a range of memory latencies.

In figure 7.9, all the Livermore loop microthreads were given the same priority. The
effects of background microthreads being scheduled was determined by varying their
length for repeated simulations. The resultant range of execution times is depicted as

1007 DO 7 k= 1,n

X(X)= Uk) + R¥x(Z(kx) + R*¥Y(k)) +
1 Tx(U(k+3) + Rx(U(k+2) + RxU(k+1)) +
2 T*(U(k+6) + Qx(U(k+5) + Q*xU(k+4))))
7 CONTINUE

Figure 7.5: Fortran code for the Livermore loop 7 kernel

82

n k R T i X[k] Z[k] Y[k} U[k] U[k-il-l] Ulk+2] U{k+3] Ulk+4] Uk+5] Uk+6]
1
x © O
= O,)
T| |F
loop exit (%) (%)
0 S S
©

store

Figure 7.6: Data-flow analysis of Livermore loop 7

a gray area with the effects from dummy microthreads of length 8 and 32 cycles also
being plotted as lines.

For reasonable memory latencies (less than 35 cycles) performance was CPU lim-
ited except during startup and termination hence the slight variance in execution time
where dummy microthreads get chance to execute. When the memory latency reaches
around 40 cycles an unfortunate ordering occurs where microthreads 1 and 2, which
fetch data, do not get scheduled early enough which reduces the amount of latency
which can be tolerated. Interestingly this corrects itself at around a memory latency
of 50 cycles and then becomes progressively worse.

To encourage loop iterations to start as early as possible, the deadline time was re-
duced slightly each time around the loop. As can be seen in figure 7.10, this has little
effect upon memory latency tolerance and adds overhead due to dynamically adjusting
the deadlines.

Then a policy of reducing the deadline time for microthreads involved with initiat-
ing load posting was tried; in this case microthreads 0, 1 and 2. This improves memory
latency tolerance considerably (see figure 7.11 and because the deadline allocation is
static it has no overhead. For loops which exhibit less concurrency than Livermore 7,
this technique would be valuable even if the main memory latency was short.

If an intelligent instruction cache is not used then the program exhibits poor per-
formance (see figure 7.12). However, regardless of whether an instruction cache is
used, worst case performance can still be determined, and more importantly, is typi-

83

AF0

for AFO:
reset presence bits
set codeptr

write @x+6*8, @y+6*8, @z+6*8, @u+6*8 s AFO
set up AF1, set codeptr and write @y, @z AF0 i {
set up AF2, set codeptr and write @u i deallocate AF0...AF8
set up AF3, set codeptr and write r + signal exit
set up AF4, set codeptr and write t loop test
set up AFS, set codeptr and write t reset AF0
set up AF6 and set codeptr write @y,@z to AF1 H
set up AF7 and set codeptr write @u to AF2 K
set up AF8, set codeptr write @x write @x+6*8, @y+6*8, @2z+6*8, @u+6*8to AF0 [>
[
i
AF1 AR2
reset AF1 reset AF2
using AF2: using AF4:
fetch y[i..i+5] fetch ufi+l...i+8]
fetch z[i...i+5] using AF5:
signal AFQ fetch u[i+4...i+11)
using AF6:
fetch uli...i+5)
signal AFQ
AF3 AF4 AF5
reset AF3 reset AF4 reset AFS
using AF6: using AF7: using AF7:
for a=i...i+5 for a=i+1..i+6 for a=i+4..i+9
write (y[a]*r+z(a))*r write ((u[a]*r+ufa+1])*r+ufa+2])*t write ((u[a]*q+ufa+1])*q+ula+2)*t
signal AF1 signal AF2 signal AF2
4
AF6 AF7 i
reset AF6 reset AF7
using AF8: J i using AF8: ¢
write sums — - write sums

'

Figure 7.7: Overview of the Anaconda routine to perform Livermore loop 7

AF8

reset AF8

write sums to x[i..i+5]

84

Key:
—* data transfer direct to the matching store (fast)

—> posted load request (slow)
—"~-~* inter-loop signaling going direct to the matching store (fast)
@ microthread number LLn

Figure 7.8: Interdependencies between microthreads during several iterations

cally within 11% of the best case performance when executing the Livermore loop (see
figures 7.11 and 7.12). Furthermore, the variance is due to other work being performed
rather than the processor stalling. This contrasts with an Alpha where the cost of per-
forming a read can be from 1 (no cache miss) to around 35 cycles (a secondary cache
miss) and if a TLB miss occurs then it can take thousands of cycles. During a cache
miss or TLB miss, little useful work is performed.

85

execution time/CPU cycles

32000 -
execution time
30000 - range envelope
28000
dummy microthreads
of 32 cycles length

26000 1

Fe)

Q

£

k
240001 @

Q

Q

]

&

]

E

Q
220001 E

Il

Q

=

w

2
200001 &

dummy microthreads
of 8 cycles length
lsmo T 1 T 1 T T T T T T L} 1
[w P [=) ~ o0 O — — — — —

memory latency/CPU cycles

Figure 7.9: Livermore loop 7 with all 9 microthreads having the same deadline

86

total execution time

34000
32000 -)
dummy microthreads
of 32 cycles length
30000 A
28000 L
execution time

2 range envelope

£

2

=
260007 @

Q

Q

Q

[~

&

Q
24000 g

E

I

Q

=

i dummy microthreads
22000 g of 8 cycles length
20000 T T T T T T T T T T T |

[\ W - th (=) ~ oo el — — — — —

memory latency

Figure 7.10: Livermore loop 7 with a decreasing deadline for each iteration

87

30000 1
29000 1
28000
27000 1
26000 1
25000 1
24000 A
23000

background
microthreads

of 32 cycles
length

22000 1

execution time/CPU cycles

21000 1

20000 -
2.7% variance

19000 |

typical local memory access latency

CPU limited

execution time
range envelope

background microthreads
of 8 cycles length

11% variance
between minimum
and maximum
execution time

for a memory
latency of 140
CPU cycles

T memory latency limited
(except for startup)
1 Smo T T T T T T T T T T T
8 3 8 3 3 3 8 &) = S 3

memory latency/CPU cycles

ovT1 -

Figure 7.11: Livermore loop 7 with microthreads O, 1 and 2 having a slightly earlier

deadline

88

65000 1

60000
55000
dummy microthreads
of 32 cycles length
50000 1

execution time
range envelope

g

45000

35000 -

execution time/CPU cycles

typical local memory access latency

30000 -) Lﬁ}

25000 dummy microthreads

-t of 8 cycles length
11% variance
- v
[w oy th (=23 ~ @ D — — — — b

memory latency/CPU cycles

Figure 7.12: Livermore loop 7 with the same parameters as figure 7.11 but with intel-
ligent instruction caching turned off

89

7.6 Signalling and mutual exclusion

Signalling a microthread is as simple as storing a value. The store, of course, is to
the microthread’s activation frame at some predetermined address. However, unlike a
control-flow machine, there is no further software overhead since the hardware match-
ing store actually takes care of the synchronisation and the hardware scheduler does the
rest.

Whist microthreads are executed nonpreemptively, spin locks cannot be imple-
mented by simply reading a flag, testing it and writing the new value back, because
loads operate split phase, so there has to be a reschedule between the read and test.
However, it should be noted that load and store requests are forced to be FIFO ordered.
Thus, it is possible to request a load from a particular flag and immediately set it. The
microthread which receives the load, tests to see if the flag had already been set and if
it has, re-attempts to set the flag for its self.

Dijkstra’s semaphores [21] may be implemented using a spin lock to provide mutual
exclusion on a semaphore value. The P operation (wait) requires two microthreads, and
the V operation (signal) requires three microthreads (see figure 7.13).

Monotonically increasing event counts and sequences [55] may be implemented in
a similar manner to semaphores and allow a variety of synchronisation systems to be
constructed, including that used by Posix threads [10]. Five primitives are required,
two for sequences and three for events:

read_sq(s) returns the value of sequence s. This is just a memory read.

ticket(s) returns the next monotonically increasing number in the sequence and
guarantees that any subsequent calls to either ticket or read_sq will return a
higher value. This may be implemented using a spin lock to provide mutual ex-
clusion whilst increasing the sequence number.

read_ev(e) asread_sq but for events.

await(e,v) wait until the event count e reaches or exceeds the value v. This may be
implemented in a similar manner to the P semaphore operation with a circular
buffer being used for the wait queue.

advance(e,n) increases the value of the event count e by n and signals any threads
waiting for e to become this large. Implementation involves taking a spin lock
out whilst updating e and scanning the waiting queue for processes to signal.

90

P ' \%

fetch the spin_flag fetch the spin_flag
set the spin_flag set the spin_flag
fetch the semaphore_value fetch the semaphore_value
fetch the wait queue head pointer fetch the wait queue tail pointer
if spin_flag is set then if spin_flag is set then
_retry the spin lock >/ retry the spin lock
else if semaphore_value <= 0 then else
insert the signal address for the increment semaphore_value and write
next microthread on the head of the
wait queue and increase the head pointer if semaphore_value <=0 then
fetch the signal address from
write decremented semaphore_flag the tail of the wait queue—
else
clear the spin_flag . clear the spin_flag
else
write decremented semaphore_flag
clear the spin_flag
signal continuation write to the signal address
to wake up an awaiting thread

clear the spin_flag

| J

the thread proceeds either because P did not block the thread proceeds after
or because V awoke the thread with a signal releasing the spin lock

Figure 7. 13: An implementation of Dijkstra’s semaphores

91

7.7 Interdomain remote procedure calls

The remote procedure call (RPC) [8] provides a convenient model for interdomain
communication. One approach to implementing RPCs on Anaconda is to set up two
interdomain communication channels: one for the call and the other for results. An in-
terdomain channel is constructed from an activation frame in a page of memory which
is principally owned by the receiver. The receiver initialises the activation frame with
the appropriate code pointer and capability. Then the sender is given a capability which
only allows it to write data with a raw data type. This prevents it from acquiring the ac-
tivation frame’s capability and code pointer, and from writing a new capability or code
pointer. However, the capability or code pointer may be overwritten with raw data but
this will cause an exception when the thread is scheduled. If the data to be commu-
nicated is too large for an activation frame it may be stored in the same page as the
activation frame and a pointer to the data may be passed instead. Obviously, further
pages may be allocated if communicating large blocks of data.

Setting up two channels to perform an RPC is the principle cost. When an applica-
tion is loaded it may be given an RPC interface to the operating system (OS). The OS,
or some other third party, must be involved in establishing a new RPC interface.

1. the client requests a new page and two capabilities (a general purpose one and a
write-raw-data-only one) from the OS

2. the client sends a request to the OS for a connection to the server

3. the OS signals the server to set up a RPC interface and gives it the write-raw-
data-only capability to the client

4. the server requests a new page and two capabilities (a general purpose one and a
write-raw-data-only one) from the OS

5. the server returns the write-raw-data-only capability to the client via the OS or
by using the channel to the. client which has already been set up.

Once the RPC interface has been established, the only communication cost is mar-
shalling and unmarshalling data. The capability protection mechanism, matching store
and hardware scheduler perform the rest of the work without the software overhead
which would be incurred on a control-flow machine. No further calls to the OS are re-
quired unless failures occur.

92

7.8 Conclusions

A memory copy routine was simulated which revealed that Anaconda performs poorly
when executing only a single thread. However, once three threads are active, perfor-
mance is very good even though a data cache is not used. This is because the match-
ing store allows a huge number of outstanding loads between a number of concurrent
threads. Even when memory latency is over 100 cycles, only a few threads are required
to keep the processor busy. This has interesting implications for applications which use
shared memory or message passing which have a long data latency.

The memory copy also demonstrated the low overhead in spawning and running
threads. Also, intelligent caching of instructions does help and has predictable be-
haviour. However, without instruction caching, similar performance may be obtained
provided more threads are executable. This is important when executing long se-
quences of code because the instruction caching will not be effective.

Livermore loop 7 was used to demonstrate loop unrolling which is essential to elicit
sufficient concurrency in order to hide memory latency. However, it was noted that
there was sufficient freedom, in the order in which microthreads could be executed, to
allow orderings which do not hide memory latency well. A workable solution to this is
to give a slightly earlier deadline to microthreads which are responsible for requesting
loads. Thus, loads are requested as quickly as possible leaving sufficient work to be
performed when waiting for memory responses.

Techniques, for enforcing mutual exclusion and providing communication, were
discussed. Anaconda’s capability protection mechanism proves to be more than ade-
quate. Furthermore, the matching store and hardware scheduler remove many software
overheads which would be incurred on a control-flow machine.

93

Chapter 8

Conclusions

8.1 Review

This dissertation began by presenting a commentary on current computer designs, their
motivations and future directions. The vast majority of today’s computers are oriented
towards applications which require best effort performance. Increasingly, this is to the
detriment of hard real-time and multimedia applications which require a computer to
deliver temporally predictable performance. Since hard real-time and multimedia ap-
plications are becoming more common, the agenda was set to design a processor to
meet their requirements. The result is a multithreaded processor design, called Ana-
conda, which not only fulfils these requirements, but also performs well for best effort
applications.

The following sections present a more detailed review of the background issues and
the Anaconda design.

8.1.1 Background

Control-flow and data-flow processor designs were reviewed. They represent two ex-
tremes in the design space: control-flow offers sequential execution whilst data-flow
supports instruction level concurrency. Their radical differences exhibit advantages
and disadvantages which often oppose each other: where one has an advantage the
other is often disadvantaged.

Control-flow’s strict sequential nature allows a precise ordering to be placed upon
data movement. This allows efficient use of closely coupled storage (e.g. a register
file). Furthermore, multiple assignment to the same address is practical which simpli-
fies memory reuse and interaction with input and output (I/O) devices. However, such
tight sequential behaviour provides little concurrency to hide the effects of long latency
operations. Memory access latency is a particular thorn in the side of control-flow de-

95

signs because faster processors tend to require larger memory which has a longer la-
tency. Whilst caches are used to reduce the average access latency, it then becomes dif-
ficult to predict the temporal characteristics. Temporal predictability is also not helped
by the need to provide rapid address translation and memory protection. This inevitably
results in another cache (a TLB) in an attempt to localise some of the address transla-
tion and protection information. The final problem is the use of interrupts to synchro-
nise external events to appropriate software handler code, which disrupts the execution
pipeline and causes significant and unpredictable overhead.

The data-flow model supports some form of matching store to synchronise data to
instructions. This is a boon to message passing both within and between processors.
Furthermore, the matching mechanism allows far more concurrency to be supported by
the hardware. More concurrency results in more work being available whilst waiting
for long latency operations. This facilitates the use of pipelining techniques to provide
a scalable memory structure at the expense of increasing access latency. However, in-
struction level concurrency prohibits a sensible scheduling policy and makes multiple
assignment, and thus I/O, problematic.

Where the control-flow model has strengths, the data-flow model tends to have
weaknesses and vice versa. This has prompted research into various amalgams of the
two models in an attempt to produce more rounded designs with fewer disadvantages.
These designs are broadly referred to as multithreaded processors.

One view of the design space may be obtained by plotting the amount of avail-
able concurrency supported by the hardware against the size of the nonpreemptable
executable unit (see figure 8.1). Whilst this is a highly inexact representation, it does
present a view of the control-flow/data-flow void and some of the processor designs
which attempt to fill it. Some multithreaded designs have added a little concurrency to
control-flow (e.g. xT, Alewife, Transputer, D-RISC and P-RISC) and others have intro-
duced some sequentiality to data-flow (e.g. tagged-token data flow machines like EM4
and Monsoon). However, these small additions only solve a few problems. Other de-
signs (e.g. HEP, Tera and MDFA) are more radical and offer both control-flow and data-
flow features. However, to date these data-flow/control-flow hybrids schedule very
small groups of instructions and often on a per-instruction basis. This leaves too lit-
tle time to perform a sensible hardware scheduling decision. Furthermore, poor use is
made of a register file for intermediate results. ‘

96

control-flow multithreaded data-flow
AL A A

\

%

Transputer

. .
Tagged-token \\
data-flow 3

Size of nonpreemptable executable unit

1
1
.

coloured /’
and static
data-flow

o

Degree of concurrency supported by the hardware

Figure 8.1: Filling the control-flow/data-flow void

8.1.2 Anaconda

With real-time requirements in mind, a multithreaded processor, called Anaconda, was
designed. The underlying model is based upon data driven microthreads where a micro-
thread is a nonpreemptable control-flow unit which takes between 8 and 32 clock cycles
to execute. This supports coarse grained data-flow and control-flow execution and thus
covers a large area in the design space depicted in figure 8.1. Moreover, microthreads
are sufficiently large to allow sensible scheduling decisions to be made.

Anaconda’s microthreads have up to 16 input parameters which must be presented,
in a data-flow manner, before execution commences in a control-flow manner. A direct
mapped matching store is provided for synchronising input parameters to microthreads.
Scheduling is supported by a hardware priority queue for either fixed priority or earliest
deadline first policies. Context switching is facilitated by a pageable register file and

97

control-flow execution uses an Alpha 21064 styled pipeline. A code prefetch cache is
also used so that when execution commences, all the required code is available locally
as well as the data being preloaded into the register file.

A memory tree structure is used because it can maintain access frequency regard-
less of size, although the latency increases O(log (size)). Virtual address translation is
distributed amongst the memory modules which make up the memory tree, so adding
more memory adds more address translation resource. Memory protection is provided
by page based capabilities. This also allows the protection mechanism to be distributed
amongst the memory modules of the memory tree. Finer grained protection is achieved
using a typing system. Of particular note is the illegal type which facilitates detection
of errors when the result data is used rather than flagging an exception when the error
occurs. This method makes long pipelines, and remote memory protection, viable.

A detailed simulation of Anaconda was undertaken. Example applications demon-
strated that both multithreaded control-flow and coarse grained data-flow could be ef-
ficiently executed. Whilst simple single threaded control-flow code runs inefficiently,
loops may be unfolded to introduce more concurrency, thereby increasing efficiency.
Furthermore, since concurrency is demonstrably virtually overhead free, it is antic-
ipated that programmers writing specifically for multithreaded processors, like Ana-
conda, will naturally program with concurrency in mind.

Only a little concurrency is required (often around four active microthreads) in or-
der to tolerate the latency of the memory tree. This is because microthreads are suf-
ficiently large. For example, with four active microthreads there will be three micro-
threads worth of work (between 24 and 96 cycles); in which time a microthread issuing
amemory read request can wait for a response and be rescheduled. Furthermore, micro-
threads may issue several memory requests so the memory may be kept busy. The long
latency of deeply pipelined operations (e.g. floating point division) and interprocessor
communication may also be tolerated in a similar manner.

Temporal predictability is assisted by eliminating memory caching by using the
memory tree and tolerating its bounded latency. The matching store and instruction
prefetch do both use caches but in a predictable and controllable manner. Even when
other threads are executing, bounds may be placed upon the execution time, and, more-
over, the worst case may be close to the best case if suitable use of the hardware sched-
uler is made.

Good use is made of the register file and matching store for intermediate results.
This localises the transmission of much data which reduces time and power costs. The
memory tree structure also removes the need for long busses with large fanout which
facilitates rapid data transfer. The net result is that all transmission lines are short which
makes the design amenable for implementation using self-timed circuits or some form
of localised clocking scheme.

98

To conclude, Anaconda has the following desirable characteristics:

¢ functional primitives:

- supports all the usual arithmetic, logical and conditional operations
— can efficiently use operations requiring a long pipeline

— hardware synchronisation primitive (the matching store) for concurrency
control

memory structure and access mechanisms:

— scalable memory structure, virtual addressing and protection

— good use of local storage
e concurrency:

— simple flexible matching store for synchronisation (no interrupts are re-
quired)

— hardware scheduler which supports a sensible scheduling policy

parallelism:

— the matching store assists interprocessor message passing and the hardware
scheduler prioritises messages

temporally predictable

all signals only travel over relatively short distances

99

8.2 Future work

8.2.1 An implementation

This dissertation presents three man years of research into multithreaded processor de-
sign, culminating with a detailed design study. Whilst the results look promising, an
implementation must now be considered. As one progresses with such a project, more
people power and funding is required. Quite how or who should conduct an implemen-
tation is unclear.

8.2.2 Policing

Whilst the earliest deadline first or fixed priority scheduler is sufficient to schedule hard
real-time tasks, this can only succeed if the tasks cooperate with one another. In order
to police the execution pipeline, matching store and hardware scheduler usage, to place
fire walls between applications, some method for ensuring a given quality of service is
required. To avoid arogue process consuming 100% of the execution pipeline resource,
some mechanism would be required to ensure that only a given percentage may be used
by a particular application. This may be achieved by traditional time slicing although
some method of resource usage accounting would be required. Similarly, the matching
store may be partitioned amongst applications. The relationship between the size of
the matching store and the size of the scheduler, would ensure that the scheduler is not
overloaded.

8.2.3 Control-flow core

Anaconda’s control-flow execution pipeline was based upon the Alpha 21064 to assist
performance comparisons. However, the Alpha 21064 is designed with different cri-
teria. For example, all Anaconda instructions are preloaded into the instruction buffer
before execution commences. Whilst loading instructions into the I-buffer, decoding,
branch addresses computed and even some issue checks could be performed.

8.2.4 Language support

High level language issues need to be addressed to ensure that the programmer may
make good use of the low overhead concurrency and good synchronisation offered by
Anaconda. A declarative language would be one approach, but it is anticipated that an
multithreaded imperative language would be more efficient because it more closely fits
Anaconda’s execution model.

100

8.2.5 Static code analysis

Anaconda is sufficiently temporally predictable to allow fixed and narrow bounds to be
placed upon execution time. This is obviously advantageous for hard real-time appli-
cations. However, suitable static code analysis tools are required to assist the program-
mer.

8.2.6 Operating system support

Anaconda provides explicit hardware support for a nanokernel to perform basic house-
keeping functions. On top of this, a microkernel may be constructed. Since Anaconda
supports low overhead concurrency and synchronisation, this should have profound ef-
fects upon the structure of an efficient microkernel.

8.2.7 Caching for power reduction

Memory tree accesses are likely to consume significant power. A data and capability
cache could be placed between the processor and the memory tree to reduce overheads
and improve upon best effort performance. However, to ensure good temporal charac-
teristics, this must not upset the constant access rate offered by the memory tree.

101

102

Bibliography

[1] D. Abramson and Egan G. The RMIT data-flow computer: A hybrid architecture.
The Computer Journal, 33(3), 1990.

[2] A. Agarwal and et al. Sparcle: an evolutionary processor design for large-scale
multiprocessors. IEEE Micro, pages 48—61, June 1993.

[3] B. Ahn and J.M. Murray. A pipelined, expandable VLSI sorting engine imple-
mented in CMOS technology. IEEE International Conference on Circuits and
Systems, 3:134—137, 1989.

[4] R. Alverson and et al. The Tera computer system. Computer Architecture News,
18(3), September 1990. Also published as ASM Supercomputing’90.

[5] P.V. Argade and et al. Hobbit — a high-performance, low-power microproces-
sor. In CompCon spring 93. 38th annual IEEE Computer Society International
Computer Conference (CompCon spring 93) San Francisco, CA D930222—26,
1993.

[6] K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Com-
puter Conference 32, pages 307-314, 1968.

[7] A.D. Berenbaum, B.W. Colbry, D.R. Ditzel, R.D. Freeman, H.R. McLellan, K.J.
Oconnor, and M. Shoji. Crisp — a pipelined 32 bit microprocessor with 13 kbits
of cache memory. IEEE journal of solid—state circuits, 22:776-782, 1987.

[8] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39-59, 1984.

[9] D.Bitton, D.J. DeWitt, D.K. Hsiao, and J. Menon. A taxonomy of parallel sorting.
Computing Surveys, 16(3):287-318, 1984.

[10] R.J. Black. Explicit Network Scheduling. PhD thesis, University of Cambridge,
Due to be submitted in 1994.

103

[11] K. Boland and A. Dollas. Predicting and precluding probleins with memory la-
tency. IEEE Micro, 14(8):59-67, 1994.

[12] A.Burns and A. Wellings. Real-time systems and their programming languages.
Addison Wesley, 1989.

[13] T.J.W. Clarke. General theory relating to the implementation of concurrent sym-
bolic computation. Technical Report 174, University of Cambridge, Computer
Laboratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, Eng-
land, August 1989.

[14] E.G. Coffman and P.J. Denning. Operating systems theory. Prentice-Hall, 1973.

[15] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, 1991.

[16] H. Corporaal. Evaluating transport-triggered-architectures for scalar applications.
Microprocessing and Microprogramming, 38:45-52, 1993.

[17] H. Corporaal and P. Vanderarend. Move32int, a sea-of-gates realization of a high-
performance transport triggered architecture. Microprocessing and Micropro-
gramming, 38:53—60, 1993.

[18] I. David, R. Ginosar, and M. Yoeli. An efficient implementation of boolean func-
tions as self-timed circuits. IEEE Transactions on Computers, 41(1):2-11, Jan-
uary 1992.

[19] J.B. Dennis. Data flow supercomputers. IEEE Computer, 13(11), 1980.

[20] Digital. DECchip*™ 21064-AA Microprocessor — hardware reference manual,
1992. available via http://www.digital.com/info/forms/search.html.

[21] E.W. Dijkstra. The structure of THE operating system. Communications of the
ACM, 11(5), 1968.

[22] E.W. Dijkstra. A heuristic explanation of Batcher’s baffler. Science of Computer
Programming, 9:213-220, 1987.

[23] K.E. Drexler. Nanosystems — molecular machinery, manufacturing and compu-
tation. John Wiley & Sons, 1992.

[24] M. Farmwald and D. Mooring. A fast path to one memory. IEEE Spectrum, Oc-
tober 1992.

104

[25] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12), 1966.

[26] T.J. Fountain, K.N. Matthews, and M.J.B. Duff. The CLIP7A image proces-
sor. IEEE transactions on pattern analysis and machine intelligence, 10:310-319,
1988.

[27] S.B. Furber and LE. Sutherland. Computing without clocks — asynchronous mi-
croprocessor design. Sun annual lecture in Computer Science at the University of
Manchester, 1994.

[28] G.R. Gao. An efficient hybrid dataflow architecture. Journal of Parallel and
Distributed Computing, 19:293-307, 1993.

[29] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving En-
vironment for Higher-order Logic. Cambridge University Press, 1993.

[30] J.R. Gurd and et al. The Manchester prototype dataflow computer. Communica-
tions of the ACM, 28(1), January 1985.

[31] S. Hasuo and T. Imamura. Digital logic circuits. Proceedings of the IEEE, 77(8),
August 1989.

[32] J.L. Hennessy and D.A. Patterson. Computer architecture — a quantitative ap-
proach. Morgan Kaufmann, 1990.

[33] W.D. Hillis. The Connection Machine. The MIT Press, 1985.

[34] K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill, 1988.

[35] E.A. Hyden. Operating system support for quality of service. PhD thesis, Uni-
versity of Cambridge, England, 1994. Also available as technical report 340 from
the University of Cambridge, Computer Laboratory.

[36] INMOS. Transputer Reference Manual. Prentice Hall, 1988.

[37] J.S. Kowalik (editor). Parallel MIMD computation : the HEP supercomputer and
its applications. MIT Press, 1985.

[38] M. Kakumu and M. Kinugawa. Power-supply voltage impact on circuit perfor-
mance for half and lower submicron CMOS LSI. IEEE Transactions on Electron
Devices, 37(8), August 1990.

105

[39] D.B. Kirk. SMART (Strategic Memory Allocation for Real-Time) cache design.
In 10th annual real-time system symposium, pages 229-237, 1989.

[40] H.C. Lauer and R.M. Needham. On the duality of operating system structures.
Technical report, Xerox PARC, 3408 Hillview Avenue, Palo Alto, California
94304, USA., 1978.

[41] D.T.Lee, H.S.U. Chang, and C.K. Wong. An on-chip compare/steer bubble sorter.
IEEFE Transactions on Computers, C-30(6), June 1981.

[42] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. St evens, A. Gupta, and J. Hen-
nessy. The Dash prototype — logic overhead and performance. IEEE transac-
tions on parallel and distributed systems, 4:41-61, 1993.

[43] T.E. Leonard, editor. VAX architecture reference manual. Digital Press, 1987.

[44] S.Leviand A.K. Agrawala. Real-time system design. McGraw-Hill International
Editions, 1990.

[45] Yen-Chun Lin. On balancing sorting on a linear array. IEEE Transactions on
Parallel and Distributed Systems, 4(5), May 1993.

[46] INMOS Ltd. Occam 2 reference manual. International series in computer science.
Prentice-Hall, 1988.

[47] C. Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, 1980.

[48] S.W. Moore and G. Morgan. The recursive MOVE machine: r-move. In RISC
architectures and applications, IEE colloquium 1991/163, 1991.

[49] Motorola. MC88100 — RISC Microprocessor user’s manual. Prentice Hall, 1989.

[SO0] R.S. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In

16th Annual International Symposium on Computer Architecture, pages 262272,
1989.

[51] G.M. Papadopoulos. Implementation of a general-purpose dataflow multiproces-
sor. Research Monographs in Parallel and Distributed Computing. MIT Press,
1991.

[52] G.M. Papadopoulos, G.A. Boughton, R.G. Greiner, and M.J. Beckerle. *T: Inte-
grated building blocks for parallel computing. Technical report, Massachusetts In-
stitute of Technology, 545 Technology Square, Cambridge, Massachusetts 02139,
USA., 1993. To appear in Supercomputing 1993.

106

[53] D. Parkinson and J. Litt, editors. Massively Parallel Computing with the DAP.
Pitman, 1990.

[54] D.A. Patterson and J.L. Hennessy. Computer organisation and design — the hard-
ware/software interface. Morgan Kaufmann, 1993.

[55] D. Reed and R. Kanodia. Synchronization with eventcounts and sequencers.
Technical report, MIT Laboratory for Computer Science, 1977.

[56] T. Roscoe. Private communication, January 1994.

[57] S.Sakai and et al. Prototype implementation of a highly parallel dataflow machine
EM-4. In 5th International Parallel Processing Symposium. IEEE, 1991.

[58] J.H. Saltzer. Protection and the control of information sharing in Multics. Com-
munications of the ACM, 17(7):388-402, 1974.

[59] M.A. Shutte and J.P. Shen. Instruction-level experimental evaluation of the Mul-
tiflow TRACE 14/300 VLIW computer. The Journal of Supercomputing, 7:249—
271, 1993.

[60] D.P. Siewiorek, C.G. Bell, and A. Newell. Computer Structures: Principles and
Examples. McGraw-Hill, 1982.

[61] R.L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[62] J.E. Smith and S. Weiss. PowerPC 601 and Alpha 21064: a tale of two RISCs.
Computer, 27(6):46-58, 1994.

[63] J.A. Stankovic and K. Ramamritham. Hard real-time systems: tutorial. TEEE
(document collection EH0276-6), 1988.

[64] B. Stroustrup. The C++ programming language. Reading, Mass & Wokingham,
1986. '

[65] 1.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
June 1989.

[66] P.C. Treleaven, R.P. Hopkins, and P.W. Rautenbach. Combining data flow and
control flow computing. The Computer Journal, 25(2), 1982.

[67] N. Weiderman. Hartstone: synthetic benchmark requirements for hard real-time
applications. Technical Report CMU/SEI-89-TR-23, Carnegie Mellon Univer-
sity, 1989.

107

[68] D.J. Wheeler. Automatic Computing with the EDSAC. PhD thesis, University of
Cambridge, August 1951.

[69] M.V. Wilkes. Memoirs of a computer pioneer. MIT Press, 1985.

[70] M.V. Wilkes and R.M. Needham. The Cambridge CAP computer and its operat-
ing system. Operating and programming systems series. North Holland, 1979.

[71] T.E. Williams and M.A. Horowitz. A zero-overhead self-timed 160-ns 54-b
CMOS divider. IEEE Journal of Solid-State Circuits, 26(11):1651-1661, Novem-
ber 1991.

108

Appendix A

Proof of correctness for the tagged
up/down sorter

By B. T. Graham

A.1 Introduction

This appendix presents a formal specification of the tagged up/down sorter algorithm
on page 37. The informal requirements on page 31 are also formalised and a sketch of
the proof of correctness is presented. The formal proof was conducted with the assis-
tance of the HOL system [29], which is a high integrity machine-implementation of a
classical higher order logic.

A.2 Formal specification

We begin by defining data structures to represent the state of the queue. Firstis a record
datatype.

FV (r:(x)record). (3(n:num) (x:%). r = TAGGED n x) V
(3 n x. r = UNTAGGED n x)

This theorem (theorems are identified by the I symbol) shows that objects of type
record come in two forms: tagged and untagged. All such objects have two fields,
a key field of type :num (natural numbers) and a data field which is polymorphic (i.e. it
can be of any type, hence the type variable x). The sorting function of the algorithm is
not dependent on the data field, hence leaving it polymorphic maintains full generality.

109

Extractor functions key and data, a predicate is_tagged, and a tagging function tag
are defined, all with the obvious meanings.

The state of the queue is represented by a pair of finite lists of records. These lists
represent only the elements in the queue which hold an inserted value, and not those
elements that contain infinity. A simple informal proof by induction on the number of
records in an infinite queue satisfies that the inserted records always cluster at the front
of the queue, with no intervening empty elements, and thus the chosen representation
is suitable. :

The definitions of several functions required to manipulate list pairs follow. (Note
that definitions are theorems in the HOL system. Recursive definitions may use pattern
matching for arguments, as below where the empty list argument [] appears. Parts of
the recursive definitions are conjoined with the A operator.)

FVabal bl.
CONS_PAIR (x,y) (xs,yx) = (CONS x xs,CONS y ys)

F(Vrrfg. MAP.2.2f g ([,rr) =g rr) A
(V11 f g. MAP_2.2 £ g (11,[1) = g 11) A
(W1l rrr f g. MAP.2 2 f g (CONS 1 11,CONS r rr)
CONS_PAIR (f (1,r)) (MAP_2_2 f g (11,rr)))

F(Vrrfg. MAP.2.1f g ([1,rr) =g rr) A
(V11 f g. MAP_2.1 £ g (11,[1) = g 11) A
(V111 rrr fg. MAP_.2_1 f g (CONS 1 11,CONS r rr)
coNs (f (1,r)) (MAP_2_1 f g (11,rr)))

]

b (Vrr £fg. MAPP_2_1 f g ([]1,rr) = g rr) A
(V11 f g. MAPP_2_1 f g (11,[]) = g 11) A
(V111 rrr f g. MAPP_2_1 £ g (CONS 1 11,CONS r rr) =
coNs (£ (1,r) (11,rr)) (MAPP_2_1 f g (11,rr)))

The CONS_PAIR function adds new head elements to both list arguments. Three versions
of MAP functions which can be applied to pairs of lists are needed. MAP_2_2 applies
a function f to pairs of elements from each list, and builds a pair of lists as a result.
MAP_2_1 is similar but returns instead a single list. MAPP_2_1 applies a function f which
takes as arguments not only the head elements at each level in the list, but the rest of the
lists as well. All three functions have an additional function-valued argument g which
is applied to the remaining part of the longer list, should the list arguments be unequal
in length.

The MAP functions will often be used with functions that are predicates. To deter-
mine that the predicate holds at all levels the following functions are supplied to exam-
ine the returned lists.

110

(Vv £f z. Foldl f z [] z) A
(Vfzx xs. Foldl f z (CONS x xs) =
Foldl £ (f z x) xs)

F ALL = Foldl A T

Foldl is the standard fold left operation of functional programming. Applied to the
arguments A and T (the HOL constant for true), the resulting function ALL tests that
every element in a list is T.

The algorithm consists of either an insertion or an extraction, followed by a compare
and swap mapped down the pair of lists representing the state of the queue. The com-
pare and swap operation is defined by the following two functions, the first of which is
the comparison itself.

'V ab. below (a,b) = (key a < key b) V (is_tagged a)

- Compare_and_swap =
MAP_2_2 (X(a,b).(below (a,b)) => (b,tag a) | (a,b))
(X al.([],MAP tag al))

Note that only the key field and tag are considered by the algorithm. The relation below
(a,b) holds when either the a record has a lower key value than the b record, or the a
record is tagged. The Compare_and_swap function maps down the pafr of lists, swap-
ping the records (and tagging the right ones) as required so the record on the right is
below the record on the left for every pair of records. If the lists are of unequal length,
the remaining elements are moved to the right list and tagged.’

Insert adds a new record to the left list, while Extract removes the head element
of the right list, thus both cause the two lists to shift one position relative to the other,
always shifting the left side down relative to the right.

FV k1l rr. Insert k (11,rr) =
Compare_and_swap (CONS k 11,rr)

FV 1l rr r. Extract (11,CONS r rr) =
(r,Compare_and_swap (11,rr))

The definitions of both operations combine the required shifting of the lists and the
application of the Compare_and_swap function. Extract returns both the extracted
record as well as the diminished queue. The record types are polymorphic in both def-
initions.

1The A symbol identifies a local function whose arguments end with a “.”. The conditional expres-
sion of the form (¢ => a | b) canberead as IF ¢ THEN a ELSE b. Compare_and_swap is an ex-
ample of the use of higher order functions, where the list pair argument is not shown in the definition.

111

In order to define the invariant, we must be able to order records with identical key
values. To assist the proof we use the data field to hold information about the order of
insertion of records with identical keys, rather than adding an extra field to the record
for this purpose. Thus the proof of correctness will be performed on :num record in-
stances, and the data field will be higher for records inserted later. This does not restrict
the generality of the results since the data field is ignored by the algorithm. The infor-
mation we hold therein is strictly for use in distinguishing the insertion order of records
with identical keys. An ordering relation which reflects this is defined as follows.

FV ab. BELOW (a,b) =
(key a < key b) V
((key a = key b) A (data a < data b))

This relation holds when the left record has a lower key value than the right record, or
if the key values are identical, when the left record has a lower data value, indicating it
was inserted before the right record,

The invariant consists of six components. First we require that each pair of records
at the same depth in the queue is ordered, with the one in the right list BELOW the one
in the left. We can ignore the last records in the longer list.?

FV 11 rr. pair_ORDERED (1l,rr) =
ALL (MAP_2_1 (M(a,b). BELOW (b,a)) (X [1) (11,rr))

Second, the right list is either the same length as or one longer than the left list.

FV 11 rr. Lengths (11,rr) =
(LENGTH 11 = LENGTH rr) V
(LENGTH 11 + 1 = LENGTH rr)

Third, the records in the right list are ordered, with the least at the head. The predicate
compares successive records in the list by using two copies of it, offset by one position.

FV rr. rt_ORDERED rr =
ALL (MAP_2_1 BELOW (X [1) (rr,TL rr))

Fourth, if a record in the left side is tagged, then it is BELOW the record in the right list
which is at one level deeper in the queue. This captures the property, referred to on in
section 4.3.2, that once a record arrives on the right it is sorted with respect to the keys
of other records on the right.

ZNote the expression (K []) is a function which returns the empty list [1 when applied to any list
argument.

112

FV 11 rr. 1t_Tagged (1l,rr) =
ALL (MAP_2_1 (A(a,b). is_tagged a D BELOW (a,b))
K [1) (11,TL rr))

Fifth, every untagged record in the left list that has the same key value as a record lower
in either list must have a higher data value. In effect, this requires that records inserted
later have this fact recorded in the data field.

FV 11 rr. 1t_UnTagged (1l,rr) =
ALL (MAPP_2_1
(A(a,b) (aa,bb).
—(is_tagged a) D
ALL (MAP (A c. (key a = key ¢) D
' data ¢ < data a) aa) A
ALL (MAP (X c. (key a = key c) D
data c < data a) bb))
X [
(11,rr))

Finally, every record in the right list is tagged.

FV rr. rt_Tagged rr = ALL (MAP is_tagged rr)

The invariant is the conjunction of the six conditions.

FV 1l rr. Invariant (11,rr) =
pair_ORDERED (11,rr) A Lengths (11,rr) A
rt_ORDERED rr A 1t_Tagged (11,rr) A
1t_UnTagged (11,rr) A rt_Tagged rr

The final two definitions below describe a constraint on the records being loaded
and a relation that holds between the least element and the rest of the records in the
queue.

F V new 11 rr. load_constraint new (ll,rr) =
—(is_tagged new) A
ALL (MAP (X c. (key new = key c) D
data ¢ < data new) 11) A
ALL (MAP (X c. (key new = key c) D
data ¢ < data new) rr)

FVall rr. LEAST a (11,rr) =
ALL (MAP () c. BELOW (a,c)) 11) A
ALL (MAP (M c. BELOW (a,c)) rr)

113

The load_constraint requires that new records are not tagged, and that they have the
appropriate ordering information in the data field. The LEAST predicate will assure that
the correct record is extracted from the queue.

A.3 Proof sketch

We present a proof sketch, rather than a detailed examination of the HOL machine
proof. The first theorem shows the invariant holds on the empty queue. The proof con-
sists of rewriting with the constraint definitions.

F Invariant ([1,[1) (1)

In order to split the proof of later theorems into simpler parts, we derive an inter-
mediate theorem which unfolds the invariant in the case when both lists are nonempty,
expressing the invariant as equal to a series of conditions on the head elements plus the
invariant holding on the pair of tails of the lists.

FV11lr rr. 2)

Invariant (CONS 1 11,CONS r rr) =

Invariant (1l,rr) A (Ip)
BELOW (r,1) A (I
(—~(NULL rr) D BELOW (r,HD rr)) A (I9)
(is_tagged 1 D (I3)

—-(NULL rr) D BELOW (1,HD rr)) A
(~(NULL rr) O (I1)

—(is_tagged 1) D
ALL (MAP (A c. (key 1 = key ¢) D
data ¢ < data 1) 11) A
ALL (MAP (X c. (key 1 = key c) D
data c < data 1) rr)) A
is_tagged r (Is)

This proof consists largely of unfolding the definitions of the constraint components.
The clauses for pair ORDERED, rt_ORDERED, and rt_Tagged are solved independently,
while the remaining three: Lengths, 1t_Tagged and 1t_UnTagged are grouped to-
gether. The pair_ORDERED and rt_Tagged clauses are solved by unfolding definitions.
The rt_ORDERED clause splits into two cases, where rris an empty or a nonempty list.
The remaining clauses use the same case split; when rr is NULL the Lengths constraint
demands that 11 is as well, and the definitions solve the case. Otherwise, the clauses
are equivalent. This theorem is used in the proofs of two of the main theorems, and we

114

label the 6 conditions expressed by the conjuncts of the right hand side I, through I5
for easier reference.

The next theorem shows that the invariant is maintained when the lists are shifted
one position relative to each other by removing the head of the right list and applying
the Compare_and_swap function.

FV 11l rr r. Invariant (11,CONS r rr) D (3)
Invariant (Compare_and_swap (11,rr))

The proof is by successive list inductions, first on 11 then on rr. The two base cases
are solved using the Lengths constraint to derive that the queue is empty or has one
element. Theorem (2) is used to split the proof into conjuncts corresponding to I
through Is. The I, clause is solved using the inductive hypotheses, and the remain-
ing clauses are solved by considering separately cases where the head elements are or
are not swapped.

Theorem (3) is used to prove a theorem showing that the invariant is maintained by
Insert, provided the record is not tagged upon entry and the data field ordering value
is appropriate (i.e. the load_constraint).

FV 11 rr new. ‘ (4)
load_constraint new (1l,rr) D
Invariant (1l,rr) D
Invariant (Insert new (11l,rr))

The proof proceeds by a case split on the structure of rr. If NULL then 11 must be as well
by the Lengths constraint, and the invariant holds for the queue with a single record.
In the other case (CONS h t), we split the goal into requirements on the heads of the
lists and the invariant on the rest, using theorem (3) to solve the latter, splitting cases
based on whether new and h get swapped.

The next intermediate theorem expresses the fact that the invariant assures that the
least element is the one which is extracted from a nonempty queue.

FV 11 rr least. (5)
Invariant (11,CONS least rr) DO LEAST least (11,rr)

The proof is by successive list inductions over 11 then rr, doing a case analysis on the
heads of the list, and using the transitivity of BELOW. This is combined with the earlier
result to give the required theorem about the correctness of the Extract operation.

115

V11 rr k. (6)
Invariant (11,CONS k rr) D
(let (removed,rest) = Extract (11,CONS k rr)
in
((removed = k) A
LEAST removed (11,rr) A
Invariant rest))

A4 Conclusion

Three theorems: (1), (4) and (6), express the correctness of the abstract algorithm. Re-
lating these results to the behaviour of an implementation will need finite limits on the
number of records which can be inserted, and an abstraction which distinguishes loca-
tions holding inserted values from others, as well as a justification for this abstraction.

Although the proofs have been described sparely, the completion of the proofs in a
high integrity proof system lends a very high assurance of their validity. We note that
the use of a formal proof system has more than once caught errors and omissions in the
informal proofs of correctness we developed along with the formal proof. The invariant
was strengthened in response to each omission, and the final variant carried version
number 5. We can only speculate on whether this reflects carelessness on the part of the
person performing the proof, or is typical of informal proofs of even relatively simple
systems.

116

Appendix B

Anaconda instruction formats

Anaconda instructions are based around the Alpha instruction set [61]. The function of
the additional Anaconda specific instructions is presented in section 6.7.

Anaconda and Alpha instructions have a 6 bit primary opcode which is summarised
in figure B.1 (see page C-7 of [61] for details of the Alpha instructions). Instruction
formats appear in figures B.2 and B.3.

117

|| o0 | 08 | 10 | 18 | 20 | 28 | 30 | 38

0/8 || PAL LDA INTA MISC LDF LDL? BR BLBC

XR1! XLBC!

(pal) (mem) (op) (mem) (mem) (mem) (br) (br)

19 || FLTv_M! | LDAH INTL \PAL\ LDG LDQ? FBEQ BEQ

FXEQ! XEQ!

(op) (mem) (op) (mem) (mem) (br) (br)

2/A || FLTL. M1 LDAP INTS JSR LDS LDL. FBLT BLT

REQ.M! FXLT! XLT!

(op) (mem) (op) (mem) (mem) (br) (br)

3B || FLTL.M! | LDQ.U INTM \PAL\ LDT LDQ_ FBLE BLE

REQ_M! FXLE! XLE?!

(op) (mem) (op) (mem) (mem) (br) (br)

4/C || INTA_M! | LDA.M!? \PAL\ \PAL\ STF STL BSR BLBS

XSR! XLBS!

(op) (mem) (mem) (mem) (br) (br)

5/D || INTL.M! | LDAH. FLTV \PAL\ STG STQ FBNE BNE
Ml

FXNE! XNE!

(op) (mem) (op) (mem) (mem) (br) (br)

6/E || INTS_.M! | LDAP_.M! | FLII BIL! STS STL_M! FBGE BGE

XIL! FXGE! XGE!

(op) (mem) (op) (br) (mem) (mem) (br) (br)

7F || INTM_.M! | STQ.U FLTL BLL! STT STQ_M! FBGT BGT

XLL! FXGT! XGT!

(op) (mem) (op) (br) (mem) (mem) (br) (br)
Notes:

an Anaconda extension
an Alpha opcode which may now only be used in supervisor

mode
-M the destination register is written through to the matching
store
(op)
(mem) instruction format (see figures B.2 and B.3)
(br)
further details in [61]

Figure B.1: Anaconda additions to the Alpha opcode summary

118

Integer operate format:
(op)

31 26 25 21 20 16 15131211 54 0

opcode Ra Rb 000 |0| function Rc

Integer operate format with literal:
(op)

31 26 25 21 20 131211 54 0

opcode Ra literal 0| function Rc

Floating-point operate format:

(op)

31 26 25 21 20 16 15 54 0
opcode Ra Rb function Rc

Notes:

if the opcode indicates a write through to the matching store then
the default capability and activation frame base are implicitly used.

Figure B.2: Anaconda instruction formats — part 1

119

Memory Format: -

(mem)

31 26 25 21 20 161514 0
opcode Ra Rb c offset

Notes:

c is the destination capability in the case of a store but the source
capability for a load. The destination capability for a load is the
default one and the destination address is calculated using the
default activation frame base and Ra as an offset.

Branch Format:

(br)

31 26 25 212019 0
opcode Ra (x branch displacement

Notes:

if x is O then the branch is a conventional one (in the br family)
if x is 1 then the branch is an intermicro thread branch (the xr famaily)

Figure B.3: Anaconda instruction formats — part 2

120

Appendix C

Anaconda memory copy program

/ X k% Kk *%k 3k ke e o ok ok ok ok ok o ok o o 3k ok ok ke 3k K ok 3K sk ok sk Sk ok ke ok ok ok ok o ok ok ok K ok K ok ok ok Xk ok %k

Anaconda test program - memory copying

**/

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include "anacondageneric.h"
#include "writeaout.h"

#define RPLUS(r1,r2) ((ireg) (((int) r1) + ((int) r2)))
#define MEMSIZE (2#3*5*7*11%9)

main(int argc, char *argﬁ[])
{

int i, j, segsize, numpar;

if((arge!=2) || (sscanf(*++argv,"%d",&numpar)!=1)) {
fprintf(stderr,"Usage: expacting one number to indicate number of parallel memory copies\n");
exit(2);

}

if ((numpar<1) || (numpar>10)) {
fprintf(stderr,"ERROR: The number of parallel memory copies must be in the range 1..10\n");
exit(2);

}

printf("Setting up application with %d parallel memory copies\n",numpar);
ASMBEGIN

/**x%x%*% general initialisation which would normally be done by the 0S iikxkx/
quadunalign() ; // source the global pointer
br(gp,"findgp");
text.quadaddaligned(getlabel("GPstart"));

label("findgp");
1dq(gp,0.gp,h);

121

// load the base activation frames pointer

ldq(af,getlabel("ActivationFramesPtr")-getlabel("GPstart"),gp,h);

/*¥*x%%% start of the application ****x
rpcc(t0);

// setup exit microthread
1lda(dl,1,zero);
ldap_m(dl,calcpresence(cp,hc,gp) &

lda_m(gp,0,gp);
1lda_m(hc,0,zexo);
xsr(cp,"Exit");

// setup initialisation microthread
lda(af,16%8,af);
1dap_m(dl,calcpresence(cp,hc,in3,p3

Seskokok ke kok e ok ok ok sk ok ok ok sk skok sk ok ok ok ok sk sk sk sk skoksk ok sk ok ok ok sk ok /

// set deadline

~(((1<<numpar)-1)<<((int) p0)),dl);

// set presence bits (cp,hc,gp and p0O..p numpar)
// write through global pointer

// write through the home capability

// source the code pointer

// next activation frame
»p4,p5,gp),dl);
// poast a load for a pointer to the memory ranges table

ldg_req_m(p5,getlabel("MemRangesPtr")-getlabel ("GPstart"),gp,h);

lda_m(gp,0,gp);
lda_m(he,0,zero);

lda_m(in3, (((int) p0)-16)#8,af);
lda_m(p3,16*8,af);
lda_m(p4,numpar,zero) ;
xr{cp,"Init");

// Initialisation loop which spawns
// input parameters:

// write through the gp

// and the hc (home capability)

// write the first sync. address for signalling exits
// write the address of the next activation frame

// write the counter for the number of parallel threads
// next microthread and set code pointer to "Init"

the microthreads to perform the copies

// p3 = activation frame to allocate, p4 = counter,
// p5 = pointer to memory ranges, in3 = exit address
cachealign();

label("Init");
1da(t0,0,af);
lda(af,0,p3);

ldap_m(dl,calcpresence(cp,in3,p0,pl
ldq_req_m(p0,0,p5,h);

ldq_req m(p1,8,p5,h);
ldq._req_m(p2,16,p5,h);
lda_m(in3,0,in3);

xsr(cp, "MemCopyDoLoads9") ;

lda(af,0,t0);

ldap_m(dl,calcpresence(cp,in3,p3,p4
1lda_m(in3,8,in3);

1lda_m(p5,3%8,p5);
lda_m(p3,16%8,p3);
subq_lit_m(p4,1,p4);
xne(p4,"Init");

lda_m(dl,-1,dl);

NEXTQ);

// save af

// set af to the next free activation frame

// initialise the presence bits

,p2),d1);

// post load for the source address for the memory copy

// post load for the destination address for the memory copy
// post load for the number of quadwords to copy

// write the exit signal address

// write the code pointer

// restore af

// calculat the presence bits for another run of Init
1P5) ,dl) H

// update parameters and write them through

// if there are more threads to spawn then run init again
// otherwise deallocate activation frame
// and exit

// Initiate the correct number of loads and run the appropriate microthread to store them

// input parameters:

// in3=exit signal address, pO=

cachealign();
label(""MemCopyDoLoads9") ;

source address, pl=destination address, p2=counter

122

subq_lit(p2,9,t0); // can 9 loads be performed?...
bge (£0, "MCDLO");

label('"MemCopyDoLoads3") ;
subg_lit(p2,3,t0); // can 3 loads be performed?...
bge (t0,"MCDL3");
subq_lit(p2,1,t0);

bge (t0, "MCDL1"); // can 1 load be performed?...
stq_m(zero,0,in3,h); // signal exiting
lda_m(dl,-1,zero); // deallocate microthread
NEXT() ;
label("MCDL1"); // set up to use the 1 quadward copy microthread

ldap_m(dl,calcpresence(cp,p0,p2,p3),dl);

xsr(cp, "MemCopyStorel");

subg_lit_m(p0,8%3,p0);

br(zero,"MCDLload1"); // go and perform the 1 load etc.

label ("MCDL3"); // set up to use the 3 quadward copy microthread
ldap_m(dl,calcpresence(cp,p0,p2,p3,p4,p5),dl);
xsr(cp, "MemCopyStore3");
subq_lit_m(p0,8%3,p0);
br(zero,"MCDLload3"); // got and perform 3 loads etc.

label("MCDLS"); // set up to use the 3 quadward copy microthread
ldap_m(dl,calcpresence(cp,p0,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11),d1);
xsr(cp, "MemCopyStore9") ;
subg_lit_m(p0,8%9,p0);

ldq_req_m(p11,8+8,p0,h); // post the required loads
ldg_req_m(p10,7*8,p0,h);
ldq_req _m(p9,6%8,p0,h);
ldq_req_m(p8,5%*8,p0,h);
ldg_req_m(p7,4%8,p0,h);
1dq_req_m(p6,3*8,p0,h);
label("MCDLload3");
ldq_req_m(p5,2*8,p0,h);
1ldq_req_m(p4,1*8,p0,h);
label("MCDLload1");
1ldq_req_m(p3,0%8,p0,h);
lda_m(p2,0,t0); // write through the conter
NEXTQ) ;

// Store 9 values and load some more
// input parameters:

/! in3=exit signal address, pO=source address, pl=destination address, p2=counter
// p3...pll contain data o be stored
cachealign();

label("MemCopyStore9"); // store the 9 values

for(i=0; i<9; i++) stq(RPLUS(p3,i),i*8,p1,h);
subq_lit(p2,9,t0);
bge(t0,"MCS9doloads") ; // check if 9 more values can be loaded...
ldap_m(dl,calcpresence(cp,pl),dl); //...if not then rerun the load initialisation microthread
lda_m(p1,8%9,pl);
xr(cp, "MemCopyDoLoads3") ;
label("MCS9doloads"); // perform 9 more loads and loop around again
ldap_m(dl, calcpresence(p0,pl1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11),d1);
for(i=0; i<9; i++) ldg_req_m(RPLUS(p3,i),i*8,p0,h);
lda_m(p0,9*8,p0);

123

lda_m(p1,9%8,pl);
lda_m(p2,-9,p2);
NEXTQ) ;

// Store 3 values and load some more
// input parameters:

// in3=exit signal address, pO=source address, pl=destination address, p2=counter
// p3...p5 contain data to be stored -
cachealign();

label("MemCopyStore3"); // store the 3 values

for(i=0; i<3; i++) stq(RPLUS(p3,i),i*8,p1,h);
subq._1it(p2,3,t0);
bge (t0,"MCS3doloads"); // check if 9 more values can be loaded...
//...if not then initiate singe quadword copying
ldap_m(dl,calcpresence(cp,p0,pl,p2,p3),dl);
1ldq_req_m(p3,0,p0,h);
1da_m(p0,8,p0);
lda_m(pl,3*8,pl);
lda_m(p2,-1,p2);
xr(cp, "MemCopyStorel") ;
label("MCS3doloads"); //
ldap_m(dl,calcpresence(p0,pl,p2,p3,p4,p5),dl);
for(i=0; i<3; i++) ldq_req _m(RPLUS(p3,i),i*8,p0,h);
lda_m(p0,3*8,p0);
lda_m(p1,3%8,pl);
lda_m(p2,-3,p2);
NEXTQ);

// Store 1 value and load some more
// input parameters:

1/ in3=exit signal address, pQO=source address, pl=destination address, p2=counter
// pl contains the data to be stored
cachealign();

label("MemCopyStorel");
stq(p3,0,p1,h); // store the value
subg_lit(p2,1,t0);
bge (t0, "MCS1doloads"); // any more to copy?...
stq.m(zero,0,in3,h); //...no so signal exiting
lda_m(dl,-1,zero); // deallocate microthread
NEXTQ) ;

label("MCSidoloads"); // post another load and loop around again

1ldap_m(dl,calcpresence(p0,pi,p2,p3),d1);
1dq_req_m(p3,0,p0,h);

1da_m(p0,8,p0);

lda_m(pi,8,p1);

lda_m(p2,-1,p2);

NEXTQ);

cachealign();
label ("Exit");
rpcc(t0);
// flush most of the pipeline
for(i=0; i<8; i++) or(zero,zero,zero);
or_lit(zero,0,r0); // quit simulation by 0SF1 style call_pal EXIT

124

call_pal(0x83);

/***/

dataquadalign();

labeldata("GPstart"); printf("GP start = 0x%0161X\n",getlabel("GPstart"));

labeldata("StackStartPtr");
data.quadaddaligned(getlabel("StackStart"));

labeldata("MemRangesPtr");
data.quadaddaligned(getlabel ("MemRanges"));

labeldata("MemRanges");
segsize = MEMSIZE - (numpar-1)*(MEMSIZE / numpar);
for(i=j=0; i<numpar; i++) {
data.quadaddaligned(getlabel("SourceMemory")+j*8);
data.quadaddaligned(getlabel("DestMemory")+j*8);
data.quadaddaligned(segsize);
printf("segment %d, size %d\n",i,segsize);
j += segsize;
segsize = MEMSIZE / numpar;
}

ASMGENERAL

labeldata("SourceMemory") ;
for(i=0; i<MEMSIZE; i++) data.quadaddaligned(i);

labeldata("DestMemory");
for(i=0; i<MEMSIZE; i++) data.quadaddaligned(0);

ASMVERYEND ("/tmp/swml11/tmp.out")

return(0);

}

125

126

