Technical Report A

Number 39

Computer Laboratory

Tactics and tacticals in Cambridge LCF

[Lawrence Paulson

July 1983

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1983 Lawrence Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Tactics and Tacticals in Cambridge LCF
Lawrence Paulson
University of Cambridge’

July 1983

The tactics and tacticals of Cambridge LCF are described.
Tactics reason about logical connectives, substitution, and
rewriting; tacticals combine tactics into more powerful tactics.
LCF's package for managing an interactive proof is discussed.
This manages the subgoal tree, presenting the user with unsolved

goals and assembling the final proof.

While primarily a reference manual, the paper contains a
brief introduction to goal-directed proof. An example shows typ-

jcal use of the tactics and subgoal package.

Tactics and Tacticals in Cambridge LCF

Table of Contents

1 Introduction ...ccicosooecacsossoscsocossssscasooncnso conosesone
2 Fundamentals of TactiCS .eovevoscovccssaocsasocoosoonssosononnss
2.7 Validations ...eeieecocscoscasosossooasacsocooossossonosasss
2.2 Programming with tactics ...coececoccccoosossonssassosocssoccsan
2.3 Notafion ..evivesvosocoososcosvsosasssssasonosotnaooosocansssso
3 Predicate Calculus TacticsS .eeecseososcoosossccosonocoosssscona
3.1 Tactics for quantifiers .ceveossesceoscosscsosoocnosnsoscssos
3.2 Tactics for connectives coveevososessoccccsnsaosnsnssosoosaans
4 Additional Tactics and Functions ...eececssoascsosssasoccnssos
4,1 Stripping connectives from a theoremccevevvosocsoocccas
4,2 Stripping connectives from a g0al ...ccosvocssscsssosssossso
4,3 Functions involving tactices .eeveieiiiiiirinseeescononnsooons
4,4 Rewriting tacticsevvvennn Ceeeen W eveeneseesanesnssono s
4,5 Resolution tactics C et ieieee i seeaaas Cherevnaans
5 Tacticals ..cevvns W e e ressesseccasnasass et s et osesacetssoas o e a0
5.7 Basic tacticalsiviecetososscseerosocossassnssososaasosssss
5.2 List tacticals .ic.vevioecons et eceeocreeanaca s ceviesenvens
5.3 Making a tactic valid ..iveeeesrececoncrssososssancsonssasasns
6 The Subgoal Packageieevoes et eseetcsarteesensonosoose e v
7 Example Proof ...ciceeocoosnosssrsonoasss Ceeeeetreseseesasesos

References e e ese e et e etsesensceasnacsesasss e

1. Introduction

Cambridge LCF is a proof assistant derived from Edinburgh LCF [41],
Among its changes are a revised version of the logic PPLAMBDA, as already
documented [7]. Tactics and tacticals are also different in Cambridge LCF.
This paper is more a reference manual than a tutorial; I expect that you

have already read an. introduction to LCF [4,5].

Since I am one of the main implementors of Cambridge LCF, its tactics
reflect my personal preferences, based on experience in several case stu-
dies. While other researchers may differ in the exact approach, the tac-

tics described below are basic and widely applicable.

I would like to thank Mike Gordon for his comments on the paper.

2. Fundamentals of Tactics

Tactics accomplish goal-directed proof —- you begin with a statement

of the desired theorem and reduce it to simpler ones. LCF uses a natural

deduction logic [6], called PPLAMBDA; a theorem

states that the conclusion B is true whenever the assumptions A1, co oy An

are true., A goal is a pair

([A;

1 -.;An] y, B)

expressing the assumptions and‘conclusion»of the desired theorem.

2 Tactics and Tacticals in Cambridge LCF

2.1, Validations

Let AL stand for a list of assumptions, A tactic is a function that

maps a goal (AL,B) to a pair
([(AL1,B1); cee ! (ALn'Bn) 1, proof function)

The pailr consists of a list of subgoals and a proof function, called the
validation. The validation maps theorems asserting the subgoals,

[[
AL1. B1 coo ALn. B

to the theorem asserting the original goal, AL|-B. This proves the goal
from theorems asserting the subgoals. If you prove the subgoals using
other tactics, then you must compose their validations with the current one
to reconstruct the entire proof. LCF composes the validations automati-
cally when you perform a proof using tacticals and the subgoal package,

described later in this paper.

There is no guarantee that the validation will prove the original
goal. A faulty tactic could return a validation that fails or loops, or
that produces a theorem with unwanted assumptions or the wrong conclusion.
Such a tactic is called invalid, and is worse than useless because it can
lead you down an incorrect path in a proof. Fortunately it is impossible

to prove a false theorem in LCF.

Even standard tactics are valid only for goals that satisfy cbnditidns
documented below. Tactics do not always check these conditions in advance,

for efficiency.

Tactics and Tacticals in Cambridge LCF 3

LCF includes the predefined ML types

lettype proof = thm list -> thms;
lettype goal = form list # form;;
lettype tactic = goal -> ((goal list) # proof);;

Note that the function dest thm has type "thm->goal".

2.2, Programming with tactics

Tactics may be combined into more powerful ones using operators called
tacticals, described later. While a proof may require a special-purpose
tactic, it is almost never necessary to program one from scratch, expli-
citly constructing the subgoal 1list and validation. New tactics are gen-
erally expressed in terms of standard tactics and tacticals; these may be

regarded as a language for proof strategies.

Many standard tactics are mainly intended as building blocks for con-
structing other tactics. Tactics built from simpler ones are more readable

and more likely to be correct than tactics built from scratch.

2.3. Notation

A tactic that reduces a goal B to subgoals 81, ce ey Bn’ with the same

assumptions, is written

4 Tactics and Tacticals in Cambridge LCF

A tactic typically passes all the original assumptions on to the
subgoals, and perhaps adds new assumptions. Changes to the assumption list
are noted in square brackets. A tactic that reduces a goal B to C and

introduces assumptions A1 and A2 is written

Most tactics apply only to goals of a certain form, and fail on all

others. For a tactic such as

it is implicit that only conjunctions are acceptable as the input goal.

3. Predicate Calculus Tactics

Many predicate calculus rules are well-suited for backwards proof. A
tactic whose validation uses a single inference rule is said to invert that
rule. A tactic is often named after the rule that it inverts, having the
reverse effect of what its name suggests. For example, the tactic SPEC_TAC -

generalizes its goal. Its validation uses the inference rule SPEC, which

specializes a theorem.

3.1. Tactics for quantifiers

Tactics and Tacticals in Cambridge LCF

Forall —— proving a generalization for an arbitrary variable
GEN_TAC: tactic

1x.A(X)

chooses x' as a variant of x not free in goal or assumptions

Forall —- proving a generalization for a particular variable
{(for use in tactical programming)

X_GEN_TAC: term -> tactic

valid if the variable y is not free in goal or assumptions

Forall —— proving a more general goal
(related to Boyer and Moore's '"generalization" [11])

SPEC_TAC: (term # term) ~> tactic
t X

valid if x is not free in A(t), except within t;
equivalently, if x is not free in A(UU)

Exists —— proving existence by stating a value

EXISTS TAC: term -> tactic

[S%
I

Tactics and Tacticals in Cambridge LCF

Tactics for connectives

Conjunction -~ proving the conjuncts separately

CONJ _TAC: tactic

A/\N B
A B
Disjunction -~ selecting which disjunct to prove

DISJ1_TAC: tactic

Implication — assuming the antecedent

DISCH TAC: tactic

Implication —— taking a theorem as an antecedent

MP TAC: thm -> tactic
]
| —A

Tactics and Tacticals in Cambridge LCF 7

Effand—onlyfif —- proving each direction separately

IFF_TAC: tactic

Additional Tactics and Functions

| &=

These include tactics for substitution, induction, manipulating
assumptions, and performing case splits. Tactics that take theorem parame-
ters, such as SUBST TAC, CONTR_TAC, and MP_TAC, should be supplied with
theorems thaﬁ depend on no assumptions other than those of the goal. Any
additional assumptions will crop up when the validation is applied, render-

ing the tactic invalid.

Substitution in the goal (at specified occurrence numbers)

SUBST TAC: (thm list) -> tactic

SUBST_0CCS_TAC: ((int list) # thm) list -> tactic
for theorems'[}—t1==u1; ceol :-tnzzun]

with occurrence lists [01; cos) ok] for each theorem

Simple substitution (useful with tacticals)

SUBST1_TAC: thm -> tactic
b=z

8 Tactics and Tacticals in Cambridge LCF

Shbstitution_ig the goal and its assumptions

SUBST_ALL_IAC: thm -> tactic
;-t::u

[AL(t) 1 B(%)

[AL(u) 1 B(u)

The symbol AL stands for the entire assumption list. SUBST ALL_TAC
breaches the style of natural deduction, where the assumptions are kept

fixed. However, the tactic is valid and occasionally useful.

Fixed-point induction
(uses type thms and TR_CASES in testing admissability [71)

INDUCT TAC: (thm list) -> (term # term)list -> tactic
type thms funi fi

A(FIX fun1, veey FIX funn)

ACUU)

Case split on a conditional expression
(searches goal for a conditional and expands the three cases)

COND_CASES TAC: tactic

A(p:>t{u)

[p==UU] A(UU)
[p==TT] A(t)
[p==FF] A(uw)

Tactics and Tacticals in Cambridge LCF 9

Contradiction

CONTR_TAC: thm -> tactic
{~FALSTITY()

Accepting a theorem that states the goal

ACCEPT TAC: thm -> tactic
i —A

Taking a theorem as an assumption

ASSUME TAC: thm -> tactic
'_A .
i

ﬂtl' Stripping connectives from a theorem

STRIP_ASSUME TAC: thm -> tactic

ASSUME TAC always puts the theorem, exactly as given, onto the assump-
tion list. STRIP_ASSUME TAC fifst breaks the theorem apart, stripping off
certain outer connectives, then puts the resulting pieces on the assumption
list. It adds a conjunction as separate conjuncts, validated by the infer-
ence rules CONJUNCT1 and CONJUNCT2. It causes a case split given a dis-
junction, validated by the rule DISJ CASES. It eliminates an existential

quantifier by choosing an arbitrary variable, validated by the rule CHOOSE.

10 Tactics and Tacticals in Cambridge LCF

It also attempts to solve the goal using ACCEPT TAC and CONTR_TAC.

The tactic is implemented using theorem continuations [8]. Its effect
is suggested by the following diagrams, except that the new assumptions
cause recursive calls to STRIP ASSUME TAC whenever possible. Thus it does

not add contradictions, conjunctions, disjunctions, or existential formulas

to the assumption list.

for |~-A/\B
C
[A; Bl C
for |-A\/B
C
[Al C [B] C
for |-2?x.A(X) (chooses x' as a variant of x)
C
[A(x')]C

4.2, Stripping connectives from a goal

STRIP_TAC: tactic

This is for breaking a goal apart. STRIP_TAC removes one outer con-
nective from the goal, using CONJ TAC, DISCH TAC, or GEN_TAC. If the goal
is an implication A==>B, it applies DISCH TAC — then uses STRIP_ASSUME_IAC

to break up the antecedent A, putting the pieces in the assumption list.

Tactics and Tacticals in Cambridge LCF 11

Like STRIP_ASSUME TAC, it is iﬁplemented using theorem continuations.

4.3, Functions involving tactics

Proving a goal using a tactic

TAC PROOF: (goal # tactic) -> thm

Proving and saving a theorem using a tactic

prove thm: (token # form # tactic) -> thm

Testing a validation on dummy theorems

chktac: ((goal list) # proof) -> thm

The function chktac "proves" the subgoals using mk fthm, producing
theorems that include the additional assumption FALSITY(). It applies the
validation to these theorems., If the tactic is valid, chktac returns a
theorem stating the goal, but with the additional assumption. This vali-
dity test is fairly reliable; most validations do not notice the assumption

FALSITY() . It is helpful for debugging new tactics interactively:

NEW_TAC test goalj;
chktac it

Now compare the resulting theorem with the test goal.

4.4, Rewriting tactics

REWRITE TAC: (thm list) -> tactic
ASM REWRITE TAC: (thm list) -> tactic

12 Tactics and Tacticals in Cambridge LCF

Most proofs involve the rewriting tactics REWRITE TAC and
ASM_REWRITE TAC, which are described in detail elsewhere [9]. REWRITE TAC
transforms the goal using the given list of theorems as rewrite rules;

ASM REWRITE TAC adds the assumptions to thg input list of theorems. The

inference rule IMP CANON puts each theorem into the form

t==u
==> (B <=> C)

= x>
1

1

v

I

3

%

=
o

n

1

v

—_
"
I
v
"
Il
v

A rewriting step replaces either a term or a formula. An instance of
the left side (t or B) of a rule is replaced by the corresponding instance
of the right side (u or C), if recursive invocation of rewriting succeeds

in proving the instances of the antecedents Ai'

Besides explicit formula rewrites such as B<z>C, any theorem asserting
a predicate P causes rewriting of P to TRUTH(). Any theorem asserting the

negation P causes rewriting of P to FALSITY().

Tautologous formulas such as A/\TRUTH() are simplified. Beta-
conversion occurs whenever possible. Disjunctions are expanded wherever
they appear as conjuncts or antedecents. 1In particular, (A\/B)==>C becomes
(A==>C)/\(B==>C), resulting in a case split. Existential formulas are

similarly expanded; thus (?x.A(x))==>C becomes !x'.(A(x')==>C).

The tactics introduce local assumptions. For a conjunction A/\B or an,

implication A==>B, the formula A is assumed true when rewriting B.

Rewriting continues as long as rules apply. This may result in loop-

ing —— for instance if a term t gets rewritten, in one or more steps, to a

Tactics and Tacticals in Cambridge LCF 13

term containing t. In particular you must never use commutative rules such
as X+y=z=y+X. An implicative rewrite A ==> t==zu will probably loop if t
occurs in A. Looping is tricky because it may involve several rewrite

rules,
Functions for use with rewriting:

Reversing the orientation of a rule (term or formula rewrite)

REV_REWRITE: thm -> thm

Given a theorem stating t==zu or A<=>B, possibly with quantifiers and
antecedents, REV_REWRITE returns a logically equivalent theorem stating

==t or B<=>A.

Printing the rewrites in canonical form (including assumptions)

used rewrites: (thm list) -> (thm 1ist # thm list)
asm_used rewrites: (thm list) -> goal -> (thm 1list # thm list)

These functions are helpful for predicting the effect of the rewriting
tactics on a goal. They process the list of theorems as the rewriting tac-
tics do. They put the theorems into canonical form, and classify them as
term rewrites, formula rewrites, or unsuitable for rewriting. The output

consists of the list of term rewrites, paired with the 1list of formula

rewrites.

4.5. Resolution tacties

IMP RES TAC: thm -> tactic
RES_TAC: tactic

14 Tactics and Tacticals in Cambridge LCF

I am hesitant to discuss the resclution tactics, having experimented
with many different kinds without being fully satisifed. However, resolu-
tion plays an important role. This section describes the basic resolution

tactics, omitting any details that are likely to change.

LCF resolution is trivial compared with full-blown resolution [2].

Suppose we have a list of facts, [:—A1; «ev; i-A 1, and an implication

Resolution consists of matching the ahtecedents against the facts, attempt-
ing to prove some instance of C by Modus Ponens. Currently LCF does not
provide unification, only matching -- the facts are not instantiated, only
the implication is. If some but not all antecedents can be proved, then

resolution produces results that are implications.

The tactic IMP RES TAC impth resolves the theorem impth, which should
be an implication, against the assumption list. It adds the results to the
assumption list using STRIP_ASSUME TAC; in particular, it solves the goal
if it finds a contradiction. RES_TAC calls IMP RES TAC for all the impli-
cations it finds in the assumption list, introducing the results from each

invocation.

5. Tacticals

LCF's theorem-proving power derives from passing tactics as arguments
and returning tactics as results. A proof composed of many tactic steps
can always be expressed as a single compound tactic., Tacticals are opera-

tors for combining tactics into larger tactics.

Tactics and Tacticals in Cambridge LCF 15

As in Edinburgh LCF, many tacticals have more general types than those
‘given below. They can work with other forms of goal-directed programming,
such as the prime number example [4]. The fully polymorphic types are too

complex to print here, but can be obtained by invoking LCF.

Most tacticals have simple definitions in ML, which are given here as
additional documentation. The ML definitions actually running in LCF may

be different.

5.1, Basic tacticals

Cambridge LCF includes the tacticals THEN, ORELSE, and REPEAT, which

originated in Edinburgh LCF [4].

Sequencing (infix operator)

THEN : tactic -> tactic -> tactic

The tactic (tac, THEN tacz) applies tac1 to the goal, then applies

1

ta02 to the resulting subgoals, and returns a flattened list of the

subgoals of the subgoals. Its validation composes tac1's validation with

those returned by tac, for each of the subgoals. If tac1 returns an empty

2

subgoal list, then ta02 is never invoked. The tactic fails if tac1 or ta02

does.

Alternation (infix operator)

ORELSE : tactiec -> tactic -> tactic

16 Tactics and Tacticals in Cambridge LCF

The tactic (tac1 ORELSE tacz) applies tao1 to the goal, returning the

subgoals and validation. If tac1 fails then the tactic calls tacz. if tac2

also fails, then the entire tactic fails.

Identities
ALL TAC: tactic

NO_TAC: tactic
FAIL TAC: token -> tactic

As identities for THEN and ORELSE, LCF provides the tactics ALL TAC
and NO_TAC. ALL TAC accepts all goals, passing the goal unchanged. NO_TAC
accepts no goals: it always fails. FAIL TAC is like NO_TAC but expects you

to supply the failure token.

Repetition

REPEAT: tactic -> tactic

The tactic (REPEAT tac) applies tac to the goal, and to all resulting
subgoals, returning the goals for which tac fails. REPEAT never fails, but

may loop.

ML definitions:

let (tac1 ORELSE tac2) g = tacl g ? tac2 g ;;
let ALL TAC g = [gl,hd;;
let FAIL TAC tok g = failwith tok;:

let NO_TAC = FAIL TAC “NO_TAC';;
letrec REPEAT tac g = ((tac THEN REPEAT tac) ORELSE ALL TAC) g ;;

Tactics and Tacticals in Cambridge LCF 17

5.2. List tacticals

In compound tacties, it is often useful operate on the assumption list

of the goal. The tactical
ASSUM LIST: (thm list -> tactic) -> tactic
maps ASSUME over the assumptions, and supplies them to a tactic function:

ASSUM LIST thltac ([A1; e} AnJ. B) —->
thltac ["A1}—A1"; v} "An{—An"]

The basic tacticals have been generalized to operate on lists of tac-—
ties. It is often useful to map a parametric tactic, such as X GEN TAC or
EXISTS TAC, over a list. An important special case is mapping a function
of type thm->tactic, such as CONTR TAC or SUBST1 TAC, over the assgmptions

of the goal.

Applying every tactic in sequence

EVERY: tactic 1list -> tactic

EVERY [tac : tacn] — tac, THEN ... THEN tac

15 e 1

MAP EVERY: (#* -> tactic) -> (¥ list) -> tactic

MAP_EVERY tacf [x1; eer) X1 ——=> EVERY [tacf x

n 1 . taef xn]

EVERY ASSUM: (thm -> tactic) -> tactic

EVERY_ASSUM thtac ([A;; ...; A 1, B) --=>

EVERY [thtac "A1i—A1"; e+ thtac "A i-A "]

18 Tactics and Tacticals in Cambridge LCF

Applying the first successful tactic

FIRST: tactic list -> tactic

FIRST [taCT; ceol tacn] —_—> tac1 ORELSE ... ORELSE tac

MAP FIRST: (¥ -> tactic) -> (¥ list) -> tactic

cooy tacf xn]

MAP FIRST tacf [x1; oo} xn] —_—D FIRST [tacf X435

FIRST ASSUM: (thm -> tactic) -> tactic

FIRST_ASSUM thtac ([A;; ...; A1, B) —--=>

FIRST [thtac "A1}—A1"; «ev; thtac "AnI-An"]

EVERY and FIRST construct compound tactics using begin/end blocks, in
Algol style. MAP EVERY and MAP FIRST provide a concise notation for itera-

tion:

MAP EVERY EXISTS TAC [tiu;v]
instead of

EXISTS TAC t THEN EXISTS TAC u THEN EXISTS TAC v

EVERY ASSUM and FIRST ASSUM produce tactics that search the assumption

list, such as those of Cohn [3]. For instance, the tactic
FIRST ASSUM (\asm, CONTR TAC asm ORELSE ACCEPT TAC asm)

searches the assumptions for either a contradiction or the desired conclu-

sion, This style leads to theorem continuations [8].

Tactics and Tacticals in Cambridge LCF 19

ML definitions:

let ASSUM LIST aslfun (asl,w) = aslfun (map ASSUME asl) (asl,w);;
let EVERY tacl = itlist $THEN tacl ALL TAC;;

let MAP EVERY tacf 1st = EVERY (map tacf 1lst);;

let EVERY ASSUM = ASSUM LIST o MAP EVERY;;

let FIRST tacl = itlist $ORELSE tacl NO TAC;;

let MAP FIRST tacf lst = FIRST (map tacf 1lst);;
let FIRST ASSUM = ASSUM LIST o MAP FIRST;;

5.3. Making a tactic valid

VALID: tactic -> tactic

The tactical VALID constructs (usually) valid tactics. It applies tac
to the goal, then tests the resulting validation on dummy theorems. If the
resulting theorem differs from the goal, or contains additional assump-
tions, then VALID fails:; otherwise it returns the goal list and validation.
VALID uses chktac, documented above, which is imperfect but fairly reli-.

able.

6. The Subgoal Package

When conducting a proof that involves many subgoals and tactics, you
must keep track of all the validations and compose them in the correct
order. While this is feasible even in large proofs, it is tedious. LCF
provides a package for building and traversing the tree of subgoals, stack-

ing the validations and applying them properly.

The package implements a simple framework for interactive proof. You

create and traverse the proof tree top-down. Using a tactic, you expand

20 Tactics and Tacticals in Cambridge LCF

the current goal into subgoals and validation, which are pushed onto the
goal stack. You can consider these subgoals in any order. If the tactic
solve the goal (returns an empty subgoal list), then the package proceeds
to the next goal in the tree. It saves several preceeding states, to which

you can return if you make a mistake in the proof.

Setting the initial goal

set goal: goal -> void

Expanding the current goal

expand: tactic -> void

Applies the tactic, validated using VALID, to the goal. Prints

resulting subgoals. If there are none, applies the validation, and those

above it whose subgoals have been proved. Prints the resulting theorems.

Fast expand (does not apply VALID)

expandf: tactic -> void

Printing n levels of the goal stack

print state: int -> void

Saving the topmost theorem (onto the theory file)

save top thm: token -> thm

Rotating the current subgoals (by n steps)

rotate: int -> void

Tactics and Tacticals in Cambridge LCF 21

Backing up from last state change

backup: void -> void

Getting the current state (for additional backup)

get state: void -> goalstack

Restoring a previous state

set state: goalstack -> void

Getting the top goal on the stack

top goal: void -> goal

The assignable variable backup min, initially 12, is the maximum
number of proof states saved on the backﬁp list. You may backup repeatedly
until the list is exhausted: backing up discards the current state. You
may save any desired state using get state, and restore it later using

set_state.

7. Example Proof

To show the tactics, tacticals, and subgoal package in use, I have
contrived a proof that involves most of the logical connectives. Let us

enter the goal to the subgoal package:

#iset goal
(€1,
"Ip., ™ p==UU ==> I1x y. (p=>x]y ==y <=> (p==FF \/ x==zy:¥*))"),

Mip, “pa==UU ==> (!xy.(p=>xly ==y <> pz=FF \/ x==z y"

22 Tactics and Tacticals in Cambridge LCF

To prove it, first strip off some quantifiers and connectives. Since
GEN_TAC removes a universal quantifier, DISCH TAC removes an implication,

and IFF TAC removes an if-and-only-if, the tactic
EVERY [GEN TAC; DISCH TAC; GEN TAC; GEN TAC; IFF_TAC; DISCH TAC]

can break up the goal considerably. But it is tedious to list each step.

Using standard tactics and tacticals we can break the goal completely
apart:
#expand (REPEAT (STRIP_TAC ORELSE IFF TAC));;

3 subgoals
"(p=>x1|y) ==y

["x == y"]
"(p=>x1y ==y"

["™ p== UU"]

[np == Fpn]
"p=z= FF \/ x == y"

[v p==UU"]

L "(p=>x1y) ==y"]
There are three cases because STRIP_IAC broke the "<=z=" case into sub-

cases for p==FF and x==zy. Actually, it was a mistake to break up the "<=>"
at all. The term (p=>x|y)==y requires considering separately the cases
where p is UU, TT, or FF. Yet it already appears in an assumption, where
it will be difficult to reason with. (Assumptions are printed on separate
lines, enclosed in square brackets.) Let us back up and try again without

IFF_TAC, then use COND CASES TAC to eliminate the conditional.

Tactics and Tacticals in Cambridge LCF 23

#backup();;

"ip., 7 == UU ==> (Ixy. (p=>x1}y) ==y <=> p==FF \/ xz==y)"

#expand (REPEAT STRIP_TAC);;
"(p => X | Y) == ¥y <=> D == FF \/ x ==z y"™
["™ p== UU"]

#expand COND CASES TAC;;

3 subgoals

"y == y <=> FF == FF \/ X == y"
[" p== UU"]
["p == FF"]

" z=z y <=> TT == FF \/ x == y"
[nw =
["p == TT"]
"UuU == <

["~ p
["p=

These three cases are for the three possible values of p. The goals
are hardly in simplest form. It is usually best to follow up a case split
by a call to ASM REWRITE TAC. Rather than prove each case separately, we

can back ﬁp and tackle them all at once:

#backup();;
M(p=>X1}y) ==y <> p==FF \/ x
[" p==UU"]

1
1
<

#expand (COND CASES TAC THEN ASM REWRITE TAC([1);;
"U ==y <=> x == y"

[" p == UU"]

["p == UU"]

Only the UU case remains, We can prove it using resolution to detect
the contradiction in the assumptions. The subgoal package winds up the
proof, printing intermediate results. Then we can save the theorem on the

current theory file.

24

the case split on p.

has a disjunctive antecedent.

ffexpand RES TAC;:

goal proved

eof="0U ==y <=> x == y"
d="p=> x| y) ==y <= ==z
i-"p,

p== U0 ==> (Ixvy. (p=>
Previous subproof: goal proved
#save top thm " example’;;

i="!p.

“ p==U0U0 == ('x y. (p =>
: thm

The complete proof is

Tactics and Tacticals in Cambridge LCF

FF \/

X |

y)

y)

EVERY [REPEAT STRIP_TAC; COND _CASES TAC; ASM REWRITE TAC[]; RES_TAC]

the assumption ~p==UU, and expands the other cases:

)

We can obtain a different proof using MP_TAC and ASM REWRITE TAC to perform
First back up past the previous case split. Then
supply MP TAC with an instance of the axiom TR_CASES, producing a goal that

ASM_REWRITE TAC solves the UU case, using

Tactics and Tacticals in Cambridge LCF 25

#ibackup();;

"WUU == y <K=> X% ==z y"
["™ p==UU"]
["p == Uy]

#backup()
"W(p=> x| y) ==y <> p==FF \/ x==y"
[" p== UU"]

#expand (MP TAC (SPEC "p" TR CASES));;

"p== UU \/ p==TT \/ p=z==FF ==

((p=>x1}y) ==y &> p==FF \/ x=z=y"
["~ p - UU”]

#expand (ASM REWRITE TAC[]);;

"(p == TT == ((TT => x| y) == ¥

(p == FF ==> (FF => x| y) == "
[" p== UU"]

<=> x==y)) /\

I deliberately omitted the rewrite rule COND_CLAUSES from the call to
ASM REWRITE TAC in order to show the case split. Supplied with this rule,
ASM REWRITE TAC solves all three cases at once. The proof is one step

shorter than the previous one:
EVERY [REPEAT STRIP TAC;

MP_TAC (SPEC™ M p TR_CASES);
ASM _REWRITE TAC [COND_CLAUSES]]

26

Tactics and Tacticals in Cambridge LCF

References

[1]

(2]

[31]

(4l

[5]

[6]

7]

[81]

(91

R. Boyer and J. Moore, A Computational Logic (Academic Press, 1979).

C.-L. Chang and R. Lee, Symbolic Logic and Mechanical Theorem Proving

(Academic Press, 1973).

A. Cohn, The equivalence of two semantic definitions: a case study in

LCF, SIAM Journal of Computing 12 (May 1983) pages 267-285.

M. Gordon, R, Milner, and C. Wadsworth, Edinburgh LCF (Springer-

Verlag, 1979).

M. Gordon, Representing a logic in the LCF metalanguage, in: D. Neel,

editor, Tools and Notions for Program Construction (Cambridgé Univer-

sity Press, 1982) pages 163-185.

Z. Manna, Mathematical Theory of Computation (MeGraw-Hill, 1974).

L. Paulson, The revised logic PPLAMBDA: a reference manual, Report No.

36, Computer Laboratory, University of Cambridge (1983).

L. Paulson, Tactics as theorem continuations, Technical Report (in

preparation), Computer Laboratory, University of Cambridge (1983).

L. Paulson, A higher-order implementation of rewriting, Science of

Computer Programming (to appear).

