Technical Report RS

Number 375

Computer Laboratory

Restructuring virtual memory
to support distributed
computing environments

Feng Huang

July 1995

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1995 Feng Huang

This technical report is based on a dissertation submitted July
1995 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Clare Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-375

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-375

Acknowledgements

I am most grateful to Jean Bacon, my supervisor, for her patience, constant
encouragement, useful discussions and valuable support during the course of
this research. Thank you, Jean.

I would like to thank members of the Computer Laboratory, specially Glen-
ford Mapp, Sai-Lai Lo, Zhixue Wu, and Innes Ferguson for their valuable
discussions and encouragement. Thanks to the past and present members
of the System Research Group who develop and maintain the Wanda system
which was used for the experimental work in this research. Also, thanks
to Ken Moody and other members of the Opera project for providing me the

* opportunities to present this work and to get useful comments and practical

assistance in the project meetings.

Many thanks to the following people th have read and suggested improve-
ments to this dissertation: Jean Bacon, Glenford Mapp, Innes Ferguson,
Mohamad Afshar and Shaw Chuang.

Special thanks to Roger Needham, the head of the Computer Laboratory,'

for his advice and help and making departmental support facilities available
during this research. I also want to thank Martyn Johnson, Graham Titmus,
Piete Brookes and Chris Hadley for providing much needed system support,
and Lewis Tiffany and Paola Bishop for great assistance in the library.

I am very deeply indebted to my parents, school teachers and friends for their
strong support. Without their support, I would not have been able to finish
my school education, not to mention pursuing my PhD study at Cambridge. I
also thank my parents for their incredible understanding and encouragement
which kept me going for these years. Thanks also to my wife Chen Yue for her
lovely letters and her emotional support during the last stage of this research.

This work is supported by a Sir Run Run Shaw Scholarship and a Caius
Bursary from the Cambridge Overseas Trust, an Overseas Research Students
Award from the Committee of Vice-Chancellors and Principals of the Universi-
ties of the United Kingdom, and a Research Studentship from the Cambridge
Philosophical Society. All these financial supports are highly appreciated. I
also thank the Computer Laboratory and Clare Hall for the financial support
which enabled me to attend the Advanced Course on Distributed Systems in
Lisbon and for two-month living expenses which enabled me to complete this
research.

iv

4 Design of the Coherence Mechanism

4.1
4.2

4.3

44

4.5
4.6

Introduction e
Design Considerationsooovo...
421 Granularity oo
4.2.2 Remote Interprocess Communication
4.2.3 Writing Modifications to Backing Store
Public Interface and Related Issues
43.1 PublicInterface
432 Page-BasedLock
4.3.3 Deadlock Prevention
Coherence Protocols
4.4.1 Write-Invalidate Protocols
4.42 Write-Update Protocol e
4.4.3 Integrated CoherencyControl.
Coherence Manager and Coherence Server
Ilustration of Coherency Control
4.6.1 Mapping An Object and First Access
46.2 ObjectCoherency,
4.6.3 UnmappingAnObject

5 Implementation

5.1
5.2
5.3
5.4

5.5
5.6
5.7

System Environment
Object Management00oo..
Persistent Object Manager.
Coherence Managerot iieenenn.
54.1 ServerlIdentifier,
5.4.2 Object Management
5.4.3 Communication Management e e e e e
544 OtherModules -
Coherence Server i i i it i ittt
Storage Server Emulator.
Summary................. e e e e e e e e e e

6 Performance

6.1
6.2

6.3

TRtrodUCtiOn - - « « v v v e e e e .
Performance of the RPCSystem
6.2.1 Simple RPCvs MultiRPC

6.2.2 MultiRPC Speed-Up . . . o o v vt oieeeee e |

6.4 Performance of the Prototype COMMOS
641 NoCoherency vnnnnnnnn

6.4.2 Centralised-Control Protocol '

6.4.3 Distributed-Control Protocol e e

7 Supporting Distributed Persistent Programming
71 Introduction it
7.2 Defining C++ ClassOperators.
7.3 OverloadingC++Operator.

7.4 Supporting Fine Grained Objects :

75 OtherIssues ¢ i i i i i i it i e e et e e et e o e

7.6 Summary .

8 Related Work

81 ApolloDomaint

82 Mach ...
8.3 Chorus ..

84 TheVSystem0ttt

8.5 Clouds ..
8.6 Choices . .
8.7 Spring. . .
8.8 Comandos

882 COOL.............. e e
883 Guide2................ e

8.9 Casper ..
8.10Opal
8.11 Pegasus . .
8.12 Comparison

9 Conclusions
9.1 Conclusions

9.2 Further Work i i iinnn.. .

9.2.1 More

Flexible Coherence Schemes

9.2.2 Support for Heterogeneous Architectures
9.2.3 Exploitation of COMMOS Functionality

9.3 Final Word

Bibliography

65
65
67
70
72
74
75
76

77
77
78
80
81
81

82

83
84
85

85
86
86
87
88
88

90
90
92
92

93

93
94

95

A Public Interface 105

VMM and POM Interaction | 108

C Coherence Protocols 111
C.1 Write-Invalidate Protocols 111
C.1.1 Centralised-Control Protocol 111

C.1.2 Distributed-Control Protocol 113

C.2 Write-Update Protocol 116

D Coherence Manager 120
E Coherence Server) 123
F Storage Server Emulator 126
G Performance Measurements 128
G.1 RPC Performance e 128
G.2 Page Fault, Invalidation and RoundtripIPC 132
G.8 Performance of the COMMOS Prototype 133

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3

B.1

Monolithic Kernel vs. Microkernel 6
File Access in Monolithic Kernels and Microkernels 9
Buffer Managementin DBMS 10
Double Paging Problem 11
Shared Virtual Memory 13
Various Approaches to Caching in Client Memory 15
An Example of Accessing a Persistent Object 18
The COMMOS Layers 0 iie.on.. 23
COMMOS Architecture 28
Self-Deadlock When Fine-Grained Locks Are Requested 37
Inter-Thread Deadlock When Fine-Grained Locks Are Requested 38
Opening An Object and the First Access (All Protocols) 43
IMlustration of the Centralised-Control Protocol 44
Tlustration of the Distributed-Control Protocol 45
Tlustration of the Write-Update Protocol 46
Prototype Configuration 56
Speed-up for One-to-Many Communications on Wanda 58 .
Speed-up for One-to-Many Communications on Ultrix 59
VMM and POM Interaction Protocol 110

List of Tables

6.1 Simple RPC vs MultiRPC for One Recipient
6.2 Performance of MultiRPConWanda
6.3 Performance of MultiRPC on Ultrix e e e e
6.4 Performance of A Local RoundtripIPC. e e e e
6.5 Time to Serve A Page Fault and Invalidate APage
6.6 Fetching a Page from the StorageServer
6.7 Fetching a Page for Read in the Centralised-Control Protocol .
- 6.8 Fetching a Page for Write in the Centralised-Control Protocol . .
6.9 Fetching a Page for Read in the Distributed-Control Protocol . .
6.10 Fetching a Page for Write in the Distributed-Control Protocol . .

A.1 Characteristics for Mapping Objects

G.1 Hardware Configuration for Performance Measurements
G.2 Simple RPC vs MultiRPC for One Local Recipient
G.3 Simple RPC vs MultiRPC for One Remote Recipient
G.4 MultiRPC to Two Remote Recipients
G.5 MultiRPC to Three Remote Recipients
G.6 Simple RPC between Wanda and Ultrix on a DECStation
G.7 MultiRPC from Ultrix on DECStationtoWanda
G.8 Page Fault, Invalidation, Roundtrip IPC and System Call
G.9 Fetching a Page fromtheStorSvr.
G.10 Fetching a Page for Read in the Centralised-Control Protocol . .
G.11 Fetching a Page for Write in the Centralised-Control Protocol . .
G.12 Fetching a Page for Read in the Distributed-Control Protocol . .
G.13 Fetching a Page for Write in the Distributed-Control Protocol .

Glossary

This list defines abbreviations used in the text. Each entry ends with the
number of the page on which the term is introduced.

ACL
API
ATM

COMMOS
CoherSvr
CoherMgr

CSCwW
DSM
FFC
LAN
LWP
MMU
MSSA
POM
ProcSvr
‘RAM
RPC
StorSvr
SVM
VMM

Access Control List (24)

Application Programming Interface (12)
Asynchronous Transfer Mode (4)

Coherent Memory-Mapped Object System (1)
C_oherenbe Server (24)

Coherence Manager (27)
Computer-Supported Cooperative Work (93)
Distributed Shared Memory (2)

Flat File Custode (54)

Local Area Network (14)

Light-Weight Process (50)

Memory Management Unit (24)
Multi-Service Storage Architecture (24)
Persistent Object Manager (24)

Process Server (29)

Random Access Memory (4)

Remote Procedure Call (12)

Storage Server (49)

Shared Virtual Memory (12)

Virtual Memory Management (23)

Chapter 1

Introduction

This dissertation considers traditional approaches to virtual memory and stor-
age management and observes their limitations, particularly in the emerging
distributed computing environments. A coherent memory-mapped object sys-
tem (COMMOS) architecture is then proposed to overcome these limitations.

1.1 Motivation

Distributed systems, which consists of workstations connected by different
types of networks are emerging as the mainstream architecture of computing.
The decrease in cost of physical memory and advances in hardware, such as the
widening of the address space and the increase of network speed, have led to
new thinking in software design. At the same time, microkernel architectures
have emerged to ease the engineering of operating systems and to facilitate
the development of higher levels of software.

The traditional approach to virtual memory and storage management is based
on the two-level store architecture. It provides an interface defined by pro-
gramming languages to access conventional memory segments and another
interface defined by the file systems to access persistent data residing in sec-
ondary storage. The fact that there are two different views of volatile data and
persistent data causes inconvenience to programmers and inefficiency for con-
structing software systems. The two-level store architecture also compromises
operating system efficiency because of mandatory data copying and unneces-
sary user/kernel boundary crossings (or context switches in the microkernel
architecture). Also limitations exist when database management systems are

1

|

2 CHAPTER 1. INTRODUCTION

built on top of this kind of memory and storage architecture.

In a wide address space architecture, distributed shared memory (DSM), an
abstraction used for sharing data between processes in computers that do not
share physical memory, is becoming increasingly attractive because it is eas-
ier to program than a message-passing abstraction. Distributed file systems
rely on caching at clients to improve their performance. The cache coherency
problem is common to these two paradigms. Current DSM systems and dis-
tributed file systems typically provide only one coherence protocol. There
exists a potential mismatch between the supplied protocol and some applica-
tions and it is desirable that a more flexible approach should be employed.

Memory mapping provides a uniform view of both volatile and persistent data.
It also provides better performance for accessing persistent data because infor-
mation copying is no longer mandatory and the number of user/kernel bound-
ary crossings (or context switches in microkernel architectures) is reduced.
This is not a new technique but it was not very successful in the early days.

- The main reason is that there was no suitable hardware technology and soft-

ware environment. It is now time to reexamine this technique and to explore
whether it can be used, with careful design, to overcome most of the problems
outlined above. '

1.2 Research Goal

The major goal of this research is to explore whether it is feasible to provide
an integrated virtual memory framework which is general enough to support
a range of higher level distributed system abstractions and distributed appli-
cations and which is flexible enough to meet different requirements for these
abstractions and applications at a reasonable cost.

" The approach taken combines the microkernel, memory-mapping and typed

memory object principles to provide a minimum of support for distributed
computing environments with the aim of making virtual memory and storage
management integrated, flexible, and easy to use. It is proposed that vir-
tual memory management cooperate with other services in an open system
in order to satisfy all application requirements without sacrificing perfor-
mance. Virtual memory and storage management are integrated by using the
memory-mapping technique. ' ’

It is important to support both memory coherency and concurrency control in

13. DISSERTATION OUTLINE 3

a distributed system. However, it is recognised that no single universal coher-
ence protocol can meet the requirements of all applications. In this work,
the coherence server is separated from the external pager so that a variety
of coherence protocols can be provided in a generic interface. Applications
can advise the system which protocol would be used while a default protocol
is supported. The low-level cache coherency control is integrated with the
high-level concurrency control so that the system-wide object coherency and
synchronisation are realised without severely impacting the system perfor-
mance. :

This dissertation shows how this goal can be achieved by a prototype imple-
mentation of COMMOS and demonstrates that the approach is feasible.

1.3 »Dissertation Outline

Chapter 2 reviews the technological developments of hardware and software
and discusses the limitations of existing approaches to memory and storage
management when they are applied to distributed computing environments.
It also gives a brief introduction to memory-mapping techniques. This chapter
concludes that a new approach to integrate main memory with secondary
storage and local memory with remote memory is desirable.

Chapter 3 discusses requirements and outlines an architectural framework
for the coherent memory-mapped object system (COMMOS), including a brief
description of those aspects not directly related to coherency control. A piece
of previous work and its relation with COMMOS are also given.

Chapter 4 focusses on the design of the COMMOS coherence mechanism and
Chapter 5 gives the details of the prototype implementation. Chapter 6 evalu-
ates the performance of the prototype implementation and provides the exper-
imental evidence for some of the discussions in Chapter 2 and Chapter 4.

Chapter 7 illustrates the use of COMMOS by discussing how to build a C++
class library to support distributed persistent programming.

Chapter 8 reviews the systems and projects which are closely related to this

work and compares their approaches to important issues with those of COM-
MOS.

Chapter 9 concludes the dissertation by summarising the work and suggesting
further research.

Chapter 2

Background

2.1 Introduction

Computer technology has been developing very rapidly. The performance
of modern microprocessors is increasing at about 35% per annum [Bacon93]
while the price is constantly decreasing. Distributed systems consisting of
workstations connected by different types of networks are becoming a great
challenge to traditional mainframe architectures.

Several recent developments will have significant impact on future com-
puting environments. First, the cost of random access memory (RAM) is
declining. The memory size of personal workstations quadruples every
three years and hundreds of megabytes of physical memory will be com-
monplace [Bacon93, Needham91]. Second, wide address space machines,
such as the 64-bit DEC Alpha [Sites92], HP PA-RISC [Lee89] and MIPS
R4000 [Kane92] are becoming ubiquitous. These wide-address space architec-
tures are interesting, not only because they allow applications to use almost
arbitrarily large files and data structures, but also because they may fun-
damentally change the way operating systems are structured. Third, the
speed of computer networks is increasing dramatically. Transmission rates
of gigabits per second will soon be widely available. Even the components of
a workstation might be connected by high speed ATM networks [Hayter93].
New thinking is necessary on how to build software, especially operating sys-
tems, to fully make use of all these new developments and to provide users
with more functionality and better performance.

4

21. INTRODUCTION, 5

2.1.1 Microkernels

An important trend in operating system design to meet these technological
developments is to restructure the operating system as a modular set of sys-
tem servers sitting on top of a lightweight microkernel [Needham91, Gien91],
rather than using the traditional monolithic structure. Conventional mono-
lithic operating systems have become large and unwieldy. They are difficult
to comprehend, develop and maintain. Meanwhile, distributed systems place
different functions on different machines so not all operating system func-
tions are needed in every copy of the operating system. This has resulted
in a shift towards microkernels. The new approach promises to help meet
systems and platform builders’ needs for a sophisticated operating system
structure that can cope with growing complexity, new architectures and chang-
ing market conditions. It maintains that the kernel should provide only the
most basic functionality, with the bulk of the operating system services avail-
able from user-level servers. The microkernel provides system servers with
generic services independent of a particular operating system, which typically
include [Bacon93, Tanenbaum92, Coulouris94, Gien91]:

¢ low-level process management and scheduling;
e minimum memory management;
e simple inter-process communication facilities;

e I/O device management.

This combination of elementary services forms a base which can support all
other system-specific functions. These can then be configured into appropriate
system servers, managing the other physical and logical resources of a com-
puter system, such as files, devices, much of memory management and high-
level communications handling. The system servers usually run as user-level
processes. Figure 2.1 shows the difference between conventional monolithic
kernels and modern microkernels. In a monolithic kernel architecture, all the
system services such as file service and network communication service run
in the kernel and all kernels have the same configuration. By contrast, in a
microkernel architecture, the high-level system services run at the user-level
and different nodes may be configured in different ways.

The major advantages of a microkernel system are its openness and its ability
to enforce modularity behind memory protection boundaries. There is a well-
defined interface to each service and every service is equally accessible to every

6 | CHAPTER 2. BACKGROUND

Applications Applications

Monolithic Kemel

Memory :
Management Management|
Management
Network
Dver

Interface with Hardware Interface with Hardware
\

(a) Monolithic Kernel

Network

) =)) [OOOD “|O00U

Network Driver Microkemnel Microkemel O

Microkemel

Interface with Hardware y L Interface with Hardware Interface with Hardware

(b) Microkernel

Network

Figure 2.1: Monolithic Kernel vs. Microkernel

client. In addition, it is easy to implement, install and debug new services,
since adding or changing a service need not stop the system and booting a new
kernel, as is the case with a monolithic kernel. The price/performance and reli-
ability can also be enhanced because it is easier to incorporate new hardware
connection technologies and new processors than in monolithic kernel archi-
tectures. A potential disadvantage is that the performance of accessing ser-
vices at user-level might not be as good as accessing services in the kernel in a
monolithic kernel system because of message handling, kernel boundary cross-
ing and context switching overheads [Zahorjan91, Bricker91, Coulouris94].

Since being introduced by [Lampson79], microkernel architectures have been
the subject of a great deal of operating system research, illustrated by projects
such as Amoeba [Mullender90] (Vrije University and Centre for Mathe-
matics and Computer Science, the Netherlands), Chorus [Rozier88] (Cho-
 rus Systems, France), Mach [Accetta86] (Carnegie Mellon University, USA),
Spring [Hamilton93] (Sun Microsystems Laboratories Inc, USA) and the V
System [Cheriton88a] (Stanford University, USA). It is likely that microker-

2.2. EXISTING VIRTUAL MEMORY AND STORAGE MANAGEMENT 7

nel systems will gradually come to dominate the distributed systems scene,
and monolithic kernels will eventually vanish or evolve into microkernels.

Memory and storage management play an important role in operating systems
and have a significant effect on the system performance and usage. There
are still a lot of issues in this area to be explored in order to provide users
more functionality and better performance in future distributed systems. In
the following sections, existing virtual memory and storage management are
examined and the advantages of mapping objects into virtual memory address
spaces are discussed.

2.2 Existing Virtual Memory and Storage Man-
agement

This section firstly examines the existing memory and storage management
approaches and then considers their distributed paradigms, namely dis-
tributed shared memory (DSM) and distributed file service.

2.2.1 Two-Level Store Interfacé

Currently, users of most operating systems use one interface defined by the
programming language to access conventional memory segments and another
interface defined by the file service to access objects residing in secondary
storage.

Virtual Memory

Since its introduction in the Atlas computer system [Fotheringham61] in 1961,
virtual memory has been employed in the design of memory management of
most operating systems. User programs are allowed to use a large contiguous
set of virtual addresses, called a virtual address space, which may be larger
than the total amount of physical memory available on the computer. Por-
tions of this virtual address space are loaded into physical memory as they
are needed and the rest are kept on the backing store. The physical memory
and the virtual memory are usually divided into segments and each segment
may be further divided into fixed-size pages, which are the smallest units for
transferring to and from the backing store. The physical memory is in fact

8 : CHAPTER 2. BACKGROUND

the cache of the virtual memory. Because the price of RAM is decreasing
significantly, some suggest that by purchasing enough physical memory, vir-
tual memory will not be needed in the future. However, this solution will not
work for timesharing systems or for applications, such as databases, whose
memory usages scale with CPU speed and scale faster than the decreasing
rate of RAM price [Krueger93]. Meanwhile, because a virtual memory imple-
mentation may need to use a backing store on a separate computer from the
one that contains the main memory and it is possible to share data which is
simultaneously mapped into the address spaces of processes residing at dif-

" ferent computers, virtual memory is of considerable interest as an aspect of

the design of distributed operating systems.

In most of the commonly used systems, virtual memory segments are used
by programming languages to store volatile information and the format of
volatile information is different from that of persistent information stored in
the file service. '

File Service

Traditionally, information which needs to persist is stored on disks and other
external media in units called files. The part of the operating system dealing
with files is known as the file system. To access long-term objects stored in
such a file system, data is first fetched to the system I/O buffers which typ-
ically reside in kernel space and is then copied to the users’ address spaces

~ as read operations are executed. On writing, data is copied from the users’

address spaces to the system I/O buffers before it can be written to the sec-
ondary storage. If lots of small data items are to be accessed one by one,
many unnecessary user/kernel crossings are involved. When accessing large
amounts of data, on the other hand, significant extra time has to be spent on
copying data between I/O buffers and the users’ address spaces. Data copying

| “and boundary interactions between kernel and user space make the system

inefficient.

In the case that the file service runs as a user-level process in a microkernel
operating system, if this traditional access model is still adopted, the overall
performance becomes unacceptable. The major problem appears to be the
need for costly context switching [Welch91]. Figure 2.2 shows file access using
the traditional model in both monolithic kernel and microkernel operating
systems. In order to perform comparably to monolithic systems, a microkernel
system must either make a context switch much faster, or somehow avoid it

2.2. EXISTING VIRTUAL MEMORY AND STORAGE MANAGEMENT 9

1

Reading/Wi ””("9 Fites User File System Agent Applications
& Bufter ' Reading/Wiriting Files
User 4
File System Space
Contaxt Switch
Context Switch
\
Disk Drivers) Monolithic (' Disk Drivers)
- Kernel L Microkernel
Disk Disk
(a) Monolithic Kernel (b) Microkernel

Figure 2.2: File Access in Monolithic Kernels and Microkernels

wherever possible. Data movement must also be carefully designed to avoid
extra copying of data. [Dean92] '

Database Systems

Conventional database systems usually allocate buffer pdols within their
own virtual address spaces and provide their own buffer management facili-
ties [Bacon93, Korth91, Ozsu91, Traiger82, Stonebraker81].

The overhead for data access in such a system is high. Figure 2.3 illustrates
the data movement path in a DBMS system implemented on top of a two-level
store system. Data pages are copied into a file buffer and then into a DBMS
buffer before data fields are copied into an application program’s variables.
On writing, the path is traversed in reverse order.

Accessing the DBMS buffers may not only cause buffer faults to bring in
data pages, but may also cause memory faults since the buffer page may not
be mapped to a page frame and there may not be any free frames. This
phenomenon is commonly called the double paging [Ozsu91, Chew92]. For
example, if a DBMS is accessing page X which is not in its buffer pool, the
buffer manager accesses the secondary storage where the database is located
and then maps page X onto a virtual buffer page. This may involve replacing
some page Y. However, at the virtual memory level, the frame corresponding

10 cmmxz.' BACKGROUND

7

User Virtual Address Space

{5) Copy modified fields
to the DBMS butfer

(3) Copy Individual fields
to application

(6) Write the page to (2) Read the page to
the file system the DBMS buffer

Y

(1) Read the page

File System (7) Write the page back

to the disk

Figure 2.3: Buffer Management in DBMS

to Y may happen to be paged out. The virtual memory manager may have
to service a real memory page fault to bring in the frame Y and then write it
back to the permanent secondary storage (see figure 2.4).

There are also some other disadvantages. First, unmodified pages need to be
written to the paging store at least once instead of simply being discarded.
Data may be redundantly stored both in the database and the paging store.
Second, double paging may lead to double paging anomaly [Goldberg74],
where a significant increase in the number of page faults occurs with an
increase in buffer pool size without a corresponding increase in physical mem-
ory. Besides, access control and address translation are accomplished in soft-
ware. Available virtual memory hardware is not exploited.

Persistent Programming

Traditional programming languages provide facilities for the manipulation of
data whose lifetime does not extend beyond the activation of the program. If
data is required to survive a program activation some file I/O or database man-
agement system interface is used. Two views of data follow from this. Data
can be classed as either short term and would be manipulated by the program-

2.2. EXISTING VIRTUAL MEMORY AND STORAGE MANAGEMENT 11

Virtual Memory)
Virtual memory
~~~~~ mapping
B Tl Main Memory
2 ~. Te. o 1
- hEN < + ¥
DBMS : .. JPtae
Buffer \ Y st
- e - ‘
N s M
""""" Replacing page Y
-~ causes agpagge fault

Accessing page X
causes a buffer fault

Paging Store

Database

Figure 2.4: Double Paging Problem

ming language facilities or long term in which it would be manipulated by the -
file system or the database management system. The mapping between the
two types of data is usually done in part by the file system or the DBMS and in
part by explicit user translation code. The explicit user translation code has
to be written and included in each program. There is usually a considerable
amount of code, typically 30% of the total in many programs concerned with
transferring data to and from files. This includes the code concerned with
the explicit movement of data between main and backing store and the code
required to change the representation of the data for long term preservation
and restoration. An example of the former is input and output code and of the
latter is code to flatten and reconstruct a graph before and after output and
input respectively. This is unsatisfactory because of the time taken in writing
this mapping code and also because the quality of the application programs
may be impaired by the mapping. Frequently the programmer is distracted
from his or her main task by the difficulties of understanding and managing
the mapping [Atkinson83, Morrison90].



12 | CHAPTER 2. BACKGROUND

Persistent programming [Atkinson83] is a relatively new concept which makes
data intensive application programming much easier. The idea is that data in
a system should be able to persist for as long as it is required. It eliminates
the differences between the DBMS and programming language models of
data. Persistent programming systems support long lived data objects of
arbitrary complexity. Such data objects may not only outlive instantiations of
the program that created them, but also outlive versions of the program, or
even the useful life of the program in all its versions.

To date, most persistent programming systems have been constructed above
conventional operating systems. Implementors of persistent programming
languages have to take care of the data movements and translations by them-
selves. If the two interfaces to volatile and persistent data can be harmonised
in the operating system the language implementors can access objects in a
unified manner without worrying about the need to move objects to and from
secondary storage.

2.2.2 Distributed Shared Memory

In a typical distributed environment, since there is no shared physical memory,
language-level user processes on different network nodes usually communi-
cate with each other by using message passing or its higher level abstraction
— remote procedure call (RPC) [Birrell84]. With a message-based applica-
tion programming interface (API), programmers have to be concerned with
transferring control between processes even if the interaction between these
processes is limited to sharing data. A very simple situation is programmed
in a complicated way. Second, the regular control flow of the system is mixed
with the exchanges of control that implement the sharing of data, and the
result is a system that is hard to debug. Finally, it is difficult and inefficient
to pass complex data structures via message passing [Bisiani88, Herlihy82].

" A distributed shared memory abstraction [Coulouris94, Hemmendinger92,

Nitzberg91] has been proposed to cope with this problem. In this model com-
munication recedes into the background. Programmers are spared from the
concerns of message passing when writing applications that might otherwise
have to use it. Applications see a single shared virtual address space as if
shared memory were provided by the hardware or shared data objects. The
former model is called shared virtual memory (SVM) [Li86].



2.2, EXISTING VIRTUAL MEMORY AND STORAGE MANAGEMENT 13

Node 1 - Node 2 Node n
( Memory 1] (Memory 2] ' Memory n l
[
L ]
\ \
Mapper Mapper Mapper

Figure 2.5: Shared Virtual Memory :

Shared Virtual Memory SVM extends the idea of virtual memory to a
distributed system, providing a single virtual address space which is shared
among all nodes in a multicomputer system, as illustrated in figure 2.5. Any
node in the system can access any memory location in the address space.
Application programs can use the SVM in the same way as they use a tra-
ditional virtual memory, except that processes can run on different machines
in parallel [Li86]. The memory mappers in a SVM system implement the
mapping between local memories and the shared virtual address space. They
maintain the coherency of the address space. In a system which supports
strict memory coherency, the value returned by a read instruction is always
the same as the value written by the most recent write instruction allowed to
complete to the same address. The shared virtual address space is typically
partitioned into pages. Each memory mapper views its local memory as a
big cache of the shared virtual address space for its associated node. A mem-
ory reference may cause a page fault when the page containing the memory
location is not in a node’s current physical memory. To serve the page fault,
the memory mapper retrieves the page from either the swap space (or paging
store) in secondary storage or the memory of another node.

Shared Data Object Model Shared data object systems provide sharing at
the level of user data structures rather than at the system level as SVM does.
Shared data objects are supported by a language that may have common high-
level features such as hierarchical organisation of data. Two approaches to
shared data objects are Linda [Carriero89] and Orca [Bal93]. Linda provides
a flat logically shared address space within which data structures are built out
of primitive objects, so that a structure may be composed of many elements
that are distributed by the compiler and run time system. Orca is a high-level



14 | CHAPTER 2. BACKGROUND

language whose run-time support manages the distribution of objects, provid-
ing structured distributed shared memory. The former provides distributed
data structures that may be spread across physical memory on many nodes;
the latter provides distribution of data structures.

DSM permits and encourages architecture-independent programming, using
a memory model similar to that used by conventional programming lan-
guages. Moreover, object migration in a SVM is potentially easier than that
in a message-based system. Much research in this area has been carried
and has been successful to some extent. To date, DSM is still in the stage
of research rather than practical use. The major fear is that the overhead
involved in maintaining memory coherency over a local area network (LAN) is
much higher than in a shared memory multiprocessor system. Also scalability
remains an uncertainty.

Recent advances in network technology have yielded nearly an order of mag-
nitude improvement in both latency and throughput. This means that the
performance gap between loosely-coupled and tightly-coupled multiprocessors
is not as dramatic as it once was. As a result, the overhead of maintaining
memory coherency in DSM will not be a severe problem in future distributed
environments. Also, the overhead can be reduced by integrating the low-
level coherency control with the high-level concurrency control as discussed
in Chapter 4. ' .

The major factor which affects the scalability of DSM is the number of mes-
sages needed to keep DSM coherent. This factor is in turn affected by the
access patterns of the applications to the DSM and the coherence protocol
used. Most of the existing SVM systems to date, which provide a flat global
address space abstraction, are unstructured and use a single memory coher-
ence mechanism. This form of coherency control causes the coherence mis-
match between the access patterns and the coherence protocol (see section 3.4
for details) and hence this type of system can not scale well. The shared object

. model is structured and potentially more flexible. However, almost all of the

existing shared data object systems are implemented as run time libraries and
are sometimes combined tightly with a specific programming language. They
are not as readily provided for shared memory-based programming languages
as the SVM. Furthermore, users of both kinds of DSM still see two different
interfaces for volatile and non-volatile objects. Systematic and architectural
support for coherent persistent shared data objects is desirable.



22. EXISTING VIRTUAL MEMORY AND STORAGE MANAGEMENT 15

Cache Hit Cache Hit Cache Hit
) ~ .
User
Space Process Pracess
-
4 Kemel ) {
Cache Miss Cache Miss Cache Miss
Ny
Process
/
— N} N
Joy | )
vl \
File Server File Server File Server
(a) Caching within (b) Caching in (c) Cachingina
User Process the Kernel . Cache Manager

'Figure 2.6: Various Approaches to Caching in Client Memory
2.2.3 Distributed File Service

Caching of data at clients has been proven the architectural feature that
contributes most to performance in a modern network or distributed file sys-
tem [Coulouris94, Satyanarayanan93, Nelson88]. Caching in the clients’ main
memory provides best performance since it reduces the number of I/O accesses
and network accesses. There are usually three approaches to implement the
clients’ main memory caching [Tanenbaum92] as shown in figure 2.6:

e cache files directly inside each user process’ own address space.
e put the caches in the kernel.

e maintain the caches in a separate user-level cache manager process.

In the first approach, the cache is typically managed by the runtime library.
When files are accessed, the library keeps the most heavily used ones around,
so that when a file is reused, it may already be available. Although this scheme




16 CHAPTER 2. BACKGROUND

has an extremely low overhead, there may exist multiple copies of the same
file cache in different processes on the same client node. The disadvantage of
the second scheme is that a kernel call is needed in all cases. Furthermore,
it does not fit the microkernel philosophy. The third way of caching keeps the
kernel free of file system code and is easier to program. As discussed before,
however, it introduces more context switches. Besides, double paging may
occur if the cache manager process runs on an operating system with virtual
memory. :

Client caching introduces inconsistency into the system. In most such systems,
it is the file server which is responsible for maintaining coherence between
different client caches of the same file and guaranteeing concurrency con-
trol [Nelson88, Satyanarayanan93, Coulouris94]. The file server may become
a bottleneck when the system scales up.

2.2.4 Conclusion

The mandatory data copying and unnecessary user/kernel boundary crossings
introduced by a traditional file system cause inefficiency. This is exacerbated
in a microkernel architecture where most of the user/kernel boundary cross-
ings become context switches. The difference between the existing virtual
memory and storage systems’ interfaces causes inconvenience for application
programmers and impairs the quality and productivity of software construc-
tions. Although persistent programming can solve this problem it is difficult
to implement persistent programming languages in a productive and efficient
way without operating system support. Sharing data between processes on
different network nodes is difficult if only the low-level message passing inter-
face is provided. DSM is attempting to overcome this problem but this is
still not ideal. Finally, although caching of data at clients improves the per-
formance in distributed file systems, how to maintain the client cache more
effectively is still worth exploring and the file server might become a bottle-
neck in a large system. These observations lead to the conclusion that some
more comprehensive operating system support for distributed programming
is desirable.



23. MEMORY-MAPPED OBIECT MANAGEMENT : 17

2.3 Memory-Mapped Object Management

As discussed in the previous section, accessing files in a file system is cumber-
some and inconvenient, especially when compared to accessing main memory.
Starting with Multics [Organick72], some operating systems have provided
a way to map files into the address space of a running process. After being
mapped into the address space, data stored in files can be addressed directly
by a processor and hence referenced directly by any computation. In a typical
high-level language, the opened file appears as an array of bytes. The under-
lying system is responsible for fetching data from secondary storage as the
array is accessed and for writing modified data to permanent store.

The fundamental advantage of direct addressability is that information copy-
ing is no longer mandatory. This means, for example, that core images of
programs need not be prepared by loading and binding together copies of pro-
cedures before execution. Also, partial copies of data files need not be read,
via requests to an I/O system, into the user address spaces for subsequent
use and then returned, by means of another I/O request, to their original
locations. Instead the processor executing a computation can directly address
just those required data items in the original version of the file. One of the
examples is shown in figure 2.7. In the two-level store approach, when a user
‘attempts to assign values to the persistent object date_object, memory has to
be allocated for the local variable d and values are assigned to it. Then the

- system call write is invoked and the control is changed from the user space
to the kernel (or from the user process to the file system agent process in a
microkernel architecture). After that, data is copied from the local variable d
to the system I/O buffer and the control is changed back to the user space. In
the case of reading, a system call read is invoked and the control is changed
from the user space to the kernel (or from the user process to the file system
agent process) to copy the data from the system I/O buffer to the local variable
d. Control is then changed back to the user space where the data is con-
sumed. By contrast, in the memory-mapping approach, if the page is already
in the main memory, the persistent object date_object can be written or read
directly without user/kernel boundary crossing and mandatory data copying.
This shows that memory-mapping techniques can be used to improve the sys-
tem performance since mandatory data copying is avoided and the number of
user/kernel crossings or context switches is reduced.

The file store and the backing store for memory management are unified.
Once the mapping is set up by the operating system, pages may be read
directly from the file and updated pages may be written back to the file. The




18

CHAPTER 2. BACKGROUND

struct date {
char weekday[10];
int day;
char month[10];
int vyear;

};:

void write_routine()
{

int f£d4;

struct date 4;

fd = open(*"date_object*, RDWR);

strcpy (d.weekday, "Monday");
d.day = 6;
strcpy(d.month, "June*);

d.year = 1994;

write(fd, &4, sizeof(d));
close(£fd);
}

void read_routine()
{

int £4;

struct date 4;

fd = open("date_object", RDONLY);
read(£fd, &d, sizeof(d));
printf("%s %4 %s %d\n*, d.weekday,

d.day, d.month, d.year):
close(fd);

(a) Two-Level Store System

struct date {
char weekday([10];
int day:
char month{10]; .
int year;

}i

void write_routine()

{
struct date *dp;

dp = mmap ("date_object®", RDWR) ;
strcpy (dp->weekday, "Monday"):;
dp->day = 6; _

strcpy (dp->month, "June®);
dp->year = 1994;

munmap ( "date_object") ;

void read_routine()
{
struct date *dp;

dp = mmap ("date_object®, RDONLY);

.printf(*%s %d %s %d\n", dp->weekday,
d->day, d->month, d->year):;
munmap ("date_object®);
}

(b) Memory-Mapping System

Figure 2.7: An Example of Accessing a Persistent Object

problems of storage redundancy and the double paging in database systems

are eliminated.

Direct addressability also hides the existence of the memory hierarchy and
makes the system, rather than the users of the system, responsible for the
movement of data between main memory and secondary storage. This kind
of access to information promises a very attractive reduction in program com-
plexity for the programmer. In a homogeneous system, data can be stored
in their main memory format and hence there is no need to convert from the
secondary storage format to main memory format and vice versa. This can
simplify the job of implementing a persistent programming language and other




2.3. MEMORY-MAPPED mmngmzm | 19

application programs. In a heterogeneous system, unfortunately, there exists
the problem of different machine representations of data objects. The first
problem goes beyond the byte order problem, since different processors are
free to assign any given meaning to any given sequence of bits. A more diffi-
cult problem arises from software data types. Modern programming languages
allow higher level types to be built on top of hardware types, for instance, in
composing record structures with diverse component types. Quite often, the
language definition does not specify how these types should be mapped to
the hardware types, and the compiler is free to define this mapping. A well
known consequence is that the different fields of a structure in the C language
may be allocated at different offsets by different compilers, sometimes even
among compilers for the same machine architecture. Solving the heterogene-
ity problem is not easy because it requires that the server has knowledge of
the application’s data types. This leads to undesirably close links between
the application’s runtime system and the compiler. Fortunately this problem
can be separated into two categories: hardware data types such as integers
and software data types like C structures. A general purpose server can solve
the former problem and can be extended to cope with the second class of
types [Forin88]. :

Since all data are accessed via the same interface, a single model of protection
may be employed. This may be based purely on type security or may be
hardware supported in order to provide multi-lingual support [Morrison90].
The user need only be concerned with one mechanism as distinct from the
multi-level protection involving processes and files on conventional systems.

Finally, in a distributed environment, file mapping is in effect caching files at
clients. The cache can be accessed directly within user processes without the
overhead of user/kernel boundary crossings or context switches. With proper
concurrency control, the system need not to maintain multiple copies of data
as in the first file caching scheme shown in figure 2.6.

Despite the advantages discussed above, persistent programming language
and database implementors have repeatedly rejected the idea of using the
mapped file facilities offered by operating systems and have chosen to man-
age buffering and disk storage themselves. The main reasons are as fol-
lows [Shekita91, Tanenbaum92]:

¢ Operating systems typically provide no control over when the data pages
of a mapped file are written to disk. The major concern here is that
the file contents may be changed as the program runs and special steps
must be taken, either by the programmer or by the system, to ensure



20 CHAPTER 2. BACKGROUND

that sufficient information is retained for restarting after a failure. The
overheads involved might be expensive. On the other hand, data may
not be written back into the disk even after the program finishes. It
might cause data loss if system failure occurs.

¢ Operating systems only know the length of a file at page granularity.

e The virtual address space provided by mapped files, usually limited to
32 bits, is too small to represent a large file or database.

e Page tables associated with mapped files can become excessively
large [Stonebraker81].

With the right operating system support, however, it is possible to con-
trol when the pages of a mapped file are written to disk. Meanwhile,
in most of the database applications, shadow paging and write ahead log

- approaches [Traiger82, Korth91] are employed in order to be able to recover
from system failure. They can still be used in memory-mapped object sys-
tems. For the second problem, the programmer can easily know how many

| bytes have been written to the file in most cases. Thirdly, the emerging 64-bit
address space is extremely large. Even if memory is allocated at the rate of
| one gigabyte per second and never deallocated, the address space will last
for 500 years before it is used up [Chase93]. In any case, it is clear that the

‘ address space size will continue to grow over time. Large address spaces and
relatively slow disks combine with programming language developments to

| make this approach increasingly attractive [Bacon93]. Also, as the cost of
‘ RAM decreases, large page tables will become less of a concern. Meanwhile,
inverted page tables [Bacon93] and guarded page tables [Liedtke94a] tech-

niques can be used to reduce the page table size. Inverted page tables which

can be found in the HP Precision Architecture may become more common

with the increase in memory sizes. In this scheme, a single main memory

page table, which is organised as a hash table, is used by the operating system

to record which page of which process occupies each page frame of physical

| memory. Since physical main memory is likely to be smaller than virtual
| memory this is potentially economical in both space and searching time com-
| pared with holding a page table per process. In the guarded page tables
i scheme, each page table entry is supplemented by a variable length bit string
called guard. A page table entry is selected by the highest part of the virtual

address upon each transformation step in the same way as with the conven-

tional multi-level page table method. If the guard in the entry is a prefix of

the remaining virtual address, the translation process either continues with

the remaining postfix or terminates with the postfix as the page offset. In a



24. SUMMARY - 21

sparsely occupied huge address space, this scheme reduces the size of memory
occupied by page tables and the number of address transformation steps.

| Though memory-mapped interfaces have been implemented on several oper-

ating systems both in the traditional monolithic systems such as Multics and
Sun OS and modern microkernels like Mach [Accetta86], Chorus [Rozier88]
and the V system [Cheriton88a], few of them give added functionality to the
user as they do not provide the facilities for users to easily implement logi-
cal abstractions [Mapp91]. This has been explored in [Mapp91] by providing
a typed interface to the virtual memory manager. His work was mainly con-
cerned with a single machine. How to extend this approach to structure virtual
memory in order to support distributed computing environments, especially
how to maintain coherency between mapped copies of the same object on differ-
ent nodes and how to guarantee concurrency control, are worth investigating.

2.4 Summary

In this chapter, new developments both in hardware and software were pre-
sented, the limitations of the existing memory and storage management
approaches were discussed and the memory mapping techniques were exam-
ined. This leads to the conclusion that a new approach to virtual memory
and storage service, which integrates main memory with secondary storage
and local memory with remote memory, to support the emerging distributed
computing environment is worth investigating and the memory mapping tech-
nique could be used with a carefully designed framework.



Chapter 3

Architecture Framework

As discussed in the previous chapter, a new approach is desirable to inte-
grate virtual memory with secondary storage and local memory with remote
memory in distributed computing environments. This chapter proposes an
architectural framework to meet such requirements.

3.1 Introduction

The terms type and object are frequently used in this dissertation. Here
type means different logical data abstractions managed in different ways,
such as executable code, data, stack, file and persistent object types. This
provides the flexibility for a number of aspects of virtual memory management
and persistent object management, such as the implementétion of paging
algorithms and object coherence protocols.

An object is defined as a logical entity which is an instance of a Zype and can
be mapped into a contiguous region of a process virtual address space. When
an object is mapped, it can be read or written by simply reading or writing an
address location within the process address space corresponding to the offset
of the byte in the object. If the object is shared between multiple processes,
every modification made by any of the processes is immediately visible to the
others on its completion.

The use of the term “object” here does not imply any sophisticated concept
used in object-oriented programming languages. It is solely an array of unin-
terpreted bytes, or more precisely, an array of pages, possibly associated with
some backing secondary storage, which can be used to contain and enclose

22



32. OBIECT MANAGEMENT LAYERS 23

( Applications J

S e itk
Datab . Persistent
§ Persistent atabase Shared
\LI:IL:-addmg Programming Distributed Management Virtual
y Languages File System System Memory
Persistent Object Management Layer
COMMOS
Layers
Virtual Memory Management Layer

Figure 3.1: The COMMOS Layers

language-level objects. Class code can be bound to it by an object-oriented
programming language runtime library as illustrated in Chapter 7. The term
system-level object is sometimes used in this dissertation to avoid confusion
with language-level object.

Processors and network connections may fail by crashing. As pointed out
by [Bacon93], failure transparency is expensive and hence is not desirable to
be supported in the low-level architecture. When a failure occurs, an exception
is raised and passed to the client affected. It is up to the clients to react in the
~ face of failures. ‘

3.2 Object Management Layers

Object management in COMMOS is divided into two layers: the basic virtual
memory management layer and the persistent object management layer (see
figure 3.1). Above these layers, there may be other value-adding clients,
such as persistent programming languages, database management systems,
distributed file systems and persistent shared virtual memory.

The virtual memory management (VMM) layer manages the local memory and
is further divided into machine-dependent and machine-independent parts.




24 CHAPTER 3. ARCHITECTURE FRAMEWORK

The machine-dependent part is concerned with managing the memory man-
agement unit (MMU) hardware and catching all page faults. The machine-
.independent part is concerned with managing address maps, satisfying the
page faults for zero-filled objects and interfacing the virtual memory manage-
ment layer with the persistent object management layer.

The persistent object management layer manages the persistent objects and
consists of three components: persistent object managers (POM), coher-
ence servers (CoherSvr) and a public interface. The POM is in charge
of the data movement between the main memory and the secondary storage.
Each object type has only one corresponding POM on each node while a POM
can manage one or more object types. The CoherSvr is concerned with the
object coherency control and cooperates with the POM to maintain the object
coherency in a distributed system. There is only one CoherSvr for each coher-
ence protocol while a CoherSvr can manages one or more coherence protocols.
The reason for the separation of the CoherSvr from the POM will be discussed
in Section 3.4. Finally an interface is provided for its clients to manipulate
objects.

3.3 Object Naming and Protection

A global naming scheme is desirable in order to make the persistent objects
visible in any node of the system. A global name is globally unique and location
independent, and can be used to refer to an object from anywhere in the
distributed system. A naming scheme with fixed-length bit pattern identifiers,
such as the one used in the multi-service storage architecture (MSSA) [Lo94]
is of preference because it is convenient to manage.

In order to protect objects from unauthorised client accesses, the persistent
object manager needs to know the access rights of clients to the objects it
manages. This information can be stored as an access matrix [Lampson71],
in which the rows represent the clients and the columns represent the objects.
The access rights that a client holds for an object can be found at the inter-
section of the corresponding row and column. This matrix, however, is too
large and sparse to store. An alternative way to represent the access matrix
is to associate each object with a list containing all the clients that may access
the object with their access rights. This list is called an access control list
(ACL). The other way of slicing up the matrix is to associate each client with
a list of objects that may be accessed with an indication of which operations



3.4. CONCURRENCY AND COHERENCY CONTROL 25

are permitted. This list is called a capability list and the individual items
on it are called capabilities. The ACL method is chosen in this design but
capabilities approach could also be used.

34 Concurrency and Coherency Control

Allowing objects to be mapped into process virtual address spaces on different
network nodes at the same time introduces the object coherency problem.
One way to ensure object coherency is to allow multiple readers to read a
specific object fragment at the same time but writers must have exclusive
access [Bacon93, Tanenbaum92]. This can be achieved by using locking.

If the system is concurrency transparent, clients need not be aware of the exis-
tence of other clients. When a process attempts to access a memory location,
the system automatically acquires a lock for the corresponding memory unit
on behalf of the process. However, if language compilers are not to be changed,
at least some sort of preprocessors are needed to detect the memory accesses
and to acquire locks on the clients’ behalf. More importantly, the semantics
of transparent locking is not well defined. By contrast, in an explicit locking
scheme, clients are required to acquire locks when synchronisation is desired.
By doing so, clients obtained better control over concurrent accesses of shared
data. The explicit locking approach is adopted in this architecture framework.

Many protocols have been developed to tackle the system wide cache coherency
problem both in distributed shared memory systems and in distributed file
systems with client caching. Nevertheless, it is extremely difficult to have a
single protocol which can perform well for different types of application. Two
kinds of commonly used protocols, namely write-invalidate and write-update,
are considered here. In the following discussion in this section, the page is
assumed as the unit of coherency control. The list of nodes which have a valid
cached copy of an object page for reading is called the copy set of the page. -
The node which has the most recent write access to an object page, and hence
has the up-to-date page contents, is called the owner of the page. In write-
invalidate protocols, when a process attempts to write to an object page it has
to instruct the copy set of the page to invalidate their caches before it can go
ahead. Any subsequent read accesses from nodes other than the owner will
cause a copy of the page to be shipped from the owner. In the write-update

protocols, each modification to an object page is written through to the copy
set.



26 ' CHAPTER 3. ARCHITECTURE FRAMEWORK

In the case that the copy set is relatively stable and the page is accessed
many times by each node, the write-update protocols will perform better. For
example, if the size of the copy set is n, for each writing operation, n RPC
calls are required in the write-update protocols while (2 x n) RPC calls are
needed in the write-invalidate protocols if the page is accessed again by all
the nodes in the copy set after the updating. On the other hand, if the copy set
changes dynamically, the write-invalidate protocols are expected to perform
better since there is no need to ship data to those nodes which are in the copy
set but which do not use the data in the near future.

The separation of the CoherSvr from the POM is proposed in this dissertation
to overcome the problem of coherence mismatch. A CoherSvr can implement
one or more coherence protocols while there is only one CoherSvr for each
coherence protocol on each node. Working with the typed object principle,
this coherence mechanism enables the clients to apply different protocols to
different types of object or even to different individual objects so that they
can choose the most suitable protocols for their applications. Dynamically
adopting different coherence protocols to meet the change of the runtime cir-
cumstance is also possible. The design and implementation of this coherence
mechanism are discussed in detail in Chapter 4 and Chapter 5.

3.5 Persistent Object Management

There is a data structure to represent each object which is currently in use.

. These data structures form an object table which resides in the kernel but .
may be mapped into the address spaces of POMs and CoherSvrs. The interac-
tion between a user thread and the POM is carried out via a simple interface
and a set of events. '

The interface for the POMs supports a number of functions, such as mapping
the free page list into the POM’s address space, registering with the system
about managing an object type, getting the relevant characteristics of an
object, and getting relevant data from the network storage server to serve
 page faults and then returning the results.

A process invokes the POM by triggering an event and then suspends itself
until the POM replies. POMs handle various events which occur as objects
are accessed (e.g. a page fault) or as operations are invoked by the client
via the public interface. These include flushing modifications to the secondary
storage, writing out changes when persistent objects are unmapped, swapping



3.6. PUBLIC INTERFACE 27

out pages when they are selected by the paging algorithm to be removed from
the main memory and reclaiming resources from a persistent object after it
has fallen out of use. The details of the VMM interface and events handled by
POMs are shown in Appendix B.

3.6 Public Interface

This system is assumed to be used mainly by class library builders or high-
level abstraction implementors. The public interface provides the facilities to
map and unmap objects in an address space, to create and destroy objects,
to flush modifications back to the secondary storage server and to grow or
shrink objects. Multiple-reader/single-writer synchronisation is also sup-
ported. Interested readers are referred to Appendix A for the details of the
public interface.

In order to support persistent programming and database applications, it is
important that upon successful return of a request to write modifications to the
backing store, the modifications have indeed been written. So the operations
of flushing and unmapping an object should be synchronous. This means that
the caller is blocked until the POM has completed the operation and indicates
whether the operation is successful. The other important issue is that the
clients should be allowed to choose whether to be blocked when acquiring a
lock which can not be granted immediately.

3.7 COMMOS Architecture

The coherent object management system consists of well-known global
coherence managers (CoherMgr) and per node based coherence servers
(CoherSvr). For each coherence protocol, there is one corresponding CoherMgr
and multiple CoherSvrs, one per node. One set of CoherMgr and CoherSvrs
may manage one or more protocols. When a persistent object is mapped onto
a network node for the first time, the CoherMgr is made the default owner of
all the pages of the object. The CoherMgr, CoherSvrs, POMs and the network
storage server work together to manage objects and their coherency in the sys-
tem. This is illustrated in figure 3.2. A number of processes on each network
node have object x mapped into their address spaces, possibly at different
virtual addresses, and are accessing it. When page faults or other events



28 CHAPTER 3. ARCHITECTURE FRAMEWORK

NodeA P™e2 procn proc 1 prc2  Node N

Persistent
Object

Persistent
Object

Manager >< Manager

" | Coherence Coherence
Server Server
J
N

Storage
Server
' Coherence

<——> Communication Manager
Path

Figure 3.2: COMMOS Architecture

occur for object x, the POM, which manages all the objects of the persistent
object type of x, is invoked. The POM communicates with the CoherMgr or the
CoherSvr on another network node and the network storage server to move
different parts of the object to and from the secondary storage and maintain
the guarantee of object coherency if required. -

3.8 Previous Work: Memory-Mappéd Object
Management on Wanda

This section presents a memory-mapped object management system in a
locally developed microkernel which forms the starting point of this work.

Wanda [Dixon91, Bacon93] is an experimental microkernel operating system
developed at the University of Cambridge. It is a vehicle for research into
kernels for high-performance services. Wanda supports preemptive multi-
threaded processes and multiprocessor thread scheduling. Memory manage-
ment is based on paged segments, and page mapping and unmapping is used
for efficient inter-process communication and for network I/0. Semaphores



3.8, PREVIOUS WORK: MEMORY-MAPPED OBIECT MANAGEMENT ONWANDA 29

are supported and are used both in the kernel and for user-level inter-thread
communication within an address space. Wanda also employs an event mech-
anism by which processes are notified about various events.

An extension to the kernel virtual memory management supporting memory-
mapped objects [Mapp91, Huang92] has been designed and implemented on
Wanda Snap2. Objects are typed and managed by external object managers,
which are in charge of the data movement between the main memory and the
secondary storage.

In this system, a Wanda process consists of various objects namely: a code
object, a data object, a bss (uninitialised data) object, a stack object, an env-
iron object, and other objects created or mapped by the process. Information
about where and how an object is mapped is contained in a process map
which is mapped read-only into the address space of the process as part of its
initialisation. Each entry in the process map, known as a map_entry, contains
the name of the object, the type of the object, the starting address and the
length of the object, the access rights of the user process, the index (called
vir_id) of the map_entry in the process map and the number of threads access-
ing the object in the same address space. The creation of user processes is
managed by a process server (ProcSvr) running in user mode.

Some ideas on which the Wanda memory-mapped object management was
based have been used in the design of the COMMOS. These include the prin-
ciple of typed object and the use of external object managers. Much of the
source code is used in the COMMOS prototype implementation. However, the
COMMOS differs from this previous work in the following key points. The
operations to flush the modifications back to the secondary storage and to
unmap an object were asynchronous. Although this provides better response
time, it is potentially dangerous in persistent programming and database
applications since data may be lost after the clients are told that they have
been written back. Also, lock operations always block the caller in the pre- -
vious design. This is not feasible because the high-level applications can not
use these operations to construct their own sophisticated mechanisms like
two-phase locking. More importantly, the previous design did not tackle the
object coherency problem so it was not suitable to be used in a distributed
computing environment. '




30 . CHAPTER 3. ARCHITECTURE FRAMEWORK.

3.9 Summary

A coherent memory-mapped object system architecture has been introduced
in this chapter. The object model, which is based on the typed object prin-
ciple is given and a two-layer structure for the COMMOS is chosen to meet
the requirements discussed in the previous chapter. A broad outline of the
architecture framework was then presented. Finally, the Wanda kernel and
its memory-mapped object management were described.

The following chapters will present the design details of the coherence mech-
anism and a prototype implementation.



Chapter 4

Design of the Coherence
Mechanism

4.1 Introduction

In order to support the memory-mapped object management system in dis-
tributed computing environments and to retain the same object sharing
semantics as that in a centralised system, mechanisms to maintain the coher-
ence between memory-mapped copies of the same object on different network
nodes are desired. As discussed in Section 3.4, no single universal object
coherence protocol can satisfy the needs of all kinds of applications. Also
the support of typed objects in the memory management system provides a
good opportunity to apply different protocols to different types of object. The
key issue here is to design a well-defined and flexible interface to a variety
of object coherence protocols by which applications can advise the system to
apply the most suitable protocol for a specific type of object. Besides, there
may be a need to apply different protocols to individual objects as well as
dynamically changing the protocol being used according to the system load
and the concurrency level being experienced.

This chapter explores the design of the COMMOS coherence mechanism to
support multiple coherence protocols. Various major design issues are consid-
ered first and the public interface is then given. Third, the coherence protocols
are presented. After that, the coherence manager and the coherence server
are described. The coherency control using the COMMOS coherence mecha-
nism is illustrated in Section 4.6. Readers who are not particularly interested
in the inside details of the coherence mechanism may skip this section.

31




32 CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

4.2 Design Considerations

4.2.1 Granularity

The granularity of memory, at which coherency is maintained, is an impor-
tant design issue. The larger the granularity, the greater the contention will
be [Coulouris94]. Memory contention occurs when two or more nodes attempt
to access the same memory unit and at least one required access is a write.
To reduce memory contention, a small granularity is desirable. In a typi-
cal network environment, due to the overhead of the software protocols, the
transmission of large packets which may contain thousands of bytes is not
much more expensive than the transmission of small ones. Therefore, large
granularity is expected to improve the network throughput. In the emerging
ATM network environments, network throughput improves while the packet
size increases to a certain point [Dharanikota94, Kara94]. Beyond that point
(8KB for IP in the environment used in [Dharanikota94]), the throughput
drops because segmentation and reassembly takes more time. Meanwhile, a
page represents the smallest memory unit on which protection can be enforced
by the memory management hardware and the existing page fault schemes
can be used. A page-based approach therefore seems natural.

Supporting Variable Length Granularity for Users

It is inappropriate for most distributed applications programmers to be
required to be concerned about the details of page-level management. A
friendlier interface supporting variable length units for synchronisation is
desirable. -

One way to provide variable length granularity is to allow fine-grained locking
but updates are always directed to the process’ own shadow copy. Modifications
are merged to the master copy on release of alock. The copy-on-write technique
can be used to speed up page shadowing. A software approach always provides
higher flexibility but is likely to be more complicated to implement and the
performance will be poor due to software overhead.

An alternative approach is to translate variable length granularity in the user
interface into the underlying page-based mechanism. This is relatively simple
and straightforward and is adopted in this design. The major shortcoming is
that memory contention is potentially high for fine-grained object sharing, and
deadlock may be another problem (see Section 4.3.3 for details). Some object



4.2. DESIGNCONSIDERATIONS 33

clustering strategies to organise fine-grained objects which are unlikely to be
accessed simultaneously into the same page may be desirable.

Some researchers have started exploring memory management techniques to
support fine grained page size [Liedtke94b] and to accommodate mixed page
sizes in virtual memory [Liedtke94b, Khalidi93b]. If these techniques become
available in the future, hardware enforcement can be used for variable length
granularity. -

4.2.2 Remote Interprocess Communication

To build a coherent memory-mapped object system in a distributed envi-
ronment, communication between processes on different network nodes is
inevitable. Since nodes in distributed systems do not share physical mem-
ory, communication via shared memory is not applicable although a virtual
shared memory abstraction can be created at a higher level. Remote interpro-
cess communication can only be performed by exchanging messages. Different
sets of primitives can be used but the basic one is message passing. Some other
mechanisms, such as RPC and ¢ransactions, can be built on top of it.

Message passing between remote processes is an extension of interprocess
communication for centralised systems. It appears more flexible than the
other paradigms since a single message can result in zero, one, or many"
responses, and the responses need not come directly from the original mes-
sage destination. Also, as in assembler programming, it is more convenient
for programmers to tune their code for better performance. However, pro-
gramming with message passing has been shown to be both time consuming
and error prone [Hamilton84].

An alternative approach is based on the fundamental linguistic concept known
as the procedure call. The general term remote procedure call means a type-
checked mechanism that permits a language-level call on one computer to
be automatically turned into a corresponding language-level call on another
computer. Most languages are fundamentally procedural, so that using proce-
dural interfaces for remote communication avoids an unnecessary conceptual
change [Hamilton84]. RPC has been proven successful in easing the produc-
tion of software and appears to be making its way slowly into commercial
distributed and networked systems.

Transactions were originally developed for database management systems, to
aid in maintaining arbitrary application-dependent consistency constraints on




34 | CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

stored data. The transaction mechanism can be built over message passing
or RPC. This approach simplifies the construction of reliable systems since it
provides uniform support for invoking and synchronising operations on shared
data objects, assurance of serialisability of transactions with one another, and
atomic behaviour and recovery in the face of network and node failures. The
" concept of a transaction is a very convenient representation of the integrity
of communication and computation in distributed systems because interac-
tion between processes may be a sequence of communications and computa-
tions [Goscinski91]. However, it is expensive and not needed in the low-level
" interprocess communication.

MultiRPC

When objects can be mapped into many user process address spaces on dif-
ferent nodes, one-to-many communication is likely to be involved in order to
maintain the coherency between different memory-mapped copies of the same
object. Using the traditional one-to-one RPC to carry out this kind of commu-
nication would introduce significant delay. This problem is exacerbated by the
fact that an RPC to a dead or unreachable computer must time out before the
connection is declared broken and the next computer tries. Each such node
- would cause a delay of many seconds, rather than the few tens of milliseconds
typical of RPC roundtrip times for simple requests. It is felt that the potential
delay in a scalable system would be unacceptable if one-to-one RPCs are used
sequentially. '

A simple broadcast is not advisable. With broadcast, all nodes in the system
have to process each broadcast request, slowing down the computation on all
computers and hence the performance is poor. Multicast communication is
useful since it involves only the nodes in the group. This will get rid of both
the problem of delay introduced by using one-to-one RPC and the problem
of performance degradation by using broadcast. However, raw multicast is
difficult to use and furthermore not all network hardware supports multicast.

A mechanism which retains one-to-one RPC semantics while overlapping the
computation and communication overheads at each of the destinations, and -
which can make use of multicast if the underlying hardware has such a sup-
port, is desired. MultiRPC [Satyanarayanan90, Satyanarayanan91], which
is an extension to RPC2 developed at Carnegie Mellon University and used
in the Andrew and Coda file systems, meets such requirements. It enables
a client to invoke multiple parallel remote servers with or without hardware



42. DESIGN CONSIDERATIONS ’ 35

multicast support while retaining the control flow and delivery semantics
of RPC (RPC2 and its MultiRPC extension will be referred to as MultiRPC
hereafter). This mechanism has been adopted as the remote interprocess com-
munication tool in COMMOS. It has been installed on the mips Ultrix in the
University of Cambridge and has been ported onto Wanda.

4.2.3 Writing Modifications to Backing Store

The policy used to write modified pages to the backing store has a critical
effect on the system’s performance and reliability. The simplest policy is to
write data through to the storage server as soon as it is placed in the main
memory. The advantage of write-through is its reliability: little information
would be lost when the machine crashes. However, this policy requires each
write access to wait until the information is written to the disk, which results
in poor write performance.

An alternative policy is to delay write-backs: pages are initially written only
to the main memory and then written through to the storage server some
time later. This policy has two advantages over write-through. First, since
writes are to the main memory, write accesses complete much more quickly.
Second, data may be deleted before it is written back, in which case it need not
be written at all. Unfortunately, delayed-write schemes introduce reliability
problems, since unwritten data will be lost whenever the machine crashes.

In persistent programming, one of the important issues is reliability. It is
unacceptable that data may be lost after users think the changes have been
made persistent by flushing or unmapping the object. Therefore, the policy of
writing modified pages back to the storage server whenever an object is flushed
or unmapped appears to be a good compromise. Besides, during the course
of coherency maintenance, modified pages may have to be transferred from
one node to the other. Since keeping track of the data modification between
nodes would increase both the possibility of data loss and the complexity of
implementation, modified pages are written back to the storage server before
they are transferred to another node for further changes.



36 | CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

4.3 Public Interface and Related Issues

This section describes the public interface to the COMMOS coherence mech-
anism and discusses the related issues. Objects are identified by globally
unique names as stated in Section 3.3. When an object is mapped at a net-
work node, it is assigned a locally unique integer as the local name, which is
referred to as the object number or ObjNum. After an object is mapped into a
user address space, the index of the process map, which is called vir_id, is
" used as the object name local to that address space.

4.3.1 Public Interface

The following calls are provided to the clients of the COMMOS to assure the
multiple-reader/single-writer constraint:

e AcquireLock(vir_id, offset, length, rw, mode) -> {-1, o}

Acquires a lock for an object fragment specified by parameters: vir_id,
offset and length. Whether the lock required is read or write is indi-
cated by the parameter rw. The parameter mode decides whether the
caller is blocked if the lock cannot be granted immediately, i.e., there is
already a write operation in progress or when a write lock is requested
there are read operations in progress. This is for supporting higher level
concurrency controls such as two-phase locking and transactions. The
call returns 0 if the lock is granted or -1 if it is denied.

e ReleaseLock(vir_id, offset, length, rw)

Releases a lock for an object fragment.

4.3.2 Page-Based Lock

As discussed in Section 4.2.1, the page is adopted as the the basic unit of object
coherency control. A page-based locking mechanism is therefore provided
for server and system use. The variable length object fragment locks are
translated into page-based locks in the implementation.

e AcquirePageLock(ObjNum, BlockNum, rw, mode) -> {-1, 0}



4.3. PUBLIC INTERFACE AND RELATED ISSUES 37

bi
Thread T Object 2

Requests a
read lock for
Fragment A

-

-
-

- -

Requests a
write lock for
Fragment B

PageN

-
-

Figure 4.1: Self-Deadlock When Fine-Grained Locks Are Requested

Acquires a lock for an object page. BlockNum is the index of the page
within the object. The parameter rw indicates a read or write lock is
requested and mode decides whether the caller is blocked if the lock cannot
be granted immediately. The call returns 0 if the lock is granted or -1if

it is denied.
e ReleasePageLock(obj_num, block num, rw)

Releases a page-based lock.

4.3.3 Deadlock Prevention

When a lock for an object fragment which consists of multiple pages is
requested, the corresponding page locks are requested in incremental order
so that no deadlock can occur. However, if locks are requested for small object
fragments which are possibly located on the same page, deadlock may occur.
There exist self-deadlock and inter-thread deadlock.

Self-Deadlock

The self-deadlock of a thread is illustrated in figure 4.1. After successfully
obtaining a read lock for a small fragment A of object Z, a thread requests




38

CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

Object Z

Thread T Thread T1
Requests a
read lock for
Fragment A Page N
Se .- “aa7] Requests a
- 4 read lock for

Granted Fragment B
Requestsa i -7
write lock for - Granted
Fragment C

- Requests a
= sz write lock for
Fragment D

-
-
- -

-
e
-

Figure 4.2: Inter-Thread Deadlock When Fine-Grained Locks Are Requested

a write lock for another fragment B which is in the same page as A. Since
the underlying locking mechanism actually locks the whole page, this thread
would never get the write lock for B before it releases the read lock for A.
This also may occur with read and write the other way round or when both
requested locks are write locks.

Self-deadlock can be prevented by keeping a list of threads which hold a lock in
the page lock mechanism and checking before a lock request is denied. When
a write lock for a page is requested, if the caller thread holds and is the only
one who holds a read lock of the page, the write lock is granted. If a read lock
for a page is requested and the calling thread holds the write lock for the page,
the read lock is granted.

Inter-Thread Deadlock

Threads which request fine-grained locks on the same page can also result
in a deadlock. Figure 4.2 shows an example. After successfully obtaining
read locks for fragments A and B, thread T and T1 request write locks for
fragments C and D. Because there are two holders of the read lock for page N,
their requests can not be satisfied unless one of them releases the read lock.
A deadlock occurs.

Suppose that a transaction mechanism based on two-phase locking is used at



4.4. COHERENCE PROTOCOLS 39

the higher level, a simple way to prevent inter-thread deadlock is to use the
unblocked mode of AcquireLock and spin-wait for certain amount of time. If
the lock is still not granted abort the transaction.

4.4 Coherence Protocols

In this section, two groups of coherence protocols, write-invalidate and write-
update, are described. They are derived from well known protocols and the
modifications made in this work do not change their correctness.

A CoherSvr is the owner of an object page if one of the processes on that
node has performed or is performing the most recent write operation to that
page and hence owns the up-to-date contents of the page. This CoherSvr is
said to hold the ownership of the page. The CoherMgr is set as the default
owner of all objects’ pages to which a protocol maintained by the CoherMgr is
applied. This means that whenever a node has no idea about who the owner
of an object page is, requests are made or forwarded to the CoherMgr.

All CoherSvrs which have an object page cached for read but are not the owner
of the page form the copy set of that page.

4.4.1 Write-Invalidate Protocols

The write-invalidate protocols, namely the centralised-control protocol and the
distributed-control protocol, are derived from those used in the IVY shared
memory system [Li86] but differ in several ways. First, coherency control in
COMMOS is integrated with high-level concurrency control (see Section 4.4.3
for more details) and the coherency control is only involved at synchronisa-
tion time. By contrast, the coherency control in IVY is not integrated with
synchronisation and more messages are needed since the coherency control
mechanism is invoked for each write instruction. Second, the COMMOS sup-
ports persistent data object sharing and the clients can choose different pro-
tocols for different applications while the IVY provides a flat shared virtual
address space without persistence and its clients lack the flexibility needed
to apply different protocols to different applications. Third, the COMMOS
employs parallel MultiRPC for one-to-many communications while IVY uses
only simple RPC.



40 CHAPTER 4. DESIGNOF THE COHERENCE MECHANISM

~ Centralised-Control Protocol

In the centralised-control protocol, the owner and copy set information is main-
tained by the CoherMgr. When a page fault occurs, the POM on the faulting
node makes a request to the CoherMgr. The owner of the page sends a copy
of the page data to the faulting nodes. As long as a read copy exists, the page
is not writable without an invalidation operation, which causes invalidation
messages to be sent from the CoherMgr to all CoherSvrs in the copy set.

Because RPC is adopted as the remote interprocess communication tool, at
most two RPCs are needed by the POM to serve a read fault: one from the
POM to the CoherMgr and the other nested in the first one from the CoherMgr
to the owner’s CoherSvr. It is possible to let the CoherSvr on the owner of an
object page send the data directly to the faulting node. However, this would
require the faulting node to send a confirmation message to the CoherMgr
after it receives the data [Li86]. This means that two additional RPCs are
needed, thus increasing the network traffic.

‘Since the CoherMgr plays the roie of helping all nodes locate and get object

pages to serve all page faults occurring in the system, it is a potential traffic
bottleneck. This will be worse as the number of the nodes in the system

" becomes large and there are many page faults.

Distributed-Control Protocol

In the distributed-control protocol, the copy set information is maintained by
the owner of the page and the owner information recorded by all the CoherSvrs
in the copy set. The owner information may not be correct but it has been
proven in [Li86] that the true owner can always be reached eventually by for-

warding requests. The owner information is therefore called probable owner. .

Instead of always making a request to the CoherMgr, when a page fault occurs,
the POM on the faulting node sends a request directly to the probable owner
of the page. The true owner sends a copy to nodes requesting the page. As
long as a read copy exists, the page is not writable without an invalidation
operation, which causes invalidation messages to be sent from the owner to
all CoherSvrs in the copy set. The CoherMgr is included in the copy set if it is
not the owner of the page and invalidation of an object page on the CoherMgr
means updating the probable owner information. ‘

" The probable owner information is updated whenever an invalidation request

is received, a page fault is served or a write/write-access fault request is



4.4. COHERENCE PROTOCOLS 41

forwarded.

With the distributed-control protocol, a faulting node may need as few as one
RPC call to serve a read fault. More importantly, it distributes the load of the
CoherMgr to all the machines involved in the sharing.

4.4.2 Write-Update Protocol

In the write-update protocol, the copy set information is maintained by the
owner of the page and the owner information is recorded by all CoherSvrs in
the copy set.

When a page fault occurs, the POM on the faulting node makes a request to
the CoherMgr. The CoherMgr forwards the request to the owner of the page.
If it is a read fault, the owner includes the faulting node into the copy set and
sends the faulting node a copy of the page data. Ifit is a write fault, the owner
transfers the ownership and sends a copy of the page data with the copy set
information to the faulting node. A node in the copy set which attempts to
write to the page has to acquire the ownership from the owner before it can
actually carry out the writing. During each write, after the owner updates
the page, it sends out a MultiRPC call to the copy set to update all the cached
copies. Any requests for a page or the ownership of the page to a node which
is no longer the owner will be forwarded to the owner.

For each update, the owner of the page has to multicast the modification.
When the CoherMgr or a CoherSvr receives an update request, it updates the
local cache and the owner information. If the copy set is relatively stable, it
will perform well. Otherwise the shipping of the up-to-date page data may be
wasteful.

443 Integrated Coherency Control

The locking mechanism in COMMOS is integrated with the coherency control
mechanism. In all the coherence protocols, when a copy of an object page is
requested to satisfy a page fault, the owner CoherSvr has to obtain a read lock
for the page before it can send a copy of the page data to the faulting node. In
the write-update protocol, in addition, when the owner multicasts an update,
the CoherSvr which receives the update has to wait for all the reading threads
to complete their current reading sessions before it can actually update the



42 ' CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

local cache. This assures the multiple-reader/single-writer constraint in dis-
tributed environments. Also in the write-update protocol, releasing a write
lock to an object page on the owner node triggers the POM to multicast the
up-to-date contents of the page to the copy set.

By integrating the high-level concurrency control with the low-level memory
coherency control, the implementation of the coherence mechanism is sim-
plified. The system performance is improved since the coherency control is
invoked only at synchronisation time. Also, system wide concurrency control
is achieved without a global locking mechanism.

4.5 Coherence Manager and Coherence Server

All three coherence protocols described in the last section are supported by a
CoherMgr and a group of CoherSvrs. They work with POMs and the storage
server to maintain the object coherency and to manage the object data.

The CoherMgr is a well-known server which acts as a coordinator for
CoherSvrs. It provides POMs with facilities to open and close an object,
to write modifications back to the storage server and to obtain page data or
write permission. It also provides CoherSvrs facilities to update the owner
information on the CoherMgr and to forward POMs’ requests for page data or
write permission to the CoherMgr. An opened object table is maintained
to keep track of the activated objects managed by the CoherMgr. Interaction
with the CoherMgr is via an RPC interface described in Appendix D.

The CoherSvrs are per node based servers, which work with the global
CoherMgr, the POMs, and other CoherSvrs in the system to satisfy page
faults and to maintain the object coherency. It provides POMs with facilities
to obtain page data or write permission. It also provides the CoherMgr and
other CoherSvrs with facilities to forward POMs’ requests, to invalidate or
update object pages. The calls to the CoherSvrs are again an RPC mterface

. It is detailed in Appendix E

As stated in the last chapter, the COMMOS architecture does not support
failure transparency. The error code FAIL will be returned and passed to the
request POM whenever the RPC system detects that the remote server is not
reachable. On receipt of this error code, the POM may raise an exception to
the client program and it is the client’s responsibility to handle the exception.



46. ILLUSTRATION OF COHERENCY CONTROL 43

-

.
Node 1 { coherence
Server

Persistent | @ I Coherence |_2__] Storage

Object .| Manager Server
Manager @ ) @

Kernel

(1) CoherMgr, OpenObject

(2) StorSvr_GetObjectSize n)

(3) CoherMgr_GetPageForWrite -—> AnRPC call
(4) StorSvr_ReadData

Figure 4.3: Opening An Object and the First Access (All Protocols)

4.6 Illustration of Coherency Control

In this section, some éxamples are given to illustrate how object coherency is
maintained in COMMOS. The names of RPC calls are self-explanatory and
detailed descriptions can be found in Appendix D and Appendix E.

4.6.1 Mapping An Object and First Access

When an application program wants to access a persistent object, MapObject
is called. Ifit is the first access to the object from that node, the local POM
sends a CoherMgr_OpenObject request to the CoherMgr which asks the storage
server for the object size and sets up an entry in the opened object table before
returning the object size for the request POM to set up the object page table.
The access permission for all pages of the object is set to be read-only. When
the program performs the first write operation, a write fault occurs and the
POM makes a CoherMgr_GetPageForWrite request to the CoherMgr which loads
the page from the storage server, records the requesting node as the owner
and grants write permission and a copy of the page to the node. See figure 4.3.

4.6.2 Object Coherency

To demonstrate how the POMs, CoherSvrs énd CoherMgr work together to
maintain object coherency, after the object has been mapped and the first
write access has completed on the first node (node 1), suppose a second node



- A

Node 2
Coherence | Coherence
Manager |<. L Server ' Objecta

Y
Persistent u2) m~-I"{ Persistent
Object Dbject
Manager W anager
Storage | .-
Server
Kernel Kernel
\ J
o
(5) CoherMgr_GetPageForRead
(6) CoherSvr_GetPageForRead
(7) CoherMgr_GetWiiteAccass
(8) CoherSvr_Ownerinform Assume Node 1 is the owner of object page P
(9) StorSvr_WriteData -=-=-> Nods 2 reads the page (5, 6).
(10) CoherMgr_GetPageForWrite ===> Node 2 Writes the page (7, 8, 9) and becomes the owner.
(11) CoherSvr_GetPageForWrite —> Node 1 Writes the page (10, 11, 12) and becomes
(12) StorSvr_WriteData the owner again.

Figure 4.4: Illustration of the Centralised-Control Protocol

(node 2) reads from and then writes to the same object page before the first
node (node 1) wants to write to it again. This procedure is examined separately
for different coherence protocols.

Write-Invalidate Protocols

Centralised-Control Protocol As illustrated in figure 4.4, when node 2
wants to read the object page which has been fetched by node 1 for write, a
read fault occurs and the local POM makes a CoherMgr_GetPageForRead request
(RPC 5) to the CoherMgr. The CoherMgr looks up the owner from the opened
object table and finds node 1. It calls CoherSvr_GetPageForRead on node 1
(RPC 6) to get a copy of the up-to-date page data, then includes node 2 into
the copy set and returns the data to node 2 to satisfy the read fault.

Now, if node 2 wants to write to the same object page, a write access fault
occurs. The local POM makes a CoherMgr_GetWriteAccess call (RPC 7) to
the CoherMgr, which instructs all CoherSvrs on the owner and in the copy
set except the faulting node (node 2) to invalidate their caches of the page
(here only the owner node 1 is informed) (RPC 8), then clears the copy set
information on the CoherMgr, records node 2 as the owner of the page and
grants write permission to node 2. On the return of CoherMgr_GetWriteAccess,
the POM of node 2 writes the page to backing store (RPC 9), sets the ownership



4.6. ILLUSTRATION OF COHERENCY CONIROL .. : 45

-- -

10) 2wttt s
( P ©® -2y Coherence |-
Node 17 — Manager oo . . Node 2]
i Persistent (1) Coherence | *
y/ »
Server ©

—— | Object
— Storage
i (12)
el @ .---} )l Server L/ Persistent
Coherence |.---"" | " - Object
Server '."_"_"_-:(?-_----- _ ________ L--~"| Manager

Manager
{5) CoherMgr_GetPageForfiead
(6) CoherSvr_GetPageForRead
(7) CoherSvr_SetPageForRead
(8) CoherSvr_GetWriteAccess Assume Node 1 is the owner of object page P
(9) StorSvr_WriteData --=-+> Node 2 reads the page (5, 6, 7).
(10) Cohertigr_Ownerlnform ~==> Nods 2 writes the page (8, 9, 10) and becomes the owner.

11) CoherSvr_GetPageForWrit
o sror e ——> Node 1 writes the page (11, 12, 13) and becomes

(13) CoherMgr_Ownerinform *  the owner again.

Figure 4.5: Illustration of the Distributed-Contfol Protocol

indicator of the page, and allows write access to the page.

At this point, if node 1 wants to write something to the same object page,
a write fault occurs. The local POM calls CoherMgr_GetPageForWrite on
the CoherMgr (RPC 10), which makes a CoherSvr_GetPageForWrite request
(RPC 11) to the owner (node 2) to get write permission and the up-to-date
page data and to invalidate the cache in the owner, then writes the data
back to the storage server (RPC 12), invalidates the copy set (here no cache
needs to be invalidated), clears the copy set information and records node 1 as
the owner, then grants the write permission and the up-to-date page data to
node 1. After return from CoherMgr_GetPageForWrite, the POM on node 1 sets
the ownership indicator of the page and allows write access to the page.

Distributed-Control Protocol With the distributed-control protocol, the
processing is shown in figure 4.5. A read fault occurs when node 2 reads
the object page which has been loaded to node 1 for write access. Since
node 2 has no idea who the owner of the page is, the local POM makes a
CoherMgr_GetPageForRead request (RPC 5) to the CoherMgr. The CoherMgr
looks up the opened object table for the owner and finds node 1. The
request is forwarded by calling CoherSvr_GetPageForRead on node 1 (RPC 6),
which includes node 2 in the copy set and sends data to node 2 by calling



46 ' CHAPTER 4. DESIGN OF THE COHERENCE MECHANISM

- (
- m =43~
Coherence | Node2
Server Objacta
2 ®
Object
Manager (10) Manager
\V
Kernel ® Kernel
(5) Cohervigr_GetPageForRead
{6) CoherSvr_GetPageForRead
(7) CoherSvr_SetPageForRead .
(8) CoherSvr_GetWriteAccess Assume Node 1 is the owner of object page P
(9) CoherSvr_SetPageForRead -=-> Node 2 reads the page (5, 6, 7).
(10) CoherMgr_WritePage —3> Node 2 Whrites the page (8, 9, 10, 11)
(11) StorSvr_WriteData and becomes the owner.

Figure 4.6: Illustration of the Write-Update Protocol

CoherSvr_SetPageForRead on node 2 (RPC ?.

If node 2 then attempts to write to the same page, a write access fault occurs
and the POM makes a CoherSvr_GetWriteAccess call (RPC 8) to CoherSvr
of the owner (node 1) which writes the page to the storage server (RPC 9),
invalidates the local cache and the copy set except the faulting node (node 2)
(only CoherMgr is instructed in this example) (RPC 10), clears the copy set
information and the ownership indicator, then grants write permission to
node 2. Upon return of CoherSvr_GetWriteAccess, the POM on node 2 satisfies
the fault by setting the ownership indicator of the page and allowing write
access to the page. '

Suppose that node 1 writes to the same object page now, the local POM calls
CoherSvr_GetPageForWrite on the CoherSvr of the owner (node 2) (RPC 11)
which writes the page to the storage server (RPC 12), invalidates the local
cache and the copy set (CoherMgr in this example) (RPC 13), clears the copy
set information and the ownership indicator, then grants write permission
and a copy of the page data to node 1. The POM on Node 1 then sets the
ownership indicator of the page and allows write access to the page.

Write-Update Protocol

Assume the write-update protocol is used, the processing is illustrated in
figure 4.6. A read fault occurs when node 2 reads the object page which has



4.7. SUMMARY 47

been cached on node 1 for write. Since node 2 does not know who the owner
of the page is, a CoherMgr_GetPageForRead request (RPC 5) is made by the
local POM to the CoherMgr. The CoherMgr forwards the request to the owner
node 1 (RPC 6), which includes the node 2 into the copy set and sends node 2
a copy of the page data via a CoherSvr_SetPageForRead call (RPC 7).

Suppose node 2 wants to write to the same page, a write access fault occurs
and the POM makes a CoherSvr_GetWriteAccess call (RPC 8) to the owner
node 1. Node 1 records node 2 as the owner of the page, sends node 2 the copy
set information, and resets the ownership indicator and copy set information.
After getting the copy set information, node 2 excludes itself from the copy
set and includes node 1 into the copy set. After each writing session, node 2
releases the write lock for the page which triggers an event to invoke the POM
to write the up-to-date copy of the page to the copy set (RPC 9 and RPC 10,
they are combined as a MultiRPC). For each update, the CoherMgr writes the
up-to-date contents of the page to the storage server (RPC 11).

If node 1 attempts to write to the same object page now, the procedure is
similar to that described for node 2 in the last paragraph.

4.6.3 Unmapping An Object

Finally, if the object is no longer required by an application program,
UnmapObject is called. If it is the only thread on the node using the object, the
local POM makes a CoherMgr_CloseObject to the CoherMgr which decreases
the reference count and reclaims the ownership tokens held by the POM.
When the reference count becomes 0 the CoherMgr destroys the entry in the
opened object table. '

4.7 Summary

In this chapter, the design issues of a coherence mechanism were discussed.
Then the public interface and coherence protocols were presented. After that,
the design of the CoherMgr and CoherSvr were described. The interactions
between the CoherMgr, CoherSvrs and POMs to assure object coherency were
also illustrated. This design shows that it is possible to provide a well-defined
interface to a variety of object coherence protocols. In the next chapter, a
prototype implementation will be described.




Chapter 5
Implementation

The architecture framework of COMMOS was outlined in Chapter 3 and the
design of the coherence mechanism for COMMOS was presented in Chapter 4.
A prototype implementation of COMMOS is detailed in this chapter. It is
implemented in C and the code is organised in modular style so that data is
placed in the same module as the routines manipulating it wherever possible
and data and routines are kept local (static) to hide them from other modules
whenever possible. This clean programming approach makes the code easy to
understand, maintain and extend.

5.1 System Environment

The prototype COMMOS is implemented on Wanda, a locally developed micro-
kernel operating system described in Section 3.8. The implementation was
firstly done on MVME136 (MC68020) machines running Wanda 1.2 and then
was ported to Wanda Snap3. There were three MVME136 machines when the
implementation started but two of them malfunctioned and the support for

the third one was finally withdrawn. The prototype system was hence ported
to the MVME147 (MC68030) archltecture

MultiRPC has been ported onto Wanda and is running over the UDP/IP com-
munication protocols. In Wanda 1.2, UDP/IP was implemented entirely as a
run-time library [Gould91, Roe92]. Only one process on each node can use this
protocol suite. It was then implemented on Wanda Snap3 using a user space
process called the internet server [Richardson93] to overcome this problem.

The CoherMgr is implemented on a DEC 3100 workstation running Ultrix 4.3
48




52. OBIECT MANAGEMENT 49

and a storage server (StorSvr) emulator, which uses NFS as its backing store,
is implemented to provide the persistent storage for the prototype system.
They communicate with servers on Wanda using MultiRPC over Ethernet.

5.2 Object Management

In the prototype implementation, objects are named using NFS path names.
As described in Chapter 3, the POMs and the CoherSvrs interact with users
via an object table. The data structure used to represent an object contains a
number of fields:

ObjName: the global object name;

ObjNum: the local object name;

TypeName: the name of the object type;

TypeNum: the system designated type number;

Handler: the process Id of the POM responsible for the object;
PageTable: the pointer to the object page table;

ObjOwner: the Id of the process that creates this object;
ProcList: a list of processes into which the object is mapped,;

PageAlgor: the paging algorithm to be used on this object;
CoherProt: the coherence protocol to be applied on this object;

PageBitMap: an array containing page specific information, which includes
the page state, the page lock list, the coherence information
and the list of threads waiting for the page fault to be satisfied;

Monitor: a monitor structure (see [Mapp91] for details) used to synchro-
nise access to the object data structures.

The data structure which describes the coherence information consists of the
following components:

access: the current access, i.e., nil, read or write, to this page on this
node;

ownership: whether this node is the owner of the page;
owner: who the owner or the probable owner of this page is;

copyset: a list of nodes who are in the copy set of this page.



50 ' CHAPTER 5. IMPLEMENTATION

The page lock is represented by a data structure which is made up of the
current lock type of the page, a list of threads holding the lock as well as a list
of threads waiting for the lock.

5.3 Persistent Object Manager

The prototype POM supports three coherence choices: mno coherence,
centralised-control write-invalidate or distributed-control write-invalidate.
The write-update protocol is not implemented in the current prototype due
to time constraints. More protocols may be added in the future.

The object table is mapped into the address spaces of POMs so that it can be
used to interact with the user processes. The Wanda event mechanism is used
to notify a POM of events occurring on an object which require its attention.
The POM does an Investigate call to examine the state of the object and get
the necessary information to deal with the event. It then returns to user space.
After serving the event, it makes a ReturnResult call to return the results and
unblocks threads waiting on the event.

When a POM is invoked to serve a page fault, it checks the field CoherProt
first to see what coherence protocol is to be applied. If this field is not nil, the
POM makes a call ExchCoInfo to get the coherence information of the object
page and acts accordingly. After the page data or write permission is obtained,
it does a call ExchCoInfo again to set the new coherence information, such as
the access type, the owner and the copy set of the object page.

, 5.4 Coherence Manager

The CoherMgr can be implemented on the same node as the StorSvr
or on any ordinary node. In the prototype implementation it is imple-
mented as lightweight threads on Ultrix sharing a process address space
with the StorSvr. The light-weight process (LWP) package provided with
RPC2 [Satyanarayanan91] is used to support multiple lightweight threads.
‘The prototype coherence manager consists of the following modules: initiali-
sation, opened object table maintenance, server identifier manipulation, con-
nection table maintenance, and object coherence management.



54. COHERENCE MANAGER, 51
54.1 Server Identiﬁe_r

Servers in the prototype implementation are represented by server identi-
fier (Svrident) data structures. The basic components of-a SvrIdent structure
are:

Host: . the host IP address;
Portal: the port number of the server;
Subsys: the subsystem 1d of the server.

Other fields include SecurityLevel, EncryptionType, UniqueIdent and
SessionKey, which may be used by the RPC system to establish secure com-
munications (see [Satyanarayanan91] for details).

The server identifier manipulation module provides operations to Svrident
structures, such as initialising the server’s own identifier, comparing and copy-
ing SvrIdent structures, including a SvrIdent into a set, excluding a SvrIdent
from a set, converting to and from the network order, and getting the SvrIdent
from an RPC connection.

5.4.2 Object Management

There is an opened object table which is organised as a hash table on the
CoherMgr to manage all of the opened persistent objects. The data structure
for the opened object table is made up of the following fields:

Name: the global name of the object;

Ob jSizé : the size of the object in bytes;

ObjClickSize: the size of the object in pages;

UseCount: number of nodes having this object mapped;
CoherProt: the coherence protocol to be applied to this object;
PageInfo: an array of information for all the pages of the object.

The PageInfo data structure includes the following components for maintain-
ing object coherency:



52 | CHAPTER 5. IMPLEMENIATION

ownership: whether the CoherMgr is the owner of the page;
owner: the owner or probable owner of the page;

copyset: the copy set of the page; |

lock: a lock for eXclusively access to this data structure.

When CoherMgr_OpenObject or CoherMgr FlushObject is called, the CoherMgr
checks the opened object table to see if there exists an entry for the object. If
not, a new entry is created. The UseCount is increased by 1 each time that
CoherMgr_OpenObject is called.

When av page fault occurs in the system and the CoherMgr is invoked, the
PageInfo of the involved object page is set up and used to maintain the object
coherency.

Finally, if CoherMgr_CloseObject is invoked, the UseCount is decreased by 1
and, if it becomes 0, the corresponding entry is removed from the opened
object table.

The opened object table maintenance module provides the following opera-
tions: looking up the table, creating a new entry, removmg an entry and
extending the PageInfo for an object.

5.4.3 Communication Management

As discussed before, MultiRPC is used as the communication tool in this
system. Before an RPC is made, a connection between the source and the
destination nodes has to be established. In order to reuse and locate the
existing connections efficiently, another hash table, called connection table
is employed to record them. The data structure for this table consists of three
fields:

svr.ident: the identifier of the destination server;
conn_id: the Id of the RPC connection to the destination server;
conn_timer: the timer information for maintaining the hash table.

When communication to a remote CoherSvr is required, the CoherMgr looks
up the connection table, if there is no entry for the destination server, it makes
a new connection and creates a new entry. This connection, once established,
can be used for other RPCs to the same server.



5.5. CO}[E‘J(EZNCDS SERVER, 53

A timer mechanism is needed to maintain the RPC connections. Ifa connection
has not been used for a certain amount of time, it is closed and the associated
entry is removed. '

The connection table maintenance module provides operations to look up the
table and to make a connection to a remote server and then create an entry
for it.

54.4 Other Modules

The initialisation module is responsible for initialising the LWP and the RPC
runtime system while the coherence management module implements the
interface presented in Appendix D.

5.5 | Coherence Server

The prototype CoherSvr is implemented as lightweight threads sharing an
address space with the prototype POM. However there is no conceptual con-
straint in the architecture which would prevent the CoherSvr from being
implemented as a separate user-level process. In fact, if there exist multi-
ple POMs for different object types which share the services provided by a
CoherSvr, the CoherSvr is better implemented as a separate process. The
CoherSvr is made up of five modules: initialisation, server identifier manip-
ulation, connection table maintenance, coherence management, and house-
keeping.

As described in section 5.2, the CoherSvr interacts with user processes via
the object table which is mapped into its address space. Like the POM, the
CoherSvr accesses coherence information which resides in the kernel using the
ExchCoInfo call. The initialisation module initialises the RPC runtime system
and creates initial threads for the CoherSvr. The coherence management
module implements the interface given in Appendix E.

In order to avoid multi-level nested RPCs, in the distributed-control write-
invalidate protocol, when a CoherSvr is serving a remote request and finds
that the faulting node is not the calling node, it invokes the housekeeping
module. The housekeeping module is implemented as one or more threads,
to send data or grant write permission to the faulting node, or forward the
request to another node.




54 ‘ CHAPTER 5. IMPLEMENIATION

The other two modules, namely server identifier manipulation and connection
table maintenance, are similar to those in the CoherMgr.

5.6 Storage Server Emulator

In the prototype system, the StorSvr is implemented on a DEC 3100 work-
station running Ultrix 4.3. NFS is used as the backing store and persistent
objects are stored as files. In the future, the flat file custode (FFC) in the
locally developed MSSA [Lo094] can be used to provide better performance and
support a more sophisticated naming scheme. The StorSvr provides facilities
to store and retrieve object pages. It also supports calls to get size of an object
or different segments of an executable file. The detailed interface is presented
in Appendix F. :

5.7 Summary

- This chapter described a prototype implementation of the COMMOS architec-
ture. It shows that the design is practicable and feasible. The next chapter
will present the performance of this prototype system.



Chapter 6

Performance

6.1 Introduction

As described in the previous chapter, the prototype COMMOS is implemented
on MVME147 (MC68030) machines running the Wanda microkernel operat-
ing system. There were four MVME147 machines, namely lamprey, lumpfish,
piranha and shark. Each of them contains a main board MC68030 CPU with
4MB of RAM. The CPU speed of piranha and shark is 25MHz while the speed
of the other two is 20MHz. They are connected by a non-dedicated Ethernet.
Piranha has a 4MB RAM card configured, and each of lamprey and lumpfish
has an SMB RAM card configured. Unfortunately, shark malfunctioned dur-
ing the course of the measurements. Most of the results were therefore taken
on the three remaining machines. This configuration is illustrated in fig-
ure 6.1. The CoherMgr and the StorSvr run as lightweight processes sharing
one Ultrix 4.3 process on a DEC 3100 workstation. There are three CoherMgr
threads and one StorSvr thread running concurrently. The Wanda COMMOS
software, which includes the extended Wanda kernel, an internet server, a
ProcSvr, a CoherSvr and a POM, run on MVME147 machines. The CoherSvr
and the POM share the same Wanda process.

In this chapter the basic performance of the RPC system is presented and
the use of MultiRPC is justified. Then the performance of memory-mapping
and non memory-mapping approaches on Wanda are compared. Finally the
performance of the COMMOS prototype is presented. Due to the limitation of
the number of processors available and the time constraints, it is not possible
in this work to measure and compare the performance of different coherence
protocols in a large scale system. The measurements are taken in the small

55



56 CHAPTER 6. PERFORMANCE

/7

sU (F L

__J
| | . Ultrix '4.3

Application s = « | Application I:
Process | [

onerence EgrSent D
Intemet ” H H

l Server l o
kb L —_ Wanda Kernel

Wanda Kernel ___J

Lightweight Thread

Ethernet (O Server Process
[ Application Process

000

—

Figure 6.1: Prototype Configuration

system described above and the results are presented to show how this proto-
type performs. All the results given in this chapter are averages of more than
10,000 iterations of the operation. The worst figures (i.e. the maximum time)
are shown wherever the mixing of machines with different CPU speeds is
unavoidable. Interested readers are referred to Appendix G for more detailed
measurement results.

6.2 Performance of the RPC System

The basic performance of the RPC2 system is presented in this section so that
the communication overheads can be known and the use of MultiRPC can be
justified. All the results described here are taken from measurements of null
RPC calls. A null RPC is an RPC without parameters, that executes a null
procedure and returns no values. Null RPC performance is important because
* it measures a fixed overhead [Coulouris94].



6.2. PERFORMANCE OF THE RPC SYSTEM 57

RPC Type Time (ms)
20MHZ CPU | 25MHZ CPU
Local Simple RPC 11.0 ms 9.1 ms
Local MultiRPC 11.6 ms 9.6 ms
Remote Simple RPC 16.8 ms 13.1 ms
Remote MultiRPC 17.2 ms 13.7 ms

Table 6.1: Simple RPC vs MultiRPC for One Recipient

|| Destination Number | MultiRPC Time (ms) " Averdge Time (ms) ”

I 1 ' 17.2 17.2
I 2 20.9 10.5
| 3 24.3 8.1

‘Table 6.2: Performance of MultiRPC on Wanda

6.2.1 Simple RPC vs MultiRPC

When the source and the destination are located on the same network node,
the communication is referred to as local communication. Otherwise it is
referred to as remote communication. To compare the complexity of simple
RPC and MultiRPC, local communication and remote communication to a sin-
gle destination using simple RPC and MultiRPC are measured. The results
are shown in table 6.1. It takes more time to communicate with a single des-
tination using MultiRPC than using simple RPC. This is because a MultiRPC
has extra complexity compared to a simple RPC. However the difference is
small. ‘

6.2.2 MultiRPC Speed-Up

The time taken to make a MultiRPC to up to 3 remote destinations between
Wanda machines is given in table 6.2. The average time taken per destination
is illustrated in figure 6.2. From the figure, it can be seen that the average
time taken per destination has reduced significantly compared to using simple
RPCs iteratively.

In order to get a more general idea of how far the speed-up can be taken,




58

CHAPTER 6. PERFORMANCE

18

16 |-

14

12

10 |-

Average Call Time Per Destination

1 ] L 1

2 3 4 5 6

Number of Destinations

Figure 6.2: Speed-up for One-to-Many Communications on Wanda

ﬁestination Number | MultiRPC Time (ms) | Average Time (ms) "

1 6.4 6.4
2 73 3.7
3 8.6 2.9
4 9.4 24
5 11.2 2.2
6 13.0 2.2
7 14.3 2.0
8 16.3 2.0
9 18.2 2.0
10 19.8 2.0

Table 6.3: Performance of MultiRPC on Ultrix

similar measurements for up to 10 remote destinations were taken on DEC
3100 workstations running the Ultrix 4.3 operating system. They are shown
in table 6.3. The average time taken per destination is given in figure 6.3.
It decreases dramatically when the number of destinations is small and then

approaches a constant.




63. MEMORY-MAPPING V.S NONMEMORY-MAPPING ONWANDA 59

8

g T T T T T
-t
5 1 _
g
Bt
[ 6 -
7]
[
M 5F -
o
a
g 4T 7
-
B —
- 3
[
o
O 2} -
]
g
g 1l -
o
2 0 ] | | ]

0 2 4 6 8 10 12

Number of Destinations

Figure 6.3: Speed-up for One-to-Many Communications on Ultrix
6.2.3 Summary

From the measurement results, it is concluded that the use of MultiRPC is
important to speed up the one-to-many communications involved in the object
coherency control mechanism.

6.3 Memory-Mapping vs Non Memory-Mapping
on Wanda

It is beyond the scope of this work to build a file system without memory-
mapping on Wanda to compare the performance with the memory-mapped
object system. However, the performance comparison can still be illustrated
and reasoned. As a starting point, assume that a two-level store file system is
implemented in the model shown in figure 2.2 (b). There is a file system agent
on each network node and client caching is supported. In order to access a file
from a user process, at least two interprocess communications are required:
one for the user to make a request and the other for the agent to return the
result. The cost of maintenance of cache coherency in the file system agent is
assumed to be the same as that incurred in the POM. The time taken for a



60 | CHAPTER 6. PERFORMANCE

" CPU Speed IRoundtrip IPC Time (ms) "
[ 20MHEZ 1.67
| 25MHZ 1.33

Table 6.4: Performance of A Local Roundtrip IPC

[rCPU Speed | Page Fault (ms) | Page Invalidation (ms) | Sum (ms) "
20MHZ 0.76 0.42 1.18
25MHZ 0.60 0.35 0.95

Table 6.5: Time to Serve A Page Fault and Invalidate A Page

roundtrip IPC on the same machine is shown in table 6.4. Here a roundtrip
IPC is when a client thread sends an IPC message to the server process and
a thread in the server process sends a reply to the client. There is only one
thread in each of the client and server processes in the experiment. On the
other hand, the file system agent has to copy the requested data to the IPC
buffer and the client has to copy the data from the IPC buffer to the location
where the data will be used in practice. These extra overheads for data copying
are not counted in the figures shown in the table.

In a memory-mapped object system, after a page fault is satisfied, there is no
extra cost for accessing the persistent object. However, servicing page faults
and invalidating pages takes time. These are shown in table 6.5.

It can be seen that on Wanda the total time for servicing a page fault and
invalidating a page is smaller than the time for a roundtrip IPC even if the
overhead for data copying in the non memory-mapping model is not counted.
This means that even in the worst situation where a page is fetched for only
one access before it is invalidated, the performance is still better than an
access in the two-level store model.

This conclusion might not be valid on other platforms because performance
varies from implementation to implementation. For example, [Liedtke93] dis-
cusses various strategies and shows a significant improvement in IPC perfor-
mance. Although the performance for page fault processing and page invalida-
tion might also be improved, it is possible that the time taken for a roundtrip
IPC in some system is less than that taken for a page fault and a page invali-



6.4. PERFORMANCE OF THE PROTOT)'PE COMMOS 61

| Faulting Node | Time (ms) ||
20MHz CPU 315
25MHz CPU 30.1

Table 6.6: Fetching a Page from the Storage Server

|| Owner | Number of RPCs J Time (ms)J]

CoherMgr 1 32.9
Wanda 2 406 |

Table 6.7: Fetching a Page for Read in the Centralised-Control Protocol

dation. However, if the working set of a user process can be kept in the main

memory for sufficient time that each page is accessed for many times before

it is invalidated, performance is still expected to be better than making the
same number of accesses to a file system agent using IPC.

6.4 Performance of the Prototype COMMOS

This section presents the results of measuring the time taken by the POM
to fetch a page from a remote server to serve a page fault when different
coherence protocols are applied.

6.4.1 No Coherency

The time taken to fetch a page (1K bytes) from the StorSvr in order to serve a
page fault without any coherency guarantee is shown in table 6.6.

6.4.2 Centralised-Control Protocol

Table 6.7 shows the time taken to fetch a page to serve a read fault in the
centralised-control protocol. The first column indicates the owner of the page.
Comparing with table 6.6, it can be seen that the overhead for executing the
coherence protocol code is not very large. When the owner is another Wanda




62 | CHAPTER 6. PERFORMANCE

Owner | Copy Set | Number of RPCs | Time (ms)

CoherMgr - 1 32.8
CoherMgr 1 2 56.3
CoherMgr 2 2 57.5
Wanda - 2 54.6
Wanda 1 3 123.6

Table 6.8: Fetching a Page for Write in the Centralised-Control Protocol

node, a nested RPC, including one from the faulting node to the CoherMgr and
the other to the owner, is used to carry out the page fetching. Such a nested
RPC is counted as 2 RPCs in this section.

The time taken to fetch a page to serve a write fault in the centralised-control

_ protocol is shown in table 6.8. It can be seen that the time taken to serve

a write fault when there are one or two nodes in the copy set is almost the

same. This provides further evidence that the use of MultiRPC improves the

performance of one-to-many communications significantly. When the owner of
~ therequested page is another Wanda machine, an operation is invoked to write

the modified page back to the secondary store. This explains why the time to

serve a write fault is longer than the time to serve a read fault in the same

situation. Because the CoherMgr runs on a Unix system there is a degree of
unpredictability in any timings which involve it. Efforts have been made to

* reduce the unpredictability: first by ensuring that all the measurements are

taken in the middle of the night and that there are no other user processes

running on the machine thus reducing unpredictability of process scheduling;
second by ensuring that the StorSvr closes the file at the end of every page fetch

in order to eliminate the unpredictability of file buffer management. However,

there were still system daemon processes running when the measurements

were taken. The last row of table 6.8 and the third row of table 6.10 almost

certainly represent Umx process rescheduling effects.

6.4.3 Distributed-Control Protocol

Table 6.9 illustrates the time taken to fetch a page to serve a read fault in the
distributed-control protocol. When the CoherMgr is named as a relay node,
it means that the faulting node has no idea who the owner is and makes its
request to the default owner — CoherMgr.



6.5. SUMMARY 63

II Ou_)ner | Relay Node | Number of RPCs l Time (ms) ||

CoherMgr - 1 32.4
Wanda CoherMgr 3 55.3
Wanda - 1 31.8

Table 6.9: Fetching a Page for Read in the Distributed-Control Protocol

|| Owner | Relay Node | Copy Set | Number of RPCs | Time g ms)
CoherMgr - - 1 32.6
Wanda | CoherMgr - 4 99.0
Wanda CoherMgr 1 4 165.7
Wanda - - 3 854
Wanda - 1 3 99.9

Table 6.10: Fetching a Page for Write in the Distributed-Control Protocol

The time taken to fetch a page to serve a write fault in the distributed-control
protocol is shown in table 6.10.

6.5 Summary

In this chapter, the performance of the RPC system was firstly reported and
the use of MultiRPC was shown to be an important feature for improving the
one-to-many communications for object coherency control. The performance of
the memory-mapping and non memory-mapping approaches on Wanda were
measured and compared. The results showed that access to persistent data
can be improved by using the memory-mapping technique. Finally, the basic
performance of the COMMOS prototype system was also reported. The results
showed that the system is not fast. There are several reasons for this. First,
the internet server, the POM and the CoherSvr all run in user space. This
means more context switches are involved than in monolithic kernel systems
where all the system services run in the kernel. Second, the general RPC
mechanism is used to serve page faults and to maintain object coherency. The
marshalling and unmarshalling of arguments for remote invocation are time
consuming. Third, while the architecture is aiming for a future high speed
and wide address space environment, the prototype is implemented on slow




64 CHAPTER 6. PERFORMANCE

machines connected by a slow network. It should also be noticed that the pro-
totype has not been specially tuned for optimal performance. Since there are
~ few performance reports available for similar systems and the implementation
environments are different from system to system, it is difficult to compare
the performance to other systems. '



Chapter 7

Supporting Distributed
Persistent Programming

7.1 Introduction

Research into persistent object systems and persistent programming lan-
guages, which aim to overcome the disadvantages of two-level store systems,
is active. Most persistent object systems to date, however, are implemented
above a conventional operating system on a single workstation. Some of them,
such as CONCERT [Blott94] and Flask [Munro94], use the Unix mmap interface
to manage memory-mapped paged objects. One recent move is to distribute
these systems. For example, Distributed Galileo [Mainetto94] consists of
a single object store shared by clients running on different network nodes;
Thor [Liskov93] is made up of a set of object stores in a distributed system;
and BMX [Ferreira94] is a distributed persistent object system implemented
above Unix using the memory-mapping technique. Unlike all of these systems,
COMMOS provides comprehensive support for object persistency and distri-
bution from the operating system level. One of its prospective applications is
distributed persistent programming.

PS-algol [Atkinson83] is one of the earliest persistent programming languages.
It is implemented as a number of functional extensions to S-algol. Persistent
data are managed as databases. Each database is associated with an index
table which contains a set of name-value pairs and is the root from which
preserved data are identified by transitive closure of reachability. Persistent
data are managed in a heap in the main memory and the persistent object
management system is concerned with the movement of data between the

65



66 CHAPTER 7. SUPPORTING DISTRIBUTED PERSISTENT PROGRAMMING

main memory heap and the backing store. Data may be created on the heap
during a transaction or it may migrate there as a copy of some persistent data.
When a transaction is committed, all the data on the heap that is reachable
from the persistent objects used during the transaction are transferred back
to the disk.

Another approach to persistent programming is to provide a persistent class
~ library for an object-oriented programming language. Arjuna [Group92] is
an example. The state of each persistent object is stored as a file. The state
management mechanism implemented by StateManéger provides support for
the use of persistent and recoverable objects. The users of the Arjuna system
have to be concerned about defining appropriate save_state and restore_state
operations for the class to translate data formats between main memory and
backing store. They also have to implement the type operation indicating
where the object should be saved in the object store. Distribution is based on
the client-server model. When client code invokes an operation on a remote
object, the operation is actually invoked on the client stub object. This stub
object packs up the parameters to the operation with sufficient information
for the correct operation to be invoked at the server side and transmits the
request via RPC to the remote server stub object. The server stub object
unpacks the data received and invokes the specified object operation. When
the operation has completed the stub objects are responsible for packmg and
transmitting the reply to the client program.

Some other persistent programming language systems extend existing lan-
guages or design new languages to support persistent classes. C** on Coman-
dos [Cahill93] is an example of the former. Distribution and persistence
are provided through extensions to the C++ language while concurrency
and transactions are provided through library classes. New keywords are
added. The keyword global is used to distinguish distributed objects while
permclass is used to declare persistent classes and volclass is used to define
non-persistent classes. New operators and operations are introduced to sup-
port them. The Comandos Object-Oriented Language [Cahill93] is an example
of new languages supporting persistent classes.

It is beyond the scope of this dissertation to design a complete persistent pro-
gramming system. As will be shown in this chapter, however, supporting dis-
tributed persistent programming on COMMOS is easy and straightforward.
C++ is an object-oriented programming language widely used in industrial
and academic environments. It is chosen to demonstrate how distributed per-
sistent programming can be supported. What should be done is to define or
overload C++ standard operators and build a class library using the object



7.2. DEFINING C++ CLASS OPERATORS . ' 67

mapping and locking mechanisms provided by the COMMOS. A GNU g++
cross compiler has been configured and installed on mips Ultrix to generate
executable code for Wanda. All the code fragments given in this chapter have
been tested.

7.2 Defining C++ Class Operators

In C++ [Stroustrup91], an object can be created by the operator new and
destroyed by the operator delete. '

The new operator attempts to create an object of the object type to which it is
applied and returns a pointer to the object created. It will call the function
operator new() to obtain storage. The first argument must be of type size_t,
an implementation-dependent integral type defined in the standard header
<stddef.h>.

An object created by the new operator exists until it is explicitly destroyed by
the delete operator. The delete operator may be applied only to a pointer
returned by new or to zero.

It is possible to take over memory management for a class by defining operator
new() and operator delete(). This remains possible and is even more use-
ful for a class that is the base for many derived classes. This feature makes
supporting distributed persistent programming on COMMOS very straight-
forward. What should be done is to define a base class for persistent object
classes and implement the operators new and delete to map persistent object
states. The following code fragment illustrates one of the possible implemen-
tations.

enum operation {0OBJ_CREATE, 0BJ_MAPPING};
// OBJ_CREATE: create a system-level object;
// OBJ_MAPPING: map a system-level object.

extern struct objmap* myprocmap; // the process map.

class PersistClass {
public:

void operator new(size_t size, char* name,
char* type, operation op);
void operator delete(void* ptr);




68 CHAPTER 7. SUPPORTING DISTRIBUTED PERSISTENT PROGRAMMING

~PersistClass();

};

void* PersistClass::operator
new(size_t size, char* name, char* type, operation op)
{

long vir_id;

void* ptr;

switch (op) {
case OBJ_CREATE:
vir_id = CreateObject(type, name, ...);
if (vir_id < 0) { ’
printf("PersistClass::new: failed to create object %s\n",
name) ;
exit(1);
}
break;
case OBJ_MAPPING:
vir_id = MapObject(type, name, ...);
if (vir_id < 0) {
printf("PersistClass::new: failed to map object %s\n",
'~ name); ’
exit(1);
}
break;
default: '
printf ("PersistClass::new: unknown operation %d\n", op);
exit(1);
}
ptr = (void*) myprocmapl[vir_id].ob_addr;
return ptr;

}
void PersistClass::operator delete(void#* ptr)
{

long vir_id = -1, i, rc;

char* name;

for (i = 0; i < N_OBJECTS; i++) {
if (ptr == (void*) myprocmap[il.ob_addr) {
vir_id = i;



7. DEFINING C++ CLASS OPERATORS | | 69

break;
}
}
if (vir_id < 0) { '
printf ("PersistClass::delete: failed to locate the object\n");
exit(1);
}

rc = UnmapObject(vir_id, -1);

if (xc '=0) {
name = myprocmap[vir_id].ob_name; '
printf ("PersistClass::delete: failed to unmap object %s\n",

name);

exit(1);

}

}

After defining the operators new and delete for the base class of all persistent
object classes, application programmers can define their own persistent classes
as derived classes of the base class and use operators new and delete to create
and destroy objects. For example: '

class BookEntry: public PersistClass {
char author[MAX_NAME];
char title[MAX_TITLE];
‘char publisher [MAX_PUBLISHER];
int year;
public:
void Display();

~BookEntry() {};
o

main()
{
BookEntry* entry;

entry = new ("/homes/abc/bookl", "persist", OBJ_CREATE) BookEntry;
entry->Display();

delete entry;
}



70 CHAPTER 7. smomﬂg DISTRIBUTED PERSISTENT PROGRAMMING

The implementation described above does not support class constructors.
According to the C++ Reference Manual [Stroustrup91l, class constructors
should work with the user defined class operators. If class constructors are
defined, however, the code does not compile using GNU g++ or SunOS CC.
Therefore, application program have to initialise objects in hand.

7.3 Overloading C++ Operator

Initialising objects in hand is error prone and inelegant. Fortunately, class
constructors work fine with an overloaded global new operator. In C++, several
different function declafations can be specified for a single name in the same.
scope and the name is said to be overloaded. When that name is used, the
correct function is selected by comparing the types of the actual arguments
with the types of the formal arguments. The unique best matching function
is then called. Using overloading, the implementation is as follows: '

enum operation {0BJ_CREATE, O0BJ_MAPPING};
// OBJ_CREATE: create a system-level object;
// OBJ_MAPPING: map a system-level object.

extern struct objmap* myprocmap; // the process map.

class PersistClass {
public:
PersistClass();

void operator delete(void* ptr);
“PersistClass();

};

void#* operator
new(size_t size, char* name, char* type, operation op)
P :
long vir_id;
void* ptr;

switch (op) {
case 0OBJ_CREATE: .
vir_id = CreateObject(type, name, ...);



7.3. OVERLOADING C++ OPERATOR, 71

if (vir_id < 0) {
printf("new: failed to create object %s\n", name);
exit(1);
}
break;
case OBJ_MAPPING: o
vir_id = MapObject(type, name,; ...);
if (vir_id < 0) {
printf("new: failed to map object %s in\n", name);
exit(1);
}
break;
default:
printf("new: unknown operation %d\n", op);
exit(1);
}
ptr = (void*) myprocmap[vir_id].ob_addr;
return ptr;

}

void PersistClass::operator delete(void* ptr)
{

long vir_id = -1, i, rc;

char* name;

for (i = 0; i < N_DBJECTS; i++) {
if (ptr == (void*) myprocmap[i].ob_addr) {
vir_id = i;
break;
}
}
. if (vir_id < 0) {
printf ("PersistClass::delete: failed to locate the object\n");
exit(1);
}

rc = UnmapObject(vir_id, -1);
if (xc '=0) {
name = myprocmap[vir_id].ob_name;

printf("PersistClass::delete: failed to unmap object %s\n",
name) ;
exit(1);



72 CHAPTER 7. SUPPORTING DISTRIBUTED PERSISTENT PROGRAMMING

7.4 Supporting Fine Grained Objects

The implementations discussed in Sections 7.2 and 7.3 are simple. The state
of each persistent object is stored as a system-level object. This should be
sufficient to support medium and coarse grained objects. However, in some
applications, supporting fine grained persistent objects might be desired. In
this case, it is desirable to cluster language-level fine grained objects into
system-level objects. By clustering together objects that are frequently refer-
enced together, locality is increased, main memory is used more efficiently and

- fewer pages need to be transferred in order to access the objects [Gourhant92].

It is important for performance purpose. This section illustrates how to imple-
ment object clustering but it does not attempt to address object clustering
algorithms. Readers who are interested in object clustering algorithms are
referred to research results on object-oriented systems and database systems,
such as [Gourhant92] and [Chang89].

A possible approach for object clustering is to have all the objects of the same
class stored in a system-level object. In this case, the operators new and delete
must be implemented for each class to allocate and deallocate memory from a
system-level object.

A more flexible approach is to define a persistent object container class and
define the operators new and delete of the persistent object class to allocate
memory for objects from different containers. In this scheme, whenever an
application creates a new persistent object, it can specify the container in
which that object should be created. The following code fragment demon-
strates how this can be done.

enum operation {0BJ_CREATE, OBJ_MAPPING};
// OBJ_CREATE: create a system-level object;
// OBJ_MAPPING: map a system-level object.

extern struct objmap* myprocmap; // the process map.

class Container {
public:



7.4. SUPPORTING FINE GRAINED OBJECTS 73

virtual void* alloc(size_t) = 0;
virtual void free(void*) = 0;

};

class PersistContainer: public Container {
char name[MAX_OBJ_NAME];
char type[MAX_TYPE_NAME];
long vir_id;
void* addr;
public: i
PersistContainer (char* nm, char* tp, long sz);
// create a new container.
PersistContainer(char* nm, char* tp); // map in a container.
void* alloc(size_t);
void free(voidx);
~PersistContainer();

};

PersistContainer: :PersistContainer(char* nm, char* tp, long sz)
{ .
vir_id = CreateObject(tp, nm, ...);
if (vir_id < 0) {
printf("PersistContainer: failed to create object %s\n", mm);
exit(1);
}
strcpy(name, nm);
strcpy(type, tp);
addr = (void*) myprocmap[vir_id].ob_addr; -
}

PersistContainer: :PersistContainer(char* nm, char* tp)
{
vir_id = MapObject(tp, nm, ...);
if (vir_id < 0) { '
printf ("PersistContainer: failed to map object %s\n", nm);
exit(1);
}
strcpy(name, nm);
strcpy(type, tp);
addr = (void#) myprocmapl[vir_id].ob_addr;




74 CHAPTER 7. SUPPORTING DISTRIBUTED PERSISTENT PROGRAMMING

PersistContainer::“PersistContainer()

{

int rc;

rc = UnmapObject(vir_id, -1);
if (rc '=0) {
printf (" ~PersistContainer: failed to close the object %s\n",
myprocmap [vir_id] .ob_name) ;
exit(1); .
}
}

.class PersistClass {
public: ,
void* operator new(size_t size, Container* ct);

“PersistClass();

};

void* PersistClass::operator new(size_t size, Container* ct) {
return ct->alloc(size);

}

Now a BookEntry object can be allocated from a persistent object container but
the destructor must be called explicitly when the object is no longer needed.

extern Container* percon;
entry = new (percon) BookEntry;

entry->BookEntry: : “BookEntry() ;
percon->free(entry) ;

7.5 | Other Issues

Persistence support is discussed in the previous sections. In order to pro-
. vide distributed programming, distribution and concurrency control are also
required. Since object coherency is guaranteed by COMMOS, no extra mech-




7.5. OTHER ISSUES 75

anism is necessary for these. The locking mechanism provided by the under-
lying system makes two-phase locking possible and hence it is not difficult for
the class library implementor to build transaction support.

7.5.1 Working with Pointers

Another issue which needs to be considered is pointers. This raises the ques-
tion of how pointers are stored and used. The most flexible approach is to
encoded pointers as surrogates defined in some external naming context and
to translate them at reference time. The forwarder in [Bliot90] is one of the
examples. This approach could be used but the cost of dereferencing is high.

Pointer swizzling has been proposed to reduce the cost of interpreting pointers
by caching the result of a translation, overwriting the surrogate in place with
the virtual address. [Wilson92] describes a technique via which all objects in
a given page are swizzled at the time the page is brought into memory. This

technique can utilise the virtual memory hardware to detect accesses to non-

swizzled objects. While these techniques do work, they still incur considerable
overheads. For example, Wilson’s scheme requires that all pages be scanned
as they are brought into memory and there are considerable costs during page
discard. Also, in COMMOS there is at most one copy of objects on each node
possibly shared by multiple processes. This further complicates the pointer
swizzling scheme. An object address allocation mechanism is desirable to
ensure that an object is mapped at the same address in all processes on the
same node.

A frequently used alternative approach is to map objects at fixed, non-
overlapping virtual addresses. In this approach, objects occupy permanently
a piece of virtual memory and pointers always point to the correct place.
Therefore, pointers can be stored in secondary storage in their in-core format
and pointer swizzling is avoided. Monads [Rosenberg92] and Opal [Chase92]
are some examples which use this approach. The major problem with this
approach are that a virtual address space might not be big enough to accom-
modate unlimited numbers of objects.

Another approach is the persistent context space model proposed
by [Amaral92]. In this model, objects are bound to addresses and are organ-
ised into containers. Direct references between data in different containers
are not allowed (between different containers objects reference each other
through surrogates). When mapped into an address space, each container



76 CHAPTER 7. SUPPORTING DISTRIBUTED PERSISTENT PROGRAMMING

forms a complete memory space in which there are no unresolved references.
A persistent context is a context that has one or more containers mapped into
its address space. A persistent context space is made up of a set of distributed
persistent contexts, which are able to share a single uniform address space
where one or more containers can be mapped. A persistent application is
. executed in parallel by a number of processors that have contexts in one or
more sites with a common global address space of persistent memory. Within
a persistent context space, the uniqueness of address allocation for shared
persistent objects is guaranteed. With relocation, the binding between a con-
tainer and a range of addresses may be changed. This model allows direct
object pointers at system-level and retains the multiple address space envi-
ronment model at the same time. This approach seems more suitable for the
COMMOS architecture.

7.6 Summary

Supporting distributed persistent programming above COMMOS has been
explored in this chapter. No modification to compilers is required and the
class library implementors and the end users need not be concerned about the
location of objects and data movement between main memory and backing
store. Although no application has been built due to time constraints, the
discussion in this chapter has shown that the COMMOS architecture is flexible
and easy to use.



Chapter 8

Related Work

The use of memory-mapping techniques to support data persistency in dis-
tributed computing environments has become increasingly popular in recent
years and there exist many research projects and systems around the world
which employ it. This chapter does not attempt to exhaustively survey all of
them. Instead, it briefly reviews the projects and systems closely related to
COMMOS and then compares their important aspects in the last section.

8.1 Apollo Domain

Apollo Domain [Leach83], developed at the Apollo Computer Inc in USA, was
one of the earliest systems to assure coherency of shared memory-mapped
objects in a local area network of personal workstations and data servers.

In Apollo Domain, objects were typed, protected, abstract information con-
_tainers addressed by unique identifiers (UID). An object was in fact an unin-
terpreted byte sequence with arbitrary length. Associated with each object
was the UID of a type descriptor, the UID of an access control list object, a
disk storage descriptor and some other attributes. Programs access all objects
by presenting their UIDs and asking for them to be mapped into the pro-
gram’s address space. Subsequently, they are accessed with ordinary machine
instructions, utilising virtual memory demand paging. On a page fault, the
object storage server locates and reads the object from the corresponding disk.

A two-level approach was used to assure coherency of the replicated copies
of an object. In the lower level, a timestamp corresponding to the time that
the object was last modified is used to detect concurrency violations. Every

77



78 CHAPTER 8. RELATED WORK.

'node remembers the timestamp for all remote objects whose pages it has
encached in its main memory. Every time an object’s page is read from another
node, its timestamp is returned with it. If it is the only page of the object
encached in this node, its timestamp is remembered. Otherwise, the returned
timestamp must match the remembered timestamp for the object. If not, a
read concurrency violation has occurred. Every time a page of an object is
written back to its home node, the current timestamp is sent with the write
request and an updated timestamp is returned. The home node will only
accept the page if it comes from the current version of the object. Otherwise
a write concurrency violation has occurred. A page write updates both the
home node’s and the requesting node’s timestamp for the object. The system
also provides primitives to discard stale pages of a cached object, to inquire
about the current timestamp of an object, and to send back modified pages
of a cached object. The higher level provides an object locking mechanism.
Multiple-reader/single-writer locks are supported. Lock and unlock requests
for remote objects are always sent to the home node. A lock request that is
granted returns the current timestamp of the object, which is used to remove
stale pages from the requesting node’s main memory. The unlock operation
forces modified pages back to the home node before the lock is released. Lock
requests are not enqueued. If a lock is currently in use requests for the lock
are denied and the requesters have to retry later.

Performance of reading a page from the local disk, remote disk and remote
main memory was reported.

8.2 Mach

Mach [Accetta86] is a portable, multiprocessor operating system developed at
Carnegie Mellon University, USA. One of the major goals of Mach is to move
more and more functionality out of the kernel, until everything is done by
user mode tasks communicating via the kernel. There are five main kernel
abstractions:

e A task is an execution environment in which threads may run. It is the
unit of resource allocation. A task includes a paged virtual address space
and protected access to system resources.

e A thread is the unit of CPU utilisation. A thread belongs to one and
only one task that defines its virtual address space. All threads within a
task share access to all task resources.



8.2. MACH 79

e A port is a communication channel, accessible only via send/receive
capabilities. Every system entity except virtual memory ranges is named
by a port.

e A message is a typed collection of data objects used in communication
between threads.

e A memory object is the internal unit of memory management. It is
a collection of data provided and managed by a server which can be
mapped into the address space of a task.

The Mach virtual memory system [Rashid88] is clearly layered into the
machine dependent and the machine independent part. The machine depen-
dent part is concerned with managing the MMU hardware. It provides a
simple interface for validating, invalidating and setting the access rights for
pages of virtual memory. The machine independent part provides support
for virtual address spaces, memory ranges within an address space, and the
interface to the backing store for these ranges via the external management
interface. -

Memory objects can be created and serviced by a user-level memory manager
(also called external pager). The memory manager is entirely responsible for
the initial values of the memory object and the permanent storage if neces-
sary. The interface between memory managers and the kernel consists of
three parts: calls made by an application program to cause a memory object
to be mapped into its address space; calls made by the kernel to the memory
manager to initialise a memory object and to carry out page-in/page-out oper-
ations; and calls made by the memory manager to the kernel to control the
use of memory objects.

When a memory object is mapped by tasks on multiple network nodes, a global
shared memory manager called the fault scheduler is employed to manage
strict coherency between multiple copies of memory pages using centralised
coherence algorithms. A distributed paging server [Forin88] has also been
developed to support distributed coherence algorithms. Coherency is at the
page level and the algorithms adopted are write-invalidate protocols similar
to those used in the IVY system [Li86]. Some performance measurements are
reported but no explicit figure about servicing remote page faults is given.



80 | CHAPTER 8. RELATED WORK.

8.3 Chorus

Chorus [Rozier88] is a distributed, scalable operating system developed by
Chorus Systems, France. A Chorus system is composed of a minimal Nucleus
and a set of independent system servers that rely on the basic, generic services
provided by the Nucleus. The most important abstractions in Chorus are: .

e An actor is a protected virtual address space that can be either in user
mode or in supervisor mode. Any given actor is tied to anode and a given
node can support many simultaneous actors.

e A thread is the unit of execution. A thread is always tied to one and only
one actor. One or more threads can run simultaneously within an actor.
These threads share the resources of that actor and can communicate
using the shared memory provided by the address space of the actor.

e A message is a contiguous byte string used for interprocess communi-
cation. ’

e A port is an address, designated with an unique identifier, to which
messages can be sent, and a queue holding the messages received but
not yet consumed by the threads. A port can only be attached to a single
actor at a time, but can be successively attached to different actors,
effectively migrating the port from one actor to another. Ports may also
be grouped together dynamically to form port groups.

The Chorus virtual memory system [Abrossimov90] provides support for sep-
arate address spaces, efficient and versatile mechanisms for data transfer
between address spaces, and between secondary storage and an address space.
Secondary storage objects, called segments, are managed outside of the mem-
ory manager subsystem by external pagers called segment mappers. Segments
are named by capabilities, containing the mapper’s port name and a key. The
key is opaque to the system, and used by the mapper to manage and pro-
tect segment access. The mapper is always invoked using the Chorus RPC
mechanism.

A segment can be mapped into many actor address spaces on many nodes at
the same time. It can also be accessed by explicit operations by any number of
threads. When a segment is shared among different nodes, the segment map-
per is in charge of maintaining the segment coherency. A centralised mapper
was developed to support a centralised coherence algorithm as described in the



84. THE YV SYSTEM 81

IVY system. Another set of mappers [Abrossimov92], which includes a global
mapper and a per node local mapper, have been implemented to support a
dynamic decentralised coherence algorithm used in the IVY system.

8.4 TheV System

The V system [Cheriton88a] is an operating system developed at Stanford Uni-
versity as part of a research project to explore issues in distributed systems.
The system is structured as a relatively small distributed kernel and a set of
service modules. The V kernel provides a network transparent abstraction of
address spaces, lightweight processes and interprocess communication.

In the V kernel memory management system [Cheriton88b}, an address space
consists of ranges of addresses, called regions, bound to some portions of open
files. A reference to a memory cell of a region is semantically a reference to the
corresponding data in the open file bound to this region. A simple ownership
protocol is used in conjunction with a lock manager at the backing server to
implement region coherency. :

V++, the extended V system, supports external page-cache manage-
ment [Harty92], which provides applications with a page frame cache abstrac-
tion to monitor and control the amount of physical memory available for exe-
cution, the contents of this memory and the scheduling and nature of page-
in/page-out. The mechanism consists of a number of segment managers and
a system page cache manager (SPCM); they run in user space. The segment
manager is similar to external pagers in Mach and Chorus except in main-
taining free page frames allocated by the SPCM. The SPCM allocates from
the global memory pool among the segment managers and enables monitoring
and controlling of the physical memory availability for different applications.
Performance is measured but no figure about servicing remote page faults is
given. '

8.5 Clouds

Clouds [Dasgupta91] is a distributed object-based operating system developed
at the Georgia Institute of Technology, USA. The Clouds system is composed of
persistent named address spaces called objects. Clouds objects encapsulate
code and data and provide data storage, data manipulation, data sharing,



82 CHAPTER 8. RELATED WORK

concurrency control, and synchronisation. Control flow is achieved by threads
invoking objects. A thread is not associated with a single address space and
may span machine boundaries during the course of its execution. Data flow is
achieved by parameter passing. The Clouds implementation has three levels:
the minimal kernel Ra which provides the mechanisms for managing basic -
resources, namely processor and memory; a set of system objects which are
trusted software modules providing essential system services; and finally some
user objects which provide non critical services such as naming and spooling.

A virtual address space in Clouds is partitioned into three distinct regions:
O space for the object, P space for the thread, and K space for the kernel.
Storage in the system is represented by segments. A segment is an arbitrary
length uninterpreted sequence of bytes which can be mapped into virtual
address spaces. Associated with a segment are static storage attributes such
as copy-on-write, persistent, and non-persistent, as well as static access con-
trol information such as read-only and read-write.

Clouds supports persistent distributed shared memory with memory
coherency being maintained by a lock-based multiple-reader/single-writer pro-
tocol at the segment level [Ananthanarayanan92b]. Performance measure-
ments are taken on a configuration of Sun 3/60s (MC68020, 16 MHz clock)
connected by a 10Mbps Ethernet. Getting a 8-Kbyte page from a remote
data server takes 15.50 milliseconds without forwarding and 18.50 millisec-
onds with forwarding. Further research in the Clouds project concludes that
no single coherence protocol can perform well for all types of application
[Ananthanarayanan92a]. They proposes a solution which requires the appli-
cation programmers to use the primitives provided by the system to maintain
the memory coherency by themselves. The users have to be completely aware
of the underlying DSM mechanisms and have to explicitly activate the coher-
ence operations. ’ :

8.6 Choices

Choices [Campbell93] is an operating system for distributed and shared mem-
ory multiprocessor systems developed at the University of Illinois at Urbana-
Champaign, USA. It uses class hierarchies and object-oriented programming
to facilitate the construction of the operating system.

A virtual address space is referred to as a Domain. One or more lightweight
Processes can execute within one domain. The entity for sending and receiv-



8.7. SPRING | 83

ing messages is the MessageContainer. It is named and can have multiple
senders and multiple receivers.

In the Choices virtual memory [Russo89], a MemoryObject is a logical col-
lection of data, which may be a process stack, code, heap, or data of a program.
Subclasses of MemoryObject, such as PersistentStore, which represents var-

ious kinds of disks and files, may be used. A MemoryObject is made accessible

to a process by its MemoryObjectCache. After being cached, the contents of
the MemoryObject may be referenced by virtual memory addresses. A Mem-
oryObject can be mapped into multiple Domains to provide shared memory.

DistributedMemoryObjectCache and PageRecord were added to support
distributed virtual memory [Sane90] in Choices. An instance of the Distribut-
edMemoryObjectCache provides a local physical memory cache for the copy of
the shared data on a network node. It is responsible for locating and retriev-
ing pages to satisfy virtual memory faults generated by the processes on its
node. Memory coherence protocols are implemented in the PageRecord and
memory coherency is maintained at the page level using a write-invalidate
multiple-reader/single-writer protocol. Performance is evaluated by compar-
ing the timing for applications in DSM and in shared memory multiprocessor
systems.

8.7 Spring

Spring [Hamilton93] is a distributed, multi-threaded operating system devel-
oped at Sun Microsystems Laboratories, USA. System resources are repre-
sented as objects. A Spring object is an abstraction that contains state and
provides a set of methods to manipulate the state.

A Spring domain is an address space with a collection of threads. A cross-
domain call chain, which is a series of application visible threads, is referred to
as a shuttle and is an entity schedulable by the kernel. A door represents an
entry point for a cross-domain call associated with both an entry point program
counter (PC) and an integer datum that can be used to identify a particular
object in the target domain. The Spring kernel supports basic cross domain
invocations, threads, and low-level machine-dependent interrupt handling
and provides basic virtual memory support for memory mapping and physical

memory management. Other operating system functions run as user-mode
servers.




84 CHAPTER 8. RELATED WORK.

There are two sets of agents that cooperate to provide virtual memory in the
Spring operating system [Khalidi93a]. A per-node virtual memory manager is
responsible for handling mapping, sharing, and caching of local memory. The
virtual memory manager depends on external pagers for accessing backing
storage and maintaining inter-machine coherency.

The main components in the Spring virtual memory system are address
spaces and memory objects. An address space object represents the virtual
address space of a Spring domain while a memory object is an abstraction
 of memory, which may have corresponding secondary storage, that can be
mapped into address spaces. The main operations on address space objects are
to map and unmap memory objects into selected address ranges of the address
space. Operations are also provided to allocate new zero-filled memory. A
‘memory object can be mapped into more than one address space at the same
time on more than one network node. '

The virtual memory architecture defines two other types of objects: the pager
object and the cache object. - The pager object is implemented by exter-
nal pagers and provides operations to page in and out memory blocks and
is used by the virtual memory manager to populate a local memory cache.
The cache object is implemented by the virtual memory manager and is
used to build a two-way communication channel between the virtual mem-
" ory manager and the pager of a cache object. Cache coherency is at the page
level and a centralised control multiple-reader/single-writer protocol is imple-
mented [Nelson93]. -

8.8 Comandos

Comandos [Cahill93] is an ESPRIT project which aims to provide an inte-

grated environment for the construction of distributed applications.

The Comandos virtual machine provides management of persistent storage,
control of distributed computations, network communications and transaction
management. At the upper level of the virtual machine is the generic run-
time which provides a language independent layer implementing distributed
object invocation. The lower level of the virtual machine is the kernel layer,
including those components which must be implemented in a protected way,
which interfaces directly with the underlying host environment.

From the virtual machine’s point of view, Comandos objects are simply con-




8.8. COMANDOS 85

tiguous blocks of memory. A supported language may bind class code to objects
through its language specific run-time library. The objects existing in a Coman-
dos system are divided into a set of non-overlapping extents. Every object
belongs to exactly one extent. At any time some of the objects belonging to
an extent may be stored in secondary storage while others may be mapped
into virtual memory at various nodes. A context is a dynamically varying
collection of objects located at the same node and may contain objects from
one extent only. There may be only one context for a given extent at any
given node. All objects belonging to an extent that are in use at a node are
mapped into the single context for that extent at the node. A cluster contains
a set of persistent objects which are mapped into one contiguous region of
virtual memory. Jobs and activities are the units of distributed processing
of objects. An activity is a sequence of synchronous invocations on one or more
objects possibly on different nodes and a job is a set of one or more activities.
Jobs and activities communicate by means of shared objects. Virtual object
memory (VOM) implements the distributed object space manipulated by jobs
and activities.

8.8.1 Amadeus

The Amadeus platform [Cahill93] is the reference implementation of the
Comandos virtual machine developed at Trinity College, Dublin, Ireland. The
Amadeus kernel is implemented as a guest layer on Unix. Each extent is
defined by a text image which includes all of the classes in the extent. Each con- -
text is implemented as a Unix process. Activities are represented by threads
in each visited context. At any time, a cluster can be mapped into at most
one context anywhere in the system. In order to access a shared object, activ-
ities running on nodes other than the one which has the object mapped have
to make cross-context invocations via RPC. The Amadeus platform has been
ported to run on Mach 3.0 Unix servers.

8.8.2 COOL

Chorus Object-Oriented Layer (COOL) [Lea93] is the Chorus implementation
of the Comandos virtual machine developed in Chorus Systems, France. The
COOL-base extends the Chorus microkernel to support distributed persistent
virtual memory by the context space model. A context space is a collection
of distinct address spaces on one or more nodes. Any cluster belonging to a




86 ‘ ‘ CHAPTER 8. RELATED WORK

context space is mapped into all contexts of that context space at the same
range of addresses. Coherency between clusters in a context space is managed
by the distributed virtual memory mapper described in section 8.3.

8.8.3 Guide-2

Guide-2 [Balter93] is a native implementation of the Comandos system on
top of the Mach 3.0 microkernel operating system developed at the Unite
Mixte Bull-IMAG/Systems, France. Any context within a job is represented
by a Mach task. A job is hence a collection of Mach tasks. A major feature
of Guide-2 is the extensive use of memory management facilities offered by
Mach. Clusters are managed by a set of Mach memory managers as described
in section 8.2. The memory manager which manages a cluster controls the
coherency of the shared data. The performance of reading a page from and
writing a page to the secondary storage is reported but no figure about the
coherency mechanism is given. :

8.9 Casper

Casper [Vaughan92] is a distributed persistent store architecture developed
at the University of Adelaide in Australia. It aims to support the persistent
programming language Napier88 using facilities, such as memory mapping
and the external pager, provided by the Mach operating system.

The system consists of a Stable Store Server (SSS) and a number of clients.
The main functions of the SSS are managing the supply of pages on demand
to clients, ensuring that coherent versions of the pages are supplied and main-
taining the integrity of the stable store. The SSS interface to the clients is
provided by the Server Request Handler (SRH). Each client has an interface
called the Client Request Handler (CRH) for communicating with the SSS and
other clients. -

The cache coherence protocol used in Casper is a central directory, multiple-
reader/single-writer protocol. All read and write requests are made directly
to the SSS. The SSS maintains all the information concerning the distribu-
tion and modification of pages. If a page has been modified since the last
stabilisation and a current copy is not available in the store, read requests for
the page are forwarded to a client with an up-to-date copy of that page. The



8.10. OPAL - 87

server only services requests itself when it holds a valid copy of the page. Ifa
client wishes to modify a page, it must already have read access to that page
and send the SSS a modification request. The SSS next instructs all clients
which have read access to invalidate the page. These clients must reply with
an acknowledgement to the SSS on completion of the invalidation. Once all
acknowledgements are received the SSS sends a Write Acknowledge signal to
the originally requesting client and the client can go ahead to modify the page.

A client consists of three main threads: the user program, the CRH and the
external pager. The external pager handles any page faults or protection
faults caused by the user program. The CRH and the external pager jointly
implement the client’s part of the cache coherence protocol.

8.10 Opal

Opal [Chase92] is an operating system for a distributed environment devel-
oped at the University of Washington, USA. It defines a single address space
that maps all data in the system including persistent data. The global address
space is extended across the network by placing servers on each node that
maintain a partitioning of the address space, both to ensure global unique-
ness and to allow data to be located from its virtual address.

The units of execution are threads. A protection domain provides the -
execution context for threads, restricting their access to a specific set of seg-
ments at a particular instant in time. All the protection domains share a
single virtual address space. The units of storage allocation and protection
are segments, which are virtually contiguous extents of pages and potentially
persistent. The virtual address of a segment is a permanent attribute, fixed
by the system at allocation time. Once created, a segment can be explicitly
attached to protection domains, permitting threads within those domains to
access the segment. Conversely, segments can be explicitly detached to deny
access. Threads, protection domains and segments are named by capabili-
ties. Threads in different protection domains can communicate using shared
memory if their segment privileges overlap. In addition, control can be trans-
ferred between domains. A portal is an entry point to a domain, uniquely
identified by a 64-bit value. Any thread that knows the value of a portal name -
can make a system call that transfers control into the protection domain
named by the portal.

An Opal prototype is implemented on top of the Mach microkernel operating




88 : CHAPTER 8. RELATED WORK

system [Chase93]. Within the single address space, Opal protection domains
are implemented as Mach tasks. Opal segments are implemented as Mach
memory objects. Memory coherency has not been supported in the prototype
implementation.

8.11 Pegasus

Pegasus [Leslie93] is a joint project of the University of Cambridge in the UK
and the University of Twente in the Netherlands. The major goal is to design
and implement an operating system that allows capture, rendering, storage,
and interactive processing of multimedia data by user-level applications, while
keeping all of the desirable properties of distributed systems, such as resource
sharing, data sharing, security, and fault tolerance.

It is proposed that a shared address space could be used by local groups of
mutually trusted machines that share the same data representation. A Pega-
sus address space is long lived, that is, the address space survives processes
and processor crashes. The operating system manipulates memory objects
called segments. Most segments are linked to typed external objects referred
to as files. A segment occupies a contiguous range of virtual addresses and
may be paged in and out.

8.12 Comparison

- A great deal of effort has been made to support data persistency in distributed
~ systems using memory-mapping techniques as shown by the related projects
and systems reviewed in this chapter.

Apollo Domain had the same goal as COMMOS, to provide a coherent inte-
grated virtual memory in distributed systems, but it was not a microkernel
system. Also, although it had the notion of ype similar to that in COMMOS it
did not make use of this property to provide clients more flexibility to choose
the way objects are managed.

Mach, Chorus and the V system share many common points which are used in
COMMOS. They are microkernel operating systems. Lightweight processes
and efficient message passing are supported and memory-mapped secondary
storage objects are managed by external pagers. V++ takes a step further




8.12. COMPARISON 89

to allow applications to control the usage of physical memory. Unlike COM-
MOS, however, memory coherency in distributed environments is maintained
by external pagers at either segment or page level and each external pager
usually supports only one coherence protocol.

Clouds, Choices and Spring are organised using an object-oriented approach.
All components of the operating system are treated as objects. In Clouds and
Spring, there is no explicit interprocess communication mechanism and all
communications are carried out via object invocations. Spring borrows many
ideas from Mach and Chorus, especially in virtual memory management. It
develops the notion of the external pager by separating the memory object
representing memory from the pager object that provides the methods to page-
in and page-out the memory. This separation allows the memory object and
the pager object to be placed in different domains. The performance of fetching
a page from a remote server in Clouds is faster than that in COMMOS. The
main reason is that low-level message passing is used and no disk access is
involved in the measurements. Researchers in the Clouds project have noticed
that no single coherence pratocol can perform well for all types of applications.
However, the solution they proposed to support multiple coherence protocols
requires the applications to explicitly invoke the coherence operations.

The major goals of Comandos and Casper are to build a platform to sup-
~ port persistent programming languages on top of existing operating systems.
There is no coherency problem to tackle in the Amadeus implementation since
mapping an object simultaneously into multiple address spaces on different
nodes is forbidden. The COOL-base simply makes use of the underlying dis-
tributed virtual memory mapper to maintain object coherency while Guide-2
developed their own coherence mechanism in external pagers.

Finally, Opal and Pegasus are both trying to explore the use of 64-bit wide
address spaces. As demonstrated in the Opal prototype implementation, these
abstractions can easily be constructed on top of a system like COMMOS.

To sum up the discussion, COMMOS exploits the advantages of the microker-
nel approach, the memory-mapping technique and the typed object principle
to provide a flexible and well-defined interface for coherent memory-mapped.
object management in distributed computing environments. One important
feature of COMMOS is the separation of the coherence server from the exter-
nal pager so that multiple coherence protocols can be supported via a generic
interface. This allows different coherence protocols to be applied not only to
different types of object but also to different individual system-level objects.
The dynamic adoption of a coherence protocol can also be supported.




Chaptér 9
Conclusions

In this chapter, the research on the COMMOS architecture is summarised
and the results are highlighted. Some suggestions for further work are then -
given. It is concluded that COMMOS provides a flexible approach to future
system design. ' '

9.1 Conclusions

A coherent memory-mapped object system (COMMOS) architecture has
been proposed to restructure virtual memory to support distributed comput-
ing environments. The requirements for the integration of virtual memory
with secondary storage mechanisms and local memory with remote memory
were deduced from an analysis of existing virtual memory and storage man-
agement and the observation of their limitations, particularly in the emerging
microkernel architectures and distributed computing environments.

Application programmers are often distracted by different views of volatile
data and persistent data in traditional two-level store systems. This impairs
the quality and productivity of software development. Besides, the two-level
store system is not efficient because of mandatary data copying and user-
kernel boundary crossing. This is exacerbated in a microkernel architecture
where most of the user-kernel boundary crossings become context switches.
Due to double paging, resources are not used efficiently and the double paging
anomaly may occur in database systems implemented on top of two-level
store systems. These lead to the desirability of integrating main memory with
secondary storage. With careful design, the memory-mapping technique can

90



91. CONCLUSIONS 91

be used for this purpose.

In distributed environments, especially in the wide address space architec- -
tures, DSM is becoming increasingly attractive since it is easier to program
than the message-passing abstraction. Coherency control, however, is expen-
sive. Also, existing DSM systems typically provide only one coherence protocol.
There exists a potential mismatch between the supplied coherence protocol
and some applications’ requirements. Current distributed file systems rely
on client caching to achieve high performance. The cache coherency problem
exists here too. It is desirable that some uniform and flexible approach could
be employed to integrate local memory with remote memory. The flexible
coherence mechanism proposed in this dissertation can be used to reduce the
coherency overhead and to avoid coherence protocol mismatch.

An outline of the architecture framework of COMMOS was presented. In
particular, the mismatch between cache coherence protocols and application
requirements was discussed. It was proposed that coherence servers are sep-
arated from external pagers to support a flexible coherence mechanism for
multiple coherence protocols. This, combined with the typed object model,
allows clients to choose the most suitable protocols for their applications and
hence solves the problem of protocol mismatch.

The dissertation then focussed on the design of a flexible coherence mecha-
nism. Various design issues, such as granularity, remote communication tools,
and the policy used for writing the modifications back to secondary store, were
discussed. Several modified coherence protocols, namely centralised-control
and distributed-control write-invalidate protocols and a write-update protocol
were described. The integration of low-level coherency control with high-level
concurrency control realises system-wide object coherency and synchronisa-
tion without severely impacting the system performance.

A prototype implementation of COMMOS which realises both write-invalidate
protocols was given and performance measurements were presented. The
prototype proves that the proposed COMMOS architecture is practicable.

. The application of COMMOS was demonstrated by the exploration of how to
build a C++ class library to support distributed persistent programming. This
showed that the use of COMMOS is indeed fiexible and straightforward.

Some related systems and projects, which share the same goal to support
data persistency in distributed systems using the memory-mapping technique,
were reviewed and compared with COMMOS.




92 . CHAPTERS. CONCLUSIONS

9.2 Further Work

The investigation of coherent memory-mapped object system architecture in
this dissertation has centred on the support of a flexible cocherence mecha-
nism for multiple coherence protocols and the exploitation of the typed object
principle to enable clients to choose the most suitable protocols for their appli-
cations. This section suggests some further work that can be done. Perhaps
the easiest and most obvious extension of this work is to provide more flexible
coherence schemes. Further research on supporting heterogeneous architec-
tures is interesting. In addition, exploiting COMMOS functionality to sup-
port persistent programming languages, distributed database systems and
computer-supported cooperative work are ambitious and useful projects.

9.2.1 More Flexible Coherence Schemes

The current design of COMMOS enables clients to advise the system to apply
different coherence protocols to different types of object. More flexible schemes
may be desirable and are easy to be added to the current implementation.

Individual Object Coherency COMMOS is based on sharing typed data
objects rather than a flat virtual address space. It is possible to apply differ-
ent coherence protocols to different individual objects. One way of realising
this is to build a mini-database for storing and retrieving information about
which coherence protocol should be applied to a specific object. This informa-
tion would then be used to override the type description about the coherence
protocol when the object is created or mapped.

Adaptive Coherency Control The runtime situation, such as the work
load of the system, the concurrency level of a particular object and the access
pattern to an object may change dynamically. In order to optimise system
performance in a changing world, it may be required that different coherence
protocols are used when circumstances change. Some mechanism which mon-
itors the system might be built and used to choose dynamically the coherence
protocol according to the runtime condition. :



92. FURTHER WORK 93

9.2.2 Support for Heterogeneous Architectures

COMMOS currently supports only homogeneous systems. It is worth explor-
ing whether it is feasible to support a coherent memory-mapped object system
architecture in heterogeneous systems.

Multiple Page Sizes In a heterogeneous system or a homogeneous system
in which different machines use different page sizes, support for multiple
page sizes in the coherence mechanism is desirable. A server page size can
be adopted by the coherence mechanism for its own use. For requests which
are smaller than the server page size, the request may be rounded up. For
requests which are larger than the server page size, the request is satisfied by
multiple server pages.

Data Representation Translation Interfacing heterogeneous architec-
tures raises not only the problem of potentially different page sizes, but also
the problem of different data representations. A server for translation between
different data representations may be built and the translations may be car-
ried out when pages are required. The other problem is that it may require
close integration with programming language compilation in order to identify
which data items need to be converted.

9.2.3 Exploitation of COMMOS Functionality

Another area for further work is in the exploitation of COMMOS functionality
to support high-level applications. Some of them are persistent programming

languages, distributed databases and computer-supported cooperative work
(CSCwW). '

Persistent Programming Languages The ease of supporting distributed
persistent programming has been illustrated in Chapter 7. A complete class
library may be built to exploit the COMMOS architecture. It is particularly
interesting to explore how to support interworking between different program-
ming languages.

Distributed Database Systems The COMMOS architecture eliminates
double paging and provides support for coherent persistent objects in dis-



94 : . CHAPTERS. CONCLUSIONS

tributed environments. As discussed earlier, the locking mechanism in COM-
MOS can be used to implement sophisticated concurrency control facilities
such as two-phase locking and transactions. In order to support database sys-
tems, persistent objects should be recoverable. This can be realised by using
the write ahead log or shadow paging techniques.

Computer-Supported Cooperative Work Another potential application
is computer-supported cooperative work (CSCW) [Reinhard94]. CSCW soft-
ware systems can be divided into four classes of features or devices: input,
output, application and data. Each of them can be d15tr1buted or centralised.
Centralising the data guarantees consistency but requires high traffic to the
application or I/O devices. Distributed data requires less traffic for updates
and is hence more desirable than the centralised scheme. COMMOS could be
used to support coherent distributed data management in CSCW.

9.3 FinaI'Word

The major contribution of this dissertation is exploring the architectural sup-
port for a flexible coherence mechanism for memory-mapped object systems.
Through the COMMOS architecture, main memory has been integrated with
secondary storage and local memory has been integrated with remote mem--
ory. Virtual memory is hence restructured to support distributed computing
environments. Meanwhile, the system is kept open to meet different require-
ments for different applications without sacrificing system performance. The
prototype implementation and performance measurements have shown that
the architecture is practicable and feasible.



Bibliography

[Abrossimov90] V Abrossimov, M Rozier, and M Gien. Virtual Memory Manage-
ment in Chorus. In W. Schroder-Preikschat and W. Zimmer, editors, Progress
in Distributed Operating Systems and Distributed System management: Euro-
pean Workshop, Berlin, FRG, April 18/ 19, 1989 Proceedings, volume 433 of Lec-
ture Notes in Computer Science, pages 45 — 59. Springer-Verlag, 1990. (cited
on page 80)

[Abrossimov92] V Abrossimov, F Armand, and M I Ortega. A Distributed Con-
sistency Server for the CHORUS System. In Proceedings of SEDMS I1I,
Symposium on Experiences with Distributed and Multiprocessor Systems, New-
port Beach, CA, March 26 — 27 1992. (cited on page 81)

[Accetta86] M Accetta, R Baron, D Golub, R Rashid, A Tevanian, and M Young.
Mach: A New Kernel Foundation for Unix Development. In Proceedings
of the Summer 1986 USENIX Conference, pages 93 — 112, July 1986. (cited
on pages 6, 21, 78) '

[Amaral92] P Amaral, C Jacquemot, and R Lea. A Model for Persistent Shared
Memory Addressing in Distributed Systems. Technical Report CS/TR-
92-52, Chorus Systems, 6 Avenue Gustave Eiffel, F-78182, Saint-Quentin-en-
Yvelines, France, September 1992. (cited on page 75)

[Ananthanarayanan92a] R Ananthanarayanan, M Ahamad, and R J LeBlanc.
Application Specific Coherence Control for High Performance Dis-
tributed Shared Memory. In Proceedings of SEDMS III, Symposium on
Experiences with Distributed and Multiprocessor Systems, Newport Beach, CA,
March 26 — 27 1992. (cited on page 82)

[Ananthanarayanan92b] R Ananthanarayanan, S Menon, A Mohindra, and
U Ramachandran. Experience in Integrating Distributed Shared Mem-
ory with Virtual Memory Management. ACM Operating System Review,
26(3):4 — 26, July 1992. (cited on page 82) '

9



96 | BIBLIOGRAPHY

[Atkinson83] M P Atkinson, P J Bailey, KJ Chisholm, P W Cockshott, and R Mor-
rison. An Approach to Persistent Programming. The Computer Journal,
~ 26(4):360 — 365, 1983. (cited on pages 11, 12, 65) '

[Bacon93] Jean Bacon. Concurrent Systems: An Integrated Approach To
Operating Systems, Database, And Distributed Systems. International
Computer Science Series. Wokingham: Addlson-Wesley, 1993. (cited on
pages4 5,9, 20, 23; 25, 28)

[Bal93] HEBaland M F Kaashoek. Object Distribution in Orca Using Compile-
Time and Run-Time Techniques. In Proceedings of 8th Annual Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’93), pages 162 — 177, Washington, DC, USA, 26 Sep — 1 Oct 1993 ACM
Press. (cited on page 13)

[Balter93] R Balter, P Y Chevalier, A Freyssinet, D Haglmont S Lacourte, and
X Rousset de Pina. Is the Microkernel Technology Well Suited for the
Support of Object-Oriented Operating Systems: the Guide Experience.
In Workshop on Microkernel and Other Kernel Architectures, September 1993.
(cited on page 86)

[Birrell84] A D Birrell and B J Nelson. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(1):39 — 59 J anuary 1984. (cited
on page 12)

[Bisiani88] R Bisiani and A Forin. Multilanguage Parallel Programming of
Heterogeneous Machines. IEEE Transactions on Computers, 37(8):930 —
945, August 1988. (cited on page 12)

[Bliot90} J Bliot and B Moss. Design of the Mneme Persistént Object Store.
ACM Transactions on Information Systems, 8(2):103 — 139, April 1990. (cited
on page 75)

[Blott94] S Blott, H Kaufmann, L Relly, and H J Schek. Buffering Long
Externally-Defined Objects. In Malcolm Atkinson, Veronique Benzaken,
and David Maier, editors, Proceedings of Sixth International Workshop on Per-

' sistent Object Systems, pages 40 — 53, Tarascon, France, 5 — 9 September 1994.
(cited on page 65) | |

[Bricker91] A Bricker, M Gien, M Guillemont, J Lipkis, D Orr, and M Rozier. A
New Look at Microkernel-Based UNIX Operating Systems: Lessons
in Performance and Compatibility. Technical Report CS/TR-91-7, Chorus
systemes, February 1991. (cited on page 6)

[Cahill93] V Cahill, R Balter, N Harris, and X R de Pina. The Comandos Dis-
tributed Application Platform. Technical report, ESPRIT, January 1993.
(cited on pages 66, 84, 85)



BIBLIOGRAPHY 97

[Campbell93] R H Campbell, N Islam, D Raila, and P Madany. Designing and
Implementing Choices: An Object-Oriented System in C++. Communi-
cations of the ACM, 36(9):117 — 126, September 1993. (cited on page 82)

[Carriero89] N Carriero and D Gelernter. Linda in Context. Communications of
the ACM, 32(4):444 — 458, April 1989. (cited on page 13)

[Chang89] Ellis E Chang. Effective Clustering and Buffering in an Object-
Oriented DBMS. PhD Thesis, Dept of Electrical Engineering and Computer
Science, University of California at Berkeley, Berkeley, CA 94720, 1989. Also
available as Technical Report UCB/CSD 89/515. (cited on page 72)

[Chase92] J S Chase, HM Levy, E D Lazowska, and M Baker-Harvey. Lightweight
Shared Objects in a 64-Bit Operating System. In Andreas Paepcke, editor,
Proceedings of 7th Annual Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA'92), pages 397 — 413, Vancouver,
British Columbia, Canada, 18 — 22 Oct 1992 1992. ACM Press. (cited on
pages 75, 87) ' '

[Chase93] J S Chase, HM Levy, M J Feeley, and E D Lazowska. Sharing and Pro-
tection in a Single Address Space Operating System. Technical Report
93-04-02, Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195, April 1993. (cited on pages 20, 88)

[Cheriton88a] D Cheriton. The V Distributed System. Communications of the
ACM, 31(3):314 — 333, March 1988. (cited on pages6, 21, 81)

[Cheriton88b] D R Cheriton. The Unified Management of Memory in the V Dis-
tributed System. Technical Report STAN-CS-88-1192, Department of Com-
puter Science, Stanford University, Stanford, California 94305, USA, August
1988. (cited on page 81)

[Chew92] K-M Chew and A Silberschatz. Toward Operating System Support
for Recoverable-Persistent Main Memory Database Systems. Technical
Report TR-92-05, Department of Computer Science, University of Texas at
Austin, Austin, TX 78712, February 1992. (cited on page 9)

[Coulouris94] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
Systems Concepts and Design. Addison-Wesley Publishing Company, Sec-
ond edition, 1994. (cited on pages$, 6, 12, 15, 16, 32, 56)

[Dasgupta91] P Dasgupta, R J LeBlanc Jr, M Ahamad, and U Ramachandran. The
Clouds Distributed Operating System. IEEE Computer, 24(11):34 — 44,
November 1991. (cited on page 81)

[Dean92] R W Dean and F Armand. Data Movement in Kernelized Systems.
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, Pennsylvania 15213, 1992. (cited on page9)




98  BIBLIOGRAPHY

[Dharanikota94] S Dharanikota, K Maly, and C M Overstreet. Performance Eval-
uation of TCP(UDP)/IP over ATM Networks. Technical Reports TR-94-23,

Computer Science Department, Old Dominion University, Norfolk VA 23529-

0162, 1994. (cited on page 32)

[Dizon91] Michael Joseph Dixon. System Support for Multi-Service Traffic.
PhD Thesis, University of Cambridge Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, England, September 1991. Also
available as University of Cambridge Computer Laboratory Technical Report
No. 245. (cited on page28)

[Ferreira94] P Ferreiraand M Shapiro. Garbage Collection of Persistent Objects
in Distributed Shared Memory. In Malcolm Atkinson, Veronique Benza-
ken, and David Maier, editors, Proceedings of Sixth International Workshop on
Persistent Object Systems, pages 176 — 191, Tarascon, France, 5 — 9 September
1994. (cited on page 65)

[Forin88] A Forin, J Barrera, M Young, and R Rashid. Design, Impleméntation,_

and Performance Evaluation of a Distributed Shared Memory Server
for Mach. Technical Report CMU-CS-88-165, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA 15213, August 1988.  (cited on
pages 19, 79)

[Fotheringham61] J Fotheringham. Dynamic Storage Allocation in the Atlas
Computer, Including an Automatic Use of a Backing Store. Communi-
cations of the ACM, 4:435 — 436, October 1961. (cited on page7)

[Gien91] M Gien. Next Generation Operating Systems Architecture. In
A Karshmer and J Nehmer, editors, Operating Systems of the 90s and Beyond
— International Workshop, number 563 in Lecture Notes in Computer Science,
pages 227 - 232. Springer-Verlag, Dagstuhl Castle, Germany, July 1991. (cited
on page5)

[Goldberg74] R P Goldberg and R Hassinger. The Double Paging Anomaly. In
Proceedings of AFIPS National Computer Conference, volume 43, pages 195 —
199, Chicago, Illinois, May 6 — 11 1974. AFIPS Press. (cited on page 10)

[Goscinski91] Andrzej Goscinski. Distributed Operating Systems — The Logi-
cal Design. Addison-Wesley Publishing Company, 1991. (cited on page 34)

[Gould91] A J Gould. Implementation of the IP and UDP Communications
Protocols on the Experimental Operating System Wanda. Computer
Science Tripos, University of Cambridge Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, England, 1991. (cited on
page48) ' '




BIBLIOGRAPHY | 99

[Gourhant92] Y Gourhant, S Louboutin, V Cahill, A Condon, G Starovic, and
B Tangney. Dynamic Clustering in an Object-Oriented Distributed Sys-
tem. In Proceeding of OLDA-II Workshop (Objects in Large Distributed Appli-
cations), Ottawa, Canada, 18 October 1992. (cited on page 72)

[Group92] Arjuna Research Group. The Arjuna System Programmer’s Guide.
Technical report, Department of Computer Science, Computing Laboratory,
University of Newcastle Upon Tyne, NE1 7RU, UK, July 1992. (cited on
page 66)

[Hamilton84] Kenneth Graham Hamilton. A Remote Procedure Call System.
PhD Thesis, University of Cambridge Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, England, December 1984. Also
available as University of Cambridge Computer Laboratory Technical Report
No. 70. (cited on page 33)

[Hamilton93] G Hamilton and P Kougiouris. The Spring Nucleus: A Microkernel
for Objects. In Proceedings of USENIX Summer 1993 Technical Conference,
pages 147 — 159, Cincinnati, Ohio, USA, 21 — 25 June 1993. (cited on pages 6,
83)

[Harty92] K Harty and D R Cheriton. Application-Controlled Physical Mem-
ory using External Page-Cache Management. In Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 187 — 197, Boston, Massachusetts, 12 — 15 October 1992. Also
as ACM SIGPLAN Notices 27(9). (cited on page 81)

[Hayter93] Mark David Hayter. A Workstation Architecture to Support Mul-
’ timedia. PhD Thesis, University of Cambridge Computér Laboratory, New
Museums Site, Pembroke Street, Cambridge CB2 3QG, England, November
1993. Also available as University of Cambridge Computer Laboratory Tech-
nical Report No. 319. (cited on page4)

[Hemmendinger92] D Hemmendinger and C J Fleckenstein. Architectural Sup-
port for Distributed Shared Memory. In M C Yovits, editor, Advances in
Computers, volume 35, pages 270 — 285. Academic Press Inc., 1992. (cited on
page12) '

[Herlihy82] M Herlihy and B Liskov. A Value Transmission Method for Abstract
Data Types. ACM Transactions on Programming Languages and Systems,
4(4):527 — 551, October 1982.. (cited on page 12)

[Huang92] F Huang. Current Status of Wanda Memory-Mapped Object Man-
agement. Internal document, University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge CB2 3QG, England, Septem-
ber 1992. (cited on page 29)



100 BIBLIOGRAPHY

[Kane92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture: MIPS RISC
Processors, Reference for the R2000, R3000, R6000, and the New R4000
Reduced Instruction Set Computer Architecture. Prentice Hall, 1992.
(cited on page4)

~ [Kara94] M Kara, R Drew, N D Hunter, J Jackson, and P M Dew. An Empirical

Study of Video Application Performance over ATM and Ethernet Net-
works. Research Report 94-17, School of Computer Studies, University of
Leeds, May 1994. (cited on page 32)

[Khalidi93é] Y A Khalidi and M N Nelson. The Spring Virtual Memory System.
Technical Report SMLITR-93-09, Sun Microsystems Laboratories, Inc, MTV29-
112, 2550 Garcia Ave, Mountain View, CA 94043, USA, February 1993. (cited

on page 84)

[Khalidi93b] Y A Khalidi, M Talluri, and M N Nelson. Virtual Memory Support

" for Multiple Page Sizes. Technical Report SMLITR-93-17, Sun Microsystems

Laboratories, Inc, MTV29-112, 2550 Garcia Ave, Mountain View, CA 94043,
USA, September 1993. (cited on page 33)

' iKorthQ 1] HenryF Korth and Abraham Silberschatz. Database System Concepts.

Computer Science Series. McGraw-Hill, Inc., Second edition, 1991.  (cited on
pages 9, 20)

[Krueger93] K Krueger, D Loftesness, A Vahdat, and T Anderson. Tools for the
Development of Application-Specific Virtual Memory Management.
Technical Report UCB/CSD 93/740, University of California Computer Science
Division, Berkeley, CA 94720, April 1993. (cited on page8)

[Lampson71] B W Lampson. Protection. In Proceedings of the Fifth Princeton
Symposium on Information Sciences and Systems, pages 437 — 443. Princeton
University, March 1971. Reprinted in Operating Systems Review, 8(1), January
1974, pp. 18— 24. (cited on page 24)

[Lampson79] B W Lampson and R F Sproull. ‘An Open Operating System for a
Single User Machine. In Proceedings of the 7th ACM Symposium on Operat-
ing System Principles, pages 98 — 105, 1979. (cited on page 6)

[Lea93] R Lea, C Jacquemot, and E Pillevesse. COOL: System Support for Dis-
tributed Programming. Communications of the ACM, 36(9):37 — 46, Septem-
ber 1993. (cited on page 85)

[Leach83] P J Leach, P H Levine, B P Douros, J A Hamilton, D L Nelson, and B L
Stumpf. The Architecture of an Integrated Local Network. IEEE Journal
on Selected Areas in Commaunications, 1(5):842 — 857, November 1983. (cited
on page 77)



BIBLIOGRAPHY 101

[Lee89] R B Lee. Precision Architecture. IEEE Computer, 22(1):78 — 91, January
1989. (cited on page4)

[Leslie93] I M Leslie, D McAuley, and S J Mullender. Pegasus — Operating Sys-
tem Support for Distributed Multimedia Systems. ACM Operating Sys-
tems Review, 27(1):69 — 78, January 1993. (cited on page 88)

[Li86] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors.
PhD Thesis, Yale University Department of Computer Science, New Haven, CT
06520, September 1986. Also available as Technical Report YALEU/DCS/RR-
492. (cited on pages 12, 13, 39, 40, 79)

[Liedtke93] J Liedtke. Improving IPC by Kernel Design. In Proceedings of 14th
ACM Symposium on Operating System Principles, pages 175 — 188, Asheville,
North Carolina, 5 — 8 December 1993. (cited on page 60)

[Liedtke94a] J Liedtke. Address Space Sparsity and Fine Granularity. In
Proceedings of the Sixth ACM SIGOPS European Workshop, Dagstuhl Castle,
Wadern, Germany, 12 — 14 September 1994. (cited on page 20)

[Liedtke94b] J Liedtke. Page Table Structures For Fine-Grain Virtual Mem-
ory. Technical Report 872, German National Research Center for Computer
Science (GMD), GMD I5.RS, 53754 Sankt Augustin, Germany, October 1994.
(cited on page 33)

[Liskov93] B Liskov, M Day, and L Shrira. Distributed Object Management
in Thor. In M Tamer Ozsu, Umesh Dayal, and Patrick Valduriez, editors,
Distributed Object Management, pages 79 — 91. Morgan Kaufmann Publishers,
Inc, 1993. (cited on page 65) A '

[Lo94] Sai-Lai Lo. A Modular and Extensible Network Storage Architecture.
PhD Thesis, University of Cambridge Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, England, January 1994. Also
available as University of Cambridge Computer Laboratory Technical Report
No. 326. (cited on pages 24, 54)

[Mainetto94] G Mainetto, M Di Giacomo, and L Vinciotti. Distributed Galileo:
a Persistent Programming Language with Transactions. In Malcolm
Atkinson, Veronique Benzaken, and David Maier, editors, Proceedings of Sixth
International Workshop on Persistent Object Systems, pages 487 — 509, Taras-
con, France, 5 — 9 September 1994. (cited on page 65)

[Mapp91] Glenford Ezra Mapp. An Object-Oriented Approach To Virtual Mem-
ory Management. PhD Thesis, University of Cambridge Computer Labora-
tory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, England,
September 1991. Also available as University of Cambridge Computer Labo-
ratory Technical Report No. 242. (cited on pages21, 29, 49)



102 BIBLIOGRAPHY

[Morrison90] R Morrison and M P Atkinson. Persistent Languages and Archi-
tectures. In J Rosenberg and J L Keedy, editors, Security and Persistence
— Proceedings of the International Workshop on Computer Architectures to
Support Security and Persistence of Information, pages 9 — 28, Bremen, West
Germany, 8 — 11 May 1990. Springer-Verlag. (cited on pages 11, 19)

[Mullender90] S J Mullender, G van Rossum, A S Tanenbaum, R van Renesse, and
J M van Staveren. A Distributed Operating System for the 1990s. IEEE
Computer, 23(5):44 — 53, May 1990. (cited on page 6)

[Munro94] D S Munro, R C H Connor, R Morrison, S Scheuerl, and D W Stem-
ple. Concurrent Shadow Paging in the Flask Architecture. In Malcolm
Atkinson, Veronique Benzaken, and David Maier, editors, Proceedings of Sixth
International Workshop on Persistent Object Systems, pages 16 — 37, Tarascon,
France, 5 — 9 September 1994. (cited on page 65)

[Needham91] R M Needham. What Next? Some Speculations. In A Karshmer
and J Nehmer, editors, Operating Systems of the 90s and Beyond - International
Workshop, number 563 in Lecture Notes in Computer Science, pages 220 — 223.
Springer-Verlag, Dagstuhl Castle, Germany, July 1991. (cited on pages4, 5)

[Nelson88] M N Nelson, B B Welch, and J K Ousterhout. Caching in the Sprite
'Network File System. ACM Transactions on Computer Systems, 6(1):134 —
154, February 1988. (cited on pages 15, 16)

[Nelson93] M N Nelson, Y A Kalidi, and P W Madany. The Spring File System.
Technical Report SMLITR-93-10, Sun Microsystems Laboratories, Inc, MTV29-
112, 2550 Garcia Ave, Mountain View, CA 94043, USA, February 1993. (cited

on page 84)

[Nitzberg91] B Nitzberg and Virginia Lo. Distributed Shared Memory: A Survey
of Issues and Algorithms. IEEE Computer, 24(8).:52 — 60, August 1991.
(cited on page 12) :

[Organick72] E I Organick. The Multics System: An Examination of Its Struc-
ture. The Massachusetts Institute of Technology, 1972. (cited on page 17)

[Ozsu91] M Tamer Ozsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice-Hall International Inc, 1991. (cited on page 9)

[Rashid88] R Rashid, A Tevanian Jr, M Young, D Golub, R Baron, D Black, W J
Bolosky, and J Chew. Machine-Independent Virtual Memory Manage-
ment For Paged Uniprocessor And Multiprocessor Architectures. IEEE
Transactions on Computers, 37(8):896 — 908, August 1988. . (cited on page 79)

[Reinhard94] W Reinhard, J Schweitzer, G Volksen, and M Weber. CSCW Tools:
Concepts and Architectures. IEEE Computer, 27(5):28 — 36, May 1994.
(cited on page 94)



BIBLIOGRAPHY : 103

[Richardson93] T Richardson. TCP & UDP/IP on Wanda. In ATM Document Col-
lection 2, pages 9-1 — 9-7. University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge CB2 3QG, England, Febru-
ary 1993. (cited on page 48)

[Roe92] M Roe. IP over MSNL. In ATM Document Collection. University of Cam-
bridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge
CB2 3QG, England, February 1992. (cited on page48)

[Rosenberg92] J Rosenberg. Architectural and Opérating System Support for
Orthogonal Persistence. Computing Systems, 5(3):305 — 335, November
1992. (cited on page 75)

[Rozier88] M Rozier, V Abrossimov, F Armand, I Boule, M Gien, M Guillemont,
F Herrmann, C Kaiser, S Langlois, P Leonard, and W Neuhauser. Chorus
Distributed Operating Systems. Computing Systems, 1(4):305 — 367, 1988.
(cited on pages 6, 21, 80) ’

[Russo89] V F Russo and R H Campbell. Virtual Memory and Backing Stor-
age Management in Multiprocessor Operating Systems Using Object-
Oriented Design Techniques. In N Meyrowitz, editor, OOPSLA’89: Proceed-
ings of Object-Oriented Programming: Systems, Languages and Applications,
pages 267 — 278, New Orleans, Louisiana, USA, October 1 — 6 1989. ACM
Press. (cited on page 83) '

[Sane90] A Sane, K MacGregor, and R Campbell. Distributed Virtual Memory
Consistency Protocols: Design and Performance. In Proceedings of the
Second IEEE Workshop in Experimental Distributed Systems, pages 91 — 96,
Huntsville, Alabama, USA, October 1990. (cited on page 83)

[Satyanarayanan90] M Satyanarayananand E H Siegel. Parallel Communication
in a Large Distributed Environment. IEEE Transactions on Computers,
89(3):328 — 348, March 1990. (cited on page 34)

[Satyanarayanan91] M Satyanarayanan. RPC2 User Guide and Reference Man-
ual. School of Computer Science, Carnegie Mellon University, October 1991.
(cited on pages 34, 50, 51)

[Satyanarayanan93] M Satyanarayanan. Chapter 14: Distributed File Systems.
In Sape Mullender, editor, Distributed Systems, ACM Press Frontier Series,
pages 353 — 383. ACM Press, Second edition, 1993. (cited on pages 15, 16)

[Shekita91] E Shekita and M Zwilling. Cricket: A Mapped, Persistent Object
Store. In Implementing Persistent Object Bases — Principles and Practice, The
Fourth International Workshop on Persistent Object Systems, pages 89 — 102,
Massachusetts, USA, 1991. Morgan Kaufmann Publishers, Inc. (cited on
page19)



104 ' BIBLIOGRAPHY

[Sites92] Richard L Sites. Alpha Architecture Reference Manual. Digital Press,
1992. (cited on page4)

[Stonebraker81] M Stonebraker. Operating System Support for Database Man-
agement. Communications of the ACM, 24(7):412 — 418, July 1981.  (cited
on pages 9, 20)

[Strbusn'up91] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley Publishing Company, Second edition, 1991. (cited on pages 67, 70)

[Tanenbaum92] Andrew S Tanenbaum. Modern Operating Systems. Prentice-
Hall International Editions, 1992. (cited on pages 5, 15, 19, 25)

[Traiger82] I L Traiger. Virtual Memory Management for Database Systems.
Operating Systems Review, 16(4):26 — 48, October 1982.  (cited on pages 9,
20) :

[Vaughan92] F Vaughan, T L Basso, A Dearle, C Marlin, and C Barter. Casper:
a Cached Architecture Supporting Persistence. Computing Systems,
5(3):337 — 359, November 1992. (cited on page 86)

[Welch91] B Welch. The File System Belongs in the Kernel. In Proceedings of
the 2nd USENIX Mach Symposium, pages 233 — 250, November 20 - 22 1991.
(cited on page 8) '

[Wilson92] P R Wilson and S V Kakkad. Pointer Swizzling at Page Fault Time;
Efficiently and Compatibly Supporting Huge Address Spaces on Stan-
dard Hardware. In Proceedings of 1992 International Workshop on Object
Orientation in Operating Systems, pages 364 — 377, Paris, France, 24 — 25
September 1992. IEEE Press. (cited on page 75)

[Zahorjan91] J Zahorjan. Operating Systems of the 90s and Beyond (with
Emphasis on Multiprocessing). In A Karshmer and J Nehmer, editors,
Operating Systems of the 90s and Beyond — International Workshop, number
563 in Lecture Notes in Computer Science, pages 53 — 55. Springer-Verlag,
Dagstuhl Castle, Germany, July 1991. (cited on page 6)




Appendix A

Public Interface

This appendix describes the public interface of the COMMOS. Each object .
is identified by a global name, which is a NFS path name in the prototype
implementation. When an object is mapped at a network node, it is assigned
a unique integer as the local name of the object, which is referred to as the
object number or ObjNum. After an object is mapped into a user address space,
the index of the process map (see 3.8 for details), which is called vir_id, is
used as the object name local to that address space.

e GetMyProcMap() -> virtual address
Maps the process map for the calling process as read-only and returns
its location. '

e CreateObject(TypeName, ObjName, MapAttr, Size) -> vir_id.
Creates a new object and returns its index in the process map. The
parameter MapAttr indicates how the object is mapped. Table A.1 shows
the possible mapping attributes.

e DestroyObject(vir_id) -> {-1, 0}
Destroys an object that has been created by the process. Returns 0 if
successful and -1 otherwise.

e MapObject(TypeName, ObjName, MapAttr) -> vir_id
Maps an object into the caller’s address space and returns the index in

the process map.

e MapFragmentObject (TypeName, ObjName, Asid, Size, MapAttr,
StartAddr, StorObjOffset, DataSeg) -> vir_id

105




106 APPENDIXA. PUBLIC INTERTFACE

l Attribute Description 1|

MAP_TYPETEXT | Specifies the type of the object being mapped as code or
MAP_TYPEDATA | data.

MAP_GROWUP Indicates whether the object is allowed to grow and the
MAP_GROWDOWN | direction in which the object is expected to grow.
MAP_GROWNOT

MAP_READONLY | Specifies the type of access, read only or read/write,
MAP_READWRITE | which is desired.

MAP_ZEROFILL | Indicates that the object consists of a zero-filled region.

MAP_SAVE Indicates that the object should be saved when it is no
longer in use.

MAP_DISCARD Indicates that changes made to this object must not be
flushed to disk.

MAP_INPLACE | Indicates that an object must be mapped into an
address space at a specified virtual address.

Table A.1: Characteristics for Mapping Objects

Maps part of a secondary storage object into an address space at a specific
virtual address. This is used when objects are stored in a composite
manner such as an executable file which contains both code and data
persistent objects. Asid indicates the address space into which the object
is mapped, StartAddr specifies the starting address for the object in the
address space, StorObjOffset suggests where the object starts in the
corresponding secondary storage object. The DataSeg parameter allows
the caller to associate another memory object from which data can be
loaded so it is possible to load data from another object.

e UnmapObject(vir.id, length) -> {-1, 0}
Unmaps an object from the caller’s address space. Returns 0 if successful
and -1 otherwise.

e FlushObject(vir_id, length) -> {-1, 0}
Flushes the modifications to the object back to the secondary storage.
Returns 0 if everything goes well, otherwise returns -1.

e DiscardObject(vir_id) -> {-1, 0}

Prevents all modifications to an object made on the local machine from
being written to the backing store. Returns 0 if successful or -1 otherwise.

e ExtendObject(vir.id, new_size) -> new size of the object



107

Increases or shrinks the size of an object and returns the new size of the
object.

LockInMem(vir_id) -> {-1, 0 }
Disables paging on an object. Returns 0 if successful and -1 otherwise.

UnlockInMem(vir._id) -> {-1, 0}

Enables paging on an object. Returns 0 if successful and -1 otherwise.

AcquireLock(vir_id, offset, length, rw, mode) -> {-1, 0}

Acquires a lock for an object fragment. The parameter rw indicates a read
or write lock is required and mode specifies whether the caller is blocked
if the lock is not available immediately. Return value 0 indicates that
the lock is granted and -1 means that the lock acquirement is denied.
ReleaseLock(vir_id, offset, length, rw) -> {-1, 0}

Releases a lock for an object fragment. Returns 0 if successful and -1
otherwise.

Get0bjTypeNum(TypeName) -> object type number
Gets the system assignéd object type number.




Appendix B

VMM and POM Interaction

POMs interact with users via an object table, which resides in the kernel
but may be mapped into the address spaces of POMs. Activated objects of a
given type are also linked together in a type list. POMs communicate with
the virtual memory management layer through a VMM interface while the
user processes invoke the POMs by triggering events.

VMM Interface

e MapFreePageTable() -> virtual address

Maps the free page table into the address space of the POM or the
CoherSvr and returns the location.

e RegObjHandler(TypeInfo) -> system type number

Registers with the system that the calling POM is willing to be the
object manager of the object type. The parameter TypeInfo is the type
information which includes the type name, the POM’s process id, the
paging algorithm and the coherence protocol will be used. Returns the
system assigned type number.

e ConstructPageTable(ObjNum, Size) -> {-1, 0}

Constructs a page table for an object. This is done after the POM has
obtained the size of the object from the network storage server. Returns
0 if everything goes well, -1 otherwise.

e Investigate(ObjNum, ObjState)

108



109

Obtains information about an object. The ObjState parameter points to
a structure that contains the required information for the POM to handle
the page fault from its own address space.

e ReturnResult(ObjNum, ObjState) —-> {-1, 0, 1}

Invoked by the POM after an event on an object has been processed. It
updates the object state and wakes up threads waiting for the event.

Events Handled by POMs

PAGETABLE_PENDING:

PAGEFAULT_PENDING:
WRITEACCESS_PENDING:

WRITETHROUGH-PENDING:

SWAP_PENDING:

FLUSH_PENDING:

WRITEOQUT_PENDING:

REMOVAL_PENDING:

Interaction Protocol

This event occurs when an object is first mapped into
main memory. Responding to it, the POM constructs
the page table for the object.

Signals that a page fault has occurred on an object.
Signals that the faulting thread attempts to write
to a read only page. It is used by the POM to get the
ownership for the page.

Signals that a modified page has to be written
through to the copy set. .

Pages related to the object mapping have been
removed from the resident paging set and need to
be placed on a swap device.

Indicates that modified pages of an object must be
written out to the secondary storage.

All the relevant user processes have finished using
the object and the modifications need to be written -
back to the secondary storage.

All operations on an object have been completed and
thus the object should be removed from the main
memory.

A process invokes the POM by posting an event and then suspends itself
until the POM replies. Figure B.1 shows the state machine of this interaction

protocol.

Suppose that the call MapObject is invoked by a user. The object type list



110 | APPENDIX B. VMM AND POM INTERACTION

PAGEFAULT_PENDING
WRITEACCESS_PENDING
WRITETHROUGH_PENDING
SWAP_PENDING
FLUSH_PENDING

WRITEOUT_PENDING
REMOVAL_PENDING

REMOVED

Figure B.1: VMM and POM Interaction Protocol

PAGETABLE_PENDING

is searched first to see if there exists a corresponding entry. If not, a new
object data structure is created with its initial state set to NASCENT. A
PAGETABLE_PENDING event is posted to the POM which gets the object size from
the network storage server and constructs the page table for the object.

The object state is changed into ACTIVATED after the page table has
been constructed and the object can be mapped into user process address
spaces. Certain events such as PAGEFAULT_PENDING, WRITEACCESS_PENDING,
WRITETHROUGH_PENDING, SWAP_PENDING and FLUSH_PENDING do not cause a state
change.

When the user has finished using the object, UnmapObject is called. If no other
thread in that user’s address space is using the object, it is unmapped from the
user’s address space. If no other address space has the object mapped, and it
is mapped read/write with no discard indicator being set, a WRITEOUT_PENDING
event occurs and the POM writes the modifications back to the storage server.

If the discard bit on an object is set, or the object is mapped read only, a
REMOVAL_PENDING event is set. This causes the POM to remove the object.



Appendix C

Coherence Protocols

C.1 Write-Invalidate Protocols

C.1.1 Centralised-Control Protocol

Persistent Object Manager

Read Fault Handler:
BEGIN
locate the fault: x.p (page p of object x);
ask the CoherMgr for read access and a copy of x.p;
END;

Write Fault Handler:
BEGIN
locate the fault: x.p;
ask the CoherMgr for write permission and a copy of x.p;
set the ownership indicator of x.p;
END;

Write Access Fault Handler:
BEGIN
locate the fault: x.p; ,
ask the CoherMgr for write permission to x.p;
set the ownership indicator of x.p;
write x.p to storage server;

111




112

APPENDIX C. COHERENCE PROTOCOLS

END;

Coherence Manager

Read Fault Manager:
BEGIN

IF I am the owner THEN

get a copy Qf x.p from the storage server;
ELSE

ask the owner for a copy of x.p;
END;
include the request node to the copy set of x.p;
send a copy of x.p to the request node;

END;

Write Fault Manager:
BEGIN

END;

IF I am the owner THEN
get a copy of x.p from the storage server;
ELSE B
ask the owner for write permission and a copy of x.p;
write x.p to the storage server;
END;
invalidate the copy set;
clear the copy set information and the ownership 1nd1cator,
set owner as the request node;
grant write permission and a copy of x.p to the request node;

~ Write Access Fault Manager:
BEGIN

IF the request node is in the copy set THEN
invalidate the owner and the copy set except the request node;
clear the copy set information;
set owner as the request node;
grant write permiésion of x.p to the request node;
ELSE
the request is reJected
END;

END;



C1. WRITE-INVALIDATE PROTOCOLS - 113
Coherence Server

Read Fault Server:
BEGIN
IF I am the owner THEN
send a copy of x.p to the CoherMgr;
ELSE
the request is rejected;
END;
END;

Write Fault Server:
BEGIN
IF I am the owner THEN
clear ownership indicator of x.p;
send a copy of x.p to the CoherMgr;
invalidate the local cache of x.p;
ELSE
the request is rejected;
END;
END;

There is no write access server. This is because when there exists a read copy
in the request node, the owner of the page should not be in the middle of a
write operation. The coherence manager can hence grant the write permission
to the request node after invalidating the caches on the owner and the copy
set except the request node.

C.1.2 Distributed-Control Protocol
Persistent Object Manager

Read Fault Handler:
BEGIN
locate the fault: x.p (page p of object x);
IF I have probable owner information THEN
ask the probable owner for read access and a copy of x.p;
ELSE
ask the CoherMgr for read access and a copy of x.p;



114 APPENDIXC. COHERENCE PROTOCOLS

END;

wait until x.p has been arrived;

record the responder as the probable owner of x.p;
END;

Write Fault Handler:
BEGIN
locate the fault: x.p;
IF I have probable owner information THEN
ask the probable owner for write permission and a copy of x.p;
ELSE
ask the CoherMgr for write permission and a copy of x.p;
END;
wait until write permission and a copy of x.p has been granted;
set the ownership indicator of x.p;
END;

Write Access Fault Handler:
BEGIN ‘
locate the fault x.p;
IF I am the ownerlTHEN
invalidate the copy set;
clear the copy set;
ELSE
ask the probable owner for write permission to x.p;
wait until write permission has bee granted;
set the ownership indicator of x.p;
END;
END;

Coherence Manager

Read Fault Manager:
BEGIN

IF I am the owner THEN
get a copy of x.p from the storage server;
include the request node to the copy set of x.p;
send the copy of x.p to the request node;

ELSE
forward the request to the probable owner;



C.1. WRITE-INVALIDATE PROTOCOLS ‘ 115

END;
END;

Write Fault Manager:
BEGIN
IF I am the owner THEN
get a copy of x.p from the storage server;
invalidate the copy set;
clear the copy set information and the ownership indicator;
grant the write permission and a copy of x.p to the request node;

ELSE
forward the request to the probable owner;
END; '
set probable owner as the request node;
END;

Write Access Fault Manager:
BEGIN
IF I am the owner THEN
invalidate the copy set except the request mnode;
clear the copy set information and the ownership indicator;
set probable owner as the request node;
grant the write permission of x.p to the request node;
ELSE
the request is rejected;
END;
END;

Coherence Server

Read Fault Server:
BEGIN
IF I am the owner THEN
include the request node into the copy set of x.p;
send a copy of x.p to the request node;
ELSE
forward the request to the probable owner;
END;
END;



116 APPENDIX C. COHERENCE PROTOCOLS

Write Fault Server:
BEGIN
- IF I am the owner THEN
write x.p to the storage server;
invalidate the copy set and the local copy
clear the copy set information and the ownership indicator;
grant write permission and a copy of x.p to the request node;

ELSE
forward the request to the probable owner;
END;
set probable owner as the request node;
END;

Write Access Fault Server:
BEGIN
IF I am the owner THEN
write x.p to the storage server;
invalidate the local copy of x.p
and the copy set except the request node;
clear the copy set information and ownership indicator;
set probable owner as the request node;
grant write permission to the request node;
ELSE
the request is rejected;
END;
END;

C.2 Write-Update Protocol

Persistent Object Manager

Read Fault Handler:
BEGIN :
locate the fault x.p (page p of the object x);
ask the CoherMgr for a copy of x.p;
wait until a copy of x.p has arrived;
record the responder as the owner of x.p;
END;




C2. WRITE-UPDATE PROTOCOL 117

Write Fault Handler:

BEGIN
locate the fault x.p;
ask the CoherMgr for write permission and a copy of x.p;
wait until the copy set and a copy of x.p has arrived;
set the ownership indicator of x.p;
include the responder into the copy set;

END;

Write Access Fault Handler:

‘ BEGIN
locate the fault x.p;
ask the owner for write permission of x.p;
wait until the copy set has arrived;
set the ownership indicator of x.p;
include the respondér into the copy set;
exclude myself from the copy set;

END;

Coherence Manager

Read Fault Manager:
BEGIN
IF I am the owner THEN
get a copy of x.p from the storage server;
include the request node to the copy set of x.p;
send the copy of x.p to the request node;
ELSE
forward the request to the owner of x.p;
END; '
END;

Write Fault Manager:
BEGIN
IF I am the owner THEN
get a copy of x.p from the storage server;
record the request node as the owner of x.p;
send the copy set information and the copy of x.p to
the request node; '
reset the ownership indicator and copy set information;




118 | APPENDIXC. COHERENCE PROTOCOLS
ELSE
forward the request to the owner of x.p;
END;
END;

Write Access Fault Manager:
BEGIN
IF I am the owner THEN
record the request node as the owner of x.p;
send the copy set information to the request node;
reset the ownership indicator and copy set information;
ELSE _ ‘
forward the request to the owner of x.p;
END;
END;

Coherence Server

Read Fault Server:
BEGIN
-IF I am the owner THEN
include the request node to the copy set of x.p;
send a copy of x.p to the request node;
ELSE -
forward the request to the owner of x.p;
END;
END;

~Write Fault Server:
BEGIN
IF I am the owner THEN
record the request node as the owner of x.p;
send the copy set information and a copy of x.p to
the request node; , .
reset the ownership indicator and copy set information;
ELSE
forward the request to the owner of x.p;
END;
END;



C2. WRITE-UPDATEPROTOCOL 119

Write Access Fault Server:
BEGIN "
IF I am the owner THEN ,
record the request node as the owner of x.p;
send the copy set information to the request node;
reset the ownership indicator and copy set information;
ELSE
forward the request to the owner of x.p;
END;
END;

Each time when the CoherMgr or a CoherSvr receives an update, the owner
information of the page is updated if it has been changed.




Appendix D
Coherence Manager

The CoherMgr is a well-known server and acts as a coordinator for CoherSvrs.
It maintains an opened object table to keep track of the activated objects
managed by the CoherMgr. This appendix describes the RPC interface to the
CoherMgr. In the following description, IN indicates an input parameter, OUT
indicates an output parameter and INOUT indicates an input/output parameter.
Except where explicitly specified otherwise, the return code SUCCESS indicates
that everything goes well and FAIL implies that the CoherMgr is not reachable
(crashing or network partitioning). The return code FORWARDED indicates that
the request has been forwarded to the (probable) owner of the object page.
When a POM thread on the request node gets this return code, it blocks itself
and will be woken up with the object page available or time out.

e CoherMgr_OpenObject (IN ObjName, IN CoherProt, OUT ObjSize) ->
{SUCCESS, ERR_PROT, NOT_FOUND, FAIL}

This is called by a POM which attempts to map an object. If the object
has not been opened, it asks the storage server for the object size and
creates a new entry in the opened object table. Otherwise, it increases
the reference count of the object. It then returns the object size. The first
node which opens the object sets the coherence protocol to be used for the
object. The return code ERR_PROT implies that the object has been opened
with a weaker coherence protocol. The return code NOT_FOUND indicates
that the object is not found.

e CoherMgr FlushObject (IN ObjName, IN CoherProt, IN ObjSize) ->
{SUCCESS, FAIL}

This is called by a POM when a non-persistent object is made persistent
or the modifications to a persistent object need to be written back to the

120



121

backing store. If there is no entry in the opened object table for this
object, which means a non-persistent object is being made persistent, it
creates one. In any case, it updates the object size.

CoherMgr.CloseObject (IN ObjName) -> {SUCCESS, FAIL}

This is called by a POM when an object has fallen out of use on that node.
It reclaims the ownership of the object pages if any, removes the caller’s
CoherSvr from the copy set of the object, and decreases the reference
count of the object. When the reference count becomes 0, it removes the

~ entry from the opened object table. The return code FAIL implies that

the CoherMgr is not reachable or the object has not been opened.
CoherMgr_OwnerInform(IN ObjName, IN BlockNum, IN NewOwner) ->
{SUCCESS, FAIL}

Updates the owner information of an object page.

CoherMgr_GetPageForRead (IN RegNode, IN ObjName, IN BlockNum, OUT
data, OUT size) -> {SATISFIED, FORWARDED, FAIL}

Gets an object page for a read fault.

If the CoherMgr is the owner, for all protocols, it includes the ReqNode
into the copy set and returns the data to the ReqNode.

If not the owner, in the case of the write-invalidate protocols, with
centralised-control, it includes the RegqNode into the copy set and gets
the data from the owner. If it is distributed-control, the request is for-
warded to the probable owner. In the write-update protocol, the request
is redirected to the owner.

The return value SATISFIED means that the page data has been returned
in the data parameter. FORWARDED indicates that the request has been
forwarded to the (probable) owner.

CoherMgr_GetPageForWrite (IN Regllode, IN ObjName, IN BlockNum,
OUT data, OUT size, OUT CopySet) -> {SATISFIED, FORWARDED, FAIL}
Gets an object page for a write fault.

In the write-invalidate protocols, if the CoherMgr is the owner of the

- object page, it informs the CoherSvrs in the copy set to invalidate their

caches, clears the copy set information and the ownership indicator, sets
the (probable) owner as the ReqNode and then grants write permission
and a copy of the page data to the ReqNode. Otherwise, if the protocol
is centralised-control, it contacts the owner to revoke the ownership and
get the up-to-date contents of the page then writes the page data to the




122

APPENDIX D. COHERENCE MANAGER,

backing store before other actions; if the protocol is distributed-control,
the request is forwarded to the probable owner and the probable owner
information is changed as the ReqNode.

In the write-update protocol, if the CoherMgr was the owner, the owner of
the page is changed to be the ReqNode and a copy of the page and the copy
set information are returned to the ReqNode, the ownership indicator and
copy set information in the CoherMgr is reset. Otherwise, the request is
forwarded to the owner.

CoherMgr_GetWriteAccess(IN RegNode, IN ObjName, IN BlockNum, OUT
CopySet) -> {SATISFIED, REJECTED, FORWARDED, FAIL}

Gets write access permission to an object page.

In the write-invalidate protocols, with centralised-control, if the ReqNode
is in the copy set, informs the owner and all the CoherSvrs in the copy
set except the ReqNode to invalidate their caches, clears the copy set
information and set the owner as the ReqNode, then the write permission
is granted to the RegNode. Otherwise, the request is rejected. If the
protocol is distributed-control, in the case that CoherMgr is the owner
of the object page, it invalidates the caches in the copy set except the
RegNode, clears the copy set information and the ownership indicator, set
the probable owner as the ReqNode and grants write permission to the
ReqNode. Otherwise it rejects the request. The return value REJECTED
indicates that the owner has changed and hence the request node has to
generate a write fault to get the up-to-date contents of the page.

In the write-update protocol, if the CoherMgr is the owner, it records the
ReqNode as the owner, returns the copy set information to the RegNode,
resets the ownership indicator and the copy set information. Otherwise,
the request is forwarded to the owner.

CoherMgr WritePage (IN ObjName, IN BlockNum, IN data, IN length,
OUT written_size) =-> {WRIT'I'EN, NOT_OWNER, FAIL}

Writes an object page back to the storage server. It checks whether the
caller is the owner of the page before writing. The return value WRITTEN
indicates that the data has been successfully written. NOT_OWNER means
that the caller is not the owner of the page, hence nothing has been
written.



Appendix E

Coherence Server

The interface to the CoherSvr is presented in this appendix. In the following
description, IN indicates an input parameter, OUT indicates an output param-
eter and INOUT indicates an input/output parameter. Except where explicitly
specified otherwise, the return code SUCCESS indicates that everything goes
well and FAIL implies that the server is not reachable (crashing or network
partitioning). The return code INPROGRESS indicates that the remote server
is processing the request and a call back will be issued later to satisfy the
request. The calling POM thread will block itself and will be waken up with
the object page available or time out. The return code FORWARDED indicates
that the request has been forwarded to the (probable) owner of the object
page. When a POM thread on the request node gets this return code, it blocks
itself and will be woken up with the object page available or time out.

e CoherSvr_OwnerInform(IN ObjName, IN BlockNum, IN NewOwner) ->
{SUCCESS, FAIL}

Invalidates the local cache of an object page. If the coherence proto-
col is distributed-control write-invalidate, updates the probable owner
information in the object table.

e CoherSvr_GetPageForRead (IN RegNode, IN ObjName, IN BlockNum, OUT
data, OUT size) —-> {SATISFIED, INPROGRESS, FORWARDED, FAIL}
Gets an object page for a read fault.

In the write-invalidate protocols, with centralised-control, sends the page
data to the CoherMgr. In the case of distributed-control, if the local
CoherSvr is the owner of the object page, includes the ReqNode into the
copy set of the page, if the caller is the RegNode, returns a copy of the

123



124

APPENDIXE. COHERENCE SERVER,

page data, otherwise, sends a copy of the page data to the ReqNode by
calling CoherSvr_SetPageForRead on the ReqNode. If the local CoherSvr is
not the owner, the request is forwarded to the probable owner.

In the write-update protocol, if the CoherSvr is the owner, includes the
Reglode into the copy set, returns the page data if the caller is the ReqNode
or otherwise invokes the CoherSvr_SetPageForRead on the RegNode to sat-
isfy the fault. If the CoherSvr is not the owner, the request is forwarded
to the owner. -

The return value SATISFIED means that the data has been returned as the
data parameter. INPROGRESS indicates that the CoherSvr_SetPageForRead
on the request CoherSvr is going to be invoked. FORWARDED suggests that
the request is forwarded to the (probable) owner.

CoherSvr_GetPageForWrite (IN RegNode, IN ObjName, IN BlockNum,
OUT data, OUT size, OUT CopySet) -> {SATISFIED, INPROGRESS,
FORWARDED, FAIL}

Gets an object page for a write fault.

In write-invalidate protocols, if it is centralised-control, clears the own-
ership indicator, then sends a copy of the page data to the CoherMgr and
invalidates the local cache. In the case of distributed-control, if the local
CoherSvr is the owner, writes the up-to-date contents of the page back
to the storage server, informs the CoherSvrs in the copy set to invalidate

 their caches, invalidates the local cache, clears the copy set information

and ownership indicator, then sets the probable owner as the ReqNode, if
the caller is the ReqNode, returns a copy of the data directly, otherwise
grants the write permission and a copy of the data to the ReqNode by
calling its CoherSvr_SetPageForWrite. If the local CoherSvr is not the
owner, the request is forwarded to the probable owner and the ReqNode
is recorded as the new probable owner.

In the write-update protocol, if the CoherSvr is the owner, records the
RegNode as the owner, returns the copy set information and a copy of
the page data directly if the the caller is the ReqNode, otherwise, invokes
the CoherSvr_SetPageForWrite on the ReqNode to satisfy the fault, and
finally resets the local ownership indicator and copy set information. If
the CoherSvr is not the owner, the request is forwarded to the owner.

CoherSvr_GetWriteAccess(IN RegNode, IN ObjName, IN BlockNum, OUT
CopySet) -> {SATISFIED, INPROGRESS, REJECTED, FORWARDED, FAIL}

Transfers the ownership of an object page to the ReqNode.




125

In the distributed-control write-invalidate protocol, if the CoherSvr is the
owner, writes the up-to-date contents of the page to the storage server,
informs the CoherSvrs in the copy set except the ReqNode to invalidate
their caches, invalidates the local cache, clears the copy set information
and the ownership indicator, and sets the probable owner as the ReqNode.
Otherwise, the request is rejected.

In write-update protocol, if the CoherSvr is the owner, records the
RegNode as the owner, returns the copy set information directly if the
caller is the ReqNode or otherwise invokes the CoherSvr_SetWriteAccess
on the RegNode to satisfy the fault, resets the local ownership indicator
and the copy set information. If the CoherSvr is not the owner, the
request is forwarded to the owner.

CoherSvr_SetPageForRead (IN ObjName, IN BlockNum, IN data, IN
length) -> {SUCCESS, NOT_CACHED, FAIL} '

Invoked by CoherSvr of the object page owner to set the up-to-date con-
tents of an object page. The value NOT_CACHED is returned in the write-
update protocol when the object is no longer in use in the callee node.
On receipt of this value, the caller excludes the callee from the copy set
of the page.

CoherSvr_SetPageForWrite(IN ObjName, IN BlockNum, IN data, IN
length, IN CopySet) -> {SUCCESS, FAIL}

Invoked by the CoherSvr of the object page owner to set an object page
and the copy set in order to satisfy a write fault.
CoherSvr_SetWriteAccess(IN ObjName, IN ObjNum, IN CopySet) ->
{SUCCESS, FAIL}

Invoked by the CoherSvr of the object page owner to satisfy a write access
fault.



Appendix F

Storage Server Emulator

The StorSvr manages the secondary storage for the COMMOS. It provides
facilities to store and retrieve object pages. In the prototype implementation,

the following RPC interface is provided for the CoherMgr, CoherSvrs, POMs
and ProcSvrs.

e StorSvr_GetSegSize(IN ObjName, OUT TextSize, OUT DataSize, OUT
BssSize)

Gets the text, data and bss size of an executable file. Used by the
ProcSvrs when a new process is being created.

e StorSvr_GetObjSize(IN ObjName, OUT ObjSize)
Gets the size of an object.

e StorSvr_ReadData(IN ObjName, IN Offset, OUT Data, OUT ReadSize)

Reads a block of data from a backing store object, starting at the 0ffset.
The return value ReadSize indicates how many bytes have actually been
read. Currently, the block size is 1K bytes, the same as the main memory
page size.

e StorSvr_AppendData(IN ObjName, IN Data, IN WriteLength, OUT
WrittenSize)

Appends data to the end of a backing store object. The argument
WriteLength indicates how many bytes are intended to be written and
WrittenSize returns how many bytes have been written.

e StorSvr_OffWriteData(IN ObjName, IN Offset, IN Data, IN
WriteLength, OUT WrittenSize)

126



127

Overwrites data to a backing store object, starting at the 0ffset. The
argument WriteLength indicates how many bytes are intended to be
written and WrittenSize returns how many bytes have been written.



Appendix G

Performance Measurements

This appendix gives the results of the performance measurements. A sum-
mary and discussions of these results were presented in Chapter 6.

The hardware configuration for the performance measurements is shown in
table G.1. The first column gives the machine names, the second column

|| Machine (CPU Speed (MHz) l Memory (MB) ] Off-Board Memory (MB) ||

lamprey 20 4 8
lumpfish 20 4 8
piranha 25 4 4
shark 25 4 -

Table G.1: Hardware Configuration for Performance Measurements

shows the CPU speed and the third one describes size of the on board memory
while the fourth column exhibits the configured off-board memory. During
the course of the performance measurements, shark malfunctioned and hence
appears only in the first section.

G.1 RPC Performance

This section presents the various aspects of the performance of the RPC2
system. All the RPC calls measured are null calls.

128



G1. RPCPERFORMANCE

| Machine Type | Simple RPC (ms) | MultiRPC (ms) ||

20MHz+12MB 11.0 11.6 |
25MHz+8MB 9.1 9.6 |
25MHz+4MB 7.8 —~ |

Table G.2: Simple RPC vs MultiRPC for One Local Recipient

129

| Destination | Simple RPC (ms) | MultiRPC (ms) ||

|| Source
20MHz+12MB | 20MHz+12MB 16.8 17.2
20MHz+12MB | 256MHz+8MB 15.7 16.2
20MHz+12MB | 25MHz+4MB 14.3 15.0
25MHz+8MB | 20MHz+12MB 15.7 16.0
25MHz+8MB | 25MHz+4MB 13.1 - 13.6
25MHz+4MB | 20MHz+12MB 144 15.0
25MHz+4MB | 256MHz+8MB 12.9 13.7

Table G.3: Simple RPC vs MultiRPC for One Remote Recipient

RPC and MultiRPC on Wanda

Performance of the RPC2 system on Wanda machines are given first. Table G.2

compares the performance of an RPC call on the same machine using simple
RPC and MultiRPC. The real remote RPC calls to single destination using
simple RPC and MultiRPC are compared in table G.3. Remote communica-
tions to two and three destinations using MultiRPC are given in table G.4 and
table G.5.

Cross-Architecture RPC and MultiRPC

Since the CoherMgr and the StorSvr in the prototype implementation run

on a DEC 3100 workstation. The performance of RPC calls cross these two

architectures are also measured. The results about simple RPC are shown in

table G.6 and those about MultiRPC are given in table G.7.



130

APPENDIX G. PERFORMANCE MEASUREMENTS

| Source I Destinations IMultiRPC (ms) |A-z;rage (ms) J
20MHz+12MB | 20MHz+12MB, 20.9 . -+ 10.5
25MHz+8MB
20MHz+12MB | 20MHz+12MB, | 20.4 10.2
25MHz+4MB
20MHz+12MB | 256MHz+8MB, 20.0 10.0
25MHz+4MB :
25MHz+8MB | 20MHz+12MB, 19.9 10.0
20MHz+12MB
25MHz+8MB | 20MHz+12MB, 18.7 9.4
25MHz+4MB
25MHz+4MB | 20MHz+12MB, 17.7 8.9
20MHz+12MB ' |
25MHz+4MB | 20MHz+12MB, 17.2 8.6
25MHz+8MB ]

Table G.4: MultiRPC to Two Remote Recipients

|l

Source

] Destinations IMultiRPC

20MHz+12MB

20MHz+12MB,

25MHz+8MB,
25MHz+4MB

24.7

(ms) | Average (ms) |

8.2

25MHz+8MB

20MHz+12MB,
20MHz+12MB,
25MHz+4MB

22.0

7.3

25MHz+4MB

20MHz+12MB,
20MHz+12MB,
25MHz+8MB

19.8

6.6

Table G.5: MultiRPC to Three Remote Recipients




G.1. RPCPERFORMANCE 131

| Source | Destination | RPC Time (ms) ||
| 20MHz+12MB | DECStation 13.7 |
| 256MHz+8MB | DECStation 12.3 |
| 25MHz+4MB | DECStation 11.4 |
DECStation | 20MHz+12MB 12.1 |
DECStation | 25MHz+8MB 14.6 |
DECStation | 25MHz+4MB 13.5 |

Table G.6: Simple RPC between Wanda and Ultrix on a DECStation

" Source Destinations [MultiRPC (ms) |Average (ms) ||
DECStation | 20MHz+12MB 13.0 13.0
DECStation | 26MHz+8MB 13.7 - 13.7
DECStation | 26MHz+4MB 14.3 14.3
DECStation | 20MHz+12MB, 15.2 - 7.6
20MHz+12MB

DECStation | 20MHz+12MB, 15.7 7.9
25MHz+8MB
20MHz+12MB,

DECStation | 20MHz+12MB, 17.5 5.8
25MHz+8MB "

Table G.7: MultiRPC from Ultrix on DECStation to Wanda



132 APPENDIX G. PERFORMANCE MEASUREMENIS

.2 Page Fault, Invalidation and Roundtrip IPC

Table G.8 shows some measurement results for comparison between memory-

Machine Type | Page Fault | Invalidation | IPC | System Call
(ms) (ms) (ms) (ms)

20MHz+12MB 0.76 0.42 1.67 0.016 ||
25MHz+8MB 0.60 0.35 133 ] 0.013 "

Table G.8: Page Fault, Invalidation, Roundtrip IPC and System Call .

mapping and non memory-mapping on Wanda. The second column gives
overhead for a user process to process a page fault, the third one shows the
time taken for the CoherSvr to invalidate a page, and the fourth presents the
time for a null roundtrip IPC. The time for a null system call is also exhibited.




G.3. PERFORMANCE OF THE COMMOS PROTOTYPE 133

| Faulting Node | Time (ms)
20MHz+12MB | 315
25MHz+8MB 30.1

Table G.9: Fetching a Page from the StorSvr

" Faulting Node | Owner | Time (ms) "
20MHz+12MB | CoherMgr 32.9
25MHz+8MB | CoherMgr 31.2
20MHz+12MB | 20MHz+12MB 40.6
20MHz+12MB | 25MHz+8MB 38.7
25MHz+8MB | 20MHz+12MB 38.8

Table G.10: Fetching a Page for Read in the Centralised-Control Protocol

G.3 Performance of the COMMOS Prototype

The performance of the COMMOS prototype is presented in three sub sections
according to the coherence protocol used.

No Coherency

Table G.9 gives the time taken for the POM to fetch a page directly from the
StorSvr without coherence maintenance.

Centralised-Control Protocol

Table G.10 presents the time taken for the POM to get a page to satisfied a
read fault. The measurement results for the POM to get a page to satisfied a
write fault is shown in table G.11.

Distributed-Control Protocol

Table G.12 gives the performance for the POM to fetch a page to serve a read




134

APPENDIX G. PERFORMANCE MEASUREMENTS

" Faulting Node—l Owner | Copy Set | Time (ms) ||
20MHz+12MB | CoherMgr - 32.8
25MHz+8MB | CoherMgr - 30.8
20MHz+12MB | CoherMgr 20MHz+12MB 56.3
20MHz+12MB | CoherMgr 25MHz+8MB 55.0
25MHz+8MB | CoherMgr 20MHz+12MB 55.5
20MHz+12MB | CoherMgr 20MHz+12MB, 574

’ - 25MHz+8MB
25MHz+8MB | CoherMgr 20MHz+12MB, 56.8
20MHz+12MB
20MHz+12MB | 20MHz+12MB | - 54.6
20MHz+12MB | 25MHz+8MB | — 52.6
25MHz+8MB | 20MHz+12MB | - 5832
20MHz+12MB | 20MHz+12MB | 25MHz+8MB 123.6 "
20MHz+12MB | 25MHz+8MB | 20MHz+12MB | 1229 |
25MHz+8MB | 20MHz+12MB | 20MHz+12MB 122.8 ||

Table G.11: Fetching a Page for Write in the Centralised-Control Protocol

| Faulting Node |  Owner | Relay Node | Time (ms) |
20MHz+12MB | CoherMgr - 324
25MHz+8MB | CoherMgr - 30.8
20MHz+12MB | 20MHz+12MB | CoherMgr 55.3
20MHz+12MB | 25MHz+8MB | CoherMgr 53.2
25MHz+8MB | 20MHz+12MB | CoherMgr 53.7
20MHz+12MB | 20MHz+12MB | - 318
20MHz+12MB | 256MHz+8MB | — 304
25MHz+8MB | 20MHz+12MB | - 30.6

Table G.12: Fetching a Page for Read in the Distributed-Control Protocol

fault in distributed-control protocol. The column relay node indicates the node
known by the faulting node as the probable owner but it is not the real owner
hence requests are forwarded. Table G.13 gives the measurement results for
the POM to fetch a page to serve a write fault.



G3. PERFORMANCE OF THE COMMOS PROTOT)'PE

" Faulting Node | Owner lRelay Node | Copy Set | Time (ms) ||
20MHz+12MB | CoherMgr - - 32.6
256MHz+8MB | CoherMgr - - 30.9
20MHz+12MB | 20MHz+12MB | CoherMgr |- 99.0
20MHz+12MB | 256MHz+8MB | CoherMgr |- 94.8
25MHz+8MB | 20MHz+12MB | CoherMgr |-  96.8
20MHz+12MB | 20MHz+12MB | CoherMgr | 25MHz+8MB | 165.7
20MHz+12MB | 25MHz+8MB | CoherMgr | 20MHz+12MB 163.8
25MHz+8MB | 20MHz+12MB | CoherMgr | 20MHz+12MB | 165.8
20MHz+12MB | 20MHz+12MB | - - 85.0
20MHz+12MB | 25MHz+8MB | — - 81.1
25MHz+8MB | 20MHz+12MB | - - 84.7
| 20MHz+12MB | 20MHz+12MB | — 25MHz+8MB 99.9
| 20MHz+12MB | 25MHz+8MB | — 20MHz+12MB [  95.0
| 256MHz+8MB | 20MHz+12MB | — 20MHz+12MB | 98.9

Table G.13: Fetching a Page for Write in the Distributed-Control Protocol






