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Abstract

We present an inference system for translating programs in a PCF-like source
language into a variant of Moggi’s computational lambda calculus. This translation
combines a simple strictness analysis with its associated optimising transformations
into a single system. The correctness of the translation is established using a logical
relation between the denotational semantics of the source and target languages.

1 Introduction

1.1 Background

Strictness analysis of lazy functional programs has been studied extensively during the
the last 15 years or so, usually with the justification that the results of the analysis can
be used in an optimising compiler [Myc81, BHA86, Ben92]. There has, however, been
surprisingly little serious work on just how the results of strictness analysis can be used
as the basis for optimising transformations. This is probably because it turns out to be
rather more difficult to express and justify these optimisations than one might at first
imagine. Roughly speaking, it seems we have to decide

1. What optimisations we wish to perform.

2. How to express these optimisations in some formal framework.

3. Exactly what information has to be gathered to enable each optimisation.
4. How to prove the correctness of the optimisations.

The next few paragraphs attempt to sketch the range of possible answers to each of these
questions and to indicate which choices were made in some of the previous work on the

subject.

*University of Cambridge, Computer Laboratory, New Museums Site, Pembroke Street, Cambridge
CB2 3QG, UK. Research supported by the EU BRA 8130 LOMAPS.




1.1.1 Which optimisations?

The most basic optimisation we could want to perform is to evaluate some function argu-
ments to weak head normal form before the function call [Bur91, NN90, DH93, Amt93].
If our language includes datatypes such as pairs or lists, then we might wish to evalu-
ate some arguments beyond WHNF (evaluating all the spine cells of a list, for example)
[Bur91, NN90]. These optimisations then naturally suggest a further class of complemen-
tary optimsations in which, for example, functions are compiled to ezpect arguments which
have already been evaluated to a certain degree. This can then be extended to higher or-
der - a function can be compiled to expect as its argument a strict function, which in
turn will expect its argument to be already evaluated. Evaluated arguments to monomor-
phic functions can be passed unboxed, which improves both space and time efficiency. In
call-by-need implementations, knowing that a certain value is already evaluated can save
unnecessary graph update operations as well as evaluations.

In addition to all these levels of optimisation, we also have to decide whether or not to
compile multiple versions of functions for use in different contexts (we might, for example,
compile one version of map which expects a strict function as its first argument and one
version which doesn’t). And if we decide to opt for multiple versions, we then have to
decide whether or not the choice of versions should be static (determined at compile-time),
dynamic (determined at run-time) or some mixture of the two. Multiple code versions also
raise the more pragmatic questions of how to control the exponential blowup in code size
which can result and how to deal with the potential loss of sharing (which can actually
lead to slower code by duplicating evaluations unnecessarily).

On parallel hardware, strictness analysis can also be used to decide which expressions
should be evaluated in parallel. In this paper we will only explicitly consider optimisations
for sequential implementations, though much of the discussion is applicable to parallel
ones too. In passing, however, we remark that in a parallel system, compiling functions
to expect evaluated arguments does not seem to be particularly useful. This is because a
function body cannot be compiled simply to assume that an argument is fully evaluated,
since the thread which is evaluating that argument may not have finished (or even started)
when the body attempts to use the argument. Hence the body needs to make a run-time
examination of the argument, which is just what we were trying to avoid, and be prepared
either to block or possibly simply to do the evaluation itself.

1.1.2 Formalising the optimisations

There are two main approaches to expressing and reasoning about strictness-based opti-
misations, which reflect different schools of thought about the foundations of functional
languages. What we might call the ‘lambda calculus’ approach [Bur91] starts from the idea
that leftmost reduction is but one of many reduction strategies for the lambda calculus,
and that what we wish to do is work out when it is safe to use some alternative strat-
egy. The Church-Rosser theorem is central to this approach, as it is this which ensures
(roughly) that any choice of strategy which preserves termination is safe. The ‘program-
ming language’ approach [NN90, Amt93] eschews all mentjon of reduction strategies (and,
indeed, classical results about the lambda calculus) and instead looks at different trans-
lations of the source programming language into some other target language with a fixed
operational semantics. The ‘programming language’ approach has several advantages over
the ‘lambda calculus’ approach. Firstly, the very notion of reduction strategy is unneces-
sary, unrealistic and messy — not only are strategies complicated things to reason about,
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but as they will ultimately be realised by different translations of the source language into
machine code, we might as well just work with translations directly. Secondly, the lambda
calculus’ approach does not deal well with the optimisations which involve knowing that
certain things will already have been evaluated. Thirdly, the ‘programming language’
view is the only one which makes sense for other kinds of programming languages and
optimisations. Hence we should be able to draw on, and contribute to, work on other
compile-time transformations which do not seem to have any simple link with traditional
results about the lambda calculus, such as the optimisation of data representations.

Of course, if we decide to use strictness information to change the translation of our
source language into some intermediate language, then we have to decide what that target
language should be. Nielson and Nielson [NN90] use strictness information to change the
translation of a combinatory source language into a lazy variant of the categorical abstract
machine. This has the advantage of being very close to implementation practice, but it is
probably slightly too low-level for correctness proofs to be comfortable and the structure
of optimisations can be rather hard to see amid the details of the compiled code. Danvy
and Hatcliff [DH93] use strictness information to control the translation of a call-by-name
source language into continuation passing style. Amtoft [Amt93] chooses to translate his
call-by-name source language into a call-by-value target language, using derivations in a
strictness type system to improve on the well-known naive translation. In this paper, we
shall take the target language to be a variant of Moggi’s computational lambda calculus.

1.1.3 Gathering the information

Deciding what information has to be gathered to enable optimisations is also rather tricky.
Whatever analysis technique one uses (e.g. abstract interpretation or type inference),
there is a choice to be made between performing a ‘sticky’ analysis, which analyses the
entire program first and produces some kind of annotated program as the input to a
subsequent transformation phase, or a ‘non-sticky’ analysis in which the transformation
or code-generation phase calls the analyser on the fly to establish particular properties of
program fragments in order to justify particular optimisations. As the Nielsons observe,
the correctness of the sticky analysis is hard to establish, as “the semantic content of such
annotations is somewhat subtle” [NN90], essentially because the strictness analyser gives
the strictness properties of an expression as a function of the strictness properties of its
free variables. It therefore seems, at least at first sight, necessary to combine the strictness
analysis with some kind of ‘collecting interpretation’ or ‘low analysis’ which computes (an
approximation to) the set of (strictness properties of) terms which could become bound
to those variables during execution [HY91]. For this reason [NN90] uses a non-sticky
analysis. Burn [Bur91] does use a sticky analysis to annotate applications with evaluation
transformer information derived by abstract interpretation, but he appears to propose the
use of rather weak (‘context free’) annotations for higher-order functions. Amtoft’s system
is also sticky — the role of the annotated program is played by a derivation in his strictness
type system, though a single term can have many valid strictness derivations and hence
many annotations. Danvy and Hatcliff assume that a sticky analysis has already supplied
them with an annotated program, and do not discuss how the information is gathered.

A further complication of sticky analyses is that some thought must be given to main-
taining the correctness of the annotations as the program is transformed or compiled. A
related disadvantage of non-sticky analyses is that if they are implemented naively then
they may require the properties of expressions to be repeatedly recomputed — to compile a



compound expression, some property is computed which involves computing properties of
subexpressions. One then recursively compiles the subexpressions, which involves comput-
ing their properties all over again. Whilst it seems simple to fix this by returning strictness
properties and a code stream together in a bottom-up fashion, it should be noted that
we probably do not wish to compute all the strictness properties of the subexpressions
before compiling a compound expression. Furthermore, we wish the subexpressions to be
compiled in different ways according to the properties deduced of the larger expression.!

1.1.4 Proving correctness

Burn approaches the correctness of his optimisations using a mixture of techniques, ap-
pealing to denotational semantics and computational adequacy for the correctness of the
abstract interpretation and to the Church-Rosser and head-normalisation theorems, to-
gether with a certain amount of informal English argument for the correctness of the idea
of evaluation transformers. The final stage, compiling different reduction strategies into
different code sequences for the Spineless G-Machine, is not justified.

Danvy and Hatcliff show that their CPS transformation of annotated programs is
correct by deriving it from the composition of a translation of annotated programs to a
call-by-value language with delay and force constructs and a CPS translation of this
extended call-by-value language. The correctness of each of these component translations
is established from a denotational semantics.

Amtoft proves the correctness of his translation by establishing directly from the oper-
ational semantics that the call-by-value evaluation of the translation of a program termi-
nates with a value iff the call-by-name evaluation of the original program terminates with
that value. A particularly pleasant feature of this proof is that the analysis is not first
proved correct in isolation — the correctness property of the analysis is simply that the
associated transformations are correct (cf. [Wan93]). Nielson and Nielson do not address
the question of correctness at all, though their paper does consider more sophisticated
optimisations than the other works cited. In this paper we shall establish correctness by
purely denotational techniques.

1.2 This paper

This paper takes a similar approach to that of Amtoft. We essentially use a strictness
type system to improve the translation of a simply typed lambda calculus with constants,
Ar, into a variant of the computational lambda calculus [Mog89, Mog91], called Agp.
The target language Aqp, which was first proposed as a language for expressing strictness
optimisations in [Ben92], has a type system which makes an explicit distinction between
computations, which are expressions which are potentially unevaluated, and values, which
are expressions in WHNF. This appears to be just the level of extra refinement which we
need to express both the eager evaluation of function arguments and the complementary
optimisations which are based on knowing that certain expressions will already have been
evaluated. Aqp is in many respects similar to languages with explicit boxed and unboxed
types presented by Peyton Jones and Launchbury in [PJL91] and by Leroy in [Ler92], and
indeed many of the same issues arise in the optimisation of data representations (passing

1Of course, this is just the sort of situation in which one might hope that writing the compiler itself in a
lazy language might alleviate the problem, but one can hardly expect to get exactly the desired behaviour
for free.




arguments boxed or unboxed) as in strictness-based optimisations (passing arguments
unevaluated or evaluated).

A major difference between the translation presented here and previous work is that
although there is morally a strictness type system underlying the translation, it is com-
pletely integrated with a transformation phase. Thus the only ‘strictness properties’ which
are ever visible are in the types of the optimised translations of A terms and we remove
the distinction between what optimisations we wish to perform and what information has
to be gathered. We manage to obtain much of the benefit of using a collecting interpre-
tation just from the way in which types are used in the translation; we can, for example,
often discover that a higher-order function is only ever called with a strict function as
argument and compile it accordingly.?

The translation is nondeterministic, in that it specifies a set of valid translations of
a single source language program. We do not examine it detail the problem of how to
define and find the ‘best’ translation, though seems likely that some relatively straighfor-
ward heuristics should give fast analysis and good results. The version of the translation
presented here does not generate multiple code versions and only treats ground types and
function spaces. The analysis inherent in the translation is not a particularly powerful
one and we discuss some possible improvements in Section 6.

2 The source language Ar

The source language Az is a conventional simply-typed lambda calculus with constructs
for arithmetic, conditionals and recursion, i.e. an inessential variant of Plotkin’s language
PCF [Plo77]. The syntax and typing rules of A7 are shown in Figure 1. The call-by-name

types AB == nat|A— B

contexts VA u= a1:Ay,... 6, 4,

arithmetic op 0= 4| — |«
Ia:A+e:B

L Ay Y mpy AbS T Ao Ao B
A I're:eA— B T'-f:A Rec Da:AlFe A
PP F'Fef:B I'-rec(a: A.e): A
Nat Arith I' - e:nat I' finat

I' F n:nat I'+eop finat

I' - e:nat 'k fi: A 'k fo: A

Cond I'Fif e then f; else fo: 4

Figure 1: Syntax and type rules of Ar

%1t should be intuitively clear that types are ideally suited to obtaining the kind of information gathered
by a collecting interpretation. For example, the fact that a variable has a particular type is a restriction
on the set of terms which may end up bound to that variable during execution.



operational semantics of Ar is given by a big-step evaluation relation |}, which relates
closed terms of type A to weak head normal forms (canonicals) of type A. The definition
of |} is shown in Figure 2.

Aa: A.e | Aa: A.e nln
el ha: A.€e ef/a] U &k
efdk
e[rec(a: A.e)/a] | k elm fln
rec(a:4.e) | k eopflimopn
el0 fildk edntl  frlk
if e then f) else fo | k if e then fi else fo | k

Figure 2: Operational semantics of Ay

Ar also can also be given the usual denotational semantics using pointed w-cpos (do-
mains) and continuous maps, as shown in Figure 3. We assume the usual notational con-
ventions concerning environments, p, and standard results concerning the well-definedness
of the denotational semantics, substitution and so on. One piece of notation which may
not be familiar is that if I' = ay: 41,...,a,: 4, and p is an environment, then we write
p:I' to mean that the domain of p is {a1,...,an} and that for all 1, p(a;) € [4;].

Types
[[nat]] = IN;

[A—B] = [A] - [B]

Terms
[a]p = p(a)
[Aa: Aelp = M e [A].[e]p[e — d]
[[e[[f%p = E[[T]Ip) ([f1p)
njp n

It

[rec(a: A. €)]p |licw di  where do = L4y, dnt1 = [e]pla — dy]
_ J [mopn] if [e]lp=[m] and [f]p = [n]
leop flo = { L, otherwise
[A]e if [e]lo =[0]
[folo if [elp = [n +1]
L otherwise

[if e then fi else folp

Figure 3: Denotational semantics of Ap




Proposition 1 (Computational adequacy for Ar) For any program (closed term of
type nat), e in Ap
[e]=[n] & eldn

Proof. Standard. See, for example, [Plo77, Ben92, Win93] ]

3 The target language A,

Aop is based on Moggi’s computational lambda calculus, but has a more syntactic, oper-
ational flavour. It is intended as a compiler intermediate language which has just enough
extra structure to express the kinds of optimisations which we wish to perform as a result
of strictness analysis, but which is sufficiently high-level not to be tied to a particular
implementation technique and for denotational reasoning to be straightforward. The type
system of Aqp separates computations from values in a rather literal way — values are ex-
pressions in weak head normal form, whereas computations are unevaluated expressions.
The syntax and typing rules of Aop are shown in Figure 4. We use Greek letters for A,p
types, to distinguish them from the types of Ay and it is important to note that we use
different metavariables (o,7) for value types and arbitrary types (6,7). Types of the form

value types o7 u= 1|8—on
types 6y u= ooy
contexts e n= 41:01,...,00:0n
Wi ras
Abs — f;‘:rfs.:: 2o NSECLEY: o - Ul@ - f:6
e e
Reo g e g O et S e
Neb g At

Figure 4: Syntax and type rules of Agp
oL will be referred to as computation types or lifted types. The version of Ao used here

varies slightly from that originally proposed in [Ben92] in that it includes a variant form
of lambda abstraction Aa.e in which the body is a value. This is slightly inelegant and not
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really necessary, but has been included firstly because it corresponds more closely to what
one would wish to do in an implementation (as it saves some unecessary evaluations), and
secondly because it makes translated terms somewhat smaller.

The operational semantics of Aop is defined by big-step evaluation relation { which
relates (closed) computations of type o to values of type o. The operational semantics is
shown in Figure 5. There are no rules in the operational semantics of A, which say that

elf/a] 4 v
(Aa:de) flv (Aa:d.e) f 4 e[f/a]
elv  fl/a] §
] v leta+einf o
e[rec(a:oy.€e)/a] $ v
mopnl{mopn rec(a:oy.e) $v
Sido | folw
if O then fy else fo y v if n+1 then f else fo v

Figure 5: Operational semantics of Agp

canonicals evaluate to themselves, as there were for A1, because the type system makes
the fact that they are already in WHNF explicit.

Aop has a denotational semantics which uses w-cpos which are not necessarily pointed
(predomains) and continuous maps. This semantics is shown in Figure 6. We use p
for Ao, envinronments, and again assume trivial standard results about the denotational
semantics. Note that the only denotational difference between the two kinds of lambda-
abstraction is in the types and that as we have not syntactically distinguished the two
kinds of application, we have not distinguished them in the denotational semantics.

Proposition 2 (Computational adequacy for Ay) If e is a closed Aop term of type
o then

lel=0d] © elv&[v]=d

Proof. This is a slight variant on the logical relations argument used to prove Proposi-
tion 1. a

Note that we have adequacy at all types for Aqp, but only at the ground type for Ag.
The semantics validates various equational laws, but the three important ones involving
computational types are:

leta+[e]inf = fle/d] (1)
leta<+ (letb<einf)ing = letb<ein (leta < f ing) (2)
leta<einfa] = e (3)

where Equation 2 carries the side-condition that b is not free in g.3

8A proof-theoretic account of the the computational lambda calculus, including these rules, can be
found in [BBdP95].




Types

[] = IN
[y—=¢ = [v]—1[]
[oi] = [olo
Terms
[ale = ola)
[Aa:delo = Xd e [0].[e]ola — d]
[Aa:d.e]o = Xd € [d].[e]ela — d]
[efle = ([ele) ([£10)
(el = (e |
aren g - | Do sl
[rec(aioyr.€)]e = llicwdi where dy = Ly, and dny1 = [e]o[a — dy]

[if e then fi else falo = [A1]e if [e]e =0

[fole if[elo=n+1
[nje = n
[eop fle = [([elo) op ([f]e)]

Figure 6: Denotational semantics of Agp -

4 Translating Ar into A

There is a well-known call-by-name translation of the lambda calculus into the computa-
tional lambda calculus due to Moggi [Mog89] which gives a natural default translation of
A7 into Agp. Under this default translation, a typing judgement of the form I' F e: A in
Ar is translated to a judgement I'} I e™: A% in Agp, where A™ is defined inductively as:

nat" = (A= B)"= (A7 — BT)

In particular, a source term of functional type is translated into a target term which is (a
computation of) a function from computations to computations. There is also a call-by-
value translation, also due to Moggi, in which terms of functional type are translated into
(computations of) functions from values to computations. 4

‘The default translation of A7 into Ayp makes evaluation order very plain by using the
let construct to evaluate computations of functional or ground type prior to their use in
applications or arithmetic operations. Apart from the fact that there is no treatment of
updating, the default translation produces results which correspond very closely to the
real code that is produced by naive compilers for lazy functional languages. Our aim is
to produce a better translation, which, crudely, means one which introduces fewer liftings
(i.e. computations rather than values) in the types of translated programs. For example,
the default translation of the following Ay program:

(Aa:nat.a +a) (3+4)

“These translations can also be found in, for example, [Ben92, Cro92). Their intimate connection with
various translations into a language based on linear logic is the subject of [BW95].
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is
let f +[Xa:v) Jet b a inlet c < a in b+ ]
in f(let z <+ [3] inlet y «+ [4] inz +y)

which is rather verbose, but we can use Equation 1 from the previous section to make
some ‘administrative reductions’ and obtain:

(Maieydetbainlet c+ainb+c) (3 +4)

However, because the function is strict we should prefer a translation in which the ar-
gument is evaluated before the call and in which the function is compiled to expect an
evaluated argument:

let b+ 3+4in(ha:t.a+a)b

which will be derivable using the improved translation. Note that the improvement is not
just that we save building a closure, but also that the repeated evaluation of that closure is
avoided. Of course, real lazy implementations avoid this kind of re-evaluation by updating,
but the updates themselves still have a cost and it is still necessary to perform a context .
switch to evaluate the closure for the second time, even though the evaluation will return
immediately with the updated value.

We now describe the improved translation in more detail. To begin with, notice that
for each Ar term e of type A, there are several Aqp types § of roughly the same ‘shape’
as A which we might choose as the type of the translation of e. Each of these types can
be regarded as a ‘decoration’ of the type A. We formalise this notion by defining a map
U (for underlying) from Aop types to Ar types:

U(t) = nat
Uly+6) = Ul)—~>U)
Ulel) = Ufo)

The translation is defined by a set of inference rules for deducing translation judgements

of the form
(a1: A1,...,an: Ay FeB) > (a1:01,...,a5:0, F €'17)

where
e a;:Ay,...,0p: Ay F e: B is a valid typing judgement in Ar
® a1:01,...,0n: 0 I €1y is a valid typing judgement in Aqp
e For all i, U(4;) = A;
e U(y)=B

Roughly speaking, the basic idea behind the translation is that in any derivable translation
judgement, J; is a value type o only if e is strict in a;. Similarly, a source language function
will only be translated into a target language function with a value type as argument if
it is strict. As we have already noted, however, the strictness of e in a; may depend on
the strictness properties of some other free variable a;, so the translation has to be able
to cope with such conditional information too. For example, suppose that the following is
a derivable translation judgement:

‘na nav, a:na e:nat — na =ty )1,alt el Ly
t — nat, t t t > ety —
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The intuitive reading of this in terms of strictness properties of e is that e is not necessarily
strict in f (since the translated type of f is lifted), but that if f is itself a strict function
(the translated type of f is a computation of a function from values to computations)
then e is strict in a (the translated type of ¢ is unlifted) and, moreover, e is then itself
a WHNF of a strict function (it translates as a value which is a function from values to
computations). The target term €' is a translation of e which assumes that f will evaluate
to a strict function expecting an evaluated argument and that a will already be evaluated.
Finally, €' itself expects an evaluated argument.

As the preceding explanation shows, giving a clear, intuitive definition of precisely
which translations we regard as correct is slightly tricky. It should be stressed, however,
that we can give a precise formal definition of correctness, and that we do so in the next
section.

Because translated terms will, in general, contain administrative redexes, there is some
choice about exactly how to present the inference rules which define the translation. One
way is to try to build as much peephole optimisation as possible into the translation process
itself. This, however, has the effect of increasing considerably the number of translation
rules. Whilst this can be alleviated by the use of auxiliary macros, it still complicates the
translation and gives more cases for the correctness proof. Since it does not seem easy to
remove all the administrative redexes by complicating the translation in this way, we have
instead opted for a presentation which keeps the inference rules simple at the expense of
introducing more administrative redexes. The removal of administrative redexes is then
performed by repeatedly applying Equations 1, 2 and 3 as rewrite rules (orienting them
from left to right) until no further simplification is possible.® Note that one advantage
of our separation of computations from values is that the distinction between what we
regard as an administrative redex, to be removed at compile-time, and what we regard as
a ‘real’ redex, to be evaluated at run-time, is a very natural one. This is in contrast to the
situation for CPS transformations, for which some authors have suggested an extra level of
labelling on terms to distinguish those applications and abstractions which are introduced
by the transformation itself from those present in the original source program so that
redexes introduced by the transformation can be removed at compile-time. When giving
examples of derivable translations, we will usually perform the removal of administrative
redexes without explicitly mentioning it.

The rules defining the translation are shown in Figure 7. We use the notational conven-
tions that distinct contexts mention distinct sets of variable names, that variable names
which occur in the conclusion of a rule but not in the hypotheses are always fresh, and
that © stands for a Ay, context in which every variable is given a lifted type. The trans-
lation has several interesting features, the most obvious of which is that we have made
contraction explicit and used multiplicative (disjoint) contexts everywhere except in the
two arms of the conditional. This is because the subexpressions of compound expressions
(such as arithmetic expressions) will generally be strict in different variables. We deal
with this by making the variables distinct, concatenating the contexts and then using the
contraction rules (C1,C2) to merge distinct variables together in a controlled way. Weak-
ening is built into the (Id) and (Nat) rules, and is only allowed on lifted types, since any
variable introduced by weakening is not one in which the associated expression is strict.
Similarly, note that in the (AppNS) and (AppNS') rules, all the variables used to derive

5That this process terminates follows from a small modification to the strong normalisation proof of
[BBdP95]
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Cond

1d U@) =4, UT)=T)

Coa:AbFa:A > TV ,a:0Fa:é (

! —_—
Nat I'Fn:nat > IV F oo (Ury)=r)

F'rFed b IMEe:o

val 'ted > IVEleioyL

Dia:AFeB > IMaoke:iT

Let I:Abeb/a:B > M by Fleta+bine:7
o1 I'ya:A,b: At e:B > I a:6,b:6 ey
e AFelefa,c/b: B > TV,c:é F €'[c/a,c/b]:y
a9 Fa:A,bA-eB > I aio,bio Feiy
I'ye:AFelc/a,c/bl: B > IV,c:io & €'[c/a,[c]/b]:y
Abs INa:AkeB p IMadtediog
I'(a:Ade):A—-B > Ik (Aa:de'):d — o).
Abs' Da:Abre:B > IMadkeio

I'-(Aa:Ae) A= B > I'F(Aa:ide):d = o

'reeA—-B p IVFeéi(o—= 1)L AFf:A > AR flioy

AppS TLAFef:B > IVA'bletz+é€ inlety < f inzy:7)

I'treeA—B > I'Fei(lo—>T1) AFFfA B> A'Ffliog

!
AppS DAFef:B > IV A'Fletz € inlety< fl inzy: 7,

I'reA—B > I"kteéi(oL = 71)1 AFFfA > A Ffloy

AppNS T,AFefiB b I',A Fletoc e inz firL
AppNS' I'reeA—B p I'Fei(oL = 1)1 AFFA > AFflog
L,AFef:B p M A Fletz+¢€ inz fi7)
Rec Fa:Ate:A > IMaog Feioyg
I'Frec(a:A.e):A > IMErec(a:ioy.€)iop
: Il i I fl
Arith 'Femat > IVEeiuy AbF finat > A'F iy

IVAteopfinat > IV,A'Flet z € inlety«+ f'inzopy:ey

'Femnat > IMEeiuy At f:A > AFflioy AbFgA > Agiol

IAFif ethen felseg: A > IV,A'Flet ¢ < € inif = then f else g":01

Figure 7: Optimising translation of Ap into Aqp
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the typing of the argument must be lifted, since they might not be used if the function
turns out not to need the argument.

The observant reader will notice that the strictness type system which morally under-
lies the optimising translation is essentially based on intuitionistic relevance logic. The
basic idea of relevance logic is that in proving a sequent I' - A, all the assumptions in T"
must actually be used at least once in proving A, which is enforced by restricting the weak-
ing rule. This contrasts with linear logic, which restricts both weakening and contraction
so that all the assumptions must be used ezactly once. Just as linear logic reintroduces
weakening and contraction in a controlled way, via the exponential modality !, so one can
add a modality to intuitionistic relevance logic to reintroduce, but control, weakening. In
our system, the role of this modality is played by the lifting operator of Aop: see the (Id)
and (Nat) rules of the translation. The language Aop is, however, not the term calculus
which arises by the Curry-Howard isomorphism from such a relevance logic (though see
[BBdP95]). Aop allows unrestricted weakening and contraction, but the strictness trans-
lation prevents weakening being used to introduce variables of unlifted type. The idea
of relevance also lies behind Wright’s work [Wri92] on ‘neededness analysis’ and the con-
nection with relevance logic has been made more explicit by Baker-Finch [BF92]. Their
work is concerned only with analysis and formulates correctness in terms of the syntactic
notion of ‘neededness’, which is defined via a labelled reduction system which tracks the
descendents of individual redexes through S-reduction.

Clearly, we need to check that for every Ay term, there is some Aop term to which it
translates. But this is easy, as we can just use Moggi’s call-by-name translation:

Lemma 3 [T Fe:dthenT e d b [T b AR, : o

However, the point is that in general we can do rather better than Moggi’s translation.
For example:

1. F (Aa:nat.a+a) (3+4):nat > Flet b+ 3+4 in (Aa:it.a+ a)b:ey, which was
the motivating example we gave earlier.

2. For the factorial function, we obtain

F rec(f:nat — nat. An:nat.if n then 1 else n« (f (n —1))):nat — nat >
Frec(f: (¢ = ¢1)y. [Anie.if n then [1] else let f' + f in

let ny + (n—1) in

let ng + (f'n1) innxmng)): (6 — 0y )1

which, as we would hope, recognises that the function is strict and so compiles it
to expect an evaluated argument. Note that the argument to the recursive call is
evaluated eagerly, just as it would be in a strict language.

3. Here’s a higher-order example:

F (Af:nat — nat.\n:nat.if n then 1 else f (n+ 1)) (Am:nat.m + 1):nat — nat
g
F(Af: (e = v1) 1. Aneif n then [1] else

let f' + f in

let ' (n+1)in f'n)[Amiem 4+ 1]: (0t = 01) 1

Here, although the higher-order function is not strict in f, it is compiled to expect a
strict function as argument, so the application in the else branch of the conditional

13



has the argument passed by value. Note also that the higher-order function returns
a WHNF immediately (the use of Af ... rather than Af ...), but that the translation
cannot exploit the fact that the argument to the higher-order function is itself already
a WHNF and so could have been passed by value.

The following is a non-example, which reveals a weakness of the analysis built into this
system:

z:nat,w:nat F (Ay:nat.Az:nat.if z then y + 1 else z + 2) w w:nat ¥
g, wie b let £ < (Ay:edz:0df © then y + 1 else 2 + 2) w
in fw:ey

The problem here is that the expression is strict in w, since whichever branch of the
conditional is chosen, w will be evaluated; this cannot be detected in our system because
the function containing the conditional is strict in neither of ¥ or z alone. The fact that this
expression really 4s strict in w is detectable even in the strictness logic of [Ben92] without
conjunction, a system which is itself weaker than the standard abstract interpretation of
[BHA86]. There are, however, also examples which are detected by this system but are
missed by the conjunction-free strictness logic, so these two systems are incomparable in
terms of accuracy. Both are strictly weaker than [BHAS86], or the equivalent conjunctive

strictness logic.

5 Correctness of the translation

We now turn to the question of showing that our optimising translation is correct. The
criterion for correctness which we naturally adopt is that for any source program p and
for any translation p’ of p, p evaluates to a result v iff p’ evaluates to v. We shall establish
this result via a logical relation, indexed by A types, between the domains used in the
semantics of A7 and the predomains used in the semantics of Ayp. Thus for each 6, we

have
Rs S [UG)] x [4]

(and we will often use infix notation for R). The relation expresses the sense in which
a source term and its translation are ‘equivalent’. Unsurprisingly, the definition of the
relation has to make reference to some notion of strictness, but this has to be done with
some care in order for the proof to work. We make use of a family Vs C [U(6)] of
subsets of the source language domains which are defined simultaneously with the relations
Rs. One should think of V; as, roughly, the collection of elements of [U(d)] which are
indistinguishable from 1 in all source contexts which translate to target contexts with a
hole of type §. We shall also use the abbreviation

Zs = {z €[U()] |3y € [¢].(2,y) € Rs}
The definitions of R and V are as follows:

R, = {(In],n) [n € IN}

v, = {1}
Roy = {(a;[d]) | (a,d) € R} U{(z, 1) |z € Vs}
va_,_ = Vg
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Roeass = {(f,9) | Vo € Vo.f(z) € Vs, Y(2,9) € Ro.(f 2,9 y) € Re}
Ra_;_——+6 = {(fag) IV(m,y)E’RaL.(fa:,gy) ERJ}
Voyss = {f|Vz€Z,UV,.f(z) € Vs}

Note that the definition of R at function types is of the usual ‘takes related arguments to
related results’ form, but that at types of the form o — ¢ there is an additional requirement
that f be strict, in a suitably generalised sense. It is a simple induction on types to show
that all the R are inclusive and that all the Vs are ideals, which we shall need later:

Lemma 4 For all §

1. Ifdo C dy C --- 1s an w-chain in [U(S)] and eg C eg C -+ is an w-chain in [§] such
that for all i € w.(d;,e;) € Rs then (L; ds, L), ;) € Rs.

2. The set Vs is non-empty, downwards closed and closed under limits of w-chains.

O

Now correctness follows from the following theorem, which is in the spirit of the ‘funda-
mental theorem of logical relations’:

Theorem 5 If the translation judgement
'keB > I'keé:é
s derwable, where

' = a1:41,...,a,: Ay
R . . . .
I = a1:01,,.-,0m:Om , Om+1: Omtl;s - -, Oni0n

then
1. For all p:T', o:T" such that p R g (pointwise), ([e]p) Rs ([€']o)-
2. If p:T satisfies the following three conditions:
(a) V1 <i<m. p(a;) €Ly,
(b) Ym < j < n. plaj) € L; UV,
(¢) 3m < j < n. p(aj) € Vo,
then [e]lp € V.

Proof. This follows by an induction on the derivation of the translation judgement. We
give a few interesting cases:

Val For the first part we have to show that for any suitable p and g, [e]pRs, [[€/]]o. But
[[e'lle = [[e] o] so this is immediate from the induction hypothesis and the definition
of Ry, . For the second part, if p satisfies the conditions given then it trivially
satisfies the the conditions for part 2 applied to the hypothesis of the rule. Hence
by induction [e]p € V, and since V,, =V, we are done. ’
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Let For part 1, assume that p:T', o: I with pRe and that € [4], y € [o.] with zR,, y.

We want to show that
([e[b/al]plb — z]) Rr, ([let a < b in €']o[b > y])

By the definition of R, , there are two cases to consider: either z € V, and y = L
or y = [y'] with R4y'. In the first case, p[a — z] satisfies the conditions for part 2
of the induction hypothesis, so that

[elb/allofs ~ o] = [elolar o] € Vo,

and [let a < b in €'Jo[b — y] = L and we are done by the definition of R, . In the
second case, pla — z] and pla — 3] satisfiy the conditions for part 1 of the induction
hypothesis, so we can deduce

([elb/allplb = =]) = ([elple = a]) Ry, ([€'Tela — y']) = ([let a « bineJelb — [y/]])

as required. For part 2, if p[b > =] satisfies the relevant conditions, then pla + z]
satisfies the conditions for part 2 of the induction hypothesis, so that

([e[6/allplb = 2]) = ([elela = 2]) € Vi,

as required.

C2 For part 1, assume p:I',0: I with pRo and that z € [4], y € [o] with R,y. Then

Abs

€ Ry, [y] so that

[elc/a,c/bllplc = =] = [e]pla — z,b+ ]
Ry [€]ola— y,b— [y]] by induction 1
= [Zle/o,[¢/tlele > v

as required. For part 2, it is easy to see that if p[c — z] satisfies the relevant
conditions then pla — z,b — z] satisfies the conditions for part 2 of the induction

hypothesis, so
(lele/a,c/bllplc — =]) = ([elpla = z,b+ 3]) € V,

We consider the case where § = 7, i.e. we are introducing a strict function. The case
0 = 74 is similar. For part 1, assume that pRo. We have to show

(Az € [A][e]pla = 2]) Rruoy  (Ay €[] [€]ela - y])

By the definition of R, , this means that we firstly have to show that if z € V.,
then [e]pla — z] € V,, . But this follows from part 2 of the induction hypothesis,

" since it is easy to see that p[a — z] satisfies the appropriate conditions. Secondly,

we have to show that if 2R,y then [e]pla — 2] R,, [e']o[a — y], which follows from
part 1 of the induction hypothesis.

For part 2, assume that p satisfies the three conditions, then we have to show that
[Aa: A.elp € V5, . This means showing that if z € Z, UV, then [e]p[a — z] €
Vs, . This follows by part 2 of the induction hypothesis, since for any such =z,
pla — z] satisfies the appropriate conditions.
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AppS For part 1 we assume that p1:T,01: TV, po: A,0: A’ with pyRe; and paRoe. By
induction 1, we know that [e]p1R (g, ), [€'e1 and [f]p2Re, [f']e2.
Hence either (i) [e]p1 € Voor, and [e']o1 =
or (if) [€]o1 = [#'] with [e]p1Ro—sr &’
And either (a) [f]o2 € Vs and [f']os =
or (b) [f]ez = [y'] with [f]poRoy'
In case (i), whichever of (a) or (b) holds, [f]p2 € Z, UV, so that by, the definition
Of Voo, (Telor) ([f1pe) € Vi, . Hence

([elp1)([f1o2) Rr, ([let 7+ € inlety + f' inzyJoio2) = L

In case (ii), if (a) holds then the strictness part of the definition of Ry, gives that
(lele1) ([f]p2) € V-, again, and because [f']os = L we can then conclude that the
relation holds as above. If (b) holds then by the logical relation part of the definition
of Ro—r, we get

([elp1)([£]p2) Rry (&'y) = ([let z + €' inlet y « §' in z y]ore0)

as required.

For part 2, assume that p;:T',p2: A and that the concatenated environment pjp2
satisfies the three conditions. Then at least one of p; and p; also satisfies the three
conditions on its own (there is at least one variable which is assigned an unlifted type
in I, A’ which is bound to an element of the appropriate V by p1p2). If p; satisfies
the conditions for part 2, then by induction 2, [e]p1 € Vy—r, . Now, if ps also satisfies
the conditions for part 2, we can apply induction 2 to deduce that [f]p2 € V, and
hence ([e]p1)([f]p2) € V., as required. If, on the other hand p; does not satisfy
the three conditions, we must have that for all a;:; € A, pa(a;) € Zs,. And this
means that we can apply induction 1 to deduce that [f]p2 € Z,, =Z,UV,. Hence
([e]p1)([f]p2) € V-, again.

If p1 does not satisfy the three conditions for part 2 but ps does, then we can apply
induction 1 to deduce that [efp1 € Z(gr,), = Zopr, U Vosr, and we can use
induction 2 to deduce that [f]ps € V,. Hence, using either the strictness part of
the definition of Ry—,,, or the definition of V,_,,, according to which part of the
union [[e]p; lies in, we find that ([e]p1)([f]p2) € V-, as required.

Rec For part 1, given appropriate p,o, define dy = L4y, dnt1 = [e]pla = dy] and
dy = Lio,], dnt1 = [€']ola — dpn]. We claim that for all n, R, dy,, which follows
by a little induction. For the base case, observe that by the second part of Lemma 4,
Lya] € Vo, and thus, by the definition of Ry, do Ro, dy. Now for the induction
step, we assume dp, R, d, so that p[a — dp| R gla — d] and we can apply induction
1 to deduce that

dnt1 = ([elpla = dn]) Ro, ([e']ola — d;z]) = d;z+1
And so by the first part of Lemma 4

[rec(a:A.e)]p = | |di Roy |]dj = [rec(a:or.€)]e

i€w 1EwW

as required.
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For part 2, if p satisfies the three conditions, then with d,, defined as above it is
another easy induction on n, using induction 2, to show that for all n, d, € V,,.
Then as V;, is closed under limits of chains (Lemma 4),

[rec(a:A.e)]p = | |di € Vo,

1€w

as required.

Corollary 6 For any program p, if the translation judgement - p:nat > F piuy is
derivable then for anyn € IN, p I n iff ' | n.

Proof. By Theorem 5, [p] R,, [p']. By the definition of R, , this means that [p] = [n]
iff {p'] = [n] and the result then follows from Propositions 1 and 2. a

Strictly speaking, a further correctness result holds as a corollary of Theorem 5. This
states that if - p:nat > F p':4 then p | n iff p’ = n, but as this only happens when the
source program is just a numeric literal, it has rather limited scope.

It is interesting to note that the proof of Theorem 5 reveals that the simple-minded
strictness analysis which underlies the translation is correct, but surprisingly delicate. The
semantics of our source language identifies 1 and Az. 1, which does not cause adequacy to
fail because we restrict our observations to whole programs, so that termination at higher
types is unobservable. We make use of this identification in the definition of V.4 and,
in fact, our translation would be unsound if we added termination testing at higher types
to the source language. The problem is in the rules for abstractions, which essentially
say that if an expression e is strict in some subset S of its free variables, then when we
A-abstract on one of the free variables a, the resulting abstraction Aa.e is still ‘strict in
S\ {a}. If we can observe termination at higher types, this is simply not true, as the
abstraction is a weak head normal form and its evaluation therefore terminates whatever
is substituted for the remaining free variables. If we were to fix this problem by insisting
that the context I' in the abstraction rules contained only lifted types, then the resulting
analysis would be hopelessly weak. Other strictness analyses based on ‘relevance logic
style’ type systems are similarly fragile.

6 Conclusions and further work

We have shown how a simple strictness analysis and its associated optimisations may
be expressed together in a single formal system which gives an improved translation of
the source language into a variant of Moggi’s computational metalanguage. Although
the analysis inherent in this translation is rather weak, the associated optimisations go
beyond those often considered in the literature in that, in addition to selectively passing
arguments by value, they also allow functions to be compiled to expect arguments which
are, for example, already evaluated or known to be strict functions. The correctness of the
translation was established by a fairly straightforward logical relations argument which
connects the domain-theoretic semantics of the source and target languages.

One obvious piece of further work is to implement the system described here. This
will involve deciding what we mean by the ‘best’ translation of a given source term and
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then designing an algorithm to find that translation. The right way to do this seems to be
to design a non-standard type inference algorithm which assigns Aop types to Ar terms,
building up the translation Ayp term as a side-effect of unification. The fact that the rules
are very far from being syntax directed suggests that a good starting point would be to
define a normal form for translation derivations, in which the contraction, (Let) and (Val)
rules are only used in certain restricted places. More fundamentally, however, there is
considerable scope for further work on improving the translation itself.

The simple system presented here does not in itself provide a practical basis for strict-
ness analysis and optimisation in ‘realistic’ functional languages. This is because there is
no treatment of pairs or other structured datatypes and because the treatment of functions
is only valid for languages like PCF, in which termination at higher type is unobservable.
It is, however, a natural first step in a line of research which aims to bring analyses and
optimisations closer together. The basic idea is that many compiler optimisations can
be presented using a target language which has a fixed operational semantics and a type
system making the properties of interest explicit. The purpose of analysing the source
program is to validate an improved translation into the target language. Roughly speak-
ing, the types of the target language should correspond to the properties used in the static
analysis of the source language. In general, however, there will be many properties which
are useful in analysis but which we would not wish to make types of the target language,
so there will be three kinds of judgement to relate: the typing judgement in the source
language, the analysis judgement in the source language and the typing judgement in
the target language. (Alternatively, one could imagine a framework in which the default
translation is applied first, and an analysis is then applied to the resulting target program
in order to justify target-to-target transformations.) The system presented here only in-
volves two kinds of judgement because the only properties which are used in the analysis
are those which correspond to target language types. This is why the system is simple,
but not particularly powerful. The next step is to develop a better translation of Az into
Aop which exploits the results of a more powerful analysis, such as those in [Ben92]. Such
analyses can also deal satisfactorily with languages for which termination at higher type
s observable, so the fragility of the present system which was described at the end of
the previous section would be removed. It would also be interesting to look at defining
and justifying a ‘polyvariant’ translation, in which a single source term may be compiled
into multiple target terms for use in different contexts. Here again, there are considerable
complexities and it would seem advantageous to separate the question of when, in prac-
tice, we wish to generate multiple code versions from that of formally defining the space
of theoretically valid polyvariant translations.

It is not yet clear how many different analyses and optimisations can be presented using
these ideas, but there are already a number of closely related pieces of work. One of these
is Leroy’s work on boxing optimisations for ML [Ler92], which we have already mentioned,
and another is Schellinx’s work on decoration strategies for translating conventional logic
into linear logic [Sch94]. The latter discusses improving the Girard translation so as
to introduce fewer ! types, which is very similar to what we have done in this paper,
especially in the light of the close relationship between translations into linear logic and
translations into the computational lambda calculus which is explored in [BW95]. There
is a mutually beneficial relationship between theory and practice here: not only does the
theory suggest practically useful optimisation techniques, but there appears to be scope
for applying ideas from static analysis to, for example, the more theoretical study of
linear decoration strategies. Related ideas are behind Abramsky’s proposal of ‘logic-based
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program analysis’, based on optimising translations of standard functional programs into
linear (or similar) term calculi, as a promising research area [Abr90].
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