Technical Report e

Number 37

Computer Laboratory

Representation and authentication
on computer networks

Christopher Gray Girling

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© Christopher Gray Girling

This technical report is based on a dissertation submitted
April 1983 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

CONTENTS

Contents
Preface
Summary

1 Introduction
1.1 Development

1.2 Thesis Structure

2 Base Network Structure
2.1 Services
2.2 Communication
2.3 Objects
2.4 Network System
2.5 System Aims
2.6 Conclusion

3 Environment Implementation
3.1 Hardware -

3.2 Protocols

3.3 Addressing

3.4 Machines

3.5 Existing Services

3.6 The Cambridge Distributed Computing System

4 Design of an Object Representation System
4,1 Representation Of Objects
4,2 A Naming System
4,3 Unique Unforgeable Tokens
4,4 A Relation
4,5 Control of the Relation
M;SA Tuple creation
4,5,2 Tuple deletion
4,6 Relation Representation

Contents i

vi

vii

w

- O W W & o @

13
13
L
15
16
16
18

19
19
22
23
24
25
25
26
30

Contents

5 Thesis Context 32
5.1 Introduction 32
5.2 Models of Security 34
5.3 Authentication 37
5.4 Protected Object References 4o

6 Implementation of an Object Representation System 43
6.1 A Naming System 43
6.2 Unique unforgeable Tokens U5
6.3 Active Object Table Service y7

6.3.1 Entries b
6.3.2 Interface design 50
6.3.3 Implementation details 51
6.4 Conclusion 53

7 The Source Of All Power 54
7.1 Authority in Representations 54
7.2 Authority in Reality 55
7.3 Autonomy versus Heteronomy 57
7.4 The SOAP Service 58

8 Example Servers 60
8.1 An Accounting Server 60
8.2 An Environment Server 61
8.3 A Person Server 63
8.4 A Fridge Server 65

9 Privilege Management 67
9.1 Privileges 67
9.2 Interface Design 68

9.2.1 The user interface 69
9.2,2 The maintenance interface 69
9.2.3 Interface summary 70

Contents ii Contents

10 Variants in AOT Design 71

10.1 One Level Naming 71
10.2 Multi Level Names 73
10.2.1 Flow of authority T4
10.2.2 SOAP & Privman servers 75
10.2.3 Control of the Privilege Manager 76
10.2.4 The SOAP name 77
10.2.5 The structure of multi-part names 78
10.2.6 Precision versus generality 79
10.2.7 Conclusions about multi-part names 82
10.3 Dynamic Name Structure 83
10.4 Pass Once Representations 84
10.4.1 Simple mechanism 84
10.4.2 Monitors 85
10.4.3 Copying 86
10.4.4 Path control 87
10.4.5 Problems ‘ 88
10.5 Summary 89
11 Authentication 90
11.1 Authentication 90
11.2 External Authentication Methods 91
11.3 Authenticators 94
12 User Authentication 96
12.1 User Authentication 96
12.2 Interface Design 97
12.2.1 The user interface 97
12.2.2 The maintenance interface 98
12.2.3 Interface summary 99
12.3 Implementation Details ' 100
12.4 Conclusion ' 100
12.5 Post Seript: SYSAUTH 101

Contents iii Contents

13 Service Representation 102

13.1 Service Authentication 102
13.2 Authentication by Creation 104
13.3 The Use and Acquisition of a Service Representation 104
13.4 Summary 105
14 Resource Management 107
14,1 Component Parts 107
14.2 Resource Allocation 107
14,3 Allocatable Machines Example 108
15 Authenticated Communication 111
15.1 Identification in Communication 111
15.2 One Way Authentication 112
15.3 Two-Way Authentication 114
15.4 Authenticated BSP 118
15.4.1 The Principal 118
15.4.2 TSBSP 119
15.4.3 Authentication message 119
15.4.4 Replug 120
15.4.5 Example uses 121
15.5 Authentication and the "Yellow Book" 121
15.6 Encryption 122
15.6.1 Communication and authentication 123
15.6.2 Segregation of function 124

16 UID Sets on TRIPOS 126
16.1 TRIPOS 126
16.2 The Fridge 127
16.2.1 USER command 128
16.2.2 UIDEDIT command 128
16.3 Textual Names for PUIDs 129
16.4 Logging On 129
16.5 Service Interaction Commands 130
16.5.1 LOGON command 131
16.5.2 PRIV command 131
16.6 Other System Uses 132

Contents iv Contents

SUMMARY

Controlling access to objects in a conventional operating system is a
well understood problem for which solutions are currently in existence.
Such solutions utilize mechanisms which accurately and trivially provide
the identity of an accessing subject. In the context-of a collection of
computers communicating with each other over a network, provision of this
mechanism 1is more complex. The design of such a mechanism and its
implementation on the Cambridge Ring at Cambridge University is described.

The vehicle used to prove the identity of an object irrefutably is called
a representation and the deduction of an object's identity is called
authentication. Methods of authentication are given which show that the
mechanism can cope with identification needs that arise in practice (even in
a network where the function assigned to each computer is constantly
changing). These generate representations for such important components of
a computer network as people, services and addresses. The implementation of
a representation system utilizing some of these methods is described,
including the incorporation of its use into a real operating system. The
place of representations within the communication protocols that must
transport them is considered and some enhancements are proposed. In
addition, some interesting variations and extensions of the system are

explored,

Summary vii Summary

Article 1

INTRODUCTION

This article explains the history of the research described in this
thesis and the way in which the various sections can be read.

1.1 Development

In order to understand how the topics that appear in later articles are
interrelated, it is useful to discuss the background into which they fit.

Originally, interest was centred on the provision of a Distributed Ring
Operating System (DROS) for the Cambridge Ring, a local area network. The
idea was to produce an environment in which computers (and other resources)
were provided only when needed, in much the same way that a normal operating
system controls and allocates the resources at its command.

A system was envisaged in which each user would log in to a small
microprocessor on the network giving him access to a simple stub of a
command interpreter. This stub would decode user input and initiate the

allocation of the appropriate resources for each command decoded.

It soon became apparent that the existing system had insufficient
facilities to provide what DROS would need. Apparatus for passing around
access to a user's input (in this case provided by a terminal concentrator)
was hypothesized and the nature of the small stub was investigated. The
implementation of "dynamic services" seemed to pose the major hurdle.
Dynamic services are those which are created on demand at some arbitrary
computer in the network as distinct from static services which always exist

at a particular place.

Since, by policy, all services should be addressed using a textual name,
a mandatory feature of dynamic services was that the nameserver used to look
their addresses up in should enable names to be inserted and deleted at
frequent intervals. Such a nameserver was designed and proposed, but never
implemented. It was pointed out that the addition and deletion of names to
and from the nameserver was dangerous in that no access controls were

Article 1 -] = Introduction

available that would prevent wanted services being deleted or Trojan Horse
services from being inserted. Some way of identifying the people and
services that use and update servers such as the nameserver seemed to be

necessary.

In an environment in which the position of particular services could not
be forecast DROS presented several problems., In particular, if any service
potentially could be at any given address how could its actual identity be
incontrovertibly asserted. From the opposite point of view, having been
called into existence by a particular entity, how could a new service safely
identify its creator in order to grant it access priority. Other parts of
DROS obviously needed similar apparatus. As demonstrated in the nameserver
example given above, any service may need to enforce some access control
based upon the identity of its clients. When the clients were people,
password mechanisms could easily be used for this authorization but how
could this generalize to arbitrary clients (such as other services) and what
could be done about a user's password management problems and the tedium of
having to supply a password at each invocation of a service?

It was these problems that led to work in the area of object
identification, representation and authentication. For every type of
object the same method of identification and representation was used even
though different methods of authentication were necessary. The
"representations" that were produced seemed to slot quite neatly into the
solutions of some of the problems that were presented by DROS and Methods of
adopting them for these, apparently diverse, topics were developed.

Initially a method was devised involving a single authority able to
create representations. This was soon found to have shortcomings in a
practical system. It limited the use of representations to very trusted
objects all of which had to be given the ability to create any
representation whatsoever, A better system was found in which each
representation was created by something that was made explicit in the
representation's name - so that the representation could be evaluated in
relation to its creator rather than being necessarily "absolutely correct"
or "absolutely incorrect". The consequence of this change was that to a
certain extent the topic of "representations" started to encroach into the
area of "naming". The environment in which a name had been defined and the
name of the authority that created it were both found to be fundamental
parts of the specification (name) of an object and relevant to its
representation.

Article 1 -2 - Introduction

This stimulated interest in other forms of names and the way in which
they affected the quality and usefulness of representations using them. One
conclusion from this, mostly theoretical, work was that the most useful
names can have a very general format. In fact, a name can be composed of
parts which can include concatenation, alternation and arbitrary repetition
of their constituent parts. Such a name, however, presents severe problems

in practice.

Existing work on authentication and object representation was found in
the area of encryption. In general such work seemed to confuse the areas of
communication and object representation; probably because of the ability to
use encryption in both fields. A certain amount of effort was devoted to
the division of these two areas and to the construction of a protocol which
delineates the boundary between them. The view was taken that an object
representation system is of a higher level than a private communication
mechanism - the former being necessarily implemented on the latter. It was
found that faulty communication could result despite absolutely private
communication channels. The protocol devised to overcome this problem used

object representations.

The mechanisms needed to provide object representations were implemented
and the decisions that were taken in their design are documented. These
mechanisms can be thought of as primary levels of a distributed operating
system "kernel" which would be destined to support DROS. Higher levels
which include resource management, the design of a "person server" (the stub
described above) and various ancillary services were not implemented but the

bases of their designs are described.

1.2 Thesis Structure

Although the original reason for the research was the generation of DROS
its central theme is different being that of object representation. The
thesis covers the way in which an example object representation system was
designed and implemented; the way it could be (and 1is) used; how a
distributed system could be based upon it; how it could be extended and

improved.
A number of independent topics have been isolated from the overall area

each forming a separate "article" (of the type that a newspaper might be
composed of, rather than a constitution). It is this introduction alone

Article 1 -3 = Introduction

that attempts to show that the subjects of these articles are different
aspects of a central theme. Each article is intended as far as possible to
be free standing, although, sometimes, they may require another to have been
read for Dbackground information. For this reason they are short and

numerous.

Briefly the articles can be summarized as follows:
(1) Introduction

The history, structure and theme of the thesis.

(2) Base Network Structure

This describes the ideas and principal components of one model of a
network. It is this model that will be used in later articles and so
suitable nomenclature is introduced. The model is sufficiently
general to apply to everyday networks and the telephone service 1is
used as an example,

(3) Implementation Environment

This article outlines the Cambridge Ring on which a representation
system has been implemented. It describes the actual versions of the
components of the model presented in article (2) and the implications
they have for a network user.

(4) Designh of an Object Representation System

This is the first of two articles dealing with the development of
an object representation system, It considers, informally, the
meaning of '"representation" and proposes three fundamental
components: a naming system, a source of unique unguessable tokens,
and a relation between names and tokens. It then builds up a list of
properties that each of these components must possess. A global
naming system is chosen together with a source of "almost'" unforgeable
tokens. A table is used for the implementation of the relation and
its format is elaborated in the light of the control that must be
exercised over it. The article develops an ad hoc notation suitable
for talking about representations.

(5) Thesis Context

This contains a survey of some of the work done by others in the
fields most closely allied to those in this discussion and the
position of this thesis in relation to it is defined. The work
reviewed encompasses access control mechanisms, models of protection
and user authentication,

Article 1 =l - Introduction

(6) Implementation of an Object Representation System

The second of the two articles on the development of an object
representation system describes the actual implementation of the
three main components of the system on the Cambridge Ring. It
explains design decisions prompted by the nature of the network given
in article (3) and the limitations arising from other decisions made
about the implementation of the various components.

(7) The Source Of All Power

After considering the nature and "power" of various orders of
Object Representation, as developed in article (4), this article
concludes that at least one place from which all authority can be
initially delegated 1is necessary. The most powerful name in a
representation system is called the "SOAP name" and the feasibility of
simultaneously acknowledging several such names is considered. The
article mentions a service with an interface similar to that of the
privilege manager, described in article (9), which utilizes the power
associated with this position in a well controlled way.

(8) Example Servers

This hypothesizes some services that would make good use of object
representations. They demonstrate how various problems that would be
encountered in DROS could be overcome using them. In particular, the
article discusses accounting, the construction of services (also
discussed in article (13)), and the place of a human user in a fully
distributed system.

(9) Privilege Management

This article describes a method of protecting entries to services
using the representation system to create "privilege" objects. The
way in which such objects are obtained and used is described and the
design of the interface to the service is discussed in detail.

(10) Variants in AOT Design

This article gives the pros and cons of alternative ways of
implementing representation systems. First it discusses the effect
of different naming schemes. The systems corresponding to
single~part and double-part names are evaluated and a correspondence
between systems using double-part names and names with any fixed
number of parts is found. Consideration of names with a variable
number of name parts leads to an exploration of the most general form
that a name could take. This is found to be a graph structure of such
generality that one of the most useful properties of the names (that
they have a canonical form) appears to be lost. It then considers the
effect of restricting the period of validity of a representation to
the period of validity of its creator and goes on to investigate other
ways in which the use of representations could be restricted. Lastly,

Article 1 =5 Introduction

a system which controls the number of simultaneous owners of a
representation is described.

(11) Authentication

This article considers the meaning of "authentication" and its
relationship to '"representation™, It develops a model of
authentication as a mapping between one representation domain and
another and isolates four broad categories of authentication methods.
A distinction is drawn between trust and authenticity.

(12) User Authentication

This chooses the authentication method that best applies to people
from those proposed in article (11). It then outlines the
implementation and design of a service which authenticates users with
particular reference to the choice of the functions that form its
interface to the network. A similar service that authenticates
computer operating systems is mentioned.

(13) Service Representation

Using the guide lines set down in article (11) this article
considers the ways in which a service can be authenticated in order to
provide it with a representation for itself. It explains the role of
a booting service as a service authenticator and the reasons for using
fguthentication by creation". Some ways in which a service would use
its representation are also suggested.

(14) Resource Management

After discussing what is meant by the term "resource" with respect
to a service, this article explains the use of object representations
for resources, Resource ownership and possession of the
representation for a resource are linked so that resource allocation
can be implemented by simply distributing representations. The
article gives an example in which computers are shared amongst
clients.

(15) Authenticated Communication

Even when perfectly private communication paths are provided there
is a possibility that data communicated can be misappropriated by
being transferred to the wrong party. Two broad ways of combating
this problem are proposed both involving the authentication of
addresses. The first authenticates just one end of a communication
and the second authenticates both ends. Each method uses the
identification that a service obtains when it is authenticated in the
manner given in article (13). This article gives protocols used to
implement these two methods and explains the concept of the
"principal" of a communication. It also discusses the relationship
between encryption and secure communication drawing a distinction

Article 1 -6 - Introduction

between methods of secure communication and methods of object
representation.

(16) UID Sets on TRIPOS

This article documents the ways in which the TRIPOS operating
system makes use of the facilities provided by the services that have
been implemented on the Ring. A "fridge" for the maintenance of
representations on the user's behalf (mentioned in article (8)) and
some other necessary enhancements to TRIPOS are described. The
article also mentions some commands for using the user authenticator,
the AOT and the privilege manager (outlined in articles (6), (12), and
(9) respectively).

(17) Summary and Conclusions

The most important aspects of the foregoing articles are
consolidated and summarized in three sections corresponding to the
categories listed below.

(G) Glossary

This explains certain key words, that are used in special ways
throughout the thesis.

(R) References

A list of references to other work is given.

(A1) Appendix 1

This gives the layout of the parameters in an authenticated BSP
open block.

Different sets of articles can be read to reveal various aspects of the

work. These aspects are roughly threefold:

- A number of the articles deal with the theoretical and more abstract
nature of naming, representations, and authentication. These include
articles (2), (W), (5), (7)), (10), and (11).

- Another set deals with the actual implementation of some of the theory
in the form of servers on the Cambridge Ring. Among these are
articles (3)9 (6)9 (7)9 (9)9 (12) and (16)'

- A third group proposes the design of parts a system (DROS) based on
the mechanisms implemented and mainly comprises articles (2), (7)),

Article 1 = = Introduction

Article 2

BASE NETWORK STRUCTURE

The articles that follow this one make some assumptions about the nature
of the network discussed. This article describes the context that the word
"network" implies and develops a certain amount of nomenclature (new terms

being introduced in bold type).

2.1 Services

The entities that communicate on a network are called services., A
service can be located on a network via its address which may or may not
change with time., Services whose addresses do not change are called static
services and those whose addresses do change periodically are called dynamic
services. Services which exist solely to perform some function on behalf of

their clients are called servers.

Services are 1independent and, with the exception of network
communications, they use only information to which they have exclusive

access (called local information).

Each service will typically provide several entries. Each entry to a
service will cause it to perform some particular operation. In general, the
local information in a service will be used to represent some abstraction,

each operation on that abstraction being carried out by a separate entry.

2.2 Communication

Any service may communicate with any other service whose address is
known. The protocols used, the mode of communication and the nature of the
communications medium (electrical or otherwise) are irrelevant to this
model. It is assumed that some reliable method of passing information from

one service to another has already been found.

Article 2 B Networks

It is proposed to use this existing method of communication for
confidential information. The method of communication least likely to
divulge such data will be called the Best Inter Service Communication Method
(BISCM). No mechanism for improving BISCM will be proposed, it is assumed
that the level of privacy provided by BISCM has been accepted as sufficient,

2.3 Objects

The things that are sent across the network are referred to as objects
here., An object can be passed from one service to another only if both
sending and receiving service understand the format in which it is sent. A
formal definition of which format to use for which type of object would

constitute a parameter transfer protocol (PTP).

Services using local information to provide an abstraction may wish to
pass representations of individual abstract objects to clients. Such a
representation need only be a reference to the object; duplication of the
local information considered by the service to represent the object is not

necessary.

Passing such a reference from service to service, in effect, passes the
abstract object from service to service. Possession of the reference can be
regarded as possession of the abstract object to which it refers. To this
extent such a reference is similar to a capability in capability operating
systems. Such references are discussed in greater detail in succeeding

articles.

2.4 Network System

On top of the network so far outlined a network operating system can be
built from a collection of services. Such a system is responsible for
creating new services dynamically and for providing services of general

utility.

The services required before dynamic services® can be created, plus the

% Dynamic services are services which have a fixed address during their
(typically quite short) lifetime but which do not necessarily come into
existence at the same address each time they are created.

Article 2 =0 - Networks

services providing general utilities are together referred to as kernel

services. It will be shown how dynamic services may be created and used by

describing the necessary kernel services.

2.5 System Aims

Distribution brings with it a certain number of advantageous features:

(M

(2)

(3)

)

Addition of extra resources - extensibility.

Given that the electrical connection of an extra resource to a
network forms part of the network's existing technology the adequacy
of the resource's interface to the rest of the system determines the
difficulty of adding it to the network. To simplify this task these
interfaces should be designed with their duplication in mind.

Fail soft characteristics.

If resources are deliberately duplicated, in the manner
recommended above, the system will show a "fail soft" characteristic
so long as the duplicated resources are not mutually dependent. (That
is, a failure of one component in the system will tend not to cause
the whole system to fail). When distributing the functions of an
operating system the best system will result from the use of the
fewest interdependencies,

Autonomy.

As an extension of the above principle each service should be as
autonomous as possible. That is, in the extreme, it should be
possible for a service to operate in complete isolation - no other
service being dependent upon it and it being dependent upon no other
service. In particular entire network systems (should there be cause
for more than one of them to coexist) should display this property. A
system in which each component machine is obliged to run a "kernel" of
controlling code, for example, is not ideal in this respect because it
does not leave each computer free to execute independently.

Modularity.

A certain degree of modularity is enforced on a system that is
built from services that only communicate via a network; however,
modularity is not the exclusive property of a distributed system - it
is merely more difficult to fabricate a system that is not meodular if
it is distributed.

Article 2 -10- Networks

(5) Protection,

Domains of protection will tend to be available on a network, even
one which consists entirely of unprotected machines (when, because it
cannot be actively accessed by any of the others, each machine
constitutes a separate protection domain). Note that services do not
necessarily require a protection domain of their own. A service was
defined as something which accesses none other than its own local
information (and information sent to it by other services). A
protection domain is only necessary in the cases in which services
cannot be trusted to conform to this rule.

In conclusion, the kind of system preferred is one in which (1 and 2)
duplication of function is possible and perhaps common, (3 and 4) system
function is not spread thinly over each processor but is provided only in a
few system services, and (5) the available protection domains need only be
used sparingly. Further considerations on the nature of distributed
computing are reported in [Peterson79]. Relatively simple processors could

be used and the system would be naturally modular in structure.

2.6 Coneclusion

The environment described consisting of services, objects and some form
of communication is typical of a very wide class of existing network
systems. As a model it conforms, for example, to the telephone network in

which the analogies are as follows:
service - A telephone subscriber,

server - A subscriber prepared to work for a caller, for

example: "directory enquiries" or "dial-a-disk".

entry ~ One of the things that a subscriber might be able
to do for a caller,

communication The telephone network,

objects - Some objects can be transferred by ‘!'phone
(pictures for example) but, Dby and large,
references to them must be sent, and there are
only ad hoc methods for doing this. For example:
giving the object's name and relying upon voice
identification or a credit card number for
security.

Article 2 -11= Networks

A similar analogy holds true for the postal system but, naturally, the
application of the model to a network of computers is of primary interest.
A solution to the problem of "objects" (above), for example, that applies to
the model would provide solutions in any of these examples. The likely
structure of such a system and some guide lines for its production have been
given which relate not to a particular system but to any system constructed

in the environment outlined.

Article 2 -12- Networks

Article 3

ENVIRONMENT IMPLEMENTATION

The representation system described in the following articles was
implemented at Cambridge University Computer Laboratory on the Cambridge
Ring (which will be subsequently referred to as the "Ring"). There follow

some salient points:

3.1 Harduare

Details of the Ring's hardware design are speculated in [Wilkes75] and
reported in [Wilkes79). It is compared with various other local area
networks in [Hopper78J]. There are two points relevant to this dissertation.
The first is that, using the standard hardware, the number of the station¥
from which data was sent is available and can be considered incorruptible.
Thus, since there is no "broadcast" mode of operation, the recipient of data

can be assured of its private reception.

The other major facet of the Ring's hardware is its very low error rate.
The hardware itself will rarely corrupt data. There are no official
measurements for this error rate but [Needham80] suggests that one bit in
every 1010 or 1011 may be likely. This has an effect upon the development of
protocols since, in general, quite large blocks of data can be sent with
negligible risk of corruption. Error detection mechanisms are necessary in
these protocols (because of the possibility of an error: however remote) but
elaborate error correction mechanisms are not. Because it is necessary so
seldom, it is possible to retransmit large amounts of data which are found

to be corrupt with only a small loss of overall efficiency.

% "Station" is the name given to the hardware interface to the Ring. There
is normally one station attached to each computer.

Article 3 -13- Environment

3.2 Protocols

There have been two main protocols that have been developed for the Ring.
The first, called BSP (Byte Stream Protocol) ¥ [Johnson79], provides a
bi-directional byte stream with flow control, which has been used as a base
for file transfer and virtual terminal protocols. The second, called SSP
(Single Shot Protocol) [Gibbons80bl, allows a very simple remote procedure
call in which a block of request data (of limited size) is sent and a reply
block received. Both of these protocols are based upon BBP (Basic Block
Protocol) a description of which can be found in [Walker791l.

SSP is used where possible because of its simplicity. BSP is used in
cases in which a very low error rate, a continuous stream of data or flow

control is necessary.

An interface to a service that uses SSP entries needs careful
consideration., Each entry must be idempotent (which implies repeatability).
This is because, although it is unlikely, either an SSP request or an SSP
reply may be lost (through data corruption, for example). In the case in
which the sender receives no reply, therefore, it will be impossible to know
whether or not the requested operation has actually been done. If the
operation is idempotent repeating it will cause the expected result in
either case. Basically, operations must have post-conditions that are
expressible in terms of known constants and the parameters given with a
request. For example, "delete the last element of the 1list" is not
idempotent because its post-condition involves a variable local to the
service (essentially the "end of the list" variable) which is not supplied
as a parameter. However the two entries "tell me what is at the end of the
1list" and "delete thing X from the list" are both idempotent, the first
because its post condition is just the same as its pre-condition and the
second because the post condition "X does not exist in the list" involves
only constants (the list) and parameters given with the request (X). Note
that what is achieved by the former entry, which is not idempotent, can

% The use of BSP to provide an "authenticated byte stream" is discussed in
the article called "Authenticated Communication",

Article 3 ~1h4- Environment

approximately be achieved by these last two, A service's interface can

very often be made idempotent in this way.

3.3 Addressing

A service's address, in general, has three parts as follows:
station number

An eight bit number identifying the station that the service uses
to communicate with the Ring.

port number

A fourteen bit number identifying a port on which a service is
listening. Ports are software created abstractions. Traffic
arriving at a port on which no service within a machine is listening
is disregarded.

function code

In order to distinguish the different reasons for which traffic may
arrive at a particular port a 16 bit function code number is used.
Both the port number and the function code are necessary in general
pefore a unique service can be identified. This is due to the
operation of a typical multi-processing operating system in which a
single port may be isolated for the purpose of initial connection and
the function code used to distinguish the service to be (created and)
used.

These three address parts can be found by presenting the textual name of the

service to a server called the nameserver.

The use of any service is expected to be preceded by such a name lookup.

Thus it is not necessary to "publish" the addresses of services or to build

their addresses into other services that use them. In order to relocate a

service it is only necessary to change its entry in the nameserver.

#

This is only approximately true since the X deleted may not be at the end
of the list for one of two reasons: firstly X may no longer be at the end
of the list since additions may have been made; and, secondly if X is not
unique the X deleted may not be the one originally found at the end of the
1ist. In point of fact "delete the last element from the 1list" will
require an interlock of some kind over the list for the duration of the
update. The practical difference between such an interlock and the
concept of a "connection" is negligible (in that a "connection" can be
thought to exist in the time during which an interlock is extant).

Article 3 =15~ Environment

The only service address that must be known on the Ring is that of the

nameserver — all other addresses can be found through it.

3.4 Machines

The Ring has a few large and statically configured computers offering
multi user services. These include a VAX running UNIX, a PDP-11 running a
locally enhanced version of RSX 11M, a research machine called CAP running a
capability based operating system and the University's large mainframe, an
IBM 3081.

In addition there are a number of uncommitted minicomputers and
microcomputers which are allocated upon request and which run a local
operating system called TRIPOS®,

The remaining processors on the ring are mainly Z80 microprocessor
systems of two basic sizes (for a description of their development
see [Gibbons80al). These machines will normally provide only one or two
services and run in a completely dedicated mode. They possess an extensive
booting and debugging environment described in [0dy79] and can be
programmed in Algol68C. The services provided by these machines are static
and, by and large, very reliable. A few Z80s are reserved for development
work.

3.5 Existing Services

In addition to the services to be described in the following articles the
Ring currently possesses a large number of both static and dynamic services,
the former being continuously available and the latter being available only
at times of demand. The dynamic services, which include connection to and
file transfer to and from dynamically allocated machines, are currently run
on an ad hoc basis. There is as yet no management apparatus generally
available for them.

Some work on TRIPOS is described in the article called "UID sets on
TRIPOS", TRIPOS itself is fully documented in [Knight82].

Article 3 =16~ Environment

The static services include the nameservers (above), a resource manager,
two file servers, several terminal concentrators, and services for
controlling I/0 devices attached to the Ring, such as a Diablo terminal, a

line printer, and a pointing machine used for wire wrapping.

A terminal concentrator [0dy80] gives its users the ability to "connect
into" different services using a virtual terminal protocol called RATS
(based on BSP). Several connections to each terminal can be handled
concurrently. Recently facilities for making a connection to the terminal

concentrator from the Ring have been added.

The resource manager manages a set of LSIY minicomputers and MC68000
microcomputers Jjointly referred to as "the processor bank". A user can
connect into the resource manager and, using a small command language,
request a machine, conforming to a certain set of criteria, and a system to
run on it. A RATS byte stream is then routed from the allocated machine (if
one could be found and was successfully booted) and "reverse connected" into
the terminal concentrator being used. The same machine provides a service
which will perform the allocation and loading according to default criteria
and a default system (the TRIPOS service).

The processor bank has two servers (one for each type of allocated
machine) responsible for initially booting the machines and providing a
hardware independent interface to the resource manager. Each service is
called an ancilla (from the latin for "housemaid").

The fileservers [Dion81] are some of the few machines on the Ring with
disc storage devices. They provide a modified SSP interface for the
manipulation of files and directories - which are represented by 64 bit
unique identifiers. Operating systems are free to use the interface to
build any of a range of filing systems from a simple one-level directory
scheme to a quite general scheme in which graph like directory structures
are allowed. The service is used by both the CAP and the TRIPOS operating
systems to provide filing systems. In addition CAP uses it for swapping.
The simplicity of the SSP interface enables files to be used moderately
easily even from the servers provided in Z80 microprocessors.

Article 3 =17~ Environment

3,6 The Cambridge Distributed Computing System

The Cambridge Distributed Computing System is the name that has been
given to the assembly of the above components. Some of the underlying
philosophy regarding the precise way in which they have been put together to
form a coherent whole can be found in [Needham78] and a first attempt at
describing the consequences of its early development is preserved
in [Wilkes801. By far the most comprehensive description of the system is

given in [Needham82 1.

Article 3 -18- Environment

Article 4

DESIGN OF AN OBJECT REPRESENTATION SYSTEM

This article addresses itself to the making of references to objects on a
network. After some discussion during which the nature and meaning of an
"object representation" are deduced, the component parts of a mechanism for
creating and using them are isolated. The properties of each of these
components are then considered separately and additional problems arising
from their synthesis into an object representation system are finally

resolved.

4,1 Representation Of Objects

Once some mechanism for representing objects is available, it can be used
to provide obvious solutions to problems which can seem difficult, without
such a mechanism. For example, in the design of resource management and
allocation mechanisms, the designer may become bogged down with questions
relating to the maintenance of a binding between an allocated resource and
its owner. An obvious solution in this case is to give each resource some
representation and simply give the named resource (no matter how abstract)

. %
to its new owner ",

One of the more fundamental problems about such a scheme, and one which
is pertinent to the above example, is to ensure that a representation is
authentic - that it really does represent what it is expected to, and is not
devoid of meaning. (The resource allocation system above must ensure that
only authentic representations of its resources are used, in order to

prevent services from fabricating their own).

A certain number of words have just been used which ought to be discussed

in more depth:

% The question of resource management and allocation is dealt with in more
detail in "Resource Management!.

Article Y =19~ Design

"name"

When a name is used it means a particular object (if it means
anything at all). This "meaning" is all that is necessary in a name,
A name refers to only one object and, if ambiguity is to be avoided,
an object should have only one name. For as long as an object exists,
and even before it has come into existence and after it has gone out
of existence, a name can be used to refer to that object. It is
permanent, unique and it identifies.

"authentic"

What facet of a representation is it that may not be authentic?
What is in doubt? Clearly a name is always authentic in the sense
that it always refers to a particular object. Authenticity must be a
property of something other than a name. There is something about the
representation which must be valid.

In the above examples, if a resource is represented it is essential
that the representation used is one that was made valid by the
resource allocator. Trust has been bestowed on this representation
and it is in this sense that it is "authentic". Being authentic means
being trusted by something. Notice that being authentic is not an
absolute quality - it has no meaning unless there 1is a trusting
"authority". It is a relative quality: being authentic implies that
there is something bestowing trust - if this is not true then being
authentic has very little meaning (and even less value).

"representation"

A representation is something with an identity which can be seen to
be authentic. As discussed above, this authenticity must be conferred
by something in order to have meaning. A name, as already outlined,
identifies the object to which it refers and so can be used for
"identity" in the above sentence. Hence where an object 1is
represented it must be possible to verify a statement such as
n¢something> says that this object is identified with <name>", It is
this statement that must be valid in the paragraph about "authentic"
and it is the ability to verify the statement that distinguishes a
representation,

Having decided upon a "working definition" of what a representation
actually is, a method of implementation can now be investigated. It 1is
necessary to be able to pass something akin to the statement "this object is
identified by <name> : <something> says so" from service to service and be

able to have it verified.

Article 4 ~20- Design

It is convenient, at this point, to introduce some notation for the above
statement, since in 1later articles it is to be used quite often.
n¢something>" refers to the name of the authority that conferred validity
upon the representation. It is the identity of the representation's
authority. This name will be referred to as the representation's authentity
(a contraction of '"authority identity"). The statement itself is a
proposition involving a name (N) and an authentity (A): it will be
represented using the notation

p(A\N)

The problem of finding something which can be passed from service to
service and which can be used to verify p(A\N) can be partially solved by

considering the properties of such a token.
- It must be unforgeable,

It is essential that no other token can be counterfeited to verify
p(A\N). Otherwise those who own a true representation for an object
will be indistinguishable from those who have merely manufactured the
same token., This implies a certain amount of privacy. It is
necessary to ensure that those not entitled to a representation cannot
steal one from a bona fide owner, either by copying or by guessing.
The invalid copying problem does not apply to a service's local data,
by the definition of "service" which stated that they access only
their own local data and data communicated to them. During network
communications, however, BISCM is relied upon.

- It is distinect from but related to p(A\N).

p(A\N) is Jjust a proposition. Any proposition can be made by
anyone - regardless of its truth. Any service could claim that pC(ANN)
is true. It is not, of itself, sufficient as an implementation of a
representation. Something else is necessary, something which implies
p(A\N). Clearly the token is related to p(A\N) and although there
must be some way to verify this relationship the actual token and
p(A\N) are distinct.

- It is temporary.

The representation of an object needs to exist on a network whilst
the object is in use. For example, the representation of a user nheed
only exist whilst that user is logged on®, If the user is not active on
the network in any form, then it could be contended that there should

*# User authentication and representation are discussed in the article
called "User Authentication

Article 4 -21- Design

be no valid representation for the user which would imply that the
user does, in fact, currently exist at all. There 1is a clear
distinction here between the user's representation, which will exist
(relatively speaking) only transiently, and the user's name, which is
permanent.

The following picture begins to emerge. The token passed about the
network to represent an object N under A's authority must be unique and
unguessable. It is temporarily and verifiably related to the proposition
"this is object N: A says so", p(A\N).

To formalize what has been discussed some abbreviations are introduced.
If a token for an object's representation and p(A\N) are related then,
mathematically speaking, there exists a relation that combines them: call it
V (for verify). Thus a token t represents object A\N (that is, the object
called N under A's authority) if and only if

t V p(A\N)

(read "t validates the proposition that it represents object N under A's
authority").

In conclusion, in order for objects to be represented on a network, the

following are necessary.

- A naming system (for A and for N).
- Unforgeable tokens (for t).

- A relation (for V).

Each of these elements is now discussed in detail.

4,2 A Naming System

It is necessary to design "names" which will be used to identify objects
both uniquely and permanently. Such a scheme is referred to as a global

naming scheme. Since these names are permanently allocated, if they are to

be unique, a service which generates new names (as is proposed) must never
give any name that has been given previously. This has two implications: |

Article d -22—- Design

E
|
|
|
|
l

i) There must be a very large name space, so that there will be enough
names never to "run out".

ii) There must be some way of determining whether a new name has been
generated before.

i) can be solved simply by using a lot of bits to represent a name. ii)
is complicated by the potential existence of several different name
producing services on the network either concurrently or at different times.
It is necessary for each service to know about not only the names that it has
generated, but also the names that all the other name producing services
have produced (that ever were or are). Dividing the name space up into a
fixed number of equal parts and assigning each part to a different name
producing service resolves this problem. This can be implemented by
reserving a field in names to identify the service that produced them. Thus
each service is free to look after only its own name space.

A simple name management scheme for name generators uses a well ordered
set from which names are chosen. It is then only necessary to remember the
last name generated, generating its successor when the next name is
requested. In this scheme the names that have already been produced will
always be known (they will be all those between the first and the last
generated).

4,3 Unique Unforgeable Tokens

Since there can be no constraints enforced on services or on

communication®

, the existence of tokens cannot be controlled. This is true
in the sense that nothing can be done to stop such tokens naturally arising
in services' local information and being subsequently transmitted around the
network. It can be made arbitrarily unlikely that such a token arises
naturally, even if it is being created by a dedicated and malicious service,
by randomly choosing new tokens from a suitably large name space. If the
choice is truly random then a service, no matter how methodical the
algorithm, will have one chance in (however many names there are in the name

space) of guessing a given token (at each attempt).

This is necessary if the system aims expressed in "Base Network
Structure" (the provision of autonomy in particular) are to be fulfilled.

Article U -2 3= Design

Thus the size of the name space can be made large enough to ensure that
each token is as secure as desired. For example, it can be chosen so that a

correct guess is less likely than catastrophic failure of the network.

This method of generating unforgeability will also go part way to
ensuring that each token is unique. Tokens are temporary and, at any given
instant, there is likely to be only a small number of them relative to the
size of the name space. The chances of choosing a new token at random which
is identical to another valid token might be conveniently small. If this is
not so it will be seen that it is possible to check newly generated tokens

for uniqueness.

Note that "unforgeable" in the above sense applies only to those not
already in possession of a token. It is impossible, and undesirable, to
stop the possessor of a token fabricating another exactly like it.
Similarly it is both impossible and undesirable to stop the possessor of a
token passing it on, over the network, to whom it pleases. Such activities
are "desirable" because they are the very properties that we wish to
encourage in a token and the representation that it implements.

4.4 A Relation

A relation between the above tokens and (authentity, name) pairs must be
implemented. This relation will be expected to change as the tokens, which
are temporary in nature, come and go. In order to implement such a relation
it is merely necessary to provide a service on the network which will verify
or deny that a given token is related to a particular (authentity, name)

pair.

Such a service could maintain a "relation", in the relational database
sense of the word, with domains 'token', 'name' and 'authentity' - each tuple
representing an association of one particular token to an (authentity, name)
pair. Verifying that a token corresponds with a particular authentity and
name simply consists of checking that the relevant tuple exists within the

table representing the relation.

Article 4 -24- Design

z
|
|
|
|
|
|
l

TOKEN | AUTHENTITY | NAME

X} cr -
e N> e
e = es

A table for the relation "V,

Creation of an object representation is implemented by creating a new
token and inserting it against the name and authentity of the created object
in the table. Deletion of an object representation corresponds to deleting
that tuple. Note that upon the deletion of a tuple each of the tokens on the
network, wherever they are, cease to be of any use. Such deletion is

similar to the revocation of capabilities*,

4,5 Control of the Relation

The need to create and delete tuples from the table brings with it some

access control problems:

a) Who should be allowed to create tuples?

b) Under what circumstances should a tuple be deleted?

4.5.1 Tuple creation

If the identity of the creator is put into the authentity field it is not
necessary to put any constraint upon who it is that may create tuples.
However, if the identity of the creator is to include its authentity (and so
on), multi-part names would have to be utilized (which would be both
difficult and inconvenient#).

*# In point of fact not many capability based operating systems actually
implement revocation.

This topic is discussed more fully in the article "Variants in AOT
Design",

Article 4 25— Design

If not everyone is allowed to create tuples there must be some criteria
defining the set of things which are allowed to. The ability to create
object representations (each marked with the same authentity) in some ways
resembles the ability to create objects of a particular type, in a general
sense. Using this comparison the type is given by the authentity of the
generated object representation. The ability to create a particular kind of
object can be imagined to be due to the possession of a type. It is this
possession that distinguishes those allowed to create tuples. It would be
possible to recognize such a possession if there were a representation for
"type" objects (that is, if there were objects of type "gype"). Such a
representation can be created with the existing apparatus - all that is
necessary is the definition of an authentity for "type" for use in the
representations of objects which allow the creation of other objects (of a
particular authentity). This authentity will be referred to as 'auth',
Thus, in the nomenclature developed above it is possible to create the tuple

for

x V p(A\N)

if a token y which proves

y V p(AUTH\A)

can be given.

Note that object representations for types (that is, with authentity
AUTH) themselves form a type, members of which can be created if a token z

which proves

z V p(AUTH\AUTH)

can be given. Such a token obviously has a special part to play in a
representation system and it is discussed in the article called "The Source
Of All Power",

4.5.2 Tuple deletion

Practically speaking, one of the reasons that a tuple is deleted will
stem from the table maintenance software itself. Since no constraints are
put on the rest of the network, it will be impossible to guarantee that
anything ever deletes the tuples created in the table. The maintenance code
must, therefore, have a criterion for deciding when a given tuple has fallen
into disuse, and delete it itself, in order to prevent the table becoming
full (a practical rather than a logical problem), Such a criterion can be

Article 4 -26- Design

providéd by the association of a "timeout" with each tuple. That is, some
number denoting the amount of time for which the relationship between its
parts will hold,

There are two ways that such a timeout could be operated. The first is to
give a tuple a timeout longer than the representation could possibly exist
leaving the timeout to decay until the tuple is explicitly deleted (in some
manner yet to be decided). The second is to give a tuple a timeout just
longer than the time after which the existence of the tuple is required to
be reasserted. The continued existence of the tuple is then reasserted by
changing its timeout back to the value from which it has decayed (also in
some manner yet to be decided)¥, By providing a mechanism for changing a
tuple's timeout either of the above methods of control can be employed to
ensure that a tuple exists during a required period of time. This also
provides a way of deleting tuples since the tuple will be deleted if its

timeout is set to zero.

Returning to the original problem ("who should be allowed to delete
tuples ?", mentioned at the beginning of this section), the problem has been
restated as "who is allowed to stop a tuple from not being deleted ?". The
question can now be simplified to "who should be allowed to change a tuple's
timeout ?" - since by continually resetting it to a strictly positive value
the existence of the tuple will be maintained and by setting it to zero the
tuple will be deleted.

In order to decide who it is that is to be given the ability to delete a

representation it is necessary to investigate some different possibilities.

An obvious suggestion is to give the creator of a representation the
unique ability to delete it. That a representation with some authentity A
could have been created by a representation holder can be verified by

checking that a token t can be provided for which

t V p(AUTH\A)

Such a mechanism would allow any creator of A authentity representations
to delete any A authentity representation - whether or not it had created
that representation initially. In some ways this solution side steps the

%¥ The point of this being to make sure that the tuple dies fairly quickly
if the thing using it dies.

Article 4 27~ Design

issue, since each creator would have to decide which customers it should
delete representations for. This is the same as the original question

applied to the creator instead of to the table maintenance software.

Another solution would be to allow the possessor of an object's
representation to be able to delete it. This would seem to be in general
keeping with the capability nature of a token, However, this has
undesirable consequences in practice. For example, consider the case in
which a shared object is to be given to several customers. Each of the
customers is given some representation of the object to prove that they are
allowed to use it. Using this solution each of the customers could
potentially delete the representation that all the others are using - which
may be undesirable. This solution makes central control of the existence of

representations impossible.

Since the ability to use an object is represented by a token that can be
passed from one holder to another a distinction is necessary for the
original owner of that token. The crux of the problem stems from the
difference between the ability to use an object (as represented by a token)
and the ownership of the ability to use an object. Something which proves

the former should not necessarily prove the latter.

The problem would be solved by considering the tuples as abstract objects
themselves - each with a name, authentity (e.g. the table maintainer) and a
token. The token would be used to prove that a named tuple was owned and
could therefore be deleted and so on. For example when the tuple which

proves

t V p(A\N)

is created, the tuple is named ('tuple' say) and is represented with a token

d under the authentity of the tuple's creator ('table' say). That is,

d V (table\tuple)

If the tuple for t (above) is to be deleted, its representation, d, must be

presented. Thus, in a sense, d is the representation of a representation.

Investigation quickly reveals that this solution has some rather severe
failings. For example, who is allowed to delete d? This question leads to
a hopelessly recursive solution. A further disadvantage is the necessity to
name each tuple created and to bind the name with the tuple to which it

refers.

Article 4 ~28=~ Design

Since each tuple needs such a representation it is profitable to consider
the representation of a representation as a case apart and not use the more
general method outlined above. The recursiveness of the above solution
disappears when viewed in this light. The ability to delete the ability to
delete a representation (to take the first recursive example) is unlikely to
be useful and is certainly not necessary. An authentity for this
representation is likewise not necessary since it is always the same ('table'
in the above example). Hence we could implement this solution by having two
sets of tables - one for normal representations, each tuple with an object's
name, authentity, and representing token, and another for representation
representations, each tuple with the name of the representation (a tuple in
the first table) and a token representing it. Such an implementation could
clearly be optimized by associating the representation's representation
token directly with the tuple to which it refers and omitting the names
altogether. That is, instead of

"t Vv p(A\N)" - call it 'tuple’
d V p(table\tuple)
we have something, avoiding the intermediate name 'tuple', similar to

d V p(table\"t V p(A\N)")

Using the notation i(t,A\N) to represent the proposition 'the table
maintenance authority says that this object is identified by the statement
ne V p(A\N)"™ we can write for the above

dV i(t,A\N)

Note that, since the 'table' authentity is trustworthy

i(t,A\N) => t V p(AWN)

so that

i
|
]
|
|

dV i(t,A\N) => t V p(A\N)

We now have a full solution to our question "under what circumstances |
should a tuple be deleted ?". It is: |

- if the tuple's timeout value reaches zero

Article 4 ~29- Design

This timeout value is changed in these two ways:

1) it is decremented by 1 every second

2) a request is received to change the tuple for "t V p(A\N)"'s timeout is
accompanied by a token, d, for whichdV i(t,A\N)

Thus for the object A\N above there are two tokens, t and d. The token t

is used to prove
t V p(A\N)
s6 that the holder can use A\N, and d is used to prove
dV i(t,A\N)
so that the holder can maintain (or delete) t.
When a new tuple is generated two new tokens will be fabricated - one for
the representation and the other to maintain that representation. The

authority which created the representation need not pass on the maintenance

token if central control is necessary.

4,6 Relation Representation

Returning to the design of the relation, a table with tuples to represent

things of the form
t V p(A\N)

is necessary. With each such tuple is associated

1) A timeout, A

2) A token, d, which proves

dV i(t,A\N)
used to maintain this tuple
hence such a tuple would be represented
<d, t, A, N, />

and the table would consist of the set of tuples:

R=1{<d, t, &, N, >: A>0 & dV i(t,A\N) }

Article U -30- Design

the service for maintaining such a table will need entries for at least the
following:

1) to prove t V p(A\N) for some t and A\N
2) to create a tuple <d, t, A, N, /» for some A\N aruigs\returning d and t

3) to change the timeout of a tuple <d, t, A, N, £H> U)Lé for some d, t,
and A\N

Article 4 =31~ Design

Article 5

THESIS CONTEXT

Now that an introduction to the topic of this dissertation has been given
this article discusses existing work in the areas related most closely to

it, and considers its position with respect to the literature.

5.1 Introduction

- The most closely related area is information protection. In [Jones78bl
Jones positions protection mechanisms as a sub-goal to the controlled
dissemination of information as defined by a set of security policies. She
takes the view that the former merely represents the means whereby the
latter can be enforced. Security policies can be enforced in at least two
ways. Firstly, they can be enforced by employing particular protection
mechanisms, in which case the potential information thief is simply unable
to infringe a given policy. Secondly, they can be enforced using detection
and legislation, in which case the potential information thief is not
necessarily unable to infringe a given policy but will be "punished" if the
fact that he has done so is detected.

A compact tutorial on protection can be found in [Saltzer75] which
includes an extensive reference section. Denning and Denning
in [Denning79] further subdivide protection mechanisms into four orthogonal
areas which they call access control, flow control, inference control and
cryptographic control. Access controls prevent the use of entries at access
interfaces at which some arbitrary entry criterion is not correctly
asserted. Flow control prevents the copying or derivation of information
from an information set of greater confidentiality to one of lower
confidentiality. Inference controls prevent the deduction of information
that is otherwise explicitly denied. Cryptographic controls prevent
information which cannot be protected in any other way from being
meaningful. It is the first topic (access control) with which this
dissertation is chiefly concerned. Flow control, inference control and

cryptographic control are not to be of primary interest.

Article 5 ~32- Context

There are a good number of access control models at large, many of which
have led to implementations (with varying degrees of success)., Most of
these implementations have been for an environment in which there is a
single large processor, or possibly several tightly coupled ones all of the
same type. However, the falling cost of computing elements and the
resulting distribution of computers has promoted the formation of computer
networks and, as argued in [Kahn72], the resulting level of resource
availability is bound to give rise to distributed systems capable of
controlling these resources. These distributed operating systems will be
faced with exactly the same kind of access control problems as their
mainframe counterparts. But at the same time, the importance of adequate
information control in the computing elements that make up a distributed
operating system will diminish, since functions for which sharing is
necessary (the primary cause that makes information control mechanisms
necessary) will become less common within individual computers. For
example, there will be a tendency for single user systems to be used using
either a personal file server or one available from the network.
Information control within the single user system will in either event
become less necessary.

One relevant difference between conventional operating systems and
distributed ones is the forced differentiation of names and hardware
addresses. When originally proposed in [Dennis66] capabilities were
unforgeable object names protected by an operating system and used for
access control. Fabry, however, later proposed an efficient way in which
they could be used for addressing in [Fabry74]. In consequence the
distinction between an object's name and its hardware location, in some
capability operating systems, has become very slight. It would be extremely
inadvisable for a distributed operating system, in which provision must be
made for several different kinds of computing element, to attempt to name
its resources in terms of the different addressing structures local to each
component machine. In particular, a distributed operating system can have
no direct control over accesses that any particular processor makes to its
own addressing domain. Thus the highly efficient mechanisms developed in
operating systems to cope with memory access control can not be
realistically considered in a distributed operating system. Access
controls are likely to have to be applied at rates determined by the
network's communication protocols, rather than at hardware memory access
speeds, The implication here is that access controls could possibly be
provided by software in the distributed operating system, not necessarily by
hardware or firmware.

Article 5 ~33- Context

5.2 Models of Security

As mentioned above there are several existing models for security

mechanisms, one or two of which are described here.

One of the most influential models in use is derived from [Lampson69] in
which accessing and accessed objects were identified as subjects and objects
respectively. The term domain was defined as the set of objects accessible
by an active entity at a particular instant. This model was presented
in [Lampson71] and the concept of an access matrix was explained. In such a
matrix each column bears the name of some object and each row the name of a
subject. At the intersection of a particular row and column there is a set
of access attributes which specify the types of access that the subject has
to the object. The model is not suitable for literal implementation because
the size of the matrix would be inhibiting - even though the actual amount
of information Dbeing stored may not be too large to handle (most
subject/object intersections will contain the null set of access
attributes). Two main classes of implementation of this model were already.
well known: access control lists and capability lists.

An access control list is kept with each object. It denotes which
subjects are allowed what access to that object. When a correctly
jdentified subject requests access to the object its name and the requested
type of access are checked off in the object's access control list and the
access is disallowed if the check fails. This corresponds to keeping each
column of the access matrix with the object to which it refers (naturally

subjects with default access to the object need not be included in the list).

Capability 1lists were first investigated in [Dennis66] in which
primitives for their manipulation were also proposed. A capability list is
essentially the reverse of an access control list. A list of objects and
the allowed access to them is kept with each subject. The resulting list
then becomes a tangible implementation of a domain. An object itself may
not have any active part and thus be unable to check the existence of a
capability from this 1list on each access. Since it would clearly be
incorrect for the check to be done by the subject it is necessary for
operating systems to provide direct support for capability lists if they are
to be used. At each access of a subject to an object an operating system is
responsible for ensuring that the capability used from the capability list
is correct and contains the appropriate access attribute. A mechanism

whereby capabilities could efficiently be revoked (invalidated) was first

Article 5 -34- Context

described in [RedellT74]. Revocation is discussed under "Protected Object

References! below.

In their exposition of the access matrix model Graham and
Denning [Graham72] underline the necessity for correct identification of
the subject in any implementation. If a subject's identity could be forged
in either the access control 1list implementation or the capability list
implementation security would be seriously undermined (the subject's
identity is needed in a capability list implementation to verify ownership
of the capability list used). Fortunately, within a single machine, it is
not difficult to provide the names of active subjects with unquestionable
authority. In many capability list implementations the identification of a
process, which either actually is or is acting on behalf of a subject, is
provided by the hardware or firmware. In a distributed operating system, as
stated above, overall control of memory accesses within any particular
computing element can by no means be counted upon to ensure the
unforgeability of a subject's identity. Even if it were possible it is
doubtful that exercising such control could be made very efficient. In this
environment the generalization that all subjects will be represented as or
by a process becomes useless because each component computer in the network
is liable to support this concept in different ways - some may not support
it at all (hence the definition of a service, given in "Base Network
Structure"),

A widely respected model of computing is provided by the abstract object
model, in which each abstraction is represented by a body of code providing
a fixed interface to its clients. Internal details of the implementation of
the abstraction are actively hidden. A description of this model and the
way in which it naturally facilitates the style of naming and protection
that tends to emerge from the use of capability lists can be found
in [JonesT78al. Such a model of computing is likely to be realized in a
distributed operating system because of the enforced hiding of
implementation details provided by the existence of programs in physically
different kinds of computing elements and the necessary provision of an
interface where a computer meets the rest of the network. The adoption of
this model may well invalidate the assumption made earlier when discussing
objects in a capability list implementation. Each object may well have an
active part associated with it (in order to present the relevant abstract
object interface) so that the provision of an intermediary to validate
capabilities would become unnecessary - it could be done at the object's
interface. It is interesting to note that this approach avoids many of the

Article 5 =35 Context

issues dealing with the question of what to do when a conventional operating
system evaluates an incorrect capability, by delegating the decision to the
object (which is, after all, a more interested party). The possibility of
objects performing all access checks begins to blur the distinction between
the access control list approach and the capability list approach. The
difference is that the access control list approach dictates that the object
receives an unforgeable identity of the subject accessing it which it must
validate and the capability list approach dictates that the object receives
a capability to perform a particular function that it must validate (this
could be considered to be an unforgeable identity of the operation to be
performed). The representation system discussed in '"Design of a
Representation System" provides names that can be validated in general so
that access controls using either the access control list or the capability

list approach are possible.

Access control models can be divided into two parts denoted as
discretionary and non-discretionary respectively. The former correspond to
the access matrix model in which the access matrix is itself considered as
an object so that it is possible for subjects to alter their (and other
subject's) access to objects (in controlled ways). The latter corresponds
to the case when the access matrix is not amongst the set of objects used.
In point of fact an entire system cannot be precisely non-discretionary
because some operation on an access matrix is implied when a new object is
created. The best known example of a non-discretionary system is the
military system in which each object is given an access category (top
secret, secret, confidential or unclassified, for example) and each subject
is given a clearance level which must exceed or equal the access category of
the object being accessed. In addition access is further restricted by a
need-to-know criterion in which only certain subjects may access certain
objects - such as is easily modelled by an access matrix. The initial
creation of the need-to-know lists and the initial access category of an
object are not easily automated or formalized since, in reality, they are
based on value judgment about both the subject and object. An attempt,
however, was made to implement a data security system conforming to military
standards in the ADEPT-50 operating system [Weissman69]. Karger argues
in [Karger77] that formalisms can be made of non-discretionary systems that
cannot be made of discretionary ones and he investigates the application of
non-discretionary systems to the decentralized computing environment in
general.

Article 5 ~36~ Context

A good summary of current activities in the general field of information
protection in a distributed environment can be found in [Davies81]. A short
summary of the take-grant system developed by A. K. Jones can be found there,.
This system consists of a graph of nodes representing either subjects or
objects connected by directed arcs labelled by the access attributes that
one end has to the other. Access attributes include take, grant, create,
and remove rights, through which subjects may manipulate access rights to
others. Subjects are allowed to exercise their access rights directly
whereas objects act as passive holders of access rights which can be
manipulated by subjects. The model is a specific example of a discretionary
éccess model which could be implemented using an access control matrix. Its
benefit is in the choice of access matrix access primitives. Jones has
shown that the potential access of one node to another can be decided in
linear time if these primitives are used. This is not true for more complex
models (such as those used 1in other discretionary access control
implementations) whereas non-discretionary access control mechanisms have

been advocated in the past because such decisions are trivial.

The number of primitives provided for the manipulation of the access
matrix itself has been subject to consideration by others in this general
area. In particular work has been carried out in the provision of
verifiable security kernels on the grounds that the security of a large
operating system is not easily verifiable while it may be possible to
certify a small core of code dealing with the provision of security
primitives. A small set of primitives is therefore desirable. This line of
investigation has resulted in the development of several mathematical
models for security. Except for the fact that only a few simple and
mathematically specifiable operations are used in the representation system
developed (which only forms a basis for an access control system) this work
is largely tangential to this dissertation.

5,3 Authentication

Authentication, the act of proving a subject's identity, is used at
several levels in a conventional operating system. It is most manifest to a
user when he logs on and has to quote a password or offer some other
credential. However, as mentioned above, authentication also happens at a
much lower level within a computer - namely whenever a subject accesses an
object in an invocation of the access control mechanism. In modern
capability systems this may happen on every access to a memory location.

Article 5 =37~ Context

Authentication in this case could be provided by the presence of the
object's name in a special hardware register. Thus, things both within an
operating system (such as processes) and outside it (such as users) undergo
authentication. In a distributed operating system there is yet another
level corresponding to things within the distributed operating system but
outside individual component operating systems. That is, there is a
requirement for things that have been authenticated to the distributed
operating system to be subsequently re-authenticated to component computers
so that, for example, a user can log on only once to the distributed

operating system which authenticates him to each component machine.

Because distributed operating systems are not yet common and the latter
requirement is not, therefore, widely needed there is very little in the
literature about it. The authentication internal to an operating system is
rather too trivial to receive any specific attention hence most work is
focused on the authentication of objects external to an operating system.
When put into the context of a network this work, by and large, merely
extends these methods. '

Using passwords for authentication in a network has several
disadvantages. In a remote Jjob processing application, for example,
changing passwords quoted in stored job images can be difficult if the job
image is not to be invalidated. Naturally, any difficulty in the routine
replacement of passwords prejudices the security they provide. The problem
of a single user having to use several passwords is well known. If they are
all different he is likely to write them down somewhere - which is highly
insecure - and if they are all the same he is liable to be extremely

reluctant to change any of them as often as is necessary.

One solution to these problems is proposed [JNT80] by the Job Transfer
Protocol working group of the Data Communications Protocols Unit set up by
the Department of Industry in which an audit trace is built from the name of
each computing element that has passed on an indication that a correct
password has been checked. The first name in the audit trace is the name of
the element that made the check. Elements performing intermediate
communication are merely required to add the name of their immediate sender
to the list of names already in the trace. If the recipient trusts the
authorizing computer and each of the others in the list it can elect to take
this as sufficient proof of the initiator's identity, otherwise there is a
provision for the use of passwords directly. The scheme relies on the
ability of one element to authenticate another through its address. It is

Article 5 -38~ Context

assumed that the address of the sender can be correctly obtained and that
this address is sufficient to identify the immediate sender (which may not
be true if dynamic services are in use).

The transport service proposed for use in the above is, in fact, the one
prepared by study group ‘three of the Post Office PSS User
Forum [Yellowbook80]1 which has no provision for authentication built into
it. (Authentication is listed under "Points for further study"). The
necessity for authentication at this level has since become apparent and the
resulting modification to the protocol is described in "Authenticated
Communication".

Karger [Karger77] describes a mechanism which he calls "proxy login"
whereby a user of a particular computing element has the ability to let
specified users of other computers have access under his name. On his
authorization the computer will allow another computer to log on by
authenticating itself and giving the name of its user for whom a session is
to be initiated. Assuming the user's name is one that has previously been
authorized, access is then allowed in the authorizing user's name. The
intention here is that a user should allow access to his resources to
himself as identified on other computers., Thus a user, if he has set
everything up correctly, could log on to a computer only once and
subsequently access many others. A similar scheme was independently
conceived and implemented on the CAP computer at Cambridge University by
Johnson whereby users could elect to be able to be authorized by the network
user identification system described in this thesis instead of by its own
password mechanism [Johnson80bl.

As has often been pointed out, all internal authentication and security
measures are of little use if the procedure used for external authentication
of a user is fallible. The popular method of authenticating people by
password is, in general, rather inadequate. Popek and Kline propose that
far more secure methods are necessary such as a mechanism based upon
fingerprints [Popek79]. Amongst the problems encountered have been the
security of the password file and the difficulty that people seem to have
inventing passwords with sufficient randomness. A short password can easily
be guessed and a long one is likely to be written down, compromising the
security that it would have had. In addition there is a tendency for
passwords to be fairly predictable. Morris and Thompson give a good account
of the many ways in which a password system can fail in [Morris791l.
R. M. Needham is first credited with the idea of enciphering a passwords file

Article 5 -39- Context

and matching similarly enciphered passwords against it in [Wilkes68]. Such
an enciphering algorithm must be non-invertible. Purdy [PurdyT7i4] gives a
description of the features desirable in such a function and proposes one
based on polynomials over a prime modulus. [WeissT4] proposes a function
which is simply too difficult to analyse, let alone invert. The ADEPT-50
system [Weissman69] allows up to 64 twelve character passwords to be kept

for each user - they are used serially.

5.4 Protected Object References

Representation systems to facilitate authentication between a network
and its component computing elements have received little explicit
attention. However, some of the topic has been covered under different

names.

The best known representation systems use encryption. Because
encryption is all but indispensable when wishing to provide privacy over
vulnerable communication lines it seems to many to be the best mechanism
available for authentication (this is discussed in '"Authenticated
Communication"). 1In general these mechanisms involve the encryption and
subsequent transmission of some data which the recipient is either
implicitly or explicitly told (for example, the time of day or the name of
the sender). The receiver then decrypts the message and compares it with
the original data. Identity implies that the sender knew the key necessary
for its encryption and deductions are made from there. In the private-key
authentication protocols given in [Needham781], for example, the data is a
simple function of some known information and the key is one obtained in
secret only by the participants in a communication. As explained by Diffie
and Hellman in [Diffie76], such encrypted items of data can be used as
"digital signatures". A protocol for the use of such a sighature is again
given in [Needham78] in which the encrypted data includes the signatries
name, and the key is uniquely known by a central authentication server which
will, at any time, verify that the signature is merely the encrypted name of
the signatory. A similar mechanism for creating unforgeable and safe names
was proposed for use in network file servers in [Needham791]. Details of the
use of both public key and private key encryption systems in a network are
given by Popek and Kline in [Popek791].

Article 5 =40~ Context

One possible advantage of Diffie and Hellman's digital signature scheme
is that the representations produced are permanent and not revocable. They
can, therefore, be saved and used to prove identity at a much later
date. [Saltzer78] however, shows that permanency brings its own problems.
The unique, secret information used to generate signatures is not liable to
be compromised over short periods of time, but since it is required to be
secret indefinitely if name forgery is to be avoided, its eventual discovery
is inevitable. When and if this information is lost it is essential that
all further signatures using that secret information should be revoked. A
central authority holding a list of secret keys and their last date of
validity for each signatory could be used for this. Signatures in this
scheme would have to include an authentic value for the time at which they
were used so that uses of the stolen key can be distinguished from uses of a
valid one. Popek and Kline note some other solutions to this problem
in [Popek79] in which notaries are used to record the use of non-revoked
signatures so that they may be verified at a later date. Whatever the
mechanism used, it is obvious that any "secret" information involved in the

formulation of an object representation must be revocable.

Dion used secret 64 bit numbers to represent the files in his file
server [Dion81]. Two types of number were used, the names of which greatly
influenced the nomenclature used in this dissertation. The first was used
as the permanent (but secret) name of a file, using which the file could
always be accessed for as long as it existed. This was called a PUID (for
Permanent Unique IDentifier). The second became transiently available
whilst a file was open and, in consequence, was called a TUID (the "T" is for
Temporary). The TUID required frequent use in order to prevent the closure
of the file to which it referred and the TUIDs subsequent disappearance.

Donnelly and Fletcher examine four methods of producing network
"capabilities" and the problems associated with each in [Donnelly80] . The
first they consider 1is M"password protected" capabilities in which the
capability for a resource is simply a password invented at random by the
resource holder to refer to it. The password is then passed around the
network in the same way as a capability. The second method involves access
lists in which reliably known addresses are used to identify subjects and,
in conjunction with the list, authorize access. A third method relieves the
resource maintainer of the tedium of keeping an access list by encrypting
the resource's name together with the address of the bona fide client and
using the result as a capability. These last two methods would need
messages to the resource holder in order to pass the capability to a new

Article 5 U - Context

address but this necessity is avoided in the fourth solution. This employs
public key encryption (with commutative encryption and decryption
functions). In this last suggestion a password protected capability (the
encrypted name of the resource) undergoes a series of encryptions and
decryptions in such a way that is usable only by its current holder at any
given time. Although revocation of such capabilities was not discussed, the
relevant explicit facilities could be added to their first two solutions.
There is no suggestion that capability passing or revocation could be

centralized to provide a unified network service.

A second paper from the Lawrence Livermore Laboratory [Nesset81] builds
upon Fletcher and Donnelly's work to present a method of securely passing
capabilities which he calls "protected identifiers" using private rather
than public encryption (which, as technology currently stands, can be
implemented far more efficiently). Resources are referred to by a name, ID,
and represented by a protected identifier Pij(ID) which can only be used by
j at service i. In order to pass the protected identifier j can use the
function Tijk which transforms Pij(ID) into Pik(ID). These functions are
discussed and devised using private key encryption. Such capabilities
cannot be usefully stolen as long as the network provides a reliable method
of determining the identity of a sender (otherwise it might be possible for
k to steal Pij(ID) and use it pretending to be Jj). Unforgeability is
achieved by using Pij(ID+) rather than Pij(ID), where ID+ contains two parts
- the name of the resource that it is to represent, and an unguessable set of
bits to which it is related by some function that only the originator can

perform,
The work described in this thesis is reported in [Girling82] and several

references to local documentation can be found in [Girling81] which

describes the use of the mechanism developed.

Article 5 42w Context

Article 6

IMPLEMENTATION OF AN OBJECT REPRESENTATION SYSTEM

This article delineates the implementation of the design outlined in
"Design of an Object Representation System". The implementation of each of

the major items of a system of representation is detailed in the sequence:

- a naming system
- unique, unforgeable tokens

- a relation between the unforgeable tokens and propositions about the
names of the objects so represented

This system is briefly explained in [Girling82 1.

6.1 A Naming System

In the article "Design of an Object Representation System" it was shown
that a naming system could be supported by an arbitrary number of name

generating servers® providing names with the following characteristics:

- They have many bits so that the same name never need be generated
twice during the system's lifetime.

- They have a field reserved for identifying the generating server.

- They are generated in order from a well ordered set.

It was decided to use a 64-bit number (a convenient size) to represent a
name, the least significant 48 bits being allocated by the generating
server. Of the remaining 16 bits only the least significant 8 are used to
identify the name generating server. The most significant 8 bits are always
ones - providing a small amount of static information which can be checked
so that these names can be distinguished from tokens (the design of which is
to follow).

This is in keeping with the general aim of "fail soft characteristics"
given in "Base Network Structure.

Article 6 =43 Implementation

Thus for the particular implementation on the Ring the following

restraints have already been imposed:

- There will be no more than 256 different name producing servers on the
network (during the network's life time).

- Each name producing server may produce no more than 2”8 {(about 281
billion) different names.

Despite the design for names recommended in the previous article it was
decided, on this experimental system, not to generate names from a well
ordered set but to pick them randomly from ‘a series of 128-bit random
numbers. (The series actually chosen is not quite pseudo-random, and is

not, in fact, well ordered). The reasons for this are as follows:

- If the first name is a fixed value and each successive name is the
next in a well known ordering (such as increasing integers) it would
be some time before a name which could not easily be compacted into
just a few bits arose®, This may tempt users into misrepresenting
names in their programs and, perhaps, avoid some difficulty inherent
in the use of large names. (Such problems would obviously be of
interest).

- Name generating servers need not keep state in reliable storage
whereas, if a strict sequence is to be produced, the last name
generated must always be known in order to generate the next. Should
this last name be lost a safe way to continue operation would be to
abandon the current name producing identifier and choose an
unallocated one. Since there are only a small number of these
identifiers it is desirable that they should be able to last longer
than the mean time between failures of the name producing servers
(that is, that they can be reinstated after a crash). Name generating
servers would have to be able to find the last name generated when
restarting. This problem is completely avoided by using a random
series since it needs no "state" information to operate. (Naturally,
this is not the only solution to the problem - but it may be the
easiest).

- Practically speaking, a random number generator is necessary, in any
case, for the generation of tokens - as will be seen in the next
section.

% Experience shows that names are allocated only very slowly under normal
circumstances. Recent rates have been much less than even 100 names per
month. However, this figure would be much larger if applications using
nonce identifiers were developed.

Article 6 Ll Implementation

A name produced in this way is called a permanent unique identifier
(abbreviated to PUID) and has the following structure:

8 bits 8 bits 48 bits
FF UGID Random
FF = all ones
UGID = 8-bit identification of UID generator

A single server whose address is given by the name server when sent the
string "NEWPUID", which, upon request, will send a user a PUID in the above

format.
Note that an SSP interface can be provided here because the loss of name

generated and not received is insignificant — there being an adequate supply
of names not to be concerned about the fraction that are lost.

6.2 Unique unforgeable Tokens

Relatively few constraints have been put upon the design of these tokens
in the previous article: indeed the only characteristics determined have

been:

- They are to be generated at random.

- They must have many bits so that they cannot be easily guessed during
their lifetime,

It was decided to use 64-bit numbers to represent these tokens, both for
convenience and for the sake of uniformity (with PUIDs). Indeed, as
described above, a PUID provides both of the characteristics necessary.
Hence the NEWPUID server uses the code whose primary purpose is to generate
new tokens. This functional dependency is purely for convenience and is not

a logical necessity.

Article 6 45 Implementation

These tokens are generated only by servers maintaining relation tables.
If there are several such tables (as is desirable in order to to fulfil the
system aims outlined in the article on "Base Network Structure") it will be
necessary to find which table contains any particular token (for the purpose
of verification for example). Accordingly the most significant 8 bits of
the PUID are changed from the ones present in a PUID to the identity of the
particular table which should hold that token. Thus for a particular
implementation the following restraints have been imposed:

- There will be no more than 254 representation tables at any given
time. (Of the 256 values available from the 8-bit identification
field in a token two are reserved: one (all ones) to denote a PUID; and
all bits zero, which is used to denote a null token®),

- The chances of guessing a token so generated can be no better than 1
in 256 (about 72 thousand billion). This assumes that there are a
full complement of 256 NEWPUID servers chosen at random when a token
is generated and that the representation table is already known. In
the current implementation there is only one NEWPUID server so that
the chances can be no better than 2”8. The chances of generating two
identical tokens with overlapping periods of existence is somewhat
lower than this and depends upon the first token's period of existence
and the rate of token generation during that period. 1In the worst
case a very rough calculation shows that this chance would drop as far
as 1 in 218 (about one in 260 thousand) - however, duplication is
explicitly checked for, so this case never arises. This check can be
performed because, by definition, a relation table server always
holds all the tokens that it has generated that are valid.

A token produced in this way is called a temporary unique identifier
(abbreviated to TUID) and has the following structure:

8 bits 8 bits 48 bits
ID UGID Random
ID = identification of table in which TUID resides

UGID 8-bit identification of UID generator

¥ The definition of a null token has been found to be a convenience in
cases where an "impossible" name or token is desired.

Article 6 -l 6- Implementation

TUIDs are generated only from representation tables' servers.

6.3 Active Object Table Service

The relation, forming the last part of an object representation system,
is implemented in the form of an active object table (abbreviated to AOT).
A service which maintains such a table is called an AOT server.

\

The active object table conceptually has tuples in the form:

Kd, t, A, N, /¥

as described in the notation given in "Design Of An Object Representation
System". Both d and t are tokens, t is simply called the TUID. d is called
the TPUID of the tuple because it can be thought of as the temporary
(because it lasts only as long as the tuple) permanent name for the tuple. A
is the tuple's authentity and N is its PUID. A\ is the tuple's time out value
in seconds. The maximum value of A is o2k (representing about six months)
although a tuple can be maintained in existence for longer periods by

refreshing the timeout.

6.3.1 Entries

As discussed in the previous article at least the following entries will

be necessary:

- VERIFY

To VERIFY that a representation is valid (that 1is, to prove
t V p(A\N)).

- GETTUID

To create a new representation given the tuple <d,t,A,N,/V for a given
/A and N (given tokens x,y: x V 1i(y,AUTH\A) to prove that new
representations may be created) returning d and t.

- REFRESH

To change the timeout, A of a representation given by the tuple
<d,t,A,N,\ given d,t,A and N such that d V i(t,A\N).

In addition the following two entries are provided:

Article 6 U7 Implementation

- IDENTIFY

To VERIFY that a given representation is owned (that is, to prove
d V i(t,A\N) for a given d,t,A and N).

- ENHANCE

To create a new representation given by a tuple <d,t,A,N,/> using the
same TUID as another representation and a given A\ and N (if tokens
exist x,y: x V i(y,AUTH\A)).

The above entries are basically of three types:

1) VERIFY and IDENTIFY are used to check things: VERIFY checks that a
representation holds (t V p(A\N)) and IDENTIFY checks that a representation
is owned (dV 1i(t,A\N)).

2) GETTUID and ENHANCE are used to create new tuples. In order to create
a tuple it must first be proved that the representation of an authentity is
owned. That is to say, x and y must be provided for which

x V i(y, AUTH\A)

where A is the authentity for the new tuple. New tokens t and d are created
using the GETTUID entry but the TUID t is specified in advance using the
ENHANCE entry. The GETTUID entry can be used to create a representation
under a first authentity, ENHANCE can then be used to make the same TUID a
representation of other objects (or perhaps the same object under different
authentities - a similar process to the signing of a contract by all those

concerned: different authentities being equivalent to different signatures).

3) Using REFRESH a representation can be either deleted or maintained
indefinitely. It is necessary to prove that the representation being
REFRESHed is owned before this can be done. That is, tokens t and d must be

provided for which

dV i(t, A\N)

The timeout A\ of the tuple <d,t,A,N,/V can then be changed. When the new
timeout is zero the tuple is always deleted before a reply is made. This
prevents there being a brief window during which the tuple might get
revived.

Article 6 -4 8- Implementation

Of these entries it is possibly ENHANCE whose use is the least obvious.
Although it has several possible uses to the holder of an authentity
representation, such as giving a simple TUID more than one PUID (alias) with
which to identify itself, or giving a representation generated by another
authority an alternative name under its own authority, its most important
use is the generation of representations with more than one authentity .
Such compound authentities arise naturally when an object is partially
created by each of several creators: as each new part of the represented
object is created an authentity for the part-creating authority is added to
the existing TUID using ENHANCE, For example, suppose that a car is to be
represented which is created half by a factory with a representation for
tauth\factory1' and another with one for 'auth\factory2'. The first factory,
after making its bit of the car, would use GETTUID to create a
representation for 'factoryl\ecar' the TUID of which would be sent to the
second. This factory would make its part and then ENHANCE the TUID so that a
representation for 'factory2\car' also exists. The resulting representation
could well be called '(factoryl,factory2)\car'. If such a compound
authentity is in use it should be verified using VERIFY first with
authentity 'factoryl' and then with 'factory2' to check that both components
are present - if one is missing the TUID cannot be said to be a

representation for '(factoryl,factory2)\car'.

To give an example illustrative of the operation's similarity to adding a
ngignature" consider the representation of a European parliamentary bill.
Suppose that such a bill is not recognized unless each constituent country
agrees with its content. The proposing country would create the bill as a
document and a representation for it (using GETTUID). It would then pass
the bill to each other country with the TUID. Other countries would inspect
the bill and, if it was thought reasonable, they would "sign" the bill by
adding their name to the list of authentities given to the TUID (using
ENHANCE)., The compound authentity consisting 6f the names of all countries
would then be used to verify the TUID where ever it was used. (An
interesting concomitant is that any country could withdraw its support for

the bill at any time by revoking its representation.)

Article 6 -4g- Implementation

6.3.2 Interface design

In designing an SSP interface for VERIFY, IDENTIFY, GETTUID, ENHANCE and
REFRESH the following considerations must be borne in mind:¥

1) Each entry should be repeatable.

2) All the tuples relating to a given TUID should reside in the same AOT
(since the AOT's identity is built into each TUID).

These considerations do not affect either VERIFY or IDENTIFY since they
can be repeated arbitrarily often without harm. Refresh is also repeatable
since when a reply is eventually received the relevant tuple's timeout will
have been set to the requested value. However, the requester must be
prepared to get a return code indicating that the tuple does not exist if a

new timeout of (or near) zero seconds is requested.

GETTUID and ENHANCE are not, strictly speaking, repeatable since
repeated correct applications will produce spurious tuples in the AOT.
However, this is (practically speaking) completely indiscernible to the
user since the TPUID and the TUID are lost. In both cases the eventual reply
will be correct and unaffected by any previous feplies which have been lost.
After the initial timeout value specified in the request spurious tuples
will time out (since the TPUID necessary to maintain them will have been
lost). The major cause for concern is that too many spurious tuples will be
generated causing the table to fill. It is necessary to ensure that the
mean time between lost replies is greater than the timeout value of each set
of tuples with the same timeout. Since the mean time between lost replies
is quite long (due in part to the Ring's low error rate) SSPs are quite
reasonable as long as very long initial timeouts are not often requested.
To this end the initial timeout that can be specified with ENHANCE and
GETTUID is limited to 216 seconds (about 18 hours) and must be set using
REFRESH if higher values are necessary. Note that in the case of ENHANCE
the creator of a new representation cannot guarantee to make

t V p(A\N)

cease to hold after deleting the representation that he has generated if it
is deleted before its initial timeout period. This is because the relation
may be holding through a spurious tuple that was generated by the ENHANCE
attempt.

See the article called "Base Network Structure" about SSP.

Article 6 ~50- Implementation

In order to ensure that TUIDs, once generated, exist only in one AOT,
ENHANCE checks that the TUID provided for the creation of a new
representation already exists in the AOT.

In order to ensure the uniqueness of TUIDs, new TUIDs (generated by
GETTUID) are always checked against those already in the AOT,

The actual interface as implemented is as follows:

entry arguments results

GETTUID N, v, %, A, A t, d
VERIFY t, N, A <none>
IDENTIFY t, d, N, A JAY
REFRESH t, d, N, A, A\ <none>
ENHANCE t, N, v, x, A, AA d

where dV i(t, A\N)

and x V i(y, AUTH\A)

6.3.3 Implementation details

The address of the only AOT server in the Ring is given by the name server
in response to the string "AOT-1", The "1" refers to the fact that all TUIDs
from this service are marked with the value 1 in the AOT identification
field. The number in the string is notionally decimal with no leading zeros
although this is not well demonstrated in this example. The service is
actually provided in a Z80 microprocessor using 32K bytes of memory.

The software was designed to minimize memory use and to make the VERIFY
entry as fast as possible (since this should be the main manifestation of

the server).

In order to reduce the memory requirement PUIDs and authentities (which
have the same format as PUIDs) were kept in a table, each with its own use
count, so that multiple copies did not have to be kept. There is a similar
(though, naturally, not so effective) system for TUIDs and TPUIDs (which
have the same format as TUIDs).

In order to reduce the time that the VERIFY (and IDENTIFY) operations

take a hash table is used - the key being a function of the PUID, authentity
and TUID of the tuple (the only information guaranteed to be available).

Article 6 -51- Implementation

The result is that the VERIFY entry is faster than the entries involving the
creation of new tuples. In many operating systems this efficiency cannot be
well appreciated, since most of the time taken to perform a VERIFY will be
taken in the host's software.

The NEWPUID server (which is provided by the same Z80) uses this random
number generator for the random 48 bits of a PUID. The generator is based
upon a 128-bit pseudo random number generator: a 48-bit field being selected
when creating a PUID. A new tuple, however, requires both a new TUID and a
new TPUID., Since it must be impossible to deduce the one from the other they
must be independent (so that simply running the random number generator
twice would be useless). 96 bits are used in the simultaneous generation of
a TUID and a TPUID for a new tuple (when GETTUID is used) - the extra 32 bits
in the generator being provided to make it difficult for new TUID & TPUID
recipients to guess the value of the random number generator's seed and
therefore be able to deduce the succeeding numbers. (If all the bits of the
seed were in the TUID and TPUID the recipient of these tokens would be able
to deduce the succeeding TUIDs and TPUIDs if he knew the algorithm used for
the pseudo random number generation). Since the random number generator is
a simple multiplicative type, care is taken to select the most, rather than
the least, significant bits from the seed when taking a sample. Otherwise,
no matter how large the seed, the next sample would always be deducible from
the current one. To increase a user's difficulty in this respect the seed is
incremented "every now and again" (once a second under normal
circumstances). This combined with not knowing how many times the random
number generator may have been used between calls is judged to be sufficient

protection against prediction.

Since the lifetime of a tuple (up to six months or so) can be very much
longer than the mean time between failures of the 280 it is necessary to
"back up" the AOT to stable storage. The information constituting the AOT
is therefore periodically written to the Ring's file server. When the
service is rebooted the last AOT saved is read back. This places a rather
undesirable reliance upon the file server since if it is not functioning
when the last AOT is to be read the service must be suspended until the
relevant file can be read. The file used is secret (being a file server
unique identifier) and known only to the service*. This method has

maintained the AOT very well, there currently being a tuple which has

¥ The unique identifier for this file is currently built into the service's
source. See "Service Representation" for a method of avoiding this.

Article 6 52~ Implementation

remained verifiable for over two years.

Timeouts are uniformly decremented every second. Under normal
circumstances the timing is supplied by a server on the Ring whose address
can be obtained from the name server when presented the string "CLOCK". In
fact, this server uses a radio timing signal broadcast from Rugby where an
atomic clock is used. In this case such precision is not strictly necessary.
Under normal circumstances it provides a sighal every second including the
time and date. If this server fails a less accurate internal software time

is used until the clock server becomes available again [Johnson80al.

There is currently sufficient space for 500 tuples although this could
easily be extended since not all of the memory available on the Z80 has been
used.

6.4 Conclusion

The object naming system described in the article called "Object
Representation" and designed 1in the chapter "Design of an Object

Representation System" is implemented using:

- A naming system made from PUIDs providing both names of objects and
the names of authorities (that is, authentities).

- Unique unforgeable tokens made from TUIDs used either to prove the
validity of a representation (as a TUID) or to prove the ownership of
a representation (as a TPUID).

- A relation made from AOT servers which provide the following entries:

VERIFY - to prove t V p(A\N)
IDENTIFY - to prove dV i(t, A\N)
GETTUID - to create a new tuple
ENHANCE - to create a new tuple
with an already existing TUID
REFRESH -~ to change a tuple's timeout

The practical use of such a system is described in the following

articles.

Article 6 53~ Implementation

Article 7

THE SOURCE OF ALL POWER

This article investigates the structure of authority and establishes the
desirability of a single Source Of All Power (abbreviated to SOAP). A
service which utilizes the power available at this source in a well

controlled manner is also briefly described.

7.1 Authority in Representations

Trusting a representation for A\N from the object representation system
described in the article "Implementation of an Object Representation

System" consists of the following checks*:

(a) that the expected representation is verifiable under the authentity A
and name N at the AOT indicated

(b) that you trust the representation of objects created by A
(¢) that you accept A\N as trustworthy
(d) that you trust the relation supplied by the appropriate AOT

(a), (b), and (c) can be taken together as a check that the representation
for A\N is trusted. (d) could be checked using the techniques of static
service authentication (assuming that AOTs are static) described in
#Service Representation". (b) boils down to trusting that the possessor of
a representation for auth\A does what is expected of auth\A and that the AOT
properly verifies its representation before creating A\N (in the way given
in (a), (b), (c) and (d) above). That is, it is necessary to trust auth\A
before A\N can be trusted.

A hierarchy of authority is being developed here. The name auth\A is the
name of a more "powerful" entity than A\N because auth\A could actually
create a representation of A\N (as well as a large nhumber of other

representations of the same general form). The possessor of a

% For example, these could be the checks that an operating system performs
on a representation for A\N before it allows A\N to log on.

Article 7 Sl SOAP

representation for auth\A can, therefore, always do at least as much (by
virtue of a representation) as A\N can. In effect, any power that A\N has,
has been delegated to it from auth\A.

Reapplication of the same argument reveals that in order to trust auth\A
one must first trust auth\auth and it is this that has delegated a portion
of its authority to auth\A. In this implementation this is where the list
of names to trust comes to a dead end because (by the same argument) in order
to trust auth\auth it is only necessary to trust auth\auth itself. The
possession of a representation for this name enables any representation to
be created; it is therefore the most powerful name in the representation

system and is distinguished by the term "SOAP name"¥,

Supreme authority rests, therefore, with the SOAP name auth\auth. If a
network is started up with only one trusted service, which possesses a
representation for auth\auth, the authority structure of the rest of the
network can be recreated from scratch simply by having auth\auth delegate
its authority appropriately.

7.2 Authority in Reality

Although the names of things to trust seem to have come to an end with
auth\auth, this is only so because higher levels of authority exist outside
the network's representation system and therefore do not necessarily use
names within it. It has been established above (implicitly) that it is the
ability to create the representation of another implies authority over it#.
To find a name with greater authority than another, it is only necessary to

find a name that could be used to create a representation for it.

¥ Note that every name to be trusted, (auth\auth and auth\A in these two
part names) can be deduced from the name A\N. This kind of name (A\N) can
be thought of as an ordered list of objects which must be trusted before
the name as a whole can be. This concept is not very clear where a name
can have at most two parts (for example, one\two) but is made clearer
when it is generalized in "Wariants in AOT Design".

If you can create a representation for another object that representation
can be used to pretend to be that object. It is therefore possible to do
anything that anything you can create can do.

Article 7 =55~ SOAP

The representation system supports itself from within, since the name
auth\auth can create itself - so once that name 1is represented, a
representation for any name can always exist without the need for external
authority. However, if it is supposed that there is ever a time when no
representation for the SOAP name exists, and that it is then created, then
the creator will, in effect, have greater authority than the SOAP name. In
a real representation system allowance must be made for both the initial
"pootstrapping" of the representation system (which, in theory, might only
be once in the history of the representation system) and for subsequent loss
of authority (literally) through accident, error, or theft; so there must be
some way for a higher-than-SOAP-name authority to start things up again.
The least that is necessary is that something must be able to create a
representation for auth\auth and then send it to an initiating service -
which could delegate the authority as appropriate. It is obviously best to
have as few things with this ability as possible since each poses a risk to
the integrity of the entire representation system: one would suffice
(preferably incapacitated for most of the time). SOAP is the name of the
thing with this ability.

SOAP can be thought of as a gateway between internal authority as carried
by an internal representation system and external authority (such as line
management or a military hierarchy). Since the security of the network is
supported by object representations and the responsibility for each
representation resides with SOAP, the security of the entire network could
be enforced by protecting SOAP adequately. For example, if SOAP were a
particular place on the network, that place could be enclosed in concrete
and iron bars and surrounded by security personnel and so forth in order to
ensure that the hierarchy of authority in the outside world is correctly
administered.

On the Ring (described in the article "Implementation Environment") a
particular station was chosen for SOAP. The station number of a sender is
unforgeable and can be used to verify whether or not a request has emanated
from SOAP. The AOT service described in "Implementation of an Object
Representation System" will produce UID sets without checking an authentity

representation if the request comes from SOAP.

Article 7 56— SOAP

|
|
|
|
2
|
\
|
‘
i
i

7.3 Autonomy versus Heterohomy

In "Base Network Structure" autonomy was listed as one of the goals of a
distributed operating system. That is, services should be at liberty to be
as independent of each other as they please. It is true that services can
choose either to use or not to use the representation system, and that if
they do choose to use it they can choose which authentities to trust and
which not. It has not been mentioned however to what extent more than one

SOAP could be recognized.

There is no reason why the mechanism for the representation system could
not be completely duplicated with one set of services having a SOAP name
auth1\authil and another with auth2\auth2, for example. In the absence of
any interaction between the two systems there is no reason why this approach
should not be completely successful. As soon as there is some interaction
between the authl authority domain and the auth2 authority domain however
the meaning to one system of representations belonging to another becomes a
problem. Given a representation for an object A\N it is necessary to know
to which system it pertains in order to know which other names to trust (as
discussed above: either auth1\A and authi\auth?l or auth2\A and auth2\auth2)

and, more practically to know to which AOT to go in order to verify it.

The crux of the problem is that two (or, in general, more) separate
representation systems are being used. These systems could just as easily
be completely different and the same problems would occur. The problem is
that of assigning meaning in one authority domain to a representation from
another, There are two possible ways that a particular authority domain can
deal with it.

The first is to become simultaneously a member of both (or all) domains
verifying each representation in the relevant authority domain. Note that
it is always necessary to be able to identify the particular authority
domain being used - whether it is explicitly given, or available only
through context. In effect a representation's authority domain identity
becomes part of the object's name in much the same way as an authentity. If
the different representations all take the normal form the effective result

is that a system using three part names is actually used*:

¥ This kind of variation in naming structure is discussed in "Variants in
AQT Design",

Article 7 =57- SOAP

<domain>\<authentity>\Kname>

If different forms of representation are used this solution becomes rather
unwieldy, since more than one way of verifying and handling representations
will have to be supported everywhere, as will the recognhition and
comprehension of the different naming structures used in each domain of

authority.

The second way is to convert external representation to internal ones
using one of the methods of authentication proposed in the article on
authentication. This has the disadvantage that any communication with
another authority domain will have to be via the appropriate type of
authenticator. Communications would need a '"representation primitive"
similar to the '"address primitive" defined in [Yellowbook80] that
representation gateways could perform the appropriate transformation on.
Also %to a greater or lesser extent the onus for deciding which
representations are trustworthy is passed from the representation's ultimate
recipient to the authenticator (which has both advantagés and
disadvantages). In addition, the authenticator has to be quite complex if
it is to ensure that the two representations (internal and external) for any
given object that it authenticates stay in existence for the same period of

time.

Tn either case the costs and inconvenience can be large. Some degree of
heteronomy will be necessary between the various authority domains, even if
it is just to agree upon different names for themselves. Where possible it
would seem preferable to adopt just one global representation system and to
implement autonomy by dividing up the authentity name space among the
different authority areas.

7.4 The SOAP Service

As discussed above it is SOAP's responsibility to initiate the authority
structure of the network. Although this could be done simply by "passing
the buck" to another service by sending it a representation for the SOAP
name, in practice the distribution problem would still remain - but at this
other service.

Article 7 ~58- SOAP

During the operation of the network objects and services will come and go
-~ each requiring different authentity representations. It would clearly be
rather inconvenient if external authority (such as that of an operator) were
sought before granting a service (say) with the authentity representation it
needs for its operation. Some automatic means of providing authentity
representations to particular, well identified, objects is necessary. For
this reason there is a service on the Ring which resides at the SOAP station
which manages SOAP's responsibilities. It holds a list of objects (A\N) and
the authentities that they are allowed. After checking that a particular
object is allowed a given authentity representation it creates one for that
client and passes it back. The interface to this service is precisely the

same as that to the privilege manager (see "Privilege Management").

Using this mechanism a service, newly booted with its own
representation*, can obtain the authentity representations that it needs by
presenting its identifying representation to the SOAP service and making the
appropriate request.

¥ The article "Service Representation" describes how this is done.

Article 7 =59~ SOAP

Article 8

EXAMPLE SERVERS

Some examples of the use of object representation are given in this
article. In particular an accounting server, a server to provide
environments necessary for the construction of new services and a server to
provide homes for users on a fully distributed system are hypothesized.

8.1 An Accounting Server

Accounting traditionally becomes a problem when previously centralized
functions become distributed. One of the reasons for this is simply the
lack of a reliable form of representation for the objects being accounted
against. This problem has already been overcome by the use of an object
representation system. Any server can insist on a valid representation of

its user and keep accounts against it internally.

When each server keeps its own accounts, information about the "cost"
incurred by a particular user® is distributed around the network, so that
its current deficit cannot easily be found (a scheme for revoking a user's
resources when it exceeds its credit limit, for example, would be difficult

to implement).

This problem can be solved using an accounts service which keeps
different resources' accounts centrally. Such a service would possess a
representation for 'auth\account', say, which it would use to produce
representations for particular accounts (for instance, a '"pages of
printout" account (account\printout), "CPU usage" account (account\usage) ,
and so on). Representations for the relevant accounts are allowed only to
the services entitled to use them. For example, a printer server would be
allowed the representation for account\printout and would then be able to
charge its clients on that account.

* In this context "user" does not refer exclusively to people - it may
include services or other objects on whose behalf the server is being
used. The word "client" is often used instead of "user" to make this
distinction clearer.

Article 8 -60- Examples

Typically a service, once started, would approach the accounts server
with its own identification and request the representation of the accounts
relevant to its operation. These would be generated by the accounts server
‘and returned to the service, which would then be responsible for their
maintenance until it died. Each time the service performed work on behalf
of some principal* it would send the name of the principal, the amount to be
charged and the representation of the account on which the charge is to be
made to the accounting server which would decrement the relevant entry

accordingly (note that this is not an idempotent operation).

The service might take the precaution of finding the principal's current
credit before undertaking any work. This would be done by sending the
account representation and the principal's name (probably as a PUID) to the
accounting server. Additionally the same result might be available by
sending a representation for the principal and the name of the account.

8.2 An Environment Server

There are several different ways in which a service can obtain data with
which to work, each corresponding to different times at which this data was
bound to it. The most implicit binding occurs when the service has access
to data which is bound into its code when that code was created, and the most
explicit binding occurs when the service is dynamically sent data in a
request at some entry. Intermediate between these two extremes is data that
is bound into the service when it (as opposed to its code) is created. A
representation for the service itself is an example of the latter (see
"Service Representation" for an explanation of these representations and
why this binding can take place no later).

The environment in which a service runs is a combination of each of these
kinds of data and is referred to as the service's local information (defined
in "Base Network Structure")., 1In "Service Representation" a distinction is
drawn between a service's period of activity and its period of existence -
inactive services being allowed to exist. The distinction between an
inactive and a non-existent service is simply that, although neither resides
at any address on the network, an inactive service still has access to the

environment in which it has been working. This distinction is similar to

% The principal of a service entry is the thing on whose behalf it was
instigated. See "Authenticated Communication" for further discussion.

Article 8 -61- Examples

that between a suspended process and a job in a conventional operating

system,

Clearly when a service is re-created it must be able to reinstate its
previous enviromnment - to which it must have access. This environment may
actually be arbitrarily large but, using methods of indirection, the
information needed to obtain a handle on it can always be made quite small
(the name of a file in which the relevant information is kept, for example).
Therefore, in order for a service to obtain its environment, it is at least
necessary for it to have unique access to some (small) datum which it can
set before expiring and can read after re-creation.

An environment server is a service which provides exactly this function.
It acts as a small filing system, accessed by service name for services
(principally, but perhaps also for other objects) to obtain a handle on

their former environment.

It is used in the following fashion: when a server is preparing to cease
activity, it saves its environment in some server-specific way and obtains
some sort of handle for it (a file server file name would be typical on the
Ring). It then sends this handle, along with its representation, to the
environment server which "remembers" it against the service's name (as a
PUID). When the service subsequently begins activity on re-creation it
sends its identification to the environment server with a request for the
return of its environment handle. The environment server checks its
identification and, if it is valid, replies with the requested information

which then enables the service to restore its former state.

This information could range from a small block of data for a small
server to the entire state of an operating system (including, for example,
its filing system and a memory dump). A service which uniquely remembers
handles for large amounts of information from incapacitated services must
possess the following properties:

- each handle should be well protected so the security of services
cannot be compromised;

- no handle should be lost so that it cannot be recovered (the loss of a
filing system would be disastrous, for example).

In order to support the second of these requirements an environment server
should provide very secure storage (but not necessarily very much of it).

Article 8 -62- Examples

8.3 A Person Server

On a hypothetical network in which all resources are obtained dynamically

the question of where to represent an active user has no obvious answer.

First, consider what representing an active user entails. A user, having
logged on, will possess a representation for himself. It would be very
inconvenient for him to remember this representation himself - so it should
be remembered on his behalf somewhere on the network. When activities
requiring his representation are undertaken on his behalf the initiative to
send it must be taken by the user since there will be no other suitable
authentication. Hence, there must be some way for a user to instruct his
representation holder to send it somewhere. In addition to the user's
representation the same place must have access to any services, privileges
or other resources the user has collected - this is simply because the user
may be represented at this place only (so that the proof of ownership
necessary in any access can be established only there). Unless the user
obtains and uses resources capable of storing the representations of the
other resources he collects they will have to be kept with his own.

Taking a typical model in which a user finds a terminal connected to a
terminal concentrator, logs on, requests connection to a machine allocator,
obtains a processor of his own, connects his terminal to it and finally,
having completed his work, releases his machine and terminal, there are
several candidate places to position the user's representation.

First there is the terminal concentrator. Not only does it seem
inappropriate to store the user's authentication (and possibly other
representations) in a service which deals in terminal traffic, but this
solution would make it difficult for a user, who has logged on only once, to
possess more than one terminal (which he may legitimately require)
especially from two different terminal concentrators.

Second the processor obtained by the user could be considered. This is
certainly very attractive since the user is liable to have most control over
the representations that he owns here - being able to write his own programs
to manipulate them and so on. Unfortunately, the duration of this
processor's allocation to the client is not guaranteed to encompass that of
the object representations needing storing. In particular, the user may be
active for longer than the processor,.

Third the resource allocator, from which a processor is obtained, might
be suitable. This server already needs to know the user's identity (to give
to services that it has created on the his behalf) and have access to his

Article 8 ~63- Examples

resources (in order to help in the construction of new services and so on).
It is also capable of taking the initiative via commands given by the user,
since it is used via a terminal connection. However, as with the terminal
concentrator, there are problems if more than one resource allocator is
used, and the function does not seem very relevant to an allocator of

resources whose clients are not exclusively people.

The conclusion is that a separate place is needed to fulfil this
function. The following properties would be desirable in such a place:

- It should have access to all the user's object representations
(including that of the user himself).

- It should be accessible through a secure terminal connection (so that
the user can give it commands directly).

- It should authenticate the user on initial connection.

- It should provide a set of commands allowing the user to cause the
representations of objects that he owns to be available to selected
services,

To the rest of the network such a service provides a source of work
requested by its owner. For this reason it is called a "person server". Two
parts of it can easily be distinguished: one that gives a command interface
to the user's terminal, and another in which representations of objects can
be stored. These two functions could be separated if there existed a
service which provided "representation holders" in which other services
could store the representations of objects that they owned. Such a service
is called a fridge server®; the objects in which representations are kept
being called a "fridge" (see below).

A person server would have the following attributes:

- On connection it would log the user on using the user authentication
server.

- It would obtain a fridge from the fridge server and store the
representation of the user in it.

¥ The article "UID sets on TRIPOS" details the use and construction of a
fridge on TRIPOS.

Article 8 -64 - Examples

- It would provide commands to manipulate the contents of the user's
fridge such as listing it or wusing individual UID sets as the
arguments to various AOT service entries,

- It would provide a small number of commands for sending
representations to services using a small number of protocols -
accessing the fridge in a similar way to a little filing system.

- It would provide the same kind of command to send the representation
of the fridge elsewhere,

- The person server would cease to exist when the representation of its
fridge was revoked - not when its terminal connection was broken.

In this way a user can either do simple things with the objects he owns at
the person server or he can pass the entire fridge to some other, more able,
service.

8.4 A Fridge Server

As described above, a fridge server is a service which serves fridges,
fridges being containers to which new representations can be added, and from
which representations can be copied and which, where possible, ensures the
continued existence of each representation that it contains. A fridge is to
a representation system what a directory is to a filing system, with the
difference that a fridge may need active interest to be taken in it in order
to maintain it and its entries (that is, it is an active object, rather than
a passive data structure), As such it would be useful in more applications
that simply the one given above. It could be used as a convenient way to
pass multiple representations from one service to another, for example.

When a new fridge 1is created, the fridge server should create a
representation for it which is passed back to its user. The fridge's
representation thus created will exist until it is deleted or times out. It
could be used to insert new representations into the fridge, and remove or
copy them from it. Whilst a representation resides in a fridge it will be
periodically refreshed if its TPUID is available so that it does not time
out (TPUIDs are explained in "Implementation of an Object Representation
System").

Article 8 -65- Examples

Note that, if the representations within it are access capabilities, a

fridge becomes an implementation of a "domain" as explained in [Lampson71l.

Article 8 -66- Examples

Article 9

PRIVILEGE MANAGEMENT

This article describes the use of privilege representations., Privilege
management is carried out by a service whose address is held in the

nameserver under the name "PRIVMAN",

9.1 Privileges

Services on the Ring, unless they explicitly wish to restrict their
service to a particular one or two users or services, characterize the set
of their valid clients as those that possess a representation for a
particular privilege. For example, if service A can accept valid requests
only from service B it might choose to require a TUID for 'service\B'.
However, if A can accept any one of a set of users, it might require a TUID
for 'privilege\A-user'. A privilege is an abstract object whose most
important quality is that only certain objects are allowed a representation
for it. The names (authentity\PUID pairs) of these objects and the
privileges they are allowed are held in a table which is internal to the
Privilege Manager which has the capability to create privileges (that is, it
owns a representation for 'auth\privilege').

Privileges can also be used by system programs in order to ascertain the

status of a user (or other represented object) on a network,

The interface has been designed to be used in one of two ways:

(a) Using the service to check whether or not a particular object is
allowed a given privilege.

(b) Using the service to grant a privilege that is allowed.

Systems with independent authorization systems can use (a) and those which
use the Ring's system can use (b). The name of any object which is allowed a
given privilege is referred to as a virtue. A representation for a virtue

is necessary for (b), whereas only its name is needed in (a).

Article 9 ~67- Privman

Note that (a) and (b) above are slightly different. The entry for (a)
checks that a privilege would be allowed to a particular object if it were
to request it. The entry for (b) actually returns a granted privilege which
can, of itself, be used to prove that the privilege was allowed to that
object. It is preferable that services, in general, use this latter logic
to verify that a privilege is possessed. The reasons for this are two fold:

(1) It allows the owner of a privilege to "pass it on" simply by passing
on its representation. Thus an intermediate service can be delegated
to perform some action that the possession of the privilege allows
(without being able to impersonate his caller).

(2) It allows an object (a person, for example) to vary its ability to do
privileged operations by selectively claiming and deleting privilege
representations. Thus, a user could claim a privilege for a short
time, during which he performs a set of privileged operations and
could then delete that privilege to ensure that, like the rest of the
user population, he can not accidentally perform potentially
"dangerous" privileged operations.

Having obtained some privilege, A, from one of the services, a user could
then submit a request, presenting A as a virtue, and claim any privilege
that he is allowed by virtue of the possession of A. For example, suppose
the user has a TUID and TPUID for 'user\GSM' and only one privilege is
available to 'user\GSM' (say it is for the privilege 'ringuser'). Having
claimed this privilege the user can do anything that the 'ringuser' privilege
allows, and although no more privileges may have been available to tuser\GSM!'
some may be available to ‘'privilege\ringuser'. Thus, by presenting
privilege 'ringuser's TUID and TPUID, the privilege 'IBMuser', for example,
may be obtained (whereupon there may be more privileges available when using

'"IBMuser' as a virtue, and so forth).

9.2 Interface Design

The PRIVMAN service has an SSP interface® providing entries of two
general kinds. The first category of entries can be used by anyone
representing the main use of the service. The second category of entries
can be used only by a restricted class of users, distinguished by the

possession of certain privileges, and are used to maintain, correct and

The article called "Implementation Environment" gave the implications
that SSP has on an interface.

Article 9 -68- Privman

update the service.

9.2.1 The user interface

The privilege manager controls the generation of UID sets with the
authentity 'privilege'. It controls to whom these UID sets are given by
maintaining a 1list of object names (PUID, authentity pairs) and the
allowances (privileges) that each object may request. Requests are made of
the form "Please give me privilege <PUID> by virtue of my holding a valid
UID set for this object (authentity\PUID): here is the object's TUID to prove
that I can use it and its TPUID to prove that I am its owner: <TUID, TPUID>".
The service then checks that possession of that object entitles ownership of
the requested privilege and, if so, generates a UID set for the privilege
and passes it back to the user.

There are two ways in which a new UID set can be created for the
privilege; either with an existing TUID (using ENHANCE to generate the new
privilege) or with a new one (using GETTUID). These two methods are
supported by the entries BESTOW and GRANT respectively. Since, in general,
only a TUID will be necessary there is an advantage in generating privileges
using BESTOW: namely that all the privileges that a user (or other object)
possesses will be verifiable from his TUID (which may be passed around
anyway, in authenticated BSP for example - see the article on "Authenticated
Communication), This is also its main disadvantage since the more things
represented by a single TUID the greater the scope for its misuse if it is
lost. There is also an entry to check that a particular virtue (PUID,
authentity) would allow a given privilege if presented.

9.2.2 The maintenance interface

There are also entries for editing the (virtue, privilege) pairs held by
the Privilege Manager. In order to use these entries a special privilege is
needed the TUID for which is referred to below as 'auth'. This privilege is
called 'privpriv'. The first, NEWPRIV, enters a new pair into the table. It
has a null effect if such an entry already exists - and, as such, is
repeatable. The second, KILLPRIV, simply deletes a given (virtue,
privilege) pair if it is found.

The information about which virtue is allowed which privilege is held

constantly within the 280 which provides these services. It is "backed-up"
to a file server file whenever the information in it is changed. This file

Article 9 -69- Privman

is secret and inaccessible to anything but these services.

9.2.3 Interface summary

There are five entries provided by the services: one to check that a

privilege is allowed to be granted without calling an AOT; another two to

grant the requested privilege if the check succeeds (using either GETTUID or

ENHANCE); and another two for either adding or deleting (virtue, privilege)

pairs.

entry

ALLOW
BESTOW
GRANT
NEWPRIV
KILLPRIV

where
and
and
and
and

Article 9

= 2 o =

-

-

= e O Q=

arguments
, P
» N, A, P, A
’N' A’ P’A
, P, auth

P, auth

d V i(t , A\N)
d' vV i(t', PRIVILEGE\P)

auth V p(PRIVILEGE\PRIVPRIV)

P = request privilege

results

<none>
d!

g, d
<none>
<none>

A\N = name of the virtue required

70~

Privman

Article 10

VARIANTS IN AOT DESIGN

This article describes some alternative designs for the Active Object
Table used to implement object representations. Variations of the structure
of names are discussed: both an historical one-level naming scheme and a
multi level scheme are described. The meaning and advantages of a "dynamic"
as opposed to "static" name structure are given. The general problems of
unknown trust and representation confinement are discussed and an
implementation of "pass once" representations is proposed.

10.1 One Level Naming

The implementation described in the article called "Implementation of an
Object Representation System" supports a two-level naming system. That is
in order to uniquely identify any object, two name parts are necessary - a
PUID for the object's authentity and a PUID for the object within that
authority's naming domain. Originally the Ring's AOT server supported
one-level ("flat") naming in which the concept of authentity was absent or
at most represented by a constant. New object representations could be
created upon the provision of a representation of a particular object

('auth') and using it an object with any name could be generated.

Since there were no "sub-name" domains (that is, authentity controlled
domains) in each of which the same object could be named differently, the
naming scheme was necessarily global, with a fixed identity between every
object and just one PUID. In the current two-level naming scheme there are
as many sub-name domains as there are authentities (in each of which a
single object could be given a different name). Since a single mapping
between PUIDs and objects is desirable, the same object should be given the
same PUID under however many authentities it is represented (in the
two-level system). The one-level system had the advantage that such a
convention was unnecessary since it was implicitly enforced - there being

only one "authentity" (the null authentity).

Article 10 ~71= Variants

The major problems with one-level naming stem from size of the an object
producing service's domain of responsibility. If some service is to produce
objects, it must be given a representation for 'guth'. It must therefore be
a trusted service since it will be in a position to produce representations
of any object (even those that it is not expected to produce) and could, at
the worst, therefore freely give away representations of any object
requested - potentially invalidating the entire representation system
(since the recipient of a representation is unable to tell whether or not it
is in possession of a genuine representation or a bogus one produced by the
rogue service). Thus, the set of representation-producing services must be
a tightly protected and well known collection (constituting the core of a
distributed operating system perhaps). The loss of an 'auth' representation
would be disastrous to the security of the whole system. An analogy between
the possession of an 'auth' representation (or not) and being in either
"supervisor" or "user" state in a conventional operating system is easily

drawn.,

The problem of having to trust services that create representatiohs is
not so acute in the current two-level naming system. The responsibility for
ensuring the trustworthiness of such a service has passed from the donor of
the authentity representation (with which representations are created) to
the recipients of objects that have been made under a given authentity. As
an example: if a service has an X authentity representation and is known to
be untrustworthy, it is up to clients who receive objects with X authentity
not to trust them on the basis that they are likely to be of dubious origin.
Note that, since trust is a relative concept, producing objects under the X
authentity is not completely useless® since there may well be services which
do trust the X authentity (X itself for example). The loss of an X
authentity representation is not detrimental to the entire system - only to
its valid possessors; thus a "fire wall" is placed around each of the
separate types of objects which is produced in a system. An analogy can be
drawn here between the possessors of particular authentity representations
with members of a single level of protected processes in (for example) a

conventional capability-based operating system.

%# Tf it were useless the one-level naming approach would have the advantage
that such a wasted activity would be impossible in a secure system.

Article 10 ~T2= Variants

10.2 Multi Level Names

An obvious extension from the above would suggest the use of n-level
naming in which n name parts are necessary for the complete identification
of an object - the first n-1 of them comprising the object's authentity.
Here n denotes a number which is fixed and does not vary with each‘name. The
creating object itself must, therefore, also have an n part name, one or
more parts of which are dropped to become an authentity for a new object -~ to
give room for the name parts specific to the new object. Each authentity
will lose the same parts of its name when passed on to a created object's
name. These lost name parts must be fixed and common to all objects with the
capability for creating representations, otherwise the whole name of a

representation's creator will not be deducible from its authentity.

Assume an authentity is recognized by fixed values in one or more of its
name parts. This clearly divides any name into two parts: the m name parts
that comprise the authentity and the n-m that comprise the rest. This is
equivalent to the two-level naming scheme with larger authentities and basic
names (with a single name part possibly being replaced by several in each
case). In other words, given that the size of name parts is already
adequate, the two-level naming scheme is representative of all n-level

naming schemes (for a fixed n greater than one).

Names that do not have a fixed length, however, are not equivalent to the
two-level naming scheme. In an n-level scheme parts of a name are
necessarily divided up into a new part and some part(s) of the constructing
name — the rest of which must be assumed. Only objects with the assumed name
parts (which identify an authentity) can create objects. Using multi-part
pnames there is no need for a generated name to be of the same size as the
generating name. The whole of the generating name could be included in the
new name. Since no part of the generating name has to be assumed there need
be no restrictions as to which objects can create names. A representation's
authentity would be the full name of its creator. This type of multi-level
name will be referred to as a multi-part name in the following subsections.
An active object table could easily be implemented to support such names -
holding a list of PUIDs in the authentity field of each entry and allowing
any verifiable object to create another representation (with one more

component to its name).

Article 10 ~T3= Variants

10.2.1 Flow of authority

The most important implication of the use of multi-part names is that
there need be no restriction upon names that are allowed to create new
representations. Since the full identity of the representation's creator
becomes part of the new object's name, it is impossible for one object to
create a new representation that looks as if it were actually created by

something else.

Free name creation is a very natural way to pass authority down a
hierarchy. Any object's domain of responsibility* canh be carved up and each
portion assigned to deputized objects to whom the authority to manage their
portion is delegated. Such deputation can neatly and representatively be
achieved by the creation of deputies whose names include that of the
deputizing object as their authentity.

The flow of authority and hence of responsibility is not as easy as in a
two-level naming scheme. The relevant mechanisms for two-part names (as

described in earlier articles) are as follows:

1) The SOAP machine may delegate overall authority, or portions of it, to
objects with particular names.

2) Holders of authentity representations can delegate their authority to
objects with the given authentity.

3) Holders of other representations can effectively delegate their
authority by obtaining an authentity representation from the SOAP
server and using 2) or if there are a fixed (small) number of deputies
each can be identified singly using privileges from the privilege
manager.

4 The possessor of any representation can delegate its entire authority
simply through communicating that representation.

Multi-part names, by effectively making 3) unnecessary because of 2)
partially remove the need for the SOAP Server and the Privilege Manager.

In a safe hierarchy responsibility must always balance authority. The
fewer things something has authority over, the fewer it should be held
responsible for. If something is responsible for more things than it has
authority over or if it has authority over more things than it is
responsible for, corrective action to reinstate this ballance is always
possible. Such action is rarely desirable,

Article 10 T4 Variants

10.2.2 SOAP & Privman servers

Using multi-part names all representations can create new ones. It is no
longer necessary to use the SOAP Server to obtain the ability to do this and
so, to some extent, this server has become redundant. The standard use of
the privilege manager is to allow certain objects to claim privileges which
services check when sensitive entries are used. To use an analogy with the
locksmithing trade, each service has just one lock for each of its sensitive
doors and each valid client is given the key: the privilege manager is simply
responsible for keeping each client's key ring. Strangely, using two—part
names, a service cannot do the equivalent of keeping key rings of keys to
its own doors it would have to be able to create privilege representations
and, by default, it would not have an authentity representation with which
to do this. However, using multi-part names, services would be able to use
their own representations to generate privileges with®, Thus these two
servers would no longer be strictly necessary, although their existence
might well still be of use.

Both of these servers currently experience some degree of inelegance in
updating their tables, since it is not possible for the service to which a
particular privilege or authentity "belongs" either to delete or to create
anyone's ability to claim it. These operations can only be executed by
certain trusted objects when they obtain a particular privilege. This
inflexibility is because the concept of a privilege or authentity
"belonging" to certain objects (services, for example) is not made explicit.
It could be made explicit, for example, by the inclusion of the "owning"
object's name in the authentity of the privilege used to update the server's
tables.

% Note that if a server is also going to use its own representation to
create other representations for the resources that it may be serving, it
might first create two new representations; one with which to create new
resource names, and another to use when creating new privileges
(*<service>\privilege' and '<service>\resource' for example).

Article 10 ~T5= Variants

10.2.3 Control of the Privilege Manager

The difficulty in controlling the Privilege Manager could be solved using
multi-part names. Possible enhancements using the two-part name systems are
considered first. If the Privilege Manager were to allow any service to
create lists of objects which can request a particular privilege (rather
than just the possessor of a privilege-mananger—-updating-privilege) then
the identity of the creator of such lists would have to be recorded so that
the "ownership" of that privilege could be made explicit (and, therefore,
enforced). The Privilege Manager would then have to ensure that:

(a) No other object could make entries for the same privilege - otherwise
anyone would be able to create an entry which allowed themselves that
privilege and thus obtain it.

(b) Only the recorded object could delete the entry. Otherwise anyone
could delete all entries involving a particular privilege and then
create one themselves to give them the privilege as in (a).

Even with these restrictions, at the "start of day" a rogue object may be
the first to ciaim certain privilege names itself which by rights "belong"
to another object - thus preventing the rightful owner from claiming the
names and leaving them to be claimed as privileges by a set of clients
dictated by the rogue object.

This 1is, in fact, similar to the problem that holders of 'auth'
representations had in the flat (one-part) naming system to ensure that the
sets, of names used for each different kind of object they produced were
mutually exclusive: a problem neatly solved by the introduction of
authentities (and the use of a two-level naming system). A similar solution
could be used to split the names of privileges into sets each of which
"belongs" to a particular client, The choices are threefold:

i) A special three-part name is used for privileges alone (<name of the
object it belongs to>\<name of the privilege itself>, for example:

<authentity>\<PUID>\<privilege>
where <authentity>\<PUID> is the name of the owning object).

ii) A generally adopted three-part naming scheme is used, allowing only
certain objects distinguished by their authentity (only names of the
form

system\service\<service>

for example) to name their own privileges (with names of the form:

Article 10 -76- Variants

privilege\<service>\<privilege>
perhaps).

iii) A multi-part naming scheme is wused in which each privilege
incorporates the name of the object to which it "belongs" (for
example:

privilege\<full name of privilege creator>\<privilege>

which is a name two parts longer than the creator's name).

The adoption of multi-part names would, therefore, solve the problem of
updating the Privilege Manager (and similar managers which produce objects
on another object's behalf, such as the SOAP Server).

10.2.4 The SOAP name

Using multi-part names, the name from which SOAP theoretically obtains
its authority is different. In the flat naming scheme this name is 'auth’
and in the two-level scheme it is 'auth\auth'. Possession of valid
representations of these names enable any other object representation to be
created, Using multi-part names each name can be broken down and analysed

for trust on hierarchical basis. In

a\b\c\d

for example, d is the name of the object which is positively identified if
the authentity 'a\b\c' is trusted. This is trusted only if it is known to be
trustworthy and it, itself, is positively identified. Thus the trust that
one has in 'a\b\ec\d' relies on the trust that one has in 'a\b\c' which in turn
relies upon trust in 'a\b' and so on. Eventually this recursion results in
trust in 'a' relying upon trust in '<nothing>'. Clearly, it is necessary for
all clients to trust the authentity '<nothing>' otherwise no name generated
would be trusted.

Since the possessor of any name can create any other name lower in the
hierarchy (that is, with more name parts but beginning with the same ones)
then the holder of a valid representation for the name '<nothing>' can create
any representation, It is the possession of a representation for this name,
therefore, that is equivalent to the authority of SOAP.

Article 10 =77- Variants

10.2.5 The structure of multi-part names

Using the two-level mechanism, names of the following form can readily be

produced

a\b

Also, using ENHANCE (see the article entitled "Implementation Of An Object
Representation System") an object may, in effect, be given two (or more)
authentities. That is, an object's representation could be verifiable under
two authentities simultaneously. In the case of objects which are created
by a combination of more than one object (for example, semi~-fabricated by
one and completed by another) it may be necessary to ensure that each object
is represented as an authentity before the new object is considered valid.
In such a case it would seem reasonable to include both authentities as part

of the name. This means that the general form of a two-level name is

(a1,a2,a3, .. aN)\b

By proceeding to consider multi-part names (in which the above becomes
the general format of a name with each of al,a2,a3 .. aN and b potentially
being replaced by multi-part names), the range and structure of names
becomes quite complex.‘ As an example taken from a more familiar naming
situation consider a‘child, William, whose parents, Charles and Diana, had
parents called Elizabeth and Philip, and Edward and Frances, respectively -
and, for simplicity, suppose that William's grandparents were numbered
amongst the original inhabitants of the earth. Then William's full name
would be:

((Philip,Elizabeth)\Charles,(Edward,Frances)\Diana)\William

In general an object's name will include its entire "family tree™!

In a network of computers objects are unlikely to have very long
histories and so this would not be as bad a failing as would appear from the
above example. However, in this context, there is a greater problem. When
naming human offspring, someone cannot be his or her own ancestor or
descendant. Unfortunately this is not so in a computer network and names
more suited to a "graph" structure are possible. For example, consider a
network on which there are two "boot servers" each of which is able to
create new services represented by names that the boot servers themselves
have generated. Also suppose that, for the sake of robustness, each boot
server is able to reboot the other in the event of a crash (or some other
reason). If the services initially have names 'boot1' and 'boot2' they will

Article 10 -78- Variants

initially produce names of the form 'boot1\<service>' and 'boot2\<service>'
respectively. However, as soon as one of them boots the other, one of these
names will be changed: if boot2 crashes it will be re-created by boot1 with
the name 'boot1\boot2' and it will start to generate names of the form
'boot 1\boot2\<service>', If boot2 subsequently reboots boott it will,
therefore, be given the name 'boot1\boot2\boot1' and will, in effect, have
become its own parent. Using [X] to denote repetition of "X" zero or more
times separated by "\" each time, this means that the names denoted by:

[boot1\boot2]\boot1

all refer to exactly the same object (boot1).

To summarize the graph like nature of multi-part names: they could be

constructed out of component parts in three main ways:

(1) By representation creation — in which a new name part is appended to
the end of the creator's name. For example: a\b\c\d\e\f

(2) By representation enhancement - in which a new authentity is added to
that of an existing representation. For example: (a,b,c,d,e)\f

(3) By arbitrary repetition of parts of the name - caused by the ability
of some objects to re-create themselves or parts of themselves. For
example: [a\b\c\d\e\f]

Names constructed just using (1) have a structure similar to a list of name
parts, those using (2) in addition have a tree like structure in which there
are several different names at each node representing different
authentities. Names using all three methods have a general graph like
structure since a cycle might be a repetition of any sub-pattern in the tree.

10.2.6 Precision versus generality

It is unlikely that the naming mechanism, itself, can automatically help
in the above case of name repetition since it cannot know that
'boot. 1\boot2\boot1' and 'boot1' are actually the same object: it would
certainly be wrong to assume so simply because the same name part appears
twice. However, if a new representation's authentity were structured in
such a way that cycles could be specified explicitly, this type of name
could be dealt with. For example, if boot1's name were

[boot 1\boot2]\boot1

rather than any particular instance denoted by this pattern it would

Article 10 =79~ Variants

re-create boot2 as

[boot 1\boot2]\boot1\boot2

which would then, eventually, rename boot1 as

[boot 1\boot2]\boot 1\boot2\boot1

and there is no reason why this object should not be able to produce objects
under the authentity

[boot 1\boot21\boot1

which is equivalent (though not as precise). Note that the reverse, that a
less precise name could create a name with a specific instance of its name
as authentity, would not be allowed: for example, the object 'boot 1\boot2!
could create things with authentity '[booti\boot2]' but the object
[boot1\boot2]' could not create objects with authentities 'booti1\boot2' or
'hoot 1\boot2\boot 1\boot2! and so on. If this rule were not imposed the
following might occur: 'a\b\a\b' creates objects under authentity '[a\bl’,
for example '[a\b]\x'; '[a\b]\x' could then, if this rule is broken, generate
things under authentity 'a\b\x' (amongst others) - and has therefore been
able to create names under a "higher" authentity ('a\b', that is) than that
to which it was entitled.

The square brackets mechanism has allowed a degree of generality which
can be used to cope quite accurately with the two boot servers case.
However, the degree of generalization may have to be greater in some
examples. The AOT could automatically allow an object with a name like

a\b1\ .. \bN\b1\ .. bN\c

(where a and ¢ are arbitrary strings of name parts) to use the authentity

a\[b1\ .. \bN]\e

simply by checking that the first name is a specific instance of the second,
generalized name. However, it is not obvious that the AOT could always give
a yes or no answer to the question "can name A use authentity B" when both A

and B could contain generalizations.

The crucial point here is that the AOT has to be able to compare two names
(structured using some syntax) and be able to decide whether one is a
generalization of another or at least whether they are the same or not. If
the form of the names has become So general that no algorithm can be
produced which can guarantee to determine the equality of any two names then

Article 10 -80- Variants

the naming system (with that syntax) is of rather dubious utility.

Even if comparisons can be made on names using the square bracket syntax
there is no guarantee that a characteristic name can always be found for any
given set of related names, without extending the Syntax. Consider, for
example, a simple extension of the example used above in which there are
three boot servers instead of two. Each of the boot servers might, without
using the arbitrary repetition construct, have names of an arbitrary length
the last name part of which is 'boot1', 'boot2' or 'boot3' depending on which
boot server the name is for and would have an authentity in which no two
adjacent name parts are repeated (assuming that it is impossible for a boot
server to boot itself).

To characterize such a name using only the square bracket notation is
difficult., It would need more powerful pattern definition devices. The
pattern needed 1is one in which identical consecutive name parts are
disallowed. However, an over generalization can easily be made by using the

authentity

[[boot1]\[boot2]\[boot3]]

which does not specifically exclude consecutive identical name parts. This
authentity thus includes a group of expansions that never arise in practice.
If it is used, this information (that consecutive names are never the same)
will be lost to a recipient of a representation. 1In this case the loss of
such information may be of no importance. However, the principle is
demonstrated that the degree of verifiable information available in a name
can the traded off against the complexity of the pattern matching syntax
used to specify it.

Consideration of the kinds of name that would be produced if bootservers
had a dual authentity (both its booter's and the name of the machine or
interpreter on which it runs, for example), such as might be generated using
ENHANCE, where the pattern in a name is only partially repeated suggest that
an adequate syntax for all uses would have to be rather sophisticated.
Suffice it to say that the job of an AOT in reconciling the actual name of an
object, and the name that 1is to be wused as the authentity for
representations that it wishes to generate, is beginning to look rather
difficult.

Article 10 81— Variants

An alternative to the explicit representation of cycles within names is
the use of SOAP to "flatten out" these cycles (itself a generalizing
operation), This can be done by giving the first name including one cycle
the ability to claim the original name. For example allow
'boot 1\boot2\boot1' to claim the authentity 'boot1'. In this way cycles need
never form. However information associated with previous authentities will
also be lost. In effect the job of evaluating the trustworthiness of each
boot server is delegated to SOAP when making an appropriate simplification.
This solution has the disadvantage that each possible cycle must be
predicted in advance and that the "proper" name of each object is
unavailable for a full evaluation of its trustworthiness.

10.2.7 Conclusions about multi-part names

Multi-part names are a more "natural" way to name objects than two-level
names. However, imposing no restriction upon who it is that can create new
names can be viewed as a disadvantage. The control that the SOAP Server
currently provides over which objects it is that can be trusted with the
ability to create other objects is lost, and it can no longer be guaranteed
that comparatively untrustworthy objects will not become entrusted with
this capability. As already discussed, this does not affect the reliability
of the names generated since the untrustworthy component will be manifest
within the name. However, a certain amount of irresponsibility in the use
of the AOT server could fill it with useless names or permanently account
for its available bandwidth or table space denying the service to others¥,

Multi-part names would enable much finer control of SOAP and PRIVMAN,
but, on the other hand, would reduce their usefulness.

The variability of name size in a multi-part name is another obvious
disadvantage. The basic unit of transmission on a network is likely to have
some maximum size above which the transfer of information is bound to
require more complex protocols. A multi-part name can always potentially
require more room than that provided by this maximum size. Quantities with
unknown sizes are universally more difficult to deal with than those with
fixed sizes.

¥ This problem is less severe in the two-level name system than in the
multi-part one because the possessor of any representation can create new
representations in the latter, whereas, in the former, only holders of
valid authentity representations can.

Article 10 -82- Variants

Multi-part names bring with them the possibility of graph-like naming
structures along with the problems and disadvantages associated with them,
although these can be largely avoided through careful use of the SOAP

Server,

10.3 Dynamic Name Structure

There are two ways in which an authentity can be recorded in an AOT -
giving the resulting representation different properties. The current
implementation on the Ring simply reécords the name of the representation
presented to authorize the creation of a new representation. The
alternative is to record the entire representation as the authentity. This
would enable the authentity representation to be checked each time the main
representation is verified, the practical upshot of which is that all
representations created by a given authentity representation would be
deleted when the authentity representation was itself deleted. Such a
representation structure is termed "dynamic" (the other option being

"static").

Dynamic names avoid the possibly anachronistic effects of having a
representation which refers to a non-existent authentity. In the time since
the representation was created its creator may have changed its level of
trust, which might possibly give the client a false view of the
trustworthiness of the represented object. The property whereby dynamic
representations disappear when their creator disappears might also be
considered useful in the typical case in which the creator is responsible
for the upkeep and maintenance of the objects to which the representations
refer., In this case, representations should be deleted when their creator
disappears.

However, this is not always desirable. To take an example from the human
object domain it would be disastrous if someone lost his name as soon as
either of his parents died (or any of his ancestors in the case of
multi-level names). It is quite possible that a creating object may be
expensive to run, existing, therefore, only for the duration of a creation -
the upkeep and maintenance of the ensuing objects being given to some other
object. A further consequence of the use of dynamic names is that, if all
objects can trace their authority back to a single SOAP name representation,
the safety of that representation is of paramount importance, since if it is
deleted or is allowed to time out all the objects on the network will be

Article 10 -83- Variants

deleted. In any case, the action of dynamic names can always be emulated.
The creator of an object is the first recipient of its TPUID, and and so can
manually ensure that its representation's existence is terminated at the
time (or a little before or after) at which it itself is deleted simply by
using the TPUID in the normal way.

10.4 Pass Once Representations

If a representation is sent from A to B which then passes it on to C it
can appear to C that the representation originally belonged to B, rather
than to A, This use of representations could cause a breach of security.

However, if a representation system were to use explicit mechanisms for

a) the passage of a representation from one object to another, and

b) checking that a particular representation is currently held by a
particular object

then such deception can be made impossible.

10.4.1 Simple mechanism

A representation system could be built upon similar lines to that
described in the foregoing articles. Each representation could be kept in a
central table and object names could have the same general format. In order
to provide an entry to the service which holds this central table (called
OPRT for one pass representation Eable), so that it can verify that a
particular representation is currently held by some object, it will be
necessary for the OPRT to hold, the name of the object that currently owns
it against each representation. Thus, a single entry in the OPRT will have
at least the following fields:

< name of > < name of object > <name of owner of>
<{representation> <being represented> < representation >

\

Transferring such a representation to another owner (that is, changing the
contents of the third field) would be quite a different operation to that of
checking that a particular object possesses a particular represented object
(that is, checking that there is a OPRT entry which includes that object
against the name of the represented object).

Article 10 -84~ Variants

Note that, once a representation is passed to a new owner, it will no
longer be possessed by the donor. The representation can, therefore, be
passed from the donor only once (hence the name) and will exist at only one
position on the network at any one time. This is a desirable property of a
representation since it reflects an important attribute of the represented
object (that 1is, its wunity). It could be exploited for use as an
"interlock" upon that object for example.

‘The price paid for using these representations 1is in the protocol
necessary to manipulate them. In order to pass a representation from a
donor to a receiver "pass by reference" rather than "pass by value" must be
used. That is, the recipient is not passed the value of the representation
explicitly, it is passed a reference to it in the OPRT and the OPRT is
updated reflect the change of ownership. Thus, two transactions are always
necessary: one to the recipient and one to the OPRT server. Also in
communications in which a receiver is required to verify that the sender
possesses a certain representation, it must ensure that the identity of the
sender is correctly known, and this might entail the use of two-way
authentication (see the article called "Authenticated Communication").
Otherwise the receiver might verify that someone other than the true sender
possesses the representation and may allow the sender to operate under a
false identity.

10.4.2 Monitors

Once a representation is given away, control over it is lost completely.
This is desirable to the representation's current holder because it
guarantees that others cannot duplicate, delete or artificially maintain it.
Ideally, the functions just mentioned should be segregated from the ability
to pass the representation on, so that the state of the object's
representation can be made to reflect the actual state of that object by a
completely independent service, without fear of interference. For this

purpose the concept of a "monitor" is useful.

With each representation held in the OPRT an extra field giving the name
of that representation's monitor is kept. Instructions to the OPRT server
to change the timeout on a representation would only be valid if it can be
shown that they originate from its monitor. Initially, the object that
created the representation (given by its authentity) will be its monitor
but, in the same way that the representation can be sent from one object to
another, it would be possible for the current monitor to designate its

Article 10 -85- Variants

successor and pass the responsibility on.

Revocation is possible in this scheme by allowing the monitor to change
the name of the representation's owner. In this way, for each
representation it creates, the monitor could, for example, forcibly return

any of its resources either to itself or to any other object.

The "structure of a OPRT entry has become:

name of name of name of name of
{represen-> <object being> {repr's > <repr's > <timeout>
tation represented owner monitor

10.4.3 Copying

With each representation there are two attributes that can be passed
about a network. One is the owner of the representation and the other is its
monitor. Either of these attributes could be duplicated simply by holding a
1ist of owners or monitors instead of just one. Since it is undesirable for
every owner or monitor to be able to duplicate itself a status would have to
be associated with each owner or monitor name in a OPRT entry indicating
whether or not it is allowed to duplicate itself, the status being set when

that owner or monitor was created. 1In this way an authentity can choose -

a) How many valid monitors to set up. (This could reasonably be more
than one in a distributed application, and could also be zero if the
initial timeout on the representation is large enough).

b) Whether to allow the number of monitors to vary dynamically (by either
allowing or disallowing them the ability to duplicate themselves).

c) How many valid representations for the object there are initially (it
may or may not be meaningful to have more than one of these).

d) Which representations (if any) can duplicate themselves (for whatever
purpose duplication is meaningful): if there are any duplicates, the
representation may not be able to be used as an "interlock" upon the
object that it represents.

Article 10 ~86- Variants

10.4.4 Path control

A limit upon the number of times that an attribute can be passed on could
be established. It can be useful, for example, to give away a
representation that cannot be passed onto any other object or to give one
away which can only be passed on once. This type of control is called path
length control and can easily be implemented in the OPRT by holding the
maximum allowable path length that any particular object is allowed with its
name in either a monitor or owner position and decrementing it each time
that name is changed (that is, the attribute is passed on), refusing to make
the change if the count has reached zero., This number can be decremented
each time it is passed in one of two-ways. It can either be automatically
decremented by one, in which case paths cannot be shortened, or it can be
set to any number strictly less than the current path length, that the
sender desires. A way of indicating an infinite path length would also be

appropriate.

A second way to control what becomes a monitor or an owner is obtained
if, with each OPRT entry for a representation, two lists of objects to which
ownership and monitorship of that representation could be transferred are
kept Attempts to change names in either the owner or monitor lists are
allowed only if the recipient is in the relevant list. Alternatively the
lists could be of objects that cannot be transferred to.

Such modifications are obviously endless (controlling the path lengths
given to different objects if they are transferred to, for example, or
including a list of objects that have the ability to change the access lists
and so on). It is difficult to decide at what point to stop in the
development of such a system. There are two conflicting arguments:

for simplicity

a) for the sake of relieving programmers of the tedium of having to
decide amongst several different methods of accomplishing the same
thing.

b) because a simple mechanism is more reliable, smaller and
possibly faster.

- for complexity

a) flexible control enables applications to be written more
conveniently and easily.

Article 10 -87 - Variants

b) if used from a large operating system communication with the
OPRT server will be moderately expensive in terms of interprocess
communication, protocols and so forth., It is therefore more efficient
to do a lot of work per "call" because the investment is high.

Although path length control looks attractive at first sight, in
practice, it is not very easy to use. By limiting the number of steps in a
path or 1limiting who may use a representation the implementation of
information hiding interfaces is made very difficult. The details of the
construction of these interfaces must be known for the user to determine,
for example, who or how many services are involved in carrying out any given
operation at an interface. Otherwise the object representations
constructed as arguments may not be suitable for use. The only safe
approach a client could take would be allow any service to use his
representations and to give them an infinite path lengths. Even if the
details of such interfaces were always available it is doubtful that
programmers would construct representations to fit exactly.

10.4.5 Problems

It is rather important to discuss a question that has, so far, remained
unasked. That is, what are the names used in the OPRT for representation
owners? As noted under "Simple Mechanisms" above, some way of verifying
these names must be available. When something wishes to give its
representation away it must first prove that it owns it, which is done by
verifying the identity of the sender (possibly wusing two-way
authentication). This presupposes the existence of a more primitive
representation system such as that provided by an AOT server. The
alternative is to restrict the names in these positions to be some other
easily authenticated value, such as station numbers on the Ring*. Hence an
unstated assumption in the OPRT system is the existence of a less powerful
representation system underlying it.

In addition, the protocol expenses noted above should not be
underestimated. If the cost of using a representation system is too great
in terms of time or ease of programming it will simply not be used. It would
be difficult to promote the universal use of such a system in a research
environment, for example. Also the need for any complex code at this level
of function does not fit in will with the aim of autonomy mentioned in

% Station numbers are described in "Implementation Environment".

Article 10 -88~ Variants

"Basic Network Structure™.

10,5 Sumnary

Several orthogonal aspects of representation system design have been
investigated and evaluated. In some cases problems have been found and in
all of them at least some benefits have been noted. Some variations have
pbeen tried but most have only been subject to theoretical consideration. 1In
general the choice of implementation was a direct consequence of such

considerations.

Three different naming variations were discussed. Single-level names
have the disadvantage that the representation system is rather vulnerable to
attack and two-level names, which were shown to be equivalent to n-level
names, prove to be rather inflexible without such servers as a Privilege
Manager and the SOAP Service (in which this lack of flexibility is,
ironically, rather manifest). Multi-level names bring format orientated
problems and, although they show a great deal of flexibility, they can

become too precise for practical use.

Dynamic names were briefly considered but were found to impose
unacceptable reliance on the representations for highly powered names which

may be required to exist indefinitely.

Pass once representations undoubtedly provide a better representation
service but need relatively complex protocols for their use. There was some
question as to where, exactly, the facilities that could be provided should
end. In addition, the schemes considered could not really be considered as
a variation of AOT design since they depend on something with a similar
function to it as an underlying mechanism. These variations can, more
realistically, be thought of as an extension or an additional layer of
mechanism which can be provided once a representation system is already
established.

Article 10 -89~ Variants

Article 11

AUTHENTICATION

This article discusses the meaning taken for the word "authentication"

and, having arrived at a definition, discusses the use of authentication and
its implementation on a network.

11.1 Authentication

Consider the period for which a real object actually exists (for example
a person). There are three possible types of interaction that this object
may have with a given network.

(a) It is never represented on the network at all - in which case this
object is of no interest to the network.

(b) It is represented on the network for the entire duration of its
existence.

(¢) It is represented on the network only during certain periods of its
existence,.

The vast majority of all objects known fall into category (a) and can be
disregarded as uninteresting. Those objects which fall into category (b)
pose no special problem with respect to their representation since this can
be created at the time of the object's creation and kept valid until its
existence is terminated. The objects in category (ec), however, pose a
special problem since they must be represented on the network for several
different durations within the overall period of their existence: at other
times they exist but have no representation on the network.

If an object from category (ec) is to reclaim a network representation,
some means external to the network must be found to identify the object.
This identification will be necessary for the network's internal

representation system called external authentication.

Article 11 -90- Authentication

In general, authentication is the identification of an object that is
external to the immediate environment of the identifier. "External
authentication" will be used for authentication of objects external to a
network, and "internal authentication" for the authentication of objects
internal to a network but external to services.

Internal authentication can be provided, in quite a general fashion, by
the use of the object representation system: it is just the verification of a
representing token. Perhaps it is possible to provide an interface to the
network from which things external to it could manipulate the equivalent of
an AOT for external objects. This is quickly seen not to be a practical
proposition because of the difficulty that some objects would have in
manipulating such an interface (for example, consider the plight of a
terminal which must remember a "TUID" that it was given on disconnection
from the network whilst it resides in the workshop for repairs).

Since the objects that fall into this category are so varied (for
example, disc packs, terminals, interfaces to other networks, the time,
users, and so on) it would seem more practical to adopt a more flexible
scheme and authenticate each type of object using its own type-of-object

dependent authentication service.

11.2 External Authentication Methods

Since we cannot draw a useful analogue between the way in which internal
and external authentication is best implemented, the different methods of
external authentication must be investigated by their individual merits.

Four basic methods of external authentication are considered:
(1) implicit

The network is constructed so as to regard the object as authentic
without any formal checks.

(2) measurement
Some well defined static attributes considered to define the

object uniquely are known and are checked against those of the object
to be authenticated.

Article 11 -91- Authentication

(3) memory

A previously authorized object can have some dynamic attribute (to
"remember") that can be checked to facilitate subsequent
reauthorization.

(4) trust

A trusted entity proffers an object as being authentic.

Note that methods (3) and (4) depend upon an authorizing mechanism
already being available so that, in any network at least some of the
authentication must be provided using either method (1) or (2).

Method (1) should apply to as few objects as possible. The more objects
that are implicitly authenticated the larger the scope for error and system
attack.

The network may implicitly authenticate itself, since it may either have
no access to, or not recognize any higher authority. Any number of objects
the identity of which it is not felt necessary to check, must be considered
as implicitly authentic. This may very well apply to "fixed" lines, to
external hardware and other objects that are considered an integral part of
the network, even though they are external to it. (For example, on the Ring
there is a service which relays information transmitted by radio from Rugby
(the time) - no explicit check is made that it is Rugby that is transmitting
on the particular frequency used: it is taken as implicitly authentic).

Method (2) can be used only for objects with measurable attributes that
imply their identity. For example, if it were possible to automate the
measurement of a person's fingerprints, this might provide adequate proof of
his identity. The class of objects which are authenticated by their
taddress" falls into this category: their address being taken as a static
attribute in this case (note the implication that the address may not

change).

Method (3) can be used only with objects that can retain state (that is,
those which have a "memory"). For example, another network, an intelligent
disc controller and people are all able to remember some number, password or
other piece of information to be used when they next need access to the

network.

Article 11 =92~ Authentication

Notice that the simplified case in which the network always proffers, to
the same object, the same number or password to "remember" is equivalent to
the conventional password mechanism. In this simplified case the
restriction on the objects which can use the scheme is less severe since the
object's password can be "built into" the object without providing
mechanisms for changing it. A terminal might have its password encoded on a
set of hidden switches. This example shows that the distinction between
methods (2) (static attributes) and (3) (dynamic attributes) becomes rather
blurred in this area - where attributes may change, but only "slowly".

Method (4) refers to the following logie:

i) an object is authenticated as X if
object Y is trusted, and
object Y has authenticated the object as X

ii) an object is trusted if
it has been authenticated as some object Y, and
object Y is known to be trustworthy

Notice that this argument describes the circumstances under which method
(4) works., It does not describe how those circumstances could arise. For
example, it does not go into how object Y is to be found in i) nor how to
reliably discover that Y has made the appropriate authentication. One of
the ways in which this can be achieved is to use an "audit trail" in which
each of the objects that have relayed the fact that an object has been
authenticated (rather than authenticated it themselves) is listed. That an
object has been authenticated by Y can be verified by verifying the audit
trail. The audit trail can be verified by checking that each object listed
within it is trusted. Such a mechanism 1is described in more detail
in [JNT801.

The above also makes the difference between authentication and trust
apparent. That an object is authentic merely means that its name is
reliably known: this does not imply that the object with that name is
necessarily trustworthy.

Article 11 -93- Authentication

11.3 Authenticators

An authenticator, then, is something that makes the mapping from one
domain of representation to another. In the case of a network the ways in

which the above four methods make this mapping are as follow:

- method (1)
The mapping is between the null domain and the network domain. (The
object is inherently authentic and so is always authentic in the
network domain - they need no representation in the source domain).

- method (2)
The mapping is between the physical, measurable, domain (in which
things are represented by their shape, weight, and other, perhaps more
abstract static attributes) to the network domain.

- method (3)
The mapping is between the network domain of representation (at some
former time) to the same domain (at a later time).

- method (4)
The mapping is between some other authenticated object's domain of
representation to the network domain.

An authenticator on a network can use any of schemes (1) to (4) depending
upon which is most appropriate for the particular kind of object that it is
to authenticate,

No matter how the authentication is done, however, the result is always
the representation of the authenticated object in the network domain. In
mathematical notation,

authentication: domain X representation > network representation

In terms of the mechanisms developed in previous articles, this implies that
each authenticator must be able to generate network representations of the
objects that it authenticates. It must, therefore, have a valid
representation for an authentity which will become the "type" of the

representations that it generates.

Article 11 o] S ‘ Authentication

A T-authenticator, which is defined as something that authenticates
objects of type T, will consist of:
i) some way of authenticating objects of type T (for example, based on
methods (2) - (4))

ii) some way of representing objects of type T (a representation for the T
authentity, perhaps)

Article 11 -95- Authentication

Article 12

USER AUTHENTICATION

This article describes the design and implementation of a

user—authenticator using the ideas developed in the article called
"Authentication".

As outlined in the previous article a user-authenticator consists of:

- some way of authenticating users
- some way of representing users

The second of these is solved by using the UID sets (AOT representations)
developed in previous chapters.

12.1 User Authentication

There are many ways in which to check a person's identity. Some examples
from the categories listed in the previous articles follow:

1) implicit

If the user is communicating via a particular device (such as a
terminal or a personal computer) to which he alone has access, then no
check on his identity is necessary.

2) measurement

A user can be identified by his fingerprints, voice pattern, the
shape of his face or his signature. None of these measurements,

however, can be trivially automated.

3) memory

An authorized user could be given a number or password to remember
each time he logs off which he must quote when next logging on. A
common simplification of this method, pointed out in "Authentication"
is for the system, effectively, to give a constant password to be
remembered. Alternatively he may be given a unique credit card with a
suitable magnetic encoding with which to regain access to the system.

Article 12 -96~ Userauth

L) trust

A user may already be logged on at some external system which
proffers him as authentic by that system's standards. If that system

is trusted this may provide the required authentication.
Similarly an already authenticated and trusted user may be allowed

to proffer the user as authentic.

Naturally, it is not necessary to provide all of these modes of

authentication. Indeed, since it was only necessary to demonstrate the
principle, the password method (one of the simplest) was chosen.

12.2 Interface Design

The interface is divided into two parts, one set of entries which is
universally available and another which is available to those that possess a

certain "privilege"*. As in the AOT service the interface is supported by a

set of SSP entries.

12.2.1 The user interface

. The most important entry to a user authentication service is one which
takes a user's name (a PUID) and a password and, if they match, returns a UID

set representing that user which will be marked by the authentity used to
generate it (the USER authentity). This entry is called AUTHENTICATE. For
practical reasons AUTHENTICATE must also be passed a time for which the

created UID set is to be initially valid.

In order that other systems on the Ring can exercise their autonomy (a
network aim) to the extent that they need not use UID sets at all, a check

entry is also provided in which a user's name and password are given and an
indication of whether or not they match is returned. In this way external

systems may share the same criteria for the authenticity of a user without
providing the software necessary for using UID sets.

In both of these cases the return codes given do not distinguish the case
of a user having no password at all from the case in which the user does have

a password but it does not correspond to that given. This is deliberate in

% The privilege mechanism is described in the article called "Privilege
Management".

Article 12 -97- Userauth

order to increase the difficulty that an illegal user has of proving himself

authentic, since it does not indicate whether the named user even exists.

In such a scheme there is no security lost if the system lets the user
specify the password that he must remember to be authenticated when next he
needs to be represented on the network. Clearly, however, the specifier
must be authenticated as the correct user before he is allowed to change his
password. In this service there are two possible means of authenticating a
user. One is to check his name against his password and the other is to
verify his UID set. Only the former is used because of the following

reasons:

a) Verifying the user's UID set would have required his TPUID to be sent
to the user authenticator., The user's security is best served by
having to pass his TPUID to as few services as possible.

b) Autonomous services that use the user authenticator, which do not
possess UID sets, would not be able to use the latter method.

c) As far as possible it is desirable to ensure that, if a user's password
is changed, the user himself knows about it. (It seems more likely

that a user will have to participate in the former mode of
authentication than the latter because a password should not be kept
by any network service after it has been verified). An interface to
the user himself is therefore more suitable than one to the network,
The entry designed for the user authenticator that enables a user to change
his password CHANGEPW therefore requires both the user's old and new
passwords, Of the entries so far this is the first in which repeatability
becomes an issue. AUTHENTICATE uses another repeatable interface and CHECK
is repeatable in any case. In order to ensure that this entry is repeatable

it succeeds if the existing password matches either the authenticating
password (in which case it is then changed to the new one) or the new one (in

which case no further action is taken).

12.2.2 The maintenance interface

Someone in authority who is in charge of the authenticator service will

want to be able to do the following things:

(a) to enable a new user to authenticate himself with some initial
password (when, for instance, a user joins the network)

Article 12 -98- Userauth

(b) to deny a user the ability to authenticate himself (for example, when
a user leaves the network)

(c) to change a user's password (perhaps, when a user has forgotten his
password)
If entries are provided for these functions some way of checking that the

user possesses the required authority is necessary.

Authentication for using these entries is provided using the privileges
mentioned above. Privileges are UID sets with the authentity 'privilege'.

Each entry requires a privilege for 'pwpriv' before it will be performed.

The functions provided by (a) and (c¢) are combined in an entry,
SYSUSERPW. This entry takes a 'pwpriv' privilege, the name of a user and his
new password and ensures that the user can be authenticated only with that

password. If the user did not previously have a password he is given one
and, if the user did exist, his password is set to the one given. Such an

entry is obviously repeatable,

Finally, the entry SYSKILLUSER takes a 'pwpriv' privilege and the name of
a user and ensures that he can no longer authenticate himself with any

password at that service.

12.2.3 Interface summary

The following table summarizes the entries:

entry arguments results
AUTHENTICATE N, p, & t, d
CHECK N, p <none>
CHANGEPW N, p, p' <{none>
SYSUSERPW N, p, auth <{none>
SYSKILLUSER N, auth <none>

where d VvV i(t, USER\N)

and auth V p(PRIVILEGE\PWPRIV)
and p = user's current password
and p' = user's new password

Article 12 -99- Userauth

12.3 Implementation Details

The address of the only user authenticator service on the Ring is given
by the name server in response to the string "USERAUTH"., It is implemented
in a Z80 microprocessor. Users' names and passwords are held in a table in

memory - there being enough memory to accommodate a reasonably large number
of these.

Because the memory is volatile and the service has to be suspended
sometimes, the table is written to a secret file on the Ring's file server
each time the in-core copy is changed. This file is read in order to
re-create the table when the service is reinitialized - the service being

suspended until the read has completed. While the table is being backed up,
it cannot be written to and so entries CHANGEPW, SYSUSERPW, and SYSKILLUSER

fail with a standard return code requesting the client to try again soomn.

In order to obtain the desirable features of fixed format request blocks
passwords have a fixed size of eight ASCII encoded characters (a convenient

size). Since the characters of the password are probably to be typed at a
console, with an unknown character set, the syntax of a password 1is

constrained to use letters, digits and the commonly available characters '.!,
1#1 1t and space. Furthermore the cases of the letters are equated in the

matching algorithm.

There is no need to scramble passwords since the file in which they are
saved is secret. However, a simple scrambling method is used in order to
prevent passwords accidentally being read from memory dumps during periods

when the service is being maintained.

12.4 Conclusion

The USERAUTH service authenticates users by their knowledge of personal

passwords and can be used independently of the representation system. It
relies upon the representation system for its maintenance since it uses

privileges. It also relies upon the file server keeping a stable copy of
its information which must become available before the service is restarted.

Article 12 -100- Userauth

12.5 Post Script: SYSAUTH

Another service, whose address is given by the name server in reply to
the string "SYSAUTH", authenticates "systems", such as reliable mainframes
connected to the Ring, using passwords in the same way as USERAUTH. It
produces UID sets with the authentity 'system' but otherwise has an identical
interface to that of USERAUTH.

Article 12 -101- Userauth

Article 13

SERVICE REPRESENTATION

This article discusses the ways in which we can extend the representation

system to include the representation of services themselves., There are two
categories of service which are considered: those that the system has

created and those that it has not.

13.1 Service Authentication

If
which
to be

about

(1)

(2)

a service has not been created by the system a situation arises in
the service, which may have been operating for any length of time, is
identified. Each of the four basic methods outlined in the article

"Authentication" bears examination:
implicit

Some services will have to be regarded as implicitly authentic -
services from which authority is initially delegated (such as is
described in "The Source Of All Power").

Note that, on the Ring, this method reduces to trusting that a
particular service exists at a particular address. Furthermore the
address, unless it is that of the nameserver, must be found byyusing
the nameserver. At least one service must use this method - the
service from which all authority is delegated. This places the
integrity of the entire system directly on the nameserver. It is,
therefore, very important that the nameserver is trustworthy. It
should, preferably, be extremely simple and dependent upon no other
service,

measurement

By definition the only access that the network has to a given
service is through its interface. Services which have the same
interface and which respond identically to the same requests might be
considered identical - in which case a service's identity could be
checked by "measuring" its interface. This would require all possible
uses of the interface to be made and compared with the expected
results. Even then, if the interface could be ratified in this way,
no guarantee could be made that the implementation behind the
interface did not contain a "Trojan horse" which, although seeming to
perform the expected service was additionally misusing the data sent

Article 13 -102- Services

to it. In short the identity of a service cannot normally be implied
even by a very thorough investigation of "what it does".

(3) memory

So far "service'" has deliberately been described very informally.

Whether or not a service can "remember" data whilst it is inactive and
not operational on the network begs certain questions about the more

detailed nature of a service. In particular: "are services
implemented in such a way that the environment of a previous
incarnation is restored to it upon re-creation?". If so it is clearly

possible for a service to remember something which it may quote to
facilitate simple reauthentication when it is "woken". If not, such
reauthentication is clearly impossible - since there will be nowhere

to remember such information.

It will help to make the distinction between the period of activity
of a service and its period of existence; in particular it must be
recognized that they may not be identical. The case in which a
service is created with a copy of a previous environment must be
regarded as the continuation of that service and not as the creation

of a new one,
A new service, therefore, cannot "remember" - because there is no

previous incarnation from which to do so! However, once a service has
been authenticated this mechanism could be used to reobtain

authenticity when recontinued*.

(4) trust

If some trusted authority (such as a supporting operating system)
proffers a service as one which it believes to be authentic, this may
be reason enough to believe the identity of the service.

Thus the initial authentication of services (for example, those which
have been newly created) can be seen to be something of a problem. Method
(1) is clearly not suitable for the majority of services; method (2) cannot
be applied easily (if at all); method (3) cannot be used for initial
authentication of services and, although method (4) is applicable, it merely
"passes the buck" by making another authority responsible for the
authentication of the service.

¥ A server for providing a service's old environment was described in
"Example Servers'".

Article 13 -103- Services

13.2 Authentication by Creation

The problems associated with identifying a service which already exists
are not relevant when considering the initial creation of the service
itself. A creator can represent a service that it has made using the
existing representation system so long as it knows the service to have been
constructed properly.

The elements through which a new service is trusted by its creator are as

follows:

(a) The "recipe" that describes the objects necessary for the service's
construction (for example, processes in an operating system, files of
code or data, allocatable machines on the network, and so on) must be

trusted.
(b) Each of the ingredients obtained to fill this recipe must be trusted.

In these circumstances the creator may create a representation of a new
service - the representation's authentity denoting the creating server.
Such a representation can be trusted by those who trust the operation of
that server.

Note that (a) and (b) are conditions that apply in the context of the the
creator, not of the network. Thus the trust involved could be conveyed by
any form of representation convenient to the creator. The interesting
examples are derived from using a local form of representation (for example,
those available within the creator service, typically machine addresses,
file names and so on) and the global form (available on the network),

respectively.

13.3 The Use and Acquisition of a Service Representation

There are two main uses for a service representation: the first is to

grant that the service may be used; the second is to imply ownership of the
representation, and, therefore, of the service itself (using the TUID and
TPUID of the representation respectively*),

% See the article called "Design of an Object Representation System",

Article 13 ~104~ Services

Proof that use may be made of the service is likely to be employed at the
interface to the service itself (if at all), whereas proof that the service
is owned can be used as a means for the service to prove its own identity.

Naturally the service will have to possess this representation if it is
to be used in either of the above ways. If the service representation has
been created by the manufacturer of the service it will be necessary for the
creator to ensure that the new service has implicit access to the new
representation. That is, the new representation must be "built into" the
new service. This 1is because, as long as it does not have its own
representation, it 1is unable to prove its identity (as discussed under
"Service Authentication" above) and will, in consequence, be unable to
support a request to obtain it. And since, in general, the creator will be
unable to send the representation to the service because the address at
which the service acts may not be predictable*, neither the creator nor the
service is in a position to initiate a communication that would result in

the service receiving its representation.

Given that a service has its own representation it may be used in
communications for proof of identity#. It may also be used to obtain any
privileges or authentities that it is allowed (see the articles "Privilege
Management" and "The Source Of All Power") and to obtain the environment in

which the service customarily runs (see "Example Servers").

13.4 Summary

Practically speaking the identity of a service which does not already
possess its own representation can be found either implicitly (that is, by
address only) or by trust in some authority that vouches for the service.

¥ Certain parts of the address, such as its port number, may have to be
allocated dynamically according to the distribution of addresses extant
when the service commences action. Such a service might choose to
advertise its address in some public place such as a (dynamic)
nameserver,
Alternatively the service created may not possess an address at all if
it does not expect any requests from the network (for example, a service
which calculates ar and prints out the result).

See the article called "Authenticated Communications".

Article 13 -105- Services

The creator of a service may authenticate it if the objects from which it
is constructed are authentic. Trusted creators, therefore, can be allowed
to manufacture representations for the services they create. Since there is
no general mechanism through which an arbitrary service that does not
possess its representation can be given its representation it must be one of

the component parts of a new service.

Article 13 =106~ Services

Article 14

RESOURCE MANAGEMENT

This article describes how object representations can be used to ease
some of the problems associated with the fair and safe distribution of a set
of objects around a network,

14,1 Component Parts

The environment assumed here is one in which, (a) there are a certain
number of services (possibly only one) capable of creating or reinitializing
resources and, at the same time, issuing representations for them and, (b)
services that perform functions on these resources (these resources could
include the issuing services).' In many cases a object-creating services
will also have to perform all the necessary manipulations on those objects
since they may reside there solely.

Given that a particular creating service can serve only up to a certain
number of resources at one time, some form of resource allocating strategy
must be employed and embodied within the creator.

14,2 Resource Allocation

For each individual resource generated, a <copy is kept of a
representation which is sent to the requester. Both the ownership (TPUID)

and use (TUID) parts are given to a new user. That resource 1is then
considered to be in use for as long as representation is valid. The
allocator may enforce a time restriction upeon the use of the resource
reclaiming the resource by deleting the representation (by virtue of the

ownership part that it holds) after some management-dependent time.
As long as the representation is valid, its use part can be used to

manipulate the object and may be distributed around the network at the new
owner's will. The ownership part can be used to ensure that the object

Article 14 -107- Resources

represented stays in existence. Since the owner may be charged* for the
duration of his use of the object, it will be in his interests to ensure that
the object is returned (by revoking the representation at least) as soon as
possible, He may choose to run the representation with a very short timeout
and refresh it quite often in order to ensure that it will quickly disappear
if he crashes.

Once the allocator has perceived that the representation for an object

that it previously issued is no longer valid, it may reuse the resources

freed in any way it may see fit.

14,3 Allocatable Machines Example

Consider a network in which a pool of computers is kept for general use.
Each machine has a simple interface to the network of the form power machine

on/off, read/write memory locations, start/stop executing, and so on.

These machines are allocated to appropriate owners by a "machine manager"
service., Having been allocated a machine, it is desirable that, subject to
management constraints, the owner possesses the exclusive capability to use
it. The threat of the owner's program being overwritten, or otherwise

tampered with, by an undistinguished network user is unreasonable,

Management constraints might include halting a machine or withdrawing it
from the allocation pool for such reasons as: time allocation expired; no

longer in use; or, caused a problem elsewhere on the network.

An owner of an allocated machine might want to load it with either his
own or with "system" code; he might want to "debug" it; he might want to give
the machine away as a parameter to some serQice entry (for example, a "dump
service"); or, he might simply want to keep it and reallocate it to his own
client.

A system with the above potential may be formulated by using UID sets to
refer to allocated machines: each machine is given a name (a PUID) and the
machine manager is given UID sets for authentities corresponding to the
different types of machine; 'auth\machineA' and 'auth\machineB', for example.

¥ See the article called "Example Services" for the description of an
accounting service.

Article 14 -108- Resources

The interface to each machine checks a UID set given with each request,
ensuring that it has the correct authentity and represents the machine being
used. Thug only the possessors of a UID set for an allocated machine will be

allowed access to it.

The machine manager keeps a list of the UID sets that currently represent
each machine for which it is responsible. Machines without associated UID
sets, or with invalid ones, are eligible for allocation. After a certain
period of time, fixed when the machine is initially allocated, that
machine's UID set is deleted (by virtue of the TPUID that is held, thus
revoking the UID set currently referring to that machine).

When a machine is allocated the new UID set generated to represent it is
passed to the user. The user must use the TPUID in the UID set to maintain
possession of the machine since, if it "times out", not only will the user
be unable to use the represented machine but the machine manager will
eventually reallocate it. The user may, at any instant, "give back" the
machine simply by revoking his UID set.

Machine Manager's Table

TPUID " TUID MACHINE PUID AUTHENTITY
dil#* t1#¥ mel machinel
d2 t2 me2 machinel
- - me3 machinel
ay ¥ (RIR mel machineB
d5 t5 mc5 machineB
- - meb machineB

"me3' and 'me6' are machines ready for allocation, ¥

marks invalid TUIDs and TPUIDs: 'mel' and 'meld' are
also ready for allocation. 'me2' and 'me5' are
allocated and in use.

This form of resource allocation is not peculiar to machines; it can
easily be modified to deal with many other types of resource which can
benefit from a network representation. In general one service, designhated
as that object's allocator, is responsible for keeping information about
each of the objects that it has allocated, including the UID sets that it

Article 14 ' -109- Resources

has produced for them. Other services which can either use or manipulate
these objects only do so when a valid UID set is delivered.

Article 14 -110- Resources

Article 15

AUTHENTICATED COMMUNICATION

This article describes the ways in which object representation can be
used for identifying each of the parties in a communication. The nature of
authenticated communication is discussed, followed by a description of
protocols involving participants at just one and then both ends of an
unidentified communication. Finally an existing protocol, authenticated
BSP, is described.

15.1 Identification in Communication

BISCM (see the article called "Base Network Structure") already offers a
mode of communication whereby users have adequate faith that information
sent to a particular address will arrive safely. However this is not
sufficient to ensure that communication with a service of a particular
identity will arrive safely. Identification in communication here does not,
therefore, refer to the problem of ensuring that information reaches a given
address - this problem is presumed to have been overcome.

"Identification", in the sense used in this article, refers to the
identity of the sender and receiver in a communication as expressed in some
form of representation (in particular that of previous articles). The
problem is to map identifiable communicating entities onto their addresses
safely: to ensure that a given service actually does reside at a particular
address. It is the solution to the problem of untrustworthy addresses
rather than to the problem of untrustworthy service identifiers that is
being sought.

Services are divided into two broad classes, static and dynamic,
corresponding to the rate at which the mapping between each identity and its
address changes. A static service never changes its address (or if it does,
only very infrequently), whereas a dynamic service may change its address
quite frequently (or disappear from the network entirely). There are,
therefore, three classes of communication corresponding to whether:

Article 15 -111- Communication

- the sender and receiver are both static

- only one of them is dynamic

- both of them are dynamic

In any communication a service (either sender or receiver) may want to
authenticate the other participant. If the latter is static then it may be

authenticated by its address: otherwise its representation can be used to
facilitate authentication. Authentication might be desirable because:

(a) The sender may wish to ensure that the recipient has a specific
identity.

(b) The receiver might like to know reliably the identity of the sender.

Authentication, when it is necessary, is simple when static services are
involved since "authentication by address" simply implies trust in the

nameserver (see "Service Representation").

15.2 One Way Authentication

Authentication can be simply achieved by passing the representation of
one service to another if either the sender or receiver is authenticated (a
static service for example),

It is implicitly assumed above that the act of communicating with a
service that has been authenticated (by address or by its representation)
implies a certain amount of faith in the recipient in respect of the data
sent to it. In other words it is assumed that information (including the
representations of important objects) is not deliberately passed to

untrustworthy services.

If the receiver is authenticated, part (a) above is already fulfilled and
(b) can consequently be achieved by the sender transferring its own
representation to the receiver - along with other information such as the

data for the request.

Article 15 =112 Communication

S + request data

STATIC

If the sender is authenticated, exactly the same mechanism can be used by
reversing the roles of the two parties and starting off the transaction with

a request from the sender to the receiver for the receiver to attempt a
communication with it. '

— "Contact S"

v

R + "Make a request"

request data

STATIC

Note: that the latter solution only applies if R gives its identity to
static services that it trusts. If there is a chance of R sending its

identity to an untrustworthy service then the following deception could be
practised:

"Contact S" "Contact S"
N
R + "Make req" R + "Make req"
S X B R
request data
hY

STATIC ~ ROGUE
Furthermore, having obtained representation R, X can practice this

Article 15 -113~ Communication

deception without R's aid from then on.

15.3 Two-Way Authentication

If neither party in a communication has authenticated itself to the
other, and neither is static (so that they cannot be authenticated by
address), a deadlock occurs: although each party has the potential address
of the other, neither dare send its representation in case this address is
found to be incorrect. The consequences of a service sending its
representation to an unauthenticated recipient are two fold:

- Firstly, the recipient may turn out to be a "Trojan Horse" and use the
representation to make service requests in the original service's
name.

- Secondly, if it ©becomes Kknown that the service sends its
representation without prior identification of the recipient, other
services would become unwilling to accept its representation as proof
of its identity. In effect the service would "get a bad name" for
itself.

Any form of two-way authentication must, therefore, provide some way for
one of the participants to find the address of the other reliably. This
breaks the deadlock and enables the holder of the valid address to either
send its representation to the other or pass it its address in the same
authenticated way, so that both services become authenticated by address.

The problem which has to be solved, then, is that of reliably passing an
object (an address) from one service to another in such a way that the
eventual recipient can verify that that object was sent from (or was created
by) a reliably identified service. This 1is simply achieved using a
representation system - giving the address a name (for example, a PUID) and
creating a representation under the authentity of the service at that
address. The allocation of names to addresses can be done using either a
central mapping provided by a trusted service, or by a simple and widely
known mapping of addresses to names (packing various components of an
address into the "random" part of a PUID for example): it will be seen that
this mapping does not have to be reversible.

A two-way authentication protocol would start in the following way. It

is assumed that both participants (named by PUIDs A and B, say) are in

possession of their own identities (as discussed in the article "Service

Article 15 114~ Communication

Representation") and that there is a convenient mapping,

M: address }—> PUID (a mapping which finds a name for an address)

In addition, at least one of A and B must be able to create objects (in this
case representing addresses) under a well known authentity unique to either

A or B - A% or B¥ say*. Suppose that A's address is Aaddr and B's is Baddr and
that A has an authentity representation (for A¥, that is). The notation

P(q) - Q: a,b,c,d

will be used to indicate that service P sends service Q (at address q)
information consisting of items a,b,c and d. X will be used to denote an

unknown -service.

[auth\A¥]
Aaddr, [A¥\M(Aaddr)]
A ap B
to Baddr?
address: Aaddr address: Baddr

Nomenclature: [X\Y] V p(X\Y)
(this is, [X\Y] is a TUID for X\Y)

(1) A creates a new (quite short-lived) object representation, t, under
authentity A% with a name derived from its address, Aaddr, such that:

t V p(A¥\M(Aaddr))
(2) A sends t to the address at which it believes B to exist (Baddr?, say)

along with its own address, Aaddr, the authentity A¥ and a request for
authentication.

A(Baddr?) —» X: "authenticate", t, Aaddr, A%

%# There is ho reason, in fact, why A¥ should not equal A and B¥ equal B.

Article 15 -115- Communication

(3) B may receive the request from A for authentication under the two
circumstances: the request has come directly from A, or the request
has been echoed by intermediate services (possibly posing as B). B

must, therefore, check the integrity of the arguments by verifying
that

t V p(A¥\M(Aaddr))

since if any have been corrupted in transit this will not hold true.

Note that because the address, Aaddr itself, was sent and because the
mapping M is available to both A and B it is never necessary to deduce Aaddr
from M(Aaddr) and so M does not need to have a simple inverse (that is, M may
lose information®), This having been done the following line of argument is
followed:

- only service A can get authentity A¥
- a service with authentity A* must have created t
=> this message originated with A

- service A is a known and trusted service: it does not lie about its own
address

- t represents the address Aaddr

=> A's address must be Aaddr

B is now at a position in which it can choose (on the basis of whether it
trusts A) to prove its identity to A, It can use either precisely the same
protocol to inform A of its address, or it can send its own identity to be
checked in reply. Note that communication with A is via the address Aaddr
that B has already validated, and not to the address from which it received
the initial communication. If B were to reply to that address it would be
possible for a rogue service to interpose itself between A and B reflecting
authentication messages in both directions and stealing or modifying the
resulting communication. (B should reply even though it did not receive
this information from Aaddr: A may have been unaware that it was not talking

to B — a reply will update its version of B's address).

The mapping M should not loose too much information. The more addresses
that map onto the same result the greater the chance that an invalid
address will map onto the same result as Aaddr. In the extreme, if M lost
all the information in its argument, all addresses would map onto the
same number: this would clearly be unsatisfactory.

Article 15 =116~ Communication

The authentication protocol and the ensuing communication are subject to

errors resulting from the service at a particular address being quickly

replaced by a rogue service which is aware of the current state of the

transmission. There are two ways to view this problem:

To

a)

b)
c)
d)
e)

f)

a)
b)
c)
d)

It is too unlikely an event to consider seriously.

It will not happen if communication is only attempted between services
provided by (identifiable) trusted and "well behaved" boot services
(since it is a boot server which will be responsible for effecting the
sudden change).

summarize the assumptions and prerequisites from the above they are:

Having identified each other, A and B trust each other (to act in a
predefined way) before the main communication commences.

A and B possess their own representations.

A and B can find their own addresses.

A and B can exclusively obtain authentities A¥ and B¥ respectively.
There is a mapping M from addresses to names which is reliable.

Addresses refer to the same location when used at both Aaddr and Baddr
(that is, global addressing is assumed).

is an obvious prerequisite;
can be ensured (see the article called "Service Representation");
can normally be provided trivially;

can be ensured if A¥zA and B¥=B (see the article called "Wariants in

AOT Design" about Multi-level names) or otherwise by judicious use of the

SOAP service (see the article called "The Privilege Manager Service");

e)

can be provided by a trusted static service if no obvious mapping

suggests itself;

£)
Baddr

can be overcome by appropriate address transformations as Aaddr and
are passed around the network.

Article 15 ~-117- Communication

15.4 Authenticated BSP

Authenticated BSP is a simple one-way authentication scheme based on BSP
(the byte stream protocol introduced in "Implementation Environment") in
which the initiator sends its identification to the receiver used in the
initiation of a connection. It uses mechanisms similar to those used in
"Transport Service BSP" [JNT82 1.

15.4.1 The Principal

For every communication there is a single "principal". That is, a
person, service, or other object that is responsible for causing the
communication. It is the principal that is responsible for any consequences
of the communication. These include the cost of the communication and
responsibility for any "illegal" action perpetrated during it. Conversely,
any benefits arising from it are accrued to the principal*,

Obviously, the principal must be known for the entire duration of the
communication otherwise there would be nothing on which to blame illegal
activities (such as generating an unreasonable number of protocol errors,
attempting to use facilities and resources to which the principal is not
entitled or simply causing expense for which nothing can be charged).
Corrective or punitive action can take place only if the identity of the
principal is known when the illegal action takes place.

For this reason it would seem that, for any given communication protocol,
the identity of its principal should be sent before the communication itself
is established. That is, the principal of the communication is a
fundamental parameter of the protocol that implements it: it cannot be part
of the data communication itsel f#,

*# This use of the term "principal" is explained in [Saltzer75]. It was
first used in [Dennis661].

This is because other data, which may cause an "illegal action" may
precede it - leaving nothing to blame. Naturally this could be overcome
by insisting that the identity of the principal is always the first data
item sent. However, this is tantamount to extending the protocol to
include authentication information in which the principal for the
communication has, indeed, become a fundamental parameter.

Article 15 -118- Communication

15.4.2 TSBSP

Transport Service BSP is a transport service based upon BSP which
conforms to the specifications in [Yellowbook80]. It supports two kinds of
stream simultaneously, one consisting of the data and the other consisting
of a series of "messages" which forms the control data. Each message
consists of a message type byte ("octet") and a number of parameters. The
number of parameters is determined by the message type. Trailing null
parameters may be suppressed. TSBSP defines several message types, their
function and their parameters. Each parameter can be of arbitrary size and,
if necessary, is divided into several consecutive "fragments". Fragments
have a maximum size of 64 octets. Each fragment is preceded by a header
octet giving its length and specifying whether or not it is the last
fragment in the current parameter. A zero header octet is used to indicate
the end of a message.

The control messages are first specified in the user parameter part of
the BSP "open" block and continue in the 'control blocks' of the BSP. A
short message should be able to fit entirely within the open block. The
intention here is to define such a message which contains authentication
information from the system described in previous articles.

15.4.3 Authentication message

Both the "open" and "openack" blocks of the current open protocol have
space for user parameters (these are the first outward and the first
returning messages in the communication respectively). Only the open block
is discussed here. A message of the proposed size will, if used as the first
message, always fit entirely within the open block. Such a message is
defined as follows:

Message type octet: 64

Number of parameters: 1

Length of parameter: 24 (octets)

Parameter contents: 1st 8 octets: TUID
2nd 8 octets: PUID
3rd 8 octets: AUTY

' The deficiency of this message is major. The message type used is
necessarily new and, unfortunately, gateways Which conform
to [Yellowbook801, around which specification the format of this message is
based, can not pass messages of unknown message type. (Refer to

Article 15 -119- Communication

"puthentication and the 'Yellow Book'", below, for further details). It was
decided, initially, that the format of the message was to be context
dependent in that it was assumed that any recipient would know what to do
with the data it contained. A more general format would, perhaps, have
split the message up into three parameters: the address at which the
authentication information was to be verified, the data to be ratified and
the (secret) data to use, This would have a better chance of general

acceptance but, given the above problem, this chance would remain small.

The AUTY field is included so that the receiver understands exactly what
name the principal wishes to be known by. The recipient is free to try to
verify the TUID and PUID under a different authentity but the authentity
that the principal claims to have is the one given in the AUTY field. It is
important that the recipient does not simply check the TUID, PUID and AUTY
and then allow access if they verify. An explicit check that the authentity
is one which the recipient is prepared to accept should be made. Users, for
example, may be given their own authentity representations to experiment
with — the representations they produce will be verifiable but may well not
be trustworthy.

15.4.4 Replug

There used to be a facility in BSP which allowed an existing BSP to be
"replugged" so that one of the participants could be replaced (see
"Implementation Environment"). This presented something of a problem since
there was no general mechanism provided for passing user parameters through
to the other half of a BSP. Such a mechanism was necessary if "messages"
were to be relayed by the REPLUG initiator. Also the mechanism so far
described is unidirectional. A BSP initiator sends credentials to a BSP
receiver, not vice versa. Replug did not cater for such asymmetry in the
reconnection, it sent the same request to both ends.

It was true, in this particular case, that the BSP would not have arisen
were it not authentic to the initial recipient, but the recipient of the
‘replug could have been unable to tell whether or not the initial BSP was
normal or of the authentic variety, and even if it could it may not have
shared the same criteria for trust as did the initial recipient.

The problem could have been overcome by appending the authentication
message to the end of a REPLUG block thus defining the rest of the block to

be "user data". In a TSBSP environment an authentication message could have

Article 15 =120~ Communication

been sent automatically upon receipt of a REPLUG block. However, a more
promising solution seemed to be the phasing out of REPLUG altogether, and
that, in fact, is what happened.

15.4.5 Example uses

This protocol is used for file transfer and terminal connection. In both
of these cases the TUID, PUID and AUTY mentioned above refer to the user of
the given service. In the file transferring protocols access to the filing

system being used is that of the authenticated user. In the RATS protocol
(see "Implementation Environment") the user does not have to go through

normal logging on procedures,

15.5 Authentication and the "Yellow Book"

[Yellowbook80] defines no facilities specifically to support
authentication. The area is listed as one needing further study. However,
the Transport Service Implementors Group soon found a need to support
authentication and accordingly deliberated the point to emerge with a way in
which authentication information could be supported by a transport service
conforming to the standards laid down in this reference.

For the same reason that the open block was chosen as a suitable vehicle
for the authentication message invented for Authenticated BSP, it was
decided that the initial CONNECT message should be used. In this way the
principal of the communication will always be identified before the body of
the communication itself,

The CONNECT message consists of only four parameters: a called address, a
calling address, a quality of service parameter and a parameter called
"explanatory text". A fifth parameter could easily be inserted into the
message for authentication data conforming to the protocol for forming
messages but, unfortunately, it would not be passed on by gateways (which
will expect only four). The explanatory text parameter could not be used
since its contents are 1likely to be uppercased, printed out or even
discarded altogether at different points along the message's route. The
quality of service parameter has no definite syntactic content and is, by
and large, unused. It is provided for gateways to use when determining the
next path of the route to be followed, and possibly to set it up in a
particular way. As such it is not suitable for the transportation of

Article 15 =121~ Communication

authentication information.

The calling and called address parameters are transformed as they pass
through gateways so that the called address becomes shorter and the calling
address becomes longer, At each stage tHe active part of the called address
represents the immediate destination and the rest of the address, delimited
by some character, is passed on as the entire called address (possibly after
transformation) for the next stage. The decision made was to define some
syntax that can be included in the active part of the name for any
authentication information necessary at that immediate address. The syntax
used included keyed or positional textual parameters enclosed in brackets
immediately after the address part to which it refers. The two main

parameters are those for identifier and password.

Since [Yellowbook80] could not be redefined, or, as it turned out, even
enhanced upwards compatibly, the Transport Service Implementors Group came
to the decision that it made, with very few alternatives. The called
address parameter is by no means likely to be exempt from being printed out
at various points along the route, complete with names and passwords.
Authentication information such as a UID set does not fit well into this
scheme. A UID set must be transformed into a character format (one
character per hexadecimal digit for example) then the authentity and PUID
can be combined to form an "identifier" and the TUID could be used as the
"password".

15.6 Encryption

By and large, secure communication can be achieved using encryption
techniques. 1In addition, many authentication protocols have been proposed
based on encryption. This section attempts first to point out the

difference between these two applications of encryption, and then to
advocate the use of an alternative system of authentication (that described
in former articles) in preference.

Article 15 -122- Communication

15.6.1 Communication and authentication

The use of encryption in both the above areas has lead to a certain

amount of confusion over their individuality.

The field of private communication is concerned with delivering data,
without change, to some address on the network (and no other). The
existence of a secure communication mechanism implies that it is possible
for any service to ship arbitrary data to another in secrecy.

The field of authentication is one of the facets of the larger topic of
object identification and representation. The existence of a secure object
representation mechanism implies that names can be used, and their validity
can be irrefutably assessed.

Encryption can be used to provide private communication simply by
rendering data unintelligible to everything other than the services taking
part. Such a system relies upon the relationship between data "in clear"
and encrypted data being "one-way" - that is: there is a relation between
clear text and encrypted text such that the encrypted text is easily found
from the clear text but not vice versa (without the aid of some additional
information).

A relation such as this can also be used to implement a secure object
representation system (see "Representation of Objects"). Possession of a
representation for an object implies that the holder can not only name the
object but can also check that some authority guarantees that this
representation does, in fact, represent the object with a given name. Such
a check amounts to verifying that a particular relation holds between the
object representation and its name. This relation must also be one-way
since, although it could be possible to find the name of an object given its
representation, it must be impossible (or at least very difficult) to obtain
an object's representation given just its name. Thus, because it supplies
this relation, encryption can be wused to provide secure object
representations. However, using it is rather like using a sledge hammer to

crack a nut.

As an example of how encryption could be used to implement an object
representation scheme, consider the following method which involves an
object representation server to provide the authority that the holder of a

representation verifies:

Article 15 -123- Communication

(1) The owner of some object (a physical resource, say) asks the server to
provide a representation for some named object.

(2) The server encrypts the object's name with its private key and returns
the result.

(3) The result is used as that object's representation on the network.

(4) When the representation is to be checked it is passed back to the

object representation server with the name of the object that it is
thought to represent.

(5) The server again encrypts the name and compares it with the
representation indicating to its caller whether they are identical or
not (that is, the representation is or is not valid).

It should be noted here that no attempt is made to solve the myriad
problems that arise from an insecure communication medium (which might, for
example, result in a representation becoming misappropriated) because an
environment in which secure communication already exists has been assumed.
In other words the two areas of private communication and object
representation have been separated to the extent that they form two separate
implementation layers of a secure network - one being based upon another.

It is because encryption can be used in both of these fields that the
terms "authentication" and "private communication" have become almost
synonymous with "encryption", However, as was noted above, it is possible
to segregate these two areas, possibly providing alternative solutions to
each. As an extreme, in an environment in which the only communicating
entities are the processes of a single operating system, private
communication can be provided by simply trusting the message sending
software, and object representation can be implemented using capabilities.
It would obviously be a mistake to use encryption for both (in fact, either)
of these fields in this case.

15.6.2 Segregation of function

In the above example of an object representation server, encryption is
neither necessary nor, because of the large amount of effort associated with
encrypting and decrypting data, is it desirable. The one-way relation that
it provides can be modelled explicitly by a table (as in a relational data
base) as discussed in the article "Design of an Object Representation
System". The use of an explicit relation in this form can clearly be more
efficient than using encryption. It has the following advantages:

Article 15 ~124- Communication

(1) It does not incur the overheads associated with encryption and
provides a faster, and therefore more useful, service*,

(2) It can be used by services that do not possess the ability to encrypt
or to decrypt (thus services can potentially be simpler).

(3) It allows revocation of representations because the representation is
explicit and dynamically alterable.

By explicitly segregating private communication and object
representation issues (for example, by implementing them differently), many
of the problems which used to be viewed as difficult or complex in that
combined area reveal themselves to have quite simple solutions when viewed

as part of one or other of the component fields.

As an illustration, consider the question "Which aspects of a private
communication protocol are necessary for the support of remote user
authentication?". The answer is "None." - user authentication is a matter
for solution by object representation methods: the only constraint upon the
protocol is that it should be able to support an object representation
system generally, no specific aspect of it can be pertinent to users
explicitly., Similarly, "problems"'encountered in accounting, remote job
control, resource management, and the authentication of external objects
generally are independent of protocol and communications issues. They find

solutions when regarded as problems in object representation.

% To be fair it should be stated that very fast encryption devices are now
available that allow the amount of data in a representation to be

encrypted in quite acceptable times [Newman821. It might also be fair to
point out that the representation system could possibly go much faster
with hardware support.

Article 15 -125= Communication

Article 16

UID SETS ON TRIPOS

This article describes the use of object representations in an operating
system (TRIPOS) and the attendant enhancements to it. In particular, the
idea of a "fridge"™ for UID sets, the use of the Userauth and Privman
services during the logging on procedure, the commands for interacting with
those services, and some other system changes are explained.

Since TRIPOS runs on simple, single user machines this is a real example
of representations being used to provide protection in a, previously,
completely unprotected system.

16.1 TRIPOS

TRIPOS is a simple, locally written, portable operating system which
specifically aims to support only a single user on an unprotected machine.
It is fully described in [Knight82]. It is almost entirely written in the
BCPL programming language and, amongst other things, provides a filing
system with a multi-level directory structure, easy process creation*, a
fast inter-task communication method (messages are passed by reference) and
flexible pseudo-stream devices.

All of memory is available to each task. The user is expected to be aware
of the unprotected nature of his computer. He is responsible only to
himself for its state.

In order to run TRIPOS in the environment described in "Implementation
Environment" the user must obtain a connection to a service called the
Session Manager to which a small vocabulary of commands can be given. The
user then requests a version of TRIPOS, whereupon a computer from a pool of
spare machines is selected and loaded with code appropriate to TRIPOS on
that particular type of computer. TRIPOS then comes to life and, using

information from the Session Manager, opens a virtual terminal protocol BSP

¥ On TRIPOS processes are called "tasks".

Article 16 -126- TRIPOS

to the client's terminal.

16.2 The Fridge

All UID sets currently owned by the user or the system on TRIPOS are held
in an easily accessible list called "the fridge". System software
periodically refreshes those UID sets that it can (that is, those with valid
TPUIDS)*. In this way UID sets in the fridge are kept "fresh" until either
the system crashes (in which case the UID sets will "go of f"* an hour or so
later), or the UID sets are explicitly deleted or withdrawn from the fridge.

All tasks have access to the fridge and may insert, copy or delete any of
the UID sets therein (the interlock on the fridge being ensured by the use
of task priorities). Since all of memory is available to each task, it was
thought to be pointless to maintain one fridge per task since each one could
still access another's UID sets. However, subsequent experience has shown
that it is useful to associate UID sets with an "owner" task even in a
completely unprotected environment. This is simply because a task sometimes
needs to access a UID set that it, in particular, has placed in the fridge,

and not one of a similar name that another task has placed there.

By'convention, the first UID set for a task on the list that constitutes
the fridge represents the user of the system for that task. Hence whenever
this UID set is deleted the rest of the fridge must follow suit (to prevent
any other UID set becoming the first).

There are two user commands on TRIPOS that can be used to interrogate the
fridge. They are the USER and the UIDEDIT commands.

% Currently each UID set is refreshed for an hour every thirty seconds or
so. The short timeout is to ensure that UID sets newly placed in the

fridge do not timeout before they are first refreshed, and the long
timeout ensures that, in the event of a crash, there is enough time to
salvage the UID sets manually if necessary.

Article 16 -127- TRIPOS

16.2.1 USER command

This command normally types out the name of the first UID set in the
fridge - this giving the user of the system. By quoting command line
parameters the whole fridge can be listed (optionally with each UID set's
TPUID and TUID) or a particular (or every) UID set can be deleted from the
fridge. A single UID set to be deleted can be specified by giving both its
PUID and its authentity. The first UID set in the fridge with that name is
then removed and, if possible, deleted. Since the most popular items for
residence in the fridge are privileges the authentity will default to
'privilege' if only the PUID is given,

16.2.2 UIDEDIT command

This command enters an interactive "fridge editor" for manipulation of
the contents of the fridge. It keeps an independent receptacle (called
"CURRENT") into which items from the fridge can be copied and upon which a
selection of operations can be performed. The use of an independent
receptacle is necessary in order to obtain a fixed handle on a UID set
because the contents of the fridge might, at any time, be altered by another
task. CURRENT can be copied back into the fridge at any time with the
proviso that the UID set it contains must not be already resident.

Aside from being able to transfer its contents to and from the fridge,
CURRENT can be edited, written to a file, read from a file, or used as an
argument to the various AOT service functions. When writing to a file the
UID set is encoded by adding a value derived from a password to the random
part of the UID set. The UID set is decoded with the aid of the same
password when it is later read from the file. This password can be set and

checked during the edit session.

Of the entries to an AOT service two, verify and identify, are used
automatically when listing UID sets. The others are used on the UID set in
CURRENT explicitly. This UID set can be réfreshed for an arbitrary number
of seconds (or deleted by refreshing it for zero seconds) or it can be used
to generate new named UID sets (with either ENHANCE or GETTUID) that are
automatically put into the fridge. When refreshing CURRENT it will often be
necessary to remove its duplicate from the fridge in order to avoid the

normal refreshing mechanism resetting the UID set's timeout.

Article 16 -128- TRIPOS

16.3 Textual Names for PUIDs

When using utilities on TRIPOS which involve UID sets it is often
necessary to quote PUIDS. This can always be accomplished using a 16 digit
hexadecimal number. However, this is not always very convenient for users
who are unlikely to be able to remember all the numbers necessary. In
consequence, TRIPOS supports a mapping between textual names (mnemonics)
and PUIDs. Thus, instead of using a 16 digit number, users may chose to use
its unique mnemonic. However, if the user does not trust the mapping to

give what he expects from any particular mnemonic, or if there is no
mnemonic for a particular PUID, the hex number can always be used.

On other systems there may already be names for certain types of object
(users, for example) and these can be mapped onto the more global PUID for
that object. It is not necessary for these mnemonics, which are likely to
be necessary in any operating system using UID sets, to have global
significance (although this would obviously be desirable).

These mnemonics are used in the USER and UIDEDIT commands above and
everywhere else that a user is expected to provide a PUID,

16.4 Logging On

During system initialization a program called START is loaded and
executed in such a way that it cannot be interrupted or avoided by the user.
The program requests the user's pUID® and password. The Userauth service is
used to verify that the user's password is correct and, if it is, generate a
valid UID set to represent him which is placed as the first in the fridge.
If the call to Userauth fails, the interaction is repeated up to twice,
after which the computer is returned to the free pool.

As well as his name and password, a user may request a particular status
for his session. There are several different possible forms of TRIPOS: a
version with a restricted set of commands for undergraduate students, and a
more comprehensive version for research students. In both of these cases
there is a normal and a maintenance version (in which an additional part of

the filing system where the sources of commands and so on are kept is

¥ The PUID will normally be specified in its mnemonic form.

Article 16 -129~ TRIPOS

accessible). Two privileges are used to distinguish those who are allowed
to request the research student version (LABPRIV) and those that are allowed
to request the full version of the filing system (TRIPPRIV). In a more
general case one could expect START to check the existence of several such
privileges. These privileges would fall into two main classes: those
necessary by dint of the version of the system that is being run (for
example, LABPRIV); and those implied by the status requested by the user

during the logon interaction (TRIPPRIV for instance).

To cope with these requirements, START takes a bit map specifying which
privileges will be necessary when it is called and adds bits corresponding
to those privileges that the user requests during logon. If the user is
allowed the privilege for which a bit is set in the bit map the map is
returned to the caller indicating which privileges the user has acquired.
If the user is found not to be allowed one of these privileges the machine is
returned to the pool.

Currently the privileges are checked by a request to the Privilege
Manager asking whether the given user would be allowed them on request.
This is not really the way in which the Privﬁan service is intended to be
used (it is simply being used as an access control list here). In future
configurations, the initial connection to TRIPOS is expected to carry with
it a UID set for the user. When this is the case the privileges will be
checked by accepting and checking additional privilege UID sets.

16.5 Service Interaction Commands

Commands for using the various services described in previous articles
are available under TRIPOS. For direct manipulation of AOT services UIDEDIT
can be used. To interact with the Userauth and Sysauth services (which have
very similar interfaces) the LOGON command is used. Privman and SOAP
services (which also have similar interfaces to each other) can be
manipulated with the PRIV command. The UIDEDIT command has been outlined
above.

Article 16 =130~ TRIPOS

16.5.1 LOGON command

The LOGON command is used to manipulate the password tables of the
Userauth and Sysauth services., One parameter indicates which of these
services is to be used, otherwise the command is identical for either

(except that the names used are of users or systems respectively).

If no other parameters are given, a name and a password will be
requested, checked by the service and, if the check is successful, a UID set
will be returned and put into the fridge. The fridge has its contents
deleted before the check is made.

One parameter enables a user's password just to be checked without
generating a UID set. A message is given indicating whether a given
password is that of the given user. If no PQID for a user is given, it
defaults to that of the current user.

Another parameter is used to change a nhamed user's password. Both the
user's current password and the password to which it is to be changed must be
given. The new password must be typed twice identically in order to avoid
users setting the wrong password by mistake.

A further two parameters enable the addition and deletion of new names to
or from the password table. The fridge is searched for a privilege (PWPRIV)
which is needed for these operations - an error message being generated if
it is not found. The privilege is not obtained on the user's behalf if it is
not there. This in not simply because the location of a route to a
particular privilege may be beyond convenient automation; it is\up to the
user to define his own level of privilege and to be aware of what it is at

all stages of his session.

16.5.2 PRIV command

The PRIV command is used to manipulate the tables in Privman and the SOAP
service that say which object is allowed which privilege or authentity. As
in the LOGON command, onhe parameter distinguishes which of these two

services is being used and the command line is otherwise identical.
If only the PUID for a virtue (that is either an authentity or a

privilege) is given, an application is made to bestow that virtue on the

logged on user (that is, check that the user's UID set allows the virtue to

Article 16 -131- TRIPOS

be claimed and, if it is, enhance the user's UID set with a new one for the
virtue). Additionally a parameter can be quoted which will grant rather
than bestow the UID set for the claimed virtue (i.e. an independent UID set
will be returned).® In either of these cases the UID set for the new virtue
will be stored in the fridge. The virtue need not be claimed by presenting
the logged on user's UID set - the PUID and authentity of any UID set in the
fridge can be given instead.

Another parameter allows the user to find out whether he would be allowed
a particular virtue if he possessed a valid UID set for himself (or any
other named object). The fridge is not used at all in this case (except to
find the user's PUID, by default).

A choice of a further two parameters can be made to either delete or
insert the ability for a particular object to claim a given virtue. 1In
either of these cases the fridge will be searched for an appropriate
privilege which will be used to authorize the operation. Here again this
privilege is not automatically claimed on behalf of the user if it is not

found.

16.6 Other System Uses

Prior to the use of UID sets in TRIPOS, there was no user identification
system. Since then user identification has been used in various places
(although, with the exception of the message system, not by the author).

These include:

- authBSP

TRIPOS has a virtual device called "BSP:" which can be used as part
of a stream name. The resulting stream will be a BSP to some service
or another on the Ring. A similar device called "authBSP:" has been
implemented which uses authenticated BSP - putting the current user's
UID set in the open block?,

Services which are supported by TRIPOS and which use authBSP
currently accept only 'user' UID sets (that is, those issued by
Userauth). They include GIVEFILE and TAKEFILE for transferring files
to or from a remote machine, and STAR for connecting into one.

% See the article called "Privilege Management".
See the article called "Authenticated Communication®.

Article 16 -132- TRIPOS

AuthBSP: has the advantage in the former cases that normal access to
the user's file space will be allowed and in the latter that no
password check will be necessary.

- the message system

PUIDs are used to identify users and to distinguish their message
files. It will be possible, in the future, to implement access
controls on the messages that are read and so forth. However, because
of the unprotected nature of TRIPOS, it will be impossible to stop
users going "behind" standard utilities and avoiding these controls.
This problem can only be solved by distributing the message system to
another protection domain.

- the filing system

The PUID naming the logged on user is stored in each file created
so that it is possible to find the creator of any file. As in the
message system access controls may be implemented based upon these
identifiers although the same limitations apply (in the traditional
TRIPOS filing system).

Article 16 -133- TRIPOS

Article 17

SUMMARY AND CONCLUSIONS

In this thesis the meaning, fabrication and use of an object
representation system have been discussed. This article attempts to
underline the most important ideas scattered through the dissertation,
under the headings Theory, Implementation, and Distributed Systems which
were mentioned in the introduction.

17.1 Theory

Underlying any access control mechanisms there must be some kind of
authentication system so that accessing, and perhaps accessed, objects can
be reliably identified. A tool of great utility in this respect is a
representation system, the only function of which is to provide a vehicle
for such authentications.. The ability to verify the identity of an object
allows both access list and capability kinds of control of accesses to
services,

In a distributed computing environment an object representation system
can be fabricated from three main constituents:

- Naming System

A naming system 1is necessary to label the objects being
represented.

- Tokens

Unique unforgeable tokens are needed as private indications of the
possession of an object representation,
- A Relation

A relation which associates tokens with names is needed to indicate
that particular tokens are representations of objects with particular

names.

This relation should not be permanent or unalterable because new object

representations may be necessary at any time and, since the safety of the

Article 17 ~134- Summary

secret token diminishes with time, because representations may need to be
subsequently deleted (particularly if the secret token is lost to a thief).
Because the tokens are to be passed to computing elements, the nature of
which cannot be forecast and control of which cannot be guaranteed, they can
only be made difficult to obtain illegally by making them difficult to
guess. By randomly taking them from a large name space this can be made
arbitrarily difficult. The relation, in a form such as a table, can be kept

within a number of trusted computing elements.

Since authenticity is not an absolute quantity, a token should refer not
only to the name of the object for which it is a representation but also to
the name of the object that guarantees that this is so. This name, called an
authentity, can be authenticated through the use of its own representation
when it is used to create a new representation. Since this recursion (the
creation of a representation requires another representation to exist in
advance) must stop, there is a requirement for something capable of creating
all possible representations without the use of an existing representation.
This thing was called SOAP., It needs to be used only once in the history of

a representation system to create the first representation.

The creator of a representation could pretend to be any of the names for
which it generates representations and could, therefore, do anything that
objects with those names could do. By giving these representations away
power is effectively delegated to the new recipients. The initial
representation is, therefore, the most powerful on the network and is

consequently called the SOAP name,

Because a token refers to both a name and an authentity, the full name
for a represented object should contain both of these parts. Using just the
object's name may cause ambiguity since it is possible for two different
authentities to use the same name for different objects. Both the most
general format and the usefulness of a full name in the naming scheme
(resulting from different implementations) were examined. If there is only
one authentity the resulting widespread distribution of its representation
makes the system rather fragile. If an authentity is specified using
exactly one name part this problem disappears. If there is any fixed number
of name parts in an authentity the scheme is equivalent to the one in which
there is exactly one, except for the size of the namespace created. A
variable number of name parts in an authentity creates a very flexible
system in which the history of names can be exactly specified but which are

unwieldy in use and can require the use of generalizing mechanisms to reduce

Article 17 -1356- Summary

their precision.

A service holding a number of access control lists was used to create
privilege representations which could be used at services as capabilities
for the use of "sensitive" entries. Thus, sefvices have the options of
either implementing their own access control list mechanisms or using this
primitive capability control mechanism (over which they have less control).

Four ways in which the identity of an object could be verified were
proposed and a model was developed in which authentication was viewed as a
mapping between one representation domain and another. Authentication
takes one proof of the identity of an object and creates another proof of
identity for the same object. Such a process was found to happen at more
than one level in a distributed system. At the lowest level an object is
represented within a program by some set of (possibly unforgeable) bits.
This representation could have been generated by the authentication of a
network representation which, in turn, could have been generated through the
authentication of a person in whatever representation is most convenient.
This model was applied to both wusers and services in designing
authentication mechanisms for them.

17.2 Implementation

Although very rapid use (memory access speeds, for example) of the
service containing the representation relation (the AOT service) was not
expected there were practical reasons to make checking a representation
cheap, not the least of which is that autonomous computing elements will not
choose to use expensive forms of access control. For this reason a simple,
fast protocol was used and the software for the representation verifying
operation was optimized. The protocol had no error correction in it so each
entry to the AOT service was carefully desighed to be idempotent in so far
as each one could be repeated a réasonable number of times with no overall
detrimental effect. In order that the load on the AOT service could be
shared, several were allowed, each holding an independent subset of the
total number of representations. The random number generator used to create
tokens needed special consideration since the current token should not
enable the succeeding tokens to be guessed. Because two independent 48 bit
random quantities are needed and the random number generator algorithm must
be assumed to be known, a 128 bit multiplicative pseudo-random number
generator was chosen. Only the top 96 bits after each application were

Article 17 -136—~ Summary

used, leaving a 32 bit number to be guessed. This task was made a little
more difficult by periodically incrementing the seed.

Other table based services were implemented for a Privilege Manager, User
Authenticator and SOAP Server, each with idempotent interfaces. They use

the representation system to authenticate their own update.

A high level interface to the various servers was implemented on the
TRIPOS operating system, including a local repository for representations,
called a fridge. The User Authenticator is used to create a representation
for the user, and it is stored in the fridge. Subsequent uses of the
commands to access the Privilege Manager or the SOAP Server result in
additional representations to be stored. A command to manipulate the fridge

interactively using the AOT service was also described.

17.3 Distributed Systems

Many uses were found for representations in a distributed system.
Stretching the imagination to different degrees, mechanisms have been given

for providing representations for:
- Users -~ in the user authentication service.
- Computers - in the resource management example.

- Services - after their authentication.

- Entries - (a privilege could be considered to be a representation for
the entry to a service that it affords access to).

- Addresses - in two-way authentication.

- Representations - TPUIDs are representation representations.

When dynamic services are used it was shown that, even when all
communications are guaranteed to be private, unexpected communication paths
can be set up which may be untrustworthy. A two-way authentication
protocol, using address representations, was devised to circumvent this
problem. Using it one service can prove its identity to another without
risking the loss of any important or valuable representations (which 1s not
the case in the simple one-way scheme, in which a client simply sends its
identity to a server).

Article 17 -137~- Summary

This protocol relies upon the service being able to obtain an authentity
representation. The SOAP Server (as distinct from SOAP itself) is set up to
grant these representations to chosen recipients in exactly the same way
that the Privilege Manager generates privilege representations. Thus,
given that the dynamic service has a representation proving its own
identity, an entry in the SOAP service can be set up to allow it to claim the
correct authentity representation.

The means by which a dynamic service could obtain its own representation
were discussed and the conclusion made that it could, essentially, be loaded
along with the code when the service was created. This, of course, assumes
that the booting service can, itself, generate service identity
representations. Thus the problem is recursive. Once the first operational
boot server is fully operational the mechanisms provided will support
themselves. A service for authenticating static services, by password, is
provided which can be used by the first boot server (which must, therefore,
be a static service). Thus, since they could communicate freely using
two-way authentication, there was no remaining reason why dynamic services

could not operate as well as static ones on a network with these facilities.

Article 17 -138- Summary

GLOSSARY

Address
The specification of a location (at which a single service can be
contacted) on a network.

A\N
Used as a general specification of an arbitrary two-part name with
name N under authentity A.

AOT

Active Object Table
A table in which tuples of the form <TPUID, TUID, AUTY, PUID,
timeout> are kept: each tuple representing an active object with
the name given by its PUID. Such a tuple was created by AUTY, is
referred to by TPUID and will exist for TIMEOUT seconds., TUID is
the representation of the active object.

AOT Service
A service responsible for maintaining an interface to an AOT.
This interface includes the entries: VERIFY, GETTUID, REFRESH,
IDENTIFY, and ENHANCE (q.v.).

Authentic

A representation is authentic if t can be provided for which t V
p(A\N) where A\N is trusted.

AuthBSP
Authenticated BSP

An enhancement of the BSP in which the identity of principal of a
communication is established, using a TUID, PUID and authentity,

as part of the opening dialogue.

Authentication
Authentication is a mapping between one domain of representation
(possibly null) to another (possibly the same) in which the object

being represented remains constant.

Glossary viii Glossary

Authentication, External
Authentication of an object external to a network (for example,
another network or a user) through its representation in that
outer domain yielding a network representation (ef. Internal
Authentication).

Authentication, Internal
Authentication of a network representation yielding a
representation internal to the authenticating service (for
example, a hardware address). (cf. External Authentication).

AUTY

Authentity
The authentity of a representation is the identity of the
authority under which that representation was created.

Authentity Representation
A representation for the identity of an authority. The possession
of such a representation authorizes the creation of new

representations.

Authority
An authority can potentially create representations for objects
with its identity as their authentity. Its representation is
distinguished by the authentity "auth".

Autonomy
The more autonomous that two individual systems (co-resident on
the same network) are, the smaller the number of identical rules

and mechanisms each system must share.

Auth
"Auth" has been arbitrarily chosen as the name of the authentity
that authentity representations must have.

BISCM
Best Inter-Service Communication Method. That is, the method of
communication used between services chosen to give the required
level of privacy. The probability that the data addressed only to
one recipient will either not arrive and/or will arrive elsewhere
is known and accepted as "good enough". This probability defines
the maximum privacy to be normally offered by the network.

Glossary ix Glossary

Boot
A service is booted when it is dynamically created from its
component parts, Typical component parts in this context might be
a body of program code and something capable of executing that
code. A service can be authenticated by this oberation, and its

representation included with its code upon loading.

Boot Server
A service responsible for booting and authenticating new services.

BSP

Byte Stream Protocol
The name of a real protocol used to transfer bytes from one
service to another at a speed determined by both ends of the
transfer (see also SSP).

Client

A service's client is some entity that makes use of that service.
A client is not necessarily a person (cf. user).

Dynamic Service
A service which is not continually resident at any single address

(cef. static service).

ENHANCE
An entry to an AOT service which enables an authority to make a
TUID represent more than one object simultaneously.
Alternatively it can be used to create representations with
compound authentities (ef. GETTUID).

Entry
The name of the unit from which the network interface to a service
is constructed. Each entry to a service activates a different
function of that service.

Fridge

A representation container. Network representations may need
continual maintenance if they are not to become invalid. This

maintenance is conveniently provided in a fridge.

Glossary X Glossary

GETTUID
The entry to an AOT service which enables an authority to create
new representations (cf. ENHANCE).

i

i(t,A\N)
The proposition i(t,A\N) implies that t represents the object
created by A called N, or more succinetly ¢t V p(A\N), This
proposition about UID sets can be checked using VERIFY.

Idempotent
A protocol exchange is idempotent if it will produce the same
result no matter how many times it is repeated.

IDENTIFY

An entry to an AOT service which verifies that a given TPUID
refers to a specific representation (given by its TUID, PUID and
AUTY). (ef. VERIFY).

Independent Service
A service is independent of all other services iff information
transfer between it and any other service is always achieved

through communication on the network.

Kernel
A set of services (both static and dynamic) which are responsible
for the management of a network's resources and for the provision
of trusted network primitives. Kernels are independent - several
may coexist on the same network,

Monitor

The monitor for a representation is the possessor of the ability
to alter the period of existence of that representation.

Multi-level Name
A name from a naming system with a fixed number of hierarchical
name parts. Except for the size of the name space a multi-level
naming scheme shares the properties of a two-part naming scheme

(ef. multi-part name).

Glossary X1 Glossary

Multi-part Name
A name from a naming system with a variable number of hierarchical
name parts. If the name has no parts at all it represents SOAP
otherwise the name can be divided into two main sections - the
last name part which is the named object's PUID, and the other
name parts which constitute its authentity: which is itself a
multi-part name (cf. two-part name).

Name
An item of information which has no meaning other than that it
denotes some particular object.

Nameserver
A static service responsible for mapping textual names onto
physical addresses within a Cambridge Ring. Services should be
addressed by their textual names on a Cambridge Ring - hence it is
a member of the kernel of a Ring system.

Name-part
A single element of a name with many parts. Within the name the
name-parts to its left (which constitute its authentity) specify
the naming domain in which this name-part has meaning.

Network

A network is a collection of independent communicating services.

N-level Name

A multi-level name.

Object
A reference to an "object" can be consistently replaced by a
reference to anything sufficiently integral to warrant a name of
its own,

OPRT

One Pass Representation Table

The analogue of an AOT for pass-once representations. In addition
to the information kept in AOT tuples a OPRT holds the names of

its owners and of its monitors.

Glossary xii Glossary

p(A\N)

Pass-—once

Principal

Privilege

Privman
Privilege

PUID
Permanent

Glossary

The proposition p(A\N) implies that the authority A claims that an

object called N exists. Whatever proves this proposition can be
used as a representation for that object.

Representation
A representation which has the property that it may be possessed

only by a fixed number of owners. Having been passed from one
owner to the next such a representation will cease to be held by

the former (this is not a property of representations served by
the AOT server).

The principal of any activity is the object on whose behalf it is

being undertaken. If accounting were used it would be the
principal that would be charged for the activity.

Privileges are representations created with the authentity

PRIVILEGE, They form the currency that buys the use of protected
entries in services.

Manager

A server which maintains lists of objects (called virtues) able to
claim particular privileges. It provides privileges to clients

quoting correct representations of listed virtues.

Unique Identifier
In an AOT tuple the PUID is the name of the object being

represented. Otherwise (in the sense that an authentity is a
PUID) a PUID is a particular implementation of a name part (cf.

TUID).

R is the abstract relation that an AOT explicitly supports in
order to provide representations. R = {<d,t, AN/t A> 0 & dV

i(t,A\N)} in which /\ is the length of time for which a given tuple
is currently to exist.

xiii Glossary

RATS

Remotely Activated Terminal Session

REFRESH

The name of the protocol used on the Cambridge Ring for terminal
traffic., It is founded on BSP,

An entry to an AOT service which enables the possessor of a TPUID
for an object's representation to change that representation's

timeout. Changing the timeout can result in the representation's
deletion or its existence beyond its current life expectancy.

Representation

Server

Service

SOAP

T is a representation for object N under A's authority if it can be
used to prove that A created it for N. That is if, t V p(A\N).

Servers are services which provide some object or perform some job
for a user, Resource allocators, printer servers,
authenticators, and compiler servers are all valid examples (ecf.
service).

A Service is the name given to an independent communicating entity
on a network. It could, for example, be implemented as a separate
computer, a process within a computer, a coroutine within a
process or just a module of event driven code executing somewhere
(cf. server).

Source Of All Power

SOAP Name

Glossary

All authority on a network is initially delegated from SOAP, It
is the only thing on the network able to create a representation

for the SOAP name without first possessing one. It is controlled
by levels of authority outside the network,

A representation for the SOAP name enables a representation for
any other name to be created. It is, therefore, the most powerful
name used in the representation system. In the AOT representation

system this name would be "auth\auth",

xiv Glossary

SOAP Service
A server provided by SOAP which delegates SOAP's authority on its
behalf. On the Ring it provides authentity representations in
exactly the same way that the privilege manager provides
privilege representations.

SSP

Single Shot Protocol
A simple protocol in which a request (of small maximum size) is
sent to a server and small reply is sent in return. The protocol
requires that the request must be idempotent since either the
request or the reply may legitimately be lost (see also BSP).

Static Service

A service is static if its address changes only very occasionally

(or not at all). The address of such a service can reliably be
found by using the nameserver (cf. dynamic service).

T-authenticator
An authenticator service for the +type T. Such a service

specifically deals with objects of type T (for example, users,
services, addresses and so on) and possesses a method to verify

the identity such objects.

TPUID
In an AOT tuple the TPUID is the representation of that tuple. It
can be used to either delete or maintain that tuple and
distinguishes the owner of the tuple from users of it.

TUID

Temporary Unique Identifier
In an AOT tuple the TUID is the representation that that tuple
implements. It is the TUID of the tuple that is parsed around the
network to unforgeably denote the thing being represented by that

tuple. Otherwise (in the sense that a TPUID is a TUID) a TPUID is
a particular implementation of a representation name (cf. PUID).

Two-part Name
A name consisting of both an authentity and a PUID as the

specification of the object to which it refers (cf. multi-part
and multi-level name).

Glossary XV Glossary

UID

Unique Identifier

UID set

User

Userauth

The object used for the implementation of both a PUID and a TUID.

UIDs are created only once and never repeated.

The generic name given for the main components of an AOT tuple, a
TPUID, TUID, PUID and authentity. It is a loose term which can be

used to denote a subset of these components (such as just the TUID
or TUID and TPUID) when appropriate.

A service's user is some person that makes use of that service (cf.

client)., Although the gender of the word "user" is taken to be
masculine the actual gender of a user is not assumed.

User Authenticator

VERIFY

Virtue

Glossary

A server which maintains lists of users and their passwords. It
provides representations under its own authentity, 'user', for

user's who can quote their password correctly.

In x Vy (tVp(A\N) or dV i(t,A\N) for example), V means "proves"
or "can be used to verify that". It implies that a verifiable

relationship exists between x and the proposition y.

An entry to an AOT service which verifies that a given TUID is a

valid representation of a given object (specified with a PUID and
authentity). (ecf. IDENTIFY).

A name of an object the representation for which allows a

privilege to be claimed from the Privilege Manager.

xvi Glossary

[Davies81]

REFERENCES

D. W. Davies,

"Protection", Chapter 9, "Distributed Systems - Architecture and
Implementation: An Advanced Course", Edited by B. W. Lampson,
M. Paul and H. J. Siegert, pp. 221-245, Lecture Notes in Computer
Science No. 105, Edited by G. Goos and J. H. Hartmanis, 1981

[Denning79]

[Dennis66]

D. E. Denning and P. J. Denning,

"Data Security", Computing Surveys Vol. 11 No. 3 pp. 227-249,
September 1979

J. B. Dennis and E. C. van Horn,
"Programming semantics for multiprogrammed computers",
Communications of the ACM Vol. 9 No. 3 pp. 143-155, March 1966

[Dion81]
J. Dion,
"Reliable Storage in a Local Network", University of Cambridge
Computer Laboratory, Ph.D. Thesis, February 1980
[EvansT74]
A. Evans Jr., W. Kantrowitz, E, Weiss,
"A User Authentication Scheme not Requiring Secrecy in the
Computer", Communications of the ACM Vol. 17 No. 8 pp. 437-442,
August 1974
[FabryT7h]
R. S. Fabry,
"Capability Based Addressing", Communications of the ACM Vol. 17
No. 7 pp. 403-412, July 1974
[Gibbons80al
J. J. Gibbons,
"The Design of Interfaces for The Cambridge Ring", Ph.D, Thesis,
University of Cambridge Computer Laboratory, September 1980
[Gibbons80b]

J. J. Gibbons,
"SSP - A Single-shot Protocol for the Ring", Internal document,
University of Cambridge Computer Laboratory, September 1980

References xvii References

[Girling81]
C. G. Girling,

"The Use of UID Sets", Internal document, University of Cambridge
Computer Laboratory, September 1981

[Girling82]
C. G, Girling,

"Object Representation on a Heterogeneous Network", Operating
Systems Review Vol. 16 No. 4 pp. 49-59, October 1982

[Graham72]
G. S. Graham and P, J, Denning,

"Protection - Principles and Practice", Proceedings of the AFIPS
Spring Joint Computer Conference Vol. 40 pp. 417-430, AFIPS press,

1972 y
[Hopper791]
A. Hopper,
"Local Area Computer Communication Networks", Ph.D. Thesis,

University of Cambridge Computer Laboratory, April 1978

[Johnson791]

M. A. Johnson,
"Ring byte stream protocol specification", Internal document,

University of Cambridge Computer Laboratory, April 1980

[Johnson80al

M. A. Johnson,
"MSF clock and Logger", Internal document, University of

Cambridge Computer Laboratory, January 1982

{Johnson80bl

M. A, Johnson,
"Ring Authentication on CAP", Internal document, University of
Cambridge Computer Laboratory, December 1980

[JNT80]
The JTP Working Party of the Data Communications Protocol Unit,
"A Network Independent Job Transfer and Manipulation Protocol",
April 1980
[JNT82]
Joint Network Team of the Computer Board and Research Councils,
"Cambridge Ring 82 Protocol Specifications", November 1982
[JonesT8al

A. K. Jones,

"The Object Model", "Operating Systems: and Advanced Course"
pp. 8-16, Edited by R. Bayer, R. M. Graham and G. Siegmuller,

Lecture notes in Computer Science No. 60, Edited by G, Goos and
J. H. Hartmanis, 1980

References xviii References

[JonesT78b]
A. K. Jones,
"Protection Mechanisms and the Enforcement of Security Policies",
"Operating Systems: and Advanced Course" Chapter 3.C pp. 228-251,

Edited by R. Bayer, R. M. Graham and G. Siegmuller, Lecture Notes
in Computer Science No. 60, Edited by G. Goos and J. H. Hartmanis,

1980
[Kahn72]
R. E. Kahn,
"Resource Sharing Computer Communications Networks", Proceedings
of the IEEE Vol. 60 No. 11 pp. 1397-1407, November 1972 :
[Karger77]
P. A. Karger,
"Non-discretionary Access Control for Decentralized Computing
Systems", Report numbers: MIT/LCS/TR-179 and ESD-TR-7T7-142,
S.M. Thesis, Massachusetts Institute of Technology, May 1977
[Lampson69]

B. W. Lampson,

"Dynamic Protection Structures", Proceedings of the AFIPS Fall
Joint Computer Conference Vol. 35 pp. 27-38, AFIPS Press, 1969

[Lampson71]
B. W. Lampson,
"Protection", Proceedings of the Fifth Symposium on Information
Sciences and Systems pp. 437-443, at Princeton University, 1971,
Reprinted in Operating Systems Review Vol. 8 No. 1 pp. 18-24, 1974

[Knight82]
B. J. Knight,
"Portable System Software for Personal Computers on a Network",

Ph.D. Thesis, University of Cambridge Computer Laboratory,
February 1982

[Morris791]
R. Morris and K. Thompson,

"Password Security: a Case History", Communications of the ACM
Vol. 22 No. 11 pp. 594-597, November 1979

[Needham7 8al
R. M. Needham,
"Jser-Server Distributed Computing", "Distributed Computing

Systems", Proceedings of the joint IBM / University of Newcastle
upon Tyne Seminar pp. 71-78, Edited by B. Shaw, University of
Newcastle upon Tyne, 5 — 8 September 1978

References Xix References

[Needham78b]
R. M. Needham and M., D, Schroeder,
"Using Encryption for Authentication in Large Networks of
Computers", Communications of the ACM Vol. 21 No. 12 pp. 993-999,

December 1978

[Needham79]
R. M. Needham,
"Adding Capabilities Access to Conventional File Services",
Operating Systems Review Vol. 13 No. 1 pp. 3-4, January 1979

[Needham79]
R. M. Needham and A, J. Herbert,
"The Cambridge Distributed Computing System", International
Computer Science Series, Edited by D. McGettrick and J. van
Leeuwen, Addison-Wesley Publishing Company, 1982

[Newman82]
W. B. Newman,
"Design of an Encryption System for Project UNIVERSE",
Proceedings of the 6th International Conference on Computer

Communication pp. 384-389, Edited by M, B, Williams, North-Holland
Publishing Company, September 1982

[0dy791
N. J. Ody,
"Initial loading and debugging or the Type 1 280 system", Internal
document, University of Cambridge Computer Laboratory, May 1979
[0dy801]
N. J. Ody,
"The implementation of a Terminal Concentrator on a 280",
University of Cambridge Computer Laboratory, Internal document,
January 1980
[Peterson79]
J. L. Peterson,
"Notes on a Workshop on Distributed Computing", Operating Systems
Review Vol., 13 No. 3 pp. 18-27, July 1979
[Popek79]
J. G. Popek and C. S. Kline,
"Encryption and Secure Computer Networks", Computing Surveys
Vol. 11 No. 4 pp. 331-356, December 1979
[Purdy74]

G. B. Purdy,
"A High Security Log-in Procedure", Communications of the ACM
Vol. 17 No. 8 pp. W42-445, August 1974

References XX References

[RedellTh]
D. R. Redell and R, 8. Fabry,

nSelective Revocation of Capabilities", 1IRIA International
Workshop on Protection in Operating Systems pp. 197-210, France,
1974

[Saltzer75]
J. H, Saltzer and M, D. Shroeder,
"The Protection of Information in Computer Systems", Proceedings
of the IEEE Vol. 69 No. 9 pp. 1278-1308, September 1975

[Saltzer78]
J. H. Saltzer,
"On Digital Signatures", ACM Operating Systems Review Vol. 12
No. 2 pp. 12-14, April 1978

[Walker79]
R. D. H. Walker,
"Basic Ring Transport Protocol", Internal document, University of
Cambridge Computer Laboratory, October 1978

[Weissman69]
C. Weissman,
"Security Controls in the ADEPT-50 Time-sharing System",

Proceedings of the AFIPS Fall Joint Computer Conference Vol. 35
pp. 119-133, AFIPS Press, 1969

[Wilkes68]
M. V. Wilkes,

"Time Sharing Computer Systems", Macdonald and Jane's / American
Elsevier Computer Monographs No. 5, Edited by S. Gill and
J. J. Florentin, 1968

[WilkesT75]
M. V. Wilkes,
"Communication Using a Digital Ring", Proceedings of the PACNET
Conference pp. 47-55, Sendai, Japan, 1975

[WilkesT791]
M. V, Wilkes and D. J. Wheeler,
"The Cambridge Digital Communication Ring", Local Area

Communications Network Symposium pp. 47-61, Boston, (Sponsored by
MITRE Company and the National Bureau of Standards), May 1979

[Wilkes80]
M. V., Wilkes and R. M. Needham,

"The Cambridge Model Distributed System", Operating Systems
Review Vol, 14 No. 1 pp. 21-29, January 1980

References xxi References

[Yellowbook80]
Post Office PSS User Forum,
"A Network Independent Transport Service", Prepared by Study
Group Three, February 1980

References xxii References

APPENDIX 1

AUTHENTICATED BSP OPEN BLOCK

The format of an open block containing an AUTHBSP open, therefore, might

be as follows (note that other valid TSBSP messages could precede or succeed
the authentication message):

block offset 0: m.s. byte - the bit pattern 01101010

n

s oe

Oy Ul I Ww

7-10:
11-14:
15-18:

19:

l.s. byte - flags: with at least bit d1
set. In general this will be
the bit pattern 00000010,

: port number to be used for the reply

the function number part of the ring

service address
the number of BSP parameter words (2)
maximum block size prepared to receive

: maximum block size that may be sent
: start of user data:

m.s. byte — message type (64)

l.s. byte - number of authentication
octets (24) + 128 to
denote last fragment of
parameter

TUID (proving identity of name)

PUID (representing name of sender)

AUTY (the name of the verifying authority)

m.s.byte - zero

Implementations of BSP which wish to provide an AuthBSP service recognize

the above TSB3P authentication message in open blocks do not necessarily

provide full versions of TSBSP.

Appendix 1

xxiii AuthBSP

