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1 INTRODUCTION 2

1 Introduction

This article explores a synthesis between two distinct traditions in auto-
mated reasoning: resolution and interaction. In particular it discusses Isa-
belle, an interactive theorem prover based upon a form of resolution. It aims
to demonstrate the value of proof tools that, compared with traditional reso-
lution systems, seem absurdly limited. Isabelle’s classical reasoner searches
for proofs using a tableau approach. The reasoner is generic: it accepts
rules proved in applied theories, involving defined connectives. The rea-
soner works in a variety of domains without reducing them to first-order
logic.

Resolution systems such as Otter [13], setheo [11] and pttp [34] rep-
resent automatic theorem proving at its highest point of refinement. They
achieve extremely high inference rates and can run continuously for days
without running out of storage. They can crack many of the toughest chal-
lenge problems that have been circulated. While they exploit many special-
ized algorithms, data structures and optimizations, they rely crucially on
unification.

Interactive systems let the user direct each step of the proof. They
can implement complicated formalisms, chosen for maximum expressiveness,
and typically based on the typed λ-calculus. hol [7, 8] and pvs [23] are
used for verification of hardware and real-time systems, while Coq [4] is
used for formalizing mathematics. Large numbers of axioms — say, the
description of a cpu design — do not overwhelm them, because finding
the proof is the user’s job. Partial automation is sometimes provided, but
a resolution enthusiast would regret the lack of uniform search procedures
based on unification.

One procedure provided by most interactive provers is rewriting. Rewrite
rules have many advantages. Unlike programmed inference rules, they are
declarative; to replace terms of the form t − t by 0 we supply the rule
x − x = 0. As rewrite rules are not translated into anything like clause
form, we can follow the reasoning. Apart from conditional rewrites such as
x 6= 0 → x/x = 1, rewriting does not involve search. Certain rewrites, like
the distributive law (A∩B)∪C = (A∪C)∩ (B ∪C), can increase the effort
needed to find a proof, but there is no search space to explode.

Isabelle [27] is an interactive prover based on the typed λ-calculus.
But its primary inference rule is a generalization of Horn clause resolu-
tion. Isabelle uses resolution to implement proof checking in a generic
(logic-independent) way. It provides no uniform search strategy, but sev-
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eral tools based on lazy lists. They can express depth-first, best-first and
iterative-deepening strategies, and can be combined to yield automatic proof
procedures. One such procedure is the classical reasoner. It has many of
rewriting’s advantages: it applies a user-supplied set of rules in a declarative
manner, usually with a small search space.

Automatic provers have great power, while interactive systems can sup-
port sophisticated formalisms. pvs and Isabelle illustrate two distinct ways
of adding power to interactive systems. pvs adds decision procedures, while
Isabelle exploits unification and tableaux. Decision procedures are highly
efficient, but specialized; tableau methods provide significant automation
over many domains. The two approaches are complementary and can be
used in a single system. Decision procedures are fairly well described in the
literature [3]; this article attempts to do the same for Isabelle’s approach.

Outline. After this introduction (§1), the article presents Isabelle: theory,
proof checking, and search (§2–5). It then reviews the tableau approach (§6).
It describes Isabelle’s classical reasoner (§7), with simple examples in first-
order logic and set theory. A major example, the Church-Rosser theorem for
combinators, is introduced (§8) and its proof in Isabelle described (§9–11).
The conclusions (§12) include statistics derived from proof scripts, which
indicate that the classical reasoner is used about as heavily as the rewriter.

2 Isabelle

Isabelle’s original design goal was to provide a combination of interaction and
unification. Unification’s benefits are familiar. First, it allows a proof search
to proceed while certain terms remain unspecified. Second, it supports the
extraction of answers from proofs. The second point, initially of interest to
artificial intelligence, is also relevant to the “proofs as programs” school of
program verification.

During implementation, a third advantage became evident. By adopting
Horn clause resolution as a primitive inference, the prover could be made
generic: it could support proof in any logic whose inference rules could be
expressed as Horn clauses. As I was already working with Horn clauses
generalized to a higher-order formalism, the approach could handle all con-
ventional quantifier rules and thus cover a rich variety of logics.

Figure 1 displays some of the logics that have been implemented using
Isabelle. The automatic proof tools described in this article apply only to
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Figure 1: Some Isabelle Logics

the classical natural deduction logics fol and hol (higher-order logic) and
their descendants such as zf set theory. Analogous but less developed tools
exist for the classical sequent calculus lk. Intuitionistic logics such as ifol
and ctt require different techniques, but unification and search remain the
key to automation.

Sometimes the term generic is applied to any prover whose logic is
general-purpose. Specialized formalisms can be embedded by adding suit-
able axioms, as is frequently done in provers for higher-order logic. But
reasoning in the embedded logic is not easy; Pelletier [31, page 209] notes
that such embeddings are a good way of generating challenge problems for
theorem provers.1

Isabelle consists of a meta-logic packaged so as to support reasoning in
embedded logics, which are called object-logics. These include ifol and
hol, as well as logics embedded in them. The underlying typed λ-calculus
provides excellent support for hol. But it is beneficial even in first-order
logics, such as zf: new binding operators, such as

⋃
x∈AB(x), can be defined

easily.
1Pelletier attributes the idea to Charles Morgan.
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3 A Glimpse at the Theory

Let us examine how object-logic rules can be expressed as generalized Horn
clauses. Natural deduction typically defines conjunction by these rules:

φ ψ

φ ∧ ψ
φ ∧ ψ
φ

φ ∧ ψ
ψ

The corresponding Horn clauses are

[[Trφ; Trψ]] =⇒ Tr(Andφψ) (∧I)
Tr(Andφψ) =⇒ Trφ (∧E1)
Tr(Andφψ) =⇒ Trψ (∧E2)

Here Tr is a predicate to identify the true formulæ, while And is a function
representing conjunction. To Isabelle, both symbols are uninterpreted.

In general, the inference rule

φ1 φ2 · · · φn
ψ

is represented by a clause of the form [[φ1;φ2; . . . ;φn]] =⇒ ψ. The brackets
[[ and ]] are optional if n = 1; this syntax merely abbreviates

φ1 =⇒ (φ2 =⇒ · · · (φn =⇒ ψ) · · ·).

The connective =⇒ is meta-level implication.
Now consider the natural deduction rules for implication:

[φ]
ψ

φ→ ψ

φ→ ψ φ

ψ

The first rule discharges the assumption φ; the corresponding Isabelle clause
expresses this by nesting =⇒ to the left. This is no ordinary Horn clause.
The other rule is straightforward, and Imp represents fol’s implication
symbol.

(Trφ =⇒ Trψ) =⇒ Tr(Impφψ) (→I)
[[Tr(Impφψ); Trφ]] =⇒ Trψ (→E)
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Finally, consider the natural deduction rules for universal quantification:

φ

∀xφ ∗
∀xφ
φ[t/x]

Here ∗ stands for the proviso “x not free in assumptions”, while φ[t/x] is
the result of replacing x by t in φ. The proviso ensures that φ is proved
for arbitrary x. The corresponding Isabelle clause expresses this using the
meta-level universal quantifier, !!. Again, this is no ordinary Horn clause.

(!!x.Tr(φx)) =⇒ Tr(Allφ) (∀I)
Tr(Allφ) =⇒ Tr(φt) (∀E)

Now φ has become a function variable. The substitution shown in the orig-
inal rules is handled by function application and β-reduction in Isabelle’s
λ-calculus. Similar techniques handle the existential quantifier and induc-
tion rules [24].

Isabelle’s meta-logic consists of the connectives !! (for all), =⇒ (implies)
and≡ (equals). Miller’s λProlog [15] has a similar logic and clauses, and gen-
eralizes resolution in a similar way. There is one crucial difference. λProlog
is a logic programming language, with a control strategy based upon Pro-
log’s; theorem provers can be coded in it [5]. Isabelle uses resolution to
support proof checking, with no built-in strategy; logic programming effects
can be obtained, but virtually all programming is done using ml [29].

4 Isabelle as a Proof Checker

Some interactive sessions (using Isabelle/hol) will illustrate these concepts.
To begin, let us prove the tautology P → (Q → P ). We direct Isabelle via
the ml top level:

goal HOL.thy "P --> (Q --> P)";

Level 0

P --> Q --> P

1. P --> Q --> P

The output (in typewriter italics) is the initial goal clause. It has the form
G =⇒ G, where G is our tautology.

In general, Isabelle goal clauses have the form [[G1; . . . ;Gn]] =⇒ G, where
G is the ultimate goal to be proved. Proving G1, . . . , Gn therefore proves G
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within the system. Contrast this with classical resolution, which uses false
instead of G and aims to prove a contradiction.

Resolving the (→I) clause with the goal clause yields a new goal clause.
The head is as before; the body is the new subgoal:

by (resolve_tac [impI] 1);

Level 1

P --> Q --> P

1. P ==> Q --> P

The subgoal has the form TrP =⇒ Tr(ImpQP ). where TrP represents the
assumption P . We need to apply (→I) a second time. Isabelle’s generalized
resolution “lifts” the clause over the assumption, copying it to all resulting
subgoals:

by (resolve_tac [impI] 1);

Level 2

P --> Q --> P

1. [| P; Q |] ==> P

The new subgoal asks us to prove P given assumptions P and Q. Isabelle
can recognize this as true by assumption.

by (assume_tac 1);

Level 3

P --> Q --> P

No subgoals!

The resulting goal clause is P → (Q→ P ), which is the theorem we set out
to prove. We could now store it for use in future proofs.

Resolution and proof by assumption are derived inference rules of the
meta-logic and follow by the usual properties of !! and =⇒. From now on,
let us adopt a more readable syntax for clauses, suppressing the symbol Tr
and using conventional logical notation.

This trivial example illustrates how resolution can support proof check-
ing. We refer to object-logic rules such as (→I) by ml identifiers such
as impI. It does not matter whether the rules are taken as primitive or are
derived from other rules. Most proof checkers provide a separate command
for each rule; adding new rules often involves programming.

For a second example, let us prove (∀xPx) → ∀y (Qy → ∀z Pz). Note
that Isabelle’s quantifier notation incorporates a dot, giving quantifications
the largest possible scope:
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goal HOL.thy "(ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))";

Level 0

(ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))

1. (ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))

Proof checking can be tiresome, so let us save steps using repetition. We
arrive at a state where (∀I) and (→I) have been applied as much as possible
to subgoal 1:

by (REPEAT (resolve_tac [allI, impI] 1));

Level 1

(ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))

1. !!y z. [| ALL x. P x; Q y |] ==> P z

Subgoal 1 asks us to prove Pz in a context consisting of arbitrary y and z,
and the assumptions ∀xPx and Qy. The management of such contexts is the
sense in which Horn clause resolution has been generalized. The treatment
of quantifiers is a natural alternative to Skolemization [16].

The operation eresolve tac applies rules to any suitable assumptions.
Its effect here, with (∀E), is to strip the quantifier:

by (eresolve_tac [allE] 1);

Level 2

(ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))

1. !!y z. [| Q y; P (?x4 y z) |] ==> P z

This proof state has a logical variable, ?x4. It is a function variable, but
you may prefer to think of ?x4 y z as a placeholder for any term possibly
involving y and z.

by (assume_tac 1);

Level 3

(ALL x. P x) --> (ALL y. Q y --> (ALL z. P z))

No subgoals!

Proof by assumption instantiates the placeholder to just z, proving the the-
orem. Occurrences of logical variables elsewhere in the goal clause are up-
dated as one would expect: Isabelle can be used for answer extraction. Few
proof checkers allow such placeholders.

5 Beyond Proof Checking

A generic environment for proof checking is all very well, but what about
automation? Functions like resolve tac, which operate on the proof state,
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are called tactics. Functions like REPEAT, which operate on tactics, are called
tacticals. Tactics and tacticals were conceived by Robin Milner and became
popular through the hol system. They constitute a language for express-
ing proofs at a high level. Isabelle supports automation through a novel
treatment of tactics and tacticals, using ideas from logic programming.

Combining the typed λ-calculus with unification requires higher-order
unification [9]. Above we saw the unification of λyz.P (?x4 y z) with λyz.P z,
yielding the unifier ?x4 7→ λyz.z. A pair of terms may have infinitely many
higher-order unifiers. Accordingly, all Isabelle tactics allow an inference
to generate a lazy list of outcomes. Multiple unifiers are seldom useful in
practice; restrictions of higher-order unification, such as pattern unifica-
tion [15, 19], are easier to implement and still provide an adequate basis for
Isabelle’s approach to proof checking.

Multiple unifiers or not, we need lazy lists. They support backtracking,
letting Isabelle supply the basic components of search engines — in the
form of tacticals. In addition to REPEAT for repetition, there are tacticals
DEPTH FIRST, BEST FIRST, ITER DEEPEN, etc., for the usual search strategies.
Other tacticals, like Prolog’s cut, suppress alternatives. Expert users have
fine control over the search space and how it is searched.

As one application I have implemented model elimination, the method
underlying setheo and pttp. But it does not harmonize with the generic
spirit of Isabelle. Working in an applied theory requires unfolding all def-
initions until the problem is reduced to pure logic, or supplying additional
properties as axioms.

More useful in proofs are the simple tools of Isabelle’s classical reasoner.
They are implemented using tacticals. They accept and use inference rules
derived in the user’s domain, just as a rewriter accepts any rewrite rules.
The classical reasoner applies unification in a nonclausal setting: deductive
tableaux.

6 Theorem Proving with Tableaux

The tableau method has much in common with resolution. There are tableau
provers of great sophistication, like harp [22]. But leanTAP works surpris-
ingly well in spite of extreme simplicity [1]. It puts the negated conjecture
into negation normal form; after Skolemization, the only remaining logical
constants are ∧, ∨ and ∀. A branch in the tableau is transformed in the
usual way: φ∧ψ is replaced by the two formulæ φ and ψ, while φ∨ψ splits
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the branch into two branches containing φ and ψ, respectively. The quanti-
fied formula ∀xφ augments the branch with a new instance of φ. A branch
is closed (deemed proven) if it contains a pair of complementary, unifiable
literals; the unifier must be applied to the remaining branches.

At first sight, the tableau method may seem no more generic than resolu-
tion. But the logical constants, and corresponding branch operations, need
not be built into the program. This point becomes clearer if we speak not of
tableaux but in the equivalent language of sequents. The branch operations
mentioned above are familiar rules of the sequent calculus:

φ, ψ,Γ⇒ ∆
φ ∧ ψ,Γ⇒ ∆

φ,Γ⇒ ∆ ψ,Γ⇒ ∆
φ ∨ ψ,Γ⇒ ∆

φ[t/x],∀xφ,Γ⇒ ∆
∀xφ,Γ⇒ ∆

Such rules can be given declaratively; we can add new rules at any time.
Here is a rule for intersections:

x ∈ A, x ∈ B,Γ⇒ ∆
x ∈ A ∩B,Γ⇒ ∆

It describes the branch operation of replacing x ∈ A∩B by the two formulæ
x ∈ A and x ∈ B. This may appear to be of little value: one could just
rewrite by the equivalence

x ∈ A ∩B ⇐⇒ x ∈ A ∧ x ∈ B

to eliminate occurrences of x ∈ A ∩ B. But occurrences of A ∩ B can be
created during the proof, so this rewriting would have to be interleaved with
tableau operations (where it might be called demodulation).

A resolution prover could, of course, take the equivalence above as an
axiom. Three clauses would result:

x ∈ A ∩B ← x ∈ A, x ∈ B
x ∈ A ← x ∈ A ∩B
x ∈ B ← x ∈ A ∩B

Model elimination needs all contrapositives of these, too, making a total of
seven clauses. Adding similar axioms for A ∪ B, A − B, etc., makes the
search space explode. But the sequent/tableau approach handles the set
operations easily.

The sequent rules above all act on the left of the arrow, ⇒. The sequent
calculus also has rules that act on the right. leanTAP does not need them
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because it starts with a sequent of the form φ⇒ false; since φ is in negation
normal form, it contains no connectives that would move a subformula of φ
to the right. But normal forms are unreadable and hard to reconcile with
generic reasoning: the normalizer would have to be extended dynamically
to cope with new operations. So we also need rules that act on the right:

Γ⇒ ∆, φ, ψ
Γ⇒ ∆, φ ∨ ψ

Γ⇒ ∆, x ∈ A Γ⇒ ∆, x ∈ B
Γ⇒ ∆, x ∈ A ∩B

7 Tableau Methods in Isabelle

Sequent calculus rules can be represented easily in Isabelle. One of Isabelle’s
object-logics is Gentzen’s calculus lk. An established technique [10] reduces
associative unification to higher-order unification; Isabelle/lk directly rea-
sons about sequents of the form

φ1, . . . , φm ⇒ ψ1, . . . , ψn

using rules that look almost as they would in standard texts [35].
However, natural deduction seems easier to automate than the sequent

calculus. It works with formulæ instead of sequents. We do not need as-
sociative unification; Isabelle has built-in support for its manipulation of
assumptions. The correspondence between natural deduction and sequent
calculus rules is simple. Instead of rules that act on the right of the ⇒
symbol, we have introduction rules like

x ∈ A x ∈ B
x ∈ A ∩B.

Instead of rules that act on the left, we have elimination rules:

x ∈ A ∩B
[x ∈ A, x ∈ B]

ψ

ψ.

Both rules replace some occurrence of x ∈ A∩B by separate occurrences of
x ∈ A and x ∈ B.

Natural deduction rules do not refer to sets of formulæ, such as Γ and ∆:
they are implicit. One vestige of the sequent style is the formula ψ mentioned
in the ∩-elimination rule above. Isabelle goal clauses contain sequents of
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the form Γ ⇒ φ. Isabelle’s standard treatment of natural deduction rules
handles the usual operations on Γ. It can even delete assumptions (using
eresolve tac), which is seldom seen in natural deduction but is needed for
the sequent calculus. An obvious use of contrapositives yields the effect of
having multiple formulæ to the right of the ⇒ symbol. The documentation
provides further details [27].

For instance, the natural deduction form of the rule

x ∈ A, x ∈ B,Γ⇒ ∆
x ∈ A ∩B,Γ⇒ ∆

is the ∩-elimination rule shown above, whose Isabelle form is the nested
Horn clause

[[x ∈ A ∩B; [[x ∈ A;x ∈ B]]⇒ φ]]⇒ φ.

Isabelle’s classical reasoner supplies several sequent-style tactics. Each
accepts a collection of sequent rules, packaged into a classical set or claset.
Each rule is augmented with hints concerning its use. It is specified as
introduction or elimination and as safe or unsafe. A rule is safe if its premises
are logically equivalent to its conclusion, while each somehow “smaller” (to
ensure termination). Safe rules can be applied at any time; unsafe rules risk
a loss of completeness and are applied only as a last resort. These two rules
are unsafe:

φ,Γ⇒ ∆
∀xφ,Γ⇒ ∆

Γ⇒ ∆, x ∈ A x ∈ B,Γ⇒ ∆
A ⊆ B,Γ⇒ ∆

The quantifier rule, unlike the conventional one given previously, discards
each ∀-formula after a single use. The subset rule similarly discards a for-
mula of the form A ⊆ B. Such rules let us adopt a simple depth-first search
procedure without looping. This treatment of quantifiers is grossly incom-
plete: it cannot even prove ∃x∀y (ψx → ψy). But such formulæ seldom
arise in practice.

The classical reasoning tactic Fast tac performs depth-first search. It
is one of Isabelle’s most commonly used tactics. There is also Best_tac,
which uses the same rules under best-first search.2

For example, consider problem 38 of Pelletier [31]. One of the harder
ones, it poses difficulties for leanTAP [1]. Like many problems that arise in
practice, it is long but logically shallow:

2Users may bind specialized clasets to ml identifiers, but Isabelle now supports a default
claset. Tactics Fast tac, Best tac . . . refer to the default claset, while fast tac, best tac

. . . take a claset as argument. For simplicity I discuss only the capitalized versions here.
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goal FOL.thy

"(ALL x. p(a) & (p(x) --> (EX y. p(y) & r(x,y))) --> \

\ (EX z. EX w. p(z) & r(x,w) & r(w,z))) <-> \

\ (ALL x. (~p(a) | p(x) | (EX z. EX w. p(z) & r(x,w) & r(w,z))) & \

\ (~p(a) | ~(EX y. p(y) & r(x,y)) | \

\ (EX z. EX w. p(z) & r(x,w) & r(w,z))))";

It does not require quantifier duplication, so Fast tac succeeds, yielding a
153-step proof in about four seconds.3 Most of Pelletier’s problems take a
second or less.

What good is a tool that needs seconds, not milliseconds, to solve prob-
lems that by modern standards are trivial? The tactic can also solve prob-
lems that cannot even be expressed easily in other systems. Consider the
following identity of set theory:⋃

i∈I
(Ai ∪Bi) =

( ⋃
i∈I

Ai
)
∪
( ⋃
i∈I

Bi
)

We can supply this literally to Isabelle and prove it using Fast tac:

goal Set.thy "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i)) Un (UN i:I. B(i))";

This takes about 0.3 seconds, yielding a 27-step proof. Thanks to the use
of rules about set theory, the internal proof tree is concise. Reasoning takes
place on the level of unions and intersections, which are not expanded to
their definitions. The result is greater efficiency, vital when the underlying
proof engine can perform only a few hundred inferences per second. More-
over, proofs (and failed proofs) become easier to understand.

We do not have to keep the set of rules small. For this and many other
proofs, the search space is tiny. Backtracking is minimized through the
notion of safe proof step. A typical safe step applies a safe rule without
instantiating logical variables. Let us contrast safe and unsafe uses of the
rule

[[x ∈ A;x ∈ B]] =⇒ x ∈ A ∩B.
Splitting the goal ?w ∈ R ∩ S into the subgoals ?w ∈ R and ?w ∈ S is
safe, since the logical variable ?w stays unchanged. On the other hand,
splitting the goal w ∈ ?R into the subgoals w ∈ ?R1 and w ∈ ?R2 instantiates
?R to ?R1 ∩ ?R2. It is unsafe for two reasons: (1) it might falsify other
subgoals, and (2) such steps can be repeated forever. They amount to
guessing; backtracking can usefully consider other instantiations of ?R.

3Timings were conducted on a Sun SuperSPARC Model 61.
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Occasionally, the search space does explode. Proving Cantor’s theorem
requires guessing a term composed of several set operations. It defeats
Fast tac entirely. It can be solved using Best_tac, but the claset must
kept minimal [25, §8.2]. This famous theorem requires creativity and we
should expect its proof to be difficult.

Rudnicki [33] attributes to Martin Davis a definition of obvious theorems:
those that can be proved using each universal premise at most once. Under
this definition Fast tac can only prove obvious theorems. But this notion is
relative to the set of rules supplied in the claset. The set-theoretic identity
proved above is obvious with respect to high-level rules about sets, but
perhaps not if it is reduced to pure first-order logic. Supplied rules can be
instantiated any number of times.4

These tools are not merely applicable to first-order logic and set theory.
They are indeed generic, with a variety of applications. To illustrate this,
let us consider a substantial proof development.

8 The Church-Rosser Theorem for Combinators

The language of combinators has two constants, S and K, and an apply
operation written by juxtaposition; if x and y are terms then xy is the term
for x applied to y. Application associates to the left: xyz abbreviates (xy)z.
The combinators satisfy the contractions

Kxy
1−→ x

Sxyz 1−→ xz(yz).

We also have x 1−→ y if one of the contractions above can be applied to
a subterm of x. An inductive definition expresses all this formally and
concisely (Figure 2).

The only legal contractions are those shown in the figure. No matter
what z is, K 1−→ z is impossible: none of the rules can yield a conclusion
of that form. Similarly, S 1−→ z is impossible. The only contractions for
Kx have the form Kx

1−→ Kx′ where x 1−→ x′. Analogous results hold for
Sx and Sxy. This sort of case analysis, examining the rules of an inductive
definition to see what is possible, is called rule inversion.

4Rudnicki augments the single-use restriction with conditions to minimize search. By
this stronger criterion, Fast tac can prove non-obvious theorems.
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Kxy
1−→ x Sxyz 1−→ xz(yz)

x
1−→ y

xz
1−→ yz

x
1−→ y

zx
1−→ zy

Figure 2: Inductive Definition of Contraction

The identity combinator I is defined by I ≡ SKK:

SKKx
1−→ Kx(Kx) 1−→ x.

No contraction of the form I 1−→ z is possible. The only contractions for
SKK have the form SKK 1−→ Sxy where K 1−→ x and K 1−→ y, and we
have already seen that K does not contract to anything. This reasoning
involves two levels of rule inversion.

Rule induction [36] is a more powerful inference rule for proving conse-
quences of x 1−→ y. Defining a relation inductively specifies the least set
closed under the given rules. Formally, it is the least fixedpoint of a function
over sets. While rule inversion is sound for any fixedpoint, rule induction is
sound only for the least fixedpoint. To prove that x 1−→ y implies ψ(x, y)
for all x and y, show that each of the rules defining 1−→ preserves ψ:

• ψ(Kxy, x)

• ψ(Sxyz, xz(yz))

• if ψ(x, y) and x
1−→ y then ψ(xz, yz)

• if ψ(x, y) and x
1−→ y then ψ(zx, zy)

The last two cases have ψ(x, y) as an inductive hypothesis. Rule induc-
tion gives the effect of induction on the size of a proof, without tiresome
arithmetic reasoning. Church-Rosser properties provide good examples for
demonstrating it.

Say x reduces to y, written x −→ y, if a series of contractions takes x
to y. Formally, reduction is the reflexive/transitive closure of contraction.
Reduction satisfies the Church-Rosser property, which follows easily from
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the diamond property: if x −→ y and x −→ y′ then there exists z such that
y −→ z and y′ −→ z:

x
↙ ↘
y y′

↘ ↙
z

Camilleri and Melham [2, §4] discuss a proof of the diamond property
to illustrate inductive definitions in hol. They wrote ml code to automate
parts of the proof, but still the proof script contains long chains of low-
level inferences. The Isabelle proof script is simple and short, thanks to
Fast tac.5

9 Reasoning about Contraction in Isabelle

Figure 3 presents the Isabelle/hol definitions of combinators and com-
binator reduction. Isabelle converts the inductive definition into a least
fixedpoint definition from which it derives the specified rules [26]. It also
derives rules for induction and case analysis. It returns an ml function,
contract.mk_cases, for performing one level of rule inversion. To apply it
to the combinator K, we type a val declaration at the ml top level:

val K_contractE = contract.mk_cases comb.simps "K -1-> z";

val K_contractE = "K -1-> ?z ==> ?Q" : thm

The ml identifier K_contractE is now bound to the derived rule
K 1−→ z

Q
.

The rule expresses the impossibility of K 1−→ z by stating that such a con-
traction implies anything. Isabelle (including Fast tac) handles assertions
of this form as elimination rules. Two further val declarations derive similar
rules for the combinator S and for application:

val S_contractE = contract.mk_cases comb.simps "S -1-> z";

val S_contractE = "S -1-> ?z ==> ?Q" : thm

val Ap_contractE = contract.mk_cases comb.simps "x#y -1-> z";

5Comparing the hol and Isabelle developments is instructive. To obtain either sys-
tem, consult the URL http://www.cl.cam.ac.uk/Research/HVG/. The hol version is
distributed in the contrib library in directory rule-induction. The Isabelle/hol version
is the theory HOL/ex/Comb; an earlier version for Isabelle/zf is the theory ZF/ex/Comb.
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datatype comb = K

| S

| "#" comb comb (infixl 90) (*infix application operator*)

(** Inductive definition of contractions, -1->

and (multi-step) reductions, ---> **)

consts

contract :: "(comb*comb) set"

"-1->" :: [comb,comb] => bool (infixl 50)

"--->" :: [comb,comb] => bool (infixl 50)

translations

"x -1-> y" == "(x,y) : contract"

"x ---> y" == "(x,y) : contract^*"

inductive "contract"

intrs

K "K#x#y -1-> x"

S "S#x#y#z -1-> (x#z)#(y#z)"

Ap1 "x-1->y ==> x#z -1-> y#z"

Ap2 "x-1->y ==> z#x -1-> z#y"

Figure 3: Isabelle/hol Definitions of Combinators, Contraction and Reduc-
tion
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val Ap_contractE =

"[| ?x # ?y -1-> ?z;

?x = K # ?z ==> ?Q;

!!x y. [| ?z = x # ?y # (y # ?y); ?x = S # x # y |] ==> ?Q;

!!y. [| ?x -1-> y; ?z = y # ?y |] ==> ?Q;

!!y. [| ?y -1-> y; ?z = ?x # y |] ==> ?Q |] ==> ?Q" : thm

Note that Ap_contractE splits xy 1−→ z into four cases.6 The first case is
x = Kz, where the contraction has the form Kzy

1−→ z. There is a case
for each of the four rules of the inductive definition (Figure 2) because each
conclusion involves an application.

The function contract.mk_cases cannot prove the impossibility of
I 1−→ z because it requires case analysis to two levels:

contract.mk_cases (I_def::comb.simps) "I -1-> z";

"[| S # K # K -1-> ?z;

!!y. [| S # K -1-> y; ?z = y # K |] ==> ?Q;

!!y. [| K -1-> y; ?z = S # K # y |] ==> ?Q |] ==> ?Q" : thm

The result is correct but not in simplest form; it splits its premise into two
cases, both of which contain contradictory assumptions. We can get around
this limitation of mk_cases by using Fast tac to implement an effective
search strategy.

Underlying contract.mk_cases is an elimination rule for contraction.
This rule splits any assumption of the form . . .

1−→ . . . into four cases, one
for each of the contraction rules. Two of these cases have new assumptions
of the form . . .

1−→ . . ., so the rule could be applied forever. In contrast, the
rules K_contractE, S_contractE and Ap_contractE apply to assumptions
of the form K 1−→ z, S 1−→ z and xy 1−→ z, respectively. The first two prove
the goal outright; the third breaks up xy 1−→ z, making smaller contractions
of the form x

1−→ w or y 1−→ w. These rules can be repeated safely in depth-
first search. If initially we have an assumption of the form x

1−→ y, they
break up x to atoms.

Let us add some rules to the default claset:

AddSEs [K_contractE, S_contractE, Ap_contractE];

AddIs contract.intrs;

Addss (!simpset);

6Strictly speaking, this is ?x?y
1−→ ?z; I omit the question marks for clarity. Note that

?x and x are distinct variables.
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The AddSEs command stores the three contract rules as safe elimination
rules. The AddIs command stores the rules of Figure 2 as introduction rules;
they are unsafe because many terms can be contracted in more than one way.
The Addss command asks the classical reasoner to perform demodulation
(rewriting) using the default set of rewrite rules. They include the freeness
properties of the combinators, which can replace K = S by false and Kx =
Ky by x = y.

Now we can prove the impossibility of I 1−→ z. After we state the goal
and replace I by SKK, a call to Fast tac succeeds in a fraction of a second:

goalw Comb.thy [I_def] "!!z. I -1-> z ==> P";

Level 0

!!z. I -1-> z ==> P

1. !!z. S # K # K -1-> z ==> P

by (Fast_tac 1);

No subgoals!

10 Parallel Contraction

The reasoning style shown above handles most of the Church-Rosser devel-
opment. The next stage is to define parallel contraction, x 1=⇒ y inductively:

x
1=⇒ x Kxy

1=⇒ x

Sxyz 1=⇒ xz(yz)

x
1=⇒ y z

1=⇒ w

xz
1=⇒ yw

By rule induction over this set of rules, we can prove that 1=⇒ satisfies the
diamond property. Figure 4 presents the necessary Isabelle definitions.

Proofs about parallel contraction involve more cases than those about
ordinary contraction. For example, K 1=⇒ x is possible; we have K 1=⇒ K.
But the rule inversion techniques outlined above carry us to the proof that

1=⇒ satisfies the diamond property.
The ml function parcontract.mk_cases performs rule inversion with

respect to parallel contraction. Let us apply it to the three forms of combi-
nator terms: K, S and application.

val K_parcontractE = parcontract.mk_cases comb.simps "K =1=> z";

val K_parcontractE = "[| K =1=> ?z; ?z = K ==> ?Q |] ==> ?Q" : thm
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(** Inductive definition of parallel contractions, =1=>

and (multi-step) parallel reductions, ===> **)

consts

parcontract :: "(comb*comb) set"

"=1=>" :: [comb,comb] => bool (infixl 50)

"===>" :: [comb,comb] => bool (infixl 50)

translations

"x =1=> y" == "(x,y) : parcontract"

"x ===> y" == "(x,y) : parcontract^*"

inductive "parcontract"

intrs

refl "x =1=> x"

K "K#x#y =1=> x"

S "S#x#y#z =1=> (x#z)#(y#z)"

Ap "[| x=1=>y; z=1=>w |] ==> x#z =1=> y#w"

constdefs

diamond :: "(’a * ’a)set => bool"

"diamond(r) == ALL x y. (x,y):r -->

(ALL y’. (x,y’):r -->

(EX z. (y,z):r & (y’,z) : r))"

Figure 4: Isabelle/hol Definitions of Parallel Contraction and Reduction
and the Diamond Property
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val S_parcontractE = parcontract.mk_cases comb.simps "S =1=> z";

val S_parcontractE = "[| S =1=> ?z; ?z = S ==> ?Q |] ==> ?Q" : thm

val Ap_parcontractE = parcontract.mk_cases comb.simps "x#y =1=> z";

val Ap_parcontractE = "[| ?x # ?y =1=> ?z; . . . |] ==> ?Q" : thm

We can add these rules to the default claset, as we added the contract rules
above. Case analysis rules for terms of the form Kx, Sx and Sxy can then be
proved trivially, using Fast tac. Here is one of them, which expresses that
all parallel contractions on Kx have the form Kx

1=⇒ Kx′, where x 1=⇒ x′.

goal Comb.thy "!!x z. K#x =1=> z ==> (EX x’. z = K#x’ & x =1=> x’)";

Level 0

!!x z. K # x =1=> z ==> EX x’. z = K # x’ & x =1=> x’

1. !!x z. K # x =1=> z ==> EX x’. z = K # x’ & x =1=> x’

by (Fast_tac 1);

No subgoals!

We name this theorem and add it to the default claset, so that it can speed
future proofs.

val K1_parcontractD = result();

val K1_parcontractD = "K # ?x =1=> ?z ==> EX x’. ?z = K # x’ & . . ." : thm

AddSDs [K1_parcontractD];

The diamond property for 1=⇒ has a three-step proof. A first, trivial
step yields this proof state:

Level 1

diamond parcontract

1. !!y xa. y =1=> xa ==> ALL y’. y =1=> y’ -->

(EX z. xa =1=> z & y’ =1=> z)

We apply rule induction to the assumption, y 1=⇒ xa. Rule induction in-
volves showing that the quantified formula above is preserved over the four
rules that define parallel contraction. Figure 5 presents the four cases to be
proved. The first subgoal is the case xa = y, and is easily proved: if x 1=⇒ y′

then choose z = y′; we get y′ 1=⇒ y′ by reflexivity.
The final step applies Fast tac to all four cases.

by (ALLGOALS Fast_tac);

Level 3

diamond parcontract

No subgoals!
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Level 2

diamond parcontract

1. !!x. ALL y’. x =1=> y’ --> (EX z. x =1=> z & y’ =1=> z)

2. !!x ya. ALL y’. K # x # ya =1=> y’ --> (EX z. x =1=> z & y’ =1=> z)

3. !!x ya z.

ALL y’.

S # x # ya # z =1=> y’ -->

(EX za. x # z # (ya # z) =1=> za & y’ =1=> za)

4. !!w x ya z.

[| x =1=> ya; ALL y’. x =1=> y’ --> (EX z. ya =1=> z & y’ =1=> z);

z =1=> w; ALL y’. z =1=> y’ --> (EX z. w =1=> z & y’ =1=> z) |] ==>

ALL y’. x # z =1=> y’ --> (EX z. ya # w =1=> z & y’ =1=> z)

Figure 5: Four Cases of Induction for Diamond Property

Consider how we might prove these cases interactively. Users typically apply
Fast tac to one goal at a time. The first subgoal is proved in a fraction of
a second; the next one takes about a second; the third takes about three
seconds. But the fourth subgoal, the inductive step, takes over forty seconds;
a user might interrupt the proof attempt.

Fortunately, one can single-step Fast tac’s proof strategy. The tactic
safe_tac uses a given claset to perform only safe inferences on the proof
state. It quickly breaks up complicated subgoals into parts that can be
proved independently. It splits our inductive step into four new subgoals
(Figure 6). They arise because the formula x#z =1=> y’ becomes an as-
sumption, which Ap_parcontractE breaks up.

Continuing the interactive proof, our user would find that Fast tac
solves the first three subgoals in a few seconds each. The fourth subgoal
still takes nearly thirty seconds, but perhaps this is not too much for human
patience.

Applying safe_tac to the original four subgoals of the induction (Fig-
ure 5) produces a total of thirteen subgoals. We see that proving the dia-
mond property requires a substantial case analysis. Such proofs are tiresome
for humans but easy for Fast tac.

So parallel contraction ( 1=⇒) satisfies the diamond property. The dia-
mond property for parallel reduction, =⇒, follows from a general theorem
about the reflexive/transitive closure: diamond(R) implies diamond(R∗).
It is proved by two nested inductions, whose subcases are proved using
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Level 6

diamond parcontract

1. !!w x ya z y’.

[| x =1=> ya;

ALL y’. x =1=> y’ --> (EX z. ya =1=> z & y’ =1=> z); z =1=> w;

ALL y’. z =1=> y’ --> (EX z. w =1=> z & y’ =1=> z) |] ==>

EX za. ya # w =1=> za & x # z =1=> za

2. !!w x ya z y’ x’.

[| ALL y’a.

K # y’ =1=> y’a --> (EX z. K # x’ =1=> z & y’a =1=> z);

z =1=> w; ALL y’. z =1=> y’ --> (EX z. w =1=> z & y’ =1=> z);

y’ =1=> x’ |] ==>

EX z. K # x’ # w =1=> z & y’ =1=> z

3. !!w x ya z y’ xa y x’ y’a.

[| ALL y’.

S # xa # y =1=> y’ -->

(EX z. S # x’ # y’a =1=> z & y’ =1=> z);

z =1=> w; ALL y’. z =1=> y’ --> (EX z. w =1=> z & y’ =1=> z);

xa =1=> x’; y =1=> y’a |] ==>

EX za. S # x’ # y’a # w =1=> za & xa # z # (y # z) =1=> za

4. !!w x ya z y’ wa y.

[| x =1=> ya;

ALL y’. x =1=> y’ --> (EX z. ya =1=> z & y’ =1=> z); z =1=> w;

ALL y’. z =1=> y’ --> (EX z. w =1=> z & y’ =1=> z); x =1=> y;

z =1=> wa |] ==>

EX z. ya # w =1=> z & y # wa =1=> z

Figure 6: Four Subcases of the Inductive Step
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Fast tac and a variant of Best_tac.7

Our objective is to show that reduction (−→) satisfies the diamond prop-
erty. We can do this by showing that =⇒ is equivalent to −→.

11 The Equivalence of =⇒ and −→
Proving the equivalence of x =⇒ y and x −→ y involves several steps.
We can state it as the set equality ( 1=⇒)∗ = ( 1−→)∗ and prove the two
inclusions separately. The proof of ( 1−→) ⊆ ( 1=⇒) is trivial using the methods
already discussed. Then ( 1−→)∗ ⊆ ( 1=⇒)∗ follows by the monotonicity of the
reflexive/transitive closure.

The opposite inclusion is ( 1=⇒)∗ ⊆ ( 1−→)∗. By monotonicity again, this
reduces to ( 1=⇒) ⊆ ( 1−→)∗. Rule induction on =⇒ leaves four subgoals:

by (etac parcontract.induct 1);

Level 3

parcontract <= contract^*

1. !!x. x ---> x

2. !!x ya. K # x # ya ---> x

3. !!x ya z. S # x # ya # z ---> x # z # (ya # z)

4. !!w x ya z.

[| x =1=> ya; x ---> ya; z =1=> w; z ---> w |] ==>

x # z ---> ya # w

Each subgoal involves proving something of the form x −→ y: a series of
contractions. We need rewriting by Kxy

1−→ x and Sxyz 1−→ xz(yz), with
recursive rewriting of subterms. Isabelle’s built-in simplifier allows rewriting
only with respect to equality. Rewriting with respect to other transitive
relations can be implemented by deriving rules that amount to a Prolog
program [18], but that is too complicated for such a simple proof.

Instead we just combine the contractions for K and S with lemmas saying
that x −→ y implies xz −→ yz and zx −→ zy. We add lemmas that R∗

includes R and is transitive.

AddSIs [contract.K, contract.S];

AddIs [Ap_reduce1, Ap_reduce2, r_into_rtrancl, rtrancl_trans];

We can no longer use Fast tac: the transitive law would make the depth-
first strategy loop. The classical reasoner provides a tactic that uses iterative
deepening: Deepen_tac. It proves all four subgoals in one second.

7Camilleri and Melham [2, §4.4.2] explain the ideas behind this proof. Paulson [28,
§2.5] discusses inductive proofs about the transitive closure.
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This tactic takes ideas from Fast tac and leanTAP. It retains the notion
of safe inference and uses the same kinds of clasets. But in every unsafe infer-
ence it duplicates the affected formula. (This includes quantifier duplication
as a special case.) The depth bound limits the number of unsafe inferences
performed. Thus Deepen_tac is probably complete. It can prove several
theorems that Fast tac cannot manage, such as Pelletier’s problems 18,
19, 21, 34 (Andrews’s Challenge), 42, 43, 50 and 59. Outside first-order
logic its performance is disappointing; for problems that Fast tac cannot
handle, Deepen_tac is often too slow. We have the usual trade-off between
completeness and efficiency in proof procedures.

12 Conclusions

Many problems in programming language semantics concern reductions on
complex terms: the evaluation of expressions, the execution of commands.
Such problems can be defined inductively and reasoned about using the
techniques described above. Nipkow [20] and Rasmussen [32] have devel-
oped independent proofs of the Church-Rosser theorem for the λ-calculus.
Lötzbeyer, Sandner and Nipkow [12, 21] have proved several properties re-
lating the operational and denotational semantics of Winskel’s toy program-
ming language imp [36].

A coinductive definition is the dual of an inductive definition: a greatest
fixedpoint instead of a least one. Rule inversion remains sound for coinduc-
tive definitions. Frost [6] has used it in a large development, formalizing
work by Milner and Tofte [17]. The same combination of Fast tac and
mk_cases appears in several proofs.

The classical reasoner finds broader uses. This is not surprising: the
concepts of safe and unsafe inference are intuitive and give control over
backtracking. I have written a crude shell script to count occurrences of
tactics in a set of files.8 Over the whole of the Isabelle/zf distribution there
are 9200 tactic occurrences, of which 1500 refer to Fast tac. This exceeds
the number of calls to the rewriter (1200) but falls well short of the number
of explicit proof checking steps. A total of 2800 theorems are proved; thus,
proving a theorem requires about 3.3 tactic invocations on average.

In Isabelle/hol there are 7300 tactic occurrences, including nearly 1100
Fast tac calls and 1400 rewriter calls. With over 2200 theorems proved,

8The figures have been rounded to two significant digits. The script counts only theo-
rems proved using tactics, omitting K contractE, for instance.
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a proof on average comprises 3.3 tactic calls — a remarkable agreement
with zf. The files examined comprise major developments by a variety of
authors [6, 20, 30, 32]. Isabelle/hol is largely the work of Tobias Nipkow,
while Isabelle/zf is largely my own work. This diversity is further evidence
that the classical reasoner is generic.

In the combinator reduction example, 20 theorems are proved using only
37 tactic calls, of which 18 are to Fast tac or other classical reasoning
tools. In contrast, Camilleri and Melham’s original development invokes
approximately 230 tactics and 30 conversions (rewriting primitives), hand-
coded into specialized proof procedures.

There are two reasons for expecting the classical reasoner to perform
well in other domains. First, consider the great diversity of the examples
reported above, which range from computational examples to deep results
in axiomatic set theory. Second, consider the simplicity of the tool itself,
which is based upon using rules to break up formulæ, with the safe/unsafe
criterion to control the search space.

A major goal in automated reasoning is to make our tools easy to use.
The number of commands per theorem proved is only one measure of this.
User interface improvements, such as automatic classification of rules, are
still needed. Näıve tableau-based methods may be much weaker than clas-
sical resolution when applied to traditional challenge problems. In realistic
proof developments, they are a valuable complement to decision procedures
and rewriting tools.
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A Full Proof Script

(* Title: HOL/ex/comb.ML

ID: $Id: Comb.ML,v 1.8 1996/08/19 09:18:36 paulson Exp $

Author: Lawrence C Paulson

Copyright 1996 University of Cambridge

Combinatory Logic example: the Church-Rosser Theorem

Curiously, combinators do not include free variables.

Example taken from

J. Camilleri and T. F. Melham.

Reasoning with Inductively Defined Relations in the HOL Theorem Prover.

Report 265, University of Cambridge Computer Laboratory, 1992.

HOL system proofs may be found in
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/usr/groups/theory/hvg-aftp/contrib/rule-induction/cl.ml

*)

open Comb;

(*** Reflexive/Transitive closure preserves the Church-Rosser property

So does the Transitive closure; use r_into_trancl instead of rtrancl_refl

***)

val [_, spec_mp] = [spec] RL [mp];

(*Strip lemma. The induction hyp is all but the last diamond of the strip.*)

goalw Comb.thy [diamond_def]

"!!r. [| diamond(r); (x,y):r^* |] ==> \

\ ALL y’. (x,y’):r --> (EX z. (y’,z): r^* & (y,z): r)";

by (etac rtrancl_induct 1);

by (Fast_tac 1);

by (slow_best_tac (!claset addIs [r_into_rtrancl RSN (2, rtrancl_trans)]

addSDs [spec_mp]) 1);

val diamond_strip_lemmaE = result() RS spec RS mp RS exE;

val [major] = goal Comb.thy "diamond(r) ==> diamond(r^*)";

by (rewtac diamond_def); (*unfold only in goal, not in premise!*)

by (rtac (impI RS allI RS allI) 1);

by (etac rtrancl_induct 1);

by (Fast_tac 1);

by (ALLGOALS (*Seems to be a brittle, undirected search*)

(slow_best_tac ((claset_of "Fun") addIs [r_into_rtrancl, rtrancl_trans]

addEs [major RS diamond_strip_lemmaE])));

qed "diamond_rtrancl";

(*** Results about Contraction ***)

(** Non-contraction results **)

(*Derive a case for each combinator constructor*)

val K_contractE = contract.mk_cases comb.simps "K -1-> z";

val S_contractE = contract.mk_cases comb.simps "S -1-> z";

val Ap_contractE = contract.mk_cases comb.simps "x#y -1-> z";

AddIs contract.intrs;

AddSEs [K_contractE, S_contractE, Ap_contractE];

Addss (!simpset);

goalw Comb.thy [I_def] "!!z. I -1-> z ==> P";

by (Fast_tac 1);
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qed "I_contract_E";

AddSEs [I_contract_E];

goal Comb.thy "!!x z. K#x -1-> z ==> (EX x’. z = K#x’ & x -1-> x’)";

by (Fast_tac 1);

qed "K1_contractD";

AddSEs [K1_contractD];

goal Comb.thy "!!x z. x ---> y ==> x#z ---> y#z";

by (etac rtrancl_induct 1);

by (ALLGOALS (best_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));

qed "Ap_reduce1";

goal Comb.thy "!!x z. x ---> y ==> z#x ---> z#y";

by (etac rtrancl_induct 1);

by (ALLGOALS (best_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));

qed "Ap_reduce2";

(** Counterexample to the diamond property for -1-> **)

goal Comb.thy "K#I#(I#I) -1-> I";

by (rtac contract.K 1);

qed "KIII_contract1";

goalw Comb.thy [I_def] "K#I#(I#I) -1-> K#I#((K#I)#(K#I))";

by (Fast_tac 1);

qed "KIII_contract2";

goal Comb.thy "K#I#((K#I)#(K#I)) -1-> I";

by (Fast_tac 1);

qed "KIII_contract3";

goalw Comb.thy [diamond_def] "~ diamond(contract)";

by (fast_tac (!claset addIs [KIII_contract1,KIII_contract2,KIII_contract3]) 1);

qed "not_diamond_contract";

(*** Results about Parallel Contraction ***)

(*Derive a case for each combinator constructor*)

val K_parcontractE = parcontract.mk_cases comb.simps "K =1=> z";

val S_parcontractE = parcontract.mk_cases comb.simps "S =1=> z";

val Ap_parcontractE = parcontract.mk_cases comb.simps "x#y =1=> z";

AddIs parcontract.intrs;

AddSEs [K_parcontractE, S_parcontractE,Ap_parcontractE];
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Addss (!simpset);

(*** Basic properties of parallel contraction ***)

goal Comb.thy "!!x z. K#x =1=> z ==> (EX x’. z = K#x’ & x =1=> x’)";

by (Fast_tac 1);

qed "K1_parcontractD";

AddSDs [K1_parcontractD];

goal Comb.thy "!!x z. S#x =1=> z ==> (EX x’. z = S#x’ & x =1=> x’)";

by (Fast_tac 1);

qed "S1_parcontractD";

AddSDs [S1_parcontractD];

goal Comb.thy

"!!x y z. S#x#y =1=> z ==> (EX x’ y’. z = S#x’#y’ & x =1=> x’ & y =1=> y’)";

by (Fast_tac 1);

qed "S2_parcontractD";

AddSDs [S2_parcontractD];

(*The rules above are not essential but make proofs much faster*)

(*Church-Rosser property for parallel contraction*)

goalw Comb.thy [diamond_def] "diamond parcontract";

by (rtac (impI RS allI RS allI) 1);

by (etac parcontract.induct 1 THEN prune_params_tac);

by (ALLGOALS Fast_tac);

qed "diamond_parcontract";

(*** Equivalence of x--->y and x===>y ***)

goal Comb.thy "contract <= parcontract";

by (rtac subsetI 1);

by (split_all_tac 1);

by (etac contract.induct 1);

by (ALLGOALS Fast_tac);

qed "contract_subset_parcontract";

(*Reductions: simply throw together reflexivity, transitivity and

the one-step reductions*)

AddSIs [contract.K, contract.S];

AddIs [Ap_reduce1, Ap_reduce2, r_into_rtrancl, rtrancl_trans];

(*Example only: not used*)
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goalw Comb.thy [I_def] "I#x ---> x";

by (Deepen_tac 0 1);

qed "reduce_I";

goal Comb.thy "parcontract <= contract^*";

by (rtac subsetI 1);

by (split_all_tac 1);

by (etac parcontract.induct 1 THEN prune_params_tac);

by (ALLGOALS (Deepen_tac 0));

qed "parcontract_subset_reduce";

goal Comb.thy "contract^* = parcontract^*";

by (REPEAT

(resolve_tac [equalityI,

contract_subset_parcontract RS rtrancl_mono,

parcontract_subset_reduce RS rtrancl_subset_rtrancl] 1));

qed "reduce_eq_parreduce";

goal Comb.thy "diamond(contract^*)";

by (simp_tac (!simpset addsimps [reduce_eq_parreduce, diamond_rtrancl,

diamond_parcontract]) 1);

qed "diamond_reduce";

writeln"Reached end of file.";
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