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This document reports on our participation in the MORSE (“A Method for Object Re-
use in Safety-critical Environments”) project. Our brief in the project was to investigate
the role that natural-language processing (NLP) techniques can play in improving any of
the aspects linking natural-language requirements specifications and formal specifications.
The contents are as follows. We begin with a brief introduction to NLP in the context
of requirements tasks, followed by an examination of some strategies to control the form
of requirements specifications. We continue by describing an interface designed to correct
some of the problems with known methods to control specifications, while employing
current NLP to maximum advantage. We then show how to build a natural-language
interface to a formal specification, and some aspects of the problem of paraphrasing formal
expressions. We finish with the conclusions reached at the end of our participation in the
project.

The work reported here was sponsored by Engineering and Physical Sciences Research
Council and the U. K. Department of Trade and Industry under the Department’s Safety
Critical Systems Advanced Technology Programme (SCSATP), project no. IED4/1/9001
(MORSE).
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Preface

The first stage in the development of a system, be it computer software or a
large engineering project, begins with the writing of a requirements specification
in English, or some other natural language. From this description, a first high-
level formal specification is then developed, and successively refined until a final
description of the system is used to build it ([42]).

But natural languages do not have the properties that we assoc1ate with those
languages used for formal specification tasks: that they are unambiguous, precise,
and have well-defined semantics. In other words, many formal specifications can
be consistently developed from one natural-language specification. Thus, using a
specification written in English without a method to alleviate its deficiencies puts
into question the entire process of developing a system from a specification.

Another area where formal and natural-language specifications interact is in the
derivation of natural-language information from formal specifications. For example,
if a formal specification eventually results in a system, that system will need to be
documented for use and maintenance. Using the formal specification can make the
task of producing such documents much easier (especially when there is more than
one target language), as well as introducing some method in their production (useful
in safety-sensitive applications).

This document reports on our participation in the MORSE (“A Method for
Object Re-use in Safety-critical Environments”) project. Our specific brief was to
investigate the role that natural-language processing techniques can play in im-
proving any of the aspects linking natural-language requirements specifications and
formal specifications. This work reflects the MORSE project interest in investigat-
ing domain-independent techniques, and in approaches that can realistically be used
given to-day technology.

We want to thank our partners for their collaboration and the many fruitful
exchanges during the project: Mark Christian, Hamid Lesan, Derek Mannering,
and Steven Hughes (Lloyd’s Register of Shipping), Paul Grace and Chris Hall (Ultra
Electronics, née Dowty Controls), Roger Banks, Alan Cuff and Simon Soper (BICC
Transmitton, BICC plc), Paul Collinson, Richard Fink and Susan Oppert (West
Middiesex Hospital), Benita Hall (British Aerospace Airbus Ltd), and Stan Price
(Price Project Services Ltd), the DTI monitoring officer.

We thank Roger Banks and Alan Cuff for making available to us case studies of
natural-language specifications.
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Chapter 1

A Brief Introduction to
Natural-Language Processing

This chapter summarises the basic ideas behind some general techniques of natural-
language processing (NLP henceforth), and present examples of their application to
actual sentences contained in some example specifications provided by the MORSE
participants. The introductory part can only cover the bare essentials behind NLP
techniques; interested readers should consult the relevant chapters of Charniak and
McDermott [10], or for a more specialised account, Gazdar and Mellish [19].

CLARE, the specific natural-language system we will be employing, is a natural-
language processing system designed to provide a computer interface capable of
domain modelling reasoning. At its core, CLARE contains a domain-independent
system known as the Core Language Engine (CLE) to carry out general linguistic
processing of English sentences. Both CLARE and the CLE have been applied to
a variety of tasks, such as building an experimental translation system for English-
Swedish, and creating an interface to a database. We do not have space here to give
‘a description of CLARE to any degree of detail; readers may refer to [3] and [4] for
more information and further references.

1.1 Natural-language Processing Systems

Natural-language processing (NLP) systems are, described very generally, computer
programs that use as data sentences in a natural language such as English. Typ-
~ical application examples include a translator of sentences from one language into
another, a generator of messages in English, or a program that allows a user to
query a knowledge-based system such as a database, in English, instead of using a
specialised query language.

NLP is conventionally divided into two main areas: understanding, or the prob-
lem of how to extract the meaning of natural-language sentences, and generation,
the study of how to produce sentences conveying a specific message. In other words,
the core task of a NLP system is thus either to translate an input English sentence
into its “meaning”, or to take a “message” and derive an English expression from



it. In this review, we will identify such “meanings” or “messages” associated with
the content of an English expression with the uniform notion of a logical form (LF).
These translation processes can then be pictured schematically as:: -

mput NLP SYSTEM LF
... applications
and |
output L NLP SYSTEM | . LF.
.. applications

CLARE is demgned to perform these tasks and uses for both of them the same
sets of rules. To constrain our review of the basic NLP techniques to a manage-
able size, we will limit ourselves to describing the process of extracting the meaning
~ of English sentences. Although the task of generation involves some problems of
its own, the reader can think of it in very general terms as being similar to un-
derstanding, but applying the rules involved in extracting a logical form in inverse
order. :

1.2 Structure of a NLP System

A common approach to the design of a NLP system is to separate the task of un-
derstanding into a series of steps, each one associated with a different aspect of the
problem. This division corresponds in the main to the distinction found in linguis-
tic theory to distinguish between different levels of language, such as morphology,
syntax, and semantics. - :

This methodological division naturally results in computer systems that consist
of a number of semi-independent modules, each containing the knowledge that cor-
responds to a different aspect of language. The input sentence is processed by each
~ of these modules sequentially, so that the output of one module corresponds to the
input of the next one, with a LF as the final result. A-NLP system must also contain
a lexicon with a list of English words and their meanings.. .

A system such as. CLARE has the followmg modules listed in order of appl1cat1on

‘1. morphology: containing rules of word formatlon.
- 2. syntax: rules for combining parts of speech into constituents.

3. semantics: the meaning of the parts of speech and their combinatiOn-.

1We are simplifying con51derably in the mterest of leg1b1hty, readers are encouraged to consult

" the’ source documents




4. contextual reasoning: context dependent aspects of interpretation like ref-
erence of pronouns, resolution of ellipsis, and choosing between ambiguous
interpretations.

There are various motivations for this approach. Sequential processing is —from
a computational point of view— the easiest way to understand the behaviour of what
are often complex systems; with this organisation, the user can sometimes help to
guide the system to process a sentence. A modular organisation has also well-known
advantages from a software-engineering point of view: modular systems are easier to
program and test, and the encapsulation of application-specific components encour-
ages portability. As we will try to convey below, a core NLP system capable only of
strictly linguistic analysis must encode nevertheless a surprisingly large amount of
knowledge. By making this part of the overall task separable, we can use the same
modules in quite different domains. After all, the rules of English apply to speech on
gas installations as much as it does to utterances on the properties of landing gears.
Finally, by maintaining separate modules for the each linguistic-specific aspect of
the process, we can incorporate new results from linguistic research in a more direct
manner. '

We now give a brief descriptions of the main modules of a NLP system, indicating
their task and some of the computational problems at each step.

1.2.1 Morphology

In order to extract the meaning of a sentence, we first need to know how to categorise
each of the words of the input sentence, i.e. assign to each word a label from the
set { nouns, verbs, adjectives, particles, punctuation marks, ...} For example, if we
have a sentence like:?

Authorisation is required before the transfer of propane from the trucks
can commence '

we will have to use the information that ¢ransfer is a noun to conclude that (and
eventually comprehend) that the transfer of propane is a noun phrase. Clearly, the
first element required is a lexicon containing information about English words and
their meanings. However, more is needed than just a very long list of words, namely
the ability to match derived words with their base forms, deducing at the same time
the information conveyed; in the sentence above, for example:

e The word trucks is a noun derived from the noun ¢ruck, and the ending +s is
used in English to indicate plurality. Hence the phrase the trucks is about a
set of more than one truck.

e The word required is the participle verbal form of the verb to require. Partici-
ples in English are formed by adding the ending +ed to the base verb form,
and this word has the simplified spelling required (and not requireed).

2Unless otherwise stated, our examples will either be direct quotes from [5], or possible variations
of them in the same context.




o The word authorisation is a noun derived from the verb to authorise, composed
with the nominal suffix +ation

Any system designed fof general application must contain many such rules.
CLARE has dozens of them;® an example rule is the one for third-person singu-
lar verbs, present tense:

morph(v_v_es_Thirdps,
[v:[agr=(sing/\3) ,vform=£fin, mhdfl—H
gaps=Gaps, lexform=L, modifiable=Mo,
mainv=M, vpellipsis=V, . '
subcat=S,subjform=Su,paradigm=Par],
v:[agr=_,vform=base, mainv=M,mhdfl=H,vpellipsis=V,
gaps=Gaps, lexform=L, modifiable=Mo,
subcat=S,subjform=Su,paradigm=Par],

es]).

This rule forms the third person singular form (agr=(sing/\3)) of a verb (e.g.
‘authorises’) by combining its base form (vform=base) with a suffix “-es’. The
resulting verb inherits most of its other properties from the base form. ‘Seg-
mentation’ rules cope with any spelling changes that may be necessary: ‘autho-
rise+-es’=‘authorises’, although ‘finish+es’ =‘finishes’. Describing these morpholog-
ical combinations by rule reduces the size of the lexicon, which would otherwise have
to contain all the variant forms of a word. This is clumsy for English, and impossible
for languages like German, which have a much richer system of morphology.

The task of categorisation is complicated by the fact that, in the absence of
a suitable context, each word considered independently can have several possible
interpretations:

e transfer can be either a verb (infinitive or imperative) or a noun (singular)

@ can: might be a noun (singular) or a verb (either singular or plural)

Thus, the output of this process is not usually unique, but equal to the product of '
the number of labels of each word. In the sentence above, assuming that “transfer”
has three possible labellings, and “can” two, the morphological analyser will produce
six different hypotheses of how to label each word in the sentence This information
will be taken by the syntactlc component as input.-

1.2.2 Syntax

~ Unfortunately, we cannot derive the meaning of a sentence by considering only the
meaning of each of its words. We must also take into account the relation that words
have to each other in a sentence; that is, we must find its structure. For example

we can say that a sentence such as:

3These are actually d1v1ded in CLARE mto segmentatlon a.nd morpho—syntactlc rules See [3], '
S p91-92. o



the operator must authorise every transfer
has schematically a structure:
[s [npthe operator] [vpmust [vpauthorise [ypevery transfer]]]]

Syntactic rules code exactly the kind of structure internal to English sentences; the
set of all rules for a language is called a grammar. Alternatively, we will say that
the grammar generates a language. Let us give an example. A very small grammar
capable of generating —among others— the sentence given above will contain at least
the following rules:

[1] sentence = noun_phrase + verb_phrase
[2] noun_phrase = det + noun

[3] verb_phrase = verb + noun_phrase

[4] verb_phrase = ‘must’ + verb_phrase
[6] det = ‘the’

[6] det = ‘every’

[7] noun = ‘operator’

[8] noun = ‘transfer’

[9] verb = ‘authorise’

where the following conventions apply: each line corresponds to “an equation” defin-
ing one valid structure of the language.® Each equation begins with a number in
square brackets; the only purpose of this number is to give a name to the rule. The
left side of the equation (what is to the left of the ‘=’ sign) contains the name of
what we are defining; the right side being its definition. The ‘+’ sign is used as
the “immediately followed by” relation. Finally, those elements in single quotation
marks stand for the terminals of the language (e.g. English words); those without
quotes correspond to non-terminals, representing the structures of English. '

An example can perhaps clarify the notation. The rule 4 above can be para-
phrased as: “a structure consisting of the word ‘must’ immediately followed by a
verb_phrase structure is a valid verb_phrase structure of English.

Continuing with the example, we can apply these rules to show that the sentence
above belongs to the language defined by the grammar, or in other words, that it is
grammatical. We will do so through a process of parsing, which consists of showing
that the definition of sentence can be used to produce the target sentence by
repeatedly choosing a non-terminal and replacing it by one of its definitions. For
the sentence above, this can be shown as follows:

4The grammars we will talk about in this section are called context-free because of the form of
the rules; those used by CLARE are somewhat more powerful.

5Strictly speaking, these rules are not equations in that a non-terminal often has more than one
definition, e.g. there are several rules with the same non-terminal and different right-hand sides.
For example, rules 5 and 6 define different ways of rewriting a determiner. A true definition of a

determiner would be:
det = ‘the’ Vdet = ‘every’ Vdet = ‘a’ V...

10



sentence

(rule 1) :

noun_phrase + verb_phrase

(rule 2)

det + noun + verb_phrase

(rule 5) - '

‘the’ + noun + verb_phrase

(rule 7)®

‘the operator’ + verb_phrase

(rule 4) -

‘the operator must’ + verb_phrase

(rule 3)

‘the operator must’ + verb + noun phrase
(rule 9)

‘the operator must authorise’ + noun_phrase
(rule 2)

‘the operator must authorise’ + det + noun
(rule 6)

‘the operator must authonse every + noun
(rule 8)

‘the operator must authorise every transfer’

As a side effect, we have also obtained the structure of the sentence. In essence, this
is done by building a representation that mirrors the application of each rule in the
derivation process. In this case CLARE will produce, in a different but equivalent
manner, the following analysis (considerably simplified):

s,
- [np, [det,thel,
[noun,operator]],
[vp,
[verb,must],
[vp, ‘
[verb,authorise],
- [np, Lo
[det,every],
[noun,transfer]]1]1]

Although this might not be imniedi'a.tély apparent, the structure underlying sen-
tences approximately corresponds to the one that we need to find the meaning of a
sentence. This process is thus a necessary step to derive the LF of a sentence; the

‘output of the syntactlc component is the set of all the possible analyses of the input

sentence.

- ®We will slightly 51mphfy the notation: when two terminal symbols are found together, we will
consider them part of the same string, and omit the intervening + sign. Otherwise, we would have
written the following line as:

 ‘the’ + ‘operator’ + verbphrase

11




CLARE contains a very large syntactic component, with a coverage that includes
many of the most common constructions of English. In addition, CLARE contains
some useful specialised capabilities, such as an extensive treatment of dates, and the
possibility to handle idioms. Nevertheless, although linguists have produced gram-
mars with hundreds of rules like the ones above, exhaustive coverage has proved
elusive, limiting current applications to the most ordinary constructions of a lan-
guage. These limitations must be borne in mind when devising applications of NLP
techniques. :

The parsing process allows the elimination of some of the combinations generated
by the morphological analysis (e.g. by identifying every transfer as a noun phrase,
the possibility of transfer being a verb in the imperative will be ruled out), but it is
also the case that new alternatives are often generated at this stage. This is because
many constructions have more than one parse, usually corresponding to different
possible readings. For instance, a phrase such as the detection of a gas leak in the
reception and storing area can either mean detection in:

{the reception} and {storing area},
or .
the {reception and storing} area

Similarly to the process of assigning lexical categories to words, it often happens
that many possibilities usually not envisaged by a human reader are generated by a
machine analysis, revealing ambiguity and vagueness in seemingly clear sentences.
Unfortunately, languages are structured in such a way that relatively small sentences
can produce dozens or even hundreds of analyses. This creates the problem for a
NLP system of how to choose the most appropriate analysis (something which people
usually do without conscious effort). This is one of the most difficult problems in
NLP research, and we return to some of its implications below.

1.2.3 Semantics

Although this might not be immediately apparent, the syntactic structure under-
lying sentences is necessary in order to work out the compositional semantics of
a sentence. So the next stage of processing takes as input the syntactic analysis
or analyses produced by the parser, and together with the lexical information con-
tributed by each word, derives an initial logical form (LF) of the sentence’s meaning.
- For instance, if the input is a simple affirmative English sentence, this process will
commonly extract a main actor from the subject noun phrase, a main predicate
from the verb or verbs, and a list of affected objects from the complement phrases
of the main verb. This initial step will obtain the entities involved in the sentence,
but leaving the precise nature of their relation underspecified.

Using again the sentence the operator must authorise every transfer, CLARE
will derive an initial LF saying approximately that “there is relation of authorisa-
tion holding (in some fashion) between one or more events, an operator, and every
transfer.” This corresponds to (in a somewhat simplified form):

12



authbi‘ise(term(exists ,C,event(C,pres,must)),
term(the,A,operator(4)),
term(every,B,transfer(B)))

At this stage (which we call “quasi-logical form” or QLF) several pieces of in-
formation necessary to interpret the sentence appropriately have not yet been de-
termined. Usually, to spell out the exact relationship implied by the sentence, one
must consult the context and various types of reasoning. Such processes will result
in more and more detailed logical forms.

One example of this refinement process is the introduction of quantlﬁers (sec-
tion 1.2.5). A full first-order formula containing the quantifier information lacking
in the previous formula would read (again, leaving many details aside): “there exists
an operator A, such that for every transfer B, there exists an authorisation event C
of B by A”. A formula reflecting this would have the general form:

exists([A],
~ and(forall([B],
1mp1(transfer(B)
exists([C],
and(authorlsatlon(c A,B),
event(C))))),
operator(A)))

The semantlc component must contain rules to extract a QLF for each of the
many variations allowed by the syntax of English to convey meanings: passives, -
negatives, interrogatives, their combinations, and so on. Most of these QLFs will
contain constructs that need further resolution. The “reference resolution” phase of
interpretation tries to produce candidates to “fill in” these constructs so as to arrive
at a complete proposition: the message conveyed by that utterance of that sentence

in that Ha;rth'ulam context.

We will now descnbe various aspects of this process.

1.2. 4 Reference Resolutlon

~ As we explained in the previous section, there are a number of pieces of information
that will still need to be fully specified to obtain a fully-resolved logical form of a
sentence. In this section we will first describe a number of problems to be solved in -
order to determine the LF, and a basic strategy to do so afterwards.

The reader must bear in mind that, in contrast to earlier stages of sentence
interpretation, processes of contextual reasoning rarely have well-defined solutions,
as they entail the search for an interpretation that is relatively better than the others
in the context of the intended application. They will often involve complex reasoning
—at best computationally expensive, and at worst 1mposs1ble to automate — and
requu'e contextually-dependent mformatwn

"In the next paragraphs, we w1ll introduce some of the main aspects of pragmatic process but
by nict nmeéans all. Taterested" readers can” consult the general references, or chapter 12 of [2]. -

13




1.2.5 Reference Resolution Problems
Quantifier Scope

When a sentence contains determiners such as a, the, and every, its logical trans-
lation will contain quantifier phrases, which must specify their relative scopes. For
example, the sentence:

every truck is controlled by the operator

can be interpreted in two different ways; in other words, can correspond to two
different logical forms. One can read the sentence as saying that, for a given operator,
all the trucks are under his control. Alternatively, it can also mean that for each
truck there is one operator, which might or might not be the same one. In terms of
the produced LF, this corresponds to choosing between:

exists([Aa],
and(forall ([B],
impl (truck(B),
exists([C],and(control(C,A,B),event(C))))),
operator(4)))

meaning: “there is an operator A such that for every truck B, it implies that there
exists an event C of control, where A is the controller of B”, and:

forall([Al,
impl (truck(a),
exists([B,C],
and(and(control(C,B,A) ,event(C)),
operator(B)))))

“for every truck A, it implies that there exist an operator B and an event C of
control such that B is controlling A.”

Spelling out these alternatives and choosing between them requires complex rea-
soning. There are many factors involved in preferring one reading over the alter-
natives, such as the specific lexical items contained in the sentence, knowledge of
the ongoing discourse, and general pla.u51b1hty The following examples of similar
sentences have different preferences:

e Fuvery truck is controlled by an operator
(either the same operator, or a different one for each truck)

o Every truck is driven by an operator
(more likely to be a different one for each truck)

o Every truck is controlled by a central operator
(more likely to be a single operator controlling all the trucks)

14




Reference Determination

Another problem is the one of reference determination, ‘which consists of fully iden-
tifying persons and objects being mentioned indirectly in a piece of discourse.

A common strategy for referring to entities in a discourse is through the use of
pronouns. Although in some cases syntactic constraints can be used to interpret
them unequivocally,® it is often necessary to consider the situation in which the
pronoun is used. Take the following sentence:

the operator will be then notified locally on indicator YL101 that he can
proceed with the transfer ... '

In order to obtain a full LF of the sentence, the initial task is to link the operator
to the person specifically addressed (say, John Smith, or “whoever is manning the
position at the time”). Then, the personal pronoun ke must be paired up with
whoever is ultimately being referred to. There are several proposals of how to do
- this, but basically they all consist of two processes: first, collect all the possible
referents in the discourse (in this case, all male animate subjects), and then rank
them according to some measure of plausibility. :
'~ In some cases, this can be a very difficult problem to automate, as 1t requires
some understandmg of What is being said. Consider another example:

this last event will automatically stop the transfer whilst the others re-
quire specific action.

Here, context of the sentence itself reveals some possible referents for “the others”:
other events, or perhaps other operators. It could even refer to some other entity in
~ the surrounding context: a transfer, a computer, a button, or an alarm. A correct
answer needs both a large a.mount of knowledge about the domain and the capa01ty :

to reason over it.
A variation on this problem arises when processmg definite noun phrases Ina
sentence such as:

Tl1e outstation will open the input valves of the selected reservoir for the
chosen liquid o

the noun phrase the input valves is referring to some specific valves that have pre-
sumably been mentioned before. Here, the extra information contributed by the
restriction of the selected reservoir must be used to ﬁlter down the candidates to
those who fulfill this characteristic.

8In sentences such as the operator will start the procedure hzmself, the reflexive pronoun hzmself
can only refer to the operator.

15



Anaphora and Ellipsis

Common discourse avoids constant repetition of entities by leaving them implicit.
There are grammatical constructions that achivee this effect, such as the passive:

the outstation will open the input valves of the selected reservoir and
the valve operation will be confirmed

does not mention who or what will confirm the valve operation. A similar phe-
nomenon is the use of ellipsis, also leaving implicit some parts of speech. Imagine
the following fragment in a sequence of instructions:

The outstation will open the input valves.
And also check their status.

In this case, the subject of the second sentence has been omitted.

Vague Relations

Another source of complexity is the use of vague relations. A relation is vague when
a phrase such as the truck pump connection is used: a relation between a truck, a
pump, and a connection is established, but it is not explicit which one. Without
context or specific knowledge of the domain, we cannot tell whether the phrase
might mean “the connection between the truck and the pump,” or “the connection
on the pump on the truck”, or even “the connection on some other entity for the
truck’s pump.” .

Similar problems occur when prepositionally modified noun phrases are used in
a vague fashion. Examples of these could be the phrases:

pump for the truck
plug for the pump

Again, the preposition for could be equivalent to a number of épeciﬁc relations in
the semantics definitions.

1.2.6 Processes of Reference Resolution

At this point, we hope that it is clear to the reader what the main problem for a
computer program is when dealing with English expressions: every level of language,
from words to sentence meanings, has a considerable degree of ambiguity and vague-
ness. A NLP system that considers all the possible interpretations of a sentence will
end up producing tens or hundreds of them, and most will not be right (in the sense
of not corresponding to what the writer of the sentence had in mind).

This is a problem without a simple solution. Ultimately, it presupposes a com-
plete knowledge and understanding of a domain, the comprehension of the partic-
ipants’ intentions, and so on. Representing the kind of information that is needed
for this is extremely complicated and presupposes a solution to many of the classical
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problems of Artificial Intelligence. For this reason, systems that carry out this kind
of reasoning currently only do so in the context of very limited domains, domains
which are restricted enough for it to be realistic to build a complete axiomatisation
~of them. It is, at the current state of the art, not poss1ble to build general purpose
reference resolutlon mechanisms.

Nevertheless, heuristic techniques can be used to control the combma.tonal ex-
plosion and narrow down the search for an interpretation. In general terms, the idea
is to define a mechanism that rates the alternatives at each stage according to their
plausibility, and instructing the system to pursue only those analyses whose rank
is above a certain threshold.® By adopting these heunstlcs, we can indicate which
readings to prefer.

These heuristics can define general preferences, or others of a more 11m1ted nature
according to the domain of application. The first kind uses general procedures that
apply to all applications, and do not presuppose any special knowledge. For example,
a useful syntactic heuristic is always to assume that phrases are complements ra.ther
than adjuncts; in the example:

The transfer can be stopped by the operator

we prefer a reading in Whlch the operator is 1nterpreted as the actor of the action
of stopping, and not as some sort of modifier (as in the transfer can be stopped if
the switch by the operator is activated). Another heuristic that frequently helps is
to produce syntactic analyses with phrases attached to the nearest constituent. In:

Power will be apphed to the local plug for the truck’s pump

the phrase for the truck’s pump will be considered a modifier of the local plug, and
not a global modifier (as in power will be applzed to the local plug for the rest of the
day). '

More domam—speaﬁc heuristics use general methods, but might depend on some
knowledge that has been specifically crafted for the application in mind. One in-
stance of them is the use of sortal restrictions. Informally, sorts can be pictured as
a division of the elements in the discourse into classes characterising their proper-
ties. For example, an operator is (in order of increasing generality) a male, human,
animate, physically-real entity, whereas computers and trucks can be regarded as
inanimate, physically-real entities. In certain applications, it could make sense to
discriminate among trucks and computers by assigning to the latter the capacity
of acting and taking decisions. With this, we could analyse by the computer as an.
agent-bearing phrase, and by the truck as some spatial modlﬁer in:

The reservoir will be closed by the computer
The pump can be activated by the truck

9CLARE contains such a mechanism to handle preferentlal readings, and 1mplements a number
of preferences See [4] ch 5. :
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Finally, we can use domain-specific criteria to indicate ad hoc preferences that
always apply in the application language. If for instance we use an artificial lan-
guage with a closed vocabulary, we can make constructions with multiple readings
unambiguous by fixing a specific analysis. For example, specifications commonly
use noun noun compounds such as:1°

reservoir output valve

valve open operation

truck earth connection XS101
local start button HS107A
truck transfer pump plug

In most such situations, the knowledge that a truck transfer pump plug probably
means a truck {{transfer pump} plug} and not a {¢ruck transfer} {pump plug} (or
any of the other many possibilities) can be of considerable help. In other words, by
pre-defining the meaning of specific noun-noun constructions for specific domains,
the problem can be considerably alleviated.

The use of specific knowledge to handle ambiguity must always be considered
carefully. Although a certain amount of tailoring of a general system can always be
expected for each application, one must proceed carefully to maintain the generality
of a system. Put briefly: without general methods, the successive specialisation of a
NLP system will make it less and less likely it will ever be used in other domains. As
is the case in other disciplines, the mark of a good technique is that it is applicable
to a variety of situations. ’

1075 see their multiple ambiguity, compare a {white} {bread container} with a {white bread}
{container}.
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1.3 | Conclusion

This chapter has introduced the basic techniques used in NLP to analyse sentences
in a natural language. These techniques have the complementary purposes of ex-
tracting the intended meaning from English sentences, and of producing Engish
sentences corresponding to some message. The main problem for analysis is that
" natural languages have a pervasive degree of ambiguity and vagueness at all levels.

Because people are superbly efficient at choosing the intended meaning among
the many possible, this basic feature of language is not always noticed. Nevertheless,
misunderstandings are not uncommon, even when both reader and writer share the
same intuitions about the domain of discourse. In other words, if two.readings of a
given statement are almost equally plausible, then the reader may choose a different
interpretation than was intended by the writer. Indeed, there is some experimental
evidence showing that, although the use of formal methods can be very effective
in the production of software, the misinterpretation of the natural language 1nput
leaves residual errors in the production of a system ([7]).

The implications for domains in which security is a fundamental consideration
are obvious: an initial requirements specification written in English may result,
if differently understood by the specifier and the implementer, in a system whose
performance deviates from the original intentions of the specifier.
 In terms of the inherent difficulty of the various applications we have sketched, in
general we started with the simplest and worked up to the most complex. There are
two types of complexity involved: the degree of linguistic processing required by an
application, and the degree of domain modelling required. Linguistic processing gets
more complex and non-deterministic as we go from morphology through to seman- .
tics. The precise resolution of linguistic properties like reference or disambiguation
demands more complex and labour-intensive applications, as it depends on non-

linguistic factors such as those that would be captured in a domain model. This
eans that, at least in the short term, it is most worth exploring those applications

I 8810 v} LAVST

that involve general purpose, domain 1ndepend¢nt, linguistic processing.
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Chapter 2

Controlling the Form of
Requirement Specifications

2.1 Introduction

In the previous chapter we stressed that ambiguity is a pervasive, if often unde-
tected property of natural languages. The purpose of this chapter is to review some
basic techniques advanced to control the ambiguity, vagueness, and lack of clarity
of specifications in natural language. These techniques are not usually considered
to fall within NLP proper, but they could plausibly be used to produce better
specifications.! The review will also help to pinpoint some of the deficiencies of
so-called “claims languages” for specification processes ([12]).

'The reader must keep in mind that we are restricting ourselves to tasks that we
believe are realistically achievable with current technology, and that we are, with
the exception of one or two of the later suggestions, primarily emphasising the role
of domain-independent NLP techniques. As we remarked in the previous chapter,
more ambitious applications of NLP in this area may be possible, but they would
require sophisticated domain modelling which might be too labour-intensive to be
_profitable.

Before we turn to the review, we start with a brief summary of the characteristics
of the source natural-language specifications at our disposal.

2.2 Some Features of Natural-Language Specifi-
cations |

We begin by describing some basic features of the two case studies. As is to be
expected from the discussion in the first chapter, we found many examples of possible
ambiguities in the source documents due to syntactic, semantic, and pragmatic
factors. In this respect, the documents studied do not differ from many others

1We say “plausibly” because, to our knowledge, none of the approaches reviewed in this chapter
have ever been tried in a real setting.
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studied previously in the computational-linguistic literature devoted to properties
of manuals and other instructional texts. :

A number of papers have been devoted specifically to the hngulstlc issues that
manuals and other instructional texts present. ([20]) carried out a pioneering study
~ of discourse phenomena in the context of task-oriented dialogues. The collection of
papers by ([27]) contain studies of the linguistic features of languages used in specific
domains. ([45], [46], [40], and [37]) have studied the use of rhetorical relations in
manuals, with the goal of generating natural-sounding paraphrases. ([16]) have
studied some semantic issues of linguistic expressions used in manuals. ,
" We concentrate here on those basic features of the documentation bound to
raise questions about the proper use of natural-language processing techniques in
the context of requlrements specifications, and to identify some pos51b1e realistic
solutions. : : ' :
- Although the texts vaned widely in terms of contents, style, and length, we found
that they share a number of characteristics in this regard.

2.2.1 Sentence Length

The first case study ([5]) is a small example of some 800 words. We found that the
~average sentence length is 27.42 words. We looked at another second case study
([14]), of some 60,000 words. A sample of this text found an average length of 31. 24
words.

This figures of average word length suggest that current natural language tech-
niques will have to be supplemented with other methods before they can be applied
directly. :

2.2.2 Punctuation

Punctuation is used {or not) in an extremely irregular manner, either because one
writer does not use the same marks consistently, or because different erters have
different intuitions of how to use them.

Lack of discipline in punctuation, allied with arbitrarily large sentences, was
found to lead to extremely poor speaﬁcatlons We found many examples s1m11ar to

([14], p 33):

“If selected to automatic at MCCl for keyboard control at the super-
visory computer, air compressors can be individually stopped/started
manually and the outlet valves, opened/closed manually from the super-
visory computer keyboard, provided (in the case of the air compressor)
" the differential air pressure switch is calling for that compressor to run.”

The first consequence of this is that punctuation marks should be incorporated -
into the grammar of the system sparingly. The second consequence is that free use of
punctuation seems to encourage writers to type obscure paragraph-long sentences.
Writers should therefore be dlscoura.ged from usmg punctuatmn marks whenever
"~ possible. ' '
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2.2.3 Presentational Units

One important discovery of the case studies’ examination was that writers of re-
quirements specifications resort very often to well-established forms to organise and
present information. We will refer to these supra-sentential units as presentational
units. These results were obtained by reviewing one case study ([5]), and a sample
of some 40 pages of another one ([14]).

Aside from direct declarative statements and lists (to which we return below),
the most preferred presentational units were:

e Conditional (if-then-else) statements:
“if the open signal from xv13 or xv14 is not received the duty pump w111 be
inhibited from starting”. ([14], p 58)

o When statements:
“when the level controller is switched to local operation, the set point will be
[as] manually set at the controller”. ([14], p 63)

o Before and after statements:
“before starting the transfer procedure, the operator answers a menu in order
to define the loading process”

“after the operator has chosen which reservoir will be loaded, the outstation
will check the input valves of all the reservoirs.” (both from [5])

The distribution of these presentational units is variable, but some of them are
very common. For example, the ‘when/if’-sentence type is employed very often; a
sample of 15 pages (p. 63-77) of [14] found 26 variations of this form.

Lists are one of the most common presentational devices used in the case studies.
For example, a sample of [14], found that up to 40% was organised in list form. The
following example is typical ([14], sec. 15.18, p 81):

“The wash sequence initiation procedure will:
a. Co-ordinate the filter wash requests.

b. Formulate a wash queue if necessary.

c. Start the wash sequence.”

Lists are therefore a very productive way of presenting texts. It would thus be
desirable to preserve some form of mechanism to allow writers to use them. The
other main observation to be made here is that, unlike the presentational units listed
above, lists can easily lead to under-defined specifications. '

Consider the example above. The specification is not clear enough in a number
of respects. We do not know whether the result of the sequence is one of the actions
on the list (i.e an or-list), or all three actions (i.e. an and-list). In the second. case,
we would also like to know whether we are dealing with an unordered sequence of
actions (an unordered-and-list), or one where the actions are listed in the order in
which they are to be executed (a sequential-and-list).

We turn now to a review of some techniques to introduce some discipline in the
syntactic form of specifications.
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2.3 Useofa cbntrolled vocabulary

The first aspect of writing specifications that can be enhanced by a NLP system
relates to the set of words and expressions that users employ when drafting spec-
ifications. For a given application, it is to be expected that both the vocabulary
and the associated meanings will be, if not entirely fixed, reasonably limited. Fur-
thermore, it is to be expected that all the users agree on their meaning. A simple
NL system, using just some morphological and syntactic analysis techniques, can
be written to define a controlled vocabulary, and ensure that the users employ only
this vocabulary to define specifications. By ensuring that every definition consists of

‘words in the authorised set, we can encourage all users to use words and expressions

consistently while writing specifications. A more complete interface can also be used
to restrict the task of adding words and expressions to a “super-user”; this would
help the administration of the project and add some control to the process.

The words in the controlled vocabulary presumably reflect the most important
concepts used in the specifications, and could also be used to automatically generate
indices and lists of cross-references. This could be very useful for the administration

" of the project, especially when developing large specifications (which can sometimes

run into the hundreds of pages). Cross-referencing in particular can aid consistency:
whenever some concept is referred to, if other references to it are immediately made
available it is much easier to see that all these references are mutually consistent.
However, accurate cross referencing requires at least a modest degree of linguistic
analysis. For example, one would want references to the ‘pump operator’ to be cross. )
referenced to ‘operator of the pump’ but probably not to things like ‘inoperative
pump’.

This could of course take place within a more general management information
system (MIS) to administer and document the entire development process: defini-
tions, changes, amendments, and so on. When more than one person is involved in
the specification, or it takes place over a long period of time, these techniques can
also be useful to enforce a consrstent style throughout a prOJect and support its
administration.

The idea of using a limited vocabulary to restrict the intended meaning of a
specification has been adopted in practice. The AECMA Simplified English standard
comprises some 1500 words, each of which can only be used, with few exceptions, in
one way only ([1]). Hoard et al ([23]) have built a system that, among other things,
checks that input sentences comply wrth thxs standard.

2.4 Enhancing a simple style of writing

A more sophlstlcated use of NLP techniques mvolves the development of programs

* to analyse and criticise the style of a given text. In these applications, the goal is

not only to check that every input sentence is grammatically correct, but also that
it agrees with a set of pre—determlned criteria. These criteria will typically try to

_produce documents that are clear and simple to understand
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For example, an organisation writing user manuals will try to enforce a style of
writing consisting of simple, direct sentences, and could contain style rules of the
following kind:

e favour affirmative sentences over passive ones

e mark noun phrases with several noun-noun compounds as inadequate
e do not use reduced relative clauses

e avoid the use of many qualifying phrases

o penalise sentences that are too large or contain more than a small number of
coordinations

These criteria can then be used by a general purpose syntactic analysis system
to score each sentence, and assign a rating that reflects its complexity. Hopefully,
these constraints will enhance the author’s strategy for organising information, and
will result in documents that are easier to read and comprehend. These rules will
often refer to syntactic characteristics that can only be provided by some sort of
syntactic analysis, and will presumably be developed on top of a NLP system that
performs full syntactic analysis (one such system has been produced by [36]).

Heidorn et al ([22]) report on such an early system designed to control the style
of input texts. More recently — and using a formalism similar to the one in CLARE
— Douglas and Dale([17]) have built another system for this purpose. In the context
of specifications, the system mentioned above to help the writing of specifications
according to the AECMA standard ([23]) performs a few of the syntactic checks
recommended by the standard.

2.5 Keeping track of the information in the spec-
ification

So far, we have reviewed possible contributions of NLP techniques to the production
of syntactically clear specifications. In this section, we sketch how NLP techniques
might help the user see the information conveyed by an input specification written
in English.?

Ideally, this information can be employed to organise a statement in such a way
that it contains precisely the information one needs to derive a formal specification.
At a very abstract level one can think of this as a translation problem: a translation
from conversational English into a completely explicit sublanguage of English.

One of the challenges of using NLP in the context of formal specifications is the
study of general techniques to produce good analyses without a detailed model of
the universe of discourse. The application presented here does so by requiring the

2The idea was outlined in the project infancy as a possible technique to try, but was never
carried out. i
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user to provide all the information necessary to carry out the contextual reasoning
required to fully understand and disambiguate the sentence. Suppose that the user
proposes the following sentence as part of a possible spec1ﬁcatlon

a reservoir will be chosen to be loaded, and the outstation will check all
the input valves '

The system can begin by pointing out that, before a successful analysis is produced,
‘the user must completely determine the entities referred to by the phrase the input
valves. The user then tries a more specific description: :

a reservoir will be ch’oseﬁ to be loaded, and the outstation will check the
input valves of every reservoir

A complete LF can be extractied, but the program might have to make 'assumptions
that are marked as having a high cost. For example, the verb to check might be
allowed to have a NP as complement, but it would prefer a that sentence:

“check the znput valves of every reservoir” is posszbly underspecified
try “check THAT ..

The user finds that in fact an 1mportant piece of information is mlssmg, one 1nd1—
'ca.tmg what to check for. The next attempt is:

a reservoir will be chosen to be loaded, and the outstation will check
that the input valves of every reservoir are closed '

A further analysis of this LF might encounter two unconnected statements, suggest-
ing that ejther a relation is being missed, or that there are actually two unconnected
sentences that would be better if written separately. The user realises then that there
is indeed a causal connection missing between the two sentences, so he suggests:

after a reservoir has been chosen to be loaded,'the outst'ation will check
that the input valves of every reservoir are closed

The consideration of this LF can point to the fact that there is a main event related
to the choosing of the reservoir, but the potentially crucial information specifying
who or what chooses the reservoir is mlssmg The user then corrects the sentence
and types

after a reservoir has been chosen by the operator, the outstation will
check that the input valves of every reservoir are closed

This sentence fully describes the action of choosing a reservoir, but inadvertently, the
- purpose of the action has been deleted. If the system keeps track of the 1nformatlon
contained at each step, it can detect this problem and prompt the user:

3We will write the system’s response in i’télics.’ R
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the event associated to “to choose” is less specific than before; previous
qualifying “to be loaded” is missing

The user re-reads the next-to-last sentence and suggests this time:

after a reservoir has been chosen to be loaded by the operator, the out-
station will check that the input valves of every reservoir are closed

The system has no further suggestion, and the process finishes.*

2.6 Designing an English-like specification lan-
guage

Another possible approach to control the form of specifications is to design artificial
languages to write sentences that look like English ones, although their form and
intended meaning are completely pre-determined. The idea is that these languages
would be useful because they would completely constrain what can be said in them
(like a technical language), but could be read by a non-specialist.

One can envision a NLP application to supporting the designer of such a language
for specifications. To explain in detail how to do this, we will use an example
application to frame the discussion. Assume that we are engaged in the production
of an artificial language to draft the specification of a series of events — possibly
subject to conditions— in the domain of gas storage applications.

To achieve this goal, we would like to define a grammar to produce sentences
such as: ‘

the outstation will check and open the reservoir input valves

the reservoir output valves will be closed depending on the operator’s
criteria

We first write some simple rules to generate a sentence of the first type:®

[1.1] event_spec = entity_spec + ‘will’ + list_actions_spec + entity_spec
P y-sp P y-sp

‘the outstation’

‘the reservoir input valves’
‘the reservoir output valves’
‘the operator’s criteria’

[2.1] entity_spec
[2.2] entity_spec
[2.3] entity_spec
[2.4] entity_spec

4This approach could benefit from taking into account the scores with which CLARE rates the
plausibility of each analysis found. An initial effort to directly use these scores as a measure of
adequateness was not successful. See [32].

5We use the conventions introduced in chapter 1.
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[3.1] list_actions_spec = action_spec
[3.2] list_actions_spec = action_spec ‘and’ list_actions_spec
[3.3] list_actions_spec = action_spec ‘or’ list_actions_spec

[4.1] action_spec

= ‘check’
[4.2] action_spec = ‘open’
[4.3] action_spec = ‘close’

[4.4] action_spec = ‘be closed’

With them, we can produce the first sentence by applying the rules above to
transform an event_spec into a sentence. At each step, we will take the leftmost
spec and replace it according to some rule: '
event._spec
(rule 1.1)
entityspec + ‘will’ + llst_a.ctmns_spec + entity_spec
(rule 2.1)

‘the outstation will’ + 1ist_actions._spec + entity.spec

(rule 3.2).
“the outstation will’ + action_spec + ‘and’ + list actlons.spec + entity_spec

(rule 4.1) :
‘the outstation will check and’ + list.actions_spec + entlty_spec
(rule 3.1)
‘the outstation will check and’ + action_spec + entity_spec
(rule 3.2) ’
‘the outstation will check and open’ + entlty_spec
(rule 2.2)
‘the outstation will check and open the reservoir input valves’

If we want to extend the grammar to include sentences of the second kmd we
need to add only the following rule:

[1 2] restrlcted event_spec = event_spec + ‘depending on’ + entlt _spec
. p 1% P g y-sp

With this, and following essentially the same steps (rules 1.2, 1.1, 2.3, 4.4, 2.4), we -
obtain the second sentence. There are some problems, nonetheless. Inadvertently,
we have opened the poss1b111ty of generatmg sentences such as:

the reservoir output valves will be opened and closed depending on the
‘operator’s criteria

which is ambiguous, that is, can be interpreted as meaning:
the reservoir ontput valves will be opened depending on the operator’s

criteria, and the reservoir output valves will be closed depending on the
operator’s criteria
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or

the reservoir output valves will be opened, and depending on the oper-
ator’s criteria, closed.

The second interpretation leaves it open that the valves may be opened without
reference to the operator’s criteria.

A NLP system could identify this kind of problem: first, code the grammar using
rules such as the ones above, and generate a representative set of sentences from
the grammar. Then, input this set of sentences to CLARE, which will produce as
many analyses as possible for each example. If the grammar generates potentially
ambiguous specifications, we will be able to detect this by finding that CLARE has
identified valid sentences (i.e. sentences that were obtained by following correctly
the rules of the artificial language) with more than one analysis, and are therefore
ambiguous. :

2.7 Evaluation of these proposals

The use of controlled languages aimed at limiting the vocabulary, syntactic forms,
or sentence length in order to simplify sentence comprehension seems prima-facie to
be reasonable. Unfortunately, there has been no single experiment to our knowledge
to evaluate any such proposal. A proper evaluation must wait until such evaluation
has been carried out. There is however some psycholinguistic evidence supporting
at least some of these techniques (see [35] for an extensive survey of the literature in
this domain). For example, experimental evidence suggests that the use of a limited
vocabulary does not impede the communication of subjects collaboratively trying
to solve a set problem.

There are other potential problems with controlled languages. First, they do
not by themselves achieve the intended goal. As we have argued, many sentences
in English have more than one interpretation, even if they are syntactically simple,
short, and have been written using only authorised words. This phenomenon is so
pervasive that general injunctions such as: “instructions should be as specific as
possible,” or “data should not be presented too quickly or in an unclear manner”
are unlikely to be completely effective.

Controlled statements might be less clear than uncontrolled ones. For example,
many controlled language checkers prefer the active rather than the passive so as
to avoid the lack of clarity associated with a missing subject. But sometimes, the
active version of a sentence may contain an ambiguity that is eliminated by the use
of the passive:

You should connect the truck with the pump

The tru?:k with the pump should be connected
The truck should be connected with the pump
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There is a trade-off between striving for clarity and conciseness, while trying
simultaneously to use a limited number of words. Without experimental evidence,
it is not  obvious whether controlled techniques deliver better documentation.

Controlled languages might also be incomplete; i.e. how do we know that ev-
erything that needs to be said can be said in a controlled language? An excessive
amount of limitations can force the writer into producing statements that, although
valid from the definition point of view, might not mean what the user wanted to
‘write in the first place. For example (taken from [23]), a writer might want to type
the statement “do not touch any cable,” but due to the limitations of the standard,
end up by writing “do not touch the cable” or “do not touch all the cables.” These
are valid alternatives, but have different semantics from the original one.

Finally, the use of “claims” languages must, as argued in the previous section, at
least be complemented with some technique to ensure that the meta—gra.mmar does
not introduce unintended ambiguities.

2.8 Conclusions

We first reviewed the most salient characteristics of the case studies. We found that
freely written specifications suffer from sentences that are too long, and use punctu--
ation erratically, and are generally unclear. Both from the point of view of realistic
use of current NLP techniques, and overall clarity of presentation, we suggest that
we must aim at limiting the length of sentences, as well as eliminating when pos-
sible the use of punctuation. Importantly, the presentational units identified play
a significant role in organising the overall structure of the texts. If we can control
their use to eliminate under-specification, we can expect much better specifications, -
as such units constitute a significant proportion of specifications.

We also surveyed a number of proposals aimed at reducing the scope of ambi-
guity and vagueness in natural-language speaﬁcatmns These proposals are based
on the assumption that by limiting the form of the statements allowed, we will
produce better documentation. Nevertheless, a constant theme in natural-langua;ge
‘processing is that a large amount of ambiguity and vagueness obtains in all but
the simplest of sentences. This is likely to happen no matter how restricted the
vocabulary, syntax, or sentence length. In the context of specification tasks, this
observation implies that merely controlling these factors will not produce unambigu-
- ous and precise specifications (although they might well contribute to making the
- specification statements more readable). A better assessment of their precise utility
will have to wait until proper studies have been carried out in realistic specification
~ settings.
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Chapter 3

A Window-Based Interface for

Specifications in
Natural-Language

3.1 Introduction

The conclusions of the study so far are the following. We began by arguing that a
fundamental problem for specifications in natural-language is that the main charac-
teristic of natural languages is the massive amount of vagueness and ambiguity at all
levels. We continued by examining a number of proposals to solve this problem. We
found them wanting, mostly because they concentrate on the form of the language,
without controlling the potential ambiguity of their meaning. Finally, we looked
at the characteristics of some real specification documents. These documents show
that, in order to apply current NLP techniques and improve their clarity, some con-
trol must be put not so much on the language being used, but in the actual process
of writing the specification.

‘We present in this chapter an interface to a natural-language system that takes
into account these observations. The interface works like a top-down, syntax-
directed editor, using some (user-defined) statement types and ordinary English
sentences. This approach reduces the length of the English sentences considerably,
minimises the use of punctuation, and generally seems to encourage clear writing.

The user begins by selecting the kind of statement to be written, and recursively
selects other statement types, or simply writes an ordinary English sentence. This
sentence is passed on to CLARE (the NLP system we use) and analysed. If the
sentence has more than one logical analysis, the user is requested to select the
one they intended, disambiguating the input. The source specification in English
is stored together with its logical analysis, and can be subsequently be modified,
extended, or used to generate documentation. Assuming that the NLP system
returns every conceivable analysis, this approach captures the intended meaning
among those possibly intended. :

Like the “claims language” or the “simplified English” sta,ndards we take it as
our starting point that the process of writing documents needs to be controlled to
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produce better documentation. ‘But rather than rely on a ‘style manual’, we use a

natural language processing system to interact with the user. In this way we hope

that the user and the natural language system will converge on an English statement
of the requirements that represents an appropriate compromise between expressivity
and clarity, as represented by the fact that the natural language system can arrive
at a complete, disambiguated, analysis of the input.

3.2 An Example

‘We present now the architecture of the interface. It has been designed to present an

easy-to-use, controlled interface to the natural-language processing system at our
disposal, CLARE ([3], [4]). In the configuration used here, CLARE carries out mor-
phological, syntactic; semantic and some contextual analysis on an input sentence

‘and then presents one or more possible logical forms representing the mterpreta—

tion(s) of the sentence.
The user begins by selecting the kind of statement to be written, and recur-

‘sively selects other statement types, or simply writes ordinary English sentences.

Each sentence is passed on to CLARE and analysed. If the sentence has more than
one logical analysis, the user is requested to select the one they intended, disam-
biguating the input. The source specification in English is stored together with its

logical analysis, and can be subsequently be modified, extended, or used to gen- .

erate documentation. In principle, the logical analysis could be subject to further
forms of processing: for example, it could be linked to appropriate parts of a formal
specification, or cross-indexed to a diagram.

We introduce the basic operation of the interface through an example from one
of the specifications ([5]). Let us assume that the user wants to type in the following
specification —based on an actual example: “Before starting the transfer procedure,

the operator answers a menu to define the loading process (valves that will be closed
~ or opened, the propane reservoir and the phases that will be used).”
The system begins by displaying the options ava,ﬂable to the user. After selecting -

the option to process a sentence, the system opens a window that displays the
presentational units available, plus the option to type a sentence directly:
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Z] clarefont_popup B!

BEFORE Statement
AFTER Statement

WHEN Statement

IF Statement

LET Statement

Simplie Statement (CLARE)

Type a sentences

I ' 1

3Pr~ocess I ! Cancel l llthions I

Let us begin with the first statement in the example: “before starting the transfer
procedure, the operator answers a menu to define the loading process.” This sentence
type corresponds to one of the presentational units available, the ‘Before statement.’
We can directly select the option from the menu, or type ‘Before’ and hit the return
key. Because this is a predetermined statement, the system will retrieve its definition
and structure, and selecting it will produce a new window: :

@] form_popup N
Finish Cancel
before

|Tvve a Statement |

ITJ)pe a Statement |

We choose now ‘Type a Statement’ to input the first part of the ‘Before state-
ment.’ In the current implementation this will result in a new window where we can
type the first English sentence: ‘

[®] clarefont_popup

Type a sentences

;The transfer procedure starts.i

g Pmcesil 2 Cancel I iUptionsJ

If this sentence is in turn a complex one, then a new window is necessary: in
this instance, the sentence is a simple one and the extra window a little redundant.
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However, the sentence is then processed by CLARE. The system finds that the
sentence is grammatically correct, and that it has one logical analysis. It is then
considered correct, and stored for future reference. We go back to the ‘before’
window, and choose again to type an English statement with ‘Type a Statement’.
As before, another window pops up, and we type:

E] ‘clarefont_popup iy

Type a sentence:

lThe operator must define the loading process ‘ E

The sentence is analysed and validated by the natural-language systein; itslogical
analysis is saved. With this we finish; we have obtained a valid specification of the
statement: ’ ' '

BEFORE
the transfer procedure starts,

. the operator must define the loading process.

3.3 Lists

Lists (conjunctions, disjunctions, or sequences) are treated by an extension of the
mechanism shown above. Assume now that the user wants to draft the second part
of the specification, and that the list of actions in parentheses (“valves that will be
...”) is to be interpreted as a sequential coordination. The process of specification

is carried out through the same mechanisms as before: select a ‘when’ statement

o L . . . -
from the menu, capture an English sentence, and then type in the conjunction. To

do this, the user can either choose an option from the menu, or simply type: o
The operator has defined which valves to open or close and then

The sequence ‘and then’ acts as a keyword to tell the interface that we have
started a sequential conjunction; the system will then loop until an input statement
lacks a trailing ‘and.” We continue with the following sentences in the same fashion,

~ until we obtain, instead of the plain English description, the controlled specification:
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The operator has defined the loading process
WHEN

the operator has defined which valves to
open or close

AND THEN

the operator has defined the target
propane reservoir

AND THEN

the operator has defined the phases

that will be used.

To conclude, the process of choosing high-level presentational units from the menu,
and typing English sentences for the natural-language system, has taken us from
the freely written version:

Before starting the transfer procedure, the operator answers a menu to
define the loading process (valves that will be closed or opened, the
propane reservoir and the phases that will be used)

to a controlled one:

BEFORE
The transfer procedure starts,
the operator must define the loading process.

The operator has defined the loading process
WHEN

the operator has defined which valves

to open or close

AND THEN

the operator has defined the target

propane reservoir

AND THEN :

the operator has defined the phases

that will be used.

This specific rendering of the free version is only one among many that we could
have typed. Qur purpose here is not to suggest this specific style of drafting, but
merely to illustrate how it can be done using the interface. Other writers, with
different styles, will produce alternative specifications. A range of variant forms is
permitted by the system, within the limits imposed by grammatical coverage. As
we hope this example suggests, the approach chosen allows for better specifications
in a relatively unconstrained manner.

3.4 Defining local identifiers

One factor that contributes to the naturalness of a text is the use of pronouns and
definite noun phrases (‘the ..."). Unfortunately, it can also create uncertainties on
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how to understand it. Definite noun phrases can denote a specific object or objects
in the discourse, can refer to some unspecified (and possibly non-existent) object
fulfilling a description, or can be used generically to talk about the properties of a
set of entities. The problem of establishing the correct reference for referring noun
phrases is a well known one. Consider as an example the following fragment:

An operator executes the starting procedure when he opens the input
valve, and then he activates the pump attached to the input valve.

An operator executes the closing procedure when he turns the pump
attached to the input valve off, and then he closes it.

Both sentences contain references to “an operator” and “the input valve.” In
the absence of other information, it is not clear whether they refer to same entities
or not. The pronouns “he” and “it” need also to be resolved to obtain a complete
interpretation of the specification.

To ameliorate this problem, we have introduced a LET facility. This feature
makes it possible for the user to introduce global names, and associate them to
entities that will be repeatedly used in the specification. In the example above, the
same sentences captured using the system and the LET facility will look like: V

LET V be the input valve.
LET P be the pump attached to V.
LET OP be the operator.

OP executes the starting procedure WHEN
OP opens V
AND THEN
0P activates P.

OP executes the closing procedure WHEN
OP turns P off '
AND THEN
aP closes V.

There is an alternative —and more natural— way of achieving the same effect.
This can be done by using a construct like this: :

An operator, OP, executes the starting procedure WHEN
OP opens the input valve v, '
‘AND THEN
OP activates the pump, P

OP executes the closing procedure WHEN
OP turns P off '
AND THEN
OP closes V.




The first mention of an entity also introduces an identifier parenthetically, which
can be used later on to establish reference to that entity. This is an extension of a
mechanism already available in English. The result may read more naturally while
still eliminating the possibility of this type of ambiguity.

Although the first technique works, it is not a particularly natural construct,
linguistically speaking, and the resulting specifications look a little like expressions
of a programming language. The tension between these two alternative ways of
introducing identifiers points to the conflict that arises when simultaneously trying
to achieve precision, conciseness, and intelligibility. Further work is required before
we find how far we can stray from pure natural languages. Still, we believe that a
- certain amount of art1ﬁc1ahty is justified by the mileage we get in terms of better
specifications.

3.5 Storing, modifying, and reusing a specifica-
tion

The process of capturing a specification statement is backed by a separate window
that displays a text of the input at each moment of the process. The first use of this
text window is to help users orientate themselves through the implicit tree created
by selecting options on the main input window. The text wmdow for one such
specification is:

BEFORE (OP executes the loading procedure },
{{0P must specify L »

AND THEN

{L plus S must be less than MAX )}

{OP executes the loading procedure }

{{DP executes the starting procedure )
AND THEN

<OP loads C »

AND THEN

(0P executes the closing procedure ))

{OP executes the starting procedure )
WHEN
({OP opens ¥ }

AND THEN ]
{OP starts P )}

iCopy to Buffer

iDelete

|
i}nsert Buffer ’ |
|
|

iPrint Buffer

This output is produced from an internal representation, which contains a de-
tailed description of each statement, as well as its corresponding logical analysis. It
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can be used to produce various kinds of paraphrases according to the user’s needs, or
kept as an independent file for other kinds of processing. An example of an internal
representation is: :

spec(1,
1,
before(
clare([id(op), executes,
the, loading, procedure]),
andthen( [clare([id(op), must, -
specify, id(1)]),
clare([id(1), plus, id(s),
must, be, less,
than, id(max)])] ) ) ).

which corresponds to the specification:

‘BEFORE OP executes the loading procedure,
OP must specify L
AND THEN
L plus S must be less than MAX

The second purpose of the text window is to let the user copy, update, or modify
specific parts of a statement without having to rewrite it from scratch. This is
done by first selecting from the text window a statement or sub-statement with the

- mouse: »

[o] test

BEFORE {OP executes the loading procedure »,
({OP must specify L ?
‘A AND THEN

{L plus S must be less than HAR »7
(0P executes the loading procedure }
WHEN

4P exccutes the starting procedure N
AND THEN

(0P loads C 2

AND THEN

{OP executes the closing procedure 3}

(0P executes the starting procedure ?
WHEN ‘

({0P opens ¥ }

AND THEN

(0P starts P )

{Copy to Buffer

Ilnsert Buffer

§Delete

ot Bd e e

gPrint Buffer
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Once a text has been selected, it can be deleted or copied to a special buffer. If it
is deleted, this action creates a copy of the statement which is put into an auxiliary
buffer for further manipulation. When a text is copied to the buffer, it can be added
to the specification at any valid site. One such case occurs when a text has been
deleted, creating a “hole” in the specification. Another possible insertion site is a
sequences of statements linked with ‘AND_THEN’ conjunctions. When there is such
a site, and the buffer is not empty, the user can position the cursor there, and select
‘insert.” The program will insert there whatever is found in the buffer.

Both the text window and the auxiliary buffer are generated anew every time
the specification is modified or added to. It would be possible for edits of this kind
to introduce ambiguities into previously checked specifications, of course, and so
reprocessing is necessary to confirm the final result.

3.6 Ambiguous statements and paraphrasing

We have indicated above how to control for ambiguity at the level of presentational
units. But to ensure that a complete statement is unambiguous, we must also check
that each English sentence is unambiguous. We do this by adding a feature to
the system that accepts a natural statement together with a specific interpretation.
When CLARE processes a sentence and more than one logical analysis is found, the
user is asked to choose among the various logical forms. The system then stores the
original statement and its disambiguated logical form. This can be used for future
reference, or in order to generate various paraphrases.

Interactive disambiguation of this type is a large research topic in its own right.
Linguistically naive users may not always notice that a sentence is ambiguous, since
contextual knowledge usually eliminates all but one linguistically possible interpre-
tation, the others being unconsciously rejected as implausible. Furthermore, one
cannot assume that the language used to represent the meanings of sentences (in
our case, first order logic enriched with a few higher order constructs) will be familiar
to users.

We have chosen a simple temporary solution to this problem, presenting users
with a “logicians’ English” paraphrase of the logical forms representing the meanings
of the sentences. For example, if the user types in the sentence:

The operator has stopped the process on the menu
the system will generate the following two (slightly simplified) analyses:

quant (exists, 4,
[operator,A],
quant(exists, B,
[and, [process,B],
quantr(exists ,C, [menu,C], [on,B,C1)],
‘quant(exists, D,
[and, [event,D],
quant (exists, E,
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[current_time,E],
- [precedes_in_time,D,E])],
[stop,D,A,B])))

and

quant (exists, A,
[menu,A],
quant (exists, G,
[operator,G],-
quant (exists, M,
[process,M],
quant(exists, N,
[and, [event,N],
quant(exists, O,
[current_time,0],
[precedes_in_time,N,01)],
[and, [stop,N,G,M],
[on,N,A11))0)]

These analyses correspond the the interpretations on which the phrase ‘on the
menu’ modifies ‘process’ or ‘stop’ respectively. (compare ‘the operator has read the
message on the menu’ and ‘the operator has positioned the mouse on the menu’).
The system generates paraphrases of each, and asks the user to choose between

them:

1. There is some operator OP, some process PRO (such that there is a menu
ME, and PRO is on ME), and a past event E, such that E is an event of OP
stopping PRO.

2. There is some menu ME, some operator OP, some process PRO, and some
past event E, such that E is an event of OP stopping PRO, and E is on ME.

From these paraphrases, the user chooses the one that corresponds to the in-
tended interpretation. ‘The system then stores the desired interpretation with the
input sentence, which can later be used to annotate the English source, or substitute
it directly. _ _

The CLARE system is bidirectional, and can generate sentences from a logical
form. It would thus be possible to generate full English sentences from the logical
form back to the user.. However, we would need careful checking to ensure that we
did not simply re-generate the original sentence, and we would also need to ensure
that the paraphrase did not itself introduce some other unintended ambiguity.

3.7 Evaluation of the system

In order to evaluate the basic design, we asked a few subjects to try a pencil-and-
paper version of the system.! Although the current system contains some variants

Thanks to Victor Carrefio, David Carter, Paul Curzon, Roger Hale, and Tan Lewin.
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compared to the one used in the example, it is basically the same. The experiment
thus allowed us to gauge the user’s reaction to such a system, and increase its
functionality.

To evaluate the system, we asked the users to carry out the specification of
operations on a simple system. We gave them examples of the style of English that
the system is intended to handle, but encouraged users to go beyond this if they felt
hindered by it.

The example specification involved a container of some sort, with one input and
one output. The input to the container was through a pump, and the container
had a sensor to measure how full the container was. We attached three valves to
the container as well, one for the input, one for the output, and one emergency
valve. The users were asked to specify some simple operations, such as loading the
container, based on the following informal model intended to be representative of a
simple and already quite clear specification: ‘

~ “The loading operation will be done as follows:

1. The operator will specify the amount of material to be loaded into the
container.

2. The operator will open the input valve V1.
3. The operator will then start the pump attached to the input valve.

After the process is over, the operator will turn the pump off, and he will
close the input valve V1.

The amount to be loaded will not exceed the capacity of the container. If
this happens, the loading operation will stop, and the emergency signal will
be activated.

..... T4+a Af +ha Avna rora tha follawine Riret we aclred the 1sers

Thc results oif the eXpe eriment were the 1ICLowWing. 1 irSy, asKed Tiag uscr
whether the overall design made the specification easy to follow. Most thought
that the resulting style was indeed easy to follow, although it was noted that its
style was perhaps too similar to a programming language, making it too unlike
ordinary English. We also queried the users about the extent to which the system
contributed to reach the goals that we had set. Their response was that it achieved -
those goals, but it was again noted that the resulting text was more difficult to
follow than ordinary English.? It was the opinion of the users, especially those with
specification experience, that it could be used in a realistic setting.

One comment that we took into account concerns the rigidity of the system. The
‘version tried in the experiment did not include a facility to edit or change an ongoing
specification. Several users pointed to the need of features to cut-and-paste, delete,
or modify a draft as one goes along. As a result, we added the facility described
above to correct this problem.

2This might of course reflect the shortcomings of an example we wrote, and not the system in
general. As several users commented some of our own drafts could have been done in a simpler
and clearer way.
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It was noted by the participants in the evaluation that the system needed to
be supplemented by some kind of indication of the meaning as well as the form
of the presentational units. For example, it was pointed out that the semantics of
individual sentences such as “OP executes the X procedure” is influenced by the
presentational unit in which it occurs. If we have “OP executes the X procedure
WHEN...” then this statement usually defines what procedure X is, whereas “OP
executes the X procedure” in “BEFORE OP executes the X procedure.....” functions
quite differently. In practice, the system should therefore be used in conjunction
"-with a set of stylistic conventions (and presumably some explicit training) to give
guidance to the writers on the intended meaning for each construct.

3.8 Further and Reléted Work

The current prototype has been developed with as little customisation of the NLP
system as possible. We wanted to see how far we could go on the basis of already
existing tools. Customisation is restricted to the addition of necessary vocabulary
items. While the system accurately processes all the examples used in this paper,
its coverage is still not adequate for real applications. However, the CLARE system
provides a wealth of tools for this kind of customisation, given an adequate corpus
of examples, and this extension of coverage is not a problem in principle.

Part of the process of customisation requires the addition of domain knowledge
in a form suitable for inference, for the purposes of disambiguation. The addition
of such knowledge makes it possible to use the logical forms which are the output
of the natural language system for further types of processing.

The idea of building natural-language interfaces through menus was introduced
by ([44]). However, in the system described there the composition of basic sentences
also had to be achieved by menu selection, one word at a time. It may be useful to
adopt this technique, or some variant of it, if it is impossible to guarantee that the
NL system will accurately analyse the basic sentences in any other way. The use
of natural-language techniques to help the process of specification writing has been
explored by a few authors. ([6]) sketch a system that, among other capabilities, is
able to build formal descriptions through natural-language dialogues. ([34]) describe
a system to derive formal descriptions from natural language specifications. ([15])
contains a description of a knowledge-based system that maintains a database of a
software development project. This system uses a natural-language system interface.
([18]) have built a system for the specification of automatic teller machines. These
systems all have the common characteristic that they are application specific, with
the natural language processing being hard-wired to the application in question.
Our work has concentrated on using general purpose systems, on the assumption
that customising will eventually be less effort than starting over again for each new
application.

41



3.2 Conclusion

We have presented a system designed to help in the process of writing specifica-
tions in natural language. The system controls the writing of statements in English,
reducing the length and syntactic complexity of sentences, and introducing some
~ structure in the specification. By forcing the user to choose between alternative
analyses of a sentence, the system also ensures that the final statements are disam-
biguated. The supra-sentential presentational units that drive the system have been
obtained from real-life specifications. They seem to be very general, but if desired,
the system can be easily tailored to presentational units found in other domains.
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Chapter 4

Natural-Language Interfaces to
Formal Specifications

4.1 Introduction

The work reviewed so far is aimed at controlling the process of typing specifications
to improve the source of a formal specification. Because of our emphasis on general
techniques, we have so far approached the problem without consideration of the
underlying domain of application. But many English requirements specifications
correspond ultimately to formal specifications in a language such as RSL ([41]). The
aim of this chapter is to complement those techniques with some other strategies to
connect natural-language statements with their underlying representation.

Specifically, we study how to connect questions in English about a system, with
its formal specification, and how to produce cooperative answers in an English-
like language describing aspects of the specification. We do this by examining how
to process several kinds of queries the users might pose in the domain of valve
specification.

We expect to advance our understanding of the link between the English spec-
ification and the formal specification, which will eventually allow us to provide a
natural-language system with modules that can be used to ask questions about the
representation, and to produce paraphrases in English of the properties contained
either explicitly or implicitly in the formal specification. It would thus be possible
in principle for a non-expert to interrogate the specification to determine whether
~ certain properties obtain or not.

This change of emphasis requires that we take into account the semantics of the
system being described. Although it is not possible to provide an entirely domain-
free characterisation of this link, we believe that by focussing on the formal prop-
erties of the representation we can generalise the connection between the English
specification and its formal counterpart.

Our approach will show how, by treating a given specification as a data base,
and by using the features particular to the underlying specification language, we
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can produce a “commonsense axiomatisation”! that will allow us to process queries
about the properties of the objects in the specification, as well as to generate precise
descriptions in natural language of the specification. By further pursuing this line,
we reduce the role of the natural-language requirements specification, and restrict
its use to constrained translations to and from the formal specification.

This approach is not domain-independent. In other words, each domain requlres
a new effort to axiomatise its semantics, and needs to be done again when applying
the same techniques to a different domain. As we hope will become clearer through
the examples, this exercise demands a considerable amount of effort, and it is perhaps
justified only in cases where many different specifications fall into a similar range of
objects (e.g. pumps, valves, and so on). Otherwise, the quantity of work involved -
in the axiomatisation of a specific domain might not be justified. ' :

" The formalism of Horn clauses and programming in Prolog used in this chapter is -
introduced in the textbook of [43]. The work described here closely resembles work
‘done to build natural-language interfaces to data bases. [13] extensively review the
work done in this area. o '

4.2 Processing n‘atur’al-langvuage queries

The first issue that we want to examine is: what aspects do we have to consider
if we want to build a natural-language interface to a formal spec1ﬁca,t10n7 We can
divide the problem mto the followmg aspects:

o What kinds of natural-language statements can we practically process about
a given formal speciﬁcation? :

e How do we represent a formal spec1ﬁcat10n for the purposes of natural language
processing? :

o What kinds of axiomatisations, and deductlve operatlons on them, do we need
to translate natural-language statements. about properties of the representa-
" tion into querxes about the specification?

" To facilitate the discussion, we Will‘ use an example taken from a concrete speci-
fication from the project about the formal properties of valves ([30], and [29]).
We are not concerned here with any particular language for formal specifications.
but rather with the information contained in them, either exphcltly or implicitly.
'Modern specification languages have similar expressive power, so that the conclu-
sions obtained here should hopefully be equally valid for all such languages.
We use in this paper the analyses produced by CLARE, but the general form of -
such analyses guarantees that our techniques will apply to any source analyses in
first-order logic terms. ' :

In the spirit of [24].
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4.3 TFormal specification of a valve

As an example, we will take one from the domain of valves.? The purpose of the
specification is to monitor and control the valve, using the sensors and the command
as input, and producing as output a status signal and a command to open or close
the valve. '

Thus, we introduce a valve as an entity with three inputs, corresponding to:

1. A command to open or close the valve.

2. A boolean sensor which is true if the valve is open.

3. A boolean sensor which is true if the valve is closed.
and two outputs:

1. A command to the actuator of the .va,lve.

2. A status signal to the operator.

A fragment of a specification is:®

scheme VALVE(T:TIME) = class

type
Time = T.Time,
Com_Val = open_c | close_c,
Com = Time -> Com_Val,
Act = Time -> Com_Val, .
Status = is_open | is_closed | is_opening | is_closing |
sen_err | act_err,
Sen = Time -> Bool,
value

c,o: Time, ,

valve: Sen x Sen x Com -> Act x Status,

is_opening: Com x Time -> Bool,

-is_opening(c,t) <=> let x = com_age(t,c,close_c) in
x < oand x > 0 end,

is_closing: Com x Time -> Bool,

is_closing(c,t) <=> let x = com_age(t,c,open_c) in
x < cand x > 0 end,

status: Sen x Sen x Com -> Status

status(op,cl,t) <=>
if is_opening(c,t) then is_opening

2This section is based on specifications provided by Hamid Lesan (personal comm, May 1994).

3 Altering slightly the concrete syntax of RSL in an obvious way.
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‘elseif is_closing(c,t) then is clos1ng
elseif op(t) = cl(t) then sen_err
elseif c(t) = close_c then
if op(t) then act_err else is_closed end
else if cl(t) then act_err else is_open end

end
axiom S
forall op, c¢l: Sen, c: Com, t: Time .
status(op,cl,c) <=> let (_,s) = valve(op cl,c) in -
v s end, : :
(status(op,cl,c) <> sen_err and
status(op,cl,c) <> act_err ) =>
- let (act,_.) = valve(op,cl,c) in
act(t) = c(t) end
end

4.3.1 Processing of queries in English

The point we want to examine here is: assuming that we have written a formal
specification of a system, and that this specification has been stored as a data
base, what sort of statements can we expect a user to make about the system? In
: ,partlcular we are interested here in questions, the kind of statements most likely to
be useful in this setting. For example, a user interested in finding out mformahon
about the specification might ask questions like:"

what is the definition of a valve?
what is the output of ‘status’?
how do I find whether the valve is opening?

Tt is of course true that, siven that va descrin t? onsg contain arbitrary pvprpcmnns

U A0 Ul LULLOU viul viidiuy 51 VUll vladey LT uoval SALLV QL Sk Mava Gl y 4 CooaLiL

using constructs of RSL and first-order logic, no algorithm exists that will answer
every question one can ask about the specification. Still, as we will see, there remain
several kinds of questions like the ones above that can be usefully answered.

To do so, we will take the question’s analysis produced by CLARE, and use
it to interrogate a data base corresponding to the formal specification. The link-
between both will be given by defining the semantics of the domain, and the intended
semantics of the formal specification language. Because we use Prolog here, both -
the data base and the axiomatisations will be done in terms of Horn clauses.

The processing of a query is based on the evaluation of its analysis against
the data base using a Prolog meta-interpreter, which uses Horn clause axioms to
bridge the differences between the semantics of the logical forms and the data base.
As a side effect, the query will produce the values that satisfy the logical form.*

A generation module then takes the answer obtained by the meta-interpreter and
produces a final answer. - ' '

4The mterested reader is referred to the appendlx where thlS process 1s explamed in more .
' detall : . . -
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This approach avoids the kinds of problems normally attacked by theorem-
provers in general because we decide beforehand which properties we are going to
axiomatise, and how they relate to the kinds of questions we want to answer.

4.3.2 Representing the formal specification

We begin by representing in terms of Horn clauses the specification above. The
transcription has been done with an eye to the processing needs we have, but basi-
cally all we are doing is representing the specification using a different syntax.® The
following fragment of VALVE should illustrate the underlying idea:

type( sen,
function_type,
[time], [bool]l ).

type( statusi,
enumerated_type, .
[is_open, is_closed, is_opening, is_closing, sen_err, act_err ] ).

type( com_val,
enumerated_type,
[ open_c, close_c ] ).

value( status,
function,
[sen, sen, com], [statusi] ).

axiom( status,
2’
forall( [ type( op, sen ),
type( cl, sen ),
type( t, com ) 1, :
equals( status(op,cl,t), second( valve(op,cl,c) N,

We look now at how we process different kinds of queries, according to their
kind. The results described here have all been implemented and allow us, as we will
see, to go all the way from a question in English to the data base, and back to a
restricted form of English.- '

4.3.3 Direct questions about the specification

The first category of questions which we can handle directly include those referring
to features that can be directly connected to some formal element in the definition:

5As opposed to a semantically-based translation, where we would translate each construct of
RSL into a semantically-equivalent one in terms of Horn clauses.
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what is the definition of a valve?
what is the output of function ‘is_closing’?

“are there any axioms for ‘status’?

Let us take the first sentence. CLARE will produce: ;

[whq,
quant(wh,
A, ,
" [impersonal,A],
quant(exists,
: B,
[and,

[definition,Bl,
quant(exists,C, [valve,C], [genit,B,C])],
quant(exists,D, [event,D], [be,D,A,E"[eq,E,B]11)))]

We look now at how this form is processed. Unless otherwise stated, we will as-
~ sume throughout that the restriction of a quantified form will always be successfully
evaluated, and will return the predicated variable “wrapped” in a functor bearing
its type. For example, the evaluatlon of

[impersonal,A]
[definition,B]
‘[valve,C]

will succeed in each case, returning the bindings:

A = imp(.)
"B = def(_)
C = valve( )

In terms of the ax1omatlsat10n, thJs means that there will be a number of Horn
clauses such as: '

~ impersonal (Imp) :- AImp.= imp(_).
definition(D):- D = def(.).
valve(V):- =~V valve( ).

This approach allow us to concentrate in the definition of the main predlcates
For the query above, this is the predicate be. Assuming that each variable has been
tagged with its type, we want to define the conditions under which the goal

. be( ev(D),»iﬁé(A), E“[eq,E,def(valve(B))j ).

succeeds. We ﬁrdwde the following axiom, saying that be will obtain in case
Property makes reference to a certain Entity (valve in this case) and that ent1ty
has a correspondmg Definition in’ RSL - '
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be( ev(Event), imp(What), Property ):-
definition(Property,Entity),
rcl_definition(Entity,Definition),
What = Definition.

We use the following auxiliary definitions to connect those predicates to the date
base: '

definition(E~[eq,E,def(0f)],What) :~
Of=..[What|_].

rcl_definition(Entity,Definition):-
type( Entity, function_type, From, To ),
Definition = function_type( Entity, From, To ).

rcl_definition(Entity,Definition):~
type( Entity, enumerated_type, List ),
Definition = enumerated_type( Entity, List ).

rcl_definition(Entity,Definition):~
value( Entity, function, From, To ),
Definition = function( Entity, From, To ).

rcl_definition(Entity,Definition):-
axiom( Entity, Num, Axiom ),
Definition = axiom( Entity, Num, Axiom ).

When evaluated by the meta-interpreter, the query will produce the answer:
imp(function(valve, [sen,sen,com], [act,statusi]))

This answer is passed on to a separate module whose task is to create responses that
are more friendly to the user. This module will in this case produce the final answer
to the original question. The output of the generator is produced by basically
_ unwrapping the functional information around the answer and using it to build
an English-like expression. The reader should nevertheless keep in mind that the
motivation here is to build tools to reduce the amount of uncertainty surrounding full

natural-language expressions. Therefore, the focus is not on generating completely -

natural-sounding English, but rather on producing paraphrases that faithfully reflect
the contents of the database, even at the cost of some artificiality in the reply.®
In this case, the answer that we obtain is:

5We use this example only to show the kind of answer the system can produce. Depending on
a more careful analysis of what the user needs, this answer could be tailored to produce more or
less information, or it could be displayed using another layout.
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valve is a function

Let SEN be a function type
Let COM be a function type
Let ACT be a function type
Let STATUS be an enumerated type'

Domain:
SEN x SEN x COM

Range
ACT x STATUS

4.3.4 Question about properties of the domain

A slightly more complicated case arises when a query refers to some feature of the
objeCt being defined. Consider for example the question:

- How do I find the output of valve

Whereas we do not have to know anythlng ‘about the domam to answer the
questions exemplified in the previous section, questions about functions and their
properties require an axiomatisation of the domain in question. In other terms, we
need to examine first the naive semantics the users are working with when they pose
them. In this case, it can be questions about the various states of the valve, or how

" to obtain information about them, or the conditions that produce a result.

The semantics of this example is very simple: each of the possible sta.tes of the
valve one might be interested in correspond to one of the possible values of the type
Status, the output of the function status. We then associate each of the possible
queries to one of the possible values. The question above will produce the analysis:

[whq,
quant (wh,
A,
[manner,Al,
quant (exists,

B 3
{valve,B],
quant (exists,
c ’
[and, .
- [output,C], [output_of,C,B1],
quant (exists, ‘
D 3
[event,D],
[and,

[find,D,user,C], ,
* [manner_of ,D,A]1] )) 1)
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Again, we concentrate on the main predicate. We define find as:

find( ev(Event), _Who, Property ):-
property(Property,output,Entity),
function_of_entity(Entity,Function),
axiom(Some,Axiom,Definition),
in_rhs(Function,Axiom),
Event = Some.

with the following meaning: an Event of find will obtain for a certain Property if
the property refers to a function related to the Entity in question (output and valve,
here), there is a Function in the specification connected to the property, and there
is an axiom somewhere in the specification whose right handside uses the function.
This will lead to the following solution:

manner (ev(status))

which will, after some further manipulations to provide appropriate input to the
generator, produce the reply:

By evaluating the status function

4.3.5 Questions about functions and their properties
The method described above can be extended to deal with some more complicated
questions, as in:

When does a valve open?

To answer this question, we need to make explicit the fact that each state of the
valve is associated with a certain value in the type Status. First, the analysis of
the sentence is: =

[whq,
quant(wh,
A,
[entity,Al,
‘quant(exists,
B’
[valve,B],
quant(exists,
C,
[event,C],
[and, [open,C,B],

[when,C,AJ1) )]

We define open as folloWS_:
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open( ev(Event), What ):-

valve(What),
property_function(open,What,Function), -
. property_value(open,What,Value),
.axiom(Some,Axiom,Definition),
in_lhs(Function,Axiom),
in_rhs(Value,Axionm),

Event = Axiom.

- which means that Event will correspond to the axiom that has on its left hand side
the function that returns the information sought, and has on its right hand side the
specific value (is_open in this case) we look for. We complement this definition with
a sunple—mmded rendering of when:’

when( ev(Axiom), ent(When) ).-
axiom(Some,Axiom,Definition),
When = Definition.

-which retrieves the entire definition of the relevant axiom or axioms. The generated
answer in this case is: :

Let OP be of typé SEN.
Let CL be of type SEN..
Let T be of type COM.

for every OP, CL, T:
status ofFUP, CL, T is equivalent to:

if
is_opening(c,t), then is_opening
elseif is_closing(c,t), then is_closing
elseif op(t) = c1(t), then sen_err
elseif c(t) = close_c, then
if op(t), then act_err
else is_closed,
elseif cl(t), then act_err
' ' else is_open

4.4 ConclusiOn

We have preseﬁted an approach to tfeat natural-language questions about a formal
specification as queries to a data base. The method ‘that we use Is based on the

7Simple-minded because we return the entn'e axiom. A more sophisticated system could try to
" isolate its conditions, which is the only information required. There is noretheless a security issue
here. It might in fact be a better strategy not to try to reduce the information produced to its
simplest expression, but simply produce the entire paraphrase as we do in this example. The role
of bringing in the intelligence required to make complete sense of the mformatmn remams thus
with the human user, as it should )
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axiomatisation of the meaning of the queries in terms of the representation of the
specification as a data base, as well as an axiomatisation of the formal properties
of the specification language constructs required by the query. This method allows

. the user to interrogate the contents of the specification in English, and to obtain

answers in a quasi-English language.

We believe that this method can be extended in a general (if not too exciting)
manner: begin by capturing the kinds of predicates bound to be of use, axiomatise
their meaning in terms of properties of the data base and the underlying specification
language, and finally write as axioms the properties of the functions needed to
complete the axiomatisation. A specification language contains a large but not too
large set of predefined functions (dozens rather than hundreds), all with well-defined
semantics. It should then be possible, at least in principle, to collect a handful of
useful predicates, and write a set of axioms for them. v

Nevertheless, the writing of a full-blown axiomatisation for some concrete domain
is a time-consuming task, and should be embarked on only after considering the cost-
effectiveness of the solution.
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4.5 Appendix 1: Interpretation of Queries

Given a logical form, we will apply the Prolog resolutlon mechanism to the predicates

‘ composmg the query, possibly returning a set of substitution values that satisfy the

query.®
The clauses giving the ax1omatlsatlon of the main predlcates is described in the

next section. With respect to the quantifiers and logical connectives contained in
the formulae, we will treat them as follows:®

1. [and,X,Y] will be satisfied vi‘f-there are substitutions S1 and S2 such that S1
o X is satisfied,!° and S2 o ( S1 o Y ) is satisfied. '

2. quant(forall,X,R,B) will be sa.,tisﬁed‘ if for every substitution SI such that '
S1 o R is satisfied, there exists a substltutlon S2 such that 32 o(SloB)is

sa,tlsﬁed

3. quant(exists,X,R B) wrll be sa.tlsﬁed if there is at least one subst1tut1on S1
such that S1 o R is satisfied, and such that there exists a substltutlon S2 such .
that S2 o ( Slo B)is satisfied.

4. quant(wh,X,R B) will be interpreted procedurally as a command to find - |
and display every X such that R and B.

One further detail that needs to be settled is the treetmeht of quantifier re-
strictions. Usually, the restriction of a quantifier contains the information usually

‘associated with the type of the variable (file, event, etc). If we evaluate the logical
form top-down, the meta-interpreter will attempt to satisfy the restriction before

the body. Furthermore this information is relevant for the evaluation of the body
Consider: ' : '

quant (exists,
' B,
[file,B],
quant (exists,
T ‘
[event,C],
[and,
[read,C,user,Bl1))

Essentlally, this is equivalent to trymg to prove that there exist B and C such
that:

8A substitution for a term T is a list I of pairs of the form X = Y, where X is a variable in
T,Y is a term, X appears only once on the left side of a pair in £, and X does not occur on the
right side of any pair in L.

9[19], ch 9. , ‘

10Given a term 7T, and a substltutlon S, we will denote by S o T the term that results from
replacing- in X by Y.in T, for.each pair X.=Y.in S . :
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file(B) and event(C) and read(C,user,B)

The variables here have no bindings. The first two conjuncts can be seen purely as
constraining B and C to take values in the sets of files and events, respectively (as
one would do it a typed system). Also, this information is relevant for the resolution
of the predicate read, because the answer that we want depends on the type of B:
the operation that we look for will vary depending on whether B is a file, a directory,
etc. We will then assume that for each such predicate containing typing information
there will be a Horn clause of the form:

file(B):~ B = file(B1).
manner_of (C,manner(M)):- M = C.

to ‘mark’ each variable with its type according to the restriction: By doing so, when
the meta-interpreter attempts to evaluate the main predicate, the restrictions will
have been processed, and the main predicates will have the form:

read(ev(C1) ,user,file(B1))

The definition of read can then use this information to obtain the type of the
variable. We will use the same approach to return in the argument variables any
results of evaluating a goal.
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Chapter 5

Generating Enghsh—lee |
Paraphrases of Formal
Expressions |

5.1 Introduction

In the last two chapters, we have introduced various mechanisms to produce para-

~ phrases of underlying formal representations. Our main interest in this chapter is
to further explore the question of how to produce paraphrases of formal expressions

in a way that, on the one hand, are as unambiguous as possible, and on the other, -

close enough to ordinary English to be understood by those without knowledge of
logic or set theory. We concentrate on the issue of how to generate paraphrases
from logical expressions involving quantifiers, although we also briefly touch on the
appropriate generation of paraphrases from set-theoretical expressions. These para-
phrases are produced by very simple programs that use “Canned” expressions that
directly expand the representations. ‘

'As we have repeatedly remarked, natural languages contain a wealth of sources

of potential ambiguity and vagueness. If the information to be produced is originally )

coded in some formal language, it follows that the closer we get to actual natural
language, the higher the potential for misunderstandings. - The dangers of such

‘occurrences in specification tasks are obvious. The main emphasis of our work is

thus not on natural-sounding paraphrases, but rather on paraphrases that are close
enough to ordinary Enghsh to be understood by those without knowledge of loglc
or set theory. : :

5.1.1 Logic_el Expressions .

The first elass of formal expressions that we are interested in paraphrasing is the
one of logical expressions.! The most useful setting for a paraphrasing mechanism is

1We centre here on those specific loglcal forms produced by CLARE The method should be

apphcable to any other formahsm based on ﬁrst-order 1og1c
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when a user needs to decide on the correct analysis among a number of possibilities
proposed by a natural-language processing system. For example, when the sentence:

an operator starts every transfer of propane
is analysed, it results in two different logical forms, one for each possible reading:

quant (exists,

A,

[operator,A],

quant (forall,
3, v
[and, [transfer,B],

quant (exists,C, [propane,C], [genit,B,C])],

quant (exists,D, [event,D], [start,D,A,B])))

and

quant(forall,
A ]
[and, [transfer,A],
quant (exists,B, [propane,B], [genit,A,B])],
quant (exists,C, [operator,C],quant(exists,D, [event ,D], [start,D,C,A1)))

The simplest way to paraphrase these sentences is to produce the kind of English
expressions one finds in logical books:

There exist an A, such that A is an operator, and such that for every B,
if B is a transfer, and there exists a C such that C is some propane, and
B is ‘of’ the C, then there exists a D, such that D is an event, and D is
an event of A starting B.

and

For every A, if A is a transfer, and there exists a B such that B is some
- propane, and the A is ‘of’ the B, then there exists a C, such that C is

an operator, and there exists a D, such that D is an event, and D is an

event of A starting B. ‘

The method to do this is not too complicated; the target sentences have exactly
the same structure as the input logical forms, and most of the work can be done
by substituting canned expressions like ‘for every’, and ‘there exists’ instead of the
logical connectives. These expressions are nonetheless unsatisfactory for two reasons.
First, they are so convoluted that it is doubtful that they help us to achieve the goal
of facilitating the understanding of a logical statement by somebody who does not
read logic. Second, their complication suggests that it is quite possible that a user
will misunderstand them. Thus, from a security point of view, it can be argued that
this solution is in fact worse than not having a paraphrase at all. Those who can
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‘read logic will still be able to understand the first, unambiguous expression, while
those who cannot at least will not get the i 1mpressmn that they are understandmg
what they are reading. :

‘ The two analyses in question differ only in the order of the quantlﬁers One
possibility would be to build a program to identify the differences in the analyses
and present the user Wlth options such as: ;

an operator starts every transfer of propane, where there is a possibly
different operator for each transfer, '

or

an operator starts every transfer of propane, where it is the same operator
for each transfer

One approach would be to use thls 1dea and extend it to other kinds of situation.
where more than one analysis is available. There are nonetheless several reasons why
the logical forms might differ beyond quantifier ordering. The only general approach
would be to try to identify the differences among each branch of every analysis
(a partial solution for the representation used by CLARE could take advantage
of the incremental construction of the logical form to do this at each step of the
~ form’s refinement ), and then generate a natural-language expression to point to their
differences. Unfortunately, the problem of lookmg for similarities and differences in
each branch of every formula is exponential in nature. It may be that the formulae
we are dealing with are small enough that this complexity does not’ ‘matter. But we
have in any case decided to settle for trying to produce a paraphrase. directly from
the logical form, but using natural language When possxble to s1mphfy the output,
as above.

We first notice that loglcal expressions involving quantlﬁers arise systematlcally
from certain syntactic forms:- :

“every operator starts the process”
corresponds to
forall Op. operator((lp) => starts (Op, the-process)

and has the paraphrase “for each Op, such that Op is an’ operator, Op starts the
process whereas

“some operator starts the process”
exists Op. operator(Op) and starts(0Op, the-process)

with the paraphrase “there is some Op, Op is an operator and Op starts the
process.” :

We assume for now that the restriction in the formulae contalns a single predlcate
as above. By usmg these forms instead of a more 11tera1 paraphrase of the 1og1ca1

-~ _form, we obtain:
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There is some A, A is an operator, and
for each B, such that B is a transfer (...),
there is some D, D is an event, and
D is an event of A starting B.

and

For each A, such that A is a transfer (...),
" there is some C, such that C is an operator, and
there is some D, such that D is an event, and
D is an event of A starting B.

We indicate how to complete the rest of the restriction. In general, expressions
with complex restrictions such as

forall X. ( p(X) and q(X) ) => r(X)

arise from English expressions containing modified noun phrases, as transfer of
propane. We will apply the same rules to paraphrase them as the ones used in
the main body, with the addition of the words “and is such that.” With this, we
obtain the final versions (with the rest of the restrictions in parenthesis):

There is some A, A is an operator, and
for each B, such that B is a transfer (and is such that
there is some C, C is some propane, and
B is ‘of C?), '
there is some D, D is an event, and
D is an event of A starting B.

and

For each A, such that A is a transfer (and is such that
there is some B, B is some propane, and
A is ‘of B’),
there is some C, such that C is an operator, and
there is some D, such that D is an event, and
D is an event of A starting B.

This treatment works as well for more complex examples. Consider
some operator of each pump in some plants snores

Given the analyses:

quant(forall,
A,
[and,
[pump s A] ’
quant(exists,B, [plant,B], [in,A,B1)],
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quant (exists,
C’
[and,
[operator cl,
[and, [operator,C], [genit,C A]]],
quant (exists,D, [event,D], [snore,D,C1)))

and

quant (exists,
As
[and,
[operator,A],
quant(forall,
B,
[and,
" [pump,B],
quant (exists,
Cs
" [plant,C],
~~ [in,B,C1,
[genit,A,B1)],
quant (exists,D, [event,D], [snore,D,A]))

We obtain for the first analysis, according to the rules:

For each A, such that A is_a pump (and such that theré,is‘some B,
: B is a plant, and
A is in B), _ :
there is some C, such.that C is an operator (and such that C is ‘of’ 4),
and : : ' : ' o :
there is some D, D is an event, and
D is an event of C snoring.

The second one corresponds to:

there is some A; A is an’operator (and such that for each B,
such that B is a pump,
there is some C, C is a plant, and
. , "B is in C), and
A is ‘of’ B, and
there is some D, D is an event and
D is an event of A snorlng

Another wa.y ‘to simplify further these expresswns is by reﬁnmg the use of the
restrictors. In general, mstea,d of writing:

for each X, such that X is P,
" there is some X, and X is P -
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we can simply write:

for each P X,...
there is some P X,...

so that for

"every operator starts some process”

or
forall Op. operator(0Op) => exists Pr. process(Pr) and starts(Op,Pr).
exists Pr. process(Pr) and forall Op. operator(0Op) and starts(Op,Pr).
we obtain

paraphrase = for each operator Op,
there is some process Pr,
and Op starts Pr
paraphrase = there is some process Pr, and
for each man Op,
Op starts Pr.

This move reduces the last two analyses to:

for each pump A,
and such that there is some plant B,
A is in B, and
there is some operator C,
such that C is ‘of’ A, and
there is some event D, and D is an event of C snoring

The second one produces:

there is some operator A,
. and such that for each pump B,
‘ and such that there is some plant C, and
B is in C, and
A is ‘of’ B and
there is some event D, and
D is an event of A snoring.

The corresponding paragraph versions are (modifying the punctuation to get rid of
nested parenthesis):

For each pump A (such that there is some plant B, and A is in B),
there is some operator C (such that C is ‘of’ 4), and
there is some event D of C snoring.

and
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There is some operator A (such that for each pump B --- where
there is some plant C, and B is in C-—-, A is ‘of’ B), there is
some event D, and D is an event of A snoring. '

Note that the second expression is not very good. A better alternative is to transpose
the second qualifying phrase to the end of the clause: '

"There 'is some o‘pervator A (such that for each pump B, A is ‘of’ B -—-
where there is some plant C, and B is in C) there is some event D,
and D is an event of A snoring.

We could also say:‘

There is some operator A. For each pump B (such :
that there is some plant C, and B is in C), A is ‘of’ B, and there is
some event D of A snoring.) '

The use of the original English expressions from which quantifiers originate seems
to provide us with reasonably robust interpretations. Nevertheless, it is desirable
in security contexts to ensure as far as it is possible that the user is getting the
intended reading of a sentence. Our final modification is to add explicit information
about the relative quantifier scopings with this purpose. This is done by identifying
every predicate which contains some variables ex1stent1ally quantlﬁed and some
~ universally quantified:

For each pump A (such that there is some plant B, and A is in B),
thez_'e is some operator C (such that C is ‘of’ A), and:
there is some event D of C snoring, where:

There is a possibly different plant B for each pump 4, vand

AL LL ek men ceamdemnn Y Fman A

there is a poSsio.Ly different operator C for each pump A.

The second one corresponds to:

There is some operator A (such that for each pump' B --- where
_ there is some plant C, and B is in C-—-, A is ‘of’ B)., there is-
some event D, and D is an event of A snoring, where:

. There is a p0531b1y different plant C for each pump B, and
it is the same operator A for each pump B.

Eliminating the ‘of’ express1ons would also be desirable, but requires some lin-

 guistic knowledge. For many cases, given an expression like ‘A is of B’ one can use
the predicate associated with A: such that A is the operator of B’. But this will not

always be correct, for there may not be a unique A associated with B: consider ‘A
is the wheel of B’ (where B is a car). However, ‘A is a wheel of B’ sounds clumsy.

Perhaps it would be best to pass the deasmn back to the user by generatmg ‘Ais

-a/thewheelofB’ e L
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5.1.2 Set-theoretic expressions

Formal specification languages often allow a combination of logical and set-theoretic
expressions. A useful feature of a paraphrasing mechanism would be to be able to

paraphrase these expressions as well.

Set expressions

We assume throughout that we have, for each set expression that we want to para-
phrase, a suitable internal representation and a “canned” expression describing each

internal predicate (add note).
The simplest expressions involve extensional definitions of sets. We paraphrase

the symbol "==" as ”is defined as”, in expressions like:
Benelux == {Belgium,Netherlands,Luxembourg}
A possible representation would be something like:

define( setid(Benelux),
enumerate([Belgium,Netherlands,Luxembourg]) ).

and the expressions:

p( define, "is defined as" ).
p( setid, "the set containing" ).
p( enumerate, "the member(s)" ).

By writing some simple-minded code to substitute the formal expression by its
corresponding natural-language string, we can directly produce:

"the set Benelux is defined as the set containing the members
Belgium, Netherlands, and Luxembourg."

Sets can also be defined in terms of properties. We use the paraphrasing method
of the previous section. For example,

Sixes == {N:integer | exists M:integer(M). N = 6 x M}

which corresponds to:

"the set Sixes is defined as the set of integers N, such that
there is an integer M, and N equals 6 times M."

or:

First == { M: set_of_players | and(has_two_members(M),subset(M,competitors))}

which is:
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The set First is defined as the set of players M, such that:
M has two members, '
and - .
M is a subset of competitors

or in paragraph form,

"The set First is defined as the set of players M, such that M has two
members, and M is a subset of competltors

Operatlons on sets also d1rectly correspond to their representatlon, 1dent1ﬁers
are produced directly (operatlons prefixed by ”the”)

1n(Be1g1um EEC)

- union(EEC,Nato)
1n1:ersectlon(Centra1 America, Scand1nav1a)

which produces:

"Belg:.u.m is a member of EEC"
"the union of the set EEC and the set Nato“
"the intersection of the set Central America and the set Scand1nav1a

Equations involving sets can be produced using

equal(union(a,b),union(b,a)) ,
equal(1ntersect10n(central america, scand1nav1a) ,
empty_set)

or:

"the union of the set A and the set B equals the union of the set B
and the set A." :

"the intersection of the set Central Amerlca and the set Scand1nav1a
_equals the (set) empty set."

We have expanded here the type information on the left side, but not on the
right side. We could also do it, by introducing a relative clause, and obtain:

"thek'unioh of the set A and the set B equals the set which is the
union of the set B and the set A."

"the intersection of the set Central America and _the set Scandinavia
equals the set which is the empty set.")
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Relations

Relations are particular kinds of sets, in which each member is a pair. The method
of paraphrasing is therefore alike. Using the same approach we used for sets, we

obtain from:

Rides == {(Alice,bicycle), (Huw,bicycle), (Ben,car),(Ben,bicycle)}

the sentence:

"the relation Rides is defined as the set containing the pairs
(Alice,bicycle), (Huw,bicycle), (Ben,car), (Bem,bicycle)."

The relational definition:
wrides == domain_restr( {alice,kate}, rides )

would produce:

The relation Wrides is defined as the domain restriction of the set
containing the members Alice and Kate, and the relation Rides.

We can also use the definition itself to produce a more explicit paraphrase:

"The relation Wrides is defined as the set of x in X, and y in Y, such
that x is in the set containing the members Alice and Kate, and the
pair (x,y) is in the relation Rides.")

Functions

Functions are restricted relations. For example:

Stock == partial_function(ITEM,N)

We paraphrase the definition as:

"The partial function Stock maps an item I into a non-negative number N"

If partial functions are defined as well,

partial_function'(X,Y) == {R:X <> Y | forall x:X, y,z:Y .
(x,y) in R and (x,2z) in R => y = z}

we could give a ’deeper’ paraphrase, possibly as a response to a request for further
clarification: '

"The partial function Stock is defined as a relation R between the set
ITEM and the set N, such that for every item I, every non-negative number
NO, and every non-negative number N1, if (I,NO) is in R, and (I,N1) is
in R, then NO equals N1.")
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Equations
Consider compound expressions such as:
A - B2
(AUB)UC

which we represent as:

minus(4,squared(B)) .
union(union(4,B),C)

Using the method so far, we would get

A minus B squared _
The union of the union of A and B and C.

" which are ambiguous. Usmg parentheses solves the problem, but the paraphrases
remain unclear:

A minus (B squared)... :
The union of (the union of A and B) and C..

" This method becomes worse for more complicated expressions. We suggest the
introduction of local identifiers (we mention the lcype of the 1dent1ﬁer the first time
it is mentioned):

The union of the set D and the set C, where:
D is the union of the set A and the set B...

or .

- The union of the set D and the set C (where D is the union of the set
A and the set B), ' ' :

or

Let the set D be the union of the set A and the set B The unlon of D and
the set C .. :

This method can be applied generally, a.nd is especially useful in paraphrasmg equa-
tions (omitting type information this time):

AU (BUO |
(AnB)U(AnC)

(AU'B)UC
An(BUC)

The union of D and C equals the union of A ‘and E (where D 1s the union of A
and B, and E is the union of B and c).

or T
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Let D be the union of B and C. Let E be the intersection of A and B.
Let F be the intersection of A and C. The intersection of A and D
equals the union of E and F.

This approach can also be used in functional equations:
override(F,G) = ((dom G) domain_subtract F) U G

corresponds to:

The override of the function F and the function G equals U, where:
U is the union of S and G,
S is the domain subtraction of D and F, and
D is the domain of G.

Another example is:

(S domain_restr R) U (S domain_subst R) = R

which results in:

The union of the set D1 and the set D2 equals the relation R, where:
D1 is the domain restriction of the set S and R, and
D2 is the domain subtraction of S and R.

5.2 Summary

We have presented a simple approach to generate paraphrases of formal expressions
using “canned” expressions, specially first-order logic expressions involving quanti-
fiers.

Surprisingly, there seems to have been very little work on this question. [11]
looks at the translation of proofs into English; [31] suggest how one might generate
paraphrases of relational database queries. More generally, the question of how to
generate natural-sounding paraphrases of quantitative data has been approached by
a number of researchers. [45], [46], [40], and [37] have studied the use of rhetorical
relations to generate natural-sounding paraphrases in manuals. [28], [39], [25], [26],
[8], [38], and [33] have also worked on the paraphrasing of quantitative data. The last
work is exceptional in that it considers the consequences of generating ambiguous

expressions.
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Chapter 6
Con‘clusions

We set out to investigate the possible use of natural-language techniques in the
“area of requlrements spec1ﬁcat10ns We recapltulate now on the main lessons of our
participation in the project.

The first important conclusion was to point out that the well-known ambiguity

and vagueness of natural-language has important consequences for the process of

- deriving a formal specification from a source one written in a natural language.
Unless. there is some control over the source specification, one must not accept
‘unquestioningly the valldlty of the formal specification (in the sense of correspondmg
to the intentions of the source specification writer). L ~

We then examined the form of the source documents and rewewed a number of
proposals to impose some discipline in the writing of specification statements. We
- found that, in the main, sentence length and faulty punctuation conspire to produce
poor specifications, as well as making the application of current natural-language
‘processing techniques problematic.

After reviewing some ideas aimed at restricting specifications along various lexi-
cal and qvnfnhﬁr‘ dimensions, we concluded that these annrna(‘hPs have some short-
comings. Flrst because restnctlons over the form of some specification statement do
not by themselves produce clearer or less ambiguous statements. Second, ‘because
‘these ideas are based on plausible criteria to improve the readability of texts, but
~ have not been experimentally tested in realistic settmgs, a.nd must therefore wait
until this has been done to be properly assessed. : .

One important finding of the sample specifications was that writers naturally
organise their text in terms of a small number of presentational units. This obser-
vation was the starting point for the design of a window-based interface to a full
natural-language system. This system is our main contribution to the project, and
is fully described in chapter 3. The system is domain-independent; in comparison

to syntax-based approaches, it controls the amount of ambiguity; and due to its

design, it encourages short-sentence writing with minimal or no punctuation.

~ We also explored in some detail the issue of how to use a formal specification
to drive a natural-language query system. The results are encouraging, and suggest
that further work along these lines could help both to reduce the need for different
kinds of documentation, and complement other techniques (e.g. animation) designed
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to help in the understanding of the properties of formal specifications. On the other
hand, such applications lack the generality of other domain-independent techniques,
and will probably be of use only where the investment is justified.

We concluded by addressing the issue of how to generate simple paraphrases of
quantified first-order logic expressions and set-theoretical expressions. As before,
our main interest is to avoid ambiguity, even at the cost of artificiality in the para-
phrasing. This chapter complements the use of paraphrases in previous chapters.

At the end of the project, our conclusion is that there remains a wide scope for the
application of NLP to specification tasks. Unlike many other areas where natural-
language is an optional extra, natural language already has a well-established role
to play in the process of capturing specifications in English, and linking them to
formal specifications in a formal language. This is so for two reasons.- One, because a
natural language is the only one understood by every participant in the project, both
on the side of clients and developers, and will continue to be so for the foreseeable
future. The other, because formal specifications can help in the production of a
system documentation even after a system has been delivered. In safety-semsitive
domains, a strengthening in the link from formal specifications to natural-language
can only be helpful.

More generally, we found through our interaction with the industrial partners in
the project that they consider formal specification methods essentially unintelligible.
Before formal methods are adopted more widely in industry, their use should be
made more accessible ([9], [21]). This is specially true of safety-sensitive applications,
where its use by uncertain clients might constitute an added risk.

We believe that the present study shows some promising applications where
natural-language processing techniques can contribute to the writing of better spec-
ifications, and help in the adoption of formal methods in extra-academic environ-

ments.
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