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Abstract

Moggi’s computational lambda calculus is a metalanguage for denotational seman-
tics which arose from the observation that many different notions of computation
have the categorical structure of a strong monad on a cartesian closed category. In
this paper we show that the computational lambda calculus also arises naturally as
the term calculus corresponding (by the Curry-Howard correspondence) to a novel
intuitionistic modal propositional logic. We give natural deduction, sequent calculus
and Hilbert-style presentations of this logic and prove a strong normalisation result.

1 Introduction

The computational lambda calculus was introduced by Moggi as a metalanguage for de-
notational semantics which more faithfully models real programming language features
such as non-termination, differing evaluation strategies, non-determinism and side-effects
than does the ordinary simply typedllambda calculus [17, 18]. The starting point for
Moggi’s work is an explicit semantic distinction between computations and values. If A is
an object which interprets the values of a particular type, then T'(A) is the object which
models computations of that type A. For example, to model non-termination we might
take A to be some complete partial order (cpo) and T'(A) to be the lifted cpo A, .

For a wide variety of notions of computation, the unary operation T'(-) turns out
to have the categorical structure of a strong monad on an underlying cartesian closed
category of values. This observation, which was also made by Spivey in the special case of
computations which can raise exceptions [22], suggests a more unified and abstract view
of programming languages. Having unearthed this common structure, we hope firstly to
be able to design general purpose metalanguages and logics for reasoning about a range
of programming language features and secondly to be able to modularise the semantics of
complicated languages by studying the ways in which different monads can be combined.
Work along these lines has been done by Crole [5] and Pitts [19]. The computational
lambda calculus is the syntactic theory which expresses this semantic idea of notions of
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computation as monads — it corresponds to cartesian closed categories with strong monads
in just the same way that the simply typed lambda calculus with products corresponds to
cartesian closed categories.

Whilst Moggi’s work was initially aimed at structuring the semantics of programming
languages, it has also (by a rather pleasing interplay of theory and practice) had a con-
siderable impact on the pragmatics of writing functional programs. Wadler and others
have shown that monads provide an elegant way to structure functional programs which
perform naturally imperative operations, such as dealing with updatable state or engaging
in interactive input/output [24, 25, 12].

This paper looks at (an extension of) Moggi’s computational lambda calculus from
a logical perspective. Using the Curry-Howard correspondence ‘the other way round’
we derive a logic which we term CL-logic. This consists of (propositional) intuitionistic
logic plus an S4-style modal possibility operator < corresponding to the computation
type constructor. On a purely intuitive level, and particularly if one thinks about non-
termination, there is certainly something appealing about the idea that a computation of
type A represents the possibility of a value of type A.

CL-logic is interesting in its own right, and appears to have been discovered indepen-
dently at least three times. Soon after completing an early draft of this work, we found
that Curry had briefly considered just such a system in the late 50s [6]. More recently, and
quite independently of Moggi’s work, Fairtlough and Mendler have come up with sequent
calculus and Hilbert-style presentations of CL-logic in the context of hardware verification

[9]-

2 Computational Lambda Calculus

The computational lambda calculus, which Moggi refers to as AMLr, is a typed lambda
calculus whose types are closed under terminal object, binary products, function spaces
and the computation type constructor T'. For the purposes of this paper, we will consider
immediately a slight extension which also includes coproduct types. The natural deduction
typing rules for this version of AMLy are shown in Figure 1.

Intuitively, if e is a value then val(e) is the trivial computation that immediately
evaluates to e. The let construct allows a computation to be evaluated to a value within
the context of another computation: (letz < ein f) denotes the computation which first
evaluates e to some value ¢ : A and then proceeds to evaluate fc/z].

The equational theory of AMLy comprises the usual 87 equalities of the simply typed
lambda calculus with coproducts, together with the following three extra axioms:

let z <= (val(e))inf = fle/z] (1)
letz < ein(val(z)) = e (2)
letz' < (letz < einf)ing = letz<ein(letz’ < fing) (3)

Here are some examples of different notions of computation, all of which fit this general

scheme:

Non-Determinism. Take T'(A4) 4 p(4) with

val(e) of {e}
(letz<einf) < |Jr

zEe




Dz:AFxz: A 'kl

I''z:Are: B I'e: A— B 'Ff: A
I'FMe:A— B I'tef:B
I'ke: A 'f:B 'Fe:AxB TI'kFe:AxB
k(e f):Ax B I'+fst(e): A T Fsnd(e): B
F'ke:A I'-e:B
Ttinl(e): A+ B Ttinr(e): A+ B

TFe: A+ B Mz:AFf:C Py:Bkg:C
I't caseeof inl(z) = f|inr(y)—g: C

I'ke:TA I'e: A+ f:TB
ChHletz<=einf:TB

'e:A
I'Fval(e) : TA

Figure 1: Natural Deduction Presentation of the Computational Lambda Calculus

Exceptions. Take T'(A) ©'1 + A with

val(e) def inr(e)

(letz < ein f) e caseeof inl( %) —inl(*)]inr(z)—f.

def

Continuations. Take T(4) = (A — R) — R with

valle) ¥ Ak:A— Rke

(letz<=einf) ¥ M:B = Re(As:Afk).

In each case, not only do the constructs have the right types, but the three equations

above are also easily seen to hold.

A simple fact about AMLp, which we shall use later, is that substitution is well-typed:

Lemma 1 (Substitution) IfT'te: A and Az : AF f: B then I',AF fle/z] : B.

3 Propositional CL-Logic

In this section we use the Curry-Howard correspondence to derive a logic from Moggi’s
original presentation of AMLyp. We shall also consider sequent calculus and axiomatic

formulations of the same logic.




3.1 Natural deduction formulation of CL-logic

Using the Curry-Howard correspondence [15], we can simply take Moggi’s original presen-
tation (given in Figure 1) and erase the terms to produce a logic. Each type constructor
corresponds to a logical connective as follows:

Constructor | Connective
1 T
X A
- D)
+ V
T o

Hence we derive the logic, called propositional CL-logic, given in ‘tree-form’ in Figure 2
and in sequent form in Figure 3.

A o
: ADB A
B B
) £
ADB 52)s B
AB( ) A/{B( )A/\'B(A)
— (A A
ANB T A Y T e
: A B
A B : . :
AvB C o
e (V V
v YD s G (Vé)ay
[A%]
A : :
- CA OB
CA (©2) OB Oe)a
Figure 2: Tree-Style Natural Deduction Formulation of CL-logic

3.2 Sequent calculus for CL-logic

We can use the well-known correspondence between natural deduction and sequent calculus
proof systems, to systematically derive a sequent calculus formulation of CL-logic. This
is given in Figure 4.

Somewhat surprisingly, after completing this research, we discovered that this kind
of possibility modality had been considered thirty-five years ago by Curry [6]. However,
Curry was dismissive of this formulation:




Identity — (T1)

T AF A TET
RAFB( | T'FAODB PFA(
e () D
TFrA>B  © TFB 2
I'tA TF+B THAAB I'HAAB
Ng) ——— (Ne) — (Ae
TFAAB TFA I'FB
THA ) T'+B )
et e V
TFAVB  © THAvVE
T'-AVB T,AFC T,BFC
(Ve)
T'FC
oA T,AFOB
(Ce)
I'F OB
FFA(O)
TEoAd

Figure 3: Natural Deduction Formulation of CL-logic

“The referee has pointed out that for certain kinds of modality it [the intro-
duction rule for <] is not acceptable even then, because it allows the proof
of

OA, OB+ O(AAB)

He has proposed a theory of possibility more strictly dual to that of necessity.
Although this theory looks promising it will not be developed here”.

It is easy to see that
OCA, OB O(ANB)

(which is more typical of necessity modalities) is provable in our logic:
ABFA A B+ B
A,B+-AAB
A, B+ O(AAB)
A, OBF O(ANB)
CA, OB O(AANB)

AR)
(Or)
(©r)
(©r)

If OA is to be interpreted as “A is possible” and if we have negation in our logic, we will
have the following “paradox”: OA A O—A F O(A A —A) (the antecedent might be true
while the consequent appears always to be false!). Clearly this theorem is undesirable in a
logic trying to capture the general notion of possibility, but whilst our choice of notation

is therefore questionable, the logic is certainly consistent.
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—— Identit e (T
T AFA v TET R
r'FB  B,T+HC
Cut
'=cC
TARC I''BFC THA r'+-pmB
—_—— (Az) ——— (¢ AR)
I AABEC LAABEC '-FAAB
IAFC ancv) THA I'+B
L e (V —rree— (V
T AVBFC rravs ™ trave Y
I'FA I‘,BI—C( ) INAFB
D —_— (D
TLASBFC = © rrass oY
AR OB o THA
S E———— O
T OAFoB © Troa %
Figure 4: Sequent Calculus for CL-logic

3.3 Hilbert system for CL-logic

To complete our logical analysis of CL-logic, in this subsection we shall give a Hilbert-style
presentation. It is the norm to present modal logics using such a system (for example, see
Goré’s thesis [13]) and certainly the unusual set of axioms which we shall propose can be
seen as further evidence for its peculiarity as a modal logic.

Clearly the non-modal rules are characterized by any set of axioms for ordinary intu-
itionistic logic. We shall take those proposed by Van Dalen [7]. For the two modal rules,
we shall follow the technique given by Hodges [14] for deriving axioms. Essentially, for
those logical rules which have no side conditions or restrictions, the so-called pure logical
rules, the axioms can be “read off” from the natural deduction formulation. Recalling the
two modal rules from Figure 3:

'+A '+0A IAFOB

o o
o4 07 T OB (Ce

we see that both these rules are pure.! The introduction rule suggests an axiom of the

form A D OA whereas the elimination rule suggests an axiom ¢4 D ((4 D OB) D OB).
We give the Hilbert system in Figure 5.
We see at once that our system enjoys a deduction theorem:

Proposition 2 (Deduction Theorem) IfI', Aty B thenT g A D B. 0

It should be noted that Fairtlough and Mendler [9] have also (independently) proposed a
Hilbert-style presentation of CL-logic (which they dub PLL, for Propositional Laz Logic),

IThis should be compared to, for example, Intuitionistic S4 [4].
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Axioms AD A
ADBDA
(ADB)D((AD(BDC)D(ADC())

AD(BDAAB)
ANBDA
AANBDB

ADAVBEB
BD>AVB
(ADCYN(BDC)D(AVBDCO)

ADCA
OAD ((AD©B) D OB)

————— Identit
Rules T AF A y

Aziom (A one of the axioms above)
'-4

'-A>B A
r'-B

Modus Ponens

Figure 5: Hilbert System for CL-logic

although they give three axioms for the modality, which they write as (O since it has
aspects of both possibility and necessity:

R . ADQOA
M : O0OADQOA
F : (A>B)>(OA>(OB)

This alternative axiomatisation of the logic is equivalent to that which we have given in
Figure 5 in that the axioms of each system are theorems in the other.

4 Proof Normalisation

We now turn to the question of how to normalise natural deduction proofs in CL-logic,
that is, what equalities we want to have on deductions. The normalisation procedure will
be described in terms of the logic as presented in Figure 2; each kind of normalisation step
then induces a reduction rule on the corresponding terms. One of the advantages of our
logical approach is that the three equalities on AML7 terms which we gave earlier arise as
natural proof-theoretic consequences of the process of normalisation (or cut-elimination)
in CL-logic.




4.1 Principal Reductions

The basic kind of normalisation step on natural deduction proofs comes from removing
‘detours’ which arise when a logical connective is introduced and then immediately elim-
inated. We consider only the modality introduction/elimination pair as the others are
standard (see, for example, [10]).

If we have (O7) followed by (Og) then the derivation looks like this:

which normalises to

OB
These principal reductions are known as f-rules, and a derivation which contains no pos-
sible applications of S-rules is said to be in f-normal form.

4.2 Commuting Conversions

Natural deduction systems can also give rise to a secondary form of normalisation step.
These occur when the system contains elimination rules which have a minor premiss (Gi-
rard calls this a ‘parasitic formula’). In general, when we have such a rule, we want to
be able to commute the last rule in the derivation of the minor premiss down past the
rule, or to move the application of a rule to the conclusion of the elimination up past the
elimination rule into to the derivation of the minor premiss. The only important cases are
moving eliminations up or introductions down. Such transformations are called commut-
ing conversions. The restriction on the form of the conclusion of our (Og) rule (it must
be modal) means that the rule gives rise to only one commuting conversion:

o A deduction of the form

' [A]
: : (B]
CA OB :
o9 oC
o0 (©e)
commutes to
[A] [B]
: OB oC
oA C o (Ce)
oC




Clearly we need also commuting conversions for the disjunctions, but these are standard
and described in several places (e.g [11]). The only new case is the commutation of
disjunction against the modality:

e The deduction

[{1] [f?]
: : : ]
AVB  oC  oC ;
(Ve) :
SO oD o
oD (Ce)
commutes to
[A] ] [B] [C]
: o0 oD o oC oD
avs  op 9 Ty (%)
(Ve)
oD

We say that a derivation to which there are no possible applications of a commuting
conversion is in ¢c-normal form. A derivation to which neither a g-rule nor a commuting
conversion is applicable is said to be in fc-normal form.

4.3 Reduction Rules for Terms

Both the principal reductions and the commuting conversions on derivations induce cor-
responding reduction steps on the terms of AMLy in the usual way (a-conversion is neces-
sary to avoid variable capture in some commuting conversions as well as in f-reductions).
These reduction rules on terms are shown in Figure 6. Note particularly that two of the
three equations for AMLy which we listed on page 2 appear as reduction rules, and that
these were essentially forced just by the shape of the introduction and elimination rules
in the logic. The remaining equation is the n (uniqueness) rule for the computation type
constructor, which we will discuss in Section 5.3.

Proposition 3 (Subject Reduction) IfT'Fe: A and e —vg. € then ke : A

Proof. Induction and Lemma 1. O

4.4 Strong normalisation

In this section we examine the process of normalisation on natural deduction proofs in
CL-logic (or, equivalently, the reduction process on terms of AMLr), and show that it
always terminates. This strong normalisation result is stronger than many others in that
it applies to the full — 4. reduction relation, rather than just to the —4 relation. We will
find it convenient to work with the term calculus AMLr, rather than the logic, simply for
reasons of space.

Strong normalisation proofs usually use variants of Tait’s reducibility method [23];
the extension of Tait’s method to commuting conversions as well as f-reductions is due to

9




(At g ufv/a]

fst(u, v) ~g U

snd{u,v) —g v

caseinl(e) of inl(z) = f|inl(y)=g  —p fle/a]

caseinr(e) of inl(z) = f|inl(y)—g  —4 gle/y]

let - <= val(u) inv g vfu/z]

fst(case eof inl(z) = flinr(y)—=g)  —¢ caseeof inl(z) =fst(f)] inr(y)—fst(g)

snd(case e of inl(z) — f]inr(y)—g) — case e of inl(z) —=snd(f)| inr(y)—snd(g)

(case e of inl(z) — f] inr(y)—g) h —. caseeof inl(z) —=f hlinr(y)—gh
case e of inl(z) — case f of inl{w) — h
case (case e of inl(z) = f| inr(y)—g) R | inr(z) = k
of inl(w) = h | inr(z) = k ¢ | inr(y) — caseg of inl(w) = A
| inr(z) = &

let z <= (case e of inl(z) — f _, casee ofinl{z) —» letz <= finh

| inr(y) = g)inh ¢ | inr(y) > letz<=ginh

letz < (lety < winv)in f —¢ lety <wuin(letz < vin f)

Figure 6: Reduction rules for terms

Prawitz [20]. It is possible to use Prawitz’s technique to give a proof of strong normalisation
for AML (the first draft of this paper contained such a proof), but the proof is long,
complicated and unenlightening. Instead, we will use a translation argument like that
previously used by Benton to show strong normalisation for the linear term calculus [2].

If we wish to show strong normalisation for a language £1, and we already know that
strong normalisation holds for another language Lo, then it suffices to exhibit a translation
(1)°: L1 — Lg such that Ve, f € L1.e =1 f = €° —>§r f°, where —1 and —9 are the one-
step reduction relations in £1 and Ly respectively. This is because any infinite reduction
sequence in £1 would then induce an infinite reduction sequence in Ly, contradicting
strong normalisation for that language. Here we will take £; to be the computational
lambda calculus, with the — g, reduction relation obtained by taking the precongruence
closure of the rules shown in Figure 6, and Ly to be the simply typed lambda calculus
with coproducts and the usual — g, reduction relation. Note that Lo is just the largest
sublanguage of £1 which does not contain the T' type constructor or either of the let and
val constructs.

Proposition 4 L, is strongly normalising.
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Proof. This is the result proved by Prawitz [20].2 O

The translation (+)° is simply to instantiate the generic monad operations of the com-
putational lambda calculus with the specific case of the exceptions monad which we men-
tioned earlier. We start by defining the translation of £; types to La types:

o ¥ g (for G a base type)
1 =1
(AABY ¥ A°AB° (for A€ {x,+,—})
(T4 € 14 4°

Next we define the translation of £ terms to Lo terms:

f
*"d:e* a:°d--qu

(Az: A.e)° © Az Acel (e f)° o go
(fst(e))® & fst(e°) (snd(e))° X snd(e?)
(e, /) = (e f°)
(nl(e))> % inl(e°) (inr(e))° ¥ inr(ed)
(case e of inl(z) — f] inr(y)—g)° L case e® of inl(z) = f°] inr(y)—¢°
(val(e))® % inr(e°)

(letz < einf)° & casee of inl(z) —inl(2)] inr(z)— f°
The following two lemmas are both easy inductions:

Lemma 5 IfI' Fyyp, e A then I'° g, e A°. m|

Lemma 6 The (-)° translation commutes with substitution: for any terms e, f of AMLg
and for any variable z, (e[f/z])° = e°[f°/x]. o

Proposition 7 For any terms e, f of the computational lambda calculus, if e =g, f then
o + ro
e® =4 f°.
Be

Proof. This is proved by induction on the derivation of the fact that e —g. f. The
induction cases are the rules (which we have not explicitly given) which make — g, into a
precongruence and these all follow trivially from the compositional nature of the transla-
tion. Similarly, most of the axioms in Figure 6 are easy to deal with. For example

e In the case of the reduction
e= (M Au)v =g ulv/z]=f

we have
e® = (Az: A°u°)v° —pg uv°/z] = f°

where the last equality follows from Lemma 6.

% Actually, Prawitz considers the commuting conversions associated with existential quantification as
well as with disjunction.

11




The interesting cases are the one —g and two —, reductions involving the computation
type:

e In the case of the reduction
= (let z <= val(u) inv) —4 v[u/z]=f

we have

[o]

e® = (case inr(u®) of inl(2) —inl(2)| inr(z)—v°) —g v°[u’/z] =

e In the case e —, f where

e = letw < (case s of inl(z) =] inr(y)—u) inv
= casesof inl(z) > (letw < tinv)|inr(y)—=(let w < winv)

we have

o

e® = case (case s° of inl(z) —¢°| inr(y)—u®) of inl(z) —inl(2)] inr(w)—v
—, case s° of inl(z) — (case t° of inl(z) —=inl(2)] inr(w)—v°)
| inr(y) — (case u® of inl(z) —inl(2)| inr(w)—v°)

= f°

e In the case e —, f where

e = letz<(lety<tinu)inv
f = lety<tin(letz < uinv)
we have
e® = case (case t® of inl(z) —inl(2)] inr(y)—u®) of inl(z) —inl(2)] inr(z)—0°

—. caset® of inl(z) — (case inl(2) of inl(z) —inl(2)] inr(z)—v°)
| inr(y) — (case u® of inl(z) —inl(z)] inr(z)—v°)

—p caset® of inl(z) — inl(2)
| inr(y) — (case u® of inl(z) —inl(2)| inr(z)—v°)

= f°

as required.

Corollary 8 (Strong Normalisation) The calculus \MLr with the — g reduction re-
lation is strongly normalising.

Proof. By Propositions 7 and 4. O
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5 Cut Elimination

Corresponding to the normalisation process for natural deductions, there is also a sim-
plification process for sequent calculus proofs, which consists of removing applications of
the cut-rule. In this section we look at the process of cut-elimination for CL-logic and
" see that it is closely related to the normalisation process. So as to be able to look at
the term reductions induced by cut-elimination, we shall work with the sequent calculus
presentation of AMLq, which we have not so far given explicitly.

We shall use the notation that the application of the Cut rule in the following proof is
called a (Dy, Dq)-cut.

D D,
The: A Ac:A-f:B

T,AF fle/z]): B

Cut

As in our previous work in intuitionistic linear logic [1], we have principal cuts and sec-
ondary cuts as well as insignificant cuts.

5.1 Principal Cuts

Principal cuts are the ones where we introduce on the right and on the left of a cut the
formula that is being cut. The ‘new’ case is

Fke: A ANz AFf:TB

— 1R I
T'tval(e) : TA A,z:TAI-let:v<:zinf:TBCt
u

I AF letz < val(e)in f: TB

This derivation reduces to
Pke: A Az A-f:TB
I AF fle/z]): TB

Cut

giving us the reduction rule
let z <= val(e) in f — fle/=]

which is, of course, the same reduction as we obtained from the normalisation process and
corresponds to the S-equality axiom given by Moggi.

We also have principal cuts with respect to conjunction, disjunction and implication,
but these are standard.

5.2 Secondary Cuts
One case of a secondary cut is the following

I'Ng:Ake:TB Ayy:BEf:TC

T , Ir

Fw:TAkFletz <wine: TB A,z:TBI—Iety<:z|nf:TOOt
U

Tyw:TAAbFlety < (letz <wine)in f: TC

13




this derivation reduces to
Ay:BFf:TC
I'z:AFe:TB Az:TBlElety<=zinf:TC
Dz: A AFlety<einf:TC
Cobw:TA Al letz < win(lety < ein f) : TC

Tr
Cut

This reduction gives us the equality
lety < (letz < wine)inf=letz < win(lety < ein f)

which corresponds to Moggi’s third axiom and which we also derived from the normalisa-
tion process on natural deductions.
A secondary cut, like

'ke:A Az TAFf:B
—1'p Tr
I'Fval(e): TA A,a::TAI—vaI(f):TBC .
U
I, A b val(f)[ val(e)/z] : TB
reducing to
T'ke: A
R — %Y
I'kval(e): TA Az:TAF f: B
Cut

T, At f[val(e)/z] : B
I, A b val(f] val(e)/z]) : TB

does not introduce new axioms. This is an example of what we call an insignificant cut.

R

Theorem 9 (Cut Elimination) Given a derivation m of a sequent :T' - e: A, a deriva-
tion 7' of Z:T' & ¢': A can be found which contains no instances of the Cut rule.

Proof. This was first proved by Curry [6] and is along standard lines. O

5.3 n-equalities

Each of the type constructors of AMLr also has an associated n-equality as well as 8 and
commutation equalities. We have already seen that the latter two classes of equalities
follow as direct consequences of the proof theory of CL-logic and we now try to explain
the n-equalities in the same spirit. This seems to work out most naturally if we use a
multiplicative (disjoint contexts), rather than an additive (shared contexts) formulation
of the sequent rules of the logic. Given such a presentation, the traditional n-equality
associated with the function-space constructor arises from reducing the derivation

z:AFz: A y:Bry:B

——)g)
z:A,f: A= Bt fz: B
—R)
f:A—>BFAz.fz: A— B
to the derivation
Identity

f:A->BFf:A— B
14




We can similarly obtain the n-rules for A and V as consequences of (roughly) simplifying
a right rule applied to the identity, followed by a left rule to an identity on the compound
proposition. Following this general pattern, the n-rule for 7' can be obtained by reducing
the derivation
z:AFz: A
z:AFval(z): TA

z:TAFletz < zinval(z) : TA

TR

T

to the derivation

Identity
z2:TAFz:TA

and this does indeed yield exactly the second of the three equalities on AMLr terms which
we listed on page 2. Thus we can now see the full theory of Bcn-equality for AMLy as a
natural consequence of the proof theory of CL-logic.

6 Categorical Models

Since the computational lambda calculus was originally derived from categorical consider-
ations [17], we already know that a categorical model is a cartesian closed category (CCQC)
with a strong monad. For completeness we shall give these categorical definitions.

Definition 1 A monad over a category C is a triple (T,n, 1), where T:C — C is a functor,
and n:Id = T and w:T? = T are natural transformations which satisfy the following
diagrams:

T
34 HTA L 124 TA AL 2y
Tua A nrA } HA
id
T? A TA T2 A TA
A v

Definition 2 A strong monad over a category C with finite products is a monad (T',n, j1),
together with a natural transformation 74 p: A X TB — T(A x B), such that the following
4 diagrams commute, where A and « are the evident natural isomorphisms:

IxTA - TeT(x4)  AxB N gxrTB
SRAe N T
T4 T(4 x B)
(Ax B)x TC —% A x (B xTC) 2T, 4 xT(B x 0)
r 7

T((Ax B)xC) » T(A % (B x(C))




AxT?B e 74 x TB) 2 7204 % B)

id X [ I

AXTB » T(A x B)
T

Definition 3 A CL-model is a cartesian closed category with binary coproducts and a
strong monad.

Figure 7 outlines the way in which AML is modelled in a CL-model. As one would expect,
any CL-model validates all the 7 equalities as well as those arising from f-reductions and
commuting conversions.> The prototypical computer science example of a CL-model is the
category of w-cpos (not necessarily with a bottom) with continuous maps and the lifting
monad.

Note how the tensorial strength is needed in the interpretation of the T-elimination
rule. This is an instance of a general phenomenon which arises in modelling many different
logics (see, for example, [1, 3, 4]) — the interpretations of logical connectives have to behave
well with respect to the (tensor) product which is used to represent the multicategorical
structure implied by the comma on the left of sequents. This means firstly that there
has to be some extra categorical structure relating the interpretation of the connective to
the (tensor) product, and secondly that this extra structure has to satisfy some coherence
conditions like those above, so that the interpretation in the category of each proof is really
uniquely determined. It is also worth remarking that the existence of a strong monad is
equivalent to the existence of a monoidal monad (8] which would be an alternative way of
presenting the models.

7 Conclusions and Future Work

We have shown that Moggi’s computational lambda calculus, which was initially arrived
at from a purely categorical perspective, with no thoughts of proof theory, actually cor-
responds via the propositions-as-types analogy to an intuitionistic modal logic. Whilst
CL-logic is rather odd from the point of view of traditional work in modal logic (in par-
ticular, the modality has aspects of both possibility and necessity), it seems natural and
well-behaved. Further evidence that CL-logic is indeed a ‘naturally occurring’ logic comes
from the fact that both Curry [6] and Fairtlough and Mendler have also discovered it [9].
Fairtlough and Mendler’s work is particularly interesting because, although they discuss
the same logic, their motivation and methodology is rather different from ours. They are
interested in the specification and verification of hardware and noted that a general weak-
ened notion of correctness ‘correctness up to constraints’ can help one to reason about
the real-life behaviour of circuits (e.g. the fact that gates only stabilise some time af-
ter their inputs are changed) without having completely to model such low-level details.
Their logic PLL seems useful in proving properties of circuits under a number of different
notions of constraint, which is very reminiscent of the way in which the computational

31t is, of course, also possible to relax some of the categorical definitions so as to obtain a class of
models which only model Bc-equalities. For example, if we do not insist on the 7-equality associated with
the modality then instead of a strong monad, we would only require a right pre-monad [16].
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Figure 7: Modelling the computational lambda calculus

lambda calculus is an useful metalanguage for describing a number of different notions
of computation. Fairtlough and Mendler’s work is essentially concerned with provability,
rather than proofs, and they give a novel (and complete) semantics for the logic using
a non-standard class of Kripke models. We hope to investigate further just how these
Kripke models are related to the general categorical models we have considered.

Our logical reconstruction of AMLy shows how the equational axioms which were
initially imposed on the calculus are actually consequences of the proof theory of the logic.
We have also extended the class of interesting constructive logics for which there is a perfect
three-way correspondence between logic, term calculus and categorical models. This is part
of an ongoing project of ours, see [1, 4, 3]. In fact, there is a close relationship between
CL-logic and intuitionstic linear logic. Any linear category (model for intuitionistic linear
logic, see [1]), gives rise to a CL-model as a subcategory of the category of algebras for
the ! comonad. Whilst this is interesting, not all CL-models arise in this way because the
monad part of the model is always a commutative strong monad (equivalently, a symmetric
monoidal monad). More discussion of the relationship between intuitionistic linear logic
and CL-logic may be found in [3], but there is still scope for further work looking at
whether, for example, CL-logic is more closely associated with a non-commutative variant
of intuitionistic linear logic.

The strong normalisation proof we have given is extremely straightforward, particu-
larly by comparison with the proof from first principles which it replaces. A similar, but
more subtle, translation argument (into System F) has also been used to prove strong
normalisation for the linear term calculus [2]. There are almost certainly a number of
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other calculi where this technique can profitably be applied.

There are a several natural extensions to ClL-logic yet to be explored. We should like
to consider the addition of first-order quantifiers to CL-logic. From a proof theoretical
viewpoint, these present little difficulty, but from a categorical viewpoint, they would seem
to suggest a move to a hyperdoctrine model (see, for example, [21]). We should also like to
investigate a linear computational lambda calculus, where we have computational types
over the linear lambda calculus [1].
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