Technical Report A

Number 392

Computer Laboratory

Decoding choice encodings

Uwe Nestmann, Benjamin C. Pierce

April 1996

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1996 Uwe Nestmann, Benjamin C. Pierce

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Decoding Choice Encodings*

Uwe Nestmann! Benjamin C. Pierce!

April 1, 1996

Abstract

We study two encodings of the asynchronous w-calculus with input-guarded choice
into its choice-free fragment. One encoding is divergence-free, but refines the atomic
commitment of choice into gradual commitment. The other preserves atomicity, but
introduces divergence. The divergent encoding is fully abstract with respect to weak
bisimulation, but the more natural divergence-free encoding is not. Instead, we show
that it is fully abstract with respect to coupled simulation, a slightly coarser — but
still coinductively defined — equivalence that does not require bisimilarity of internal
branching decisions. The correctness proofs for the two choice encodings exploit the
properties of decodings from translations to source terms.

1 Introduction

The problem of implementing the concurrent choice operator in terms of lower-level con-
structs is interesting from a number of points of view. Theoretically, it contributes new
insight on the expressivity of process calculi and the computational content of choice. More
practically, it provides correctness arguments supporting the design of high-level concurrent
languages on top of process calculi. Furthermore, it is tightly related to the distributed im-
plementation of synchronization and selective communication [Mit86, PS92, Kna93, BG95).

Our interest in the study of choice encodings originates from the design and implementa-
tion of the high-level concurrent language Pict [PT95, PT96], an asynchronous choice-free
m-calculus [HT91, Bou92] enriched with several layers of encoded syntactic sugar. The ab-
stract machine of Pict does not provide instructions for selective communication; instead,
choice is provided as a library module by a straightforward encoding. Surprisingly, however,
this encoding turns out not to be valid with respect to standard weak bisimulation.

*Interner Bericht IMMD VII-01/96, Friedrich-Alexander-Universitit Erlangen-Niirnberg

tUwe . Nestmann@informatik.uni-erlangen.de, Friedrich-Alexander-Universitst Erlangen-Niirnberg,
Informatik VII, Martensstrafie 3, D-91058 Erlangen. Supported by Deutsche Forschungsgemeinschaft,
Sonderforschungsbereich 182, project C2, and by Deutscher Akademischer Austauschdienst within the
ARC-program.

*Benjamin.Pierce@cl.cam.ac.uk, University of Cambridge, Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, UK. Supported by the British Science and Engineering
Research Council.

We study choice encodings in the w-calculus with asynchronous messages (or equiv-
alently, with non-blocking output prefix). This setting has received increasing attention
in recent years. In the v-calculus, asynchrony was treated using a non-standard labelled
semantics [HT91, HT92, Hon92]; the mini w-calculus used a chemical semantics [Bou92|;
it has also been investigated using reduction semantics [HY93], concurrent combinators
[HY94a, HY94b], and output-only barbed congruences [Ode95a, FG96]. Only recently,
it has been extended with an input-guarded choice operator, equipped with a standard
labelled semantics, and studied with bisimulation from an asynchronous observer’s view-
point [San95d, ACS96].

We use standard notation for the restriction (vz) P of name « to process P, for parallel
composition P;|P,, input y(z).P of a name z from channel y for use in P, and output
7(z) of name z on channel y. Furthermore, [] and) denote indexed parallel composi-
tion and input-guarded choice, respectively. For convenience, we use the conditional form
if ... then ... else ... which performs a case analysis driven by special names ¢ and f.

We study two variants of the choice encoding. The non-divergent version, which is
more interesting from a pragmatic perspective, will occupy most of our attention. For each

choice expression) y;(z).P;, the translation
jeJ

CL Y vi(@)-B1 % (i) (U8 | TT Branch{y;(a).F;))

jedJ jeJ

runs a mutual exclusion protocol, installing a local lock on the parallel composition of its
branches. The branches

Branch(y;(z).P;) oo yj(a:) (D) . (if b then C[P;] else 75(z) | I{f))

concurrently try to acquire the lock after reading messages from the environment. Only
the first branch managing to interrogate the lock will proceed with its continuation and
thereby commit the choice — every other branch will then be forced to resend its message
and abort its continuation. The resending of messages by non-chosen branches essentially
reflects the asynchronous character of the encoding. For an asynchronous observer, who
can not detect when a message is consumed by a receptor, the resending of messages is -
immaterial, and so this encoding intuitively seems to be correct.

However, even for an asynchronous observer, it turns out that source terms and their
C-translations are not weakly bisimilar. The reason is that C-translations of choice carry
out commitments only gradually, resulting in intermediate states which do not correspond
any source term. In order to deal with partially committed states, we instead characterize
the correctness of the encoding as a pair of opposite simulations which are coupled by
requiring that less committed (i.e. simulating) processes can always internally evolve into
more committed (i.e. simulated) processes [PS592].

For comparison, we also study another encoding that introduces an alternate path in
each branch of a choice that allows it to “back out” and return to its initial state after
it has been given the lock. This encoding avoids gradual commitments and can, in fact,

2

be proven fully abstract with respect to weak bisimilarity. However, it is pragmatically
unsatisfactory since it introduces divergence.

The remainder of the paper is organized as follows. We first introduce the setting of
an asynchronous m-calculus (Section 2), followed by the divergence-free encoding C and
the divergent encoding D (Section 3). We review some standard notions of correctness
(Section 4) and present an example that invalidates the full abstraction of the C-encoding
with respect to weak asynchronous bisimulation (Section 5). Using an intermediate lan-
guage which lets us factor the C-encoding into two steps, we define two decoding functions
that constitute an asynchronous coupled simulation. This leads to our main result: for all

source terms S
SaC[S]

where 2 is asynchronous coupled simulation equivalence; we also prove that the C-encoding
is divergence-free, and we sketch a proof that S = D[S] holds (Section 6). Finally, we
offer some concluding remarks and sketch related and future work (Section 7).

2 Technical preliminaries

Many variants of the 7-calculus [MPW89] have appeared in the recent process algebra liter-
ature. We use here a version which is close to the core language of Pict [PT95, PT96], but
slightly simplified in order to shorten the presentation in this paper. It is an asynchronous,
first-order, monadic 7-calculus [HT91, Bou92]. Replication is restricted to input processes
and evaluated lazily [HY93, MP95]. Furthermore, merely for notational convenience, it
is equipped with a conditional form based on special boolean names, reminiscent of the
m,~calculus [Wal94], but not allowing for more complex boolean expressions; the condi-
tional can be seen as a very restricted form of matching. The choice operator is finite and
all the branches of a choice must be guarded by input prefixes (in [ACS96], there are also
T-guards).

2.1 Syntax

Let N be a countable set of names. Let the booleans B be {¢,f} with BN N = () and
values V be N U B. The set P of processes P is defined by the following grammar

R = y(2).P
P u= 0 | (vo)P | P|P | ifzthenPelse P |
g2 | B | R | TR

jeJ

wherey,z € V, z € N, and J ranges over finite sets of indices. We also use the abbreviation
R, + R, to denote binary choice. Operator precedence is, in decreasing order of binding
strength: (1) prefixing, restriction, replication, (2) substitution, (3) parallel composition,
and (4) choice. A term is guarded when it occurs as a subterm of an input prefix.

3

The operational semantics of restriction, parallel composition, conditional, input and
output is standard. The form !R denotes the replication operator restricted to input-pre-
fixes. In 7(z) and y(z), the name y is called the subject, whereas x, z are called objects.
We refer to outputs as messages and to input, replicated input, and choice as receptors.

The definitions of name substitution and a-conversion are standard. A name z is bound
in P if P contains an z-binding operator, i.e. either a restriction (rz) or an input prefix
y(z) as a subterm. A name z is free in P if it occurs outside the scope of an z-binding
operator. We write bn(P) and fn(P) for the sets of P’s bound and free names; n(P) is their
union. Renaming of bound names by a-conversion =, is as usual. Substitution P{?*}} is
given by replacing all free occurrences of = in P with z, first a-converting P if necessary
to avoid capture. Use of the boolean constants ¢ and f as binding variables is forbidden.

2.2 Operational semantics

Let y € N and z € V be an arbitrary name and value. The set L of labels p is generated
by g

pou= g | B | oyl | 7
representing the bound and free output, early input, and internal action. The functions bn
and fn yield the bound names (those marked by v in bound outputs) and free names (all
others) of a label. Let n(u) = bn(p) U fn(p) denote the set of names occurring in label u.

The operational semantics for processes is given as a transition system with P as its
set of states. The transition relation — C P x L x [P is defined as the smallest relation
generated by the set of rules in Table 1.

We use an early instantiation scheme as expressed in the rules INP and COM/CLOSE
since it allows us to define bisimulation without explicit name-instantiation and since it
allows for a more intuitive modelling in Section 6.2, but this decision does not affect the
validity of our results. Rule OPEN prepares for scope extrusion, whereas in CLOSE the
previously opened scope of a bound name is closed upon its reception.

As usual, weak arrows = denote the reflexive and transitive closure of internal tran-
sitions; arrows with hats allow us to specify that two processes are either related by a
particular transition or else equal in the case of an internal transition.

p . a m
def T * B def | — ifputT NG S A
== 3 — = T - p def p
—r U= Zf/,l,:’T _r = = — =>

2.3 Bisimulation

Two process systems are regarded as equivalent when they allow us to observe the same
operational behavior at their interface to the environment. Bisimulation defines equivalence
as mutual simulation of single computation steps resulting in equivalent system states.
According to the standard literature on (ground) bisimulations, e.g. [Mil89, MPW89], a
simulation is a relation S on agents such that (P, Q) € S implies, for arbitrary label p:

E-INP: y(z).P e, P{*,}
BIvP: Ny(@).P 225 PULY | ty(a).P

C-INP: 3 y;(x).P; N Po{?} if yp =y for some k€ J
el

ouT: Y(z) g

Y(z) p y(z)
conr: £ —F _ @ — &
PlQ — P|Q
RES P P if J&’ (1)
N T n
(vz) P L5 (vz) P! :
p ¥{z) p!
OPEN: o fy#a
(vz) P 22, pr
- P F(vz) p | 0 y(2) o
CLOSE*: o if z & fn(Q)
PlQ — (v2)(P'|Q")
P 5P _
PAR*: if bn(p) N (P =0
FTEE ETE AR
P L p
ALPHA: ___._‘;ijj_ if P=4Q
Q — P
p L p
TRUE: — -
if £then Pelse Q — P’
H !
FALSE: Q=@

if fthen P else Q —— Q'

* and the evident symmetric rules

Table 1: Transition semantics

e if P 5 P/, then there is Q' such that Q - Q' and (P',Q') € S.

The central idea is that of an external observer that performs experiments with a process
P under observation. In an output-experiment, the observer tries to receive messages
from the process, which is possible if the process has a matching output transition; in an
input-experiment, the observer tries to send messages to the process, which is successful if
the process has the matching input transition; finally, the observer may also notice that a
process engages in an internal transition, which could be called a reduction-experiment. A
bisimulation is a simulation whose opposite is again a simulation.

In this subsection, we review various refinements of standard bisimulation: we define
its asynchronous variant, identify a few structural laws, refine it to a preorder that takes
efficiency into account, and finally refine it to handle divergence.

Asynchrony

In the calculus with synchronous output, the existence of an input transition P —ﬂz—)—% P
precisely models the success of an observer’s input-experiment. Since input labels are only
generated for P, if there is a matching receptor sitting enabled inside P, the existence
of this transition tells that in P’ the message offered by the observer has actually been
consumed. :

The concept of asynchronous messages suggests a different notion of input-experiment.
Asynchronous output is performed independently from the availability of a matching re-
ceptor. Consequently, an asynchronous observer sending messages into a configuration
cannot see directly whether its messages are consumed or not. Hence, the modelling of an
input-experiment by existence of input transitions seems to be too strong since, there, the
input-derivative P’ definitely has consumed the message.

However, an asynchronous observer may see indirectly that its messages have been
consumed by noticing messages that eventually come back from the process. Consequently,
instead of abandoning input-experiments completely, asynchronous observation captures
input-experiments indirectly by performing output-experiments in the context of arbitrary
messages. These considerations have also led to the development of output-only barbed
congruence [Ode95a, FGI6] based on reduction semantics [HY93]. There is an analogy
between asynchronous observers and internet users that communicate with each other via
email: assuming that email is the only way to exchange information, a user can not see
that his email has been read unless his communication partner has sent off some response.

Two different formulations of asynchronous bisimulation have been proposed.

Honda and Tokoro [HT91, HT92, Hon92] introduced a modified input rule in order to
model asynchronous input-experiments explicitly:

P2 Py(e)

This rule allows for any system at any time to accept an arbitrary message without the
necessity of containing a matching receptor consuming it. The standard technique of per-
forming input-experiments by checking the existence of input transitions obviously applies

6

with this type of semantics. Note that the modified transition relation is no longer char-
acterizing the computational content of processes, but more describing their observational
behavior. '

In contrast, Sangiorgi suggested that we keep to the standard labelled semantic rules,
but instead incorporate the asynchronous style of input-experiments into the definition of
simulation such that inputs of processes have to be simulated only indirectly by observing
the processes’ output behavior in the context of arbitrary messages [San95d, ACS96).

In this paper, we follow the latter approach.

Definition 2.3.1 (Simulation, bisimulation) A binary relation S on processes is a
strong simulation if (P, Q) € S implies:

e if P i P', where p ts either T or output with bn(p) N fn(P|Q) = 0,
then there is Q' such that Q - Q' and (P, Q)esS

o (a(2)|P, a(2)|Q) € S for arbitrary messages a(z).

B s called a strong bisimulation if both B and B! are strong simulations. Two pro-
cesses P and @) are strongly bisimilar, written P ~ Q, if they are related by some strong
bistmulation. R

Replacing Q -5 Q' with Q £ Q' in this definition yields the weak versions of the
corresponding simulations. Write ~ for weak asynchronous bisimulation. Process Q weakly
simulates P, written P < @, if there is a weak simulation S with (P,Q) € S.

Bisimulation in name-passing calculi is not a congruence by itself. The main obstacle is
that it is not preserved by name-instantiation in the presence of matching and summa-
tion [MPW89]. Nevertheless, if we restrict our attention to the subset S of processes S
where in occurrences of a conditional if z then S; else Sy, the value z is either a special
name or bound in S, then bisimulation in this language is preserved by name-instantiation
(see the end of Section 3 for more discussion of S).

- Lemma 2.3.2 = is a congruence on S.

Proof: Weak asynchronous bisimulation = has been shown to be preserved by name-instan-
tiation on IP without conditionals [ACS96] (see also [Hon92] for the corresponding result,
apart from choice, in the v-calculus). Since we only allow input-guarded choice (there are
no 7-guards) we also have the congruence of = for our choice operator. Because of the
conditional, = is preserved by all P-operators but input prefix, due to the standard example
in 7-calculi with matching. Here, the problem arises from processes S = if z then S else Sy
where z is not a special name. Then S is bisimilar to 0, but may behave differently when
placed in the context of an input prefix that uses z as the input variable. Hence, by receiving
a special name, the conditional may become activated and therefore behave different from
0. For S, as defined above, we have excluded the possibility that processes may have
subterms like S. O

o-CONVersion P = Q if P=qQ
true if tthen Pelse@ = P

false if fthen Pelse Q@ = @

associativity P|(QR) = (PIQ)|R
commutativity PlQ = Q|P

scope extrusion () P1Q = (vy)(PIQ) iy ¢ MmQ)
scope elimination)@ = Q if y € f(Q)

Table 2: Structural laws

Structure

Certain laws on processes have been recognized as having merely structural content; they
are valid with respect to all different kinds of behavioral congruences, equivalences and
preorders, including strong bisimulation (the finest “reasonable” equivalence).

In reduction semantics [MS92, HY93|, a structural congruence relation is adopted a
priori in order to allow for simplified presentations of the operational rules. In this paper,
we use the structural laws (=) listed in Table 2 only in order to simplify the presentation
of some derivation sequences of transitions. :

Fact 2.3.3 = C ~.

In particular, we always work up to o-conversion, i.e. we omit to mention the implicit
application of rule ALPHA since it is captured by a structural law. Thus, we identify
processes or actions which only differ in the choice of bound names. Furthermore, due to
the associativity law for composition, we omit brackets in multiple parallel composition
and use finite parallel composition [] with the usual meaning.

Efficiency

Often, weakly bisimilar processes differ only in the number of internal steps. The ezpansion
preorder [AH92] takes this into account by stating that one process engages in at least as
many internal actions as another. Thus, its definition pays more attention to internal steps.

Definition 2.3.4 A weak simulation S is called
o faithful, if P - P’ implies that there is Q' with Q =£> Q' such that (P, Q') € S.
o strict, if P -2+ P' implies that there is Q' with Q N Q' such that (P',Q') € S.

for all (P,Q) € S and for all i being T or output with bn(u) N fm(P|Q) = 0.

Note that a weak simulation is strong if it is both faithful and strict.

Definition 2.3.5 (Expansion) A binary relation £ on processes is an expansion if £
is o faithful weak simulation and £~ is a strict weak simulation. Process Q expands P,
written P S Q, if there is an ezpansion € with (P,Q) € €.

Fact 236 ~ C < C =~.

Divergence

A process P is said to be divergent, written P 1, if there is an infinite sequence of 7-steps
starting at P; otherwise it is called convergent, written P |.

Weak bisimulation is not sensitive with respect to the divergence of processes. This
lack of expressivity arises from the definition of weak simulation, which may always choose
to mimic 7-steps trivially. Weak bisimulation, or observation equivalence, may therefore
equate two processes exactly one of which is diverging: it simply ignores the existence
of infinite 7-sequences. Enhancements of bisimulation have been investigated that take
divergence behavior explicitly into account, resulting in preorders among bisimilar pro-
cesses [Wal90].

For our purposes, the snnpler property of preserving divergence will suffice. A weak
simulation S has this property if P {} implies @ f for all (P,@Q) € S. Intuitively, when
required to weakly simulate an infinite 7-sequence, S must progress infinitely often. Let
us introduce some further notation (inspired by [Pri78]) to make prec1se what this means.

Let —" denote a 7- sequence of length n and —*+ —-—>" for n > 0 denote a
non-trivial, but arbitrarily long finite sequence of 7-steps.

Definition 2.3.7 (Progressing simulation) A weak simulation S is called progressing
if, for all (P,Q) € S, there is a natural number kp € N such that P ——" P' with n > kp
implies that there is Q' with Q ——+ Q' such that (P,Q) eS.

According to the definition, a simulation S is progressing, if for sufficiently long finite 7-se-
quences, S must eventually reproduce a 7-step. In this respect, kp is to be understood as
an upper bound for the number of 7-steps starting from P that may be trivially simulated.
Note that every faithful simulation is progressing by definition with upper bound 0.

With a progressing simulation, every infinite sequence may be simulated by subse-
quently simulating sufficiently long finite subsequences non-trivially, i.e. such that they
cause progress. This resembles the chunk-by-chunk idea of simulation in [Gam91].

Lemma 2.3.8 Progressing simulations preserve divergence.

Proof: Let S be a progressing simulation and (P,Q) € S. If P 4} then there is P —»¥.
Since S is progressing, there is kp € N such that P —*»+1 P/ Ty and @ -5+ Q' with
(P',Q") € S. Since now P’ {, we can repeat the procedure infinitely often. a

2.4 When weak bisimulation is too strong ...

Every bisimulation B can be regarded as a pair (S, Sz) of contrary simulations Sy and Sy 1
where S; and S, contain exactly the same pairs of processes, i.e. S; = B = S,. For some
applications, this requirement is too strong. For example, consider the CCS-processes

P=ra+7b+71e and Q=ra+r(Tb+T1cC).

Whereas in P the choice between a, b, and ¢ is atomic, there is a gradual commitment
going on in @. There, in order to choose b, first a has to be pre-empted, then by another
internal step the choice is resolved by pre-empting c. P and () might be seen as equivalent
when disregarding the internal choices which are present in @ but not in P; however, they
are not weakly bisimilar. At best, we can find two contrary simulations S; and Sy 1 with

S E {(PQ) (s9), (), (), (0,00}
S ¥ Ssu{® rh+T10), (¢ rb+T.0)}
S ¥ SU{(Prb+71c)}

which, unfortunately, do not coincide. The distinguishing pairs express the problem with
the partially committed T-derivative 7.b+.c of @ that cannot be simulated by any nontrivial
7-derivative of P and itself has lost the ability of simulating P.

As an appropriate mathematical tool to handle situations as the above CCS-example,
Parrow and Sjodin developed the notion of coupled simulation [PS92]: two contrary simu-
lations are no longer required to coincide, but only to be coupled in a certain way. Several
candidates have been presented for what it means to be coupled. No coupling at all would
lead to the notion of trace equivalence. A non-trivial notion of coupling was based on the
property of stability by requiring the coincidence of two contrary simulations in at least the
stable states. This style induces a relation which is an equivalence only for convergent pro-
cesses, and it has been proven to be strictly weaker than bisimulation and strictly stronger
than testing equivalence [PS92]. In this paper, we use a generalization for divergent pro-
cesses, as suggested in [Gla93, PS94], where coupling requires the ability of a simulating
process to evolve into a simulated process by internal action. We recapitulate the formal
definition:

Definition 2.4.1 (Coupled simulation) A mutual simulation s a pair (Si,Sy), where
Sy and S;1 are weak simulations. A coupled simulation is a mutual simulation (S, Ss)
satisfying

e if (P,Q) € 81, then there is some Q' such that @ = Q' and (P,Q') € Sy;
e if (P,Q') € S,, then there is some P' such that P = P’ and (P',Q’) € S.

Two processes P and Q) are coupled similar, written P & Q, if they are related by both
components of some coupled simulation.

10

Using dotted lines to represent the simulations, the coupling property of (S1,8s) may be
depicted as an ‘internally out-of-step bisimulation’ by:

P —_— P/ ‘e P pers S Pl
{5{': Sz ;’5{:' or else by: > ; >f-
Q-' '.Q ,-' L Q" "Q/'.

Of two processes contained in one component relation of some coupled simulation, the
simulated (more committed) process is always a bit ahead of its simulating (less committed)
counterpart. Intuitively, ‘Q coupled simulates P’ means that ‘Q is af most as committed
as P’ with respect to internal choices and that Q) may internally evolve to a state Q' where
it is at least as committed as P, i.e. where P coupled simulates Q'.

Lemma 2.4.2 & is an equivalence.

Proof: Reflexivity and symmetry are immediate.

For transitivity, let P & @ &= R due to their containment in coupled simulations
(P,Q) € (Spq, Sqp) and (Q, R) € (Sgr, Srg). Now, let Spgr % SpoSqr and Spep
SopSrg. Then, both Spgr and Sgé p are simulations by transitivity of simulation. For
the coupling between Spor and Spqp, we show only one direction. Since (Spq, Sgp) is a
coupled simulation, we know that @ = Q' with (P,Q’) € Sgp. Since (Q, R) € Sgg, this
sequence can be simulated by R = R' with (Q', R') € Sgr. Now, since (Sgr, Srg) is 2
coupled simulation, we have R’ => R" such that (Q', R") € Srg. Therefore, we conclude
that R = R" with (P, R") € SQPSRQ = Srop. O

Proposition 2.4.3 2 is a congruence on S.

Proof: Similar to the proposition for ~. O

Fact 244 =~ C 2 C <.

2.5 Up-to techniques

By the coinductive definition of bisimulation, a proof that two processes P and Q are
bisimilar, i.e. P =~ @), rests on the construction of some bisimulation B which contains the
pair (P,Q). Up-to techniques have been introduced in order to improve the bisimulation
proof technique by relaxing the proof obligations and thereby reducing the size of the
witness relation B [Mil89, San95b]. We explain the idea by the notion of weak simulation
up to expansion. (The composition of relation is denoted by juxtaposition.)

Definition 2.5.1 (Weak simulation up to expansion) A4 binary relation S on processes
is a weak simulation up to < if (P, Q) € S implies:

11

o if P L5 P! where p is T or an output with bn(y) N f(P|Q) =0,
then there is Q' such that Q@ = Q' and (P',Q) € S <.

e (a(2)|P, a(2)|Q) € S for arbitrary messages a(z).

Note that. the first obligation on S does not require of Q' that (P',Q") € S, but only that
@' expands some process @" with (P',Q") € S. The following lemma provides a proof
technique for weak simulation based on the above definition.

Lemma 2.5.2 If Q simulates P up to expansion, then P < Q.

Proof: Let I be a weak simulation up to expansion that contains (P, Q). Then the relation

UU{(P,Q)|3PyQ) €U.IP, Q") elU. FpeL. (P P AQEQ SQ)}is
a weak simulation and contains (P, @). O

The following lemma, allows us to compose coupled simulations with bisimulations.

Lemma 2.5.3 Let (S1,82) be a coupled simulation and B o weak bisimulation. Then the
composite pair (S8, S2B) is again a coupled simulation.

Proof: We have to prove that both $;B and (S;8)~! are weak simulations and that there is
the desired coupling via internal transition sequences. All of these facts are straightforward.
We only show the case for the reachability of coupled states.

Let (P,R) € &B via Q, i.e. (P,Q) € S and (@, R) € B. Then, since (51,8;) is a
coupled simulation, we know that there is Q' with @ = Q' and (P, Q') € S,. Furthermore,
from (Q, R) € B we know that there is some R’ with R = R’ and (@', R') € B. Thus,
(P , R/) € §,5. :

The proof of the second clause for coupling is even simpler. Let (P, R) € S8 via @,
Le. (P,Q) € S; and (Q, R) € B. From (S;,8;) being a coupled simulation we know that
there is P’ with P = P’ and (P, Q) € S,. Then, immediately (P, R) € §1B via Q. [

Thus, in order to prove that two processes S and T are coupled similar, it suffices to show
that S is coupled similar to some other process A (this might be considerably easier),
which, in turn, is bisimilar to the process T. We may call the composite (S18,S.8) a
coupled simulation up to bisimulation, although this is not exactly in the spirit of up-to
techniques. There, the aim is to reduce the size of relations that are necessary to prove
that two processes are related. Here, we do not decrease the size, but simply carry out the
proof on another, but bisimilar, set of terms that may provide richer structure for actually
doing the proof.

12

3 Emncoding choice

This section contains two simple encodings of S into its choice-free fragment, T. Both
encodings C[],D[] : S — T map terms of the source language S inductively into the
target language T. Since both functions coincide on all constructors but choice, we use a
common homomorphic scheme of definition, where [] may denote either C[] or D[]:

[0] % [PIP] € [R]I[R]
[7)] € () [(vz)P] & (vz)[P]

[y@).P] = y(z).[P] ['P] = 1[P]
[if b then Py else P,] % if b then [Pi] else [P]

S

Two slightly different ways of implementing choices will be considered in the following
subsections, differing only with respect to the possibility of undoing activities of branches.

3.1 Divergence-free protocol

In the introduction, we presented the following algorithm:
CLE wi(@)-Bi1 = () (Ut) | T 5()2(6).(i b then C[P;] else B5() |))
jeJ JjeJ

Mutual exclusion is implemented by a boolean message on the fresh local channel [, which
plays the role of a lock. Initially it carries ¢, representing the fact that the choice is not yet
resolved. Bach time the lock is read, it is immediately reinstalled with the value £, Thus, at
most one branch will ever be chosen. Every branch must interrogate the lock after having
received a value on its channel. If it is the first to read the lock, then it proceeds; otherwise
it resends the message that it has consumed and terminates.

In order to conveniently denote intermediate states in the branches of an encoding, we
use the following abbreviations.

Init{y(z).P) € y(z).Lock(y(z).P)
Locki{R) = 1(b).Exit’(R)
Ewit}(R) ¥ if b then Commit;(R) else Abort,(R)
Commity(y(z).P) < I(f | P
Aborti{y(2).P) = U | 7(a)
A choice over input prefixes R; is translated by
C[[ZJR]-]] oot (vl) ((t) | H Initi(C[R;])) where [is fresh
Jj€

into the composition of its branches and the lock in initial state. As the reader may easily
verify, this definition coincides with the former one-line definition. ‘

13

3.2 Protocol with undo-loops

We now define the other choice encoding. The main difference from the encoding C[] is
that a supposedly committed branch may still change its mind and deny the commitment,
releasing the lock and giving back the value it has consumed from the environment.

Let internal choice be encoded by

PoQ ¥ (wis) (¥s) | i(s).P | i(s).Q) with 1, s fresh

The encoding D[| is then defined by modifying the C-encoding as follows:

" Inity(y(z).P) ¥ y(=z).Lock{y(z).P)
Lock,(R) < 1(b).Erit(R)
Ezit!(R) % if b then Commit;(R)® Undo,(R) else Abort;(R)
Commit(y(z).P) < I(f | P
Aborty(y(x).P) < Uf) | H(z)
Undo(y(z).P) = 1) | {a)

Note the difference in the lock’s value which is present in the cases of Commit/Abort and
Undo. It is crucial to reinstall ¢ in the case that a successfully activated branch undoes its
activity. In order to have a fresh copy of the branch in initial state available after having
undone an activity, we use replication:

DI R ¥ () (Ut | [0t It DIR;])) where [is fresh
jed jeJ

In their D-translation, convergent branches of a choice term possibly engage in internal
loops. The intention of the encoding is to use those loops to restart a possibly committing
branch from an initial state. Our encoding also allows loops for non-chosen branches, which
could be avoided if, instead of replication of branches, we used recursive Init-constants that
were only accessible when the choice is not yet resolved. However, we would only gain a bit
of efficiency in this way, and the present encoding is simpler since it involves fewer internal
states. Note that the C-encoding does not add divergence to the behavior of source terms,
as can be observed by inspection of the Lock- and Erit-abbreviations (we prove it formally
in Subsection 6.7). In Section 5, we shall see that the D-encoding is interesting despite its
divergence.

3.3 Primitive booleans?

We have chosen to use a language with primitive booleans and conditional form in order
to formulate the encoding as crisply as possible. Note that it is not essential to use those
primitive forms, as the reformulation of the C-encoding without them, but now in the

14

setting of a polyadic m-calculus, in Appendix A.1 shows. The price that we pay for using
if ... then ... else is that weak bisimulation is not a congruence for the whole language P,
but only for the subset S. We do not care about this restriction since we are only interested
in using conditionals as convenient programming form within the encoding functions; we
are satisfied with results about source terms in which no booleans occur at all. Those
terms, and also their translations, live within the subset S.

4 Correctness of encodings

In this section, we briefly digress to review a few known notions of correctness and dis-
cuss their advantages and disadvantages. Thereby, we aim at characterizing the class of
encodings which is represented by the two choice encodings of the previous section.
Intuitively, we require that every source term S and its translation [.S] should be
semantically equivalent and interchangeable in any term context, i.e. congruent,

S=<[S]

where < denotes some notion of equivalence. The stronger the equivalence, the more we
are tempted to accept [] as being correct.

For process calculi, some prominent candidates among the vast number of equivalences
are (with decreasing ability to distinguish process terms): strong and weak bisimulation,
testing, and trace equivalence. Since most encodings introduce additional computation
steps compared to the behavior of source terms, we may hardly expect correctness up
to strong bisimulation. Weak bisimulation may be applicable whenever the additional
steps are internal. Furthermore, bisimulation comes with coinductive proof techniques.
Testing equivalences that are strictly weaker than bisimulation may often be sufficient as
correctness criteria, but they lack a convenient proof technique. Therefore, bisimulation is
also appealing in those cases where, for example, some testing equivalence would suffice.

In general, however, we cannot assume that we have a formal setting at hand which
allows us to compare terms and their translations directly. The notion of full abstraction
has been developed to get around this problem. Here, correctness is expressed as the preser-
vation and reflection of equivalence of source terms. Let <5 and <, denote equivalences
of the source and the target language, respectively. Then, the full abstraction property is
formulated as:

51 = S if and only if [S1] = [S2].

Often, e.g. for encodings of object-oriented languages, the source language is not a priori
equipped with a notion of equivalence. Thus, we may not be able to check the encoding’s
correctness via a full abstraction result. The notion of operational correspondence was
therefore designed to capture correctness as the preservation and reflection of execution
steps as defined by an operational semantics of the source and the target languages, and

15

expressed in the model of transition systems which specify the execution of terms. Let —
and — denote transition relations on the source and target language, respectively, and let
=, and =>; denote their reflexive transitive closure.! Then, operational correspondence
is characterized by two complementary propositions, which we call completeness (€) and
soundness (©).

Completeness (Preservation of execution steps.) The property
if S =55, then [S]=+[5] (€)

states that all possible executions of S may be simulated by its translation, which is
naturally desirable for most encodings.

Soundness (Reflection of execution steps.) The converse of completeness, i.e. the prop-
erty
if [S]=+[S'] then S —, 5,

is, in general, not strong enough since it deals neither with all possible executions of
translations nor with the behavior of intermediate states between [S] and [S']. For
example, nondeterministic or divergent executions, sometimes regarded as undesirable,
could although starting from a translation [.S] never again reach a state that is a trans-
lation [S’]. A refined property may consider the behavior of intermediate states to some
extent:

it [S] —+T then there is S —¢ S’ such that T < [5'] (9)

says that initial steps of a translation can be simulated by the source term such that the
target-level derivative is equivalent to the translation of the source-level derivative.

Let us call a target-level step committing if it directly corresponds to some source-level
step. It should be clear that only prompt encodings, i.e. those where initial steps of literal
translations are committing, will satisfy J. As a matter of fact, most encodings studied
up to now in the literature are prompt. Promptness also leads to ‘nice’ proof obligations
since it requires case analysis over single computation steps.

However, non-prompt encodings, which allow administrative (or book-keeping) steps
preceding a committing step, unfortunately, do not satisfy J. Sometimes, as in [Ama94,
ALT95], they are well behaved in that pre-administrative steps can be captured by a con-
fluent and strongly normalizing reduction relation. Then, the encoding is optimized to per-
form itself the initial administrative overhead by mapping source terms onto administrative
normal forms, such that J holds. Yet, there is another property taking pre-administrative
steps into account:

if [S] =T then there is .S =S’ such that T = [S'] (6)

1Though we use unlabelled transitions ini this discussion, the correctness properties also apply to labelled
transition semantics, which provide finer notions of observation.

16

here, arbitrary target steps are simulated (up to completion) by the source term. It takes
all derivatives T' — including intermediate states — into account and does not depend
on the encoding being prompt or pre-administratively normalizable. Thus, & is rather
appealing. However, it only states correspondence between sequences of transitions and
is therefore, in general, rather hard to prove, since it involves analyzing arbitrarily long
transition sequences between [S] and T" (see [Wal92] for a successful proof).

Finally, note that a proof that source terms and their translations are the same up to
some operationally defined notion of equivalence gives full abstraction up to that equiva-
lence and operational correspondence for free. Furthermore, proofs of full abstraction are
usually based on some operational correspondence between source terms and translations.
In most cases, formulas resembling J appear as lemmas for full abstraction.

For reasoning about the choice encoding’s behavioral correctness, we shall be able to
compare source terms S and their translations [.S] directly; both encodings are endomor-
phic mappings where the target language T is a fragment of the source language S and
where visible labels of source and target transitions are the same.

With respect to operational correspondence, the choice encodings represent the class of
non-prompt translations where, as in the motivation of the soundness property &, commit-
ting steps of translations are preceded by administrative steps. Those pre-administrative
steps can not be simply defined away (by using administrative normal forms) since, in
general, they are not confluent: imagine a process containing two choices that compete
for a single message; both choices could evolve by consuming the message, but each would
pre-empt the other.

5 A distinguishing example

In this section, we highlight the difference between the two choice encodings by comparing
a particular source term with its both translations. We investigate the source term

S =) | N where N = y(2).P, + ya(z).P

describing a binary choice in the presence of a single message matching the second of the
branches, where P, P, are arbitrary target terms (i.e. not containing choices). Both,

S#C[S] and S=D[S]

hold, which together imply that the C-encoding neither preserves nor reflects weak bisim-
ulation (Lemmas 5.3.1 and 5.3.2).

5.1 Divergence-free encoding

The transition systems of S and C[S] can be depicted as follows. Remember that input
transitions are only considered in the context of arbitrary messages. Therefore, we only

17

mention internal and output transitions since those are to be simulated literally. The
dotted lines representing simulation relations are to be read from left to right; when the
lines are vertical, simulation holds in both directions.

7ls)
S: N¢ S T Py {*%}
<r <% = ¥ s

T: C[[N]](mz) c[S]= O —T O,

where: C[S] = w(2) | C[N]
CINT = (i) (ko) | Iiti(Clwn()Pi1) | it Clwa(w)-Pa]))
¢ = @) (1o | mitd Clu(s)A]) | Lock(Clys(@)-P]) {3})
G = (i) (Up | Imiti(Clwn(e)-Ri]) | Boitd Clun(2)-Pi1) {41})
= () (1A | min(Clwne)Pi1)) | CLR I

“~
~0 (consequence of Lemma 6.2.2)

We may phrase the intermediate state C' as having only partially committed: one of the
branches will eventually be chosen, but, at that stage of commitment, it is not yet clear
if it will be the activated branch or if it will be the competing branch waiting at y;, since
there might still be a suitable message provided by the context which could activate the
latter and afterwards pre-empt the former. As a consequence, the state C' does not directly
correspond to any of the source terms with respect to weak bisimulation which implies:

Fact 5.1.1 S#C[S9].

Nevertheless, the observation that S = C = Py{*,} with S = P2{?,} in the above exam-
ple suggests coupled simulation as an appropriate notion of correctness for the C-encoding.

5.2 Divergent encoding

The corresponding transition systems of S and D[S], again omitting input transitions,
are :

S N < ¥2(z) S, T >P2{z/m}

.......22.....".,“...
2
z
2

T: :D[[N]]” D[[S]] DD —T 5Dy

18

where (letting INIT; = ! Init,(D[y:(z).P;])):

D[S) =m
DINT = (i) (It | INIT; | INIT,)
l

il
Ny
¥
S|
=

D= () Kt) | INITy | INIT, | Locki(Dlws(2)-Ps1) {%})
D = () | INITy | INIT, | Bait{ Dlya(2).Pa]) {7})

= @) (|| T | (PIRIRHIN) © @ Ke))
D, = (i) (I | INIT, | INIT,) | D[R 1{%}

o
~0 (consequence of Lemma 6.6.1)

The undo-arrow from D’ back to D[S] is essential to prove that the intermediate states
D and D' are actually weakly bisimilar to S, since only by internally looping back to the
initial state can they simulate all of S’s behavior. Consequently:

Proposition 5.2.1 S~ D[S].

5.3 Full abstraction?

We can now use S to prove that the C-encoding is not fully abstract with respect to weak
bisimulation. Note that both C[] and D[] act as an identity on target terms, which
implies that C[C[S]] =C[S] and C[D][S]] = D[S].

Weak bisimulation is not reflected by the C-encoding.

Lemma 5.3.1 C[S;] = C[S;] does not imply S, =~ S,.

Proof: Let S; = S be the example above and S, = C[S] its translation. By definition,
we have C[S; | =C[C[S]] =C[S]=C[S1], but S5 % S. O

Weak bisimulation is also not preserved by the C-encoding.
Lemma 5.3.2 S; = S, does not imply C[S1] ~ C[S,].
Proof: Let S; = S and S = D[5], so that S; ~ 5,. Assume, for a contradiction, that C[]

preserved =; then, by definition, we would have C[S] = C[S:] =~ C[S:] = C[D[S]] =
D[S] ~ S, which contradicts Fact 5.1.1. a

19

6 Correctness by Vdecoding

In the remainder of the paper, we prove the correctness of the C-encoding up to coupled
simulation (Subsections 6.2-6.5) and sketch the corresponding proof for the D-encoding
up to weak bisimulation (Subsection 6.6). We also include a proof that the C-encoding
is divergence-free, which one might consider as part of its correctness property (Subsec-
tion 6.7).

6.1 Proof outline

Since the choice encodings are not prompt, we have to explicitly deal with the behavior of
intermediate states and relate them to source terms with equivalent behavior. Moreover,
in the case of the C-encoding, an intermediate state may be partially committed, so we
may have to relate it to two different source terms. By definition, partial commitments are
absent in source terms; thus, a partially committed derivative of a translation can only be
related to source terms which represent either its reset or its completion.

Technically, we are going to build the coupled simulation constructively as a pair of
decoding functions from target terms to source terms. Intermediate states are precisely
target terms that have lost the structure of being literal translations of source terms; thus,
it is impossible to denote the source term from which an intermediate target term derives
without some knowledge of its derivation history. Therefore, we introduce annotated source
terms (Subsection 6.2) as abbreviations for derivatives of their translations. An annotated
term shows its source-level choice structure while providing information about which target
state its choices inhabit, using a representation of its derivation history that is constructed
from an operational semantics of annotated choice. We formally introduce the language A
of annotated source terms and use it as follows for the investigation of the correctness of
the C-encoding:

Factorization (Subsection 6.3) Annotated source terms represent abbreviations of target
terms. We define an annotation encoding A mapping source terms to abbreviations
and a flattening encoding F expanding abbreviations to target terms.

A
S [l > A
- < Ul
ctl ' 53 Ul
T

.

Decoding (Subsection 6.4) Annotated source terms deal with partial commitments ex-
plicitly. We define two decoding functions U/ of annotated terms back into source
terms, where U, resets and Uy completes partial commitments.

The factorization and the decodings enjoy several nice properties:

20

1. F is a strong bisimulation between abbreviations and target terms (A x T).
2. (Uy,Uy) is a coupled simulation between abbreviations and source terms (A x §).

Those can be combined to provide a coupled simulation (7 1F, Ur 1 F) on source and target
terms (S x T). The observation that every source term S and its translation C[S] are
related by this coupled simulation concludes the proof of coupled-simulation-correctness of
the C-encoding (Subsection 6.5).

6.2 Annotated choice

This subsection introduces an annotated variant of choice, which provides abbreviations
for all derivatives of translations. Its shape reveals the high-level structure, but it exhibits
low-level operational behavior that is defined by an operational semantics. The attached
annotations record essential information about the low-level derivation history.

Auxiliary notation. We use A — a to denote the removal A\ {a} of an element a from
a set A. A+ a denotes the union AU {a} where a € A. A partial function p: C — D is
defined on dom(p) € C. For ¢ € C — dom(p) and d € D, the partial function p + (c — d)
denotes an extension of p with value d for input c. By p—c¢, we mean p [gom(s)—c for c € C.
The empty set () also denotes the everywhere-undefined function.

According to the definition in Section 3, the individual branches of a choice may inhabit
one of basically three different states: Init, Lock, or Ezit. In fact, the state of a branch is
completely determined (e.g. Ezit will develop to either Commit or Abort) by the result of
two inputs:

e the value (if any) which is currently carried by the channel, and
e the boolean (if any) which has been assigned by acquiring the lock.

For the abstract representation of that information for a J-indexed choice, we use

e a partial function V : J — V, mapping choice indices to values, and
e a possibly empty set B C J of choice indices such that B N dom(V) = 0.

In the context of a particular J-indexed choice with branches R; = y;(z).P; for each j € J,
the definedness of V(j) means that a value has been read from the environment, but has
not yet either led to a commitment of branch j or been reinjected into the environment.
The set B records those branches which have already accessed the boolean lock. An empty
set B means that none of the branches has yet been chosen, i.e. that the choice has not
(vet) committed. Then, the state of each individual branch can be retrieved from the
annotations V' and B. Branch k € J is in

e init-state if k € J\ (VUB)
e lock-state if k € V
e exit-state if kK € B,

21

rEAD: (X R)Y 28, (¥ R,V ifkeJ\ (VUB)

jeJ jeJ

COMMIT: (ZRJ«);/ S (ERJ-)Z“’“ | B{V®)LY ifkeV

jeJ jedJ
ABORT: (ZJRJ-);- = (zJRj)g;,’j | e(V(k)) ifkeV and B+
j€ Jj€

Table 3: Early transition semantics for annotated choice

where, by abuse of notation, we write k¥ € V' to mean k € dom(V).
The state of the whole choice is precisely determined by the states of its branches.

Definition 6.2.1 (Annotated choice) Let J be a set of indices. Let R; = y;(z).P; be
input prefizes forj € J. Let V : J =V and B C J with BN dom(V) = (). The notations

S R; and (ZR));

jeJ jeJ
are referred to as bare and annotated choice, respectively.

Annotated choice is given the operational semantics in Table 3. The dynamics of annotated
choice mimic precisely the behavior of the intended low-level process. READ allows a
branch £ in init-state (k € J\ (VUB)) to optimistically consume a message.? If the choice
is not yet resolved (B = (), COMMIT specifies that an arbitrary branch & in lock-state
(k € V) can immediately commit and trigger its continuation process Py. After the choice
is resolved (B # (), ABORT allows branches % in lock-state (k € V) to release their
consumed messages. Intuitively, by reading the lock, a branch immediately leaves the
choice system and exits. Therefore, annotated choice only contains branches in either init-
or lock-state.

We distinguish three cases for choice constructors that are important enough to give
them names: initial for V = 0 = B, partial for V # {0 and B = (), and committed for
B #). Note that both initial and partial choice contain all branches, whereas committed
choice never does; it will even become empty, once all branches have reached their exit-state
(B=J).

Committed choice exhibits a particularly interesting property: its branches in lock-state
already have consumed a message which they will return after recognizing, by internally
reading the lock, that the choice is already committed; its branches in init-state are still

2Compared to its late counterpart, the early instantiation scheme may be more intuitive for showing
that a particular value has entered the choice system. Nevertheless, the further development in this paper
does not depend on this decision. Note also that early and late bisimulation coincide in our setting [ACS96].

22

waiting for values to be consumed and resent. Processes with such receive-and-resend
behavior are (weak asynchronous) bisimilar to 0 and are also called identity receptors
[HT92]. In fact, a stronger property holds:
Lemma 6.2.2 Let B # 0. Then (Y R]’); > T (V).

jeJ jev

Proof: We define a relation by composing both the annotated choice and the messages
with arbitrary other messages and prove that it is an expansion (see Appendix A.3.1). O

Corollary 6.2.3 (Inertness) Let B # 0. Then (. Rj)mB 2 0.

j€J
From an asynchronous observer’s point of view, committed choice behaves exactly like the
composition of the messages that are held by branches in lock-state, except that it involves

additional internal computation. Note that a standard (synchronous) observer, which may
detect inputs, would be able to tell the difference.

6.3 Factorization

Since the purpose of annotated choice is keeping track of which low-level actions belong
to the same high-level choice, we introduce a language Pt of possibly annotated processes,
which contains the source S as a sublanguage. It is generated by the following grammar:

R == y(z).P
P u= 0 | (vz)P | PP | ifbthenPelse P |
5z) | R | 'R | TR | (TR,
jeJ jeJ

As for the language P, names z range over N, and ¥, z over V which includes the special
names ¢ and f. The operational semantics of P* is provided by the rules in Table 1 and
Table 3.

We now introduce the remaining components for the factorization diagram: an annota-
tion encoding A[|, a flattening encoding F[|, and the intermediate sublanguage A. We
write C, A, and F for the encoding functions considered as relations.

S Al > A
. TcScPt SZA
el] F11 with TcCACP* and AZS

T

23

Annotation. The encoding A[] : S — Pt acts homomorphically on every constructor
except for choice according to the scheme in Section 3. The latter case is given by

def
ALY B] = (2 AR
GET jeJ
which translates choices into their annotated counterparts with all branches in initial state.
The following lemma represents a first simple operational completeness statement for AJ .

Lemma 6.3.1 (Completeness) A is a weak simulation up to ezpansion.

Proof: See Appendix A.3.4. O

Intermediate language. Terms in the target of A and also their derivatives are of a
particular restricted form, which can be made precise by characterizing the possible shape
of occurrences of choice terms. The basic syntactic properties are:

e All occurrences of choice are annotated.
e All guarded occurrences of choice are initial.
e Unguarded occurrences of choice may be initial, partial, or committed.

Later on in this paper (for the proofs of the Lemmas 6.4.6 and 6.4.8), we need these
properties in order to conclude that no guarded annotated choice is in an intermediate
state.
Therefore, let A denote the sublanguage of terms in Pt that satisfy the above syntactic
requirements; Appendix A.2 contains an inductive grammar that generates A. A term
A € A is called partially committed (or partial), if it contains at least one occurrence of
partial choice, and fully committed (or full), otherwise.

Lemma 6.3.2 (Transition-closure of A) For all A€ A, if A =+ A', then A’ € A.

Proof: By inspection of the rules in Table 3. O

Flattening. The encoding F[] : A — T acts homomorphically on every constructor but
annotated choice according to the scheme in Section 3. Let b be tif B = () and fotherwise.
For annotated choice, the translation

FUS RN E (Ko | T doin(FIR;1) | T ook FIRDTOLY)

jed jeJ\(VUB)

expands the abbreviations into the intended target term by following the semantic rules
in Table 3. Branches in lock-state are those which carry values (therefore j € V); the
substitution {V()/,} replaces the input variable in the continuation process P; with the
corresponding value. Branches in init-state must neither currently carry values (¢ V) nor
have accessed the lock after reading values (5 ¢ B).

24

Lemma 6.3.3 (Factorization) 1. F[]J-A[]=C[].
2. F[] is surjective.
8. ForallS €S, A[So] = A[S]o, and for all A€ A, F[Ac] = F[A]o.

Proof:
1. Straightforward induction on the structure of source terms.
2. Since F[] is a homomorphic identity on T, and T C A.

3. Straightforward. Neither A[| nor F[] erase names. Free (bound) occurrences of
names of terms correspond to free (bound) occurrences in their translations. O

The most important property of the factorization is that the semantics of annotated
choice (cf Table 3) precisely mirrors the behavior of the original translations and their
derivatives.

Proposition 6.3.4 (Semantic correctness) F is a strong bisimulation.

Proof: See Appendix A.3.3. ' O

Thus, we may prove the correctness of C[| by proving the correctness of A[]. This is
a considerably simpler task, since the A-annotations in the target of A[] provide much
more structure, in particular concerning partially committed derivatives, which is heavily
exploited in Section 6.4.

6.4 Decoding derivatives of translations

We want to construct a coupled simulation between source terms and abbreviated target
terms by mapping the latter back to the former. Since derivatives of target terms may
correspond to source-level choices in a partially committed intermediate state, there are
two natural strategies for decoding. The decoding functions 4]] and 4]]

Ul 1

Uil

map partially committed annotated terms in A back to source terms in S which are either

e the least possible committed (resetting decoding U4,), or
e the most possible committed (committing decoding U).

25

The functions 4]],44[] : A — S act homomorphically on every constructor but annotated
choice according to the scheme in Section 3. For the latter, we distinguish between choices
that are initial, committed, or partial.

For non-partial choices, the two decoding functions have the same definition (read U[
as either 24 [] or Z4[]): initial choice (V = @ = B) is mapped to its bare counterpart,

initial U[(Z R)1 € S UlR]
jer jel

committed : ur(y Rj)gﬂ I 5HVE)) if B#0
jer jev

while committed choice (B # @) is mapped to the parallel composition of those messages
which are currently held by its branches.

For partial choice (B =) and V # 0), the two decoding functions act in a different
way according to the intuition described above.)

Resetting. The aim is to decode an annotated term to its least possible committed source
correspondent. Intuitively, this means that we have to reset all of its partial commitments
by mapping it to the original choice in parallel with the already consumed messages.

portial: UL(SR) TS THVOY| SUIRT VA0

Committing. The aim is to decode an annotated term to a committed source corre-
spondent. Intuitively, this means that we have to complete one of the (possibly several)
activated branches that the annotated choice has engaged in. Let take(V') select an arbi-
trary element of V. Then,

portial: UI(TR)(1E TT HVG) | UIAHOL #V#D,

jEV -k
where k = take(V), maps to the source-level commitment to the selected branch.
Lemma 6.4.1 (Décoding) 1. LetU € {Uy,Uy}. ThenU]]-A[] =id.
2. Both Uy]| and U]] are surjective.
8. For Ae A andU € {Uh, Uy}, U[Ac] =U[A]o.

Proof: Immediate by definition (1,2), and straightforward by induction (3). O

26

We will prove that (I4,U}) is a coupled asynchronous simulation on A x S (Proposi-
tion 6.4.9). This requires, in particular, that 4, and L{ are weak asynchronous simula-
tions. We show first that U4[A] simulates A (i.e. A < L{bl[A]]) for all A € A.

Lemma 6.4.2 U, is a weak simulation.

Proof: See Appendix A.3.5. O

Next, we show that I4[A] is simulated by A (i.e. A= U] A]) for all A € A

Lemma 6.4.3 L{u"l is a weak simulation.

Proof: See Appendix A.3.6. O

In addition, the weak simulations U4, and Ll satisfy further properties that will be useful
for the discussion of divergence in Subsectlon 6.7.

Lemma 6.4.4 1. U, is strict.
2. U7t is faithful.

3. Both U, and Uﬂ'l are progressing.

Proof: Both the strictness of 14, and the faithfulness of Llﬂ"l follow from previous proofs:
For U;, proof A.3.5 shows that some 7-steps of A may be simulated trivially by 24] A]:

Ay A implies U[A] — U[A']
For Uy !, proof A.3.6 shows that no 7-step of 44 A] may be suppressed by A:
UTA] > Uy[A'] implies A =Zs A’

The faithfulness of L{u‘l directly implies that it is progressing.
However, we have not yet proven that I4, is also progressing. We proceed by analyzing
T-sequences starting from an arbitrary A € A.

A'—“-AO -—T—)Al -1—>A2 —

Since we know that 4, is strict, we only have to argue that there is an upper bound k4 for
the number of subsequent cases where the 7-step may be simulated trivially such that for
n>ka:

A=Ay — A S 4 - 5 A, implies U[A] STU[A.]

The details of that argument can be found in Appendix A.3.7. (]

27

Apart from the simulation proofs for the components, a coupled simulation also requires
two coupling properties — the existence of internal transition sequences connecting the
simulation relations on both sides (Definition 2.4.1). For the proofs of these two properties,
which we carry out by induction on the structure of terms, we only exploit the annotations
of choices in A to derive the required internal transitions. We start by stating a useful fact.

Fact 6.4.5 Let A € A be fully committed. Then U[A] =U[A].

Full A-terms trivially satisfy coupling properties, since the two decodings coincide. For
partially committed terms, this does not hold. There, we have to derive nontrivial internal
transitions. Since choice may also occur guarded in a term, we might have to deal with
transitions under prefixes, which are forbidden in the operational semantics. Therefore, we
must restrict guarded occurrences of choice to being non-partial (e.g. initial) — which is
exactly what is guaranteed by the definition of A in Section 6.3 and Appendix A.2.

Since Up[A] = A for all A € A, the first coupling property requires the existence of
internal sequences U4[A] = U] A] (in S, thus called S-coupling).

S: UlA]l——Ul 4]

", ¥

A y
Lemma 6.4.6 (S-coupling) For all Ac A, U[A] = U[A]

Proof: By structural induction and analysis of the annotations on occurrences of choice in
A € A. Transitions at the source-level are derived by committing those source-level choices
that correspond to unguarded occurrences of choice in A: for each of them, according to
the selection of an active branch in the definition of 4] |, we take a branch and derive

one internal transition for I4,[A | using the rule C-INP (more details are given in Appendix
A.3.8). 0

Since A = Uy[A] for all A € A, the second coupling property addresses Uj-related
terms. In this case, it is not as simple as for the S-coupling to denote what coupling
means, so we explain it a bit more carefully: For all A € A, whenever (4,5) € Y, i.e.
S = U] A], there is an internal sequence A = A’ (in A, thus called A-coupling), such
that (4',5) € U, i.e. S =U[A"]. If we link the two equations for S, we get the coupling
requirement U[A] =U[A'] for A = A'. In the diagram

s wlal =ulal= w4l
> .‘ R
A A o

28

we also indicate the way we proceed in order to do the proof. The relation on the left is
the assumption because If;* is a simulation. The two relations on the right hold if A’ is
fully committed. The following lemma states that such an A’ always exists as a derivative
of A and, furthermore, connects the left- and right-hand sides of the diagram.

Lemma 6.4.7 For all A € A, there is a fully committing A = A’ such that U4[A] =
Ul A'].

Proof: By structural induction and analysis of the annotations of occurrences of choice in
A € A The term A’ is constructed by committing every unguarded occurrence of choice:
for each occurrence, according to the selection of an active branch in the definition of
Uyl], we take a branch and derive an internal transition for A using the rule COMMIT.
The details can be found in Appendix A.3.9. O

Lemma 6.4.8 (A-coupling) Forall A € A, there is A = A’ such that Uy A] = U] A'].

Proof: Let A’ be constructed as in the proof of Lemma. 6.4.7. Thus, we know that 4] A] =
U[A'] and, since A’ is fully committed, we also know (Fact 6.4.5) that Z4[A’] = U4[A'].
O

Finally, the main property of the decoding functions ¢4 [] and 4]] is:

Proposition 6.4.9 (U4,,U;) is a coupled simulation.

Proof: By Lemmas 6.4.2 and 6.4.3, we know that ({4,l4) is a mutual simulation. By
Lemmas 6.4.6 and 6.4.8, we have the necessary coupling between 4, and ;. O

Since the definition of coupled simulation is symmetric, we also have:
Corollary 6.4.10 (U, U;™) is a coupled simulation.

Before ending this section, we show how the decoding functions may be used to provide
a notably sharp operational soundness argument for the A-encoding. Let =222 denote

the sequence === - - == where the g; are output-labels. Then, for arbitrary S € S and
A[S] === A, we have the following relations:

S: § = Y[A] ——=U4[A]
A A[[S]] a1 an ,A

29

each derivative A of a translation A[S| represents an intermediate state in some source-le-
vel computation evolving from an S-derivative 24[A] into [A], as proved by Proposi-
tion 6.4.6 (S-coupling). In arbitrary contexts within S, the derivation trace of S corresponds
to the derivation trace of A[.S], since U, is a weak simulation containing (A[S],S). Fi-
nally, U,[A] and [A] coincide in the case that A is not partial.

The results of this subsection provide a very tight correspondence between source
terms S and translations A[S]. It may be written as S & A[S] for every S € §,
since it can be shown every pair (5, A[S]) is contained in both components of the coupled
simulation (24 L U'). However, we are not primarily interested in properties of A], but
in properties of C[]. Those results are assembled in the following subsection.

6.5 Main result

In this subsection, we establish a coupled simulation between source terms and their
C-translations by exploiting the results for the A-encoding in the previous sections. Rea-
soning about the annotated versions of choice allowed us to use their high-level structure
for the decoding functions. We argued that we could concentrate on the annotated lan-
guage A, since its flattening F expanded the abbreviations correctly into target terms. In
order to combine those ideas, let the simulations € (completeness) and G~! (soundness)
be defined by

¢ ¥ Y 'F cSxT and 6 €y lF CSxT.
The results for abbreviated target terms in A now carry over to target terms in T.

Theorem 6.5.1 (€, &) is a coupled simulation.

Proof: By Corollary 6.4.10, Proposition 6.3.4, and Lemma 2.5.3. O

Observe that € is constructed from the committing decoding I4[], so derivatives of target
terms are at most as committed as their €-related source terms. Analogously, & is con-
structed from the resetting decoding U;[], so derivatives of target terms are at least as
committed as their G-related source terms.

By construction, the relations € and & are big enough to contain all source and target
terms and, in particular, to relate all source terms and their C-translations.

Lemma 6.5.2 For all S € S, we have (S,C[S]) € €N 6.

Proof: By the syntactic adequacy lemmas (6.4.1 and 6.3.3), we know that, for all S € §,
the translation A[5] yields a witness for (S,C[.S]) being contained in both € and &. O

Thus, the C-encoding is operationally correct, in the sense that every source term is simu-
lated by its translation (completeness via €) and also itself simulates its translation (sound-
ness via &). Moreover, the result is much stronger since the simulations are coupled.

30

Theorem 6.5.3 (Correctness of C) For all S € S, we have S 2 C[S].

Proof: By Theorem 6.5.1 and Lemma 6.5.2. O

Corollary 6.5.4 (Full abstraction) ForallS;,S; €8, S a9, iff C[S1] 2 C[S:].

Proof: By transitivity. O

Note that the C-encoding is not fully abstract up to weak bisimulation, as proven in
Section 5.

Theorem 6.5.3 is a powerful statement of the correctness of the C-encoding: source terms
and their C-translations are semantically equivalent with respect to asynchronous coupled
simulation, so they have the same externally visible asynchronous branching behavior in
every term context within S.

6.6 Correctness of the divergent protocol

The proof for the divergent choice encoding follows the outline of Sections 6.2 to 6.5. In
contrast to the divergence-free encoding, the D-encoding is correct up to weak bisimulation.
The overall proof is simpler since the proof obligations for weak bisimulation require less
work than those of coupled simulation. We sketch the full proof here by carefully defining
just the main ingredient of the factorization and decoding diagram:

url
<
S T = A

F
el []

T

The annotated intermediate language A that we use here is similar to the one for the
C-encoding. Of course, the annotations and the operational semantics have to be different
in the case of the D-encoding, since they are now expected to model different behavior.
Also, since we expect source terms and translations to be bisimilar, we only need a single
decoding function.

Annotated divergent choice. Since many (replicated) copies of the same branch may
be activated at the same time, we enhance the annotation V' to map indices to multisets
of values NV. The information whether a choice is resolved can only be inferred from the
value of the lock. In case it is taken by an activated branch, the choice is not (yet) resolved,
since this branch may decide to undo its activity.

Let J be some indexing set. Let V — NV be a partial function mapping indices to
multisets of values and let V' + (k,2) and V — (k,z) denote appropriate extensions and

31

READ: (Y Rj):: RLGN (¥ Rj)g+(k’z) for some k € J

i€ j€T
TRY: () Rj)f (X Rj)z; 2 for some z € V (k)
jeJ jeJ '
commrr: (% Ry)g,, — (X Ry ~®&A 0 P}
jeJ jedJ
T V~(kz) | —
opo: (X R, — (DR, | T(2)
jeJ jeJ

4BORT: (N R); = (T R); ™ | T(s) for someze V()

jeJ jeJ

Table 4: Transition semantics for annotated divergent choice |

removals of single index-value pairs. Let b € {t,f} U{(k,2) € J x V | z € V(k) } denote
either the state of the lock or a single index-value pair. The annotated divergent choice

(S Ry),

jeJ
is given the operational semantics in Table 4.

Lemma 6.6.1 (Inertness) (Y R;) 1 7V (45))-

jeJ jEV

Factorization. The annotation translation is almost the same as in Section 6.3. Here,
we have to initialize the lock-information with ¢.

Al Ri] & (ZAIIR]J)

jeJ

The flattening of annotated divergent choice into T is

FUS R @ (T Imin(FIRD | I Lock(FIR D})

j€J J€T (5,2)EV—b

where T & def (ommit; Rk)) Undol(Rk >{ /a:}) ifb= (k, Z)
1{b) otherwise

Proposition 6.6.2 F is a strong bisimulation.

32

Decoding. The decoding function must also take care of “hesitating” branches.

U(ZR),1E TTHVE) | S
jeJ jEV
w | D ULR;] Hb=tor b= (k,2)
where S = < jes :
0 ifb=f

Proposition 6.6.3 U is a weak bistmulation.

Theorem 6.6.4 U1 F is a weak bisimulation.

Theorem 6.6.5 (Correctness of D) For all S € S, we have S =~ D[S].

Corollary 6.6.6 (Full abstraction) ForallS;, S €S, S1= S, iff D[S1] = D[S:].

For every annotated choice term with at least one value, divergent computations, i.e.
T-loops, can easily be derived. For example,

(T By), = (Z By — (ZR), I we) = (D R),
jeJ jeJ JjEJ

jeJ

where V' (k) = z, is infinitely often trying, undoing, reading, ...

6.7 Divergence

In section 3, we have claimed that our two choice encodings differ in their divergence-behav-
ior. Our results in the previous subsections do not provide any rigorous justification of this,
since the definition of weak simulation ignores divergence, as we discussed in Section 2.3.

An encoding is divergence-free if it does not add divergence to the behavior of source
terms. More technically, every infinite 7-sequence of a derivative 7" of a translation [.S]
corresponds to some infinite 7-sequence a derivative S’ of S, i.e. T” {} implies S’ ff. Whereas
it is simple to show that the D-encoding is not divergence-free by giving an example of a
7-loop (which is possible in almost every D-translation for terms containing choices), as
we did in the previous section, our claim that the C-encoding is divergence-free requires a
proof (cf Theorem 6.7.4).

As before, we carry out the proof by exploiting the rich structure provided by annotated
terms. The following lemmas draw the connection between the divergence of annotated
terms and their flattenings, which allows us to conclude that it suffices to study the di-
vergence properties of A[]. Since F is a strong bisimulation, an immediate consequence
is:

Fact 6.7.1 For all A € A, we have A {} iff F[A] 1.

Lemma 6.7.2 C[] is divergence-free iff A[] is divergence-free.

33

Proof: Since F is a strong bisimulation, it precisely mirrors all derivations of C-translations
at the A-level. Furthermore, it preserves divergence in both simulation directions. O

Thus, it suffices to prove that .A[] is divergence-free, i.e. that infinite 7-sequences of
derivatives A’ of A[S] are mirrored by infinite T-sequences of derivatives S’ of S at the
source level. We proceed by exhibiting a divergence-preserving simulation containing all
pairs of potentially diverging corresponding derivatives (4’,5").

Again, we exploit our decoding functions. In particular, we have already shown that 4,
is a progressing weak simulation (Lemma 6.4.4) and, furthermore, it contains all required
pairs.

Proposition 6.7.3 A[| is divergence-free.

Proof: For all S € S and A[S] === A/, we have (U A)[S] = S == U,[A'] =
S’ by weak simulation, and A’ {} implies U] A’] 1 since U4, is progressing. O

Theorem 6.7.4 C[] is divergence-free.

Proof: By Proposition 6.7.3 and Lemma, 6.7.2. W]

Another way of formulating the result is by stating that the soundness simulation &1
is progressing. This is in fact true since G~ is defined as F U4, as the composition of two
progressing simulations.

7 Conclusions

We have investigated two different encodings of the asynchronous m-calculus with input-
guarded choice into its choice-free fragment. Several points deserve to be discussed in more
detail.

Correctness: For both choice encodings, we have provided a framework that allowed us
to compare source terms and their translations directly. Thereby, we could use a
correctness notion that is stronger than the usual full abstraction, which here comes
up as a simple corollary. The strength of our correctness result may be compared
with the notion of representability in [HY94a, HY94b]|, where it was left as an open
problem whether some form of summation could be behaviorally represented by con-
current combinators. Our divergent encoding (note that for theoretical questions
like representability, divergence is acceptable) provides a first positive answer for the
representability of input-guarded choice up to weak asynchronous bisimulation.

Asynchrony: For both encodings, their correctness proofs cannot be built upon standard
(i.e. synchronous) notions of simulation. The reason is the inherent asynchrony of
the algorithm, which arises from the resending of messages (which must not be kept
by a branch when the choice has already committed to a competing branch).

34

Non-promptness: Most examples of encodings into process calculi known in the litera-
ture enjoy the simplifying property of being prompt, i.e. initial transitions of transla-
tions already correspond to some particular computation step of their source. Both
of our choice encodings fall in the class of non-prompt encodings that, moreover, can
not be dealt with by optimization with administrative normal forms.

Partial commitments: With respect to the different results for the two choice encodings,
it is crucial to notice that only C[| breaks up the atomicity of committing a choice.
The resulting partially committed states are exactly the reason why correctness up
to weak bisimulation has to fail, whereas coupled simulation applies successfully.

Divergence: We have not been able to formulate a choice encoding which is divergence-free
and correct up to weak bisimulation. We conjecture that it is impossible.

Decodings: Any operational correctness proof which states that an encoding is sound
in the sense that each step of a translation is compatible with some source step
implicitly uses the idea of mapping back the translation to its source term in order
to detect the correspondence. We made this intuition explicit in decoding functions
which provide a notation for the proofs that is both compact and intuitive. With
prompt encodings, the reconstruction of source terms from target terms is rather
simple, since it suffices to deal with literal translations. In contrast, non-prompt
encodings require the decoding of derivatives of translations.

Annotations: The only way to detect the origin of derivatives of translations is to retrace
their derivation histories. As the underlying semantics, one could, for example, use
causality-based techniques, but this would introduce extra technical overhead. In-
stead, we exploit annotated source terms capturing precisely the information that.is
necessary to perform the backtracking. An intermediate language built from anno-
tated source terms provides the basis for a sound factorization and, consequently, a
proper setting for the definition of decodings.

According to the soundness interpretation of the correctness results for the A-encoding
in Subsection 6.4, the operational character of coupled simulation (€, &) also induces a
sharp characterization the operational soundness of the C-encoding: for all source terms

SES,

a1+Gn

S: s > 5! - 5"
A C[S]—=2eT

an arbitrary derivative T of a translation represents an intermediate state in some source-le-
vel computation evolving from S’ into S”. The correspondence between the derivation
traces of target C[.S] and source S is guaranteed by &. The relations S’ 3= T' = S” hold
due to & and €, respectively. If T' is not partial, then S’ and S” coincide.

35

Related work

The C-encoding represents a striking example where weak bisimulation is too strong a
criterion to compare process systems. It is similar to the multiway synchronization example
of [PS92]. The latter led to the definition of coupled simulation in order to deal with gradual
commitments, which do also appear in the C-encoding. Our encodings differ in that they
address the implementation of channel-based choice in the context of an underlying medium
supplying asynchronous message-passing; they are thus more closely related to the work
of Mitchell [Mit86], Knabe [Kna93], and Busi and Gorrieri [BG95].

In [Mit86], a divergent choice encoding in the rather restricted setting of Static CCS was
proved correct with respect to an adapted (‘weak-must’) testing equivalence that accepts
divergent implementations (7*|P) of P as valid, but that lacks a powerful (e.g. coinductive)
proof technique. Here, we have given two asynchronous choice encodings, one of which is
divergence-free, and presented a way to prove them correct using asynchronous simulation
techniques. Since the original definition of stably coupled simulation equivalence has been
shown to imply testing equivalence, we argue that our correctness result for the C-encoding
is powerful, even though it is strictly more permissive than weak bisimulation.

The distributed implementation of mixed guarded channel-based choice of [Kna93| has
not been investigated concerning its functional correctness. The emphasis was more on the
question of deadlock-freedom; a proof was sketched in [Kna93]. However, the semantics
and implementation of this and other choice operators have been studied by using the
chemical abstract machine framework for the semantics of Facile [LT95].

In the CCS-setting of [BG95], choice is replaced by a lower-level notion of conflict that
is based on a set of conflict names (and contrasting conames) together with corresponding
prefix and restriction operators. An operational semantics keeps track of the set of conflicts
that a process must respect as permission for performing actions; an auxiliary kill-operator
deals with the proper handling of permissions. The idea is that in a process P|Q, “if P
performs an action, it propagates its effect to @ by killing its conflicting subagents”. Then,
the hidden activities that go on in a process like P+ @ are modelled explicitly by means of
a fully abstract (w.r.t. strong bisimulation) encoding of choice into this calculus. Instead -
of interpreting P + @ as first resolving the choice, their approach is guided by the idea
of a posteriori choice which means that both P and @ may start their activities, and
the first that manages to complete its action wins, preventing the other from completion.
Some similarities and differences between their approach and ours are clear: whereas we
use the primitives of a fragment of the source language by only exploiting the concept of
asynchronous communication of private names, their approach needs the additional concept
of conflict names. In fact, the choice encodings of the current paper follow the same idea of
a posteriori choice as in [BG95|; yet, we go a step further. In our case, concurrent branches
in a choice may start their activity by consuming matching messages from the environment
that afterwards might have to be given back. Technically, their encoding introduces conflict
names for each occurrence of P+ @ and restricts that name on the parallel composition of
the branches P and @, ours introduce lock-messages that are accessible within restricted
scope and perform the propagation of conflicts via internal communication.

36

The idea of committing steps, i.e. those target steps which directly correspond to a
source-level computation step, is comparable to the notion of principal transition that has
been developed for proving the correctness of a compiler from an Occam-like programming
language into an assembler language [Gam91]. However, in this setting principal steps
could always be chosen as the initial steps. Committing steps have also been recognized by
distinguishing real and administrative steps in the non-prompt encoding of Facile [Ama94]
and the concurrent A-calculus [ALT95] into the mw-calculus. In both settings, however,
pre-administrative steps were normalizable, allowing for an optimized prompt encoding,
which is not the case in the choice encodings.

Encodings of languages into fragments of themselves have been proposed or investi-
gated by several authors, e.g. by the study of encodings of higher-order-communication
into first-order communication within process calculi [San93, Tho93, Ama93], the transla-
tion of polyadic into monadic 7-calculus [Mil91], the implementation of synchronous via
asynchronous message-passing within the choice-free (mini) n-calculus [Bou92), several en-
codings within a hierarchy of 7-calculi with internal mobility [San95c], the encoding of
the choice-free asynchronous 7-calculus into the join-calculus [FG96] (which may be inter-
preted as a fragment of the 7-calculus), and the translation of the choice-free synchronous
w-calculus into trios [Par95].

Much more work has been done on the compilation of whole languages into process
calculi, exploring both semantics and expressivity. Examples include translations be-
tween the process calculi CSP and CCS [Li83, Mil87], between the join-calculus and
the m-calculus [FG96], of A-calculi into process calculi [Mil90, San92, Lav93, San94a,
Tho95, San95a, ALT95, Oded5b, Nie96], data types and other sequential programming
constructs [Mil89, Mil91, Wal91b, Ode95a], from object-oriented languages into process
calculi [Vaa90, Wal9la, Wal92, Wal93, Jon93, Wal94, PT95], from logic programming lan-
guages into the 7-calculus [Ros92, Li%4], and from concurrent constraint languages into
the m-calculus [Smo94, VP96].

The formalization of compilers for concurrent languages has also motivated the study
of encodings, e.g. for Occam [Gam91], Facile [Ama94], Urlang [Gla94], and Pict [PT96].
Further interesting examples report on translations between various notions of rewrite
systems [OR94, But94], addressing both semantics and implementation issues.

Future work

‘The observation that the completeness simulation € and the soundness simulation & are
faithful and strict, respectively, and both progressing, suggests the study of enhancements
of coupled simulation equivalence. The coupled simulation (€, &) does not constitute an
expansion, though, since € and & do not coincide. However, it would be straightforward
to define the notion of coupled ezpansion as a mutual simulation exhibiting the coupling as
required in Definition 2.4.1 and, furthermore, such that one of the component simulations
is faithful while the other is strict. Another idea that arises immediately is to enhance
coupled simulation with the requirement that the two simulations shall be progressing.
In fact, (€, &) is such a progressing coupled simulation as the results in Section 6 show.

37

Putting all observations together, (€, &) would satisfy the requirements of progressing cou-
pled ezpansion being a coupled expansion where the strict component is also progressing.
This preorder would in our case express that (1) source terms and target terms are behav-
jorally the same, (2) source terms are more efficient than target terms since they use fewer
T-steps, and (3) target terms may only diverge if the corresponding source terms do, and
vice versa. We think that equivalence notions along this line deserve further investigation.

Axiomatizations of both weak asynchronous bisimulation and asynchronous coupled
simulation are not yet known. Alternative formulations of the definitions of asynchronous
bisimulation (see [ACS96], also for an axiomatization in the strong case) might prove conve-
nient for finding modal characterizations and also, in general, for establishing bisimulations.

Endomorphic encodings into a language fragment, like the ones which we investigated
in this paper, are easier to deal with than encodings between different languages. This
fact relies on the use of a common (labelled) transition semantics for the source and target
language which allowed us to directly compare terms and translations in a common formal
setting. Furthermore, our choice encodings guaranteed that high-level channels are used
in exactly the same way in translations. This not always the case, as even for the tuple en-
coding into monadic m-calculus channels are used differently in source and target. Barbed
bisimulation, which was invented to provide a uniform definitional scheme of term equiva-
lence based on reduction semantics [MS92, HY93], could be especially useful with respect
to encodings between different calculi, since it rests on more laxer notions of observation.
Also, a barbed definition of coupled simulation, based on reduction semantics, might allow
to prove results for encodings which are not fully abstract up to weak bisimulation. .

Finally, we are interested in more sophisticated divergence-free choice encodings as they
are used in the Pict language, especially with respect to efficiency and garbage collection
issues. Further variants might address events [Rep92] or mixed guarded choice [Kna93]. All
of these encodings have in common that they require channel manager processes in order
to run more complicated protocols. Therefore, we cannot expect to be able to compare
source terms and target terms directly. Furthermore, a correctness result will have to take
into account that translations may only behave well in contexts that respect the protocol
which is expected for the free names of the translation. Techniques like “firewalls” [FG96]
might be necessary to protect translations from hostile contexts.

Acknowledgements

We are indebted to David N. Turner for the original asynchronous choice encodings in Pict,
on which our encoding C[] is based. Ole Jensen helped us with clarifying intuitions on
the nature of coupled simulation. Kohei Honda helped in improving the paper by provid-
ing detailed comments on a draft version. Cédric Fournet suggested the proof technique
for Lemma 5.3.2. Robin Milner, Davide Sangiorgi, Peter Sewell, and the rest of the Edin-
burgh /Cambridge Pi Club and the Dienstagsclub at Erlangen joined us in many productive
discussions.

38

A Appendix

A.1 Choice encoding without primitive booleans

We use polyadic 7-calculus, here, and instead of booleans we use a standard protocol for
encoding their behavior [Mil91, Pie96] adapted to the needs of the example.

BT ui@ B) (169)3)

(M@ en) (160 ’
|40 B[[P 11U H)F0) (shen)
70 (T@1UHFD))) ()

Note that only “local” booleans, i.e. those which reside always inside a restriction on their
access name (cf. the definition of the sublanguage S), are needed for the encoding. Note
also that signals on f are not available unless the choice has been resolved, i.e. unless at
least one branch has succeeded in receiving a message on its local ¢.

In contrast to C[], the B-encoding causes one additional 7-step for each interrogation
of the lock. Furthermore, whereas in the C-encoding branches are syntactically aborted,
here they have to be explicitly dealt with, e.g. by structural laws

garbage collection (vy) (7(2)) = 0
(vy) ((2).P) = 0

which hold in the case of the m-calculus for every interleaving behavioral equivalence. The
rules are applicable in the above example since the names ¢, f that trigger the encoding
of continuation processes are always used at most once. In particular, for each such pair
only one of the components will ever be used. This can be derived from the corresponding
expressions.

i

A.2 Grammar for the intermediate language

We give an inductive grammar for generating appropriate terms by two levels. One level
generates terms I with only initially annotated occurrences of choice terms

G u= y(z)l
I = gz | @ | 1@ | (%G)
J
| 0 | N | (wy)I | III | ifbthenTelsel

39

Another level on top generates terms A which -allow active (top-level) choices to be in
intermediate state, but guarded occurrences of choice only to be initial, as specified by I:

R == y(z).[
A = gl | R | 'R | (]%Rj);

| 0 | N | (wy)A | AlA | ifbthen Aelse 4

where V : J — V and B C J for arbitrary index set J, as usual. The set of processes A, as
generated by the above grammar, and the language A, as introduced in Section 6.3, coincide
since the syntactic requirements are directly expressed within the two-level definition.

A.3 Proofs in more detail

Let o), = {Y®)/,} and M, = 7(V(k)) for £ € V be abbreviations in the context of
annotations. ' :

A.3.1 Proof of Lemma 6.2.2: Committed choice

Let M be an arbitrary m-ary composition of messages. We show that

R &L MI(J;JRJ-); RUARIRY) ' (j%Rj)geA}

N

LHS RHS
is an (asynchronous) expansion.
case iﬁternal steps According to the operational semantics, 7-transitions are only pos-
sible for LHS. Since RHS does not exhibit 7-transitions, we show that for all LHS —

LHS', we have (LHS', RHS) € R. There are two subcases: either (1) via an ABORT-step
of choice, or (2) via choice consuming an M-message due to READ.

case ABORT Since B # (), for k € V, via ABORT, followed by m times PAR;, we
have

LHS =M | (L R;)y —==M | My | (3 R;) =t LHS'
jeJ jedJ

Since k’s values are erased from V, we observe that the R-correspondent of LHS’
— note that it is an admissible left hand side for R — as defined by

M| M| I My=M]|] M;
k#jeV jev

coincides with RHS.

40

case READ For M = N|g(z) and k € J\(VUB) such that y = yi, let V' = V+(k
z). Then, via rule READ for the choice part, OUT for the indicated y-message,
and rule COM to derive the 7-transition from the former visible transitions, we
have
LHS = N | 7(e) | (T RB)y = N | (3 Ry)y = LHS

jeJ JjeJ

By definition, the R-correspondent of LHS', is of the form

N| II Mj=N|M| HM M|]I M;
Jjev! JeEV

which coincides with RHS.

case output steps According to the operational semantics, output-transitions are possi-
ble for each message in M, i.e. for both LHS and RHS. The (strong) bisimulation
behavior for that case is trivial. LHS does not exhibit further immediate outputs. In
contrast, RHS allows outputs for each message in [[M;: for k € V, via OUT and

%
PAR, we have
RHS=M| [M; — M|][M;=:RHS
JEV k#jeV .

Due to ABORT, we derive an internal step and release the message Mj,

LHS=M|(%R]-)B —%Ml(ZR)B+k|Mk ey Ml(%Rj);;:::LHS’
7 J

which weakly simulates the transition of RHS. Finally, observe (LHS',RHS') € R
t

A.3.2 Simplifications due to homomorphic encodings/decodings

The remaining proofs in this section have in common that they exhibit particular transi-
tions of terms by constructing appropriate inference trees from either

e the inductive structure of (annotated) terms, or
e inductive inference trees for transitions of other terms which are related to the term

under investigation by an inductive encoding A, F or decoding U, 4.

Since the A, F, U, Uj-functions are each defined [|-homomorphically on every constructor
but choice according to the scheme in Section 3, there is a strong syntactic correspondence
between terms and their respective translations, and, as a consequence, there is also a
strong correspondence between transition inference trees. More precisely, since in transition
inference trees which involve choice rules

41

e there is at most one application of a choice rule, and
e an application of a choice rule always represents a leaf

it suffices for all proofs to regard choice terms in isolation. When looking for simulations
between terms and their translations (as in the proofs A.3.3, A.3.4, A.3.5 and A.3.6), a
transition which does not involve choice rules is trivially simulated via the identical infer-
ence tree by the translated term. A transition which emanates from a choice term inside
a term context, and which may be simulated by the translated choice term in isolation,
will also be derivable by the same inference tree, except for the leaf being adapted to the
simulating transition. Note that possible side-conditions are not critical, if the simulation
has been successful for the choice term itself. When (as in the proofs A.3.9 and A.3.8)
looking for internal transitions of a particular term, generated by occurrences of choice,
it suffices to use choices in isolation since 7-steps are passed through arbitrary contexts

without condition.

A.3.3 Proof of Proposition 6.3.4: F is strong bisimulation

We show the proof for strong synchronous bisimulation, which implies the asynchronous
case. The proof is by structural induction on A € A and transition induction on A — A’.
By the simplification discussed in Section A.3.2, it suffices to regard the case

A=(T R),

JjeJ

where, according to the rules in Table 3, there are three subcases. The proof in each case
is to be read if-and-only-if since the enabling side-conditions for the respective transitions
of A and its translation F[A] coincide in each case.

case READ In the following J-indexed annotated choice, let k£ € J\ (VUB) and let z be

transmittable on y; and V' =V + (k ~ 2). Let b be defined as tif B =0, and as f
otherwise. Then, we have

(DR). 2 (R R)Y and

42

jeJ
= (U8 | I mitdFIRD) |] Lock{ FIRD))
jeJ\(VuB) JEV
= @)(B | T wsle)Look(FIRT) | T Locki(FLB;1)o;)
j€J\(VUB) jev
2 e (Ko | T min(FIR;D) | TT Lockd FLB; oy
k#jeJ\(VUB) JjEV

| Locki(F[Ri] }{?*/=})
) < Koy | II it FIR;1) | TI Locki F[R;])a})

je\(V'UB) JEV!
VI
= 71 (Z Rj)B]
j€J
where o is extended to o’ according to V7, yields the proof.

case ABORT In every context, for B # () and k € V, via rule ABORT, w e have

(SR); & (SREM
FI(L B);]
=) (WA | TT It FIR;1) | IT Bocki(FIR;])o;)
jeJ\(VUB) jeV
D) (T it FIRD) | T1 ook FLR;])oy | Boitl{ F[Re])or)
JEJ\(VUB) k#jeV
éu&UMIU%MMMH&MUQfMMWHMImmm)

= Fl (J%Rj);: | My |

which holds since J\ (V — k) \ (B+k&) = J\ (VUB) and M = Tp(z)0}.

case COMMIT In every context, for B = 0 and £ € V, via rule COMMIT, we have

(T Ry)y — Pioe| (%Rj);;: and
J

jeJ

43

FI(SR)Y]

jeJ
e (W | T I FIRD) | [T Lockd(FIR; 1oy)
j€I\(VUB) iev

T @ (I Il FIRD) | T1 Dok FIR;1)o; | Bsith{ F{ Bl)ow)
jeJ\(VUB) k£jeV

L @y(inl T Il FIRD) | T] Locki FIR;Do; | FIRelow)
jeJ\(VUB) JjeV—k

jeJ

f

which holds since J \ (V — k) \ (B+k) = J\ (VUB) and F[Rior] = F[Ry Jor. O

A.3.4 Proof of Lemma 6.3.1: A is weak simulation up to expansion

We show the proof for weak synchronous simulation, which implies the asynchronous case.
The proof is by structural induction on S € S and transition induction on S — S’. By
the simplification discussed in Section A.3.2, it suffices to regard the case

S=R;

jeJ

where, according to the rules in Table 1, there is only one subcase.

case C-INP For ke J, we have > 6 R; LN Po{*:}
j€J
and there is always a weakly simulating sequence by READ and COMMIT

AL Bil= (5 ALRs); R (5 AR
L>Awﬂ%ugﬂ&mﬁ
2 Al Pi]o = A[Pu{?:}1]

where the 2 holds due to Lemma 6.2.2. The definition of o} concludes the proof. [

A.3.5 Proof of Lemma 6.4.2: U4, is weak simulation

The proof is by structural induction on A € A and transition induction on (4[A] — S
By the simplification discussed in Section A.3.2, it suffices to regard the case

A= (J%Rj);

where, by the operational rules in Table 3, there are three subcases.

44

case (committed) B # 0 : Then, U[A]= [M; .
jev
Since we know by Lemma 6.2.2 that (5 Rj); z 11 M;,
€7 Jev
we have that, in this case, U4 A] is even bisimilar to A.

case (initial) V =0 = B : Then, U[A]= Y U[R;]
jeJ
and there is only one type of transitions possible. Note that we do not have to
directly simulate input transitions for asynchronous simulation, but we have to care
about the simulation in all contexts, including matching messages. Therefore:

case READ/oUT/coM: For k € J\ (VUB), we have

w2 | (D Ri)y — (DR ¢ and
JjeJ jeJ

wize) | (2 B = m() | SR | M = wi(s R) ;A

jEJ jEV
immediately concludes the proof by an empty weakly simulating sequence.

case (partial) B=0+#V : Let k = take(V). There are two subcases:

case READ/OUT/COM: (completely analogous to previous case).
case COMMIT: For k € V, we have

(X R))y — By | (> R;), "
JjeJ jeJ

and via C-INP/OUT/PAR/COM, there is the simulating step
v T
UWI(XRi)yl = X R | [IM; — R{OLY [M; =
jeJ = jev . k#jev
Ve
UlPoe| (L Ri),]
i€l

which concludes the proof. O

A.3.6 Proof of Lemma 6.4.3: Lln"l is weak simulation

The proof is by structural induction on A € A and transition induction on I4[A] — 5.
By the simplification discussed in Section A.3.2, it suffices to regard the case

A= (J%Rj);

where, by definition of ¢4, there are three subcases.

45

case

case

case

(initial) V =0 = B : Then, with R; = y;(z).P;, UY[A]= }:y](YU P]

where, according to the rules in Table 1, there is only one subcase for generating
transitions: C-INP. For k € J, we have

S yi(@) UL BT S 1y P

jeJ
and there is always a weakly simulating sequence by READ and COMMIT

= (SR)) 2L (2Rr)E? D Rl (DR, =4

jeJ jed jeJ
where Uy[A’] = Uy[P. [{*/=} is satisfied.
(committed) B # 0 : Then, UY[A]=[] M; .

jev

case OUT: For k € V, the transitions 4] A] UL [T M;=:5
jEV—k

can be simulated by A - Z R;)B-Hc | My, RGN (¥ Rj)g;i =: A
jed
such that S, = Ugl[Ak]]

(partial) B=0#V : Let k = take(V). Then U4[A] = H M; | Y[P o =
s . i
By A (X Ry), "|Pow=:4 suchthat S'=U[A]
jeJ
we can always take an internal step in order to fully commit A. Note that A’ is fully
committed since, as a guarded subterm, P is fully committed by definition of A.

The observation that S’ = U4 A'] already concludes the proof since we may reduce
it to the case of full terms. O

A.3.7 Proof of proposition 6.4.4: U4, is progressing.

Proof: We proceed by analyzing 7-sequences starting from an arbitrary A € A.

A=Ay = A — Ay

Since we know that U4, is strict, we have that

A = Ay implies Ul A:] SN U Ait1],

46

so we only have to argue that there is an upper bound k4 for the number of subsequent
cases where the 7-step may be simulated trivially such that for n > ky:

A=Ay A A, 5o 5 A, implies U[A] STU[AL]

For arbitrary steps

A = A
we may distinguish four different cases, according to which combination of rules have been
applied in the inference. We omit merely structural rules and mention only the essential
rules. The following analysis resembles the proof of Lemma, 6.4.2. The difference is that,
here, we are not interested in visible steps; instead, we take a closer look at the simulations
of 7-steps.

case COM/CLOSE/E-INP/R-INP Here, no choice operator is involved. The transition is
caused by a subterm which may be regarded as a target term. The decoding U4[|
reproduces this part homomorphically at the source level, wherefore we have

UlA] — U Aia]

case COM/CLOSE/READ An occurrence of a choice operator is involved in the transi-
tion. By inspection of rule READ and the definition of the decoding, we have

Ub[[AzH = Z,{b[[A,-H]]

case COMMIT The transition is coming from a partially committed occurrence of anno-
tated choice. Here, we have,

UlA] — Ul Ain]

case ABORT Similar to the case before, except that there is no need to perform a 7-step

at the source-level.
UlA]=U] A]

Now, if we look at the above 7-sequence between Ag and A,, we have to argue that the
second and fourth case cannot happen unboundedly often and, by that, prevent the first
and third case. In fact, if A contains no choices, only the first case applies, concluding the
proof.

If A contains choices, we may count the number of all branches in init- or lock-state of
all (unguarded) occurrences of choice, since exactly those may give rise to the sequence of
T-steps. In a partial/initial choice, the number of its branches in init-state, determined by
|7\ (V U B)|, tells how many subsequent applications of READ might be possible, before
a COMMIT-step has to be derived. In a committed choice, the number of its branches
in lock-state (provided by |V|) yields the number of possible subsequent applications of
ABORT; afterwards, no more 7-steps can be generated from this choice occurrence, since
it is strongly bisimilar to O.

Since each term A may only contain a finite number of unguarded occurrences of choice,

k4 is determined by the sum of all of their branches in either init- or lock-state.
O

47

A.3.8 Proof of Lemma 6.4.6: S-coupling

The proof is by structural induction on A € A. By the simplification discussed in Section
A.3.2, it suffices to regard the case

A= (X R;);

i€l
where, by definition of Z4[], there three subcases.
case (initial) V =0 = B or (committed) B # 0 : Immediate by Fact 6.4.5.
case (partial) B=0#V : Let k = take(V). Then,

WlA] = _E/Mjl %%[[Rj]]
7 J
I M;|U[P]or= TI M;|thlP:lox =U[A]
jeV—-k . eV -k .

where U [Py |ox, = Uy[Py Jor since Pyoy is fully committed.

There may be several occurrences of partially committed choices in a term A, but,
by definition, they only occur unguarded. We may simply collect the corresponding
internal steps in either order which leads to A = A'. O

A.3.9 Proof of Lemma 6.4.7: Existence of fully committed derivatives

The proof is by structural induction on A € A. By the simplification discussed in Section
A.3.2, it suffices to regard the case

A= (J%Rj);

where, by definition of Z4[|, there three subcases.

case (initial) V =0 = B or (committed) B #) : Immediate with A’ A
case (partial) B=0#V : Let k = take(V).
Then, with A - (%Rj):"k | Pyoy, def g
i
we have U[A] = 'el\:I ij | Ul Pulox = U A'].
Note that Py is fulljy committed since it was guarded in A and not changed by the

transition; thus, A’ is fully committed, since branch & has been successfully chosen.
O

48

References

[ACS96]

[AH92]

[ALT95)

[Ama93]

[Ama94]

[Bes93]

[BGY5]

[Bou92]

[But94]

[FG96]

[Gam91]

[Gla93)

[Glag4]

Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisimulations for the
Asynchronous 7-Calculus. Technical Report CNRS/INRIA Sophia-Antipolis, submitted
for publication, March 1996.

S. Arun-Kumar and Matthew Hennessy. An Efficiency Preorder for Processes. Acta
Informatica, 29:737-760, 1992. Previously published as Computer Science Report 90:05,
University of Sussex.

Roberto Amadio, Lone Leth, and Bent Thomsen. From a Concurrent A-Calculus to
the m-Calculus. In Horst Reichel, editor, Proceedings of 10th International Conference
on Fundementals of Computation Theory (FCT ’95, Dresden, Germany), volume 965
of Lecture Notes in Computer Science, pages 106-115. Springer, 1995. Full version as
Technical Report ECRC-95-18.

Roberto Amadio. On the Reduction of CHOCS Bisimulation to w-Calculus Bisimula-
tion. In Best [Bes93], pages 112-126. Extended version as Rapport de Recherche 1786,
INRIA-Lorraine, 1993.

Roberto Amadio. Translating Core Facile. Technical Report ECRC-94-3, European
Computer-Industry Research Centre, Miinchen, February 1994. .

Eike Best, editor. Fourth International Conference on Concurrency Theory (CONCUR
’98), volume 715 of Lecture Notes in Computer Science. Springer, 1993.

Nadia Busi and Roberto Gorrieri. Distributed Conflicts in Communicating Systems.
In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object-Based
Models and Languages for Concurrent Systems (Bologna, Italy, July 1994), volume 924
of Lecture Notes in Computer Science, pages 49-65. Springer, 1995. Also as University
of Bologna Technical Report UBLCS-94-8.

Gérard Boudol. Asynchrony and the w-calculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, May 1992.

Karl-Heinz Buth. Simulation of SOS Definitions with Term Rewriting Systems. In
Sannella [San94b], pages 150-164.

Cédric Fournet and Georges Gonthier. The Reflexive Chemical Abstract Machine and
the Join-Calculus. In POPL 96 [POP96], pages 372-385.

Anders Gammelgaard. Constructing simulations chunk by chunk. Internal Report
DAIMI IR-106, Computer Science Department, Aarhus University, December 1991. Part
of the authors’ PhD Thesis Simulation Techniques, available as Report DAIMI PB-379.

Rob van Glabbeek. The Linear Time — Branching Time Spectrum II: The semantics of
sequential systems with silent moves (Extended Abstract). In Best [Bes93], pages 66-81.

David Gladstein. Compiler Correctness for Concurrent Languages. PhD thesis, North-
eastern University, December 1994.

49

[Hon92]

[HT91]

[HT92]

[HY93]

[HY94a)]

[HY94b]

[Jon93]

[Kna93]

[Lav93]

[Li83)]

[Li94]

[LT95]

[Mil87]

[Mi189)
[Mi190]

Kohei Honda. Two Bisimilarities in v-Calculus. CS report 92-002, Keio University, 1992.
Revised on March 31, 1993.

Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Communication.
In P. America, editor, ECOOP ’91, volume 512 of Lecture Notes in Computer Science,
pages 133-147. Springer, 1991.

Kohei Honda and Mario Tokoro. On Asynchronous Communication Semantics. In
M. Tokoro, O. Nierstrasz, and P. Wegner, editors, Object-Based Concurrent Computing
1991, volume 612 of Lecture Notes in Computer Science, pages 21-51. Springer, 1992.

Kohei Honda and Nobuko Yoshida. On Reduction-Based Process Semantics. In R. K.
Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer
Science, volume 761 of Lecture Notes in Computer Science, pages 373-387. Springer,
1993. Full version published in Theoretical Computer Science 152(2):437-486, 1995.

Kohei Honda and Nobuko Yoshida. Combinatory Representation of Mobile Processes.
In 21st Annual Symposium on Principles of Programming Languages (POPL), pages
348-360. ACM Press, January 1994. '

Kohei Honda and Nobuko Yoshida. Replication in Concurrent Combinators. In
M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Computer Software, volume
789 of Lecture Notes in Computer Science, pages 786-805. Springer, 1994.

Cliff Jones. A Pi-Calculus Semantics for an Object-Based Design Notation. In Best
[Bes93], pages 158-172. |

Frederick Knabe. A Distributed Protocol for Channel-Based Communication with
Choice. Computers and Artificial Intelligence, 12(5):475-490, 1993.

Carolina Lavatelli. Non-determinisitc lézy M-calculus vs. m-calculus. Technical Report
LIENS-93-15, Ecole Normale Supérieure, Paris, September 1993.

Wei Li. An Operational Approach to Semantics and Translation for Concurrent Pro-
gramming Languages. PhD thesis, Laboratory for Foundations of Computer Science,
University of Edinburgh, January 1983. Report CST-20-83.

B. Li. A m-calculus specification of Prolog. In Sannella [San94b], pages 379-393.

Lone Leth and Bent Thomsen. Some facile chemistry. Formal Aspects of Computing,
7(3):314-328, 1995. A Previous Version appeared as ECRC-Report ECRC-92-14.

Mark Millington. Theories of Translation Correctness for Concurrent Porgramming
Languages. PhD thesis, Laboratory for Foundations of Computer Science, University of
Edinburgh, August 1987. Report CST-46-87.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Robin Milner. Functions as Processes. In M. S. Paterson, editor, Seventeenth Colloguium
on Automata, Languages and Programming (ICALP) (Warwick, England), volume 443

50

[Mil91]

[Mit86]

[MP95]

of Lecture Notes in Computer Science, pages 167-180. Springer, 1990. Previous version
as Rapport de Recherche 1154, INRIA Sophia-Antipolis, 1990. Final version published
in Mathematical Structures in Computer Science 2(2):119-141, 1992,

Robin Milner. The polyadic m-calculus: A tutorial. Technical Report ECS-LFCS-91-180,
University of Edinburgh, October 1991. Published in Logic and Algebra of Specification,
Proceedings of International NATO Summer School 1991, Springer, 1993.

Kevin Mitchell. Implementations of Process Synchronisation and thesir Analysis. PhD
thesis, LFCS, University of Edinburgh, July 1986.

Ugo Montanari and Marco Pistore. Concurrent Semantics for the m-calculus. In Steve
Brookes, Michael Main, Austin Melton, and Michael Mislove, editors, Proceedings of the
Eleventh Annual Conference on Mathematical Foundations of Programming Semantics,
(Tulane University, New Orleans, LA, March 29 — April 1, 1995), volume 1 of Electronic
Notes in Theoretical Computer Science. Elesevier Science Publishers, 1995.

[MPW89] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,

[MS92]

[Nie96]

[Ode95a)

[Ode95b]

[OR94]

[Par95]
[Pie96]

Part I/II. Technical Report ECS-LFCS-89-85/86, Laboratory for Foundations of Com- -
puter Science, University of Edinburgh, June 1989. Published in Information and Com-
putation 100:1-77, 1992.

Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Nine-
teenth Colloguium on Automata, Languages and Programming (ICALP) (Wien, Aus-
tria), volume 623 of Lecture Notes in Computer Science, pages 685-695. Springer, 1992.

Joachim Niehren. Functional Computation as Concurrent Computation. In POPL '96
[POP96].

Martin Odersky. Applying 7: Towards a Basis for Concurrent Imperative Programming.
In Uday S. Reddy, editor, Second ACM SIGPLAN Workshop on State in Programming
Languages, pages 95-108. Department of Computer Science, University of Illinois at
Urbana-Champaign (San Francisco, California), January 22 1995. Available as Techni-
cal Report UIUCDCS-R-95-1900 or via http://vesuvius.cs.uiuc.edu:8080/sipl/-
index.html.

Martin Odersky. Polarized Name Passing. In Proceedings of 15th Conference on Foun-
dations of Software Technology and Theoretical Computer Science (Bangalore, India,
December 18-20, 1995), volume 1026 of Lecture Notes in Computer Science. Springer,
1995.

Vincent van Qostrom and Femke van Raamsdonk. Comparing Combinatory Reduction
Systems and Higher-Order Rewrite Systems. In J. Heering, K. Meinke, B. Mdller, and
T. Nipkow, editors, Higher-Order Algebra, Logic and Term Rewriting 1998, volume 816
of Lecture Notes in Computer Science, pages 276-304. Springer, 1994.

Joachim Parrow. Trios in Concert. (Draft), July 1995.

Benjamin C. Pierce. Programming in the Pi-Calculus: An Experiment in Programming
Language Design. Distributed with the Pict implementation, 1996.

51

[San95a)

[San95Db]

[San95¢]

[San95d]
[Smo94]

[Tho93]

[Tho95]

[Va2a90]

[VP96]

[Wal90]

[Wal9la]

[Wal91b]

[Wal92]

[Wal93]

Davide Sangiorgi. Lazy functions and mobile processes. Rapport de Recherche RR-2515,
INRIA Sophia-Antipolis, 1995.

Davide Sangiorgi. On the Bisimulation Proof Method. In J. Wiedemann and P. Hajek,
editors, Twentienth Mathematical Foundations of Computer Science, volume 969 of Lec-
ture Notes in Computer Science, pages 479-488. Springer, 1995. Available as Edinburgh
Technical Report ECS-LFCS-94-299.

Davide Sangiorgi. m-Calculus, Internal Mobility and Agent-Passing Calculi. Rapport de
Recherche RR-2539, INRIA Sophia-Antipolis, 1995. Extracts of parts of the material
contained in this paper can be found in the Proceedings of TAPSOFT'95 and ICALP’95.

Davide Sangiorgi. Some Thoughts on Asynchrony. Unpublished note, April 1995.

Gert Smolka. A Foundation for Higher-Order Concurrent Constraint Programming. In
J.-P. Jouannaud, editor, Constraints in Computational Logics, volume 845 of Lecture
Notes in Computer Science, pages 50-72. Springer, 1994. Available as Research Report
RR-94-16 from DFKI Kaiserslautern.

Bent Thomsen. Plain CHOCS. A Second Generation Calculus for Higher Order Pro-
cesses. Acta Informatica, 30(1):1-59, 1993.

Bent Thomsen. A Theory of Higher Order Communicating Systems. Information and
Computation, 116(1):38-57, 1995.

Frits Vaandrager. Process algebra semantics of POOL. In Jos Baeten, editor, Application
of Process Algebra, pages 173-236. Cambridge University Press, 1990. Earlier version:
CWI-Report CS-R8629.

Bjérn Victor and Joachim Parrow. Constraints as processes. submitted for publication,
March 1996.

David Walker. Bisimulation and Divergence. Information and Computation,
85(2):202-241, 1990. Extended abstract appeared in LICS’ 88: 186-192.

David Walker. m-calculus Semantics of Object-Oriented Programming Languages. In
Takayasu Ito and Albert Meyer, editors, Theoretical Aspects of Computer Software, vol-
ume 526 of Lecture Notes in Computer Science, pages 532-547. Springer, 1991. Available
as Report ECS-LFCS-90-122, University of Edinburgh.

David Walker. Some Results on the w-Calculus. In A. Yonezawa and T. Ito, editors,
Concurrency: Theory, Languages, and Architecture, volume 491 of Lecture Notes in
Computer Science, pages 21-35. Springer, 1991.

David Walker. Objects in the w-calculus. Research Report CS-RR-217, University
of Warwick, April 1992. Final version published in Information and Computation
116(2):253-271, 1995.

David Walker. Process Calculus and Parallel Object-Oriented Programming Languages.
In International Summer Institute on Parallel Architectures, Languages, and Algorithms,

53

[POPY6]

[Pri78]

[PS92]

[PS94]

[PT95]

[PT6]
[Rep92]

[Ros92]

[San92]

[San93]

[San94a)

[San94b]

23rd Annual Symposium on Principles of Programming Languages (POPL) (St. Peters-
burg Beach, Florida). ACM Press, January 1996.

Lutz Priese. On the Concept of Simulation in Asynchronous, Concurrent Systems. In
Progress in Cybernetics and Systems Research, volume VII, pages 85-92. Hemisphere
Dubl. Corp., 1978. Proceedings of EMCSR, (1978, Linz, Austria).

Joachim Parrow and Peter Sjédin. Multiway Synchronization Verified with Coupled Sim-
ulation. In Rance Cleaveland, editor, Third International Conference on Concurrency
Theory (CONCUR 92, Stony Brook, NY), volume 630 of Lecture Notes in Computer
Science, pages 518-533. Springer, 1992.

Joachim Parrow and Peter Sjodin. The Complete Axiomatization of cs-Congruence.
In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors, STACS ’9/4, volume 775 of
Lecture Notes in Computer Science, pages 557-568. Springer, 1994.

Benjamin C. Pierce and David N. Turner. Concurrent Objects in a Process Calculus. In
Takayasu Ito and Akinori Yonezawa, editors, Theory and Practice of Parallel Program-
ming (TPPP, Sendai, Japan, 1994), volume 907 of Lecture Notes in Computer Science,
pages 187-215. Springer, 1995.

Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the
pi-calculus. Technical report in preparation; available electronically, 1996.

John Reppy. Higher-Order Concurrency. PhD thesis, Co.rnell University, June 1992.
Technical Report TR 92-1285. -

Brian Ross. A m-Calculus Semantics of Logical Variables and Unification. In S. Pu-
rushothaman and A. Zwarico, editors, NAPAW ’92, Proceedings of the First North

_ American Process Algebra Workshop (Stony Brook, NY), pages 13.1-13.14. Johns Hop-

kins University, Pennsylvania State University, 1992. Available as PennState Technical
Report 92-17.

Davide Sangiorgi. The Lazy Lambda Calculus in a Concurrency Scenario. In Seventh
Annual Symposium on Logic in Computer Science (LICS) (Santa Cruz, California),
pages 102-109. IEEE, Computer Society Press, June 1992. Earlier version as Report
ECS-LFCS-91-189, Umver31ty of Edinburgh. Final version published in Informatzon and
Computation 111(1) 120-131, 1994.

Davide Sangiorgi. From w-Calculus to Higher-Order n-Calculus — and Back. In M.-C.
Gaudel and J.-P. Jouannaud, editors, TAPSOFT ’98, volume 668 of Lecture Notes in
Computer Science, pages 151-166. Springer, 1993.

Davide Sangiorgi. An Investigation into Functions as Processes. In S. Brookes, M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Program-
ming Semantics 1993, volume 802 of Lecture Notes in Computer Science, pages 143-159.
Springer, 1994.

D. Sannella, editor. Fifth European Symposion on Programming (ESOP ’94), volume
788 of Lecture Notes in Computer Science. Springer, 1994.

52

Prague, 1993. Available as Research Report CS-RR-242, Department of Computer Sci-

ence, University of Warwick.

[Wal94] David Walker. Algebraic Proofs of Properties of Objects. In Sannella [San94b].”

Contents

1

2

Introduction

Technical preliminaries

21 Syntax
2.2 Operational semantics
2.3 Bisimulation
2.4 When weak bisimulation is too strong ...

2.5 Up-to techniques

Encoding choice
3.1 Divergence-free protocol

Correctness of encodings

A distinguishing example

5.1 Divergence-free encoding
5.2 Divergent encoding
5.3 Full abstraction?

.......
..........

Correctness by decoding

6.1 Proofoutline
6.2 Annotated choice
6.3 Factorization
6.4 Decoding derivatives of translations .
6.5 Mainresult
6.6 Correctness of the divergent protocol
6.7 Divergence
Conclusions

Appendix

A.1 Choice encoding without primitive booleans

......................

.....................

.....................

..................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.................

A.2 Grammar for the intermediate language

A.3 Proofs in more detail

54

.....................

15

17
17
18
19

20
20
21
23
25
30
31
33

34

