Technical Report VAN

Number 387

Computer Laboratory

Monitoring composite events
in distributed systems

Scarlet Schwiderski, Andrew Herbert,
Ken Moody

February 1996

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1996 Scarlet Schwiderski, Andrew Herbert, Ken Moody

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Monitoring Composite Events in Distributed Systems

Scarlet Schwiderski* Andrew Herbert! Ken Moody*
* Computer Laboratory t Architecture Projects Management Ltd
Cambridge University Poseidon House
Pembroke Street Castle Park
Cambridge CB2 3QG, UK Cambridge CB3 O0RD, UK
Abstract

One way of integrating heterogeneous, autonomous and distributed systems is to
monitor their behaviour in terms of global composite events. In specific applications,
for example database, it is essential that global composite events can take account of
general conditions such as the timing constraints on distributed system behaviour. In
this paper, the use of global composite events incorporating time events for expressing
physical time is investigated. The detection of global composite events is complicated
by the inherent features of distributed systems: lack of global time, message delays
between sites and independent failures. Global event detectors are distributed to
arbitrary sites. Relevant constituent events occur on remote sites and are signalled
to corresponding global event detectors, where they are evaluated. Two different
algorithms for the detection of global composite events are introduced, which are based
on the evaluation of trees: asynchronous and synchronous evaluation. Asynchronous
evaluation provides fast but unreliable detection of global composite events, whereas
synchronous evaluation is characterized by reliability and unpredictable delays.

1 Introduction

One way of integrating heterogeneous, autonomous and distributed systems is to provide
a monitoring service, which aims to detect behaviour patterns of interest in distributed
computations. A detected behaviour pattern is associated with information relevant to
its cause. A monitoring service collects and evaluates this information and, depending
on the outcome, triggers certain actions. The monitoring service can, for example, notify
interested users or start a new application program.

Composite events have been used successfully in numerous fields of research for spec-
ifying and detecting behaviour patterns of interest. In distributed debugging, composite
events are employed to compare the expected system behaviour with the actual system
behaviour [Bat88b]. In active databases, composite events depict the event-part of Event-
Condition-Action (ECA) rules [DBMS88]. The detection of an event causes the triggering
of an action, if the condition holds. In databases, ECA rules are applied for integrity and
security enforcement, constraint management and rule-based inference.

The basic building block of composite events are primitive events, instantaneous, ob-
servable “occurrences of interest”. Examples of primitive events are the start or the
completion of a method call, reaching a certain date and time, or a signal from a sensor.
In general, primitive event expressions refer to classes of events rather than to single event

occurrences. For example, the expression “customer X uses the ATM in Oxford Street”
can occur numerous times at different points in time. Therefore, an expression specifies
an event class. An instantaneous occurrence, which is determined by a time and location
of occurrence and other event data, is called an event instance. For example, “customer
Robert Smith uses the ATM in Oxford Street on 1/1/95:10:57, debiting £100” is an in-
stance of the above event class. The name, time, location and amount, the so-called event
parameters, express the circumstances under which the event occurred. Primitive event
expressions can be composed with event operators like conjunction and sequence to form
composite event expressions. Composite event expressions can define arbitrarily complex
event scenarios. In a distributed system, primitive event expressions are site-relative, that
means, event instances of any particular event class originate at the same site. The com-
ponents of a composite event expression can involve events at many sites. Hereafter, we
call these system-wide composite event expressions global (composite) event expressions,
as opposed to local (composite) event ezpressions, which relate to event occurrences on a
single site.

The detection of composite events differs considerably, depending on whether they are
local or global. This is due to the inherent features of distributed systems [Bac92]: lack
of global time, autonomy of sites, message delays between sites, and independent failure
modes. Centralized systems are not concerned with the problems implied by these features
and event detection is therefore comparatively easy.

In a distributed system, we distinguish between local event detectors and global event
detectors. Local event detectors detect local event expressions and consequently employ
“simple” centralized detection mechanisms (see e.g. [Cha89, Gat94, GJS92]). Detected
local events are then forwarded to relevant global event detectors, which reside at the local
and/or remote sites. In this way, the distinctive features of centralized and distributed
systems can be isolated from each other. One of the major differences between local and
global event detection is the role of time. Generally, the detection of composite events
is driven by the timestamps of constituent events. Each primitive or composite event
instance is assigned a specific timestamp, which identifies when the event happened. The
timestamp of a composite event is determined by the timestamp of the last primitive
event participating in its occurrence. A centralized system employs a single local clock.
Hence, because all timestamps of events are read from a, single clock, it is straightforward
to determine the ordering of events. On the other hand, a distributed system employs
numerous local clocks, one for each of its sites. These local clocks cannot be perfectly
synchronized and record slightly different times. Therefore, it is difficult to determine the
last event or even the meaning of “last”. Before looking at event handling in distributed
systems, we review the related fields of distributed debugging and active database systems.

1.1 Characteristics of Distributed Debugging Systems

One way of debugging distributed programs is the monitoring of global event expressions
describing expected program behaviour [HZMW91, HW88, Bat88a, Bat88b, Spe9l]. The
primitive event expressions refer to the statements of a programming language.

One major characteristic of distributed debugging systems is that they do not utilize
physical time. First, there is no notion of time events, that is, events relating to absolute
or relative time cannot be used in a suitable way. Second, the temporal order between
events is determined with respect to causal order, which is identical to the “happened
before” relation defined by Lamport [Lam?78]. In distributed debugging systems, the causal

2

relationship between events is essential in order to locate the cause of errors. Consequently,
timestamps relate to logical time rather than to physical time. Another characteristic of
distributed debugging systems is that detected global events are displayed at a single
debugging station. The reason for this is that the debugging process is monitored and
analyzed by some user at a terminal.

1.2 Characteristics of Active Database Systems

In database systems, ECA rules present a general mechanism for supporting applications
that require timely response to critical situations [DBMS88].

As opposed to distributed debugging systems, active database systems utilize physical
time. Time events express absolute, relative and periodic relationships and are employed
to incorporate time constraints into composite event expressions [DBB88, GJS92, Cha89,
WF90, Gat94]. Examples like “a customer debits money more than three times a day” or
“the stock drops below the limit before 8pm” highlight the necessity of using time. One
important implication of the use of physical time is that the temporal relationships between
events must respect physical order rather than causal order. The characteristic of active
database systems is that by using physical time, the external behaviour of the system
is monitored, not its algorithm (c.f. debugging). Thus, ECA rules can be understood as
“real world” rules, i.e. expressing user application concepts, not system concepts. To date,
active database systems have mainly been explored in centralized environments. [JS92]
and [CW92] consider ECA rules in distributed database environments. They do, however,
not address general global composite events.

1.3 Objectives

In this paper, we explore the use of global composite events in distributed database envi-
ronments. We present and discuss algorithms for the fully distributed detection of global
composite events. The conceptual novelty in dealing with such events arises from the
distributed nature of the constituent primitive events; global composite event expressions
include time event expressions and are therefore constrained by physical time. The in-
evitable inaccuracies of local clock synchronisation, as well as the need to be able to
deal with independent failures and delayed network links, are characteristic of distributed
environments.

The proposed algorithms are designed to deal with these problems. Furthermore, the
development of an object-oriented prototype implementation incorporates the following
features:

e Two different detection algorithms are implemented, asynchronous and synchronous
detection, providing either a fast and unreliable or a slow and reliable service, de-
pending on application concerns.

e Detection algorithms are evaluated concurrently in order to avoid blocking and to
improve response times.

e Network object pointers are used to make the handling of parameters and detection
of global composite events transparent.

1.4 Outline of Paper

In section 2, we describe the features of distributed systems and the special assumptions
underlying our investigations. The specification of global composite events is introduced
in section 3. Section 4 is concerned with the detection of global composite events, namely,
what timestamps look like, what data structures underlie our detection algorithms and how
they are evaluated and what are the differences between asynchronous and synchronous
detection. Implementation details are given in section 5. Section 6 summarizes the paper.

2 Assumptions for Distributed Systems

1. No global time
Each site in a distributed system has its own local clock. These clocks can drift and
therefore record slightly different times.

2. Message delays between sites
Messages sent over a computer network can be delayed depending on the load at the
sender and receiver sites and the network load.

3. Independent failure modes
The sites and transmission channels of a distributed system may fail independently
of each other.

In our approach, we assume that clocks can be synchronized, that is, the maximum time
difference between any two clocks at any one physical time is bounded. Hereafter, we call
this maximum time difference the precision IT'. A global time can then be approximated
[Kop92, Ver93]. The “granularity condition” states that the granularity of the global
timebase g should not be smaller than II, g > II. Fulfilment of this condition ensures that
global ticks do not overlap. Moreover, the temporal order of two events in different sites
can be determined, if their timestamps (clock ticks measured with respect to the global
timebase) are two or more clock ticks apart, a fact known as 2g-precedence.

Using this time model is convenient, because a temporal order between any two events
can easily be decided. If two events occur at different sites, one event occurs before the
other, if they are two or more clock ticks apart. Otherwise, a temporal order cannot be
established and the events are said to happen in parallel or concurrently 2. If two events
occur at the same site, one event occurs before the other, if they are one or more clock
ticks apart.

We also assume FIFQ network delivery, that is, messages originating at any one site
are delivered at any other site in the order they were generated. FIFO network delivery
can be achieved easily using remote procedure call.

Under the assumption of FIFO network delivery events occurring at one site are sig-
nalled at corresponding global event detectors in the order of their occurrence. This is
convenient, because event detectors combine event instances following certain policies.
Note that there may be multiple event instances of each event class, when evaluating a
composite event. The different instances are related with different sets of event parameters,

1The assumption on synchronized clocks is reasonable, since a synchronisation of 100 msec can be
achieved even in WANS (using e.g. NTP, the Network Time Protocol [Mil91]). Telecommunication networks
can deliver much greater precision.

2Note that the two events may have the same timestamp.

4

among other things their timestamp. Which of the available event instances are combined
for the detection of a composite event depends on application demands. [CKAK94] intro-
duces the parameter contexts chronicle, recent, continuous and cumulative. For example,
the chronicle context evaluation combines the oldest event instances available and the re-
cent context evaluation combines the newest event instances available. In this paper, we
only consider global event detection in the chronicle context.

Handling independent failures is not an easy task. One major problem is to detect a
failure and in particular to locate the site or the transmission channel which causes it.

The problem which arises for global event detection is, whether events are not sig-
nalled from a particular site because there are none, or because the site and/or connecting
channels respectively have failed. There are two main solutions to this. First, composite
events fire whenever suitable events are received, without regard to delayed or lost events.
In this case, late coming events can either be ignored or consumed by other composite
events. Alternatively, event detection only proceeds if all sites have signalled their current
status. In this case, event detectors evaluate incoming events in temporal order or wait
until a message “there are no relevant events” has been received. The first policy realizes
an asynchronous evaluation and the second policy a synchronous evaluation.

3 Specification of Global Composite Events

In centralized active database systems, primitive events are divided into the following
categories: time events, method events, value events, transactibn events and abstract
events [Gat94]. Time events occur when certain points in time are reached. Absolute,
relative and periodic time specifications are allowed. Method events arise at the start or
the completion of a method call. Events referring to the start or the completion of an
update of a data value are called value events. Transaction events occur at the beginning,
the commit or the abort of a transaction and abstract events appear, when external users
or applications notify event occurrences to the system. For a more detailed discussion on
primitive events and their specification see [Gat94].

Definition 3.1 (Global event expressions) A global event expression is built as fol-
lows:

e A primitive event expression is a global event expression.

e If By, E; and Fj are global event expressions, then (Ei, Es), (E41| Es), (Ey; Es),
(B1ll E»), (E1;NOT Ey; F3) and (EfE») are global event expressions.

e Nothing else is a global event expression.

(E1,E2) denotes a conjunction between two events and is detected when both events
occur. The disjunction (E;|Ey) is detected when either of the events occur. (Ey; Ey)
represents a sequence and is detected when E; occurs before Es. A concurrency is de-
picted as (F || E;) and is detected when F; and Es occur concurrently. The negation
(E1;NOT Ejy; E3) is detected when an event Ey does not occur after an event F; and
before an event E3 (this implies that E3 occurs after ;) and finally, (EfE;) denotes an
iteration and is detected when FEs occurs after zero or more occurrences of Ej.

Definition 3.1 gives a recursive definition of global event expressions. Primitive event
expressions as well as global event expressions can serve as the basic building block in

the construction. Therefore, the construction is nested. This enables the user to split up
complex event scenarios into smaller units. Another advantage, besides increasing clarity,
is that different units can be evaluated independently of each other at remote sites.

In section 2 we addressed a time model for distributed systems. This time model is
general in that it applies to all distributed systems with synchronized clocks. The notion of
2g-precedence defines our understanding of temporal order in distributed systems, namely
the meaning of before, after and concurrently. Two non-local events E; and Fs occur one
before (after) the other, if the timestamp of F is at least two clock ticks below (above) that
of Ey, and concurrently, if the timestamps are less than two clock ticks apart. Therefore,
non-local events are partially ordered. As opposed to non-local events, local events always
occur one after the other. Because timestamps relate to the same local clock, the temporal
order can be established, if they are one or more clock ticks apart. In this paper, we assume
that no two primitive events originating at the same site will carry the same timestamp?.
Therefore, local events are totally ordered.

The semantics of the event operators has to be investigated carefully in the light of
this time model.

4 Detection of Global Composite Events

The detection of global composite events is driven by the timestamps of constituent events.
Each primitive or global event is associated with a single timestamp. The timestamp of a
global event is determined by the latest timestamp of events participating in its occurrence.
An event bearing this timestamp is called a terminator event. Timestamps are used for:

e detecting a sequence, iteration, negation or concurrency between two constituent
events.

o deriving the timestamp of a global event occurrence.

e determining which instances of constituent events are evaluated next (depending on

the parameter context).

In the following section, we discuss the implications of the above requirements on the
specification and evaluation of timestamps. The detection procedure for global events is
illustrated afterwards, depending on one of two evaluation semantics, asynchronous and
synchronous evaluation.

4.1 Specification and Evaluation of Timestamps

Global event expressions are built recursively from primitive and global event expressions
and event operators. The following list gives an informal overview of the timestamps
derived at each step, depending on the specific event operator.

Disjunction E;|E,: A disjunction is detected when either E; or Ey occurs. The time-
stamp of that occurrence becomes the timestamp of the disjunction.

$Note that the granularity of the global timebase is coarse in comparison with the granularity of the
local clocks. Distinct events at the same local site may therefore carry identical global timestamps. The
events can be distinguished by tagging them with local clock values to capture the finer granularity.

Sequence Ej;Eg: Inherently, a sequence expresses the happened-after relation between
events. Event Fy occurs after event Ey and hence, its timestamp is the timestamp
of El; E2 .

Iteration ETEs: An iteration is a special case of a sequence, in which Ej serves as a ter-
minator event following a number of occurrences of F;. Consequently, the timestamp
is that of Es.

Negation E1;NOT Eg;Eg: As above, a negation is a special case of a sequence. There-
fore, E3 defines the timestamp of the negation.

Concurrency E;||Eq: It is the nature of concurrency that no temporal order between
Ey and Ej can be inferred from their timestamps. Neither of the events can be
regarded as occurring after the other, therefore both E; and Ey must be considered,
and their timestamps are joined.

. .El , El . ’ Bl E1l)
’ A ZR Site 1
H2| |) B B
Site 2
7R : B1 1l E2

Figure 1: Examples for concurrency

Figure 1 shows four examples of occurrences of events F; and Es. Each vertical
line relates to a specific global clock tick. The first example shows F; and Es both
having the same global clock value. This timestamp is inherited by Ej|| Es. In the
second example the timestamps are one clock tick apart. Because of 2g-precedence,
it cannot be determined which event occurred last, although Es has a larger clock
value than F;. As a result the timestamps are joined and cover an interval of one
clock tick. The third and fourth examples show how such joined timestamps are
related to other events Ey. In the fourth example a concurrency cannot be detected,
because the lower bounds of F; and E5 are two clock ticks apart and the events
are therefore sequential. The result of comparing two local clock values depends on
whether they were generated at the same site, and timestamps must therefore record
the originating sites as well as the associated local clock values.

Conjunction E;,Es: The timestamp of a conjunction is the later timestamp of E; and
Esy, if the temporal order between F; and Es can be decided. Otherwise the two
timestamps are joined.

After discussing issues on deriving timestamps for composite events, the structure of
timestamps and their handling is illustrated. Before defining timestamps as such, the
structure of clock values is addressed.

Definition 4.1 (Local clock value) The global clock granularity g is given. A local
clock value t represents a moment in time, reckoned as a number of clock ticks of granu-
larity g since some epoch or starting point.

A local clock value of granularity g = 0.01lsec could, for example, be represented as
day/month/year:hours:minutes:seconds.hundredths.

Definition 4.2 (Timestamp) Given S, the total number of sites, a timestamp T consists
of

e 3 local clock value, the so-called base
e a duration 0 or 1, the so-called interval

e a partial function offset : § — {0,1} defining a local clock value for each site
participating in the timestamp.

The base of a timestamp represents the minimum value of a local clock, read at some
participating site. The interval is set to 1, if the timestamp covers an interval of one
clock tick, that is, if the timestamp refers to concurrent events having distinct local clock
values. Otherwise it is set to 0. The (site) set of T' is the domain of the partial function
offset. For each s in the site set, offset(s) determines the local clock value, either the base
of the timestamp (value 0) or base+1g (value 1). Hereafter, we refer to base+offset(s) as
localclock(s) for each participating site s, and to base+interval as the limit. We represent
a timestamp T as a triple (base, interval, offset).

Definition 4.3 (Timestamp of a primitive event) Given a primitive event E occur-
ring on site X at local time %, the timestamp T'(E) is determined as follows:

T(E).base :=t
T(E).interval := 0
T(E).offset := {(X,0)}

Example 4.4 The timestamp of a primitive event originating at site A may look as
follows:
T(E;) = (27619951703,0,{(4,0)})

So far we have discussed informally, whether two events are sequential or concurrent
in the 2g-precedence time model. After introducing the syntax of timestamps, we can now
give a formal definition of the notions of after < and concurrent ~.

Definition 4.5 (Temporal relation) On the basis of the 2g-precedence time model, the
temporal relation between two events E; and F is defined as follows*:

T(Ey) ~T(Es) iff limity — base; < 2g
and [limit; — basey < 2g
and Vs € set; N sety, localclock;(s) = localclocks(s)
T(Ey) < T(Ee) iff limity — base; > 2g
or bases = base; + 1g
and s s.t. localclock: (s) < localclocks(s)

*For abbreviation, the timestamp identification is written as subindex (e.g. base; instead of T'(E1).base).

Rationale:

Event Ey occurs concurrently with event By, T(E;) ~ T(E}), if no two component local
clock values are two or more clock ticks apart, and if also the local clock values (and
therefore the associated primitive events) are identical for each site participating in both
E; and E,. Note that ~ is NOT transitive.

Event Ey occurs before event Ey, T(E1) < T(Es), if the limit of T(E,) is at least two
clock ticks ahead of the base of T'(E}) or, if there are two component local clock values
read from the same site s and T(E3)’s component is one clock tick ahead of T'(E;)’s. The
first case corresponds to the basic definition of 2g-precedence, whereas the second case
expresses the fact that timestamps contain two components which are read from the same
local clock and are therefore sequential. Note that < IS transitive.

Proposition 4.6 If neither T(E;) < T(E3) nor T(E3) < T(E;), then at most two adja-
cent local clock values cover the timestamps T'(E;) and T'(Ej).

Proof: Assume without loss of generality that base; < bases.
Since T'(Ey) £ T(E>), limity ? base; + 2g. Therefore,

limity < basey + 29 == base; < basey < limity < base) + 1g.

Hence, the only possible local clock values arising in T'(E}) and T'(E») at any participating
site s are base; and base; +1g. O

There are pairs of events F) and Ej for which none of the three cases T(E;) < T(Es),
T(Ey) < T(Ey), T(E1) ~ T(E>) applies. For example,
localclock; (A) = 306 localclocks (A) = 307
localclocky (B) = 307 localclocke(B) = 306

Earlier in this section we argued that the timestamps of constituent events have to be
joined when detecting a concurrency or a conjunction with constituent events that cannot
be ordered. The following definition shows how timestamps are joined.

Definition 4.7 (Joined timestamps) Suppose given two timestamps such that neither
T(E1) < T(Ez) nor T'(Ey) < T(E1). The joined timestamp T' = T'(E;) U T(Ej) is defined
as follows:
joinset := sety U sety
MAX {localclock; (s), localclocks(s)} Vs € sety N sety
joinlocalclock(s) := { localclock: (s) Vs € sety\sety
localclocky(s) Vs € sety\sety
joinlimit := MAX {joinlocalclock(s) | s € joinset}

T.base := MIN {joinlocalclock(s) | s € joinset}
, if joinlimit =T,
7 interval e 0 if joinlimi base
1 otherwise
0 if joinlocalclock(s) = T'.base

And for all s € joinset, T.oﬁset(s) =
1 otherwise

This construction defines a valid timestamp whenever the events F and E; cannot be
placed in temporal sequence. Intuitively, the joined timestamp records the higher of the
- local clock values recorded for E; and Ej at each site participating in either event. Note
that this definition is in particular applicable whenever T'(Ey) ~ T(Ey).

Example 4.8 Given T'(E,) = (27619951704, 0, {(B, 0)}). Suppose T'(E;) ~ T(E5), where
T'(En) = (27619951703,0, {(4,0)}). Then the joined timestamp T = T'(E;) UT(E,) is

(27619951703, 1, { (4, 0)(B, 1)})

Example 4.9 Given two timestamps T'(E;) = (306,1,{(4,0)(B,1)}) and T(E;) =
306,1,{(4,1)(B,0)})- Because neither T(E;) < T(B;) nor T(E;) < T(E) the time-
stamps can be joined and T' = T'(Ey) U T(B5) is

(307,0,{(4,0)(B,0)})

The semantics of the event operators is defined next. The definition corresponds to
the explanations on event operators given in the beginning of this section.

Definition 4.10 (Semantics of event operators) On the basis of the 2g-precedence
time model, the event operators are defined as follows. The first part of the right-hand
side identifies under which pre-conditions a composite event of that kind is detected and
the second part, indicated by =, presents the resulting timestamp:

El,Ez iff E1 and Eg
= T(Ez) iff T(El) < T(Ez)
= T(El) iff T(Ez) < T(El)
= T'(E1) UT(E,) otherwise

E'l l Ez iff El or E2
= T(El) or T(Eg)
Ey; By iff Fy and Ey and T(E1) < T(Ez)
= T'(Ey)
Ey || By if FE) and Ej and T(E;) ~ T(E)
= T(E1) UT(E,)
EtE, iff By, (i 20) and By and T(Ey,) < T(E»)
= T'(E)

E;; NOT Ey; By iff FE; and E3 and T(El) < T(Eg) and
no B with T(Ey) < T(E») < T(Es)
= T(Eg)

4.2 Detection Procedure

The detection of global events is based on the evaluation of trees. Each global event
expression F is transformed into a global event tree GT'(E), corresponding to its syntactic
structure. Nodes are labelled with event operators and leaves are labelled with primitive
event expressions or global event expressions. Each node contains a number of lists for
detected sub-events, one for each of its children. Negation-nodes have three children,
all other nodes have two children. In other words, a list contains the detected event
occurrences of the corresponding child node.

10 -

=
B
R
3
1

i
N

a v/ b c E2 d

%]

Figure 2: A snapshot of a global event tree

Example 4.11 Figure 2 shows a snapshot during evaluation of the global event tree of
((a,E1);b) | (¢;NOT E»;d), indicating the lists of stored sub-events as linked boxes.
Empty lists are represented as empty boxes. The leaves E; and Ej refer to global event
trees stored and evaluated elsewhere. The other leaves refer to local primitive events.

Algorithm 4.12 The evaluation of global event trees at a global event detector site pro-
ceeds as follows:

1. An event instance is signalled at the global event detector.

2. The event instance is inserted into all leaves corresponding to its event class.
3. Each inserted event instance is propagated to the parent node.

4. The parent node is evaluated, taking into account:

(a) the event operator
(b

) the inserted event instance
(c) the event instances stored in the child lists
)

(d) the evaluation semantics, asynchronous or synchronous

If no event is detected at the parent node, continue at 5).
If an event is detected at the parent node, derive the new event instance, delete the
consumed event instances and continue at 6).

5. The inserted event instance is stored in the corresponding child list.
The algorithm stops.

6. If the current node has a parent node, continue at 3).
If the current node has no parent node, a global composite event is detected and the

algorithm stops.

Algorithm 4.12 presents the steps involved in the evaluation of the global event trees
stored at a global event detector site. At runtime, local events occur and are detected
at their local event detectors. The local event detectors initiate messages containing the
event class, the timestamp and other parameters, and send these messages to those local or
remote global event detectors which have registered an interest in the particular event class
[BBHM95]. Received event instances are evaluated by global event detectors, that is, they

11

(i.e. their timestamp and other parameters) are inserted into all leaves corresponding to
the event class. Leaves serve as entry points and propagate the event instances upwards to
their parent nodes, where they are evaluated. Evaluation at a node takes into account the
stored sub-events as well as the newly arrived event instance. The evaluation procedure
depends on the evaluation semantics, asynchronous or synchronous. If an event occurrence
is detected, it is again propagated to the parent node and the procedure recurses or, if
there is no parent node, it is signalled to the event manager. The latter case means that
an instance of a specified global event has been detected. In both cases, consumed sub-
events are deleted. If no occurrence is detected, the event instance is inserted into the
corresponding list of sub-events.

There are different policies for evaluating nodes, depending on the handling of delayed
events (which comes down to the handling of site failures, network congestion and network
partitioning). There are two possibilities: ignoring delayed events and waiting for delayed
events. In the following two sections we discuss both policies and call them asynchronous
and synchronous evaluation®.

4.2.1 Asynchronous Evaluation

Definition 4.13 (Asynchronous evaluation) A global event tree is evaluated asyn-
chronously, if each node is evaluated instantly on the arrival of an event instance from a

child node.

Events affected by a failure (site failure, network partitioning or network congestion)
are delayed until the failure is repaired. Asynchronous evaluation means that nodes are
evaluated irrespective of failures. When events arrive at a node, there may be other events
with smaller timestamps which have not yet arrived. The node is, however, evaluated
instantly. This implies that events from specific child nodes are not necessarily evaluated
in the order of their occurrence, that is, in the chronicle parameter context. More recent
events with larger timestamps from other child nodes will be handled as soon as they
become available. What is done with the delayed events is another matter for decision.
They may either be accepted for event detection as soon as they arrive or they may be
ignored and perhaps sent back to their site of origin.

The main advantage of asynchronous evaluation is that global event trees are evaluated
and composite events are detected regardless of remote failures. Delayed events do not
cause temporary blocking of the detection procedure. The simplest example is that of a
disjunction By | Ey. If Ey's site has failed, the disjunction can still be detected when-
ever Ej is signalled. Therefore, asynchronous evaluation is characterized by immediate
consumption, non-blocking detection and good response times. The main disadvantage of
asynchronous evaluation is that it does not guarantee event detection in the chronicle or
any other parameter context. Whether this can be accepted or not depends on the specific
global composite event and the application domain.

4.2.2 Synchronous Evaluation

Definition 4.14 (Synchronous evaluation) A global event tree is evaluated synchron-
ously, if each node is evaluated on the arrival of an event instance from a child node

5The terminology asynchronous and synchronous evaluation relates to the notion of asynchronous and
synchronous communication in distributed systems [Mul93).

12

provided that all event instances from other child nodes which have smaller timestamps
have arrived.

connection to remote global | E
event detector or (remote or
Iocal) local event detector

a El E2
e 3
Ez not
™ * /’\
c d e f E3 start g end

Figure 3: A hierarchical structure of global event trees

Synchronous evaluation means that the evaluation of a node is delayed until all relevant
events with smaller timestamps have arrived at the global event detector. Relevant events
arrive from the sites relating to the siblings of the child node. There are no relevant events
from the child node itself, because nodes are evaluated synchronously and because network
delivery is FIFO (= all events from one node arrive in the order of their occurrence). The
siblings may have other child nodes, which again have children, and so forth. Therefore,
the existence of a relevant event depends recursively on numerous event reporting sites.
Figure 3 illustrates this. The right child of E depends on all nodes in its subtree. In
evaluating a composite event synchronously every relevant primitive event that might
participate in the evaluation of its parent node and other ancestors must be considered.
Therefore, all event reporting sites in the subtree have to be checked for relevant events
before an event occurrence can be detected at the parent node. In most cases, checking
reveals that there are no relevant events. Occasionally there are relevant events which
have been delayed because of failure.

The goal is to develop a checking procedure which is efficient and does not cause
unnecessary overhead. The following methods are possible:

Dummy events For each event with a global scope, a procedure is implemented which
raises a dummy event periodically if there is no “real” event, and sends it to all
registered global event detectors.

Token passing Tokens are passed in a virtual ring of sites. The evaluation of a node can
proceed when a token is returned to its originator.

Requests Requests are sent recursively to all sites which report event occurrences and
from them to their children. This procedure continues until it is confirmed that all
relevant event occurrences have already been signalled.

13

Our approach investigates the last possibility, namely, sending requests to correspond-
ing sites. This decision is justified, because used for this purpose dummy events cause a
big overhead on network traffic and event processing, and token passing often delays event
detection unnecessarily. For a detailed discussion refer to [Sch95].

Algorithm 4.15 The following algorithm checks a subtree starting with its root node
child for event occurrences until time checktime. Fach node has a variable logicaltime
which represents the minimum timestamp of the next event occurrence®:
Check_Subtree(child, checktime)
IF child is leaf THEN
CASE leaf’s event class originates at
local site: logicaltime := Time.Now-1
RETURN
remote site: logicaltime := Check Remote_Tree(eventclass, checktime)
RETURN
END
ELSE /* child is node */
IF logicaltime > checktime THEN
RETURN
ELSE
CASE event_operator is
Conjunction,
Sequence,

Concurrency =>
Fork a thread(Check_Subtree(leftchild, checktime))
Fork a thread(Check_Subtree(rightchild, checktime))
IF one thread returns THEN
IF there are no event instances in the corresponding child list
with timestamps smaller than checktime THEN
logicaltime := MAX{logicaltime, checktime}
RETURN
ELSE
Wait for other thread
logicaltime := MAX{logicaltime, checktime}
RETURN
END
END
Dlsjunctlon =>
Fork a thread(Check_Subtree(leftchild, checktime))
Fork a thread(Check_Subtree(rightchild, checktime))
Wait for both threads
logicaltime := MAX{logicaltime, checktime}
RETURN
END
END
END

8The event operators iteration and negation have not been included: they are similar.

14

Algorithm 4.15 checks the nodes of a subtree recursively. The recursion stops, if the
child is a leaf corresponding to the local site (no network delays and therefore no unknown
primitive event occurrences up to the current point in time), or if the child is a node which
is already checked up to checktime. If the child is a leaf corresponding to a global event
tree at a remote site, the request is forwarded (Check_Remote_Tree”). If the child is a
node, the checking procedure depends on its event operator. Conjunction, sequence and
concurrency operators have two children and need exactly one event instance from each
child in order to detect an occurrence. Therefore the checking procedure can return as
soon as it is certain that there is no event occurrence from one of the children. In the case
of a disjunction, both subtrees have to be examined.

For synchronous evaluation, step (4d) in algorithm 4.12 involves applying algorithm
4.15 before evaluating a disjunction, iteration, or negation node. The algorithm is applied
to all siblings of the child node propagating the new event occurrence. The evaluation of
the parent node blocks until the algorithm returns or until relevant event instances arrive.
In the case of a conjunction, sequence, or concurrency node, the application of algorithm
4.15 is redundant, because an event occurrence cannot be detected before a suitable event
instance has arrived from the sibling node. Blocking the evaluation until all relevant event
instances have arrived from the sibling node is therefore inherent.

In contrast to asynchronous evaluation, synchronous evaluation of a node blocks until
all relevant sites have signalled relevant event occurrences to that node. That can cause
considerable delays and therefore lead to bad response times. On the other hand, events
are always evaluated in the order of their occurrence. This guarantees chronicle parameter
context.

5 System Architecture

The mechanisms for specifying and detecting global composite events in distributed sys-
tems are currently being implemented using Modula-3 for Network Objects [BNOW94].
Modula-3 for network objects is a distributed programming system, where communication
over a network is done using network objects. A network object is an object whose meth-
ods can be invoked over a network. The program containing a network object is called the
owner of the network object and the program using it is called the client. An important
feature of Modula-3 for Network Objects is that a network object pointer can be passed as
an argument or result between network nodes. This provides a more powerful mechanism
than ordinary RPC.

The implementation includes two processes running independently of each other on
each site in the distributed test environment: an event simulator process and an event
detector process. In a test environment of N sites, there are 2 X N processes, N event
simulators and N event detectors.

An event simulator simulates primitive event occurrences. Different simulator setups
can be installed at different sites, defining which primitive events occur, and when. The oc-
currence can be random and/or predetermined. Simulated events of different event classes
are tagged with the timestamp containing the current local clock value and the origina-
tor site. Information on which detector sites have registered an interest in occurrences
of specific event classes is kept in a class/site table. Event occurrences are signalled to

7 Check_Remote_Tree(eventclass, checktime) locates the detector site of eventclass and applies the
Check_Subtree algorithm to the root node of the corresponding global event tree.

15

specific detector sites by calling the Signal Primitive Event-methods of particular Port
network objects at these sites, containing the event class and the timestamp as arguments.

A global event detector receives event instances from multiple sites via Port network
objects. There is one port for each event reporting site. Since network delivery is FIFO
point-to-point, the event instances arrive at a single port in the order in which they were
sent. Also, network objects can be invoked concurrently. We exploit the fact that events
are signalled concurrently at ports and allow the concurrent evaluation of global event
trees. The threads corresponding to different ports synchronize at single nodes. This
means, if two events arrive at a node simultaneously, one thread is evaluated while the
other one is waiting. Different nodes can, however, be evaluated concurrently. This is
especially useful in synchronous evaluation, because the evaluation of a node can block for
a long time if an event reporting site has failed. Other nodes, which are not influenced by
the failed site, can be evaluated in the meanwhile.

event generating site

r | I I I

Event Simulator Event Simulator Event Simulator Event Simulator
Event Detector Event Detector Event Detector Event Detector
(@XO)) QOO (@) (OQOC
[Pl IS IS W I 4 1 1 I J I ST IO S J S EURSN I N
/ O O - \)) W N)
port \] 1 Y
network “

Figure 4: The underlying system architecture (4 sites)

Figure 4 illustrates the system architecture with four sites. Event simulators signal
primitive events to sites via the corresponding ports. Each Port network object receives
the primitive and detected composite events from a single generating site. The event
detectors evaluate incoming events concurrently. Detected global composite events can be
resignalled to any event detector site.

The global event trees in an event detector site are implemented as dynamic data
structures. Figure 5 shows an instance of a global event tree. The dynamic data structure
corresponds to an inverse tree, where the leaves serve as entry points pointing to their
parent node and so forth. The root node represents a corresponding global composite
event expression. An incoming event instance is inserted into the leaves corresponding to
its event class and directly propagated to the parent node. The parent node is evaluated,
depending on the specified evaluation semantics, synchronous or asynchronous. If no event
is detected, the event instance is stored in the corresponding child list (e.g. El1, Elg, b1,
c1, ¢2 and E2;). If an event is detected, a new event instance is derived which contains a
timestamp and parameters, namely, pointers to the constituent event instances (e.g. the
event relating to the left operand of the root node).

The implementation of asynchronous evaluation is straightforward. An event arrives
at a node and is evaluated with respect to the events already available. If an event
is detected, a new event instance is derived, the consumed events are deleted and the
new instance is propagated. An important point to consider is the garbage collection of
obsolete events. During evaluation of sequence, concurrency and negation nodes, events
accumulate at the node which cannot be used for event detection. For example, if there

16

il
"
.
-
s
P
-
.
*
¢

©-
\D
/v

.
..

site 2 site 3

Figure 5: An instance of a global event tree

are multiple F events for Fy; Es, but no E; events with smaller timestamps, the Ey’s can
be deleted. It seems reasonable to apply garbage collection independently at each node,
when the information regarding sibling events (e.g. what is the minimum timestamp of
E,) is available.
The implementation of synchronous evaluation involves algorithm 4.15. Regarding the
data structures, the variable logicaltime has to be defined at each node in addition to
the data structures used in asynchronous evaluation. Also, the algorithm works in the
inverse direction to the detection algorithm. Therefore, each node contains pointers to its
children. When an event arrives at a disjunction, iteration or negation node, the node can
only be evaluated if all events up to the timestamp are available. If the sibling(s) contain
no events or only events with smaller timestamps, the Check_Subtree procedure is initiated
and evaluation blocks until it returns, or until relevant events arrive. In comparison with
asynchronous evaluation, the garbage collection of obsolete events is simplified, because
events always arrive in the order of their occurrence at each node.
Figure 5 shows that some pointers refer to objects in remote sites. These pointers are
called network object pointers. Network object pointers are employed for the communica-
tion of objects, rather than copying. This has numerous advantages:

e It minimizes the copying of data. Event instances often have extensive parameters.
Also, event instances of a certain class are‘often used in more than one event detector.

Instead of copying the event instance with all its parameters each time and sending
it to remote sites, we simply send its reference.

e Abstraction: it allows different local representations of objects and, in particular,
of event instances at different sites, and can therefore be applied in heterogeneous

17

systems.

e Audit logging: each site can keep an audit trail of events structured for local pur-
poses. The global event trail will be a structured thread through these local logs.

e Traceability: the full structure can be traversed by any observer. This gives the
possibility of global logging and of alternative semantics.

6 Conclusions

In this paper, we have shown how to apply ideas originating in centralized active database
systems to distributed systems, i.e. how to realize global composite events in a general way.
This means that the event detectors of global composite events are distributed to a number
of sites and that constituent events occur at arbitrary sites. A number of the problems
involved have already been studied in the field of distributed debugging. However, active
database systems monitor the external behaviour of the system and not its algorithm.
This means that physical time is relevant. Hence, one major problem was to investigate
the meaning of physical time in distributed systems and to fix a semantics for the notions
of after and concurrent. It seemed convenient to apply the 2g-precedence time model
[Kop92], which is applicable in all distributed systems with synchronized clocks.

We have developed two detection algorithms for global composite events realizing
two distinct evaluation semantics: an asynchronous and a synchronous semantics. Asyn-
chronous evaluation offers fast detection. The detected events do, however, not necessarily
reflect the temporal order of event occurrences. Consequently, parameters can be combined
with respect to parameter contexts in an unpredictable way. Unlike asynchronous evalua-
tion, synchronous evaluation reflects the temporal order of event occurrences. Composite
events are evaluated under full knowledge of system behaviour. Detection is, however,
possibly blocked for long periods in the case of site and network failures. Both detection
algorithms are evaluated concurrently, synchronizing at single nodes of global event trees.
Which detection algorithm to apply in a particular case depends on application demands.
The algorithms are currently being implemented using Modula-3 for Network Objects.
This distributed programming system seems to be well suited for the implementation,
because network objects provide a clean high-level semantics.

Future work aims

e to investigate applications, i.e. to design a “real” environment and to test it under
different circumstances (e.g. number of sites, distribution of global event detectors,
applied detection algorithm, network load).

e to consider the handling of event parameters with respect to the condition-part of
ECA rules.

o to examine the design of ECA rules in distributed database systems, i.e. to show
how ECA rules specified with respect to a global conceptual schema are mapped
onto internal conceptual schemata, are distributed and are finally implemented.

Acknowledgements
The authors wish to thank Jean Bacon for helpful comments on earlier versions of this

paper.

18

References

[Bac92]
[Bat88a]

[Bat88b]

[BBHM5]

[BNOW94]

[Cha89]

[CKAK94]

[CW92]

[DBBSS]

[DBMSS]

[Gat94]

[GIS92]

[HW38S]

J. Bacon. Concurrent Systems. Addison-Wesley Publishing Company, 1992.

P. Bates. Debugging heterogeneous distributed systems using event-based
models of behaviour. ACM SIGPLAN/SIGOPS, 24(1):11-22, 1988.

P. Bates. Distributed debugging tools for heterogeneous distributed systems.
In Proceedings of the 8th International Conference on Distributed Computing
Systems, Washington, D.C., pages 308-315, June 1988.

J.M. Bacon, J. Bates, R.J. Hayton, and K. Moody. Using events to build dis-
tributed applications. In Proc IEEE Second International Workshop on Ser-
vices in Distributed and Networked Environments (SDNE), Whistler, British
Columbia, pages 148-155, June 1995.

A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network objects. Technical
Report 115, Systems Research Center, Digital Equipment Corp., 1994.

S. Chakravarthy. Rule management and evaluation: An active dbms perspec-
tive. SIGMOD RECORD, 18(3):20-28, September 1989.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. Technical
report, University of Florida, February 1994.

S. Ceri and J. Widom. Production rules in parallel and distributed database
environments. In Proceedings of the 18th International Conference on Very
Large Databases, Vancowver, British Columbia, Canada, pages 339-351, Au-
gust 1992,

U. Dayal, B. Blaustein, and A.P. Buchmann. The HiPAC project: Combining
active databases and timing constraints. SIGMOD RECORD, 17(1), March
1988.

U. Dayal, A.P. Buchmann, and D.R. McCarthy. Rules are objects too: A
knowledge model for an active, object-oriented database system. In Advances
in Object-Oriented Database Systems, 2nd International Workshop on Object-
Oriented Database Systems, Bad Miinster am Stein-Ebernburg, FRG. Lecture
Notes in Computer Science, volume 334, September 1988.

S. Gatziu. Bvents in an Active Object-Oriented Database System. PhD thesis,
University of Zurich, Switzerland, 1994.

N.H. Gehani, H.V. Jagadish, and O. Shmueli. Compose: A system for com-
posite event specification and detection. In N.R. Adam and B. Bhargava,
editors, Advanced Database Concepts and Research Issues, LNCS, 1992.

D. Haban and W. Weigel. Global events and global breakpoints in distributed
systems. In Proceedings of the 21st Annual Hawaii International Conference
on System Sciences, pages 166-175, 1988.

19

[HZMW91] D. Haban, S. Zhou, D. Maurer, and R. Wilhelm. Specification and detection of

[7592]
[Kop92]

[Lam78]
[Mil91]
[Mul93]
[Sch95]

[Spedl]
[Ver93]

(WF90]

global breakpoints in distributed systems. Technical Report SFB 124-08/1991,
Univ. Saarbriicken, Univ. Kaiserslautern, Germany, 1991.

H.V. Jagadish and O. Shmueli. Composite events in a distributed object-
oriented database. Technical Report att-db-92-11, AT& T Bell Laboratories,
1992.

H. Kopetz. Sparse time versus dense time in distributed real-time systems. In
Proceedings of the 12th International Conference on Distributed Computing
Systems, Yokohama, Japan, pages 460-467, June 1992.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

D.L. Mills. Internet time synchronization: The network time protocol. I[EEE
Transactions on Communications, 39(10):1482-1492, October 1991.

S. Mullender. Distributed Systems. Addison-Wesley Publishing Company,
1993.

S. Schwiderski. Global Composite Events in Distributed Systems. PhD thesis,
University of Cambridge Computer Laboratory, Uk, 1995. in preparation.

M. Spezialetti. An approach to reducing delays in recognizing distributed
event occurrences. Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, ACM SIGPLAN Notices, 26(12):155-166, May 1991.

P. Verissimo. Real-time communication. In S. Mullender, editor, Distributed
Systems, chapter 17, pages 447-490. Addison-Wesley Publishing Company,
1993.

J. Widom and S.J. Finkelstein. Set-oriented production rules in relational
database systems. SIGMOD RECORD, 19(2):259-270, June 1990.

20

