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Abstract. Fairly deep results of Zermelo-Fraenkel (ZF) set theory have been mechanized using
the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice
(AC). A key result about cardinal multiplicationisk ® k = k, where k isany infinite cardinal .
Proving this result required developing theories of orders, order-isomorphisms, order types,
ordinal arithmetic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter |. Further-
more, we have proved the equivalence of 7 formulations of the Well-ordering Theorem and 20
formulations of AC; this covers the first two chapters of Rubin and Rubin, Equivalents of the
Axiomof Choice, and involves highly technical material. The definitions used in the proofs are
largely faithful in style to the original mathematics.
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Mechanizing Set Theory 1

1. Introduction

A growing corpus of mathematics has been checked by machine. Researchers
have constructed computer proofs of resultsinlogic [26], number theory [25],
group theory [28], A-calculus [10], etc. An especialy wide variety of results
have been mechanized using the Mizar Proof Checker, including the theorem
Kk ® Kk = k discussed below [2]. However, the problem of mechanizing math-
ematicsisfar from solved.

The Boyer/Moore Theorem Prover [3, 4] has yielded the most impressive
results[25, 26]. It has been successful because of its exceptionally strong sup-
port for recursive definitions and inductive reasoning. But its lack of quan-
tifiers forces mathematical statements to undergo serious contortions when
they are formalized. Most automated reasoning systems are first-order at best,
while mathematics makes heavy use of higher-order notations. We have con-
ducted our work in I sabelle [20], which provides for higher-order syntax. Oth-
er recent systems that have been used for mechanizing mathematics include
IMPS[6], HOL [8] and Coq [5].

We describe below machine proofs concerning cardinal arithmetic and the
Axiom of Choice (AC). Paulson has mechanized most of the first chapter of
Kunen [12] and a paper by Abrial and Laffitte [1]. Grabczewski has mech-
anized the first two chapters of Rubin and Rubin’s famous monograph [24],
proving equivalent eight forms of the Well-ordering Theorem and twenty forms
of AC. We have conducted these proofs using an implementation of Zermelo-
Framkel (ZF) set theory in Isabelle. Compared with other I1sabelle/ZF proofs
[15, 18, 21] and other automated set theory proofs[23], these are deep, abstract
and highly technical results.

We have tried to reproduce the mathematics faithfully. This does not mean
davishly adhering to every detail of the text, but attempting to preserve its
spirit. Mathematicians write in a mixture of natural language and symboals;
they devise all manner of conventions to express their ideas succinctly. Their
proofs make great intuitive leaps, whose detailed justification requires much
additional work. We have been careful to note passages that seem unusually
hard to mechanize, and discuss some of them below.

In conducting these proofs, particularly from Rubin and Rubin, we have
tried to follow the footsteps of Jutting [11]. During the 1970s, Jutting mech-
anized a mathematics textbook using the AUTOMATH system [14]. He paid
close attention to the text — which described the construction of the real and
complex numbers starting from the Peano axioms— and listed any deviations
from it. Compared with Jutting, we have worked in amore abstract field, and
with source material containing larger gaps. But we have had the advantage of
much more powerful hardware and software. We have relied upon Isabelle’s
reasoning tools (see §2 below) to fill some of the gaps for us.
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2 Lawrence C. Paulson and Krzysztof Grabczewski

We have done this work in the spirit of the QED Project [22], which aims
“to build a computer system that effectively represents all important mathe-
matical knowledge and techniques.” Our results provide evidence, both pos-
itive and negative, regarding the feasibility of QED. On the positive side, we
are able to mechanize difficult mathematics. On the negative side, the cost of
doing so is hard to predict: a short passage can cause immense difficulties.

Overview.  Section 2 is a brief introduction to Isabelle/ZF. The remaining
sections report first Paulson’swork and then Grabczewski’s. Sections 3-5 dis-
cuss the foundations of cardinal arithmetic inincreasing detail, culminating in
the machine proof of a key result about cardinal multiplication, kK ® k = &
where x isinfinite. Section 6 introduces the Axiom of Choice and describes
the mechanization of Abrial and Laffitte. Sections 7 and 8 are devoted to the
mechanization of parts of Rubin and Rubin. Section 9 presents some conclu-
sions.

2. Isabelleand ZF Set Theory

Isabelle [20] isageneric proof assistant. It supports proofsin higher-order log-
ic, various modal logics, linear logic, etc. Our work is based upon Isabelle’s
implementation of Zermelo-Fraankel (ZF) set theory, itself based upon animple-
mentation of first-order logic. |sabelle/ZF arose from early work by Paulson [17]
and No&l [15]; it isdescribed in detail elsewhere [18, 21].

There are two key ideas behind Isabelle:

— Expressions are typed A-terms. Thus the syntax is higher-order, giving
auniform treatment of quantifiers, descriptions and other binding opera-
tors. Inlsabelle/ZF, al setshavethe sametype. But other important objects,
such as classes, classrelations and class functions, can be expressed using
higher types.

— Theorems are schematic inference rules. Isabelle’'s basic inference mech-
anism isto join two schematic rules, in a sort of Horn clause resolution.
A typical step in abackward proof consists of joining one rule (typically
alemma) to another rule (representing the proof state). Thus, theorems
are proved by referring to previous theorems. Proof states may contain
unknowns: placeholders for terms that have been left unspecified. Uni-
fication can incrementally instantiate unknowns, which may be shared
among severa subgoals.

Built around these key ideas are variousfacilitiesintended to ease the user’s
task. Notations can be defined using ageneral mixfix format, with precedences,
variable-binding operators are easily specified. | sabelle manages a database of
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Mechanizing Set Theory 3

theories and theorems; when asked to load atheory, it automatically loads any
other theories that it depends upon.

Although Isabelle supports proof checking, users will be more productive
if they are provided with automatic tools.

— Theclassical reasoner solves subgoal s using methods borrowed from tab-
leau provers. It employs user-supplied rules, typically about logical con-
nectives or set operators, to break down assertions.

— The smplifier employs user-supplied conditional equalities to rewrite a
subgoal. It can make use of contextual information and handles commuta-
tive operators using asimple method borrowed from Boyer and Moore[3,
page 104].

We have found these tool sindispensable. But thereismuch room for improve-
ment; mechanizing a page of text can take aweek or more. We discuss some
reasons for this below.

A lengthier introduction to | sabelle and | sabelle/ZF appears el sewhere [18].
The I sabelle documentation has been published as a book [20]. Figure 1 sum-
marizes the I sabelle/ZF notation for set theory.

Note.  Application of the function f to the argument z is formally writ-
ten f*z. In informal mathematics we use the more familiar f(z) for clarity.
But a set-theoretic function is just another set, and Isabelle allows the nota-
tion f(x) only if f isametalevel function. Thisusually corresponds to sub-
scripting ininformal mathematics, for example f,. For the Isabelle/ZF devel -
opment of functions, see Paulson [18, §7.5].

3. TheCardinal Proofs. Motivation and Discussion

The origina reason for mechanizing the theory of cardinals was to general-
ize Paulson’s treatment of recursive data structures in ZF. The origina treat-
ment [21] permitted only finite branching, asinn-ary trees. Countable branch-
ing required defining an uncountable ordinal. Weare thusled to consider branch-
ing of any cardinality.

3.1. INFINITE BRANCHING TREES

Let x stand for aninfinite cardinal and ™ for its successor cardinal. Branching
by an arbitrarily large index set I requires proving the theorem

|I| <K Viera; < kT
(Uier i) <t

D
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4 Lawrence C. Paulson and Krzysztof Grabczewski

syntax

{a1, ..., an}
<a, b>

{z: A.P[z]}
.z A Q)
{b[z] . x: A}
INT z: A. Blz]
UN z: A. B[z]
Alnt B

A Un B
A->B

f ‘

A<= B

ALL z: A. P[z]
EX z: A. Plx]

Figure 1. ASCII notation for ZF

description

finite set

ordered pair

Separation

Replacement

functional Replacement

(Nzca -Blz], general intersection
U, e -Blz], general union

AN B, intersection

AU B, union

A — B, function space

A x B, Cartesian product
II.e4 . Blz], general product
Y.eca . Bz], general sum

vz . P[z], definite description
Azea - bz], abstraction

féx or f(x), function application
a € A, membership

A C B, subset relation

Veea - Plz], bounded quantifier
J,ea - Plz], bounded quantifier

You need not understand the details of how thisisused in order to follow the

paper. !

Not many set theory texts cover such material well. Elementary texts [9,
27] never get far enough, while advanced texts such asKunen [12] race through
it. But Kunen'srapid treatment isnonethel ess clear, and mentionsall the essen-
tial elements. The desired result (1) follows fairly easily from Kunen's Lem-

ma 10.21 [12, page 30]:

VCM<K |Xa| S K
| Ua<k Xal <k
This, in turn, relies on the Axiom of Choice and its consequence the Well-

ordering Theorem, which are discussed at length below. It also relies on afun-
damental result about multiplication of infinite cardinals:

kKQ®K =K.

ThisisTheorem 10.12 of Kunen. (In this paper, werefer only to his Chapter 1.)
The proof presents a challenging example of formalization, as we shall see.
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Mechanizing Set Theory 5

Wecouldprove Ax A =~ A, fordl infinitesets A, by appealingto ACinthe
form of Zorn's Lemma; see Halmos [9, pages 97-8]. Then k ® x = x would
follow immediately. But we need to prove k ® k = x without AC in order to
useitin later proofs about equivalences of AC. Infact, thelaw A x A =~ Ais
known to be equivaent to the Axiom of Choice.

Paulson hoped to prove k ® k = « directly, but could not find a suitable
proof. He therefore decided to mechanize the whole of Kunen’s Chapter |, up
to that theorem. We suggest this as a principle: theorems do not exist in isola-
tion, but are part of aframework of supporting theorems. Itiseasier inthelong
runto build the entire framework, not just the parts thought to berelevant. The
latter approach requires frequent, ad-hoc extensions to the framework.

3.2. OVERVIEW OF KUNEN, CHAPTER |

Kunen'sfirst chapter isentitled, “ Foundations of Set Theory.” Kunen remarks
on page 1 that the chapter ismerely areview for areader who hasalready stud-
ied basic set theory. Thisexplains why the chapter is so succinct, as compared
say with Halmos [9].

The first four sections are largely expository. Section 5 introduces a few
axiomswhile §6 describes the operations of Cartesian product, relations, func-
tions, domain and range. Already, §6 goes beyond the large |sabelle/ZF the-
ory described in earlier papers [18, 21]. That theory emphasized computa-
tiona notions, such as recursive data structures, at the expense of tradition-
al set theory. Now it was time to devel op some of the missing material. Paul-
son introduced some definitions about relations, orderings, well-orderings and
order-isomorphisms, and proved the first two lemmas by well-founded induc-
tion. The main theorem required a surprising amount of further work; see §4.3
below.

Kunen's §7 covers ordinas. Much of this material had aready been for-
malized in Isabelle/ZF [21, §3.2], but using a different definition of ordinal.
A set A istrangtive if A C P(A): every element of A is a subset of A.
Kunen defines an ordinal to be atransitive set that iswell-ordered by €, while
Isabelle/ZF defines an ordinal to be atransitive set of transitive sets. The two
definitions are equivaent provided we assume, as we do, the Axiom of Foun-
dation.

Our work required formalizing some material from §7 concerning order
types and ordinal addition. We have aso formalized ordinal multiplication.
But wehaveignored what Kunen calls A<“ because | sabelle/ZF provideslist(A),
the set of finite lists over A [21, §4.3] for the same purpose.

Kunen's §8 and §13 address the legitimacy of introducing new notationsin
axiomatic set theory. His discussion is more precise and comprehensive than
Paulson’s defence of the notation of 1sabelle/ZF [18, page 361].
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6 Lawrence C. Paulson and Krzysztof Grabczewski

Kunen’'s §9 concerns classes and recursion. The main theorems of this sec-
tion, justifying transfinite induction and recursion over the class of ordinals,
were aready in the Isabelle/ZF library [21, §3.2,53.4]. Kunen discusses here
(and with someirony in §12) the difficulties of formalizing properties of class-
es. Variablesin ZF range over only sets; classes are essentially predicates, so
atheorem about classes must be formalized as a theorem scheme.

Many statements about classes are easily expressed in Isabelle/ZF. Anordi-
nary classisaunary predicate, in Isabelle/ZF an object of typei = o, wherei
isthe type of setsand o isthe type of truth values. A classrelation isabinary
predicate and has the Isabelle type i = (i = o). A classfunction istradition-
aly represented by its graph, a single-valued class predicate [12, page 25];
itis more easily formalized in Isabelle as a meta-level function, an object of
type i = 4. See Paulson [18, §6] for an example involving the Replacement
Axiom.

Because | sabelle/ZF isbuilt upon first-order logic, quantification over vari-
ables of typesi = o, = 1, €tc., is forbidden. (And it should be; allowing
such quantification in uses of the Replacement Axiom would beillegitimate.)
However, schematic definitions and theorems may contain free variables of
such types. Isabelle/ZF's transfinite recursion operator [21, §3.4] satisfies an
equation similar to Kunen’s Theorem 9.3, expressed in terms of class func-
tions.

| sabelle/ZF does not overload set operators such asN, U, domain and list to
apply to classes. Overloading ispossible in Isabelle, but is probably not worth
the trouble in this case. And the class-oriented definitions might be cumber-
some. Serious reasoning about classes might be easier in some other axiomatic
framework, where classes formaly exist.

Kunen’'s §10 concerns cardinals. Some of these results presented great dif-
ficulties and form one of the main subjects of this paper. But the Schroder-
Bernstein Theorem was already formalized in Isabelle/ZF [21, §2.6], and the
first few lemmas were straightforward.

An embarrassment was proving that the natural numbersarecardinas. This
boilsdown to showing that if thereisabijection between an m-element set and
an n-element set then m = n. Proving this obvious fact ismost tiresome. Rea-
soning about bijections is complicated; a helpful simplification (due to M. P.
Fourman) is to reason about injections instead. Prove that if thereisan injec-
tion from an m-element set to an n-element set then m < n. Applying this
implication twice yields the desired result.

Many intuitively obvious facts are hard to justify formally. This came up
repeatedly in our proofs, and slowed our progress considerably. It isafunda-
mental obstacle that will probably not yield to improved reasoning tools.

Kunen proves (Theorem 10.16) that for every ordina « thereisalarger car-
dina, x. Under AC thisisan easy consequence of Cantor’s Theorem; without
AC more work is required. Paulson dightly modified Kunen's construction,
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Mechanizing Set Theory 7

letting ~ be the union of the order types of all well-orderings of subsets of «,
and found a pleasingly short machine proof.

Our main concern, as mentioned above, is Kunen's proof of x ® kK = k.
We shall examine the machine proof in great detail. The other theorems of
Kunen's §10 concern such matters as cardinal exponentiation and cofinality.
We have not mechanized these, but the only obstacle to doing so istime.

The rest of Kunen's Chapter | is mainly discussion.

4. Foundationsof Cardinal Arithmetic

L et usexaminethe cardinal proofsin detail. We begin by reviewing the neces-
sary definitions and theorems. Then we look at the corresponding Isabelle/ZF
theories leading up to the main result, k ® x = k. Throughout we shall con-
centrate on unusual aspects of the formalization, since much of it isroutine.

4.1. WELL-ORDERINGS

A relation < iswell-founded over aset A provided every non-empty subset
of A hasa<-minimal element. (Thisimpliesthat < admitsno infinite decreas-
ingchains - -- < z, < --- < zg < x1 Within A.) If furthermore (A, <) isa
linear ordering then we say that < well-orders A.

A function f is an order-isomorphism (or just an isomorphism) between
two ordered sets (A4, <) and (A', <) if f isabijection between A and A’ that
preserves the orderings in both directions: z < y if and only if f(z) <’ f(y)
fordl z,y € A.

Write (A, <) = (A',<') if there exists an order-isomorphism between
(A, <) and (A, <').

If (A, <) isan ordered set and z € A then pred(A4, z, <) def {y e A
y < x} is called the (proper) initial segment determined by z. We also speak
of A itself asaninitial segment of (A, <).

Kunen develops the theory of relations in his §6 and proves three funda-
mental properties of well-orderings:

— There can be no isomorphism between a well-ordered set and a proper
initial segment of itself. A useful corollary isthat if two initial segments
are isomorphic to each other, then they are equal.

— There can be at most one isomorphism between two well-ordered sets.
This result sounds important, but we have never used it.?

— Any two well-orderings are either isomorphic to each other, or else one
of them isisomorphic to a proper initial segment of the other.

Kunen's proof of the last property consists of a single sentence:

AC. tex; 2/10/1996; 14:56; no v.; p.7



8 Lawrence C. Paulson and Krzysztof Grabczewski
Let f—
{{v,w) |ve AANw e B A (pred(4,v, <)) = (pred(B,w, <g))};

note that f is an isomorphism from someinitial segment of A onto some
initial segment of B, and that these initial segments cannot both be proper.
Thisgives the central idea concisely; Suppes[27, pages 233-4] gives amuch
longer proof that is arguably less clear. However, the assertions Kunen makes
arenot trivial and Paulson needed two days and ahalf to mechanize the proof.

4.2. ORDER TYPES

The ordinals may be viewed as representatives of the well-ordered sets. Every
ordinal iswell-ordered by the membership relation €. What ismoreimportant,
every well-ordered set isisomorphic to aunique ordinal, called its order type
and written type(A, <). Kunen [12, page 17] proves this by adirect construc-
tion. But to mechanize theresult in |sabelle/ZF, it iseasier to use well-founded
recursion [21, §3.4]. If (A, <) isawell-ordering, define afunction f on A by
the recursion

flz) ={f(y) |y <=z}
foral 2 € A. Then

type(4, <) € {f(z) | z € A}.

It is straightforward to show that f is an isomorphism between (A, <) and
type(A, <), which isindeed an ordinal.

Our work has required proving many properties of order types, such as
methods for calculating them in particular cases. Our source material contains
few such proofs; we have spent much time re-discovering them.

4.3. COMBINING WELL-ORDERINGS

Let A+ B % ({0} x A) U ({1} x B) stand for the digioint sum of 4 and B,

which is formalized in Isabelle/ZF [21, §4.1]. Let (A, <4) and (B, <p) be
well-ordered sets. The order types of certain well-orderings of A+ B and A x
B are of key importance.

Thesum A+ B iswell-ordered by arelation < that combines <4 and < g,
putting the elements of A before those of B. It satisfies the following rules:

a <aa b <pb acA beB
Inl(a") < Inl(a) Inr(b') < Inr(d) Inl(a) < Inr(b)

Theproduct A x B iswell-ordered by arelation < that combines < 4 and <,
lexicographically:

ad <sa bV,beB acA UV <pb
(a, ') <{a,b) (a,V') <(a,b)

AC. tex; 2/10/1996; 14:56; no v.; p.8



Mechanizing Set Theory 9

Cardi nal = OrderType + Fixedpt + Nat + Sum +

consts
Least co (i=>0) => i (bi nder "LEAST " 10)
eqgpol I, lepoll,
lesspoll :: [i,i] =>o0 (infixl 50)
cardi nal R (GRS
Finite, Card i =>0
defs
Least _def "Least(P) == THEi. Od(i) & P(i) &
(ALL j. j<i -->"P(j))"
eqgpol | _def "Aeqpoll B==EXTf. f: bij(AB"
| epol | _def "Alepoll B==EXTf. f: inj(A B)"
| esspol | _def "A lesspoll B == Alepoll B & (A eqpoll B)"
Fi nite_def "Finite(A) == EX n:nat. A egpoll n"
cardinal _def "|A == LEAST i. i egpoll A"
Car d_def "Card(i) == (i =1]il])"
end

Figure 2. 1sabelle/ZF Theory Defining the Cardinal Numbers

The well-orderings of A + B and A x B are traditionally used to define
the ordinal sum and product. We do not require ordinal arithmetic until we
come to the proofs from Rubin and Rubin. But we require the well-orderings
themselves in order to prove k ® k = k. That proof requires yet another well-
ordering construction: inverse image.

If (B,<p) isanordered set and f isafunction from A to B then define
<4 by

r<ay <= f(z) < f(y)

Clearly < 4 iswell-foundedif < g is. If f isinjectiveand <z isawell-ordering
then < 4 isalso awell-ordering. If f isbijectivethen obvioudly f isanisomor-
phism between the orders (A, < 4) and (B, <p); it follows that their order
types are equal.

Sum, product and inverseimageare useful building blocksfor well-orderings;
this follows Paulson’s earlier work [16] within Constructive Type Theory.

4.4, CARDINAL NUMBERS

Figure 2 presents the Isabelle/ZF definitions of cardinal numbers, following
Kunen's§10. Thelsabelle theory file extends some | sabell e theories (Or der -

Ty pe and others) with constants, which stand for operators or predicates. The
constants are defined essentialy as follows:

— Theleast ordina « suchthat P(«) isdefined by aunique description [18,
pages 366—7] and may be written LEAST « . P(«).

AC. tex; 2/10/1996; 14:56; no v.; p.9



10 Lawrence C. Paulson and Krzysztof Grabczewski

— Twosets A and B areequipollent if there exists abijection between them.
Write A = B or, inlsabelle, A eqpoll B.

— B dominates A if there exists an injection from A into B. Write A 3 B
or A lepoll B.

— BgrictlydominatesAif A X Band A % B.WriteA < Bor A lesspoll B.
— A setisfiniteif it is equipollent to a natural number.

— The cardinality of A, written |A], is the least ordinal equipollent to A.
Without AC, no such ordinal has to exist; we might then regard | A| as
undefined. But everything is defined in Isabelle/ZF. The operator THE
returns O unless the description identifies an object uniquely. Thus, an
“undefined” cardinality equals O; thisconveniently ensuresthat | A| isalways
an ordinal.

— Asatiisacardina if 1 =

i|; write Card(z).

Reasoning from these definitions is entirely straightforward except for the
“obvious’ facts about finite cardinals mentioned above.

45. CARDINAL ARITHMETIC

Let s, A, u range over finite or infinite cardinas. Cardinal sum and product
are defined in terms of digoint sum and Cartesian product:

KON |6+ )|

k@AY |k X Al

These satisfy the familiar commutative, associative and distributive laws. The
proofsare uninteresting but non-trivial, especially aswework without AC. We
do soinorder to usetheresultsin proving variousformsof ACto be equivalent
(see below); but frequently this forces usto construct well-orderings explicit-

ly.
5 Provingk ® k = k

We begin with an extended discussion of Kunen’s proof and then examine its
formalization.

5.1. KUNEN'S PrROOF

Kunen calls this result Theorem 10.12. His proof is admirably concise.
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Mechanizing Set Theory 11

OkOe¢ ¢ K kO
[0,a0]¢ e [di,a]
o (0,30

& ° >3

(0,00 [a,00 &,00

Figure 3. Predecessors of {(a, 8}, with 3 < «

Theorem. If s isaninfinite cardinal then kK @ k = k.

Proof. By transfinite induction on x. Assume this holds for smaller cardi-
nals. Thenfor a < &, |a x a] = |a| ® |a| < x (applying Lemma 10.10
when « isfinite).? Define awell-ordering < on k x & by (a, 8) < {v, &) iff

max(«, f) < max(y,d) V [max(a, ) = max(y,d) A
(cr, B) precedes (v, 6) lexicographicaly].

Each (a, 8) € k x k has no more than
|succ(max(a, 3)) X succ(max(a, 8))] < &

predecessors in 4, SO type(k X k,<) < k, whence |k x k| < k. Since
cdearly |k x k| > K, |k X K| = K.

The key to the proof is the ordering <, whose structure may be likened to
that of a square onion. Let « and 8 be ordinals such that 5 < o < k. The
predecessors of («, 3) include al pairs of theform (a, 8') for 8’ < 3, and dll

pairs of theform (o, ) for o/ < «; these pairs congtitute the oth layer of the
onion. The other predecessors of («, 3) are pairs of the form (-y, d) such that
7,9 < a; these pairs congtitute the inner layers of the onion. (See Figure 3.)
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12 Lawrence C. Paulson and Krzysztof Grabczewski

The set of all «-predecessors of («, 5) isasubset of succ(a) x succ(w),
which gives an upper bound on its cardinality. Kunen expresses this upper
bound in terms of max(«, 3) to avoid having to assume 5 < «.

Tosimplify theformal proofs, Paul son used the more generous upper bound

|succ(succ(max(a, 3))) x succ(succ(max(c, 3)))].

Thisisstill acardinal below . AsKunen notes, there aretwo cases. If « or 3
is infinite then succ(succ(max(«, 8))) < k because max(a, ) < k and
because infinite cardinals are closed under successor; therefore, the inductive
hypothesisredizesour claim. If o and 3 areboth finite, then soissucc(suce(max(a, 3))),
while « isinfinite by assumption.
To complete the proof, we must examine the second half of Kunen's sen-
tence: “so type(k x k,<) < k, whence |k x k| < k.” Recal from §4.2 that
there is an isomorphism

f Kk X Kk — type(k X K,<)

such that
fla,B) = {f(7,0) | (,0) < (e, B)}.

Thus, f (e, ) isan ordina with the same cardinality asthe set of predecessors
of (o, B). Thisimplies f(«, 5) < k for al «, 8 < &, and therefore type(x x
k,<) < k. Because f isabijection between x x x and type(k X k,<), we
obtain |k x k| < k. The opposite inequality is trivial.

5.2. MECHANIZING THE PROOF

Proving k ® k = « requires formalizing the relation <. Kunen's definition
looks complicated, but we can get the same effect using our well-ordering
constructors (recall §4.3). Notethat < isan inverse image of the lexicographic
well-ordering of k x k X k, under thefunctiong : kK x Kk — k X k X K defined
by
9(a, B) = (max(a, B), a, B);

this function is trivialy injective.

Figure 4 presents part of the Isabelle theory file for cardinal arithmetic. It
defines « as the constant csquare rel. Hereis a summary of the operators
appearing in its definition:

— rvimage(A4, f, <) is the inverse image ordering on A derived from <
by f.

— lam<x,y> K*K. <x Un y, X, y>isthefunctioncalledg above.
The pattern-matching in the abstraction expands internally to the constant
spl it ,whichtakesapart ordered pairs[18, page 367]. Finaly Un denotes
union; note that max(a, 3) = o U  for ordinas « and 3.
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Mechanizing Set Theory 13

Cardinal Arith = Cardinal + OderArith + Arith + Finite +

consts
I nf Card i1 i=>0
P o [i, 1] =i (infixl 70)
R N N (infixl 65)
csquare_rel i =i

defs
InfCard_def "InfCard(i) == Card(i) & nat le i"
cadd_def i+ == i+ "
crul t _def "T* ) o= it

csquare_rel _def
"csquare_rel (K) ==
rvi mge( K*K,
lam <x,y> K*K. <x Un vy, X, y>,
rmul t (K, Menrel (K),
K*K, rmult (K, Menrel (K), K, Menrel (K))))"
end

Figure 4. |sabelle/ZF Theory Filefor Cardinal Arithmetic

— rmult(A, <4, B, <p) constructs the lexicographic ordering on A x B
from the orderings <4 and <.

— Memrel(k) is the membership relation on «. This is the primitive well-
ordering for ordinals.

Proving that csquare rel isawell-ordering is easy, thanks to lemmas about
rvimage and rmult. A single command proves that our map isinjective.
Figure 5 presents the nine theorems that make up the Isabelle/ZF proof of
k ® k = k. The theorems are stated literally in Isabelle notation. The sym-
bol ==> expresses implication from premises to conclusion. Multiple premis-
esarebracketed using[ | and | ] . For example, theorem 2 is the inference

0rd(k)
well ord(k X k,csquare rel(k))

and theorem 3is

<k y<k z<k ((z,v),(z, 2)) € csquare rel(k)
z<zANy<z

Thereisnot enough space to present the proofs, which comprise over sixty
| sabell e tactic commands; see Paulson[18, §8] for demonstrations of 1sabelle/ZF
tactics. The nine proofs require atotal of 43 seconds to run.*

Thefirst few theorems concern elementary properties of csquare rel(x).
Wefind that it is awell-ordering of x (theorems 1, 2) and that the initial seg-
ment below &, for ¢ < k, isasubset of succ(§) x succ(§) (theorems 3, 4). The
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14 Lawrence C. Paulson and Krzysztof Grabczewski

1 Od(K) ==>
(lam <x,y> K*K. <x Un vy, x, y>) : inj (KK K*K*K)

2 Od(K) ==> well _ord(K*K, csquare_rel (K))

3 [ x<K; y<K, z<K; <<x,y> <z,z>>: csquare_rel(K) |] ==>
xlez &ylez

4 z<K ==> pred(K*K, <z,z>, csquare_rel (K)) <= succ(z)*succ(z)
5 [| x<z; vy<z;, z<K|] ==> <<x,y>, <z,z>> : csquare_rel (K)

6 [| InfCard(K); x<K; y<K; z=succ(x Uny) |] ==>
ordermap(K*K, csquare_rel (K)) * <x,y> <
ordermap(K*K, csquare_rel (K)) <z,z>

7 [| InfCard(K); x<K; y<K; z=succ(x Uny) |] ==>
| ordermap(K*K, csquare_rel (K)) ‘ <x,y>| le
| succ(z)| |*| [|succ(z)]

8 [| InfCard(K); ALL y:K InfCard(y) -->y [*] vy =y |] ==>
ordertype(K*K, csquare_rel (K)) le K

9 InfCard(K) ==> K |*| K = K

Figure 5. Theorems for the Proof of Kk ® k = K

next three theorems (5, 6, 7) form part of the proof that « isthe order type of
csquare_rel(x). Theisomorphism called f in §5.1 iswritten in I sabelle/ZF
as

ordermap(K*K, csquare_rel (K)).

If o, B < K then, setting ¢ = succ(succ(max(«, 5))), weobtain f(«, 5) 3
f(&, &) and thus, viatheorem 4, we have |f(«, )] < €| ® |€].

Theorem 7 correspondsto thefirst part of Kunen's sentence, “Each («, 5) €
k X £ has no more than |succ(max(ca, 3)) X succ(max(c, 3))| predeces-
sorsin «,” and it took about a day to prove. Theorem 8 covers the next part
of the sentence, “so type(x x k,<) < k,” and took another day to prove.
This theorem assumes the transfinite induction hypothesis in order to verify
|succ(&)| ® [succ(€)] <  inthe case when £ isinfinite, checking the finite
case separately. At 17 tactic steps, the proof isthe most complicated of thenine
theorems. The main result, theorem 9, merely sets up the transfinite induction
and appeals to the previous theorems.

Kunen uses without proof the analogous result for addition of infinite car-
dinas, k & k = k. We could prove it using an argument like the one above,
but with an ordering of xk + « instead of x x x. Fortunately there is a much
simpler proof, combining thetrivial x < x @ « with the chain of inequalities
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Mechanizing Set Theory 15

k® Kk =20k < kQ®k = k. Formalized mathematics requires discovering
such simple proofs whenever possible.

The effort required to prove k ® x = « includes not only the several days
spent formalizing the few sentences of Kunen's proof, but al so the weeks spent
developing a library of results about orders, well-orderings, isomorphisms,
order types, cardinal numbers and basic cardinal arithmetic. After proving the
theorem, more work was required to complete the theoretical foundation for
infinite branching trees (recall our original motivation, §3.1). Fortunately, we
have been ableto re-usethelibrariesfor proofsabout AC. Thisweturnto next.

6. The Axiom of Choice and the Well-Ordering Theorem

Our construction of infinite branching trees uses the Axiom of Choice. Let us
review the main features of this axiom and consider how to formalize it in
Isabelle.

If C isaset of non-empty sets then AC asserts that there is a function f
such that f(c) € cfor @l ¢ € C. We can formalize this straightforwardly as

0gC
EleC%U(C) VCGC f‘C €c

Replacing the function space C' — [J(C') by ageneral product isless familiar
but more concise and direct:

0¢gC
E’f-fEHcecC

Wecal f € (I].cc ¢) achoice function onthe set C.

Expressing the set C in different forms, such as P(A) — {0} or {B(z) |
x € A}, yields various equivalent assertions of AC. Isabelle/ZF follows Hal-
mos[9] in expressing AC asthe product of a family of non-empty setsis non-
empty. It derives many equivalent formulations of AC. All thisisdonein a
separate | sabelle theory of AC, which can be imported when necessary; most
of Isabelle/ZF is developed without AC.

AC issignificant only when applied to an infinite set. If ¢ = 0 then, triv-
ialy, there exists z € c. Let C' be afinite set. Then the other axioms of set
theory let us construct a choice function by induction on the size of C. One
can express weaker choice principles by restricting C.

By eliminating C altogether we could obtain astronger axiom, Global Choice:

c#0

choice(c) € ¢

The choice operator is, in effect, a choice function on the universe itself. Itis
easy to use but formally stronger than we need.’
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16 Lawrence C. Paulson and Krzysztof Grabczewski

The Well-Ordering Theorem states that every set can be well-ordered. It
impliesthat | A| is always meaningful. Every set is equipollent to some ordi-
nal, namely the order type of some well-ordering. Theleast such ordinal isits
cardinality.

It isnot hard to see that the Well-Ordering Theorem isequivalent to AC. If
we apply the theorem to the set J(C') then we can define achoice function f
suchthat, forc € C, f(c) yieldstheleast element of ¢ under the well-ordering.
Conversdly, if we apply AC to the set P(A) — {0} then we can repeatedly
choose new elements of A to construct awell-ordering. The details are messy.

Kunen assumes AC in the form of the Well-Ordering Theorem, perhaps
to avoid those messy details, but I1sabelle/ZF tackles this proof. Fortunately,
Abrial and L affitte describe the proof with the aim of mechanization [1]. Start-
ing from AC they prove Hausdorff’s Maximal Principle, Zorn's Lemma and
the Well-Ordering Theorem. Paulson mechanized their proofs easily. There
are under 180 tactic commands, which take about 140 seconds to execute.

Abrial and Laffitte describe their research as a study about proofs. They
work in atyped version of Zermelo set theory. The proofs hold in standard
ZF set theory too, though as the authors remark, there are smpler proofs for
ZF. This does not disturb us because their exposition saves us a great deal of
effort.

Their proofs are more detail ed than necessary even for mechanization. They
devote afull page to Lemma0, aresult about unions; Isabelle’s classica rea
soner can prove this unaided in 1.4 seconds:

goal ZF.thy "!'TA B C. (ALL x:C x<=A | B<=x) ==>
Uni on(C)<=A | B<=Union(Q";
by (fast_tac ZF cs 1);

Their proofs are based upon the original work of Zermelo. Instead of using
the ordinals, they make an inductive definition similar to the construction of
the ordinals but taking the successor operation as a parameter. Provided the
successor operation satisfies certain conditions, the inductive set turns out to
betotally ordered by inclusion (C), infact well-ordered. Then, supplying suit-
able successor operations alows proving the desired results, such asthewell-
ordering theorem.

Mechanizing these proofs did present afew challenges. Their proof of the
Well-Ordering Theorem appears to contain an error; we used an dternative
justification of their Property 6.4. Theinductive definition involves fixedpoints
and some non-trivial proofs, but Isabelle’s inductive definition package [19]
automates thisprocess. Abria and L affitte envisaged the definition and related
proofs to depend implicitly on its successor parameter. In Isabelle this param-
eter must be explicit in al definitions and proofs, and its assumed properties
must be stated wherever they are needed. This did not cause major complica-
tions, but it might have done so.
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Mechanizing Set Theory 17

Abria and Laffitte adopt the Axiom of Globa Choice and use the choice
operator in definitions. Since we do not have this operator, many of our the-
orems take the existence of a choice function as an additional assumption.
When AC isfinally invoked, the rule of existential elimination discharges this
assumption.

Their formal language resembles higher-order logic. Their paper is thus
relevant to many proof assistants, such asHOL [8], IMPS[6] and | sabelle/HOL [20].
We have used it to define Isabelle/ZF s library of the main forms of AC. But
this hardly exhausts the subject. Rather, it is merely the introduction to our
next case study.

7. Rubin and Rubin’s AC Proofs

Herman and Jean Rubin’s book Equivalents of the Axiom of Choice [24] isa
compendium of hundreds of statements equivalent to the Axiom of Choice.
Many of these statements were used originally asformulations of AC; others,
of independent interest, werefound to be equivalent to AC. Each chapter of the
book focusses on a particular framework for formulating AC. Chapter 1 dis-
cusses equivalent forms of the Well-Ordering Theorem. Chapter 2 discusses
the Axiom of Choice itself. Other chapters cover the Trichotomy Law, cardi-
nality formulations, etc.

Grabczewski has mechanized the first two chapters, both definitions and
proofs. He has additionally proved the equivalence of al the formulations giv-
en; the book omits the “easy” proofs and afew of the harder ones. Below we
outline the definitions and some of the more interesting proofs.

Thisisasubstantial piece of work. There are 55 definitions, mostly names
of the formulations of AC. There are nearly 1900 tactic commands. The full
development takes over 44 minutes to run.’

7.1. THE WELL-ORDERING THEOREM
The eight equivaent forms of the Well-Ordering Theorem are the following:

WO; Every set can be well-ordered.
WO, Every setis equipollent to an ordinal number.
WOj3 Every setis equipollent to a subset of an ordinal number.

WO, (m) For every set x there exists an ordinal « and a function f defined
ona suchthat f(B) 3 mforevery 8 < e and Ug,, f(B) = =.

WOj; There exists anatural number m > 1 such that WO4(m).
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18 Lawrence C. Paulson and Krzysztof Grabczewski

WOl_def "WOL == ALL A. EX R well _ord(A R"
Wo2_def "WOR2 == ALL A, EX a. Od(a) & A eqgpoll a"
WB_def "WB == ALL AL EX a. Od(a) & (EX b. b<=a & A eqpoll b)"

WO4_def "WO4(m) == ALL A. EX a f. Od(a) & donmin(f)=a &
(UN b<a. f'b) = A & (ALL b<a. f'b lepoll m"

WH_def "WBb == EX mnat. 1 le m& WA(mM"

WO6_def "WO6 == ALL A. EX mnat. 1 le m& (EXa f. Od(a) &
domain(f)=a & (UN b<a. f'b) = A &
(ALL b<a. f‘b lepoll m)"

WO7_def "WO7 == ALL A Finite(A) <-> (ALL R well _ord(A R -->
wel | _ord(A converse(R)))"

WOB_def "WOB == ALL AL (EXf. f : (PROD XA X)) -->
(EX R well_ord(AR)"

Figure 6. Isabelle/ZF Definitions of Well-Ordering Principles

WOg For every set 2 there exists anatural number /. > 1, an ordind «, and
afunction f defined on « such that f(3) 2 m for every f < « and

Us<a f(B) = =.

WO- For every set z, « isfinite iff for each well-ordering R of z, R~! dso
well-orders z.

WOg Every set possessing a choice function can be well-ordered.

Most of Chapter 1 is devoted to proving WOg = WO, which isby far
the hardest of the results. Grabczewski has proved the equivalence of al the
formulations given above by means of the following implications:

W01 — W02 — W03 — W01
WOy4(m) = WO4(n) ifm<n
WOy (n) = WO5; = WOz = WO; = WO4(1)
WO7 e W01
WOS e W01

Figure 6 shows how these axioms are formalized in Isabelle.
7.2. THE AXIOM OF CHOICE

The formulations of the Axiom of Choice are as follows:
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AC; If Alisaseat of non-empty sets, then there is a function f such that for
every B € A, f(B) € B.

AGC, If Aisaset of non-empty, pairwise digoint sets, then thereisa set C'
whose intersection with any member B of A has exactly one element.

AC3 For every function f there isafunction g such that for every z, if z €
dom(f) and f(z) # 0, then g(z) € f(z).

AC, For every relation R thereis afunction f C R such that dom(f) =
dom(R).

AC5 For every function f thereisafunction g such that dom(g) = range(f)
and f(g(z)) = z for every z € dom(g).

ACg The Cartesian product of a set of non-empty sets is non-empty.

AC; The Cartesian product of aset of non-empty sets of the same cardinality
is non-empty.

ACg If Alisaset of pairs of equipollent sets, then there is a function which
associates with each pair a bijection mapping one onto the other.

AGCy If Aisaset of setsof the same cardindity, then thereisafunction which
associates with each pair a bijection mapping one onto the other.

ACip(n) If Aisaset of sets of infinite sets, then there is a function f such
that for each z € A, the set f(x) is adecomposition of x into digoint
sets of size between 2 and n.

AC;; Thereexists anatural number n > 2 such that ACyy(n).

AC;q If Aisaset of setsof infinite sets, then there is anatural number n > 2
and afunction f suchthat for each z € A, theset f(x) isadecomposition
of z into digoint sets of size between 2 and n.

AC13(m) If Aisaset of non-empty sets, then thereis afunction f such that
foreach x € A, the set f(x) isanon-empty subset of = with f(z) 3 m.

ACy4 Thereisanatural number m > 1 such that AC;3(m).

AC5 If Alisaset of non-empty sets, then there is a natural number m > 1
and afunction f such that for each x € A, the set f(x) isanon-empty
subset of = with f(z) 3 m.

ACy4(n, k) If Alisaninfinite set, then there is a set ¢,, of n-element subsets
of A such that each k-element subset of A isasubset of exactly one ele-
ment of ¢,,.
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20 Lawrence C. Paulson and Krzysztof Grabczewski

ACy7 If Aisaset, B ="P(A) — {0} and g isafunction from B — A to B,
then thereisafunction f € B — A suchthat f(g(f)) € g(f)-

AC,g For every non-empty set A, every family of non-empty sets{B,, | a €
A} and every family of sets { X, | a € A4, b € B,}, there holds’

NUXe= U NXeso-

a€AbEB, ngaeA B a€EA

ACy9 For any non-empty set A, each of whose elements is non-empty,

NUr= U N f,

acAbca FEC(A)acA
where C(A) isthe set of all choice functions on A.
Grabczewski has mechanized the following proofsin Isabelle:

ACl <~ AC2 AC4 <~ AC5
AC, <= ACq ACy <— ACy
AC, = AC, = AC3; = AC,
AC, = ACy = ACy = AC4
W01 — AC1 — WO2
WO, = AClo(n) — AC;; = ACi3s = ACi5 = WOg
AClo(’n) — AC13(n — 1) AC13(n) — ACyy = ACy;
ACH — AC14
ACl3(m) — ACl3(n) ifm<n
AC| — A013(1) ACy < ACy;
WO, = AClg(n, k) — WO4(n — k)
ACl —— AClg —— A019 —— ACl

Chains such as AC; — ACy — AC3 — AC; require fewer proofs
than proving equivalence for every pair of definitions. We have occasionaly
deviated from Rubin and Rubin in order to form such chains. We have proved
AC; = AC4 to avoid having to prove AC; — AC3 and AC3 — AC,.
Similarly we have proved ACs — ACy instead of ACg — AC; and
AC; = ACy. Our new proofs are based on ideas from the text.

Creating one giant chain would minimize the number of proofs, but not
necessarily the amount of effort required. In any event, we wished to avoid
major deviations from Rubin and Rubin.

7.3. DIFFICULTIES WITH THE DEFINITIONS

Although the idea of this study was to reproduce the original proofs faithful-
ly, we sometimes changed basic definitions in order to simplify the Isabelle
proofs.
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A fundamental concept isthat of awell-ordering. The Rubins state that a
set A iswell-ordered by arelation R if A ispartially ordered by R, and every
non-empty subset of A hasan R-first element; they define apartial ordering to
betransitive, antisymmetric and reflexive. |sabelle/ZF defines awell-ordering
to be atotal ordering that is well-founded, and hence irreflexive. Fortunate-
ly there was no need to define well-ordering once again. Reflexivity does not
play amajor rolein the Rubins proofs, which remain valid under the Isabelle
definitions. Thus, we may take advantage of the many theorems about well-
ordered sets previously proved in |sabelle/ZF.

Another difference is the definition of ordinal numbers. Rubin and Rubin
use essentially the same definition as Kunen does; recall §3.2. We tackle this
problem by proving that their definition follows from the Isabelle/ZF one.

The Rubinsuse A < B without defining it. Fortunately, its definition is
standard; see §4.4 for its |sabelle formalization.

Some proofs rely on the notion of an initial ordinal. However, an initia
ordinal is precisely a cardinal number, as previously formalized in Isabelle.
After proving the appropriate equivalence we decided to use cardinals,

7.4. GENERAL COMMENTS ON THE PROOFS

We are aiming to reproduce the spirit, not the letter, of the original material.
For instance, we have changed “P(m) = P(m — 1) foral m > 1" to
“P(succ(m)) = P(m) for dl m.” Such changes streamline the formaliza-
tion without affecting the ideas.

Most of the implications concerning the Well-Ordering Theorem are easy
to prove using Isabelle. Rubin and Rubin describe some of them as “clear.”
They do not provetheimplication WO; = WO,, but cite an external source
instead. Thisimplication istrivia with the help of Isabelle’s theory of order
types (recall §4.2).

It is easy to see that WOy is equivalent to the statement

If  isinfinite, then there exists arelation R such that R well-orders : but

R~ does not.

The Rubins observe (page 5) that thisis equivalent to the Well-Ordering The-
orem because every transfinite ordinal iswell-ordered by < (the membership
relation) and not by > (its converse). To turn this observation into a proof, we
need to extend it to every well-ordered set. It isenough to provethat if aset x is
well-ordered by arelation R and its converse, then its order type (determined
by R) iswell-ordered by >; thisis a contradiction if = is infinite. Again we
exploit Isabelle order types and ordinal isomorphisms.

Rubin and Rubin’s proof of AC7; = ACg (page 12) failsin the case of the
empty family of sets. The proof of AC19 = AC; (page 18) failsfor asimilar
reason. When building amechanized proof we are obliged to treat degenerate
cases, however trivial they are.
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The proof of AC9 = AC; (page 14) has asmall omission. We start with

a set s of non-empty sets, and define y def (Us)“. It can be proved that for

eachz € s, z X y =~ y. Then Rubin and Rubin claim “it is easy to see that for
eechz € s,z x y~ (zr xy) U{0}.” Butif s = {{b}} then z and y are unit
sets ({b} and {b}“, respectively) and the claim fails. In order to mechanize
this proof we have used = x y x w instead of z x y. This seems simpler than
handling the degenerate case separately.

On page 14, Rubin and Rubin set out to prove that AC;( to AC;5 areequiv-
aent tothe Axiom of Choice. They describe anumber of implications as* clear.”®
Then they list some implications that they are going to prove. It appears that
they intend to establish two chains

WO, = AClo(n) — ACy; = ACj3s = AC;5 = WOg
Aclg(’n) — ACM — ACl5.

Because of other results, it only remains to show that AC; implies ACy3(n).
We could prove

AC| = ACl3(1) ACl3(m) — AClg(n) ifm<n

or, moredirectly, AC1y(n) = AC;3(n —1). Inthiswelter of results, Rubin
and Rubin have stated and we have mechanized more proofs than are strictly
required.

Another noteworthy proof (page 15) concerns the implication WO, —>
ACq4. Rubin and Rubin devote just over half a page to it, but mechanizing
it took along time. Near the beginning of the proof they note that if s isan
infinite set equipollent to a cardina number w,, then for al £ > 1 the set of
al k-element subsets of s isalso equipollent to w,. Demonstrating thisis non-
trivial, requiring among other things the theorem x ® k = « discussed above
in this paper.

The next and key step is arecursive construction of aset ¢ = U, ,,, Ty
satisfying AC16. Now T, isan increasing family of sets of n-element subsets
of s. At every stage we add at most one subset. The authors claim that at any
stagey < w, wecan choose n — k distinct elements of the set s — (U T, Uk, )
where k. is a k-element subset of s. They may regard this claim as obvious
but we found it decidedly not so.

Thedifficulty of this proof liesin the complexity of the recursive definition
of T’ , which furthermore contains atypographi cal error.? Formalizing the def-
inition was simple, but proving that it satisfied the desired property required
handling theorems with many syntactically complex premises. We changed
the definition several times so as to simplify these proofs.

AC. tex; 2/10/1996; 14:56; no v.; p.22



Mechanizing Set Theory 23

7.5. CONSOLIDATING SOME PROOFS

Three of the Rubins' proofs, namely AC; = WOy, AC;; = AC; and
ACy5 = WOg, are based on the sameidea. They construct arecursive map-
ping of ordina numbersto aset. Then they show that the converse of the map-
ping isinjective, obtaining a bijection with some desired ordinal. The map-
pings differ in their details. But we managed to generalize them so as to dedl
with only one definition, and prove some properties for one mapping instead
of three.

— Inthe proof of AC; = WO,, westart with achoice function f on aset
of non-empty subsets of aset . We define f(0) = « for someu ¢ x (we
chose u = z, exploiting the Axiom of Foundation). Finally we define a
mapping G such that G(a) = f(z — G“«) for dl ordinas «. (Recall
that “ isthe image operator).

— Inthe proof of ACi5; = WOg, we start with afunction ¢ such that for
every non-empty subset y of a set z, the set g(y) is a non-empty subset
of y. We define g(0) = u for somewu Z z (wechosew = {z}). Then
we construct a mapping G such that G(a) = g(z — Uz, G(8)) for all
ordinals .

— Theproof of AC,7 = AC, differsfromthefirst oneinthat f isnot nec-
essarily achoice function, but for every non-empty subset y of z it satis-
fies f(y) € x=. Moreover, amapping H constructed here differs from G
inthat it mapsto u every « such that f(z — H “«a) ¢ « — H “a (which
never holdsif f isachoice function).

For each of these definitions, Rubin and Rubin prove that the inverse of the
constructed mapping G (or H) isinjective on some set, and that there is an
ordina « such that G(«) = u, which somehow implies the desired result.
For the sake of clarity and economy, we decided to generalize the three
definitionsinto one and to prove the required properties only once. Let = bea
set and f afunction such that for every non-empty subset y of z, the set f(y)
isasubset of z. Define amapping H asfollows: for every ordind «,

_ [ f(z) if f(z) € z,wherez =z — Uz, H(D)
H{a) = {{x} otherwise o

The Isabelle definition is as follows:
HH(f,x,a) == transrec(a, % r. let z = x - (UNc:b. r‘c)
inif(f‘z:Pow(z)-{0}, f'z, {x}))
Thisdefinition requires some adjustments to the original proofs. For AC; =
WO, and ACy; — AC;, the function f must be replaced by a function
f'suchthat f'(y) = {f(y)} for al y in the domain of f. Itisclear that in
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AC; = WOy and ACy5 = WOy, if z =2 — Uﬁ<o¢ H(ﬁ) then f(Z) €z
holds whenever z # 0. This demonstrates agreement with the original defini-
tions.

7.6. THE AXIOM OF DEPENDENT CHOICE

At theend of Chapter 2, Rubin and Rubin present two formulations of another
axiom, Dependent Choice:

DC(a) If R isarelation between subsets and elements of a set X such that
y<a— Juexy Rufordl y C X thenthereisafunction f € o — X
suchthat f“S R f(3) for every 5 < a.

DC If Risanon-empty relation such that range(R) C dom(R) then thereis
afunction f with domain w such that f(n) R f(n + 1) for every n < w.

They then comment “It is easy to seethat DC <= DC(w).” But the only
proof we could find is complicated; mechanizing it required over 200 com-
mands. That is four times the number required for the two theorems proved
explicitly.

Consider the proof of DC — DC(w). Let R C P(X) x X satisfy the
hypothesis of DC(w). Construct aset X’ and arelation R’ by!?

X'=Upeutf €n— X |Vien fk R f(K)}
fRg < dom(g) =dom(f) +1andg [ dom(f)=f.  (f,g€X’)

It is easy to see that these satisfy the hypotheses of DC, which thus yields a
function /' € w — X' suchthat f'(n) R’ f'(n + 1) for n € w. The desired
function f € w — X isnow defined by

f(n) = f'(n+1)(n).

A similar construction yields the converse.

The Rubins then prove, Theorem 2.20, that the Axiom of Choice (in fact,
WO;) implies DC(«) for every ordina «. While mechanizing this theorem
we noticed that it isincorrect: the quantification should be restricted to cardi-
nas. If a isnot acardinal then DC(«) fails.

Hereis ashort proof of -DC(w + 1). Let X = w and define R by

yRu <— y C X,y <w+ 1 and u isthe least element of X — y.
Assume DC(w + 1). Then there is afunction f € w + 1 — w such that
f“n R f(n) for every n € w; thisimplies f(n) = n. Thence f“w = w, SO

thereisno v such that f “w Ru asthereisnou € w —w = 0. SODC(w + 1)
yields a contradiction.
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8. Proving WOg = WO,

Theproof (page 2) of WOg = WO seemsto bethe most complicated inthe
first two chapters of Rubin and Rubin. It depends upon many other properties
concerning ordinal sum, equipollence, dominance, etc. To formalize some of
thefunctions requires the description operators LEAST and THE. But themain
cause of difficulty in this proof isits sheer size and complexity.

8.1. THE IDEA OF THE PROOF

Themainideaof the proof isto show first, that every set y satisfyingy xy C y
can be well-ordered, and then that every set 2 can be well-ordered as a subset
of such a y. The latter part of the proof is much easier then the former. For
every set x thereexistsay suchthat 2 U (y x y) C y. The set y is constructed
as|Uo2 g zn, Where zp = x and 2,11 = 2z, U (2, X 23).

The main part of the proof is the claim (2), which suffices to show that
every set y such that y x y C y can be well-ordered:

Ify xy Cyandm > 1,thenm € N, impliesm —1 € N, 2
where

Ny = {m | af,a dom(f) = Q, U/(3<a f(/g) = yavﬁ<a f(/g) j m} .

To prove this, the Rubins assume that i and m satisfy the hypothesis, and
that o and f satisfy the conditions of the definition of N, for some natural
number m. Then for every 3, v, § < a they define

ugys E (F(B) x f(3) N F(6).

Itiseasy to seethat dom(ug,s), range(ugys) ad ug,; €ach have no more
than m elements. The proof dividesinto two cases. For each case we construct
afunction g satisfying the definition of IV, for m — 1. The required ordinal
number is o + «a, where in this section + denotes ordinal sum.

— Casel: Vﬁ<a- f(,@) 75 0— 3%5<a. dom(u575) 75 0/\d0m(u575) <m
Defing, for 5 < «,

vy = {gom(uﬁ/\gug) if f(8) #0

it f(B) =0

where Az and 14 are the lexicographically smallest pair of ordinals
and ¢ such that dom(ug.s) # 0 and dom(ug,s5) < m.
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Define the function ¢ for 6 < a + «:

v if <«
90 ={ Foy v, ith et

Every non-empty f () issplitinto two non-empty subsets, thereby decreas-
ing the number of elements.

— Case2: dgcqn. f(B) # 0NV, 5<a. dom(ugys) # 0 — dom(ugys) = m

Let 5 < « begiven. Since f(3) # 0, choose an element s of f(/3).
Define v, for v < o by

v :{{uﬂyéy(s)} it f(v) #0
7o if f(v)=0

whered, isthe smallest ordinal ¢ such that dom(ug,s) # 0. Theassump-
tions of Case 2 justify the existence of §,, and also imply that ug,s isa
function, justifying the notation w5, (s). Only thiscaserequiresy x y C
Y.

Now define the function g(~y) for v < a + « analogoudly to g(3) in the
previous case.

For both cases, we must show that o + o and g satisfy the definition of IV,
for the natural number m — 1. Thus we must show Uz, 9(8) = y and
g(B) 2 m —1for 8 < a+ a. Thiswill complete the proof of (2).

Axiom WOg asserts that for every set y there is a natural number in IV,,.
Once the claim (2) is established, it remains to apply “mathematical induc-
tion” (in fact, reverse mathematical induction) to show that 1 € N,; then the
function f with domain « satisfying f(5) 3 1foral § < « determines a
well-ordering of y. Thus, if y x y C y then y can be well-ordered.

8.2. PRELIMINARIES TO THE MECHANIZATION

Before mechanizing this proof, we had to prove many results in general set
theory. Thistook a considerable time.

8.2.1. Ordinal Arithmetic

Both cases of the proof use ordinal sum to express a: + «. At thetime we con-
ducted this proof, ordina arithmetic was not defined in Isabelle. We adopted
the following definition for ordinal sum:

i ++ ] == ordertype(i+j, radd(i,Menrel(i),j,Mnrel(j)))
Herei +j standsfor digoint sum, r add constructs awell-ordering onthedis-
joint sum (recall the discussion in §4.3) and Menr el (i) isthe membership
relation over set i asaset of pairs. Ordinal product is defined analogoudly.

The proof also makes use of ordinal difference, defined by
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i -- j == ordertype(i-j, Menrel(i))

Defining the function g on a+ « requiires proving several properties of ordinal
sum and difference. For example, if v < a + g thenédther v < aory =
a+ (y—a)andy — a < 8. We aso need the identity

Ord(a) ==> (UN b<a++a. C(b)) = (UN b<a. C(b) Un C(a++b))

Thesedefinitions of ordinal sum and product aretraditiona (seeaso Kunen
[12, page 20]), but deriving the required properties from them proved to be
extremely laborious. Recursive definitions [27, page 201] would have been
much more direct.

8.2.2. New Notation

To express the definitions conveniently required adding alet-construct to Isa-
belle/ZF. Fortunately, this construct was already available in Isabelle/HOL
and could be taken verbatim. A let-declaration has the syntax

let id=term;...; id = term in term

In set theory the ordering relation on ordinals coincides with the member-
ship relation on sets: o < (3 means precisely a € 3. But the former notation
is more suggestive and most authors use it whenever possible. Isabelle has it
too, with the following definition:

i<j == i:] & Od(j)

Informal proof, converting between o < g and o € (3 istiresome. We defined
the quantifiersVs o . P[], Ip<a - P[B] and U, -P[B] for reasoning directly
in terms of <. When « is indeed an ordinal, there is no difference between
these and the normal bounded quantifiers.

Defining this notation took some effort; for instance, we had to ensure that
the simplifier could use universally quantified assumptions as rewrite rules.
It seems wrong that such trivial syntactic matters should require such effort.
One might expect the proof assistant to recognize ordinals and automatically
use < instead of € when appropriate. However, we do not know of any system
that can do this.

8.3. MECHANIZING THE PROOF

Figure 7 presents the Isabelle definitions of the quantities used in the proof.
We used names like NN, uu and gg1 for N, u, g to avoid possible clashes
with variables.

Thedefinition of vv 1 isaformal rendering of Rubinand Rubin: “let A5 be
the <-smallest such y which satisfies the conditions. Then given Ag, let 5 be
the <-smallest such § which satisfies the conditions’” [24, page 3]. Unfolding
thelet-declarations yields nesting of the LEAST operator. To reason about this,
the following theorem turned out to be useful:
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NN(y) == mnat. EX a. EXf. Od(a) & domain(f)=a &
(UN b<a. f'b) =y & (ALL b<a. f‘b lepoll m

uu(f, beta, ganma, delta) == (f'‘beta * f‘gamm) Int f‘delta
(Case 1 definitions)

vwil(f,mb) ==
let g = LEAST g. (EX d. Od(d) & (domain(uu(f,b,g,d)) "= 0 &
domai n(uu(f,b,g,d)) lepoll m);
d = LEAST d. domai n(uu(f,b,g,d)) "= 0 &
domai n(uu(f,b,g,d)) lepoll m
in if(f'b "= 0, domain(uu(f,b,g,d)), 0)

w(f,mb) ==f‘b - vvi(f,mb)
ggl(f,a,m == lamb:a++a. if(b<a, vvi(f,mb), wi(f, mb--a))
(Case 2 definitions)

vv2(f,b,g,s) ==
if(f'g "= 0, uu(f, b, g, LEAST d. uu(f,b,g,d) "= 0)'s, 0)

ww2(f,b,g,s) ==f‘g - vv2(f,b,qg,s)

gg2(f,a,b,s) == lamg:a++a. if(g<a, vv2(f,b,qg,s),
ww2(f, b, g--a,s))

Figure 7. 1sabelle/ZF Definitions for WOg = WO,

[l P(a, b); Od(a); Od(b);
Least _a = (LEAST a. EX x. Od(x) & P(a, x))
|] ==> P(Least_a, LEAST b. P(Least_a, b))

Case 2 says that “there exists an ordinal § such that ....” The proof of this
case starts with choosing the least ordinal satisfying this condition. It is not
necessary for (3 to be the least; any such 8 can be used. This issue does not
affect the informal proof. But using the LEAST operator in the formal proof
would lead to needless complications.

Figure 8 presents a selection of the many lemmas that make up this proof.
Most of it (theorems 1-5) involves establishing the claim (2). First, consider
Case 1. Theorem 1 asserts that the union of the range of gg1 iswhat it should
be (namely the union of the range of f ). Theorem 2 asserts that each element
of therange of gg1 hasno morethan melements. For Case 2, theorems4 and 5
assert analogous properties of gg2. Theorem 6 is the claim itself; theorem 7
asserts that we can construct y from x and theorem 8 is the final resuilt.

Most of the definitions are made in the context of the claim (2), or its sub-
cases. Unfortunately, in Isabelle al definitions are global. Any necessary con-
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1 [|] Od(a); mnat |] ==>
(UN b<at++a. ggl(f,a,m‘'b) = (UN b<a. f*'b)

2 [| Od(a); mnat;
ALL b<a. f'b "=0 -->
(EX g<a. EX d<a. domain(uu(f,b,g,d)) "= 0 &
domai n(uu(f,b,g,d)) lepoll m;
ALL b<a. f'b lepoll succ(n); b<a++a
|1 ==> ggl(f,a,mM ‘b lepoll m

3 [| ALL g<a. ALL d<a. donmain(uu(f, b, g, d)) =0 -->
domai n(uu(f, b, g, d)) eqpoll succ(m;
ALL b<a. f‘b lepoll succ(m; y*y <=vy;
(UN b<a. f‘b)=y; b<a; g<a; d<a; f‘b™=0; f‘g =0;
mnat; s:f‘b
|1 ==> uu(f, b, g, LEAST d. uu(f,b,g,d)"=0) : f'b ->f'g

4 [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) "=0 -->
domai n(uu(f,b,g,d)) eqpoll succ(m;
ALL b<a. f‘b lepoll succ(m; y*y<=y;
(UN b<a.f‘b)=y; Od(a); mnat; s:f‘b; b<a
] ==> (UN g<at++a. gg2(f,a,b,s) ' g) =y

5 [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) "=0 -->
domai n(uu(f,b,g,d)) eqpoll succ(m;
ALL b<a. f‘b lepoll succ(m; y*y <=y;
(UN b<a. f'b)=y; b<a; s:f'b; mnat; ni=0; g<at+ta
|1 ==> gg2(f,a,b,s) * g lepoll m

6 [| succ(m : NN(y); y*y <=vy; mnat; mi'=0 |[] ==> m: NN(y)
7 EXy. x Un y*y <=y
8 WX ==> WO1L

Figure 8. Some Theoremsin the Proof of WOs = WO,

text must be supplied explicitly. Parameterslocal to Case 2 of the claiminclude f,
«, fand s; where Rubin and Rubinwrite g(y) wemust writegg2(f, a, b, s) ‘ g.
Inthe machine proofsthemsel vesthe problem isworse. Not only the param-
eters, but their properties, must be copied explicitly to every lemma used in
establishing Case 2. We can see thisin Figure 8, theorems 3-5.
Rubin and Rubin’s proof isan excellent exampl e of the difficulties of machine
proof. On page 4 stand two adjacent passages, one easily mechanized, the oth-
er not. They say “Now, if in addition to f(3) # 0 aso f(y) # 0, then there
existsaé such that ug,s # 0. (Thisfollows from [the definition of «] and the
factthat y x y C y.)” Thisstatement iseasily expressed in Isabelle and proved
with asingle call to the classical reasoner:

AC. tex; 2/10/1996; 14:56; no v.; p.29



30 Lawrence C. Paulson and Krzysztof Grabczewski

goalw thy [uu_def] "!If. [| b<a; g<a; f'b™=0; f'g =0;
y*y <=vy; (UN b<a. f‘b)=y
|1 ==> EX d<a. uu(f,b,g,d) "= 0";
by (fast_tac (AC_cs addSls [not_enptyl]
addSDs [ Sigmal RSN (2, subsetD)]
addSEs [not _enptyE]) 1);
They also say “if v, § < o and dom(ug,s) # 0 then dom(ug,s) has m ele-
ments. It follows . .. that us,s has a most m elements (ug,s C f(9) = m).
Therefore ug,s ~ m and ug,s isafunction.” Itisobvious that if R isafinite
relation and dom(R) ~ R then Risafunction. But our formalization contains
along proof with numerous lemmas. The conclusion istheorem 3 of Figure 8.

Recall from §3.2 our difficulties in proving that natural numbers are cardi-
nals. Finiteness appears to be amajor source of gapsin informal proofs. When
faced with an obvious statement that has no obvious proof, we are forced to
prove many lemmasthat ook equally obvious. Thisisterribly frustrating. How-
ever, it appearsto be afundamental feature of formal proof, and anyway “obvi-
ous’ statements are not aways true!

Oneisreminded of thefamous mutilated chessboard problem: if weremove
two diagonally opposite corners from a chessboard, can we cover the remain-
ing 62 squares with 31 dominos? Theusual proof that theanswer is“no” seems
impossible to formalize without disproportionate efforts. Gardner [ 7] describes
anumber of similar puzzles.

M echanizing the reverse induction mentioned above, and the construction
from z of somey suchthat = U (y x y) C y, isroutine. All the difficultieslie
in proving the claim (2). The two cases are complicated. Both authors spent
considerable time experimenting with various forms of definition to make the
proofs more readable.

Themain file containing the proof of WOg = WO, holdsover 130tactic
commands; it executes in about three minutes.

9. Conclusions

We have mechanized parts of two advanced textbooks. most of Chapter | of
Kunen [12] and the first two chapters of Rubin and Rubin [24]. Some of this
materia is fairly recent; the Rubins cite papers from the 1960s. In doing our
proofs, we noted a number of difficulties.

Ideally, the mathematics should not have to conform to the machine; the
machine should conform to the mathematics. Following a single text helps
indicate whether this is indeed the case. It is hot the most direct way of pro-
ceeding, however; a brief aside in the text may expand into a large formal
derivation. Formalizing only the main results requires less effort while till
yielding some benefits, such as finding errors and ambiguities, and exposing
hidden assumptions.
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On the whole, we have succeeded in reproducing the material faithfully.
Isabelle’s higher-order syntax makes it easy to express set-theoretic formulae
But Rubin and Rubin frequently use English phrases that trand ate to complex
formuleae It is essential to ensure that the formulaeare not only correct, but as
simple as possible.

Standard mathematical concepts have conflicting definitions. Sometimes
these definitions are strictly equivalent, asin initial ordinals versus cardinals.
Sometimes they are equivalent under certain assumptions: our definition of
ordinal relieson the Axiom of Foundation. Sometimesthey differ only ininessen-
tial details, asin whether awell-ordering isrequired to bereflexive. No details
areinessential informal proof, and we can forsee that incompatible definitions
will become a serious problem aslarger and larger bodies of mathematics are
formalized.

Comparing the sizes of the formal and informal texts, Jutting [11, page 46]
found that the ratio was constant. Thismay hold on average for alarge piece of
text, such as a chapter, but it does not hold on aline by line basis. Sometimes
the text makes an intuitive observation that requires ahuge effort to formalize.
And sometimes it presents a detailed calculation that our tools can perform
automatically. If we are going to perform such proofs on alarge scale, we shall
have to discover ways of predicting their size and cost.

Although set theory isformally untyped, mathematicians use different let-
tersto range over natural numbers, cardinas, ordinals, relations and functions.
There are obvious inclusions among these types. infinite cardinals are cardi-
nals are ordinals, and al objects are sets. Isabelle’s type system is of no help
here. Other provers, such as IMPS [6] with its subtypes, might handle this
aspect better. The proof of WOy = WO; revealed another limitation of
Isabelle: itsinability to allow definitions and proofs to occur within the con-
text of alengthy inductive argument.

Grabczewski isengaged in proving the consistency of the Axiom of Choice,
following the approach described by Kunen in Chapters 4-6. This requires
coding the syntax of formuleeinductively within set theory, and internalizing
the ZF axioms. Arriving at the most convenient definitions took a great desl
of time. We know of no obstacle to proving deeper and deeper results in set
theory, provided one iswilling to devote the necessary effort.
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Notes
! To understand those details, refer to Paulson [21, §3.5]. For i € I let a; betheleast o such
that i € V[A].. From (1) we can prove

<k ICV[A]Ls
1> VAl CVAlLs

Thisresult dlows V[A],.+ to serve as the bounding set for aleast fixedpoint definition [19].

2 Kunen gives straightforward inductive proofs of these first two properties. But Halmos|[9,
page 72] gives an argument that proves both with a single induction.

3 Lemma10.10 saysthat multiplication of finite cardinal s agrees with integer multiplication.

* All Isabelle timings are on a Sun SPARCstation ELC.

® The statement of Global Choice can be obtained by Skolemizingthetrivial theorem Ve.c #
0 — (3z . = € ¢). Thisisastandard example showing that Skolemization can be unsound in
higher-order logic [13].

6 Such figures can be regarded only asarough guide. Many of the theorems properly belong
in the main libraries. Small changes to searching commands can have a drastic effect on the
run time. For comparison, the main ZF library (which includes the Kunen, Abrial and L affitte
proofs) contains 150 definitions and nearly 3300 tactic commands.

” Rubin and Rubin [24, page 9] state thisincorrectly. They quantify over B but leave X free
in the definiens.

8 At least one of these, WO; = AC1o (n), isnon-trivial. We have to partition theinfinite
set x into a set of digoint 2-element sets, for al © € A. Our proof uses the equation k =
k& k to establish abijection h between the disjoint sum |z| + |z| and . The partition contains
{h(Inl(e)), h(Inr())} for al a < |z|.

9 At the beginning of thefifth line from the bottom on page 15, y € N occursinstead of i €
T,.

10 Here g | dom(f) means g restricted to the domain of f.
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