Technical Report R

Number 4

Computer Laboratory

The dynamic creation of
I/O paths under OS/360-MVT

A.]J.M. Stoneley

April 1975

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1975 A.].M. Stoneley

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

TECHNICAL REPORT No. 4

THE DYNAMIC CREATION OF I1/0 PATHS UNDER 0OS/360-MVT

by

A, J. M. STONELEY

University of Cambridge Computing Service

Series Editor:

M.F.Challis

University of Cambridge

Computer Lakoratory

Corn Exchange Street

Cambridge CB2 3Q0G

England. April 1975

Sulmazry

In a large computer it is often desirable and convenient
for an ordinary program to be able to establish for itself a
logical connection to a peripheral device. This ability is
normally provided through a routine within the operating system,
which may be called by any user program at any time. 0S/360
lacks such a routine. For the batch job, peripheral connections
can only be made through the job control language and this cannot
be done dynamically at run-time. In the restricted context of
TSO (IBM's terminal system) a routine for establishing peripheral
connections does exist, but it is extremely inefficient and
difficult to use.

This paper describes how a suitable routine was written and
grafted into the operating system of the Cambridge 370/165.

A. J. M. Stoneley
May 1975.

Al

Al.l

Al.2

Al.3

Al.4

Contents

Introduction
Some reasons for wanting the facility
Facilities provided
How it works
The good points
The bad points
Specification of the Cambridge Dynamic DD System
Dynamic DD Statements
Disc Datasets
Calls to SVC 245

Erxrors

Page

10

le

1 Introducticn

Under IBM's 0S/360 the logical connection between a program
and an I/O device is the 'data definition’', or DD’ for short. A
program refers to a device indirectly, whether it be a real device,
a pseudo device', a file, or whatever, by referring to the DD,
which is identified by an eight character name, the DDname. The
DD refers to the device or device type required. The commonest
cases are that of the file, when the DD contains a pointer to the
file, which it refers to by 'file name', and that of the ’pseudo
printer’, when the DD refers to a software entity which routes
output to.a printer.

0S was designed when the use of computers was very much
less sophisticated than nowadays, and certainly before the advent
of interactive terminal systems., It was an integral part of the
design that the DDs required by a program should be set up solely
by the use of the job control language, to be compiled in its
entirety before any other part of the job was run. . This compiled
code was then re-interpreted by a part of the supervisor known as
the ‘initiator', For reasons of efficiency, the initiator took
advantage of the fact that all DD creation was done in between
running user programs, and created the DDs required for a program
all together and in parallel, and with sundry interrelations. The
consequence of all this was that it was extremely difficult to
graft on a method whereby a program could decide for itself the
DDs that were required. Not only was there no system routine
called 'create DD', but also there was no possibility of a user
program creating job control language statements for subsequent
execution within the current job. Furthermore it would have been
extremely difficult to graft a new DD into the web of links between
the existing ones.

With the advent of terminal systems, however, such a
mechanism became necessary. IBM produced a mechanism for use by
their terminal system, TSO, whose specification was roughly ‘create
DD'., Unfortunately, this was only available to programs running
- from a texminal, and could not be used by batch jobs.

There are other disadvantages of the TSO mechanism. In the
first place, it is extremely expensive of both CPU and IO resources.,
For example, to create a DD establishing a conlection with a terminal,
a relatively cheap case, some six IO transfers of data blocks are
absolutely inevitable., For a terminal system with over fortv users
this is a serious matter. Secondly, the user interface to this program
is very complicated and difficult to use. ’

Thus for three main reasons did Camkridge embark on

replacement mechanism; for homogeneity between terminal and batch
working, for efficiency, and for comprzhensibility.

A,J.M.,S, May 1975 T,R.4 1

i b RS G S

2 Some reasons for wanting the facility

i. Any form of job control language will need a means of setting
up DDs, for the prime object of a job control program is to
provide the logical links between programs and files.

ii. There are many programs which require particular DDs only
under special circumstances., For example, a program may require
temporary disc space 1f the available core store is inadequate for
the particular task in hand. If the DD is supplied by the job
control program, it must always be provided, even if it may not
be needed.. This represents unnecessary work. It were better were
the called program to create the DD only if it needed it.

iii. It often happens that a program knows better than its user just
what its requirements are. The requirements may be fixed, in
which case fixed instructions could be given to the user, or they
could be variable, in which case the user could be asked to
calculate the requirements. Either alternative is an unnecessary
and unreasonable burden to place on a human when a computer is to
hand to do such chores.

iv, On occasion, one does not know in advance the names of the files
one wishes to read. The classic example is the program which
makes reserve copies of all of a user's files (the 'dumper’).

The program has to read the file directory and only then does it
know what DDs are required.

v. A program often uses its DDs serially. For example, a compiler
may read once through the source file, writing intermediate text
onto a temporary file., Thereafter it has finished with the source
file. At some later stage it will need an output file. It does
not necessarily need all its files at once. Since the existence
of a2 DD is a reservation of resources and consequently a load on
the system, some saving can be made by only having a DD when it is
actually needed.

Summary of objections to the IBM facility (DAIR & SVC 99):

i, The facilities are only available to terminal jobs.
ii, The cost of using the facilities is enormous,

iii, The intexrfaces to the facilities are cumbersome and
tortuous.,

A.J.M.S. May 1975 T.R.4 3

A S R T

[STIPRTTETTI

3 Facilities provided

The new system, SVC 245 provides most of the facilities
needed when managing DDs.

A DD may be created to permanent disc file, temporary disc
space, terminal, printer, punch, 'internal reader', and 'dummy'’.
Disc files, permanent or temporary, may be created and deleted as
necessary. The file characteristics may be specified just as from

job control language. DDs may be deleted, and they may also be
renamed.

One may interrogate the system to find out the current stgte
of the DDs available to the program.

One feature is perhaps not obvious. One may create a DD to
temporary disc space, write to it, and subsequently give this disc
space a permanent file name. If a file of that name already exists,
then the file directory is merely changed to point to the new file,
and the old space is freed. The point of this is that one can, for
example, edit a file to new disc space, refile this result with the
original name, and be relatively safe against system crashes. The
refiling operation merely consists of changing a pointer, and this
can be done in an essentially indivisible fashion, so that there is
no period of limbo when one has neither the o0ld file nor the new
file. This feature was inspired from the Titan operating system.

A.J.M.S. May 1975 T.R.4 5

o - i

4 How it works

In this section a reasocnable familiarity with 0S/360 is assumed.

Most of the work of SVC 245 is done under the control of the
initiator task. When a problem program requests some action, this
request is chained onto the XJCB (extension job control block) and the
initiator is POSTed. The initiator then itself calls SVC 245 to do
the requested work, There are several reasons for this. 1In the first
place, this is a natural way to serialise the operations. Secondly, the
problem program is vulnerable to abends, both through its own asynchronous
activities and through those of other problem tasks within the Jjob step
and also from the initiator, when, for example, CPU time limit expires.
One cannct afford to leave the data structures in an inconsistent state.
Setting SMC=STEP is no solution to this difficulty, since OS routines
which are to be called also use this and end by releasing the hold
prematurely. Thirdly, core must be obtained for control blocks, which
will be freed by other tasks. Subpool 255 could be used for this purpose
and this would sidestep this problem. Finally, the ENQ on the use of a
file must be done by the initiator, since that is the only continuing
task and since it already holds the ENQs for the files that 0S knows about.
The consequence of running as the initiator is that cne absolutely must
not abend. : .

The data structures needed to make OPEN, CLOSE and EOV work
correctly are the TIOT and the JFCB. Entries in the TIOT are of
variable length and will come and go as DD statements are created
and deleted. In view of this, the TIOT is remade in a new segment
of core every time a DD is created or deleted. (SVC 99 shuffles the
TIOT in place). To prevent the TIOT from being thus moved while, for
example, an OPEN is in progress, OPEN, CLOSE, EOV and SVC 245 all ENQ
on SYSTIOT exclusively and over the tasks of the job step. The initiator
dces not do this because of the risk of a deadly embrace:; the ENQ
associated with the SVC 245 activity is done by the requesting task just
before POSTing the initiator. Unfortunately, it is still necessary to
reset DCBTIOT, the TIOT entry offset, in each open DCB every time the
TIOT is remade. SVC 245 does not use SYSJOBQE. TIOT entries referring

" to dynamically created DDs are marked, and for such entries O/C/EOV calls

& routine within SVC 245 instead of reading a JFCB from the Jjobgqueue.
This routine constructs a JFCB in the required place in core from data
structures which are already in core.

The modules of O/C/EQOV which read or write JFCBs have been
modified to call SVC 245 when appropriate. The DD use counts are
updated when the JFCB is written back.

After abend has failed to <lose a DCB by the front door, it

merely deletes the DEB. In order that the use count may be updated
at this point, its address is planted in the DEB at OPEN time.

A.J.M.S. May L975 T.R.4 7

The original TIOT created by OS is not freed by SVC 245. If
a new TIOT is made, the old one is freed only if it was also made by
SVC 245. At end of step any such TIOT is freed and the original is
reinstated. The TIOT is regarded as a redundant dressing, set up for
the benefit of 0S. The sources of the data are the private structures
of SVC 245,

At end of job, all DDs and temporary files are deleted.

4.1 The gooa points

Those who use the system have no difficulty understanding the
interfaces. Indeed the interface is entirely described in an eight page
document (see appendix). This is a substantial improvement over DAIR,

. which is described in about thirty pages. V '

The system is an order less.costly. to use than DAIR/SVC.99. . .
The most significant saving is in disc transfers. For example, to get
into and out of EDIT, the Cambridge text editor, would involve
about sixty more data block transfers between core and disc (SYSJOBQE)
when using DAIR than when using SVC 245. There is also a saving in the
volume of code which in practice must be resident. The code of SVC 245
occupies about 7k bytes, as against some 26k for DAIR and the commonly
used parts of SVC 99, '

SVC 245 works equally well for a terminal job and a batch Jjob,

except that printer and punch are currently unavailable to the terminal
job, and the terminal is, of course, unavailable to the batch job.

4.2 . The bad points

The major drawback is the incompatibility. The system is
available only at Cambridge, and programs written for export must make
alternative arrangements. The prime users of the system are, however,
the system programs, such as the local job control program, for which
exportability is of less concern. On the other hand, standard facilities
such as the catalogue and the disc space management routines are used
internally.

The incompatibilities are also evident internally, inasmuch as
a substantial modification of IBM code has been necessary. The fact
that no further releases of 0S/360 are expected has been a substantial
encouragement.,

T.R.4 8 A.J.M.S., May 1975

PSR SRRt

oo] b o e

Al Specification of the Cambridge Dynamic DD System

Al,l Dynamic DD statements

Dynamic DD statements can be created specifying the following
devices: DUMMY, DISC, TAPE (not yet available), INTRDR (privileges
required if online), SYSOUT (if the job is offline), or online terminal
(if online).

After a dynamic DD has been created, there is an entry for it in
the Task Input/Output Table (TIOT entries for such DD's are positioned
after all other entries), and when it is deleted the corresponding entry
is removed., DD statements created by OS (or IBM dynamic allocation) are
inaccessible to the Cambridge system (except for information and '
renaming calls), and vice versa., Dynamically created DD’'s can be
referenced in DCBs that may be be opened and closed in the usual way.
The RDJFCB macro (see User's Reference Manual for restrictions on use)
applied to such a DD will return a JFCB in which most of the useful
fields are. set. For an offline job, dynamic DD's persist across step
changes - they are added on to the end of the TIOT constructed by OS for
the new step. However, when using the PHOENIX command program all
dynamic DD's are deleted on entry and all DD's created by the user
program are deleted on return to the command program (named temporary
files are not affected).

Al.2 Disc Datasets

Datasets on disc (referred to as 'files' throughout this section)
accessed by dynamic allocation are of three types: permanent files which
have full file titles of the usual format ('fully qualified names’) up
to 26 characters in length; ‘named' temporary files whose names are
specified by an ampersand ('&') followed by up to 8 characters; and
'anonymous‘® temporary files which have unspecified names. Files of all
three types can be dynamically created and deleted. Named temporary

files remain in existence for the duration of the job, unless explicitly

deleted (see section Al.3.6). Anonymous temporary files are deleted when
the corresponding DD is deleted (or, again, at the end of the job).

Permanent files on the public volumes are catalogued (and
accounted against disc limit, etc.); any others are not. Note
that, although permanent files can be accessed via JCL or via the
Cambridge system, the temporary files created by the Cambridge system
cannot be accessed by JCL, and vice versa. For example;- a file &T
created by JCL and a file &T created by the Cambridge system are two
different datasets.

A.J.M.S. May 1975 T.R.4 9

There is a facility (described in section Al.3.12) for obtaining.
a list of dynamically allocated temporary datasets in existence for a
job at any one time. A list of permanent datasets may be obtained by
means of the EXAMINE program, or by use of the LOCATE macro (see User's
Reference Manual for restrictions on use). One may note in passing that
it is (practically) impossible to obtain a list of all OS temporary
files in existence for a job.

Al.3 Calls to SVC 245

All entries to the system are made by use of SVC 245. On entry, RO
is taken as a function code, while Rl should point to a parameter area
in the user's region, whose contents and format depend on the particular
function requested. A return code is given in register 15, T

Wherever permanent file names are supplied by the user program as
parameters to SVC 245, the first character of the name may be a dot('.').
In these circumstances the 'set user characters' or the userid is
prefixed to the name.

Al.3.1 Create DD (R0O=0)

Rl points to a prototype DD, as mapped by the macro
SYS1 . MACLIB(DDSTMT). It consists of a 12-byte header and one 52-byte
section for each DD in a set of concatenated DD's (just one if no
concatenation required).

Offset Bytes & Field name Description
Alignment
DDROOT
0(0) 8 DDNAME Name of the DD to be created. It must be

distinct from all already existing OS or
dynamic ddnames in the current job step.

8(8) 1 DDCONC Number of concatenations (i.e. number of
DDDD's after the first), 0 if no concat-
enation. Must not exceed DDMCONC (currently 6}.

9(9) . 1 DDFLGS Disposition flags.
) DDWRITE - should be specified if the

dataset will be written to (equivalent to
DISP=0LD versus DISP=SHR). It is an error
to create a DD for a file for output that
already has a DD, in the same or any other
job; or to create any DD if it already has
a DD for output. If DDWRITE is specified
the DD may not be concatenated.

B.R.4.510 . - A, J.M.S. May 1975

1C0(a) e o 2 spare

DDDD

+0(0) 1 'DDDEVT

b wvkr o

~N O

8 DDN

DDMOD - causes the file to be positioned
after the last record if opened for output.
It does not imply DDNEW or DDWRITE.

From here to the end repeated for each
concatenation:

Device type as follows:

DDDUM Dummy .

DDDISC Disc.

DDTAPE Tape (not yet implemented).
DDPRINT Printer (SYSOUT=A).

DDPUNCH Card Punch.

DDINTRDR Internal reader.

Note: for DDPRINT, DDPUNCH and
DDINTRDR, the job must be offline,
DDWRITE must be specified, and
special forms devices are not
available. The latter restriction
rules out the plotter and the paper
tape punch,

DDDEV Privileged and unimplemented.
DDTERM PHOENIX terminal; the job must be online.

Create DD from the same read-mode file
as 1s referred to by the ddname in
DDDDN. Both DD's must be for input,
and the prior one not concatenated in
any way.

9 DDSHRP This will eventually be SYSQUT=C. At

the moment it is a single {pseudo~-)’
printer (of type SYSOUT=C) acquired
when needed and freed at the end of

the job. Several DD's may be
simultaneously attached to this printer,
and output appears in the order that

it is actually produced.

10 DDINTPRT Internal printer - unimplemented.

+1(1) . 1 DDSPACE

L., eee

il o

A.J.M.S. May 1975

Flags relevant to disc datasets.

DDCYL ~ allccate space by cylinders (default
is tracks).

DDRLSE - release unused space when closing
dataset (relevant if old or new).

DDCONTIG - allocate one contiguous extent
when allocating the file (if new). (Users
are urged not to use this facility unless it
is essential to doc so.)

T.R.4 11

+2(2) . - 18 DDDCB

+20(14) 2 DDFSEQ
+20(14) 8 DDMEMB
+28(1C) 6 DDVOLSER

+34(22) . . 2 spare

+36(24) 8 DDDDN

+36(24) 4 DDDSN
+40(28) 4 DDPRI
+44(2C) 4 DDSEC
+48(30) 4 DDDICT
BB H. L2

DDOLDF - if the file is old, disregard the
contents of DDDCB.

DDNEW - unless DDWRITE and DDNEW are both
set, the file must pre-exist. Otherwise
it is created if it does not exist,

but no fault is given if it does exist.

'DCB' parameters - these 18 bytes are copied
to offset 88 (decimal) in the notional JFCB.

File number for magnetic tape (not yet implemented).

_ Member name in a partitioned dataset. . Should S

be blanks if not set or not relevant.

Specifies volume serial for magnetic tape oxr
private discs. For disc datasets this should
normally be spaces, in which case the public
storage volumes will be used, old files

being located from the catalogue {if
permanent), and a suitable volume being
chosen for new files according to a

system algorithm. Users permitted to use
private discs may specify them here, but

in all cases the volume must be pre-mounted.

DDname referenced when DDDEVT=8,

For disc (later, tape) datasets, a pointer to
the name of the file. If this field is

zero, the file is anonymous, otherwise it
must point to a halfword containing the
length of the name and followed immediately
by that name. Temporary file names begin
with °'s&'. Trailing spaces are ignored. 'Alias’' .
names can be specified for permanent datasets
(the interlock then works on this name). It
is impossible to have simultaneously DD's

for files with identical names on different
volumes.,

Primary space allocation (new disc datasets).

Secondary space allocation (new disc datasets
only - note not like JCL).

Dictionary allocation in blocks (new PDS's).

A, J.M.S. May 1975

-ed) 4

Al.3.2 Delete DD (RO=1l)

Rl points to an 8~byte ddname. For a disc dataset; the file
itself is not deleted by this cperation, unless it 1s anonymous. Unit
record devices are relinquished (except for ‘shared printeris). It is an
error to delete a DD while a DCB is still open for it.

Al.3.3 Delete all non-PHOENIX DDs (RO=11)

Rl is not relevant., This deletes all dynamic DDs not. created
by the command program.

Al.3.4 Rename DD (R0O=4)

Rl points to the old ddname (8 bytes) followed by the new ddname
(8 bytes). This operation can be done at any stage; the DD may have an
open DCB. OS DD's can also be. renamed, though they will still expire at
the end of the step in the usual way.

Al.3.5 Rename DD changing read/write status (R0=9 or 10)

Rl points to the old ddname (8 bytes) followed by the new ddname
(8 bytes). The old and new ddnames may be the same. The DD must be dynamic
and represent a file: if R0=9 the DDWRITE flag is turned on if possible;
if RO=10 it is turned off,

Al.3.6 Delete named temporary file (RO=2)

Rl points to the name (8 bytes, without the '&‘). This is an
error if any DD exists for the file.

Al.3.7 Delete pexmanent file (R0O=14)"

This call can be used to delete permanent files, provided that no
dynamic DD exists for the file in this job and no other job is using the
file in any way. Rl points to a parameter list mapped by

- SYS1.MACLIB(DRFPARM), as follows:-

Offset Length Name Description .

c 2 DRFPFLGS The only allocated flags are privileged.,

2) DRFPVOL Volume serial. If the file is catalogued
a volume name of all blanks should be
given.

8 4 DRFPDSN A pointer to the permanent dataset name
{in the same format as for DDDSN in section
Al.3.1).

A.J.M.S. May 1975 T.R.4 13

Al,3.8 Rename temporary file as permanent file (RO=3 or 8]j

For an anonymous file (R0=3) Rl points to an 8-byte ddname,

followed by a pointer to a permanent file name.

anonymous disc file, and must not be open. The DD is left with DDWRITE
off but is otherwise undisturbed. For a named temporary file (R0=8) Rl

points to the temporary file name (8 bytes, without the '&'), followed by

a pointer to a permanent file name.

In each case, the permanent file name has the same format as for
DDDSN in section Al.3.l. The file is renamed as the permanent file (and

is catalogued and accounted, if on the public volumes). Any pre-existing
catalogued file of the same name is deleted.
should be fast and reduce the time during which & system crash éan wreck
the operation.

Al.3.9 Read information on one DD (R0O=5)

.Rl points to an 8~byte ddname. The information is placed in-RO
in the following formats~

do
dl
4z

ds
ds
dlo
dls

dle
dis

d24~d31 Device type, in the same format as DDDEVT in section Al.3.1.

T.R.4 14

Set if DD exists.

Set if DD currently open.

Set if DD was created by 0S. If so, bits 1 and 3-31 are
inapplicable. ’

Named temporary file.

Anonymous file.

Writeable file {(n.b. only set if file).

File was not created by PHOENIX.

(n.b. d8-dl5 have undefined values, not necessarily
zero, if the DD is not a disc dataset.)

DD has been opened at least once.

DD was not created by PHOENIX.

A, J.M.S, May 1975

The DD must represent an

As a renaming operation, this

PPt T

dai b odl Ak

iy

£
3

A1.3.10 Read information on all DDs (R0O=6)

This reads a list of ddnames and statuses. Rl points to a
receiving area in the user's region, which should start with a halfword
containing the maximum number of 12-byte entries the area will
accommecdate. The list is filled with 8-byte ddnames (only non-0S ones) and
corresponding 4-byte statuses (as in section Al.3.9), following the
halfword, which itself is set to the number of entries actually filled.
If the area is not large enough, it is filled to capacity and Rl5 set to
19 (see below). :

Al.3.11 Read status of named temporary file (R0O=13)

Rl should point to the name of the file (8 bytes, without the
's$'); a byte of status bits is returned as d8-dl5 of RO, The bits have
the same meaning as the corresponding bits described in section Al.3.9.

Al.3.12 Read information on named temporary files (RO=7)

Rl points to a receiving area in the user's region, which should
start with a halfword containing the maximum number of 8-byte entries
that the area will accommodate. The area is filled with 8-byte temporary
file names (without the '&') following the halfword, which is itself set
to the number of entries actually filled. If the area is not large
enough, it 1is filled to capacity and R15 set to 19 (see section Al.4.1).

A.J.M.S. May 1975 T.R.4 15

Al.4 Errors

Al.4.1 Return code format

Succesful completion of SVC 245 is indicated by setting R15 to
zero., Otherwise an error code is placed in R15 in the following format:

do

dg-dl5s

dle-dz23

is used to distinguish between faults detected within
dynamic allocation itself (bit unset) &and errors
returned from IBM's direct-access space management
routines (DADSM) or equivalent (bit set). Note,
however, that some DADSM return codes are treated
specially, and result in SVC 245 faults, or in
corrective action. _

contains the concatenation number of the DDDD being
complained of in a concatenation (0 if unconcatenated) .
contains a secondary return code from SCRATCH
for 'delete permanent file' only (section Al1.3.7).

d24-d31 contains the SVC 245 or DADSM error code.

Al.4.2 sSVC 245 fault numbers

W oo o d wh

T.R.4 16

Unassigned or privileged value of RO.

Parameter area not in user's key.

DD already exists, and should not.

DD does not exist, but should.

Too many dynamic DD's (current limit is 20},

DD in use (i.e. OPEN).

Too many concatenations (current limit is 6).
Concatenated DD for output.

Unknown device type.

Device type not allowed.

Device not available (privileged options only) .
File in use (by this or another job).

File does not exist.

Volume not mounted. o

Volume already in use (tape only).

Volume (s) full (disc).

File should be anonymous, but is not.

Terminal reguest by offline job.

Information list incomplete (sections Al1.3.10, Al.3.12).
HASP pseudo-device request by online job.

Bad DD referred to by DDDEVT=8,

Use of identical file name on a different volume.
Too many such devices.

DDWRITE not specified for unit~record output.
CVOL not mounted (catalogue search failure).
Inappropriate device for requested action.

A.J.M.S. May 1975

