Technical Report T e

Number 36

Computer Laboratory

The revised logic PPLAMBDA

A reference manual

Lawrence Paulson

March 1983

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1983 Lawrence Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

The Revised Logic PPLAMBDA'

A Reference Manual

Lawrence Paulson
Cambridge University

March 1983
Abstract

PPLAMBDA is the logic used in the Cambridge LCF proof assistant. It
allows Natural Deduction proofs about computation, in Scott's theory
of partial orderings. The logic's syntax, axioms, primitive inference
rules, derived inference rules, and standard lemmas are described., as

are the LCF funétions for building and taking apart PPLAMBDA formulas.

PPLAMBDA's rule of fixed-point induction admits a wide class of induc-
tions, particularly where flat or finite types are involved. The user
can express and prove these type properties in PPLAMBDA. The induc-
tion rule accepts a list of theorems, stating type properties to con-

sider when deciding whether to admit an inductioh.

Research supperted by S.E.R.C. Grant number GR/ BET766.

The Logic PPLAMBDA

1 Introducticon

Table

of Contents

2 SyntaX .ceiieeeencectrnnnenens [sesvessscnaans
3 Functions for Manipulating PPLAMBDA ObJeCtS sevvvveeeeneenennvnsnans
3.1 Abstract Syntax Primitives iueiieieiieeenecennnnnnns ceessresnanes
3.2 Derived Syntax Functionsieeeeeeeeeenonen tectesetecnesetaannas
3.3 Functions Concerning Substitution ceeenana
4 Axioms and Basic Lemmasveevennevnnnn. ceveanes crecesisersannes
5 Predicates 4eseseseteasnernces freeteccnensanecctartrst oo
6 Predicate Calculus RULES .evvevvnivnnennnennnan Cecaesecasiertnsctonen
6.7 Rules for QUaNtifiers tiieieeeeeieneenenenenencnonennnnnnn sessane
6.2 Rules for basic connectives ceeeas teesetietasectananraons
6.3 Rules for dlerived connectives ettt cserecte ittt eteeenn

7 Additional ruleS eeeevesvenvnnonn...

8 Fixed point induction .iveeeeiienrovevnanenens

8.1 Admissibility for short types

8.2 Stating type properties in PPLAMBDA

9 Derived Inference RULES teveeewereevoenoneess

9.1 Predicate Calculus Rules ...

®e e ss st e

L A A I NI WY

9.2 Rules Mout Functions and the Partial Ordering

¥

LR A)

s s s s s e

ssee 000000

10 Differences from Edinburgh LCF .uiiuvinreneeeenneoeennnnnennnnnn.

10.1 Formula Identification

10.2 The Definedness Function LEF

10.3 Data Structures

References

ssr0c0cc s e

--

L A)

10

10

12

13

14

16

16

18

19

19

22

25

26

26

27

ii

The logic PPLAMBDA

The Revised Logic PPLAMBDA

A Reference Manual

Lawrence Paulson
Cambridge University

March 1983

1. Introduction

The proof assistant LCF is an interactive computer program that helps a
user prove theorems and develop theories about computable functions, using
a logic called PPLAMBDA. It can reason about non-terminating computations,
arbitrary recursion schemes, and higher-order functions, by virtue of
Scott'é theory Ef continuous partial orders (Stoy [19771). PPLAMBDA uses

standard natural deduction rules (Dummet [19771]).

The version known as Ehinbhrgh LCF (Gordon, Milner, Wadsworth [1979]) has
been used for many projects, for example, Cohn [1982, 1983]. Cambridge LCF
(Paulson [19831]) is a descendant of Edinburgh LCF. Though based on the
same principles, the new system is quite different from the old one.. In
particular, the logic PPLAMBDA has been revised to include disjunction,

existential quantifiers, and predicates.

Some notes of caution: Cambridge LCF is still in a state of flux. The
revised PPLAMBDA has been stable for only a few months. This feport is
largely sel f-contained, but you may wish to refer to Gordon et al. [1979]

for background information. Please notify me of any major errors you dis-

The Logic - PPLAMBDA

cover, particularly in the secticn on fixed-peint induction.

I would like to thank Mike Gordon for his many comments

regarding this paper.

2. Syntax

In this paper, syntactic meta-variables obey the

possibly subscripted:

name PPLAMBDA construct
X,¥.2Z variables

t.u,v terms

A,B,C formulas

P,Q predicate symbols
ty types

Standard types

following

veid type containing only one element
tr type of truth-valuves: TT, FF, W
tyl # ty2 Cartesian product of ty1 and ty2

- actually ":(ty1,ty2)

prod"

and

corrections

conventions,

tyl => ty2 continuous functions from ty1 to ty2
— actually ":(tyl,ty2)fun"
Terms
c constant, where ¢ is a constant symbol
X variable
\x.t lambda-abstraction over a term
t u combination (application of function to argument)
p=>t | u conditional expression -- actually "COND p t u"
t,u ordered pair -- actually "PAIR t u"

The Logic PPLAMBDA

fwo
.

3.1.

Standard constants

Uu:*
TT:tr
FF:tr

FIX:(* > ¥)

bottom element for partizl ordering
truth-valuve "true"
truth-value "false"

-> % fixed-point coperator

COND:(tr-> *® _> % _> #) function for making conditional expressions
PAIR:(* -> *¥ _> (¥}%) function to construct an ordered pair

FST:(* §# %%) _.> % selector feor the first element of a pair
SND:(%® §# *%) _> *x selecter for the second element of a pair
(): veid scle element of the type ":void"

Formulas

TRUTH()

FALSITY()
t == u

t <K u

Pt

H 7~ N ¢ o
NS

/N
(LI 1]
Vv Vv
mwww

tautolegy

contradiction

equality of £t and u —- actually "equiv(t,u)"
Scott partial ordering -- actually "inequiv(t,u)"
where P is a predicate symbol

universal quantifier

existential quantifier

conjunction

disjunction

implication

if-and-only-if

negation —— actually "A ==> FALSITY()"

Functicns for Manipulating PPLAMBDA Objects

Abstract Syntax Primitives

LCF provides functions to construct, test the form of, and take apart

PPLAMBDA terms, formulas, and types. These use standard naming conven-

tions.
Prefixes:
mk make an object (term, formula, type)
is test that an object has a given top-level constructor

dest take apart an object, yielding its top-level parts

4 The Logic PPLAMBDA -

Suffixes for Terms

const constant

var variable

abs abstraction

comb combination

pair ordered pair

cond conditional expression

Suffixes for Formulas

equiv equivalence of terms
inequiv inequivalence of terms
forall universal quantifier
exists existential quantifier
conj conjunction

disj disjunction

imp implication

iff if-and-onl y-if

pred predicate

For example, there are three basic functions for manipulating universal

quantifiers:

mk forall: (term # form) -> form
is_forall: form -> bool
dest_jbrall: form -> (term # form)

3.2. Derived Syntax Functions

LCF provides syntax functions involving lists. Unless stated otherwise, n

denotes any non-negative integer.

The Legic PPLAMBDA

Censtructors:

list_mk abs ["1";... ;"xnn], nen

list mk comb AL L T s L

[;'A1";..

list_mk conj L3N] —=>
list_mk disj [marn; ... "] —=>
list_mk imp [ma1m; ... ;"an"], nB"
list_mk forall ["x1";...;"xn"], "A"
list_mk exists [™x1";...;"xn"], "A"
Destructors:

strip_abs "\ x1 ... xn. t" -
strip_comb "t ul ... un" —
conjuets "AT A\ ... /\ Av
disjwncts "A1\/ ... \/ fnv
strip_imp "AY ==> ... =2 An ==>
strip forall "iIx1 ... xn. A" _—
strip exists "?x1 ... xn. A" —_—=>

3.3. Functions Concerning Substitution

These functions are similar tco those that

[1979] describes in detail.

Choosing a variant of a variable

variant: (term list) -> term -> term

—D

—_—D

===> ™Mx1 ... xn.t"

——==> "t ul... un"

"AT N\ < /\ f", n>0

AT \/ ... \/ An%, n>0

——=> "A1 ==> ... ==> An ==> B"
—=> "ix1 . xn. A"

-_—> "2x1

. Xn.A"

[nx‘] n; e ;"xn"], LR A

"t" . [“u‘l"; cee ;"unll]

["A‘l";. e ;"An“]

[nA-]n;. . ;"An"]

B" > [ra1m; ... ;"an"], vpe

["X1 n: e ;Hxnn] . nAn

["X1 n;. . ;"xn"], " An

Appendix 7 of Gordon et al.

This summary is for the sake of completeness.

Generating a new variable (distinct from any already in use)

genvar : type -> term

The lLeogic PPLAMBDA

Returning all variables in a PPLAMBDA object

term_vars: tera -> term list
form_vars: form -> term list
forml_vars: (form list) -> term list

Returning the free variables in a PPLAMBDA cbject

ter'm__frees: term -> term list
form_frees: form -> term list
forml frees: (form list) -> term list

Returning the type variables in a PPLAMBDA object

type_tyvars: type -> type list
term_tyvars: term -> type list
form tyvars: form -> type list
formT_tyvars: (form list) -> type list

Testing if twe terms/formulas are alpha-convertible

acenv_term: term -> term -> bool
aconv_form: form -> form -> bool

Testing if one type/term/ formula occurs (free) in another

type_in type: type -> type -> bocl
-type_in_term: type -> term -> bool
type_in_form: type -> form -> bool

term__f‘reein__t.erm: term -> term -> bool
term_freein_form: term -> form -> bool

form___ﬂ'eein__form: form -> form -> bool

Substituticn in a term/formula (at specified occurrence numbers)

subst_term: (term # term)list -> term -> term
subst_form: (term # term)list -> form -> form

subst_cces_term: ((int list)list) -> (term#term)list -> term -> term
subst_oces form: ((int list)list) -> (term#term)list -> form -> form

The

| &=

Logic PPLAMBDA 7

Instantiation _o_f types in a PPLAMBDA cbject

inst_type: (type # type)list -> type -> type
inst_term: (term list) -~> (type # type)list -> term -> term
inst_form: (term list) -> (type # type)list -> form -> form

May prime variables, avoiding those given in the (term list) argunents.

Axioms and Basic Lemmas

axioms of Scott theory (Igarashi [1972]) are bound to ML identifiers.

Standard Tautology

TRUTH TRUTH(Q)

Partial ordering

LESS_REFL . Ix. x<<x
LESS_ANTI_SWM Ix y. x<Ky /N yKx ==> x==y

LESS_TRANS Ix y z. x<Ky /\ yKz ==> x(<£z

Monotonicity of function application

MONO '1f g x y. f<g /\ xKy ==> fx<K gy

Extensionality of K

LESS_EXT If g. (Ix. f x << g x) ==> f<g

Minimality of UU

MINIMAL Tx., WKx

8 . The Logic PPLAMBDA

Conditiconal expressions

COND_CLAUSES
fx y. W => x| y==U0U A
TT => x| y==x /\
FF => x| y ==y
Truth values
TR_CASES !pitr. p==U0 V p==TT \/ p==FF

~TR_LESS _DISTINCT '
T ITKFF /N 7 FFKKTT /\ ~ TTKUU A ~FF<<UU

Ordered pairs

MK _PAIR 'x. (FST x, SND x) == x
: FST_PAIR 'x y. FST (x,y) == x

SND_PAIR I'x y. SND (x,y) ==y

Fixed peints

FIX EQ 'f. FIXf == f (FIX £)

There is one axiom scheme: beta-conversion. If x is a variable, and u, v

are terms, and ulv/x] denctes the substitution of v for x in u, then

BETA_CONV "(\x.u) v returns I-(\x.Wv == ulwx]

LCF includes some basic lemmas that follow from the axioms.

Equality
EQ__REFL 'x. X==x
EQ SW™ ' y. x==y ==> y==x

EQ TRANS 'x y z. x==y /\ y==z ==> x==z

The Logic PPLAMBDA

Extensionality of ==

EQEXT 1fg. (Ix. £ x ==

Distinctness _g_f_‘ the truth values

TR EQ DISTINCT
- ~TT == FF /\ ~
“TT = UU AN\ ~
T FF ==UU AN\ ~

The completely undefined functicn

MIN_COMB 'x. Wx == UU

MIN_ABS \x.W == UU

Validity of Eta-Conversion

ETA_EQ FE. \x.f x == f

5. Predicates

FF
uu
Uu

TT
TT
FF

/\
/\

In Cambridge LCF, you can introduce predicate symbols. A predicate can be

axiomatised abstractly, or as an abbreviation for a long formula. Examples:

STRICT £ <=> f W == UU

TRAKSITIVE p

{=>
'X yzZ.pxys=

=TT /\ pyz==1TT

px z==TT

PPLAMBDA's type system allows these axioms to refer to the types of the

operands cof the predicates. There are many examples of predicates that

require describe properties of types, not of valuwes. You may adopt the

10 ’ The Logic PPLAMBDA

convention of writing UU as the operand when only its type is relevant.

FLAT (UU:*) <=>
Ix1:%, 1x2:%, x1<Kx2 ==> UU==x1 \/ x1==x2

ISOMORFHIC (UU:*, W *¥) <

=>
?2fg. (1x:*, g(f x) ==

x) /\ (ly:*%_ f(gy) == y)

All predicates have exactly one argunent, which may be a tuple of values or
the empty value () (read "empty"). In particular, we must write "TRUTH()"

and "FALSITY(".

fon

Predicate Calculus Rules

These are conventional natural deduction rules (Dummet [19771). In the
notation below, assumptions of a premis$ are only mentioned if they will be
discharged in that inference. The assumptions of the conclusion include all
cther assumpticns of the premisses. Explicit assumptions are wrltten

inside [square brackets].

6.1. Rules for quantifiers

Forall intreduction

GEN: term -> thm -> thm

————————— where the variable "a" is not free in assumptions of premiss

The logic PPLAMBDA 11

Ferall elimination

SPEC: term -> thm -> thm

Exists introduction

EXISTS: (form # term) -> thm -> thm
t

ACE)

?2x.A(x)

You must tell the rule what its conclusion should lock like, since it 1is
rarely desirable to replace every t by x. For example, you can conclude

two different results from the theorem |-"TT==TT":

EXISTS ("x. x==TT", "TI") ({="TT==TT") ——-> |-"2x. x==TT"
or
EXISTS (™x. x==x", "TI") ({-"TT==TT") ——=> }-"2x. x==x"

Exists elimination

CHOOSE: (term # thm) -> thm -> thm
a

?2x.A(x) { ACa) 1B

B

where the variable "a" is not free anywhere except in B's assumption A(a)

Rules for basic connectives

Conjunction introduction

CONJ: thm -> thm -> thm

A B

A/\B

Conjunction eliminatien

CONJUNCT1, CONJUNCT2: thm -> thm

A/\N B

Disjunction intreducticen

DISJ1: thm -> form -> thm
DIS J2: form -> thm -> thm

A B

AN/ B AN/ B

Disjunction elimination

DISJ CASES: thm -> thm -> thm -> thm

AN/ B [a3lc [B1lC

C

Tne Logic PPLAMBDA

The Logic PPLAMBDA _ ’ 13

Implication introducticn

DISCH: form -> thm -> thm
A

fAl B

A =>B

Implication eliminétion

MP: thm -> thm -> thm

A ==>8B A

B

6._3_. Rules for derived connectives

The formula A <=> B is logically equivalent to (A ==> B) /\ (B ==> A), but
LCF does not expand it as such, to avoid duplicating A and B. The rules

CONJ_IFF and IFF_CONJ map between the two formulas.

The formula ~A denotes A ==> FALSITY(). The rules for negation are special
cases of the rules for implication, and are not provided separately. Any

inference rule that works on implications also works on negations.

If-and-only-if introduction

CONJ_IFF: thm -> thm

(A ==> B) /\ (B ==> 4)

A <=> B

14 - The logic PPLAMBDA

If-and-only-if elimination

IFF_CONJ: thm ~> thm

A &> B

(A =>B)Y /\ (B =>4)

Negation intreduction

DISCH: form -> thm -> thm
A

[A] FALSITYO

~A

Negaticn elimination

MP: thm -> thm -> thm

“A A

FAILSITY()

7. Additional rules

Assumption

ASSME: form -> thm
A

[A] A

The Logic PPLAMBDA

Contradicticon rule

CONTR: form -> thm -> thm
A

FALSITY()

A

Classical contradiction rule

CCONTR: form -> thm -> thm
A

[~A] FAISITY()

A

15

Intuitionists (Dummet [1977])‘ can get rid of this rule by typing

"iet CCONTR=(Q;;". However , PPLAMBDA does not seem suitable for construc-

tive proof. The cases axiom TR_CASES allows dubious instances of the

excluded middle. The theory of admissibility for disjunctions and short

types, discussed below, seems to rely on classical reasoning.

Simultaneous Substitution

SUBST: (thm # term)list => form -> thm -> thm
xi A(x1)

ti == u A(ti)

ACul)

The formula A(xi) serves as a template

variables xi mark the places where substitution should cccur.

control the subti tut‘ion ;

the

16 The Logic PPLAMBDA

Instantiation of Types

INST_TYPE (type # type)list -> thm -> thm
tyi vtyi

where the type variables vtyi do not occur in the assumptions

A(vtyi)

A(tyi)

Instantiaticn of Terms

INST (term # term)list -> thm -> thm
ti xi

wnere the variables xi do not occur in the assumptions

A(xi)

A(tl)

8. Fixed peint induction

Fixed-point induction on a variable x and formula A(x) is only sound if the
formula A 1is "chain-complete" with respect to x. For any ascending chain
of valwes z1, 22, ..., if A(zi) is true for every zi, then A(z) must hold
for the least upper bound, z. In Scott's original logic, the only formulas
. are conjunctions of inequivalences, which are all chain-complete. Things>
are more complicated in PPLAMBDA, with its implications, disjunctions,

quantifiers, and user-definable predicates.

8.1. Admissibility for short types

Igarashi [1972] considered admissibility in a logic containing all these

connectives, but his admissibility test can be considerably liberalised.

The Logic PPLAMBDA ' ‘ 17

An important special case is that all structural inductions over flat types

are admissible.

Definition: A short type is one with no infinite ascending chains.

Suppose wWe wish to prove !x:ty.A(x) by structural induction, where the type
"ty" is short. This requires computation induction on a variable f and

formula !z:ty.A(f z). This formula is chain-complete in f:

Suppose that f is the limit (least upper bound) of an ascending chain

fo, f1,
(1) Suppose that !z.A(fi z) holds for all i.

Then the limit case !z.A(f z) holds also, for consider any z'. .Since

the type of '"fi z'" is short, the chain (f0 z'), (f1z'), ... reaches

its limit at some finite i.3 For this i, "fi z'" equals "f z'",

Our assumption (1) implies that A(fi z') holds, so A(f z') holds too.
Since we chose z' arbitrarily, we conclude !z.A(f z). Thus the induc-

tion is admissible.

From this argument it appears that the admissibility test may be 1liberal-
ised to allow any occurrence of the induction variable within some term of

short type, with restrictions on what variables the term may contain. If

2 Gordon et al. [1979] call these "easy" types.

3 The intuitionistic validity of this inference is questicnable, as is
the justification of the admissibility rule for disjunctions. Both rely on
the "pigeon-hole principle": if you partition an infinite set in two, one
of the twe sets must be infinite.

18 ' The Llogic PPLAMBDA

the term contains existentially quantified variables, the formula may not

be chain-complete.

Example:

?z.f z==UU, where f maps every natural number to "TI". Suppose that
for all i, fi maps all numbers less than i to TT, the rest to W.
Then f is the limit of the fi, the formula holds for each fi, and the

formula does not hold in the limit.

VLCF allows induction whenever the above term contains only constants, free
variables, and outermost wuniversally quantified variables. The test
ignores quantifiers over finite types, as these are essentially finite dis-
Junctions or conjuwmctions. The test alsc notices the special cases where
free occurences of t<{<u or t==u are chain-complete, as discussed on page 77
of Gordon et al. [1979]. It treats t==UU as the equivalent formula t<<UU,

which is chain-complete in t in both positive and negative positions.

8.2. Stating type properties in PPLAMBDA

LCF recognises certain theorems that state that a type is finite or short.

Any theorem

1= Ixity. x==c1 V ... \/ x==z=cn

where the ci are constants, states that the type "ty" is finite. Any

theorem

1= Ix1 ... xnity. x1&Kx2 A ... /N x(n=-1)Kxn ==>

UU==x1 V x1=x2 V ... \/ x(n=1)z=xn

The Logic PPLAMBDA ' 19

states that the type "ty" is shert. When n=2 this is the familiar flatness

property:

1x] x2. x1<x2 ==> UU==x1 \V/ x1=x2
To inform LCF of such properties when checking admissibility, the induction

rule accepts a 1list of theorems, B1, ..., Bn. Each Bi should state the

finiteness or shortness of a type.

Scott Fixed-Point Induction

INDUCT: (term list) -> (thm list) -> (thm # thm) -> thm
funi Bi

B1 ... Bn A(UU) If1 ... fo. A(fi) ==> A(funi fi)

A(FIX funi)

fo

Derived Inference Rules

For your convenience, LCF provides inference rules that can be derived from

the primitive rules of PPLAMBDA. A few of these are wired in for effi-

ciency, but most derive their conclusions by proper4 inferences.

221. Predicate Calculus Rules

4 Intuitionists will be glad to hear that none use the classical con-
tradiction rule, CCONTR.

20

The Logic PPLAMBDA

Substitution (at specified cccurrence numbers)

SUBS: (thm 1list) -> thm -> thm
SUBS 0CCS: ((int list) # thm) list -> thm -> thm

tEl == W ACtl)

ACu)

Generalising a theorem cver its free variables
GEN_ALL: thm -> thm

A(xi)

'x1...xn.A(xi)

Discharging all hypotheses

DISCH_ALL: thm -> thm

[A1; ...; An] B

A1 ==> ... ==> An ==> B

Iterated SPEC

SPECL: (term list) -> thm -> thm
ti

tx1 ... xn. A(xi)
: SPECL [t1; ...; tn]

A(ti)

Un-discharging an assumption

UNDISCH: thm -> thm

A == B

[AlB

The Logic PPLAMBDA 21

Undischarging all assumptions

UNDISCH ALL: thm -> thm

A1 ==> ... ==> An ==> B

[A1; ...; An] B

Specialisation over cuter universal quantifiers

SPEC_ALL: thm -> thm

Ix1 ... xn. Axi]

v where the xi' are not free in hyps of A~
Alxi'/xi]

Using a theorem A to delete a hypothesis of B

PROVE_HYP: thm -> thm -> thm
A B

A [A]lB

Conjoining a list of theorems

LIST CONJ: (thm list) -> thm
Ai

A1 ... An
where n>0

AT AN .0 /\ A

Splitting_g thecrem into its conjuncts

CONJUNCTS: thm -> (thm list)

AT AN .. /\ Mn
where n>0

A1 ... An

22

The logic

Iterated Modus Pconens

9.2.

LIST_MP: (thm list) -> thm -> thm
Al

Al ... An At ==> ... ==> An ==> B

B

Contrapesitive of an implicatiocn

CONTRAROS: thm -> thm

A ==>B

~B == ~A

Converting disjunction to implication

DISJ_IMP: thm -> thm

AN/ B

“ A ==>B

DISJ CASES_UNIQON: thm -> thm -> thm -> thm

AN/ B Al c (B1D

C\D

Rules About Functions and the Partial Ordering

PPLAMBDA

These are mostly the same as in Gordon et al. [1979], sometimes with dif-

ferent spellings. I retain the convention that =< stands for either of the

relations == or <<, the same at each occurence within a rule unless

wise stated.

other-

The logic PPLAMBDA

Reflexivity_g£ eqdality

REFL: term => thm
nen _—D> :__nt::tn

Symmetry of equality

SWM: thm -> thm

Analysis‘gf equality

ANAL: thm -> thm

t == u

t<Ku /\ u<Kt

Synthesis‘gf equality
SWTH: thm -> thm

t<Ku /\ u«t

t == u

Transitivity (infix operator)
TRANS: thm -> thm -> thm

t =< u u =< v

Extensionality

EXT: thm -> thm

Ix. ux =< vx

u =X v

possibly different relations

<< unless both hypotheses use ==

23

24

The leogic PPLAMBDA

Minimality of UU

MIN: term -> thm
t

wgn > ooy K g

'LESS_UU_RULE: thm -> thm

Construction of a combination

LE_MK COMB: (thm # thm) -> thm

f =<g
t =< u

ft=Xgu << unless both hypotheses use ==

Application of a term to a theorem

— - ——— — —

AP TERM: term -> thm -> thm
t

tu=Xt¢tyv

AP THM: thm -> term -> thm
t

u=<yv

ut =<Xvt

The logic PPLAMBDA ' 25

Constructien _o_f_‘ﬂ abstractioen
MK__ABS: thm -> thm

Ix. u =<v

\x.u =< \x.v

HALF_MK ABS: thm -> thm

Ix. ux =<t

u =< \x.t

Alpha-conversion (renaming of bound variable)

ALPHA__CONV: term -> term -> thm
X (\y.t)

\y.t == \x. tix/y]

‘

10. Differences from Edinburgh LCF

The obvious differences are that PPLAMBDA in Cambridge LCF provides the
existential quantifier, the disjunction, negation, and if-and-only-if sym-
bols, and predicate symbols. It includes the standard cont;'adiction FAL-
SITY(), instead of expressing contradiction through formulas such as

"IT ==FF" or "FF<UU",

However, the new PPLAMBDA is not just an extension of the old. Its syntax
has changed to use /\ instead of &, and ==> instead of IMP. The ML names
and types of many of the inference rules have changed. There are other,

more subtle differences.

26 The Legic PPLAMBDA

10.1. Formula Identificaticn

Edinburgh LCF forced every formula intc a cancnical forn. For instance,
you could net build the formulas "!x.TRUTH()" and "A==>TRUTH()". The con-
structor functions mk__forall and mk_imp aﬁtomatically simplified these to
TRUTH () .5 This "formula identification” caused unpredictable behavior in

programs that manipulated formulas.

Cambridge LCF does not have formula identification. Instead, you can
implement your own canonical forms in ML. The constructor and destructor

functions are inverses of each other. For instance,

dest_conj (mk_conj (4, B)) -—-> (A, B)

10._2_. The Definedness Function DEF

Edinburgh LCF provided a function DEF, satisfying

DEF W == UU
DEF x == TT for any x except W
The formula "DEF x == TT" asserts that x is defined. However, it is easier

to write "7 x==zUU", DEF is no longer provided, though you can easily

axiomatise it yourself.

5 Here I am using the notaticn of Cambridge LCF, though describing Edin-
burgh LCF.

Tne logic PPLAMBDA 27

10._31. Data Structures

In Edinburgh LCF, data structures were axlomatised using sum, proeduct, and
lifted types. This was originally dene manually, and later by Milner's

structural induction package (Cohn and Milner [1982]).

In Cambridge LCF, data structures can be axiomatised using disjunction and
existential quantifiers. A descendant of Milner's pac"kage introduces the
axioms autematically. The sum and lifted types have been removed, along
with the éperators UP, LOWN, INL, INR, ISL, OUTL, OUTR (for sum types) and
UP, DOWN (for lifted types). The structural induction package makes it

easy to define such type operators.

28 The Logic PPLAMBDA

References

A. Cohn, R. Milner, "(n using Edinbwugh LCF to prove the correctness of a
parsing algerithm." Technical Report CSR-113-82, University of

Edinburgh, 1982.

A. Cohn. "The correctness of = a predecence parsing algorithm in LCF."

Technical Report No. 21, lniversity of Cambridge, 1982.

A. Cohn. "The Equivalence of Two Semantic Definitions: A <Case Study in

LCF." SIAM Journal of Computing, May 1983.

M Dummet. Elements of Intuitionism. Ox ford University Press, 1977.

M. Gordon, R. Milner, C. Wadsworth. Edinburgh LCF. Springer-Verlag, 1979.

4

S. Igarashi. "Admissibility of Fixed-Point Induction in First Order Llogic

of Typed Theories," Memo AIM-168, Stanford University, 1972.

L. Paulson. "Recent Develomments in LCF: Examples of Structural Induc-
tion." Technical Report No. 34, Computer Laboratory, University

of Cambridge, 1983.

J. Stoy. Denotaticnal Semantics: the Scott-Strachey Approach to Program-

ming Language Theory, MIT Press, 1977.

