
Technical Report
Number 400

Computer Laboratory

UCAM-CL-TR-400
ISSN 1476-2986

Monitoring the behaviour
of distributed systems

Scarlet Schwiderski

July 1996

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 1996 Scarlet Schwiderski

This technical report is based on a dissertation submitted
April 1996 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Selwyn College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Abstract
Monitoring the behaviour of computing systems is an important task. In active
database systems, a detected system behaviour leads to the triggering of an ECA
(event-condition-action) rule. ECA rules are employed for supporting database man-
agement system functions as well as external applications. Although distributed
database systems are becoming more commonplace, active database research has
to date focussed on centralised systems. In distributed debugging systems, a de-
tected system behaviour is compared with the expected system behaviour. Differ-
ences illustrate erroneous behaviour. In both application areas, system behaviours
are specified in terms of events: primitive events represent elementary occurrences
and composite events represent complex occurrence patterns. At system runtime,
specified primitive and composite events are monitored and event occurrences are
detected. However, in active database systems events are monitored in terms of
physical time and in distributed debugging systems events are monitored in terms
of logical time. The notion of physical time is difficult in distributed systems because
of their special characteristics: no global time, network delays, etc.

This dissertation is concerned with monitoring the behaviour of distributed sys-
tems in terms of physical time, i.e. the syntax, the semantics, the detection, and the
implementation of events are considered.

The syntax of primitive and composite events is derived from the work of both
active database systems and distributed debugging systems; differences and neces-
sities are highlighted.

The semantics of primitive and composite events establishes when and where
an event occurs; the semantics depends largely on the notion of physical time in
distributed systems. Based on the model for an approximated global time base,
the ordering of events in distributed systems is considered, and the structure and
handling of timestamps are illustrated. In specific applications, a simplified ver-
sion of the semantics can be applied which is easier and therefore more efficient to
implement.

Algorithms for the detection of composite events at system runtime are devel-
oped; event detectors are distributed to arbitrary sites and composite events are eval-
uated concurrently. Two different evaluation policies are examined: asynchronous
evaluation and synchronous evaluation. Asynchronous evaluation is characterised
by the ad hoc consumption of signalled event occurrences. However, since the sig-
nalling of events involves variable delays, the events may not be evaluated in the
system-wide order of their occurrence. On the other hand, synchronous evaluation
enforces events to be evaluated in the system-wide order of their occurrence. But,
due to site failures and network congestion, the evaluation may block on a fairly
long-term basis.

The prototype implementation realises the algorithms for the detection of com-
posite events with both asynchronous and synchronous evaluation. For the purpose
of testing, primitive event occurrences are simulated by distributed event simula-
tors. Several tests are performed illustrating the differences between asynchronous
and synchronous evaluation: the first is ‘fast and unreliable’ whereas the latter is
‘slow and reliable’.





To my parents





Preface

The research described in this dissertation was carried out in the University of Cam-

bridge Computer Laboratory under the supervision of Dr. Ken Moody, beginning in

October 1992. I would like to acknowledge the support of many.

Above all, it is a pleasure to express my gratitude to Dr. Ken Moody, who guided

me through the course of this study. It is due to his patient encouragement and

persistence that I was nudged from theory towards practice. In October 1994, Ken

started a sabbatical and passed my supervision to Dr. Andrew Herbert, the head

of APM Ltd., Cambridge. I benefited greatly from Andrew’s scientific knowledge

and industrial experience on distributed object computing. I am fortunate that he

continued to be my “assistant supervisor” up to the completion of this study.

At the Computer Laboratory, I was part of the Opera group, led by Dr. Jean

Bacon and Dr. Ken Moody. I am very grateful to all members of the group, especially

to Dr. Jean Bacon, Dr. Noha Adly, Mohamad Afshar, Dr. John Bates, Dr. Sai Lai

Lo, Richard Hayton, Oliver Seidel, and Robert Sultana, for helpful discussions and

practical advice.

I am obliged to Prof. Klaus Dittrich and Dr. Stella Gatziu from the database

technology research group at Zürich University for their support in the past two

years. They helped me to understand active database systems. Moreover, Klaus

made it possible for me to present my work on several occasions and get the necessary

feedback.

Without the help of Quentin Stafford-Fraser and Dr. David Evers it would not

have been possible to master Modula-3 for Network Objects, which I used for the im-

plementation of a prototype system. I would like to thank them for always answering

my questions patiently.

I am grateful also to Dr. Martyn Johnson for his lessons on “time in distributed

systems” and “communication protocols”. It was very inspiring to learn about the

systems-side of distributed computing.

i



My time at the Computer Laboratory would not have been so valuable without

knowing Lewis Tiffany, the librarian. I am happy that he was always there when I

needed help and advice.

This work was supported by grants from the German Academic Exchange Service

and the European Community (Human Capital and Mobility).

Finally, I would like to thank Malte for being so wonderful.

Except where otherwise stated in the text, this dissertation is the result of my

own work and is not the outcome of work done in collaboration. This dissertation is

not substantially the same as any that I have submitted for a degree or diploma or

other qualification at any other University. No part of this dissertation has already

been, or is concurrently being, submitted for any such degree, diploma or other

qualification. This dissertation does not exceed sixty thousand words, including

tables, footnotes and bibliography.

Scarlet Schwiderski

Selwyn College, Cambridge

April 1996

Trademarks

Ethernet is a trademark of the Xerox Corporation

Modula-3 for Network Objects is c© Digital Equipment Corporation

ii



Contents

List of Figures ix

List of Tables xi

Notation xiii

1 Introduction 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Events in Active Database Systems 7

2.1 The Notion of an Event . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Primitive Events Versus Composite Events . . . . . . . . . . 8

2.1.2 Event Type Versus Event Occurrence . . . . . . . . . . . . . 8

2.1.3 Detection of Primitive and Composite Events . . . . . . . . . 9

2.2 HiPAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Primitive Events . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Composite Events . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Primitive Events . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Composite Events . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 SAMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Primitive Events . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.4.2 Composite Events . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Sentinel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Primitive Events . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Composite Events . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Other Research Projects . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 POSTGRES . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Ariel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 Starburst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Events in Distributed Active Database Systems . . . . . . . . . . . . 22

2.7.1 Implications in Distributed Computing Environments . . . . 22

2.7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Events in Distributed Debugging Systems 27

3.1 Introduction to Distributed Systems . . . . . . . . . . . . . . . . . . 28

3.1.1 Characteristics of Distributed Systems . . . . . . . . . . . . . 28

3.1.2 Time and Order Based on Causality . . . . . . . . . . . . . . 29

3.2 EBBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The Notion of an Event . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Behaviour Recognition in the EBBA Tool Set . . . . . . . . . 32

3.2.3 Integration with the Target System . . . . . . . . . . . . . . . 34

3.3 Global Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 The Specification of Global Events . . . . . . . . . . . . . . . 34

3.3.2 The Detection of Global Events . . . . . . . . . . . . . . . . . 36

3.3.3 Realisation of the Debugging System . . . . . . . . . . . . . . 36

3.4 Data Path Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Events in Data Path Expressions . . . . . . . . . . . . . . . . 37

3.4.2 The DPE Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Predecessor Automata . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Other Research Projects . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 EVEREST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Monitoring Distributed Systems . . . . . . . . . . . . . . . . 40

3.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



4 Analysis 43

4.1 Review of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Goals of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Syntax of Events 47

5.1 Primitive Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Time Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Data Manipulation Events . . . . . . . . . . . . . . . . . . . . 49

5.1.3 Transaction Events . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.4 Abstract Events . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Composite Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Conjunction: Ce = (E1 , E2) . . . . . . . . . . . . . . . . . . 52

5.2.2 Disjunction: De = (E1 | E2) . . . . . . . . . . . . . . . . . . 52

5.2.3 Sequence: Se = (E1 ; E2) . . . . . . . . . . . . . . . . . . . . 53

5.2.4 Concurrency: Pe = (E1 ‖ E2) . . . . . . . . . . . . . . . . . . 53

5.2.5 Iteration: Ie1 = (E1
! E2) and Ie2 = (E1

+ E2) . . . . . . . . 53

5.2.6 Negation: Ne = (E1 ; NOT E2 ; E3) . . . . . . . . . . . . . 53

5.3 Event Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Primitive Event Parameters . . . . . . . . . . . . . . . . . . . 54

5.3.2 Composite Event Parameters . . . . . . . . . . . . . . . . . . 55

5.3.3 Parameter Restrictions . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Semantics of Events 61

6.1 The Notion of Physical Time in Distributed Systems . . . . . . . . . 61

6.2 Time and Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Centralised Systems . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.2 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Timestamps in Distributed Systems . . . . . . . . . . . . . . . . . . 65

6.3.1 Requirements for Timestamps . . . . . . . . . . . . . . . . . . 66

6.3.2 Structure of Timestamps . . . . . . . . . . . . . . . . . . . . 67

6.3.3 Temporal Relationship between Timestamps . . . . . . . . . 68

6.3.4 Joining Procedure for Timestamps . . . . . . . . . . . . . . . 72

6.4 Timestamps in Distributed Systems –

Simplified Semantic Model . . . . . . . . . . . . . . . . . . . . . . . . 76

v



6.4.1 Structure of Timestamps . . . . . . . . . . . . . . . . . . . . 76

6.4.2 Temporal Relationship between Timestamps . . . . . . . . . 77

6.4.3 Joining Procedure for Timestamps . . . . . . . . . . . . . . . 78

6.5 Semantics of Composite Events . . . . . . . . . . . . . . . . . . . . . 79

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Detection of Events 83

7.1 Goals of Event Detection in Distributed Systems . . . . . . . . . . . 83

7.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Local Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Pre-conditions of Local Event Detection . . . . . . . . . . . . 85

7.3.2 Options for Local Event Detection . . . . . . . . . . . . . . . 85

7.4 Global Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4.1 Pre-conditions of Global Event Detection . . . . . . . . . . . 86

7.4.2 Options for Global Event Detection . . . . . . . . . . . . . . 87

7.4.3 Basic Detection Mechanisms . . . . . . . . . . . . . . . . . . 88

7.4.4 Event Consumption . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Evaluation Policies: Asynchronous and Synchronous 93

8.1 Asynchronous Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Evaluation of Nodes . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Synchronous Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2.1 Evaluation of Nodes . . . . . . . . . . . . . . . . . . . . . . . 101

8.2.2 Synchronisation Procedure . . . . . . . . . . . . . . . . . . . 107

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 Prototype Implementation and Evaluation 113

9.1 Programming Environment . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3.1 Event Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3.2 Global Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3.3 Timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3.4 Event Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



9.3.5 List of Event Occurrences . . . . . . . . . . . . . . . . . . . . 116

9.3.6 Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.7 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.8 Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.9 Event Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.10 Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.3.11 Site Port Table . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.3.12 Observer Register . . . . . . . . . . . . . . . . . . . . . . . . 118

9.4 System Setup and Initialisation . . . . . . . . . . . . . . . . . . . . . 118

9.4.1 First Step: InitCEDetect.setup . . . . . . . . . . . . . . . . 118

9.4.2 Second Step: InitPESim.setup . . . . . . . . . . . . . . . . . 119

9.4.3 Third Step: InitCEDetect.connect . . . . . . . . . . . . . . 119

9.4.4 Fourth Step: InitPESim.start simulate . . . . . . . . . . . 119

9.5 Runtime Behaviour of the Event Simulator . . . . . . . . . . . . . . 120

9.6 Runtime Behaviour of the Event Detector . . . . . . . . . . . . . . . 120

9.6.1 Signalling Event Occurrences . . . . . . . . . . . . . . . . . . 120

9.6.2 Evaluating Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.6.3 Deriving Event Parameters . . . . . . . . . . . . . . . . . . . 122

9.6.4 Detecting Event Occurrences . . . . . . . . . . . . . . . . . . 122

9.6.5 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.7.1 Test One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.7.2 Test Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.7.3 Test Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10 Conclusions 129

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A Event Traces 133

A.1 Test Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1.1 Asynchronous Evaluation . . . . . . . . . . . . . . . . . . . . 133

A.1.2 Synchronous Evaluation . . . . . . . . . . . . . . . . . . . . . 134

A.2 Test Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2.1 Asynchronous Evaluation . . . . . . . . . . . . . . . . . . . . 135

vii



A.2.2 Synchronous Evaluation . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 141

viii



List of Figures

ix



x



List of Tables

3.1 DPE Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Distributed Debugging Systems – A Comparison . . . . . . . . . . . 42

4.1 Features of Active Database and Distributed Debugging Systems . . 44

5.1 Parameters of Composite Events . . . . . . . . . . . . . . . . . . . . 55

6.1 Overview of Sequence and Concurrency Operators . . . . . . . . . . 66

6.2 Applicability of Mathematical Rules . . . . . . . . . . . . . . . . . . 72

9.1 Delay of Global Event Detection . . . . . . . . . . . . . . . . . . . . 125

xi



xii



Notation

General
En event type 10

en event occurrence of type En 10

emn m-th event occurrence of type En 10

site ! site of origin 50

⊥ undefined 73

GT (E) global event tree of type E 92

∆local delay of local event detection 104

Time and Order
Π precision of synchronised local clocks 67

gz granularity of reference clock 67

gg granularity of global time base 67

→ happened-before (causal order) 29

‖ concurrency (causal order) 29

→2gg 2gg-restricted temporal order 69

‖2gg 2gg-restricted concurrency 69

< happened-before relationship between timestamps

• general semantic model 76

• simplified semantic model 82

∼ concurrency relationship between timestamps

• general semantic model 76

• simplified semantic model 82

!" unrelatedness between timestamps 77

xiii



Event Operators
, conjunction 53

| disjunction 53

; sequence 53

‖ concurrency 53
! iteration (≥ 0) 53
+ iteration (≥ 1) 53

NOT negation 53

Timestamps
ltk local clock tick at site k 71

gtk(ltk) global time of local clock tick ltk 72

T (e) timestamp of event e

• general semantic model 72

• simplified semantic model 81

T (e1) ∪ T (e2) joined timestamp of events e1 and e2

• general semantic model 78

• simplified semantic model 83

base(T (E)) base of timestamp T (E) 72

limit(T (E)) limit of timestamp T (E) 72

t component timestamp

• general semantic model 73

• simplified semantic model 82

xiv



Chapter 1

Introduction

1.1 Research Background

Most modern computing applications are distributed in nature. Such applications

require support by distributed computing systems. Whilst each site in a distributed

computing system may individually be simple, interaction between sites can create

enormous complexity. Distributed system users, administrators, and developers re-

quire tools that enable them to monitor the behaviour of the distributed system as

a whole. Event-driven monitoring offers a promising approach for observing how

distributed computing systems behave. In this framework, the elementary observ-

ables of distributed system behaviour are identified as “primitive events”: complex

behaviour patterns of interest to users may be expressed in terms of them as “com-

posite events”. When the system is running, primitive events are detected and

notified at registered event monitors, where they participate in the detection of

composite events. It is thus possible to record the occurrence of complex behaviour

patterns in which some agent has expressed an interest.

Event-driven monitoring covers a wide range of possible applications ranging

from user-oriented applications to low-level system management. For example, in

banking and stock exchange applications event-driven monitoring can be used to

monitor the happenings on the money market in order to support financial trading

and arbitrage. This both eases the workload on employees and provides assurance

of integrity to authorities and institutions. Event-driven monitoring might also be

used for integrity surveillance in safety-critical systems, such as automated industrial

plants or gas- and oil-distribution networks.

1



1.2 Research Motivation

Present solutions to monitoring the behaviour of distributed systems are not ade-

quate. Microsoft’s COM(Component Object Model) provides a rudimentary event

service called connectable objects [?, ?]. The sources of events, the so-called con-

nectable objects, notify event occurrences at registered consumers, the so-called

event sinks. Events relate to changes to data, changes to the views on data, renam-

ing of objects, clicking the mouse, or any action that changes control. There is no

notion of composite events. In CORBA(Common Object Request Broker Architec-

ture)’s event service, suppliers notify event occurrences at consumers via an event

channel [?, ?]. The event channel is a service that decouples the communication

between suppliers and consumers. Hence, suppliers and consumers do not have to

know about each other, but only about a single well-known event channel object.

Two different event notification models are supported: the push model and the pull

model. In the first, the supplier initiates the transfer of event data to consumers.

In the latter, the consumer requests event data from suppliers. In [?, page 4-5]

it is mentioned that “complex events may be handled by constructing a notifica-

tion tree of event consumer/suppliers checking for successively more specific event

predicates”. However, this is not a general composite event service.

This dissertation presents a general solution to monitoring the behaviour of dis-

tributed systems. Primitive events can relate to physical time, to occurrences inside

database systems or application programs, and to arbitrary external signals (e.g.

from users or sensors). Composite events are complex patterns of primitive events,

defined using an event algebra with well-defined semantics. Thus, composite events

consist of primitive events and event operators, indicating the overall occurrence

context. Specified primitive and composite events are monitored at arbitrary sites

of a distributed system. Detected events cause reactions, for example, notifying

users (as in the financial trading example) or taking some emergency measure (as

in the safety-critical example).

Event-driven monitoring has the following advantages:

• It is suitable for monitoring both internal and external system behaviour. Em-

ploying primitive events relating to physical time in a distributed system with

synchronised local clocks makes it possible to evaluate happenings within the

system with respect to happenings within the system’s environment.

• The specification of system behaviour in terms of events is convenient.

2



“An event represents the occurrence of significant system behaviour” [?, page

4]. Hence, it is convenient to specify system behaviour in terms of events. In

state-driven approaches to monitoring, system behaviour can only be estab-

lished by regularly polling the local states at the individual sites of a distributed

system.

• It is suitable for integrating existing (possibly heterogeneous) distributed sys-

tems with little change. Each site is extended with an event interface, stating

the event types originating at that site, and with measures for detecting oc-

currences regarding these event types. Event-monitoring modules can then be

simply plugged in. In a heterogeneous distributed system, the application of

a common interface definition language (IDL) is required for the specification

of event interfaces.

• Monitoring mechanisms are adaptable to system evolution. In event-driven

monitoring, a desired system behaviour is expressed declaratively rather than

procedurally. In other words, what is described is the behaviour that is to

be monitored, and not how this behaviour is to be monitored. Therefore, the

system can decide on the best monitoring strategy and adapt in the case of

system evolution.

1.3 Research Tasks

The research outlined in this dissertation is divided into the following tasks:

• Syntax of events

The syntax of events determines how primitive and composite events are spec-

ified. Both primitive and composite events have parameters which capture

the circumstances in which the event occurs. Depending on the kind of event,

parameters are system- or user-defined. The kinds of primitive events and

the event operators needed for specifying composite events are to be identi-

fied and a formal syntax for specifying events is to be developed. The formal

parameters of events are to be investigated.

• Semantics of events

A primitive or composite event expression describes a desired system be-

haviour. The semantics of events determines what exactly this behaviour is,

i.e. when and where it occurs. For that reason, each occurrence of an event is

3



associated with a timestamp. Before defining the formal semantics of events,

the notions of time and order in distributed systems are to be explored and

the structure and handling of timestamps are to be investigated.

• Detection of events

At system runtime, specified primitive and composite events are monitored

and event occurrences are detected. There are different possibilities for dealing

with the special characteristics of distributed systems. An architecture for a

distributed event monitoring system is to be defined and generic algorithms

for the detection of composite events are to be developed.

• Prototype implementation

The practicability of the theoretical results is to be demonstrated and mea-

sured. A prototype is to be implemented which realises the detection algo-

rithms defined in the formal model.

1.4 Research Context

Two research areas are of direct relevance to this work: active database systems

and distributed debugging systems. Both research areas use primitive and compos-

ite events for monitoring relevant system behaviour. In active database systems,

a detected system behaviour leads to the triggering of an ECA (event-condition-

action) rule. ECA rules are employed for supporting database management system

functions as well as external applications. Although distributed database systems

are becoming commonplace, active database research has to date focussed on cen-

tralised systems. In distributed debugging systems, a detected system behaviour

is compared with the expected system behaviour. Differences illustrate erroneous

behaviour. Distributed debugging systems focus on monitoring the internal system

behaviour only.

The field of distributed object computing provides a necessary infrastructure for

representing and manipulating events in distributed systems (e.g. for communicating

detected events and for garbage collecting obsolete events). This infrastructure is

employed for the prototype implementation.

4



1.5 Dissertation Outline

Chapter 2 reviews the research area of active database systems. The general notion of

an event is discussed and the most prominent research projects are examined. One

common feature of all research projects is that they consider centralised systems

only. The differences from distributed systems are identified and some related work

is pointed out.

The research area of distributed debugging systems is reviewed in Chapter 3. A

brief background on distributed systems is given, before the most prominent research

projects are presented. Since approaches to distributed debugging vary considerably,

a formal comparison is made between them.

The analysis of the related work and the goals of this dissertation are presented

in Chapter 4.

The syntax of primitive and composite events is the subject of Chapter 5. A

brief discussion of event parameters is included.

Chapter 6 establishes the semantics of primitive and composite events in dis-

tributed systems. The semantics depends on the notions of time and order in dis-

tributed systems. Two different semantic models are introduced: the general se-

mantic model and the simplified semantic model. The latter is applicable in specific

distributed systems, where the frequency of event occurrences is lower than some

system-specific value. The structure and handling of timestamps concerning physical

time are illustrated for both models, before the semantics is formally defined.

The detection of events is discussed in Chapters 7 and 8. Chapter 7 identifies

the goals of event detection, defines the system architecture, and explains the ba-

sic detection mechanisms. The algorithms for the detection of composite events at

system runtime are developed in Chapter 8. Two different evaluation policies are ex-

amined representing different approaches for dealing with the special characteristics

of distributed systems: asynchronous evaluation and synchronous evaluation.

Chapter 9 describes a prototype implementation of the detection algorithms

with both asynchronous and synchronous evaluation. Several tests are performed

illustrating the differences between the two evaluation policies.

Chapter 10 concludes this dissertation with a summary and some suggestions for

further work.

5



6



Chapter 2

Events in Active Database

Systems

A database system is a system to model, store, and retrieve large volumes of data;

multiple users manipulate the data at the same time. Conventional database sys-

tems are passive: data is created, updated, deleted, and retrieved only in response

to operations issued outside the database system, either by users or by applica-

tion programs. Active database systems enhance the functionality of conventional

database systems: the database system itself issues operations in response to certain

events occurring or certain conditions being satisfied. Active capability is captured

by the ECA (Event-Condition-Action) rule paradigm: when an event is detected an

action is triggered, if the condition holds. The event-part of an ECA rule specifies

what causes the rule to be triggered. Once the rule is triggered, the condition-part

is considered. A condition is a database predicate or a database query evaluating

the database state at the time of event detection. If the database predicate is true

or the database query produces a non-empty answer, the action in the action-part

is executed. An action is an executable program, which may contain data modifi-

cation or data retrieval operations, transaction operations, or arbitrary procedure

calls. A short introduction into the field of active database systems is given in [?],

whereas [?] contains a broad overview including a discussion of the application ar-

eas integrity constraint management, view maintenance, workflow management, and

energy management.

The purpose of this chapter is to present the concepts of events in active database

systems; that is, the chapter focusses on the event-part of ECA rules. The notion

of an event is motivated in Section 2.1. The most prominent research projects are

7



addressed thereafter. The research projects differ in their means to specify and

detect events. The feasibility of active database research with respect to distributed

computing environments is investigated in Section 2.7 and the particular deficiencies

of current research efforts are highlighted.

2.1 The Notion of an Event

2.1.1 Primitive Events Versus Composite Events

An event is an instantaneous “occurrence of interest”, that is, an event occurs at

a specific point in time. There is a distinction between primitive and composite

events. Primitive events are elementary occurrences. In the context of databases,

primitive events are related to the modification of data (e.g. the creation, deletion,

or modification of particular objects or of any object in a particular class), to the

retrieval of data (e.g. the fetch of an object or the invocation of a particular method

that retrieves objects), to the processing of transactions (e.g. the begin, commit,

or abort of transactions), and to time (e.g. absolute points in time, such as 7 April

1996, 10.00am, or relative points in time, such as 30 minutes after event X occurred).

Data modification, data retrieval, and transaction processing are actions which have

a duration. Hence, primitive events can be signalled either before the action starts or

after the action ends. Moreover, events can be signalled from application programs

and are then called external events (also, abstract or explicit events). Those events

are related to occurrences outside the database system and have to be defined and

signalled explicitly (e.g. readings from sensors).

Whereas primitive events are single occurrences of interest, composite events

represent complex occurrence patterns consisting of a number of primitive events.

As such, composite events are expressions built from primitive events and event

operators, such as conjunction, disjunction, and sequence. For example, “after 31

December 1995, 6.00pm money is debited from the account ” depicts a sequence of

two primitive events, a time event and a data modification event.

2.1.2 Event Type Versus Event Occurrence

In order to be able to detect primitive and composite events at system runtime, they

have to be specified beforehand. An event language is used to build composite events

from primitive events and event operators. The specification of an event determines

its event type (synonymous with event class). At system runtime, the specified event

8



types are monitored and event occurrences (synonymous with event instances) are

detected. Since an event occurs at a specific point in time, an event occurrence is

characterised by a time of occurrence. The time of occurrence of a composite event

is derived from the times of occurrence of its component primitive events. Typically,

it corresponds to the time of occurrence of the primitive event which makes the

composite event complete, often called the terminator event. Besides the time of

occurrence, events may have other event parameters describing the circumstances

in which the event occurred. In general, an event type determines not only one,

but numerous event occurrences which are distinguished on the basis of their event

parameters. For example, “customer Smith uses the ATM in Oxford Street, London”

can occur numerous times, depending on the behaviour of the customer.

When specifying composite events it may be necessary to impose further restric-

tions on the possible combinations of primitive events. Those event restrictions state

conditions on the event parameters, which must be fulfilled at system runtime by

the component events of a composite event. Consider a composite event “customer

has bonus status ; customer spends more than £100 a month at Tesco” (where “;”

represents the sequence event operator) which causes the dispatch of a gift to the

customer. The rule makes sense only if the same customer is considered throughout

the rule.

2.1.3 Detection of Primitive and Composite Events

The detection of a primitive event depends on its kind. There are three techniques

for detecting data modification events, data retrieval events, and transaction events

[?]1:

• the hardwired technique incorporates code into the implementation of the func-

tion.

• the wrapper-based technique wraps the function with additional code.

• the system-supported technique modifies the function invocation mechanism.

The choice of the technique to be applied depends on the system architecture. Time

events are detected by programming the timer interface to generate timer interrupts

at pre-specified points in time. Finally, external events are detected by embedding

the code for signalling the event into the application program.

1Modifying/retrieving data and processing transactions corresponds to the execution of

functions.

9



The detection of a composite event builds upon the detection of primitive events.

When a primitive event occurs, it is checked whether it contributes towards the

detection of some composite event. If yes, the composite event may be detected

or not. In the first case, the composite event is signalled to the system component

responsible for rule execution. In the latter case, the primitive event is stored with

the composite event. If a primitive event contributes towards the detection of mul-

tiple composite events, rule priorities determine the order of their evaluation. It is

not only important that all primitive events contributing towards a composite event

occur, but also that they occur in the correct order. This order is determined by

the composite event expression and specifically by the event operators.

The detection process is supported by a detection mechanism. This maintains the

structure of a composite event and the desired order of primitive event occurrences

within it. Each time a primitive event occurs, it is inserted into the detection

mechanism. If a step can be performed, the new detection state is derived and the old

one is deleted. A certain “final state” indicates the detection of a composite event.

In current research projects, the detection mechanism is based on the evaluation of

abstractions such as finite state automata, petri nets, or trees. Large numbers of

partially detected composite events may arise at the evaluation of such abstractions.

Keeping all those events means imposing a storage overhead as well as providing

obsolete event data to applications. The event life-span determines how long to

keep partially detected composite events [?].

When detecting composite events, there may be several event occurrences which

could satisfy a composite event; for example2, consider the composite event E1 ; E2

and three event occurrences for E1: e11, e
2
1, and e31. On the occurrence of e12, the

event consumption must be well-defined, namely, what E1-event(s) to combine with

e12. [?] introduces four parameter contexts:

Recent combines e12 with the newest event occurrence available (e31, e
1
2) and deletes

the consumed events.

Chronicle combines e12 with the oldest event occurrence available (e11, e
1
2) and deletes

the consumed events.

Cumulative combines e12 with all event occurrences available (e11, e
2
1, e

3
1, e

1
2) and

deletes the consumed events.

2In enm, m refers to the event type and n refers to the nth occurrence of an event of that type.

10



Continuous combines e12 in turn with all event occurrences available ((e11, e
1
2)-

(e21, e
1
2)(e

3
1, e

1
2)) and does not delete the consumed events.

2.2 HiPAC

The HiPAC (High Performance ACtive database system) project was started in

1987 with the goal of supporting event-driven applications where timely response to

monitored situations is critical [?, ?]. This includes the support of active database

capabilities by means of ECA rules. The HiPAC database system is an object-

oriented active database system.

2.2.1 Primitive Events

Three kinds of primitive events are supported in HiPAC:

• data manipulation events

• clock events

• external notification events

Data manipulation events are related to the execution of operations on objects. Since

the execution of a database operation has a duration, two events can be defined for

each operation: the beginning of the operation and its end. The parameters of

data manipulation events are the formal arguments of the operation. Additional

environment variables (e.g. the transaction identifier) may be included. Events are

also associated with the beginning and the end of transactions. The parameters of

such events include the transaction, user, and session identifiers. Clock events can

be absolute, relative, or periodic. Absolute clock events are signalled when specified

time-points are reached (e.g. 23 January 1996, 9:00:00.00). If an event is specified as

a temporal offset to some reference event, it is a relative clock event. Relative clock

events are signalled when the time interval denoted by the temporal offset has passed

after the occurrence of the reference event (e.g. 30 minutes after event X occurred). If

an event is to be signalled periodically, it is specified as a periodic event, that is, as a

reference event and a time period (e.g. every Friday at 17:00:00.00). External events

are specified and raised explicitly by users or application programs. When external

events are raised the formal parameters are bound to actual values. Examples are

readings of sensors, e.g. “a temperature has been reached” or “a person has entered

a room”.

11



2.2.2 Composite Events

Three event operators are supported for composite event specification:

• disjunction (|)

• sequence (;)

• closure (∗)

A disjunction of two events E1 and E2, (E1 | E2), is signalled when either E1

or E2 is signalled. The parameters of the disjunction are the parameters of the

signalled event. A sequence of two events E1 and E2, (E1 ; E2), is signalled when

E2 is signalled, provided that E1 had been signalled before. The parameters of the

sequence are the parameters of E1 and E2. Finally, the closure of an event E1,

(E!
1 ; E2), is signalled when E1 had been signalled an arbitrary number of times

before E2 is signalled. E2 serves as a delimitation. The parameters of the closure

are the union of all parameters of E1 events plus the parameters of E2.

2.2.3 Event Detection

Event detection in HiPAC is not discussed in depth in the available literature. A

composite event specification is essentially a regular expression. Hence, composite

events can be detected by finite state automata, driven by primitive event detectors.

2.3 Ode

Active database facilities in the Ode object-oriented database are described in [?, ?,

?, ?]. Two kinds of facilities are provided: constraints for maintaining database in-

tegrity and triggers for automatically performing actions depending on the database

state.

2.3.1 Primitive Events

In [?] it is mentioned that the set of basic events3 could be arbitrary in general.

Four kinds of basic events are supported in Ode:

• object state events

3The term basic event coincides with the term primitive event used in other event specification

languages.

12



• method execution events

• time events

• transaction events

Object state events relate to generic data manipulation operations. An object state

event is signalled after an object is created, before it is deleted, and before or after

it is updated/read/accessed through a public member function. Method execution

events are signalled before or after an operation (method) is executed on an object.

Similar to clock events in HiPAC, time events can be absolute, relative, or periodic.

Transaction events relate to the beginning and the end of transactions. Such events

are signalled after a transaction begins, before or after it commits, and before or after

it aborts. Each basic event can be associated with a set of user-defined parameters

which carry information about the action that caused the event to occur and/or

about the state of the database.

A basic event becomes a primitive event, if it is qualified with a mask; that is, the

signalling of the event depends on the fulfillment of a condition. The condition may

access the event parameters or the state of any object in the database. For example,

the basic event “before execution of the withdrawal method” qualified with the mask

“withdrawal amount is greater than 1000” filters out all event occurrences with the

amount-parameter being less than 1000. In general, Ode supports an EA (Event-

Action) model rather than an ECA model, the conditions being merged with the

event-part.

2.3.2 Composite Events

The semantics of composite events is explained with respect to an event history,

which is a finite set of event occurrences in which no two event occurrences have the

same event identifier. Intuitively, an event history is the sequence of primitive event

occurrences since some starting primitive event.

Four basic event operators are supported for composite event specification:

• conjunction (∧)

• not (!)

• relative

• relative+

13



A conjunction of two events E1 and E2, (E1 ∧ E2), is signalled when both events

occur at the same event in the event history. Hence, since primitive events cannot

occur simultaneously (the event history is a sequence of primitive event occurrences),

a conjunction can never be signalled for two primitive events. However, the conjunc-

tion can among other things be used to check whether the terminator of a composite

event corresponds to some primitive event. A negation of an event E, (!E), takes

place at all event occurrences in the event history at which E is not signalled. rela-

tive(E1, E2) is signalled when the whole of E1 occurs before the whole of E2 (note,

that this operator is different to the sequence operator in HiPAC; there, the ter-

minator event of E2, and not the whole of E2, must occur after E1). relative+(E)

denotes the closure of relative(E, E) and is signalled when E or an arbitrary number

of successive E’s occur. Besides these basic event operators, a number of derived

event operators are supported in Ode. For example, a disjunction (E1 ∨ E2) and

prior(E1, E2) are derived event operators and have the same semantics as the dis-

junction and the sequence event operators in HiPAC. A sequence event operator

in Ode, sequence(E1,. . . ,Em), specifies immediate successive occurrences of E1, E2,

. . . , Em. Further derived event operators are introduced in the literature.

Composite events inherit parameters from their constituent events. Only the pa-

rameters of interest are considered; that is, the user defines which parameters to keep.

Moreover, it may be required that certain parameters of constituent events match

in a composite event. For example, the composite event immediate re hire(X) =

sequence(fire(X), hire(X,Y,Z)) is to be signalled when an employee X is immediately

re-hired after being fired. Although hire has three attributes, only one attribute is

inherited by the composite event immediate re hire. Moreover, the values for X in

fire and hire must match.

2.3.3 Event Detection

Composite event expressions are equivalent to regular expressions. Hence, composite

events can be detected by finite state automata. The event history provides the

sequence of input symbols to the automaton. The event occurrences are fed into

the automaton one at a time, in the order of their event identifiers. The current

marking of an automaton determines the current stage of the detection process.

If the automaton enters an accepting state, then an event corresponding to the

automaton occurred at the last input event. The construction of the finite state

automaton ME of a composite event expression E is discussed in [?].

14



The algorithms shown do not consider the handling of event parameters. Con-

sidering event parameters implies providing additional storage and computing new

event parameters when the detection progresses. Consider the finite state automa-

ton for relative(E1, E2) shown in Figure ??, and the event history 〈e11, e21, e12, e22〉.
It is expected that the composite event is signalled twice, once after e12 and once

after e22. However, the finite state automaton is non-deterministic and different

outcomes are possible. The reason for this is, that it is not clear when and if the

empty-event-transition ε is performed (i.e., after e11, after e
2
1, or not at all).

2.4 SAMOS

The SAMOS (Swiss Active Mechanism-based Object-oriented database System)

project addresses the specification of active behaviour and its internal processing

[?, ?, ?, ?].

2.4.1 Primitive Events

Primitive events relate to occurrences in the database, in the database management

system, or in the database environment. The following kinds of primitive events are

supported in SAMOS:

• method events

• value events

• transaction events

• time events

• abstract events

Method events relate to the execution of methods on objects and are signalled before

or after the execution. Method events include events concerning generic object

operations, which can be regarded as special methods. The parameters of method

events are the formal arguments of the method, the object identifier of the object

executing the method, and environment parameters: the time of occurrence, the

occurring transaction (identifier of the transaction during which the event occurred),

and the user identifier (identifier of the user who started the occurring transaction).

Value events are associated with the modification of objects, i.e. of object attributes,

15



and are signalled before or after modification. Object attributes can be modified

by different methods. Therefore, a value event can be specified as a disjunction of

method events. The parameters of a value event are the object identifier, the value of

the updated object, and the environment parameters. In case the event is signalled

before modification, the object value parameter corresponds to the old object. In

case the event is signalled after modification, this parameter corresponds to the

new/updated object. Transaction events signal the beginning, the commit, and the

abort of transactions. The parameters of a transaction event are the environment

parameters. Time events can be specified as absolute, relative, or periodic and have

no parameters. Abstract events occur in the environment of the database system

and are signalled by users or application programs. Abstract events have to be

defined by users, including their formal parameters. These user-defined parameters

are instantiated by the user or application program when the event is raised. In

addition, the environment parameters are set by the database system.

2.4.2 Composite Events

Six event operators are supported for composite event specification:

• conjunction (,)

• sequence (;)

• disjunction (|)

• !/last

• TIMES

• NOT

A conjunction of two events E1 and E2, (E1 , E2), is signalled when both events E1

and E2 have occurred, regardless of their order. The parameters of the conjunction

are the parameters of E1 and E2. There is only one environment parameter for com-

posite events, the time of occurrence. The other environment parameters, occurring

transaction and user identifier, are not applicable because constituent events may

originate in different transactions started by different users. The time of occurrence

parameter of a conjunction corresponds to the time of occurrence of the later event.

A sequence of two events E1 and E2, (E1 ; E2), is signalled when E2 is signalled,

provided that E1 had been signalled before. The parameters of the sequence are

16



the parameters of E1 and E2, plus the time of occurrence of E2. A disjunction of

two events E1 and E2, (E1 | E2), occurs when either E1 or E2 is signalled. The

parameters of this occurrence become the parameters of the disjunction (including

the time of occurrence). The !- and last- event operators are used whenever an

event is to be signalled only once during a predefined monitoring interval. !E IN

I refers to the first occurrence of E in the interval I and last(E) IN I to the last

occurrence. The parameters of the first and the last occurrence of E respectively

become the parameters of the composite event. A composite event TIMES(n, E)

IN I is employed whenever n occurrences of an event E in the interval I are to be

signalled. The parameters of the composite event are the union of all parameters

of the n occurrences of E. The time of occurrence is set to the value of the last

(nth) time of occurrence. NOT E IN I denotes the non-occurrence of an event E

in the interval I. A NOT event is signalled at the end of the interval I. It has

no parameters, except for the time of occurrence which corresponds to the time of

occurrence of the event indicating the end of the interval.

A monitoring interval I is a time interval during which an event has to occur.

For example, E IN [s - e] denotes an event E which has to occur in the time interval

starting with s and ending with e. E IN [s - e] is equivalent to (TS; NOT TE); E,

where TS is the time event representing s and TE is the time event representing e.

(TS; NOT TE); E expresses that E has to occur after TS, but before TE.

In many cases, it is required that certain parameters of constituent events match

in a composite event. Consider, for example, a conjunction between two method

events where the corresponding methods have to be executed on the same object.

The relationship between the two object identifier parameters can be established by

using the same keyword. Therefore, (E1,E2):same object denotes the corresponding

event. In general, the same keyword can be used to establish the equality between

particular parameter values for the constituent events of a composite event.

2.4.3 Event Detection

SAMOS uses Coloured Petri Nets, so-called SAMOS Petri Nets, for the detection

of composite events. A Petri Net consists of places, transitions, and arcs. Arcs

connect places with transitions and transitions with places. The places of a Petri

Net correspond, intuitively, to the potential (distributed) states of the Net, and such

states may be changed by the transitions. Transitions correspond to the possible

events which may occur (perhaps concurrently). In Coloured Petri Nets, tokens are

17



of specific token types and may carry complex information. Concerning SAMOS

Petri Nets, tokens represent event occurrences and capture the event type and the

event parameters. A place in a SAMOS Petri Net contains tokens of one specific

token type. At runtime, an event occurs and a corresponding token is inserted into

all places representing its event type. The flow of tokens through the Net is then

determined; a transition can fire if all its input places contain at least one token.

Firing a transition means removing one token from each input place and inserting

one token into each output place. The parameters corresponding to the token type of

the output place are derived at that time4. Certain output places are marked as end

places, symbolising specified composite events. Inserting a token into an end place

corresponds to the detection of a specified composite event. The event parameters

are part of the token.

The SAMOS Petri Net for the composite event E1 ; E2 is shown in Figure ??.

Place H is an auxiliary place and contains one token before event detection begins.

On the occurrence of an event e1 ∈ E1, a corresponding token (including event type

and event parameters) is inserted into place E1. Both input places of transition t1

contain one token and t1 fires, that is, one output token (including e1’s parameters)

is inserted into E′
1. On the occurrence of an event e2 ∈ E2, a corresponding token is

inserted into place E2 and transition t3 fires. In this case, one token (including e1’s

and e2’s parameters) is inserted into the end place and hence, the composite event

e1 ; e2 is detected. If an e2 event is signalled without a previous e1 event, the token

representing e2 is deleted.

2.5 Sentinel

The Sentinel project is a follow-on project to HiPAC [?, ?]. A major part of the

project is the development of Snoop, a model independent5 event specification lan-

guage, and of algorithms for the detection of Snoop event expressions [?, ?].

2.5.1 Primitive Events

Three kinds of primitive events are supported in Sentinel:

4This is the default behaviour of a Petri Net. More complex behaviours using more than one

token from specific input places or checking certain conditions on the set of input tokens can be

modelled.
5that is, independent of the underlying data model

18



• database events

• temporal events

• explicit events

Database events are related to database operations, including transactions. At least

two events (begin-of and end-of) can be associated with each database operation.

Temporal events are divided into two sub-classes: absolute and relative temporal

events. Absolute temporal events in Sentinel include absolute and periodic time

events as found in other event specification languages. For example, < (17 : 00 :

00) ∗ / ∗ /∗ > denotes the periodic time event “every day at 5pm”. Finally, explicit

events depict events which are not part of the Sentinel event language, but are defined

by users or application programs. Two parameters, the event type and the time of

occurrence, are defined for all primitive events. Other parameters are event specific.

Other parameters for a database event depend on the event modifier begin-of or end-

of. Typically, parameters of a begin-of event include the input parameters whereas

the parameters of an end-of event include both, the input and output parameters of

the operation. Temporal events have no other parameters.

2.5.2 Composite Events

Six event operators are supported for composite event specification:

• disjunction (∨)

• conjunction (Any)

• sequence (;)

• aperiodic event operators (A, A!)

• periodic event operators (P , P !)

• not (¬)

A disjunction of two events E1 and E2, (E1 | E2), occurs when either E1 or E2 is sig-

nalled. A conjunction event, denoted Any(m,E1, . . . , En) where m ≤ n, is signalled

when any m events out of the n distinct events specified occur, ignoring the order of

their occurrence. A sequence of two events E1 and E2, (E1 ; E2), occurs when E2

occurs provided that E1 has already occurred. An aperiodic event A(E1, E2, E3) is

19



signalled when E2 occurs in the interval formed by E1 and E3. This non-cumulative

variation of the aperiodic event can occur zero or more times. On the other hand,

A!(E1, E2, E3), the cumulative variation of the aperiodic event, occurs only once

when E3 occurs and accumulates the occurrences of E2 (that is, collects the cor-

responding parameters) in the interval formed by E1 and E3. A periodic event is

an event that repeats itself within a constant and finite amount of time. The event

P (E1, [t], E3), where E1 and E3 are events and t is a time specification, is signalled at

all multiples of the time period t within the interval formed by E1 and E3. The cumu-

lative variation of the periodic event P !(E1, [t], E3) allows a parameter specification

to be attached to t. The parameters are accumulated until the end of the inter-

val (the occurrence of E3). For example, P !(8am, [30min] : IBM-stock-price, 5pm)

samples the IBM stock every 30min from 8am to 5pm. Finally, the not operator

¬E2[E1, E3] detects the non-occurrence of the event E2 in the closed interval formed

by E1 and E3.

The parameter computation for composite events is as follows. The parameters

for a conjunction and a sequence are the union of the parameters of the partici-

pating events. A(E1, E2, E3)’s parameters are the parameters of E2 plus the event

type, whereas these parameters are accumulated until the end of the interval for

A!(E1, E2, E3). P (E1, [t], E3) has only two parameters, the event type and the time

of occurrence. For P !(E1, [t], E3), the parameter specification attached to t deter-

mines which parameters are to be accumulated.

The parameter contexts recent, chronicle, cumulative, and continuous (see Sec-

tion 2.1.3) were first introduced in connection with the Sentinel research project

[?]. With each ECA rule a parameter context is specified, which determines the

evaluation semantics for the event-part.

2.5.3 Event Detection

Sentinel uses trees for the detection of composite events. Each composite event is

represented as an event tree. Event trees are then coalesced to an event graph (that

is, common subtrees are shared among different event trees) in order to avoid the

redundant evaluation of composite events. The leaves of an event graph represent

primitive events and the nodes represent composite events. A node is marked with

the event operator and its children correspond to the event operands of a composite

event. The event operands are either nodes (that is, composite events) or leaves

(that is, primitive events). At runtime, primitive events occur and are injected into

20



the leaves corresponding to their event type. The leaves pass the primitive events

directly to their parent nodes. An activated parent node executes a procedure which

evaluates the incoming data (depending on the event operator and the parameter

context). If the corresponding composite event is detected, it is propagated to the

parent node. If the corresponding composite event is not detected, the incoming

event data is either stored temporarily in a list of subevents or it is disregarded. In

the first case, the event can be used later on, at the arrival of other suitable events.

In the latter case, the event cannot be used. Nodes marked with a rule identifier

correspond to specified composite events. Composite events detected at such nodes

are signalled to the condition evaluator.

Figure ?? shows the event tree for the composite event E1 ; E2. When an event

e1 ∈ E1 is signalled, it is injected into the leaf representing E1 and propagated to the

parent node, where it is appended to E1’s list. When an event e2 ∈ E2 is signalled,

it is also propagated to the parent node. The further evaluation depends on whether

there are elements in the list of E1’s subevents or not. If there are no elements, e2

is disregarded. If there are elements, one element of the list is combined with e2

and the composite event is detected. Which of the elements in E1’s list is chosen

depends on the parameter context.

2.6 Other Research Projects

The research projects addressed so far consider object-oriented active database sys-

tems. There is a number of research projects considering relational active database

systems. Three of those projects, POSTGRES, Ariel, and Starburst, each include the

development of an active database rule language and its complete implementation

on top of existing relational database systems.

2.6.1 POSTGRES

The POSTGRES project was carried out at the University of California in Berkeley

[?, ?]. The event-part of ECA rules has the form “on event to object”, where event

can be any operation caused by a POSTQUEL command6: retrieve, replace, delete,

or append, and object can be either a relation or a column of a relation. These

primitive events are detected using event locks: an object is tagged with the event.

6POSTQUEL is the query language of POSTGRES.

21



When an appropriate event occurs on a field tagged with an event lock, the primitive

event is detected. Composite events are not supported in POSTGRES.

2.6.2 Ariel

Events in Ariel [?] are similar to events in POSTGRES, that is, relate to retrieve-

, replace-, delete-, or append-operations on relations or columns of a relation. In

addition, Ariel supports absolute and periodic time events. Composite events are

not allowed.

2.6.3 Starburst

In Starburst [?, ?], primitive events are related to insertions into tables, deletions

from tables, and updates to tables or table columns. Simple composite events can

be expressed using a disjunction event operator. Rule processing is invoked at the

end of transitions, which are non-empty sequences of insert-, delete-, and update-

operations. The overall effect of a transition is captured in transition tables, one

for insertions, one for deletions, and one for updates. Rule processing means that

transition tables are evaluated. If a specified event (or events, in the case of a

disjunction) is contained, a rule is triggered.

2.7 Events in Distributed Active Database Systems

A common feature of all research projects discussed in the previous sections is that

they consider centralised active database systems. Sentinel mentions some problems

of ECA rules in distributed environments, does, however, not solve them.

2.7.1 Implications in Distributed Computing Environments

The differences between centralised and distributed ECA rule processing are due to

the special characteristics of distributed systems: concurrent processes running at

multiple autonomous sites, no global time, message delays between sites, problem

of global state, and independent failure modes (see Section 3.1).

Composite events in distributed systems can involve component events at many

sites. These system-wide composite events are called global composite events, as

opposed to local composite events which relate to event occurrences at a single site

and coincide with composite events discussed earlier in this chapter. Each global

composite event is monitored at one specific observer site which contains the global

22



event detector. Global event detectors of different global composite events are dis-

tributed to arbitrary sites. The main implication of the special characteristics of

distributed systems on global composite event detection is:

The order in which events are signalled at global event detectors does,

in general, not correspond to the order in which the events occurred.

The contrary is assumed in all “centralised-system” research projects studied in the

previous sections; if an event e2 is signalled at the event detector later than an event

e1, e2 occurred after e1. Therefore, the detection of global composite events must

be based on the time of occurrence parameters of component events. However, the

second implication of the special characteristics of distributed systems on global

composite event detection is:

Time of occurrence parameters originating at different sites are inaccu-

rate.

This implication represents a further complication for the detection of global com-

posite events. As a result, the detection of global composite events is considerably

different from the detection of local composite events.

2.7.2 Related Work

In [?], Jagadish and Shmueli consider composite events in object-oriented data-

bases. Event processing in centralised and distributed computing environments is

compared and the particular difficulties of distributed event processing are high-

lighted. The notions of s-correctness and computational correctness are introduced

in order to achieve a centralised event processing behaviour and different ways for

obtaining s-correctness and computational correctness are presented. [?] considers

the order in which events are posted to objects from either one (in the case of a

centralised database system) or multiple (in the case of a distributed database sys-

tem) distributors. In “real” distributed systems s-correctness, and computational

correctness respectively, can only be achieved by using atomic broadcast communi-

cation protocols [?]. This is, however, a far-reaching assumption which imposes a

high performance overhead, especially in wide area networks.

Rule processing in general is discussed by Ceri and Widom in [?]. This work also

aims to achieve a behaviour corresponding to a centralised computing environment.

A hierarchy of paradigms for distributed rule processing is introduced. A particular

23



level in this hierarchy determines the expressiveness of rules reaching from totally

localised rules to rules which allow reading and modifying remote data, intersite

priorities and autonomous rule processing at each site. A “centralised” behaviour is

achieved through locking schemes; the more powerful the rule processing level, the

more complex the locking scheme. However, Ceri and Widom do not consider global

composite events. Instead, conditions and events relate to local data and operations

on that data.

[?] also discusses rule processing, although this work concentrates on the condition-

part of ECA rules. Evaluating a condition corresponds to distributed query process-

ing. The problem of global state is addressed and a method for evaluating global

conditions using simultaneous regions is presented. The motivating idea of this work

is to distribute rule processing in order to increase performance. A similar approach

is taken in [?], which also deals with conflict analysis for the parallel execution of

rules.

2.8 Summary

This chapter discussed events in active database systems. The different research

prototypes may be characterised by their means for specifying and detecting events.

Basically, the relational active database systems POSTGRES, Ariel, and Starburst

support only simple primitive events, whereas the object-oriented active database

systems HiPAC, Ode, SAMOS, and Sentinel support complex primitive and com-

posite events. In the latter, there is agreement on the different kinds of primitive

events. However, composite event specification and detection mechanisms differ con-

siderably. HiPAC laid the foundation-stone for active database research, considering

ECA rules in general, but it provides only basic mechanisms for composite event

specification and detection. Ode introduces powerful event operators. However,

their number and notation is confusing and their application sometimes unclear (i.e.

conjunction and negation). Moreover, event detection with finite state automata is

non-deterministic and ignores event parameters. SAMOS and Sentinel are projects

that emphasise composite event specification and detection. Both are well thought

out. In SAMOS, the evaluation of events is captured in SAMOS Petri Nets. Al-

though this ensures precise semantics, it does not reflect the original purpose of

Petri Nets as a modelling and analysis tool for concurrent systems. In Sentinel, the

event operators are different from other research projects and one needs to become

24



familiar with them; using trees for the detection of composite events is straight-

forward. SAMOS composite event specification and detection facilities have been

implemented in their entirety. In the case of Sentinel, this is not clear.

One characteristic common to all research prototypes is that they consider cen-

tralised systems only. Little work has been done on distributed systems. However,

as distributed database systems are becoming commonplace, it is necessary to re-

consider event specification and detection in the light of their special characteristics.

25



26



Chapter 3

Events in Distributed

Debugging Systems

Software debugging is the process of locating the causes of errors in a software

system and suggesting possible repairs [?]. The debugging of distributed software

systems is more complicated than the debugging of centralised software systems, due

to the special characteristics of distributed systems: concurrent processes running at

multiple autonomous sites, no global time, message delays between sites, the prob-

lem of establishing global state, and independent failure modes (see Section 3.1).

There are two approaches to software debugging: state-based debugging and event-

based debugging. Event-based debugging tools are more appropriate for debugging

distributed software systems than state-based debugging tools. State-based debug-

ging is the traditional approach, where users guess what the erroneous behaviour

is, determine which pieces of state information illustrate this behaviour, and devise

plans for obtaining it, e.g. by setting breakpoints. State-based debugging tools rely

on time-invariant program execution and the availability of a controllable, accurate

global state. However, in distributed systems problems often appear as performance

impairment (i.e. inappropriate behaviour) rather than as erroneous state. [?] states

that “behaviour is activity that has observable effects in an executing system” (page

2) and that “an event represents the occurrence of significant system behaviour”

(page 4). This motivates the second software debugging approach, namely event-

based debugging. Events are made visible to debugging tools by instrumenting the

software system with additional code that signals events. However, on this low level

an executing software system produces a vast amount of events. [?, page 16] speaks

of 30000 events/minute. Event-based debugging tools allow the user to design high-

27



level behaviour models in terms of events and event operators describing a desired

event pattern. At system runtime, the designed behaviour models representing ex-

pected system behaviour are compared to the actual system behaviour. Differences

between the two illustrate erroneous behaviour.

The goal of this chapter is to study different approaches to event-based debugging

in distributed systems. A short background on distributed systems is given in Section

3.1. The most prominent research projects are addressed thereafter. A comparison

of the different approaches is given in Section 3.6.

3.1 Introduction to Distributed Systems

In event-based approaches to debugging, a distributed system is viewed as a collec-

tion of processes running on different processors. Each process emits a sequence

of events. Processes do not share memory but communicate via message passing.

The processors are allocated at different component computer systems in the dis-

tributed system, which are interchangeably called sites, nodes, or hosts. A single

site accommodates one or multiple processors, depending on whether it is based on

a uniprocessor or multiprocessor architecture [Bac92].

3.1.1 Characteristics of Distributed Systems

Distributed systems are inherently different from centralised systems. The follow-

ing list summarises the special characteristics of distributed systems that impact

distributed debugging:

• No global time

Each site in a distributed system has its own local clock. These clocks can drift

and therefore record slightly different times.

• Message delays between sites

Messages sent over a computer network can be delayed depending on the load

at the sender and receiver sites and the network load.

• Problem of global state

The global state of a distributed system is the union of the states of the

individual sites. Since local states are exchanged by sending messages over the

computer network, a constructed global state could be obsolete, incomplete,

or inconsistent.

28



• Independent failure modes

The sites and transmission channels of a distributed system may fail indepen-

dently of each other.

3.1.2 Time and Order Based on Causality

Due to the lack of global time, two events at different processors cannot always be

ordered, that is, it cannot be determined which event happened before the other.

Hence, the “happened before” relation defines only a partial ordering. In [?], Lam-

port bases the definition of happened-before on the causality principle. An event a

happened-before an event b, a → b, if a could have influenced b (i.e. the processor

state of b is derived from the processor state of a); a and b are said to be causally

dependent. If neither a → b nor b → a, the events are said to be concurrent (causally

independent), written a‖b. A system of logical clocks is introduced which assigns a

natural number to each event. Logical clocks satisfy the clock condition: if a → b,

then a’s timestamp is smaller than b’s timestamp. However, the contrary is not

true; if a’s timestamp is smaller than b’s timestamp, then a and b may be concur-

rent. Logical time is said to be consistent with causality, but does not characterise

causality. Vector clocks are a generalisation of logical clocks [?]. A vector of natural

numbers is assigned to each event, one for each process. The use of vector time-

stamps enables the determination of → and ‖ relationships between events. Hence,

vector time characterises causality.

3.2 EBBA

EBBA (Event-Based Behavioural Abstraction) is a high-level approach to debugging

complex software. The EBBA project was started in 1982 at the University of

Massachusetts in Amherst [?, ?, ?, ?, ?, ?].

3.2.1 The Notion of an Event

Primitive Events Versus High-Level Events

An event corresponds to the occurrence of a significant system behaviour. As such,

an executing program can be regarded as a sequence of events, called an event stream.

In a distributed system, the event stream is a merging of the events generated

at different sites. There is a distinction between primitive and high-level events.

Primitive events represent non-decomposed fundamental behaviour. For example,

29



the process control part of an operating system would have primitive events such

as create process and suspend process and the file I/O subsystem of the same

operating system would have primitive events such as open file and close file.

On the other hand, high-level events represent user-defined behaviour models that

attempt to explain some layered system component or some complex interaction of

primitive system elements.

In order to be recognisable by the system, primitive and high-level events have

to be defined. The Event Definition Language (EDL) allows the definition of event

classes for primitive and high-level events. A specific individual occurrence of an

event class is referred to as an instance of that event class. Different instances of

the same event class are distinguished by their attributes.

The Definition of Primitive Events

The definition of a primitive event class contains the system-wide unique name of

the event class and a list of names and types for the event class attributes. For

example, the following EDL expression depicts the definition of a primitive event

class e openFile representing the successful request to open a file [?]:

event

(e openFile <process id> <filename> <fd> <time> <location>)

attributes

process id: BitString (size4);

filename: PrintableString;

fd: Integer

end event

The attributes process id, filename, etc. capture the circumstances under which

a specific event occurs. Two attributes, time and location, are defined for all

events and denote the time when the instance was created and the location where

the instance originated respectively. All other attributes are event class specific.

The following instance records an occurrence of the corresponding primitive event:

(e openFile 119 ‘‘etc/services’’ 5 14:30:23.49 ‘‘sluggo:xterm’’)

The Definition of High-Level Events

High-level events are defined in terms of primitive or other high-level events and

event operators. The event operators describe the acceptable orderings of constituent

30



events with respect to the event stream. The following event operators are supported

for high-level event specification:

• sequence (•)

• choice (|)

• concurrency (/)

• repetition (+ or !)

A sequence indicates that the right operand event occurs after the left operand

event. If the occurrence of one of two operand events is to lead to the detection of

a high-level event, the choice event operator is applied. The concurrency operator

expresses that both operand events must occur and may be arbitrarily interleaved

in time. As such, this event operator can be understood as a conjunction operator.

Finally, the repetition depicts that there are one or more repetitions of the operand

event (in the case of +) and zero or more repetitions respectively (in the case of !).

The semantics of event operators and especially of the sequence operator is not

revealed in the EBBA literature. Although the problems regarding global time

and ordering of events in distributed systems are mentioned repeatedly, no specific

semantics is defined. However, the following statements indicate the understanding

of temporal order:

• “Nothing can be determined regarding the temporal relations of events created

on different processors” [?, page2].

• “The binary sequence operator specifies that its operand events are to occur

in the left to right order in which they are written. . . . Implicitly, the events

are related by a <-relation on their time attributes.” [?, pages 10,11]

• “The sequence operator specifies that event instances . . .must follow each other

in the event stream . . . ” [?, page7]

These statements indicate that the events emitted to the event stream from a par-

ticular site arrive at the event recogniser in the same order, namely in the order

of their occurrence (this implies FIFO network delivery). Moreover, the sequence

event operator can only be applied to event classes originating at the same site.

The following EDL expression denotes the definition of a behaviour model

ProcessFile describing a simple file processing action [?]:

31



model ProcessFile(name: PrintableString) =

e openFile • e readFile+ • e closeFile

constraints

e openFile.name == name;

e openFile.fd == e readFile.fd;

e openFile.fd == e closeFile.fd

event

(m processFile <name> <pid> <time> <location>)

attributes

name: PrintableString = name;

pid: BitString (size4) = e openFile.process id

end model

When the event stream matches the behaviour model ProcessFile, a high-level

event m processFile is created. The parameter name is instantiated by the user to

focus on specific files. The event expression denotes a sequence of three event classes,

e openFile, e readFile, and e closeFile. The middle event may occur more than

once. The constraining clauses (indicated by constraints) contain restrictions

on possible event instance combinations. In this case, they ensure that all event

instances relate to the same file. The event-part describes the event class which is

signalled when a corresponding behaviour is detected. The types and bindings of all

attributes except time and location are given in the attributes-part. Note, that

the time attribute corresponds to the time when the instance is created, that is, the

time of event detection.

3.2.2 Behaviour Recognition in the EBBA Tool Set

The goal of distributed debugging is to understand the differences between the de-

sired system behaviour and the actual system behaviour as observed by the user in

terms of recognised behaviour models. If a user has a good understanding of what

the system is doing, the set of behaviour models he is monitoring will match the

event stream closely. However, if a user knows what the system is doing, there is

no need to debug it. Hence, in most cases the behaviour models will not match the

event stream closely. In these cases, the user will want to gather as much relevant

information as possible in order to improve his models, that is, in order to get a

better understanding of the system. There are two possible techniques: decomposi-

tion and partial interpretations. The first technique means decomposing a behaviour

model into smaller units (namely subexpressions) and evaluating the units indepen-

32



dently. Matched units are then synthesised to a more-complete behaviour model.

Any missing parts represent potential differences which need to be investigated. The

second technique means combining the event instances representing components of

a high-level event in all possible ways (note, that there may be multiple event in-

stances for a component event), in the hope that at least one combination matches

the behaviour model.

An implementation of the EBBA approach is provided by the EBBA tool set.

The tool set functions are organised into the following areas:

Model-building and maintenance tools are employed for compiling EDL defi-

nitions of primitive and high-level events and distributing them to other tool

set components.

Model abstraction tools accept requests for recognition of behaviour models rep-

resenting primitive and high-level events, evaluate the event instances arriving

on the event stream, and signal detected high-level events.

Event collection and communication tools are used for receiving event instan-

ces from the event stream and feeding them to the model abstraction tools (for

event recognising sites) or emitting generated primitive events to the event

stream (for event generating sites).

Interface tools present a graphics-based user interface to the other tools.

At the beginning of a debugging session, a user requests that the event recogniser

monitors the event stream for occurrences of specific behaviour models. Those be-

haviour models are then retrieved and displayed to the user. If necessary, the user

supplies actual parameters for the behaviour model heading (such as the param-

eter name in the ProcessFile behaviour model). Finally, the user specifies a set

of actions to be carried out when the event represented by the behaviour model is

recognised. For example, the user might specify that an event instance representing

the behaviour model just recognised is created and added to the event stream.

The formalism used to recognise high-level behaviour models is similar to finite

state automata. However, the input symbols to a so-called shuffle automaton are

complex n-tuples that resemble events. Also, the input stream is not evaluated one

symbol at a time, but transitions are based on sets of symbols, called transition

sets. Transition descriptors describe the transitions between the states of a shuf-

fle automaton in terms of transition sets. There is no detailed description of the

structure of shuffle automata and of their evaluation rules in the literature.

33



3.2.3 Integration with the Target System

The EBBA tool set can be used for remote as well as for distributed debugging.

Remote debugging is implemented by placing the user and the debugging tools at

a single site of the distributed system. This central debugging site may or may not

participate in the distributed computation. Each remote site contains an agent in

order to support the central debugging site. The drawbacks of remote debugging

are:

• the large overhead on network traffic, since all detected primitive events are

sent un-filtered to the central debugging site.

• the latency of high-level event detection, which implies the display of out-of-

date information to the user and the delay of intervention activities.

Distributed debugging is implemented by partitioning and replicating the debugging

tools at multiple sites; the model building and maintenance tools run at the user’s

site. The drawbacks of remote debugging are eliminated in distributed debugging.

3.3 Global Breakpoints

Haban et al. discuss the possibility of using so-called global breakpoints in distributed

programs [?, ?, ?]. If a global breakpoint is reached, the distributed program is

halted.

3.3.1 The Specification of Global Events

Primitive events describe significant behaviour of the execution or the state of a sin-

gle process. As such, a process can be modelled as a sequence of primitive events and

a distributed system can be modelled as parallel streams of events. Note, that this

understanding of a distributed system differs from that in Section 3.2; there, a dis-

tributed system is modelled as a single event stream, merged from the event streams

of different sites. Primitive events are associated with statements of a programming

language. For example, primitive events may be associated with processes (such as

start process and stop process), with message transfer (such as send message

and receive message), or with program execution (such as enter procedure and

leave procedure). One or more parameters, including a timestamp parameter, are

specified with each primitive event class to capture the circumstances under which

the event occurs. The timestamp denotes the time of an event occurrence.

34



Global events are composed of primitive events and/or other global events and

event operators. Global breakpoints are defined in terms of global events. The

timestamp of a global event corresponds to the timestamp of the last primitive event

participating in its occurrence. Apart from this, no information about parameters of

global events is given in the literature. The following event operators are supported

for global event specification:

• alternation (|)

• conjunction (&)

• happened-before (<)

• simultaneity (∧)

• negation/between (@)

An alternation Ae = Ge1 |Ge2 is detected when either of the operand events occurs.

The timestamp of that occurrence is inherited by Ae. If the occurrence of both

operand events is to lead to the detection of a global event, the conjunction operator

is applied. The timestamp of Ce = Ge1&Ge2 corresponds to the timestamp of the

later operand event. The happened-before event He = Ge1 < Ge2 indicates that

Ge1 happened before Ge2. The timestamp of He is the timestamp of Ge2. As

opposed to the happened-before event, the operand events of a simultaneous event

cannot be ordered, but occur simultaneously. The event Se = Ge∧1Ge2 inherits the

timestamp of the last operand event which caused the satisfaction of Se. Finally,

the negation operator can be applied in two different ways. First, the negation event

Ne = Ge1@Ge2 depicts that Ge1 occurs and that no Ge2 occurred previously. Ne

has Ge1’s timestamp. Second, the between event Be = @Ge3(Ge1, Ge2) expresses

that no Ge3 event occurs between the start of an interval (Ge1) and the end of an

interval (Ge2). The timestamp of Be corresponds to the timestamp of Ge2.

In a debugging system, a causal relationship is essential in order to locate the

cause of errors. Therefore, time relationships between events are based on causality

(see Section 3.1.2). The timestamps of events correspond to vector time. For a

primitive event, the timestamp denotes the time of event occurrence and is read from

the logical clock at the occurrence site. Logical clocks tick after the occurrence of a

primitive event. For a global event, the timestamp is derived from the constituent

events. The system of logical clocks builds a logical global time base. [?] examines the

semantics of event operators based on the vector timestamps of operand events. The

35



semantics of < and ∧ corresponds to the semantics of Lamport’s happened-before

→ and concurrency ‖.

3.3.2 The Detection of Global Events

A local debugger is associated with each node in the distributed system. The local de-

buggers are connected to a central test station CTS. CTS coordinates the debugging

process and represents the user interface.

A global event class is represented as a tree structure, called a breakpoint tree.

Inner nodes are labelled with event operators and leaves are labelled with primitive

or global events. Each node of a breakpoint tree contains a list for event instances

satisfying the corresponding event class. At the beginning of a debugging session,

the breakpoint trees are constructed on CTS and distributed to all local debuggers

which are involved in the corresponding global event.

During the debugging session, primitive events occur and are signalled at all local

debuggers. Their vector timestamps are then inserted into all leaves corresponding

to their event class. As a result, the attached operator nodes are evaluated taking

into account the events already stored in the event lists. If no corresponding event

is detected, the primitive event is stored in the event list. If a corresponding event

is detected, it is propagated to the parent node and the procedure recurses or, if

there is no parent node, the global event is detected. In this case, corresponding

event instances are deleted from the breakpoint tree and the detected event instance

is signalled to all local debuggers. If the global event denotes a global breakpoint,

CTS is informed, the distributed system is halted, and corresponding information is

displayed to the user.

3.3.3 Realisation of the Debugging System

There are two approaches for implementing global breakpoints: a pure software

approach and a hardware supported approach. In the first case, the local debuggers

and the CTS share the same execution environment as the system under analysis.

This implies interference with the processors and additional load on network traffic

due to the transmission of events. The disadvantage of the software approach is

that interference with the program being debugged can alter its runtime behaviour.

In the second case, the local debuggers and the CTS run on separate hardware,

connected by a separate network. Hence, there is only a little overhead on the

system under analysis due to the generation of events.

36



3.4 Data Path Debugging

This work [?] is an extension of Bruegge and Hibbard’s generalised path expressions

for debugging sequential programs [?]. There, a path rule is an EA (event-action)

rule, where the event-part denotes a generalised path expression, that is an expres-

sion built from path functions1 and the operators repetition (!), sequencing (;), and

exclusive selection (+). Predicates can be associated with any path function. Basic

path expressions (generalised path expressions without predicates) correspond to

regular expressions and can therefore be recognised by finite state automata.

3.4.1 Events in Data Path Expressions

Data path expressions (DPEs) are employed for debugging parallel programs. There

are four kinds of events:

• control events

• data events

• compound events

• conditional events

Control events represent control activities, such as entering or leaving a procedure.

Data events denote conditions and occur when the condition becomes true. For

example, “[X = X ′ + 1]” is the event that X is incremented (X ′ refers to the

previous value of X). Note, that data events can only be detected by checking the

current program state regularly. Hence, the detection of data events is relatively

inefficient. DPEs are called compound events and they are defined as “event id =

dpe”. Finally, conditional events denote any of the previous three kinds of events

with attached predicates. Their format is “event [condition]”, and they are detected

when the event occurs while the condition holds.

3.4.2 The DPE Hierarchy

DPEs are classified into five subclasses, depending on their syntactic structure and

the corresponding semantic model:

• sequential DPEs

1Path functions correspond to single statements of a programming language; that is, they are

equivalent to primitive events.

37



Subclass Sequential DPEs Multiple DPEs Safe DPEs General DPEs Extended DPEs

Expresses sequential limited safe safe limited unsafe unsafe

behaviour concurrency concurrency concurrency concurrency

Syntax dpe1: EVENT dpe2: dpe1 dpe3: EVENT dpe4: dpe3 dpe5: EVENT

| (dpe1) | dpe2 & dpe1 | (dpe3) | dpe4 + dpe4 | (dpe5)
| dpe1 + dpe1 | dpe3 + dpe3 | dpe4 & dpe4 | dpe5 + dpe5

| dpe1 ; dpe1 | dpe3 ; dpe3 | dpe4 @ | dpe5 ; dpe5

| dpe!1 | dpe!3 | dpe!5
| dpe3 & dpe3 | dpe5 & dpe5

| dpe5 @

Semantics finite state k-safe nets k-safe nets Petri Nets extended Petri

automata (subset) Nets (subset)

Table 3.1: DPE Hierarchy

• multiple DPEs

• safe DPEs

• general DPEs

• extended DPEs

Table 3.1 illustrates the syntax and the semantics of the DPE hierarchy [?, page

13]. The &-operator expresses that both operands occur causally independent and

the @-operator depicts the closure of & (ε+A+A&A+A&A&A+ . . .).

Sequential DPEs correspond to generalised path expressions. The second sub-

class, multiple DPEs, allows only global-level concurrency but no nested concur-

rency. A multiple DPE can be detected by a subclass of Petri Nets, called k-safe

nets, where the maximum number of tokens in a place is limited to k. Safe DPEs

denote safe concurrency, that is, bounded parallelism, and are equivalent to k-safe

nets. The fourth subclass, general DPEs, allows unbounded parallelism, but un-

bounded parallel threads never join (as in A@;B). This subclass is equivalent to

Petri Nets. Finally, extended DPEs express unsafe concurrency and can be detected

by extended Petri Nets.

3.4.3 Predecessor Automata

Finite state automata are efficient recognisers for sequential behaviour, but they can-

not represent concurrent events that are causally independent. [?] introduces pre-

38



decessor automata which extend finite state automata in the appropriate way. The

authors claim that Petri Nets, which can represent sequential as well as concurrent

behaviour, are not efficient for recognising events at runtime and that predecessor

automata overcome this deficiency. Predecessor automata can recognise behaviour

with safe concurrency and can therefore implement safe DPEs, the third subclass of

the DPE hierarchy. [?, page 171] mentions that predecessor automata can become

quite complex. The definition of a predecessor automaton is the same as the defi-

nition of a finite state automaton, except that the transition function determines a

new successor state depending on an event plus information about its predecessors.

On the occurrence of an event, a transition can only be made if the corresponding

predecessors have occurred as well.

Figure ?? shows the predecessor automaton for ((A;C)&B);D. A labelled edge

corresponds to a transition. For example, (a .) depicts the occurrence of an event a

without any predecessors and (d c b) denotes the occurrence of an event d with two

predecessors, c and b. One possible input to the automaton is (a .) (b .) (c a) (d c b),

which corresponds to the state sequence 1− 2− 5− 6− final state.

Since the order in which events are received at the event recogniser is different

from their order of occurrence, events have to be ordered before entering the pre-

decessor automaton regarding their (partial) occurrence order in the system under

analysis.

3.5 Other Research Projects

3.5.1 EVEREST

EVEREST (EVEnt REcognition teSTbed) is a system to analyse the behaviour of

distributed computations [?]. The goal of EVEREST is to study different approaches

to event recognition by applying different monitoring strategies. The background of

primitive and high-level event definition and detection is similar to Global Break-

points (see Section 3.3). However, flexible structuring allows the user to specify the

monitoring configuration of the system, that is, the types of monitoring modules to

be created, their placement in the system, and the distribution of event recognition

modules. The separation of event and monitoring definition makes it possible to

analyse the same high-level events under different monitoring configurations. More-

over, different monitoring configurations can be utilised concurrently. Another useful

feature is dynamic configuration, namely, the possibility to change the monitoring

39



configuration dynamically at system runtime. Finally, the existence of multiple time

view protocols gives the opportunity to specify different evaluation semantics for

high-level event detection. For example, the semantics of the happened-before and

simultaneity event operators can be based on vector time, as in Section 3.3, or on

local physical time. The existence of global physical time is assumed in the latter

case, which implies that timestamps originating at different nodes are compared

without considering any clock inaccuracies.

The motivation for the EVEREST project arose from earlier work on reducing

the delay between the occurrence of an event and its detection, and the nature of

events in general [?, ?].

3.5.2 Monitoring Distributed Systems

In [?, ?], Mansouri-Samani and Sloman are concerned with the monitoring of dis-

tributed systems. Monitoring is needed for debugging, testing, program visualisation

and animation, and for the management of distributed systems and communication

networks in general. In particular, the authors address numerous problems related

to the implementation of monitoring tools in object-based distributed systems, such

as the conflict between the concept of encapsulation and event-driven monitoring.

A monitoring model is defined in terms of four monitoring functions.

• Generation of monitoring information means the detection of primitive

events and the regular generation of status reports. The objects concerned

must be instrumented appropriately with software/hardware probes or sensors.

The primitive events and status reports may be recorded as monitoring traces

for later analysis.

• Processing of monitoring information indicates that the raw and low-level

monitoring data is converted to the required format and level of detail. Note,

that distributed systems generate large volumes of monitoring data. The op-

tions for processing include (1) increasing the level of abstraction by employing

high-level events (2) filtering monitoring information and (3) merging traces

in order to provide a global view.

• Dissemination of monitoring information denotes that generated moni-

toring reports are forwarded to users. For example, a monitoring report may

be broadcast to all users or its dissemination may depend on a subscription

scheme.

40



• Presentation to the user expresses that received monitoring information is

displayed to the user in a suitable form. Taking into account that monitoring

information can be vast, it is important that the user can specify a specific

display.

On the whole, the contribution of this work lies in the provision of a reference model

for explaining different approaches to monitoring distributed systems.

3.6 Comparison

Table 3.2 compares the features of EBBA, Global Breakpoints, and safe DPEs, the

third subclass in the Data Path Debugging hierarchy.

In EBBA, the concurrency operator (/) is employed for events at one processor

as well as for events at different processors and expresses an interleaving semantics2,

similar to a conjunction. Hence the expressiveness of EBBA is limited, because two

causally dependent events cannot be distinguished from two causally independent

events. Another characteristic of EBBA is that events signalled from a single proces-

sor have to be ordered before entering a shuffle automaton. This could be achieved

by implementing FIFO network delivery.

The Global Breakpoints syntax allows causal dependence and causal indepen-

dence between events to be expressed. The existence of the negation operator @

further increases the expressiveness of the event language. However, the fact that

there may be multiple event instances of the same event class leads to semantic

difficulties in connection with the negation operator. Depending on which event

instance is consumed in a specific case, the outcome of an evaluation can differ, that

is, a global event may either be detected or not detected.

Finally, safe DPEs can also express causal dependence and causal independence

between events. The use of predecessor automata for event detection implies that

all events carry explicit information about their predecessors. This means that

causal dependence is not detected in the predecessor automaton, but in the source

processor. In the same way as for EBBA, events have to be ordered before entering

a predecessor automaton.

2The operand events may be arbitrarily interleaved in time.

41



Systems EBBA Global Breakpoints Data Path Debugging

Simple Events primitive events primitive events path functions

Complex Events high-level events global events safe DPEs

– Conjunction concurrency ! conjunction & –

– Disjunction choice | alternation | exclusive selection +

– Sequence sequence • happened-before < sequencing ;

– Closure repetition + and ! – repetition !

– Concurrency concurrency ! simultaneity ∧ causal independence &

– Negation – negation/between @ –

Order physical order causal order causal order

(within a process)

Timestamp absolute vector –

(time of detection) (time of occurrence) –

Detection shuffle automata breakpoint trees predecessor automata

Mechanism

Recognition remote or distributed centralised

distributed (with replication)

Table 3.2: Distributed Debugging Systems – A Comparison

3.7 Summary

This chapter described the use of events in distributed debugging systems. The

different research prototypes agree on what constitute primitive events and the con-

struction of composite events; Global Breakpoints provides additional expressiveness

through the negation event operator. However, the semantics of event detection dif-

fers considerably in the different research prototypes. EBBA has weak semantics,

allowing only the concurrency event operator / to be applied to events at different

sites. On the other hand, EBBA’s debugging tools are remarkably sophisticated.

In Global Breakpoints and safe DPEs, the semantics is based on causal order (see

Section 3.1.2). The first uses vector time to determine causal order. Vector time im-

poses a scalability problem, because a vector timestamp contains one time value for

each site. In safe DPEs, the causal order is explicit in primitive event occurrences,

that is, a primitive event occurrence contains information about which primitive

event occurrences preceded it. It is not clear how such primitive event occurrences

can be detected generally.

42



Chapter 4

Analysis

4.1 Review of Related Work

In active database and distributed debugging systems, events are employed for mon-

itoring the runtime behaviour. On the detection of a pre-specified primitive or com-

posite event, the system reacts accordingly. Table 4.1 summarises the main features

of both research areas, addressed in Chapters 2 and 3 respectively. The main ob-

servation is that current active database systems monitor the external and internal

behaviour of centralised systems (by employing time events regarding physical time),

whereas distributed debugging systems monitor the internal behaviour of distributed

systems (by monitoring the cause-effect relationship).

The following list summarises the positive (+) and negative (−) features of active

database systems:

+ expressive event languages (different kinds of primitive events, negation event

operator, other derived event operators)

+ convenient handling of event parameters (parameters pre-defined and instan-

tiated by the system for all events except abstract events)

+ well-defined and clear semantics, including event consumption

− only centralised systems, not directly extendible to distributed systems

In active database systems, the specification and detection of primitive and com-

posite events is highly developed. All aspects of how to specify a behaviour pattern,

including the state information to be retrieved (in the form of accumulated event

parameters), and of how to detect this behaviour pattern at system runtime are well

43



Active Database Systems Distributed Debugging Systems

consider centralised systems consider distributed systems

• arrival order at event detector • arrival order at event detector

= occurrence order 1= occurrence order

• no problem with physical time • problem with physical time

monitor external and internal system monitor internal system behaviour

behaviour

• real time • no real time

• time events • no time events

• temporal order • causal order

primitive and composite events primitive and composite events

• no concurrency event operator • concurrency event operator

semantic model semantic model

• determination of event ordering: • determination of event ordering:

uncomplicated complicated (no agreement)

• well-defined event consumption • undefined event consumption

• rule priorities • no rule priorities

centralised centralised, distributed, or replicated

event detectors event detectors

Table 4.1: Features of Active Database and Distributed Debugging Systems

thought out and semantically sound. However, to date active database research has

focussed on centralised systems. This will not be satisfactory in the future, since

interest is moving all the time towards distributed database systems.

The following list summarises the positive (+) and negative (−) features of dis-

tributed debugging systems:

+ clear event languages (similar to regular expressions)

+ attempt to minimise interference with normal runtime behaviour

+ powerful monitoring tools and sophisticated user interfaces

− handling of event parameters is unclear

− fuzzy semantics and undefined event consumption

44



The main concern of distributed debugging systems is to master the vast amount

of primitive event occurrences in distributed computations without interfering with

normal runtime behaviour1; the user specifies an expected runtime behaviour and

the distributed debugging system compares the specified runtime behaviour with

the actual runtime behaviour. Since the user has only a vague idea of the actual

runtime behaviour, the specification is necessarily somewhat fuzzy. Hence, the fuzzy

semantics is intentional to some extent. However, in Chapter 3 it was shown that

some negative features are due to omissions in the various research projects.

4.2 Goals of This Work

The goals of this work are:

• to develop algorithms for monitoring the external and internal behaviour of

distributed (database) systems

• to give a clear semantics for the specification and detection of primitive and

composite events

• to employ fully distributed event detectors

• to reflect upon the special characteristics of distributed systems

• to support event parameter handling

• to realise the algorithms using some distributed programming system

In summary, the work on active database systems is to be applied to distributed

systems, taking into account the existing work on distributed debugging systems.

The results show how to monitor the behaviour of distributed systems in general.

1Interference can lead to different runtime behaviour, i.e. an error is caused by the debugger

itself.

45



46



Chapter 5

Syntax of Events

Chapter 2 discussed events in active database systems and Chapter 3 focussed on

events in distributed debugging systems. The goal of this chapter is to present a

specification language for primitive and composite events which has the expressive-

ness of event languages in active database systems, but extended to accommodate

distributed environments. The following sections address the syntax of primitive

events, the syntax of composite events, and the notion of event parameters respec-

tively. An extensive example illustrating the specification of primitive and composite

events for a telecommunication application follows in Section 5.4.

5.1 Primitive Events

Active database systems support different kinds of primitive events concerning occur-

rences inside a database system (data manipulation events and transaction events)

and in its environment (time events and abstract events). On the other hand,

distributed debugging systems relate primitive events to the statements of a pro-

gramming language. In this thesis, primitive events should have the complexity of

primitive events in (centralised) active database systems including time events for

expressing physical time, and should be applicable in distributed systems.

Definition 5.1.1 In a distributed system, primitive event types are site-related,

that is, events at different sites are considered as of different type.

There are numerous reasons for relating primitive event types to occurrences at

single sites:

47



• Two primitive events at a single site are semantically different from two prim-

itive events at remote sites; their evaluation differs and therefore they should

be considered separately.

• The naming of primitive event types imposes a problem in large-scale (possibly

heterogeneous) distributed systems. Site-relative naming provides both scaling

and federation.

• In order to implement specified primitive and composite event types, an in-

terest in primitive event types has to be registered with corresponding sites.

Primitive event occurrences are then notified at the registered event detectors

[?]. Site-information is necessary for the registration-notification process.

Definition 5.1.2 A primitive event expression is a character string denoting either

a time event, a data manipulation event, a transaction event, or an abstract event.

A specified primitive event expression determines a primitive event type.

Notation The site of origin of a primitive event type is made explicit with

site n ! primitive event expression.

The following sections discuss the different kinds of primitive events and specif-

ically, their application in distributed systems. Primitive events in distributed de-

bugging systems fall into the category of abstract events.

5.1.1 Time Events

Naturally, since an event is an isolated instant in time [?], any reached point in

time represents a primitive event. In a distributed system, points in time are

designated with respect to the readings of local clocks. Hence, a specified time

event denotes the readings of a particular local clock. Time events can be ab-

solute, relative, or periodic. An absolute time event is given in terms of a date

and time specification and the site of a local clock, site n ! day/month/year:-

hours:minutes:seconds.fraction. The granularity of fraction is based on the

clock resolution (e.g. milliseconds). Relative time events define a temporal offset to

some reference event, such as (event X + 30 minutes). Since the time period (30

minutes in this case) is added to the time of occurrence of the reference event (event

X in this case), the time period should be measured at the site where the reference

event occurred. Hence, the example above corresponds to site of occurrence(X)

! (event X + 30 minutes). Finally, periodic time events identify recurring time

48



events, such as site n ! every Friday at 17:00:00.00. Again, site n identifies

the site of a local clock.

5.1.2 Data Manipulation Events

Data is manipulated in terms of database operations. In relational database sys-

tems, these are the insertion, deletion, and modification of tuples. In object-oriented

database systems, these are method executions in general. Since database operations

have a duration between their beginning and their end, two corresponding primitive

events can be identified: the beginning of an operation (referred to as BEFORE) and

its end (referred to as AFTER). See Chapter 2 for an in depth discussion of data

manipulation events in different research prototypes. In distributed systems, the

specification of a data manipulation event must include a site specification, if a cor-

responding data manipulation operation exists at different sites. For example, con-

sider an object class accounts which is distributed to different sites (corresponding

to the branches of a bank), the event site n ! AFTER.withdraw(account) identi-

fies the end of a withdraw-operation on account-objects at site n. Occurrences of

AFTER.withdraw(account) events at arbitrary sites can be specified as a disjunction

of primitive events. Henceforth, AFTER is considered as default and may be omitted

in the specification.

5.1.3 Transaction Events

A distributed transaction consists of a number of subtransactions. One site coordi-

nates the distributed transaction, the distributed transaction manager (DTM). Each

site employs a local transaction manager (LTM) for dealing with the subtransactions

at that site [?].

As in centralised database systems, the begin, the commit and the abort of a

distributed transaction (signalled by the DTM) denote primitive events (referred

to as BOT, EOT, and ABORT respectively). In addition, each subtransaction issues a

local begin and a local commit or local abort (referred to as l BOT, l EOT, and l ABORT

respectively). Furthermore, the creation of a subtransaction denotes a primitive

event, either the remote create of the DTM (referred to as r COT) or the local create

of the LTM (referred to as l COT). Again, the specification of a transaction event

includes a site specification, such as in site n ! BOT.

49



5.1.4 Abstract Events

Abstract events are events which are signalled from outside a database system,

either by users or by application programs. Consequently, abstract events include

primitive events in distributed debugging systems, where a primitive event can be

associated with any statement of the programming language. The names of abstract

event types have to be defined explicitly with DEFINE PRIM EVENT event name. The

system-wide unique naming of abstract events is the responsibility of the user, that

is, he/she has to ensure that no two distinct abstract event types carry the same

name.

5.2 Composite Events

Composite events are made up of primitive and/or other composite events and event

operators. Different kinds of primitive events and the specification of primitive

event expressions were discussed in the previous section. This section deals with

event operators. The kinds of event operators applied in active database systems

and in distributed debugging systems are similar, except that there is no concur-

rency event operator in active database systems, because they are centralised. In

distributed systems, it is necessary to introduce a concurrency event operator in

order to express that two events at different sites occur “concurrently”. But, what

does “concurrently” exactly mean? In distributed debugging systems, the notions

of “concurrency” and “happened before” are based on causality (see Section 3.1.2).

This is not feasible when dealing with physical time. An in depth discussion of the

semantics of composite events and specifically, of the notions of “concurrency” and

“happened before”, will be given in Chapter 6.

The set of event operators should build a representative cross-section of the event

operators used in active database systems and in distributed debugging systems.

The event operators should be expressive enough in order to specify even complex

behaviour patterns as composite event expressions. However, in the context of this

thesis it is not necessary to introduce a wide variety of event operators which make

the specification of events more convenient without increasing the expressive power

of the event specification language.

Definition 5.2.1 A composite event expression is defined as follows:

• A primitive event expression is a composite event expression.

50



• If E1, E2, and E3 are composite event expressions, then (E1 , E2), (E1 | E2),

(E1 ; E2), (E1 ‖ E2), (E1
! E2), (E1

+ E2), and (E1 ; NOT E2 ; E3) are

composite event expressions.

• Nothing else is a composite event expression.

Composite event types are either defined explicitly with

DEFINE EVENT event name = composite event expression

or implicitly, in the ON-part of an ECA rule definition [?], with

DEFINE RULE rule name =

ON composite event expression

IF < condition >

DO < action >

In the first case, event name determines the name of a composite event type.

This name can be reused in the definition of other composite event types. In the

latter case, ON designates the event-part, IF the condition-part, and DO the action-

part of an ECA rule. The event-part ON can either be a composite event expression

or any name of a composite event type previously defined.

The (,) event operator denotes a conjunction and (|) a disjunction. The notions

of “happened before” and “concurrency” are captured in the sequence (;) and the

concurrency (‖) event operators. Finally, (!) and (+) depict iterations and (NOT)

a negation.

Note, that not all composite event expressions are meaningful. For example,

the composite event expression DEFINE EVENT Neg = E1; NOT E2; (E2
+ E3) can

never lead to the detection of an event, since E2 is required in the occurrence of

(E2
+ E3) and at the same time forbidden in NOT E2. [?] discusses this issue in the

context of active database systems and [?] in the context of distributed debugging

systems. The latter gives a formal model for detecting unreasonable composite event

expressions.

Definition 5.2.2 A local (composite) event expression is a composite event expres-

sion whose constituent event expressions relate solely to one site1.

Definition 5.2.3 A global (composite) event expression is a composite event ex-

pression whose constituent event expressions relate to more than one site.

1Note, that all primitive event expressions are local event expressions.

51



It is convenient to distinguish local and global event expressions. All constituent

events of a local event occur at the same site. Hence, the special characteristics of

distributed systems do not have any influence on the semantics and the detection

of local events. Instead, the same results as in (centralised) active database systems

apply to local events in distributed systems.

An event is an isolated instant in time [?], that is, an event occurs at a specific

point in time. For primitive events, the time of occurrence corresponds to the time

of the local clock just after event detection (except for time events, where the time

of occurrence corresponds to the event itself). For composite events, the time of

occurrence is derived from the times of occurrence of the primitive events partici-

pating in that occurrence. Since a composite event is detected at the occurrence of

the “last” such primitive event, the terminator event (see Section 2.1), the time of

occurrence of that event becomes the time of occurrence of the composite event. In

distributed systems, it is not only important to know when an event occurred, but

also where it occurred. Hence, an event has a location of occurrence which corre-

sponds to the origin of the time of occurrence. Time of occurrence and location of

occurrence together build the timestamp of an event. Composite events are detected

on the basis of the timestamps of their constituent events.

5.2.1 Conjunction: Ce = (E1 , E2)

The conjunction-operator (,) is applied, if both operand events are to occur and

may be arbitrarily interleaved in time. E1 and E2 may originate at the same or at

different sites. The timestamp of Ce corresponds to the timestamp of the “later”

event of E1 and E2. The meaning of “later” depends on whether Ce denotes a local

or a global event and has to be examined carefully.

5.2.2 Disjunction: De = (E1 | E2)

There are two possible semantics for the disjunction-operator (|): exclusive-or and

inclusive-or. Applying exclusive-or means detecting De as soon as one of E1 or E2

occurs, whereas inclusive-or considers both operand events if they occur “at the

same time”. In centralised systems, no two events can occur “at the same time” and

hence, the disjunction-operator always corresponds to exclusive-or. In distributed

systems, two events at different sites can occur “at the same time” and hence, both

exclusive-or and inclusive-or are applicable. The timestamp of De corresponds to

either E1’s or E2’s timestamp, if only one operand event led to the occurrence of

52



De. Otherwise, it is derived from the timestamps of both operand events.

5.2.3 Sequence: Se = (E1 ; E2)

The sequence denotes that event E1 “happens before” event E2. However, the

semantics of “happens before” differs, depending on whether Se is a local or a global

event. Therefore, although the syntax is the same for local and for global events, the

two cases have to be considered separately. The timestamp of Se is the timestamp

of the later event E2.

5.2.4 Concurrency: Pe = (E1 ‖ E2)

The concurrency-operator (‖) is used, if both operand events are to occur virtually

“at the same time”. This implies that this operator applied to two distinct operand

events2 is only applicable in global events; the operand events E1 and E2 occur

at different sites and it is not possible to establish an order between them. The

timestamp of Pe3 is derived from the timestamps of both operand events.

5.2.5 Iteration: Ie1 = (E1
! E2) and Ie2 = (E1

+ E2)

The iteration-operators are applied, if all occurrences of E1 events are to be collected

before the occurrence of an E2 event. E2 serves as a delimitation, that is, Ie1 and

Ie2 occur when E2 occurs and inherit the timestamp of E2. ! implies that there are

zero or more occurrences of E1 before E2 for the detection of Ie1, whereas there are

one or more occurrences of E1 for the detection of Ie2.

5.2.6 Negation: Ne = (E1 ; NOT E2 ; E3)

A negation event corresponds to a restricted sequence event, where the sequence

(E1 ; E3) is only signalled, if there was no occurrence of E2 in between. Hence,

the timestamp of Ne is the timestamp of E3. In some cases, it is desirable that the

monitoring period starts immediately, that is, that the E1 event operand is omitted.

This is achieved by substituting E1 with the special time event Now (see also [?])

which is signalled at the beginning of an event monitoring session.

The negation event Ne can be represented as an event with amonitoring interval :

E3 IN [E1 . . . E2]; the event E3 has to occur in the time interval starting with E1 and

2Note, that an event occurs at the same time as itself.
3Pe stands for Parallel event.

53



ending with E2. This notation is convenient and will be used later in this chapter.

5.3 Event Parameters

Detected event occurrences have parameters, which capture the circumstances under

which the event occurred. In active database systems, the parameters of a detected

event are used to evaluate the condition and to execute the action of an ECA rule.

In distributed debugging systems, the parameters are used to display debugging

information to the user.

In the previous section, it was mentioned that all events, primitive and com-

posite, have a timestamp parameter. The timestamp indicates when and where the

event occurred. Other parameters of primitive and composite events are discussed

subsequently.

5.3.1 Primitive Event Parameters

Each primitive event occurrence has a timestamp parameter. Since primitive event

types are site-related (see Proposition 5.1.1), the location of occurrence (which is

part of a timestamp) is inherent in the event type. However, as will be shown

in the next chapter, a timestamp is meaningless without information on its origin

and hence, the location of occurrence is always stated explicitly. [?] introduces two

other environment parameters for primitive events: the occurring transaction, which

identifies the transaction during which the event occurred, and the user identifier,

which identifies the user who started the occurring transaction.

Time Event Parameters

Time events have only a timestamp parameter. For absolute time events, the value

of this parameter is inherent in the specified event. For relative and for periodic time

events, it is calculated at system runtime in order to set timer interrupts for signalling

the events. The timer interrupt for a relative time event is set after the reference

event occurred and the timer interrupt for a periodic event is set periodically, for

example, after the last interrupt was generated.

Data Manipulation Event Parameters

Besides a timestamp, data manipulation events have the environment parameters

occurring transaction and user identifier. The other parameters correspond to the

54



Composite Event Timestamp Other Parameters

(E1 , E2) MAX{E1, E2} parameters of E1 and parameters of E2

(E1 | E2) exclusive-or E1 or E2 parameters of E1 or parameters of E2

(E1 | E2) inclusive-or E1 and/or E2 parameters of E1 and/or parameters of E2

(E1 ; E2) E2 parameters of E1 and parameters of E2

(E1 ‖ E2) E1 and E2 parameters of E1 and parameters of E2

(E1
! E2) E2 union of parameters of E1 and parameters of E2

(E1
+ E2) E2 union of parameters of E1 and parameters of E2

(E1 ; NOT E2 ; E3) E3 parameters of E1 and parameters of E3

Table 5.1: Parameters of Composite Events

formal arguments of a data manipulation operation and the relation/object to which

the operation applies. The parameters of data manipulation events are instantiated

by the database system.

Transaction Event Parameters

Transaction events have a timestamp and the other environment parameters occur-

ring transaction and user identifier.

Abstract Event Parameters

Besides a timestamp, the parameters of abstract events are user-defined with DEFINE

PRIM EVENT event name(param1,param2,...). The user-defined parameters are

instantiated explicitly by the user or application program, when the abstract event

is raised. This is not true for data manipulation events, where the parameters are

instantiated by the database system.

5.3.2 Composite Event Parameters

The parameters of a composite event are derived from the parameters of its con-

stituent events. As mentioned earlier, each composite event has a timestamp param-

eter, which indicates when and where the event occurred. The timestamp parameter

was addressed informally in the previous section. A formal discussion within the con-

text of the general semantics of composite events will follow in Chapter 6. Table

5.1 gives an overview of the parameters of composite events depending on the event

operator.

55



5.3.3 Parameter Restrictions

In many cases, it is necessary to impose further restrictions on the possible com-

binations of events. Those parameter restrictions state conditions on the event

parameters, which must be fulfilled at system runtime by the constituent events of

a composite event (see Section 2.1). For example, it may be necessary to relate all

constituent events of a composite event to the same object or to the same transac-

tion. Parameter restrictions are handled differently in different research prototypes;

Ode (Section 2.3) and EBBA (Section 3.2) permit arbitrary relational expressions

between event parameters, SAMOS (Section 2.4) permits equality between event

parameters, and Sentinel (Section 2.5) disallows parameter restrictions completely.

In Sentinel the justification is that parameter restrictions are conditions and that

conditions should not be merged with events, but rather appear in the condition-

parts of ECA rules [?, page 30]. However, consider the example “customer has bonus

status ; customer spends more than £100 a month at Tesco”. Without parameter

restrictions the event detector would combine all “customer has bonus status”-events

with all “customer spends more than £100 a month at Tesco”-events, regardless of

the values for customer. A large number of composite events with non-matching

customers would be detected and disregarded in the condition-part.

In this thesis, specifying the equality of event parameters is supported. For ex-

ample, DEFINE EVENT Com1(param) = E1(param) event op E2(param) states that

the value of param in an occurrence of E1 should be equal to the value of param in

an occurrence of E2, and that the common value should be stored as param with

the other parameters of a detected composite event. The definition of a composite

event includes only the parameters concerning parameter restrictions. Other pa-

rameters are derived automatically (see Section 5.3.2). Storing param and its value

explicitly with the parameters of a composite event makes it possible to specify

parameter restrictions for more complex composite events, such as DEFINE EVENT

Com2(param) = Com1(param) event op E3(param). There are three possibilities

for using parameter restrictions with a negation:

DEFINE EVENT Neg = E1(param) ; NOT E2(param) ; E3 This case is slightly pe-

culiar in that it does not restrict the possible combinations of events; an E1

event is not combined with an E2 event. Rather, the param parameter of E2 is

bound by the earlier occurrence of E1 and E2 events with parameters unequal

param are allowed to occur in between E1 and E3. Since the sequence event

E1 ; E3 can have arbitrary parameter combinations, no additional parameter

56



is derived for the composite event.

DEFINE EVENT Neg(param) = E1(param) ; NOT E2 ; E3(param) This case is sim-

ilar to an ordinary sequence event with parameter restrictions; param must

match in E1 and E3 and no E2 (with arbitrary parameters) occurs in between.

DEFINE EVENT Neg(param) = E1(param) ; NOT E2(param) ; E3(param) This ca-

se represents a combination of the previous two cases.

Note, that it is not sensible to impose parameter restrictions on a composite event

specified with a disjunction.

5.4 Examples

Telecommunication applications are inherently distributed. The scenario outlined in

this section deals specifically with the world of telephoning. Each company, almost

each household in the western world, and a considerable number of households in

developing countries are connected to the telephone network. An interconnection

between any two telephone subscribers can be established in a course of seconds. A

number of computers for switching telephone calls are involved in this interconnec-

tion process.

Figure ?? shows the North American Telephone Switching Office Hierarchy for

interregional telephone calls between any two subscribers A and B in regions served

by different regional centres [?]. Alternate routing is available. Solid lines connecting

switching offices indicate circuits that are always available, provided calling volume

is not too great. Dotted lines indicate circuits installed only when the amount of

traffic between different switching offices merits installation. For the case illustrated,

a maximum of ten switching offices can be used for one telephone call. The five

levels of switching offices may be supplemented by one or two more for international

telephone calls.

A number of telephone companies jointly provide the North American telephone

network. Telephone subscribers rent their telephones from one specific company,

but may have accounts with other companies as well. In this way, the cheapest rates

for local, national, and international telephone calls can be exploited.

Example 5.4.1 Three major telephone companies, AT&T, GTE, and BELL, offer

a special service to customers having an account with each of them and paying their

57



bills “promptly”. The definition of “promptly” differs between different telephone

companies4.

DEFINE EVENT prompt pay AT&T(customer) =

payment AT&T(customer) IN

[invoice AT&T(customer)...invoice AT&T(customer) + 7 days]

DEFINE EVENT prompt pay GTE(customer) =

payment GTE(customer) IN

[invoice GTE(customer)...invoice GTE(customer) + 14 days]

DEFINE EVENT prompt pay BELL(customer) =

payment BELL(customer) IN

[invoice BELL(customer)...invoice BELL(customer) + 10 days]

DEFINE RULE Conjunction Example =

ON prompt pay AT&T(customer) , prompt pay GTE(customer) ,

prompt pay BELL(customer)

IF true

DO special service(customer)

Three prompt pay-events are defined depending on the telephone company. If a

customer pays his/her bill within a certain period from invoicing (7 days for AT&T,

14 days for GTE, and 10 days for BELL), a prompt pay-event is signalled. Different

payment- and invoice-event types may occur at different sites.

The ON-part of the rule defines a conjunction between the three prompt pay-

events with the same parameter values for customer. Again, the prompt pay-events

occur at different sites, namely at the clearing-houses of the corresponding telephone

companies.

Example 5.4.2 In North America, telephone fraud is an immense problem costing

telephone companies millions of dollars each year. One possibility to detect telephone

fraud is to monitor the use of PINs (Personal Identification Numbers). A PIN can

only be used by its owner and therefore the concurrent use of a single PIN at two

different locations indicates an irregularity and is reported.

DEFINE EVENT make phone call =

site 1 ! make phone call | . . . | site n ! make phone call

DEFINE RULE Concurrency Example =

ON make phone call(PIN) ‖ make phone call(PIN)

IF timestamp1 1= timestamp2

DO inform authorities(PIN)

4In the following, the name of an example rule connotes the event operator which is illustrated.

58



Telephone calls for a specific PIN can be made from a large number of telephones

and are registered at one of n registration sites. Hence, the event make phone call

represents a disjunction (exclusive-or) of primitive make phone call-events, one for

each of these sites (note, that primitive event types are site-related).

A concurrency between two different events implies that the events occur at

different sites. However, an event is concurrent with itself (reflexivity). Therefore,

it is demanded that the make phone call-events have different timestamps, that is,

denote different events. The PIN parameter values must be the same for both events.

Example 5.4.3 Another possibility to detect telephone fraud is to monitor average

usage patterns each day. The following rule expresses that all telephone calls for

a specific PIN on a specific day are collected and evaluated. If the most expensive

telephone call exceeds $100 or the total amount exceeds $400, the authorities are

informed.

DEFINE RULE Iteration Example =

ON make phone call(PIN)+ IN site i ! EVERY DAY [0.00...24.00]

IF MAX{amount} > $100 OR SUM{amount} > $400

DO inform authorities(PIN)

All make phone call-events (defined as in Example 5.4.2) for a specific PIN

occurring within a day are collected. The events may occur at different sites. The

periodic time events EVERY DAY 0.00 and EVERY DAY 24.00 relate to the local clock

at site i, which may be the site where the composite event is detected. The amount-

parameter-values of the collected make phone call-events are then evaluated in the

IF-part.

Example 5.4.4 Telephone customers can help detecting telephone fraud; going

on holiday they deregister their PIN. If the PIN is used thereafter, before being

reregistered, the authorities are informed.

DEFINE RULE Sequence1 Example =

ON make phone call(PIN) IN [deregister(PIN)...reregister(PIN)]

IF true

DO inform authorities(PIN)

Again, the events deregister, reregister, and make phone call (defined as

in Example 5.4.2) may occur at different sites.

Example 5.4.5 Telephone customers should settle their telephone bills within a

month of invoicing. If this is not the case, the telephone company issues a reminder.

59



DEFINE RULE Negation Example =

ON invoice(tele com, customer) ; NOT payment(tele com, customer) ;

(invoice(tele com, customer) + 1 month)

IF true

DO send reminder(customer)

After the occurrence of the invoice-event, the parameter values for tele com

and customer are fixed. That means, if a payment-event for this parameter tuple

does not occur within a month from invoicing, the NOT-event occurs and the action

is executed.

Example 5.4.6 Routing telephone calls from Local Central Offices to International

Offices should cause as little overhead as necessary. For that reason, standard routes

are checked regularly in order to detect the fastest option. A signal is broadcast from

some Local Central Office to two (or more) International Offices, IC1 and IC2 in this

example. The signal received first determines the future routing.

DEFINE RULE Sequence2 Example =

ON signal received IC1 ; signal received IC2

IF true

DO set standard route to IC1

DEFINE RULE Sequence3 Example =

ON signal received IC2 ; signal received IC1

IF true

DO set standard route to IC2

The signal received-events occur at different sites, namely at the International

Offices IC1 and IC2. This example shows that it is important to establish the order

between two events from different sites to a fine granularity.

5.5 Summary

This chapter discussed the specification of primitive and composite events in dis-

tributed systems, including the treatment of event parameters. The resulting event

specification language derives from earlier work on (centralised) active database

systems and distributed debugging systems. An extensive example illustrating the

specification of primitive and composite events for a telecommunication application

was presented.

60



Chapter 6

Semantics of Events

In the previous chapter, the specification of primitive and composite events in dis-

tributed systems was discussed. The goal of this chapter is to identify the formal

semantics of primitive and composite events, that is, to identify when and where an

event occurs. The semantics of primitive events is straightforward: a primitive event

occurs and its timestamp is allocated when the occurrence is detected. The seman-

tics of composite events is more subtle; it depends on the timestamps of constituent

primitive and composite events and on event operators. The formal semantics of

composite events is developed in the following sections. First, the notions of time

and order in distributed systems are investigated. In this dissertation, the notions

of time and order relate to physical time and temporal order. The structure and

handling of timestamps are discussed thereafter. Section 6.3 addresses the general

semantic model and Section 6.4 addresses the simplified semantic model. The latter

is applicable in specific distributed systems only. Finally, the formal semantics of

events is presented in Section 6.5.

6.1 The Notion of Physical Time in Distributed Sys-

tems

A fundamental result of Einstein’s Special Theory of Relativity is that there is no

absolute physical time; time is relative to the observer. Depending on the frame

of reference, the relative order between two events may be reversed for two differ-

ent observers. Although the influence of special relativity is negligible in common

distributed systems, it is essential for understanding the notion of time as a whole;

there is a physical limitation to the ordering of events.

61



The notion of physical time is also a problem in distributed systems; there is

no global time. Each site of a distributed system contains at least one local clock

(depending on the processor architecture, see Section 6.2.1). These clocks are elec-

tronic devices that count oscillations occurring in a crystal at a definite frequency.

Subsequently, this count will be referred to as local clock tick. Some software de-

vice reads local clock ticks and calculates the corresponding date and time-of-day,

subsequently called the local time. Depending on the underlying oscillators and the

environment temperature local clocks drift apart. In order to assess event occur-

rences with respect to the system environment and the happenings at remote sites, it

is necessary to synchronise local clocks. Special time servers build the basis for clock

synchronisation. These time servers are equipped with receivers, for example GPS

(Global Positioning System) [?], for catching UTC (Universal Time Coordinated)

signals from land-based radio stations or satellites. UTC signals have an accuracy

in the order of 0.1− 10 milliseconds. The time servers transmit messages containing

time information to the remote sites of a distributed system.

There are different protocols for clock synchronisation, for example NTP (Net-

work Time Protocol) [?], which is the standard for clock synchronisation in the

Internet. Typically, NTP achieves a synchronisation error of below 100 milliseconds

even in wide area networks (WANs). For a detailed discussion on synchronisation

protocols, see [?].

6.2 Time and Order

In this thesis, time is modelled as a discrete quantity, that is, the timeline is a

sequence of discrete ticks isomorphic to the natural numbers. This accords with the

definition of an event being an isolated instant in time.

6.2.1 Centralised Systems

Centralised systems are based on uniprocessor or multiprocessor architectures. Each

processor has its own local clock. In a multiprocessor system, one processor may be

allocated for timer readings and interrupts [Bac92]. Hereafter, a single local clock per

centralised system is assumed for detecting time events and allocating timestamps.

If this were not the case, a distributed system would be considered on a per-processor

rather than a per-site basis.

Depending on the local clock resolution two successive events may correspond

62



to the same timestamp. In order to distinguish such events and determine their

order, a counter variable could be employed which is reset to 0 each time the local

clock ticks and incremented with each event occurrence. Timestamps could then be

extended with an additional field capturing its value.

In a centralised system with a single local clock, two distinct events e1 and e2 can

always be ordered by comparing their (extended) timestamps; either e1 happened

before e2, or e2 happened before e1. Hence, events are totally ordered.

The following list summarises the assumptions for centralised systems:

• There is a single local clock for detecting time events and allocating time-

stamps.

• Events are totally ordered. Distinct events have distinct timestamps.

6.2.2 Distributed Systems

In distributed debugging systems, the causal relationship is essential in order to

locate the cause of errors. Hence, the notions of time and order are based on logical

clocks and causal order (see Chapter 3). However, in this thesis the notions of time

and order have to be based on physical clocks and temporal order. A corresponding

model is developed in this section.

Each site in a distributed system has a single local clock. The considerations

in the previous section are valid for each of these sites. In order to establish the

temporal relation between two events at distinct sites, it is necessary to compare

timestamps allocated at these sites. Hence, timestamps need to be globally mean-

ingful. In a distributed system with synchronised local clocks this is best achieved

through an approximated global time base [?, ?]. Conceptually, there is a reference

clock z with granularity gz. The synchronised local clocks are characterised by their

precision Π, which is the maximum time difference between two corresponding ticks

of any two local clocks.

Definition 6.2.1 (Precision) Let clockz(clockk(i)) be the time of occurrence of

the i-th tick in site k measured by the reference clock z. The precision Π is defined

as follows:

Π = Max { ∀i ∀k ∀l : | clockz(clockk(i))− clockz(clockl(i)) | }

A global time can be approximated by adjusting the granularity of local clock

measurements to a global clock granularity gg. If gg was less than Π, two simultaneous

63



events might receive timestamps distant more than one clock tick. This would not

be meaningful with respect to establishing the temporal relation between two events

at distinct sites. Consequently gg should not be smaller than Π (gg > Π). This is

known as the granularity condition. Figure ?? shows corresponding ticks of three

local clocks as measured by the reference clock.

Assuming gg > Π, two simultaneous events receive timestamps distant at most

one clock tick. The reason for this is that corresponding gg-intervals of local clocks

are shifted against each other by up to Π. Figure ?? shows two event occurrences

on two distinct sites. Sitek’s clock is faster than Sitel’s clock with a drift of Π

between them. Although e1 happens before e2 with respect to the reference clock,

their timestamps imply an inverse ordering (e1 : 3 and e2 : 2). Hence, if two events

at distinct sites are less than two clock ticks apart, their temporal relation cannot

be deduced from their timestamps and they are said to happen concurrently. If the

distance is at least two clock ticks, their temporal relation can be determined, since

2gg > gg +Π. The ordering of remote events is called 2gg-precedence.

Definition 6.2.2 (2gg-restricted temporal order) The global clock granularity

gg is given. 2gg-restricted temporal order →2gg between primitive events e1 and e2

is defined as follows:

1. If e1 and e2 are primitive events occurring at the same site and e1’s timestamp

is smaller than e2’s, then e1 →2gg e2.

2. If e1 and e2 are primitive events occurring at distinct sites and e1’s timestamp

is at least 2gg smaller than e2’s, then e1 →2gg e2.

Definition 6.2.3 (2gg-restricted concurrency) The global clock granularity gg

is given. 2gg-restricted concurrency ‖2gg between primitive events e1 and e2 is defined

as follows:

e1 ‖2gg e2 iff ¬(e1 →2gg e2) and ¬(e2 →2gg e1)

2gg-restricted temporal order defines a partial ordering on primitive events in

distributed systems, whereas events in centralised systems are totally ordered. It

should be noted that the best ordering can be achieved, if gg is just greater than Π

(gg = Π+ ε).

Example 6.2.4 The global clock granularity gg = 1/100sec is given. Consider two

primitive events e1 and e2.

64



Event Site Global Time Local Clock Tick

e1 k 19/10/95,2:32:27.32 23991548127

e2 ? 19/10/95,2:32:27.33 23991548334

If ? has the value k, the events originate at a single site and their local represen-

tatives are compared in order to determine the temporal order e1 →2gg e2. If ? has

the value l, the events originate at remote sites and comparison yields e1 ‖2gg e2,

because the global representatives are less than two clock ticks apart.

The following list summarises the assumptions for distributed systems:

• Each site has a single local clock. The local clocks are synchronised with

precision Π.

• Events are partially ordered; that is, two remote events may be ordered (dis-

tance more than two global clock ticks) or concurrent (distance less than two

global clock ticks).

2gg-restricted temporal order defines a partial ordering on events based on phys-

ical clocks, whereas Lamport’s causal order (see Section 3.1.2) defines a partial or-

dering on events based on logical clocks.

6.3 Timestamps in Distributed Systems

As discussed in the previous chapter, each event is associated with a timestamp in-

dicating when and where it occurred. The detection of composite events is based on

timestamps, that means, timestamps are used to establish the temporal relation be-

tween primitive and/or composite events originating at the same or at different sites.

When a composite event is detected, its timestamp is derived from the timestamps of

constituent events. However, 2gg-restricted temporal order and concurrency, →2gg

and ‖2gg , are used to establish the temporal relation between primitive events origi-

nating at the same or at different sites, but not between composite events. Therefore,

since composite events are composed of primitive and/or other composite events and

event operators, →2gg and ‖2gg have to be extended in order to deal with both prim-

itive and composite events. The semantics of the event operators sequence (;) and

concurrency (‖) depends on these extended versions of →2gg and ‖2gg .
In order to examine the semantics of the event operators, it is necessary to first

define the structure of timestamps for primitive and composite events. Second, the

65



Seq Con Description

; ‖ event operators

→ ‖ order relations between primitive events,

based on causal order

→2gg ‖2gg order relations between primitive events,

based on temporal order (2gg-precedence)

< ∼ temporal relations between timestamps

for primitive and composite events

Table 6.1: Overview of Sequence and Concurrency Operators

temporal relationships between timestamps for primitive and composite events are

defined in terms of two relations: happened-before < ⊆ T × T and concurrency

∼ ⊆ T × T , where T denotes the set of timestamps. < represents the extension of

→2gg and ∼ represents the extension of ‖2gg . Finally, the derivation of “complex”

timestamps for particular composite events involving conjunction (,), disjunction

(|), or concurrency (‖) event operators is discussed: the joining procedure. Table 6.1

records the different operators for sequence and concurrency.

6.3.1 Requirements for Timestamps

The following list of requirements for timestamps can be deduced from the previous

considerations:

1. Timestamps must contain information on their site(s) of origin. Comparing

timestamps allocated at a single site and timestamps allocated at remote sites

may yield different results regarding the ordering of events. Two events whose

timestamps are less than 2gg apart are ordered, if they occurred at a single

site, and concurrent, if they occurred at remote sites.

2. Timestamps must contain local and global representatives. The local repre-

sentative of a timestamp is not meaningful in a global context, that is, if the

timestamp is to be compared with a remote timestamp. However, it is needed

for comparing local timestamps.

3. Timestamps of global composite events may consist of several “primitive” time-

stamps. The timestamp of a global event is determined by the latest timestamp

66



participating in its occurrence. However, in a distributed system there may

be no single event determining the latest timestamp; events at multiple sites

may happen virtually “at the same time”, contributing to the occurrence of a

global event and hence, participating in the timestamp.

Local clock ticks and local times (see Section 6.1) are meaningful in a local

context only, since the granularity of local clocks is smaller than the precision Π.

Therefore, local times have to be transformed into global times in order to be com-

prehensible by remote sites.

6.3.2 Structure of Timestamps

Definition 6.3.1 (Local clock tick) A local clock tick ltk of a local clock k repre-

sents a moment in time, reckoned as a number of clock ticks of granularity gk since

some epoch or starting point.

Definition 6.3.2 (Global time) The global clock granularity gg is given. The

global time gtk of a local clock tick ltk is the local clock tick expressed according

to the standard (Gregorian) calendar with respect to some time zone (e.g. UTC,

Universal Time Coordinated) and truncated to granularity gg.

gtk(ltk) = TRUNCgg(clockk(ltk))

Instead of being truncated to the next lowest global clock tick, the local time

could also be rounded to the nearest global clock tick. However, truncation or

rounding has to be done consistently throughout the system.

A global time of granularity gg = 1/100sec could, for example, be represented as

day/month/year,hours:minutes:seconds.hundredth. If the local clock granularity is

in the order of microseconds, the global time is derived by cutting off the last digit

of the fraction. Henceforth, a global clock granularity of gg = 1/100sec is applied in

the examples.

After introducing the different notions of time, the definition of a timestamp is

given next.

Definition 6.3.3 (Timestamp) The set of sites S is given. A timestamp T (e) of

an event e is a partial function T (e) : S → (global, local) defining a local clock tick

locals and its corresponding global time globals with globals = gts(locals) for each

site s participating in the timestamp. The distance between the minimum and the

maximum global time is not more than one global clock tick.

67



Notation The base and the limit of a timestamp T (e) are global times defined as

follows:

base(T (e)) = MIN{T (e)(s).global | s ∈ S}

limit(T (e)) = MAX{T (e)(s).global | s ∈ S}

The domain of a timestamp T (e) is called the (site) set. For each s in the site

set, T (e)(s).local determines the local clock tick and T (e)(s).global the corresponding

global time. base and limit are derived values and denote relevant global times,

namely the minimum and the maximum global time. The following condition is

valid for all timestamps:

limit(T (e))− base(T (e)) ≤ 1

Definition 6.3.4 (Timestamp of a primitive event) Given a primitive

event e occurring on site s at local clock tick lts, the timestamp of the primitive

event T (e) is determined as follows1:

• T (e)(s).local = lts and T (e)(s).global = gts(lts)

• T (e)(s′).local = ⊥ and T (e)(s′).global = ⊥ for all s′ 1= s.

The timestamp of a primitive event is represented as T (e) = (s, (gts(lts), lts)).

Example 6.3.5 The timestamp of a primitive event e originating at site k may

look as follows:

T (e) = (k, (19/10/95, 2 : 32 : 27.32, 23991548127))

6.3.3 Temporal Relationship between Timestamps

The temporal relationship between timestamps of primitive events can be deter-

mined directly from Definitions 6.2.2 and 6.2.3. If the timestamps of two prim-

itive events T (e1) and T (e2) originate at the same site k, their local clock ticks

T (e1)(k).local and T (e2)(k).local are compared in order to determine T (e1) < T (e2)

or T (e2) < T (e1). If T (e1) and T (e2) originate at remote sites k and l, their global

times T (e1)(k).global and T (e2)(l).global are explored. A distance of two or more

global clock ticks implies <, a distance of less than two global clock ticks implies

∼. However, timestamps of global events may have a more complex structure, con-

sisting of several “primitive” timestamps. Hereafter, such timestamps are called

1⊥ means undefined

68



non-atomic, as opposed to atomic timestamps which correspond to primitive events.

The constituent “primitive” timestamps of a non-atomic timestamp are called the

component timestamps.

Definition 6.3.6 (Component timestamp) A component timestamp t of a time-

stamp T(e) is a triple (site, global, local), where site ∈ domain(T (e)), global =

T (e)(site).global and local = T (e)(site).local.

Before the temporal relationship between non-atomic timestamps is discussed in

detail, it is worthwhile to stress that there are physical limitations to the ordering

of events in distributed systems. Two observers at two different sites may witness

different event patterns. In distributed systems with synchronised local clocks, the

inaccuracy originates from multiple events happening within a 2gg-interval. The

objective of the forthcoming definitions is to extend Definitions 6.2.2 and 6.2.3 in

a suitable way, in order to provide a consistent and sound view on temporal rela-

tionships between timestamps for all observers. The following requirements apply

to the concurrency-relation (∼) between timestamps:

• if T (e1) and T (e2) are atomic, concurrency is defined in accordance with Def-

inition 6.2.2

• no two component timestamps t1 ∈ T (e1) and t2 ∈ T (e2) are two or more

global clock ticks apart

• any two component timestamps t1 ∈ T (e1) and t2 ∈ T (e2) originating at the

same site denote the same event

The requirements for concurrency are reasonably straightforward. First, all compo-

nent timestamps must lie within a 2gg time interval. Second, all distinct component

timestamps must originate at distinct sites. The following requirements apply to

the happened-before-relation (<) between timestamps:

• if T (e1) and T (e2) are atomic, happened-before is defined in accordance with

Definition 6.2.2

• there are at least two component timestamps t1 ∈ T (e1) and t2 ∈ T (e2)

i originating at the same site and t1’s global time is at least one global

clock tick smaller than t2’s global time

69



ii originating at different sites and t1’s global time is at least two global

clock ticks smaller than t2’s global time

• there are no two component timestamps t1 ∈ T (e1) and t2 ∈ T (e2)

n i originating at the same site and t2’s local clock tick is at least one local

clock tick smaller than t1’s local clock tick

n ii originating at different sites and t2’s global time is at least one global

clock tick smaller than t1’s global time

Requirements i and ii assure that there is at least one pair of component time-

stamps that implies sequentiality. i considers timestamps originating at the same

and ii considers timestamps originating at different sites. All other component time-

stamps may lie within a 2gg time interval. One may ask why it is not sufficient to

define i as “. . . t1’s local clock tick is at least one local clock tick smaller than t2’s

local clock tick”. An example is given next. Requirements n i and n ii assure that

there is no pair of component timestamps that implies a reverse ordering. The sec-

ond and third examples justify the definition of n i and n ii respectively. It should

be noted, that requirements i, n i, and n ii are only relevant for timestamps whose

base-values are zero or one global clock ticks apart. All other cases are covered by

ii.

Example 6.3.7 Consider three timestamps T (e1), T (e2) and T (e3), where the val-

ues relating to “. . . ” are equivalent in all component timestamps.

Timestamp Site Global Time Local Clock Tick

T (e1) k . . . . . . 1

m . . . . . . 2

T (e2) l . . . . . . 1

k . . . . . . 2

T (e3) m . . . . . . 1

l . . . . . . 2

If i corresponds to “. . . t1’s local clock tick is at least one local clock tick smaller

than t2’s local clock tick”, then T (e1)(k) →2gg T (e2)(k) implies T (e1) < T (e2),

T (e2)(l) →2gg T (e3)(l) implies T (e2) < T (e3), and T (e3)(m) →2gg T (e1)(m) implies

T (e3) < T (e1). Hence, T (e1) < T (e2) < T (e3) < T (e1).

Example 6.3.8 Consider two timestamps T (e1) and T (e2).

70



Timestamp Site Global Time Local Clock Tick

T (e1) k . . . 42

m . . . 43 . . . 2

T (e2) m . . . 43 . . . 1

l . . . 44

Requirement n i is necessary; although the global times of T (e1)(k) and T (e2)(l)

are two global clock ticks apart and therefore imply T (e1) < T (e2), T (e1)(m)’s and

T (e2)(m)’s local clock ticks provide contradictory information.

Example 6.3.9 Consider three timestamps T (e1), T (e2) and T (e3).

Timestamp Site Global Time Local Clock Tick

T (e1) k . . . 82

m . . . 83

T (e2) l . . . 82

k . . . 83

T (e3) m . . . 82

l . . . 83

Without requirement n ii, T (e1)(k) →2gg T (e2)(k), T (e2)(l) →2gg T (e3)(l), and

T (e3)(m) →2gg T (e1)(m) imply T (e1) < T (e2) < T (e3) < T (e1).

The examples above present timestamps which are neither sequential nor con-

current. Hereafter, such timestamps are called unrelated. Unrelated timestamps are

exceptional cases, which occur when the base-values of two (or more) timestamps,

at least one of which is non-atomic, are zero or one global clock ticks apart. In

one sense such timestamps should be concurrent. However they are not, because

they contain distinct component timestamps which originate at the same site and

hence imply sequentiality. Considering such cases in the ordering of non-atomic

timestamps, as shown in the examples above, would lead to inconsistent results in

the form of circular orderings. The following definitions formalise the notions of

happened-before (<), concurrency (∼), and unrelatedness between timestamps.

Definition 6.3.10 (Temporal relationship) On the basis of the 2gg-precedence

time model, the temporal relationship between two timestamps T (e1) and T (e2) is

71



reflexivity symmetry transitivity

< no no yes

∼ yes yes no

Table 6.2: Applicability of Mathematical Rules

defined as follows:

T (e1) ∼ T (e2) iff ∀t1 ∈ T (e1) ∀t2 ∈ T (e2),

t1.site = t2.site and t1.local = t2.local or

t1.site 1= t2.site and | t1.global− t2.global |< 2gg

T (e1) < T (e2) iff T (e1), T (e2) atomic and

T (e1).site = T (e2).site and T (e1).local < T (e2).local

or ∃t1 ∈ T (e1) ∃t2 ∈ T (e2),

t1.site = t2.site and t1.global < t2.global or

t1.site 1= t2.site and t1.global < t2.global − 1gg

and ∀t1 ∈ T (e1) ∀t2 ∈ T (e2),

t1.site = t2.site and t1.local ≤ t2.local or

t1.site 1= t2.site and t1.global ≤ t2.global

Definition 6.3.11 (Unrelated timestamps) Given two timestamps T (e1) and

T (e2). If neither T (e1) < T (e2) nor T (e2) < T (e1) nor T (e1) ∼ T (e2), then the

timestamps are unrelated, T (e1) !" T (e2).

Table 6.2 summarises the applicability of reflexivity, symmetry, and transitivity

for happened-before (<) and concurrency (∼).

6.3.4 Joining Procedure for Timestamps

The timestamp of a composite event is determined by the latest timestamp par-

ticipating in its occurrence. If there are multiple latest timestamps, that is, if the

timestamps in question are either concurrent or unrelated, they all contribute to

the timestamp of the composite event. The procedures for deriving the resulting

joined timestamp are illustrated next; first for concurrent timestamps, and second

for unrelated timestamps. The joining procedures must respect the structure of

timestamps, i.e. the distance between the minimum and the maximum global time

72



of the resulting timestamp should not be more than one global clock tick. More-

over, since a timestamp is a partial function, each site has at most one entry in the

resulting timestamp.

Joining Concurrent Timestamps

The following proposition shows that for any two concurrent timestamps the mini-

mum and the maximum global time are not more than one global clock tick apart.

Proposition 6.3.12 If T (e1) ∼ T (e2), then at most two adjacent global clock ticks

cover the timestamps T (e1) and T (e2).

Proof The proposition follows directly from the definition of ∼; no two component

timestamps are two or more global clock ticks apart. !

Two distinct events at the same site are never concurrent. However, concurrency

is reflexive. Therefore, two concurrent timestamps may each contain a component

timestamp originating at the same site denoting the same event. The joined time-

stamp will simply inherit the common component timestamp.

Definition 6.3.13 (Joining concurrent timestamps) Suppose given two time-

stamps such that T (e1) ∼ T (e2). The joined timestamp T̂ = T (e1) ∪ T (e2) is defined

as follows:

joinset := set1 ∪ set2

For all s ∈ joinset, T̂ .(s) :=






T (e1)(s) ∀s ∈ set1

T (e2)(s) otherwise

The joining procedure for concurrent timestamps is straightforward; the compo-

nent timestamps are joined and duplicates are eliminated.

Example 6.3.14 Given two timestamps

T (e1) = (k, (19/10/95, 2 : 32 : 27.32, 23991548127)) and

T (e2) = (l, (19/10/95, 2 : 32 : 27.33, 17233741390)).

T (e1) and T (e2) are concurrent, T (e1) ∼ T (e2), and the joined timestamp T̂ =

T (e1) ∪ T (e2) is

{ (k, (19/10/95, 2 : 32 : 27.32, 23991548127)),

(l, (19/10/95, 2 : 32 : 27.33, 17233741390)) }

73



Joining Unrelated Timestamps

Unrelated timestamps occur because of a mismatch between component timestamps

originating at the same and at different sites. The latter imply the concurrency

of the corresponding events, whereas the component timestamps originating at the

same site are distinct and are therefore not concurrent but sequential. Unrelated

timestamps underline the fact that in a distributed system, observers at different

sites may witness different event patterns if the events occur closely together.

It should be noted that unrelated timestamps are not likely to occur frequently;

two events occur in quick succession at the same site (i.e. they are less than two

global clock ticks apart), they then participate in the timestamps of two different

composite events, and these composite events both participate in the detection of a

third composite event.

Examples 6.3.7 to 6.3.9 illustrate different cases of unrelated timestamps. In the

first example, the minimum and the maximum global time of the events are equal, in

the second example, they are two global clock ticks apart and in the third example,

they are one global clock tick apart. The following proposition shows that for any

two unrelated timestamps the minimum and the maximum global time cannot be

more than two global clock ticks apart.

Proposition 6.3.15 If T (e1) !" T (e2), then at most three adjacent global clock

ticks cover the timestamps T (e1) and T (e2).

Proof by contradiction Assume without loss of generality that base1 ≤ base22.

If T (e1) and T (e2) cover four or more adjacent global clock ticks, then

limit2 − base1 ≥ 3gg =⇒ base2 − limit1 ≥ 1gg

(since base ≤ limit ≤ base + 1gg for all timestamps)

Hence, the timestamps must be sequential, T (e1) < T (e2), since base1 is more than

2gg smaller than limit2 and there cannot be two component timestamps which are

reversely ordered (because of base2 > limit1). !

There are two complications when trying to join two unrelated timestamps: first,

the minimum and maximum global time may be two global clock ticks apart and

second, the two timestamps contain different entries for the same site(s). The latter

2For abbreviation, the timestamp identification is written as subindex (e.g. base1 instead of

base(T (e1)).

74



point is inherent in unrelated timestamps; component timestamps originating at the

same site (may) cause inconsistent, circular orderings. The joining procedure must

therefore handle both problems. The idea of the joining procedure for unrelated

timestamps is to keep the information that is most relevant to future time. That

means, if the minimum and maximum global time are two global clock ticks apart,

the component timestamps of the earliest global time are disregarded. Also, if there

are two different entries for the same site, the later entry is kept.

Definition 6.3.16 (Joining unrelated timestamps) Suppose given two time-

stamps such that T (e1) !" T (e2). The joined timestamp T̂ = T (e1) ∪ T (e2) is

defined as follows:

Assume without loss of generality that base1 ≤ base2.

if limit2 − base1 = 2gg then

Delete all s ∈ set1 with T (e1)(s).global = base1

fi

joinset := set1 ∪ set2

For all s ∈ joinset, T̂ .(s) :=






T (e1)(s) ∀s ∈ set1\set2

T (e2)(s) ∀s ∈ set2\set1

MAX {T (e1)(s), T (e2)(s)} ∀s ∈ set1 ∩ set2

The joining procedure for unrelated timestamps proceeds as follows: in the if-

clause check whether the minimum and the maximum global time (base1 and limit2)

are two global clock ticks apart. If this is the case, all entries for base1 are deleted.

The remaining site-entries are joined keeping the maximum when there are two

different entries for the same site.

Example 6.3.17 Given are the two timestamps from Example 6.3.8

T (e1) = {(k, (. . . 42, )), (m, (. . . 43, . . . 2))} and

T (e2) = {(m, (. . . 43, . . . 1)), (l, (. . . 44, ))}.
T (e1) and T (e2) are unrelated, T (e1) !" T (e2), and the joined timestamp

T̂ = T (e1) ∪ T (e2) is

{(m, (. . . 43, . . . 2)), (l, (. . . 44, ))}

75



6.4 Timestamps in Distributed Systems –

Simplified Semantic Model

The considerations in the previous section are based on the assumption that two

primitive events at the same site can occur within one global clock tick. The reason

for this is that the global clock granularity, which is determined by the precision of

the synchronised local clocks, is large in comparison with the local clock granularity.

Although this assumption is valid, some applications do not demand such a fine

granularity. For example, most research projects introduced in Chapter 2 work with

a granularity of one second, which is large in comparison with the precision achieved

by common clock synchronisation protocols. In these cases, a simplified semantic

model for composite events can be applied. This semantics is developed hereafter

[?].

Assumption There are no two primitive events e1 and e2, e1 1= e2, occurring at the

same site s ∈ S at the same global time gts〈e1〉 = gts〈e2〉.

The simplified semantic model can only be applied if the frequency of event

occurrences is sufficiently low, that is, if there is less than one event per global

clock tick. Consider a distributed debugging system, where there are about 30000

events/minute. If the global clock granularity is set to gg = 1/100sec, there are on

average 5 events/gg. Hence, the simplified semantic model cannot be applied.

In the general semantic model, local clock ticks are employed for establishing the

temporal relation between primitive events originating at the same site. However,

in the simplified semantic model the temporal relation can be established on the

basis of global times, since any two primitive events originating at the same site are

assigned different global clock ticks. Therefore, local clock ticks are redundant. This

simplifies the structure and handling of timestamps.

6.4.1 Structure of Timestamps

Definition 6.4.1 (Timestamp) The set of sites S is given. A timestamp T (e) of

an event e is a partial function T (e) : S → global defining a global time globals =

gts(lts) for each site s participating in the timestamp. The distance between the

minimum and the maximum global time is not more than one global clock tick.

In comparison with Definition 6.3.3, only a global time is defined for each site

participating in the timestamp. Since limit(T (e)) − base(T (e)) ≤ 1, there is a

76



maximum of two different global times within one timestamp, the base and the

limit.

Definition 6.4.2 (Timestamp of a primitive event) Given a primitive event e

occurring on site s at global time gts(lts), the timestamp of the primitive event T (e)

is determined as follows:

• T (e)(s).global = gts(lts)

• T (e)(s′).global = ⊥ for all s′ 1= s.

Example 6.4.3 The timestamp of a primitive event e originating at site k may

look as follows:

T (e) = (k, 19/10/95, 2 : 32 : 27.32)

6.4.2 Temporal Relationship between Timestamps

Definition 6.4.4 (Component timestamp) A component timestamp t of a time-

stamp T (e) is a tuple (site, global), where site ∈ domain(T (e)) and global =

T (e)(site).global .

The requirements for concurrency (∼) and happened-before (<) in the general

semantic model (see Section 6.3.3) are of course valid in the simplified semantic

model. In the general semantic model two local clock ticks may be compared only if

they are associated with the same site: in the simplified semantic model such local

clock ticks are represented by the global times at the site. What is true for local

clock ticks in the general semantic model becomes true for global times. Hence,

the equivalent of Definition 6.3.10 is derived by substituting references to t.local by

t.global and by eliminating redundancies.

Definition 6.4.5 (Temporal relationship) On the basis of the 2gg-precedence

time model, the temporal relationship between two timestamps T (e1) and T (e2) is

77



defined as follows:

T (e1) ∼ T (e2) iff ∀t1 ∈ T (e1) ∀t2 ∈ T (e2),

t1.site = t2.site and t1.global = t2.global or

t1.site 1= t2.site and | t1.global− t2.global |< 2gg

T (e1) < T (e2) iff ∃t1 ∈ T (e1) ∃t2 ∈ T (e2),

t1.site = t2.site and t1.global < t2.global or

t1.site 1= t2.site and t1.global < t2.global − 1gg

and ∀t1 ∈ T (e1) ∀t2 ∈ T (e2),

t1.global ≤ t2.global

There are unrelated timestamps in the simplified semantic model. In any such

case the base-values of two (or more) non-atomic timestamps must be equal. Ex-

ample 6.3.9 shows three timestamps which are unrelated in the simplified semantic

model. However, Examples 6.3.7 and 6.3.8 are not, because there the fact that they

are unrelated depends on local clock ticks.

6.4.3 Joining Procedure for Timestamps

The joining of concurrent and unrelated timestamps is more intuitive than in the

general semantic model because the timestamps cover not more than two adjacent

global clock ticks.

Proposition 6.4.6 If neither T (e1) < T (e2) nor T (e2) < T (e1), then at most two

adjacent global clock ticks cover the timestamps T (e1) and T (e2).

Proof by contradiction The simplified semantic model is a special case of the

general semantic model; two unrelated timestamps may cover no more than three

adjacent global clock ticks (see Propositions 6.3.12 and 6.3.15).

Assume without loss of generality that base1 ≤ base2. Suppose that T (e1) and

T (e2) cover three adjacent global clock ticks, so that limit2 − base1 = 2gg. Certainly

there are component timestamps t1 ∈ T (e1) and t2 ∈ T (e2) such that t1.global =

base1, t2.global = limit2 > t1.global + 1gg. Further, limit1 ≤ base1 + 1gg =

limit2 − 1gg ≤ base2: hence, for all component timestamps t1 ∈ T (e1) and t2 ∈ T (e2)

t1.global ≤ limit1 ≤ base2 ≤ t2.global

According to Definition 6.4.5 the timestamps must be sequential, T (e1) < T (e2).

The reason that unrelated timestamps cannot arise in such a case in the simplified

78



semantic model is that there are no local clock ticks which might imply an inverse

ordering. !

The following definition shows the joining procedure for concurrent and for un-

related timestamps in the simplified semantic model. Since both concurrent and

unrelated timestamps do not cover more than two adjacent global clock ticks, the

same joining procedure can be applied.

Definition 6.4.7 (Joined timestamps) Suppose given two timestamps such that

neither T (e1) < T (e2) nor T (e2) < T (e1). The joined timestamp T̂ = T (e1) ∪ T (e2)

is defined as follows:

joinset := set1 ∪ set2

For all s ∈ joinset, T̂ .(s) :=






T (e1)(s) ∀s ∈ set1\set2

T (e2)(s) ∀s ∈ set2\set1

MAX {T (e1)(s), T (e2)(s)} ∀s ∈ set1 ∩ set2

6.5 Semantics of Composite Events

The previous sections established the foundations for defining the formal semantics

of composite events; the structure and handling of timestamps were investigated in

the general and in the simplified semantic model. The following definition formalises

the semantics of composite events for both semantic models; that is, the definitions of

timestamps, concurrency (∼), and happened-before (<) relate either to the general

semantic model (see Section 6.3) or to the simplified semantic model (see Section

6.4).

Definition 6.5.1 (Semantics of composite events) On the basis of the 2gg-pre-

cedence time model, the semantics of composite events is defined as follows. The

first part of the right-hand side identifies under which pre-conditions a composite

event of that event type is detected and the second part, indicated by ⇒, presents

the resulting timestamp:

79



E1 , E2 iff e1 ∈ E1 and e2 ∈ E2

⇒ T (e2) iff T (e1) < T (e2)

⇒ T (e1) iff T (e2) < T (e1)

⇒ T (e1) ∪ T (e2) otherwise

E1 | E2 iff e1 ∈ E1 or e2 ∈ E2

[or both, if T (e1) ∼ T (e2) or T (e1) !" T (e2)]

⇒ T (e1) or T (e2)

[or T (e1) ∪ T (e2)]

E1 ; E2 iff e1 ∈ E1 and e2 ∈ E2 and T (e1) < T (e2)

⇒ T (e2)

E1 ‖ E2 iff e1 ∈ E1 and e2 ∈ E2 and T (e1) ∼ T (e2)

⇒ T (e1) ∪ T (e2)

E1
! E2 iff ei1 ∈ E1 (i ≥ 0) and e2 ∈ E2 and T (ei1) < T (e2)

⇒ T (e2)

E1
+ E2 iff ei1 ∈ E1 (i ≥ 1) and e2 ∈ E2 and T (ei1) < T (e2)

⇒ T (e2)

E1 ; NOT E2 ; E3 iff e1 ∈ E1 and e3 ∈ E3 and T (e1) < T (e3) and

no e2 ∈ E2 with T (e1) < T (e2) < T (e3)

⇒ T (e3)

Conjunction E1 , E2: A conjunction demands both events, e1 ∈ E1 and e2 ∈ E2,

to happen regardless of their order. The timestamp of a conjunction is the

later timestamp of e1 and e2, if the temporal order of e1 and e2 can be decided.

Otherwise the two timestamps are joined.

Disjunction E1 | E2: There are two possible semantics for a disjunction: exclusive-

or or inclusive-or (in square brackets). An exclusive-or is detected when either

e1 ∈ E1 or e2 ∈ E2 occurs. The timestamp of that occurrence becomes the

timestamp of the disjunction. In addition, an inclusive-or demands that both

events are considered, that is, their timestamps are joined, if e1 ∈ E1 and

e2 ∈ E2 both occur and their temporal order cannot be established. Which

of the two semantics is realised in a specific distributed system depends on

application-demands.

Sequence E1 ; E2: Inherently, a sequence between events represents the happened-

before relation (<) between timestamps. Event e1 ∈ E1 happens before event

e2 ∈ E2, if e1’s timestamp is smaller than e2’s timestamp. Since e2’s timestamp

80



is the later timestamp, it becomes the timestamp of E1 ; E2.

Concurrency E1 ‖ E2: A concurrency between events is equivalent to a concur-

rency (∼) between timestamps. No temporal order between e1 ∈ E1 and

e2 ∈ E2 can be inferred from their timestamps. Therefore, both e1 and e2 are

latest events and their timestamps are joined.

Iteration E1
! E2 and E1

+ E2: An iteration is a special case of a sequence, in

which e2 ∈ E2 serves as a delimitation following a number of occurrences of

e1 ∈ E1 (zero or more in the case of ! and one or more in the case of +).

Consequently, the timestamp is that of e2.

Negation E1 ; NOT E2 ; E3: As above, a negation is a special case of a se-

quence. Therefore, e3 ∈ E3 defines the timestamp of the negation.

6.6 Summary

This chapter addressed the semantics of events in distributed systems. Since the

semantics is given in terms of timestamps concerning physical time, the notions of

physical time and temporal order in distributed systems were examined. The 2gg-

precedence time model was presented, which makes it possible to approximate a

global time base. The structure and handling of timestamps were illustrated next,

first in the general semantic model, and second in the simplified semantic model.

The latter is applicable in specific distributed systems, where the frequency of event

occurrences is lower than the precision of the local clocks; that is, there is less than

one event within one global clock tick. Finally, the semantics of composite events

was formally defined. The semantics is valid for both the general and the simplified

semantic model.

81



82



Chapter 7

Detection of Events

Event detection is the process of recognising the occurrence of an event and collecting

and recording its parameters including a timestamp [?]. In the context of this thesis,

timestamps record when and where an event occurred. The recognition of primitive

event occurrences was discussed in Section 2.1. The recognition of composite event

occurrences is an incremental process, based on some underlying computational

model. For each composite event, there is a specific event detector reflecting its

structure. Each time a relevant event occurrence is signalled, it is checked whether

the event detector can progress. A certain final state indicates the occurrence of

an event. On the recognition of an event, the system reacts accordingly: in active

database systems, the recognised event is passed to the rule manager for evaluating

the condition and, if it holds, triggering the action of an ECA rule; in distributed

debugging systems, the system may be halted and debugging information is displayed

to the user.

7.1 Goals of Event Detection in Distributed Systems

The following list summarises the goals of event detection in distributed systems:

1. Event detection should run in the background of other system functions, caus-

ing as little overhead as necessary. Monitoring system behaviour is a prere-

quisite for the smooth implementation of a number of system functions, such

as integrity/security enforcement, constraint management, and the realisation

of reactive behaviour in general (in active database systems) or program de-

bugging, testing, performance management, and configuration management

(in distributed monitoring systems). However, monitoring is not visible to the

83



user and should therefore not interfere with his/her actions. Two main possi-

bilities for reducing the overhead of event monitoring are garbage collection of

obsolete events and minimisation of the event traffic.

2. Event detection should be distributed. Distributing event detectors increases

the autonomy of sites, improves system performance, that is, response times,

improves the reliability, availability and robustness, and finally, supports sys-

tem evolution. Hence, event detectors should be distributed.

3. Event detection should respect the special characteristics of distributed systems.

Distributed systems are characterised by a lack of global time, autonomy of

sites, message delays between sites, and independent failure modes [Bac92].

This implies that events in a distributed system are partially ordered, that is,

events may occur concurrently at different sites. Moreover, observed events

from different sites experience different message delays, that is, the arrival or-

der at event detectors does not reflect the occurrence order. In other words,

event detection in distributed systems is inherently different from event detec-

tion in centralised systems and should therefore be considered separately.

4. Event detection algorithms should reflect user and application needs. There are

different ways for handling the special characteristics of distributed systems:

local clocks may or may not be synchronised, messages from failed or delayed

sites may or may not be considered, etc. Hence, different event detection poli-

cies can be identified, depending on user and application needs.

7.2 Architecture

Before the detection algorithms are presented, the model of a global event detection

system is illustrated in Figure ??. There is a distributed system of n sites, each site

containing a local event detector (LED) and a global event detector (GED). Local

event detectors detect local events and consequently employ “simple” centralised

detection mechanisms. Detected local events are notified at local and/or remote

global event detectors. The global event detectors must have registered their interest

in a specific event type [?]. Each global event detector evaluates events received from

multiple sites. Detected global events are either signalled to the site’s rule manager

and/or are sent to registered global event detectors for further evaluation. Hence, the

detection of a global event may be distributed to different sites, each site detecting

84



part of the global event.

In this way, the distinctive features of centralised and distributed systems can

be isolated from each other. Existing centralised event detectors can be utilised

for efficient detection of local events, whereas the global event detectors focus on

the detection of “real” global events, and hence deal with the special characteris-

tics of distributed systems. The main focus of this chapter is the development of

algorithms for the detection of global composite events, that is, the GED-units and

their interconnections are investigated. First, a short review of existing centralised

event detection mechanisms is given.

7.3 Local Event Detection

Chapter 2 discussed events in active database systems, where event specification

and event detection have been considered in centralised systems only. All event de-

tection mechanisms introduced in connection with the different research prototypes

are applicable for local event detection and may be used for the implementation of

LED-units.

7.3.1 Pre-conditions of Local Event Detection

The following points are specific for composite event detection in centralised systems:

• Timestamps are relatively accurate. Although the relation between a time-

stamp and real physical time is blurred, the relation between different time-

stamps gives a correct picture of the order in which events happened.

• The arrival order of events at a local event detector corresponds to the occur-

rence order of events.

7.3.2 Options for Local Event Detection

All research prototypes in Chapter 2 respect the pre-conditions stated in the previous

section. Two research prototypes, HiPAC and Ode, use finite state automata for

detecting composite events. Primitive events are fed into a finite state automaton

one at a time, in the order in which they were signalled at the event detector.

SAMOS uses Petri Nets for detecting composite events. Although Petri Nets allow

modelling complex concurrent systems, in SAMOS they are used as purely sequential

machines evaluating primitive events one after the other, in the order in which they

85



were signalled at the event detector. Finally, Sentinel’s event trees are also evaluated

strictly sequentially. Although SAMOS and Sentinel associate timestamps denoting

the time of occurrence with detected events, the timestamps are not necessary for

the detection of composite events. Instead, they are used in the condition and/or

the action of an ECA rule.

7.4 Global Event Detection

There is a distributed system of n sites and a set of global event expressions. The

global event expressions are distributed to the n global event detectors; one global

event expression is assigned to one global event detector, that is, global event ex-

pressions are neither split nor replicated. A site containing the global event detector

of one specific global event expression is called the observer site. Note, that the

constituent operands of a global event expression may be either local or global event

expressions and hence the detection of an overall global event may take place at

multiple sites.

7.4.1 Pre-conditions of Global Event Detection

Composite event detection in distributed systems faces different pre-conditions than

composite event detection in centralised systems. The following points are specific

for composite event detection in distributed systems:

• Timestamps are inaccurate due to the lack of a global time base. This implies

that events in a distributed system are partially ordered, that is, events may

occur concurrently.

• The arrival order of events at a global event detector does not correspond

to the occurrence order of events. Events arrive from different sites, that is,

via different logical channels. Therefore, events experience different message

delays. Moreover, if there is one port receiving events from one logical channel,

events may arrive concurrently via different input ports.

• Events may get lost. If a site fails after an event has occurred but before it is

signalled to registered global event detectors, it may not be possible to recover

the event. Moreover, events may get lost during transmission.

The first pre-condition was addressed in the previous chapter, where the structure

and handling of timestamps were examined and the semantics of event operators

86



explored, considering distributed systems with synchronised local clocks. Finding

techniques for dealing with the second pre-condition is the subject of this and the

next chapter. The influence of the third pre-condition can be minimised by applying

an appropriate communications protocol, such as RPC [Bac92].

7.4.2 Options for Global Event Detection

In active database systems and in distributed debugging systems, there are several

evaluation paradigms. The following paradigms have been investigated with respect

to their suitability for global event detection:

Finite State Automata (as in HiPAC (Section 2.2), Ode (Section 2.3), and EBBA

(Section 3.2)) Finite state automata are not suitable for global event detection.

First, finite state automata are efficient recognisers for sequential behaviour,

but they cannot represent concurrent events. Second, a finite state automaton

is a sequential machine that evaluates events in the order of their occurrence.

Hence, all relevant events need to be reported and sorted before entering the

automaton. Late events require a rollback of event detection.

Predecessor Automata (as in Data Path Debugging (Section 3.4)) Predecessor

automata are similar to, but extend the concept of finite state automata.

Although predecessor automata can represent concurrent events, they are not

suitable for global event detection. As finite state automata they are sequential

machines, that is, all relevant events need to be reported and sorted before

entering the automaton. Moreover, predecessor automata can become quite

complex [?].

Petri Nets (as in SAMOS (Section 2.4)) Petri Nets can represent sequential and

concurrent behaviour. Moreover, they can be evaluated concurrently by differ-

ent threads. Hence, Petri Nets are suitable for global event detection. However,

although Petri Nets are ideal for the modelling and the analysis of concurrent

systems, they are complex. This has two drawbacks; first it restricts system

evolution, and second it is comparatively inefficient for recognising events at

runtime [?].

Extended Trees (as in Sentinel (Section 2.5), Global Breakpoints (Section 3.3))

A tree is a data structure and no computational model. Therefore, comparing

automata and petri nets with trees is not appropriate. However, trees can

87



serve as the basis for event detection, the evaluation semantics being part of

application programs. Extended trees can model sequential and concurrent be-

haviour; different branches of a tree can be evaluated concurrently. Therefore,

extended trees are suitable for global event detection.

Initially, Petri Nets were considered as the underlying paradigm for the imple-

mentation of global event detectors. This idea was later dismissed. [?, ?] illustrate

how (Coloured) Petri Nets are used for the implementation of local event detec-

tors. The developed SAMOS Petri Nets model a purely sequential behaviour. The

SAMOS-approach relies strongly on the pre-condition that the arrival order of events

at the detector corresponds to the occurrence order of events. As a result, the de-

tection of local composite events as well as the garbage collection of obsolete events

are incorporated straightforwardly into the modelled Petri Nets. The different pre-

conditions of global event detection thwarted the application of this solution. Nei-

ther the semantics of global event detection nor garbage collection could be modelled

straightforwardly with Petri Nets. Hence, it was decided to base the implementation

of global event detectors on the evaluation of trees. Trees provide a simple structure

and allow an efficient implementation. However, the dynamics of event monitoring

cannot be expressed within the model itself.

7.4.3 Basic Detection Mechanisms

The detection of global composite events is based on the evaluation of trees. Each

global event expression E is transformed into a global event tree GT (E), correspond-

ing to its syntactic structure. Nodes are labelled with event operators and leaves

are labelled with event expressions. The outermost event operator of a global event

expression corresponds to the root node of the global event tree. Its operands, which

are event expressions, correspond to the subtrees having their roots in the children of

the root node. Again, the outermost event operator of such an operand corresponds

to the root note of the subtree and so on. This structure continues recursively until

the operands denote indivisible event expressions, in which case corresponding leaves

are inserted into the global event tree. An indivisible event expression is either a

local or a global event expression. Each node of a global event tree has separate stor-

age for keeping a list of detected sub-events for each of its children; negation-nodes

have three children, all other nodes have two children. Leaves have no storage. If

a subtree of a global event tree corresponds to a global event expression with pa-

rameter restrictions, a guard is attached to the corresponding event operator nodes,

88



stating the event parameters whose equality is to be imposed.

At system runtime, occurrences of local event types are signalled from corre-

sponding local event detectors and occurrences of global event types are signalled

from corresponding global event detectors. The events may arrive concurrently via

different input ports. Newly arrived event occurrences are then injected into the

leaves corresponding to their event type and flow upwards in the global event tree.

Since the leaves do not have storage, event occurrences are passed on directly to

their parents.

Example 7.4.1 Figure ?? shows a snapshot during evaluation of the global event

tree of ((LE1 , GE1);LE2) | (LE3 ; NOT GE2;LE4), indicating the lists of stored

sub-events as linked boxes. Empty lists are represented as empty boxes. The leaves

GE1 and GE2 refer to global event trees stored and evaluated elsewhere. The other

leaves refer to local events.

Algorithm 7.4.2 The evaluation of global event trees at a global event detector

site proceeds as follows:

1. An event occurrence is signalled at a port of the global event detector.

2. The event occurrence is inserted into all leaves corresponding to its event type.

For each inserted event occurrence

3. The event occurrence is propagated to the parent node.

4. Wait while the parent node is locked.

5. Lock the parent node and evaluate it, taking into account:

(a) the event operator [and the guard]

(b) the inserted event occurrence

(c) the event occurrences stored in the child lists

(d) an evaluation policy

If no event is detected at the parent node, continue at 6).

If an event is detected at the parent node, continue at 7).

6. Store the inserted event occurrence in the corresponding child list and unlock

the evaluated node. The algorithm stops.

89



7. Derive the new event occurrence and unlock the evaluated node.

If the evaluated node has a parent node, continue at 3).

If the evaluated node has no parent node, a global composite event is detected

and the algorithm stops.

Algorithm 7.4.2 presents the steps involved in the evaluation of the global event

trees stored at a global event detector site. At runtime, primitive events occur and

are evaluated at their local event detectors. If occurrences of local event types are

detected, the local event detectors initiate messages containing the event type, the

timestamp and other event parameters, and send these messages to those local or

remote global event detectors which have registered an interest in the particular

event type. Received event occurrences are evaluated by global event detectors,

that is, they (i.e. their timestamp and other event parameters) are inserted into all

leaves corresponding to the event type. Leaves serve as entry points and propagate

the event occurrences upwards to their parent nodes, where they get evaluated.

Evaluation at a node takes into account the stored sub-events as well as the newly

arrived event occurrence. The evaluation procedure depends on an evaluation policy

which is addressed subsequently. If an event is detected, it is again propagated to the

parent node and the procedure recurses or, if there is no parent node, it is signalled

to the rule manager. The latter case means that an occurrence of a specified global

event has been detected. If no event is detected, the event occurrence is inserted

into the corresponding list of sub-events. Since global event trees are evaluated

concurrently by different threads corresponding to the different input ports of a

global event detector, nodes are locked while being evaluated.

An evaluation policy determines three different things: how to evaluate a node,

when to evaluate a node, and which event occurrences to consider. The first aspect

was addressed in the previous chapter, where the semantics of event operators was

explored considering a distributed system with synchronised local clocks. The third

aspect relates to event consumption (see Section 2.1) and is discussed in the following

section. Finally the second aspect, when to evaluate a node, is concerned with the

handling of message delays. It is the subject of the next chapter.

7.4.4 Event Consumption

At the evaluation of an event operator node (step 5 in Algorithm 7.4.2), there

may be multiple event occurrences in a corresponding child list. A newly arriving

event occurrence may be composable with a number of those event occurrences. In

90



Example 7.4.1, an event occurrence ge11 is composable with both, le11 and le12.

In order to avoid ambiguities, the event detector must know how to combine event

occurrences when evaluating an event operator node. Moreover, the user must be

able to choose between different semantics, depending on the application. This can

be done by introducing a parameter context (see Section 2.1). [?, ?] identify four

possibilities :

Chronicle In this context, the oldest available event occurrences are used, that is,

event occurrences are combined in chronological order. On the detection of a

composite event, the event occurrences used are deleted.

Recent In this context, only the most recent event occurrences are used. On the

detection of a composite event, the event occurrences used are deleted. As

newer event occurrences of an event type are understood as refinements of

older values, “out-of-date” event occurrences are overwritten. Hence, not all

occurrences of an event may be used for event detection.

Continuous In this context, all possible combinations of event occurrences are

used. Specifically, an event occurrence may contribute to the detection of a

composite event more than once. Event occurrences are only deleted, when

the corresponding rule is deactivated. Another possibility is that there is a

sliding time point, identifying the earliest event occurrences to be considered.

All earlier event occurrences are deleted.

Cumulative In this context, all event occurrences are accumulated until a com-

posite event is detected. On the detection of a composite event, the event

occurrences used are deleted.

The algorithms in the subsequent chapter present the evaluation of global event

trees in the chronicle context only. The reason for choosing the chronicle context is

the belief that in most applications the chronological order of event occurrences is

of importance and that the correspondence between event occurrences needs to be

maintained. This decision is emphasised by the fact that most related work (studied

in Chapters 2 and 3) considers this context. However, the other parameter contexts

can be realised as in [?, ?].

91



7.5 Summary

This chapter illustrated the basic detection mechanism for composite events in dis-

tributed systems. Local event detectors detect local composite events and global

event detectors detect global composite events. The main algorithm for the evalu-

ation of global event trees representing global composite events was presented and

the event consumption of event occurrences at event operator nodes was addressed.

92



Chapter 8

Evaluation Policies:

Asynchronous and Synchronous

The arrival order of events at observer sites does not correspond to the occurrence

order of events. The changing delays experienced during event transmission are due

to the composition of the network, disruptions of the network (network partitioning

or network congestion), and disruptions of the sites where events occur (site failures).

There are two extreme possibilities for dealing with delayed events:

• ignoring the fact that there may be delayed events and evaluating global event

trees as soon as suitable events arrive at an observer site.

• waiting for delayed events and evaluating global event trees only if all relevant

events have arrived at an observer site.

The first possibility motivates asynchronous evaluation and the second possibility

motivates synchronous evaluation.

8.1 Asynchronous Evaluation

Definition 8.1.1 (Asynchronous evaluation) A global event tree is evaluated

asynchronously, if each node is evaluated instantly on the arrival of an event occur-

rence from a child node.

Events affected by a failure (site failure, network partitioning or network con-

gestion) are delayed until the failure is repaired. Asynchronous evaluation means

that nodes are evaluated irrespective of failures. When events arrive at a node,

93



there may be other events with smaller timestamps which have not yet arrived. The

node is, however, evaluated instantly. This implies that events from specific child

nodes are not necessarily evaluated in the order of their occurrence, that is, in the

chronicle parameter context. More recent events with larger timestamps from other

child nodes will be handled as soon as they become available. What is done with

the delayed events is another matter for decision. They may either be accepted for

event detection as soon as they arrive or they may be disregarded.

The main advantage of asynchronous evaluation is that global event trees are

evaluated and composite events are detected regardless of remote failures. Delayed

events do not cause temporary blocking of the detection procedure. The simplest

example is that of a disjunction E1 | E2. If E2’s site has failed, the disjunction

can still be detected whenever E1 is signalled. Therefore, asynchronous evaluation

is characterised by immediate consumption, non-blocking detection and good re-

sponse times. The main disadvantage of asynchronous evaluation is that it does not

guarantee event detection in the chronicle or any other parameter context. Whether

this can be accepted or not depends on the specific global composite event and the

application domain.

8.1.1 Evaluation of Nodes

The evaluation algorithms for event operator nodes are presented next. Due to

the special characteristics of asynchronous evaluation, the garbage collection of ob-

solete events is not incorporated into the evaluation algorithms, but is performed

separately. The garbage collection algorithms are presented in Section 8.1.2.

The asynchronous evaluation of disjunction(inclusive-or)-nodes does not seem

to be sensible. Since a node is evaluated as soon as suitable events arrive, the

semantics is that of a disjunction(exclusive-or). The evaluation of conjunction(,)-,

sequence(;)-, concurrency(‖)-, negation(NOT)-, and iteration(+)-nodes is similar.

The similarities are incorporated into an evaluation template. Operator-specific

parts are stated thereafter.

Algorithm 8.1.2 The following procedures present the asynchronous evaluation of

event operator nodes:

Event Op LOCK the node

. . . BLOCK 1 . . .

IF e1 is signalled

94



IF E2’s list is not empty

. . . BLOCK 2 . . .

ELSE

Insert e1 into E1’s list;

END

END

IF e2 is signalled

IF E1’s list is not empty

. . . BLOCK 3 . . .

ELSE

Insert e2 into E2’s list;

END

END

UNLOCK the node

E1 , E2 . . . BLOCK 2 . . .

e2 = head of E2’s list; delete head of E2’s list;

Propagate e1 , e2 to parent node;

. . . BLOCK 3 . . .

e1 = head of E1’s list; delete head of E1’s list;

Propagate e1 , e2 to parent node;

E1 ; E2 . . . BLOCK 2 . . .

and there is e2 with T (e1) < T (e2)

Delete e2 from E2’s list;

Propagate e1 ; e2 to parent node;

. . . BLOCK 3 . . .

and there is e1 with T (e1) < T (e2)

Delete e1 from E1’s list;

Propagate e1 ; e2 to parent node;

E1 ‖ E2 . . . BLOCK 2 . . .

and there is e2 with T (e1) ∼ T (e2)

Delete e2 from E2’s list;

Propagate e1 ‖ e2 to parent node;

. . . BLOCK 3 . . .

and there is e1 with T (e1) ∼ T (e2)

Delete e1 from E1’s list;

Propagate e1 ‖ e2 to parent node;

E1 ; NOT E3 ; E2

. . . BLOCK 1 . . .

IF e3 is signalled

95



Insert e3 into E3’s list;

END

. . . BLOCK 2 . . .

and there is e2 with T (e1) < T (e2)

Delete e2 from E2’s list;

IF there is no e3 in E3’s list with T (e1) < T (e3) and T (e3) < T (e2)

Propagate e1 ; NOT e3 ; e2 to parent node;

END

. . . BLOCK 3 . . .

and there is e1 with T (e1) < T (e2)

Delete e1 from E1’s list;

IF there is no e3 in E3’s list with T (e1) < T (e3) and T (e3) < T (e2)

Propagate e1 ; NOT e3 ; e2 to parent node;

END

E1
+ E2 . . . BLOCK 2 . . .

and there is e2 with T (e1) < T (e2)

Delete e2 from E2’s list;

Propagate e1 + e2 to parent node;

. . . BLOCK 3 . . .

and there is e1 with T (e1) < T (e2)

Delete all e1’s with T (e1) < T (e2) from E1’s list;

Propagate e1 + e2 to parent node;

E1 | E2 FOR any event e ∈ {e1, e2} signalled

Propagate e to parent node;

END;

E1
! E2 LOCK the node

IF e1 is signalled

Insert e1 into E1’s list;

END

IF e2 is signalled

Delete all e1’s with T (e1) < T (e2) from E1’s list;

Propagate e1 ! e2 to parent node;

END

UNLOCK the node

The evaluation template shows that a node is locked while being evaluated.

This is necessary, because other evaluation threads may want to evaluate the node

concurrently. If an event occurrence reaches the node and there is no suitable event

96



occurrence available in the child lists, the new event occurrence is inserted into

the corresponding child list. A child list is sorted with respect to the values of

timestamps; the oldest event occurrence comes first and the newest comes last.

In the event-operator-specific parts of the algorithms, a corresponding child list is

searched for the first (that is, oldest) suitable event occurrence. This corresponds to

the evaluation in the chronicle parameter context. Propagating an event occurrence

to a parent node means accumulating the event parameters including the timestamp

and activating the parent node’s evaluation procedure.

The existence of a parameter restriction for a node implies the fulfillment of the

guard-condition. For example, E1 ; E2 would be “and there is e2 with T (e1) < T (e2)

and e1.param = e2.param” instead of “and there is e2 with T (e1) < T (e2)”.

8.1.2 Garbage Collection

Obsolete events can accumulate at specific nodes of a global event tree, namely in

the right child list at a sequence node, in both child lists at a concurrency node,

in the middle and right child lists at a negation node, and in the right child list at

an iteration(+) node. Obsolete events should be garbage collected periodically, in

order to avoid storage and performance overheads. Before garbage collecting any

events, it must be guaranteed that the events are not needed. For example, in a

sequence E1 ; E2 it must be guaranteed that there will be no e1 ∈ E1 with a smaller

timestamp than a corresponding e2 ∈ E2. Depending on the structure of an overall

global event tree this can be difficult, since e1 may originate at different sites. Figure

?? illustrates this; e1 may originate at all sites participating in the left subtree of (;).

The garbage collection procedure respects the hierarchical structure of a global event

tree. It starts at a root node and garbage collects the underlying tree recursively.

Algorithm 8.1.3 The following procedureGarbageCollect Tree initiates the garbage

collection process for a tree, starting with its root node. The procedure returns a

timestamp, indicating until when the underlying tree has been garbage collected1.

GarbageCollect Tree(root): Timestamp

## is root currently being garbage collected ? ##

IF root.flag

WAIT WHILE root.flag; ## wait until garbage collection completes ##

1As in Modula-3, a RETURN or EXIT within a LOCK statement, LOCK mutex . . . UNLOCK

mutex, releases the mutex [Har92, page 242].

97



RETURN root.last gc;

ELSE

LOCK root

## exceeds the garbage collection frequency the value of min gc frequency ? ##

IF Timestamp.Now - root.last gc < min gc frequency

RETURN root.last gc;

ELSE

root.flag := TRUE; ## set flag for garbage collection ##

END

UNLOCK root

## fork threads for garbage collecting children nodes ##

left := Fork a thread(GarbageCollect(root.leftchild));

right := Fork a thread(GarbageCollect(root.rightchild));

IF root.event op = Negation

Fork a thread(GarbageCollect(root.middlechild));

END

left gc := WaitForThread(left); ## join left and right threads ##

right gc := WaitForThread(right);

gc until := MIN{left gc, right gc};
LOCK root ## perform garbage collection until gc until ##

CASE root.event op is

Sequence =>

Delete all e’s with T (e) < gc until from root.rightchild’s list;

Concurrency =>

Delete all e’s with T (e) < gc until from root.leftchild’s list;

Delete all e’s with T (e) < gc until from root.rightchild’s list;

Negation =>

Delete all e’s with T (e) < gc until from root.middlechild’s list;

Delete all e’s with T (e) < gc until from root.rightchild’s list;

Iteration(+) =>

Delete all e’s with T (e) < gc until from root.rightchild’s list;

END

root.last gc := gc until;

root.flag := FALSE; ## unset flag for garbage collection ##

UNLOCK root

RETURN root.last gc;

END

Each root node has two variables, flag and last gc; flag indicates whether the

tree is currently being garbage collected and last gc captures the timestamp of the

98



last garbage collection. If the tree is currently being garbage collected or the last

garbage collection was less than min gc frequency ago, the garbage collection does

not proceed. Otherwise, it proceeds and flag is set. One garbage collection thread is

then forked for each child node. The return values of the left and the right threads

determine up to which timestamp the root node will be garbage collected.

Algorithm 8.1.4 The following procedure GarbageCollect initiates the garbage col-

lection process for a subtree, starting with some child of a root node. The subtree

may be degenerated to a single leaf. The procedure returns a timestamp, indicating

until when the underlying subtree has been garbage collected.

GarbageCollect(child): Timestamp

IF child is leaf

CASE leaf’s event type originates at

local site: RETURN (Timestamp.Now - ∆local);

remote site: RETURN GarbageCollect RemoteTree(child.event type);

END

ELSE ## child is node ##

left := Fork a thread(GarbageCollect(child.leftchild));

right := Fork a thread(GarbageCollect(child.rightchild));

IF child.event op = Negation

Fork a thread(GarbageCollect(child.middlechild));

END

left gc := WaitForThread(left);

right gc := WaitForThread(right);

gc until := MIN{left gc, right gc};
LOCK child

CASE child.event op is

Sequence =>

Delete all e’s with T (e) < gc until from child.rightchild’s list;

Concurrency =>

Delete all e’s with T (e) < gc until from child.leftchild’s list;

Delete all e’s with T (e) < gc until from child.rightchild’s list;

Negation =>

Delete all e’s with T (e) < gc until from child.middlechild’s list;

Delete all e’s with T (e) < gc until from child.rightchild’s list;

Iteration(+) =>

Delete all e’s with T (e) < gc until from child.rightchild’s list;

END

UNLOCK child

99



RETURN gc until;

END

The procedure GarbageCollect is applicable to all children of a root node. If a

child corresponds to a leaf, the procedure depends on whether the leaf relates to a

local or a remote event. If it relates to a local event, the garbage collection stops

and returns the current timestamp minus ∆local, which corresponds to the delay of

local event detection [?, page24] and identifies an upper bound for the time between

the occurrence of a local event and its detection. Such a ∆ can only be determined

for local event detection, because there are no network delays and therefore there

are no unknown primitive event occurrences up to the current point in time. If

the leaf relates to a remote event, the request for garbage collection is forwarded

to the remote site containing the event detector of the leaf’s event type and the

procedure GarbageCollect Tree is applied to the root node of the corresponding

event tree. If a child corresponds to a node, the garbage collection is done similarly

to GarbageCollect Tree; the procedure GarbageCollect is started for all children of

the node and the node is garbage collected, depending on the return-values of the

left and the right threads.

8.2 Synchronous Evaluation

Definition 8.2.1 (Synchronous evaluation) A global event tree is evaluated syn-

chronously, if each node is evaluated on the arrival of an event occurrence from a

child node provided that all event occurrences from other child nodes which have

smaller timestamps have arrived.

Synchronous evaluation assumes the implementation of FIFO network delivery,

that is, messages originating at any one site are delivered at any other site in the

order they were generated [?]. FIFO network delivery can be achieved easily us-

ing TCP (Transmission Control Protocol) [Bac92] or any mechanism that numbers

outgoing messages and delivers them accordingly.

Synchronous evaluation means that the evaluation of a node is delayed until

all relevant events with smaller timestamps have arrived at the global event detec-

tor. Relevant events arrive from the sites relating to the siblings of the child node.

There are no relevant events from the child node itself, because nodes are evaluated

synchronously and because network delivery is FIFO; that is, all events from one

node/leaf arrive in the order of their occurrence. In order to achieve this for leaves

100



relating to remote global event trees, those global event trees have to be evaluated

synchronously as well. The siblings of a child node may have other child nodes,

which again have children, and so forth. Therefore, the existence of a relevant event

depends recursively on numerous event reporting sites. Figure ?? illustrates this.

The right child of (|) depends on all nodes in its subtree. In evaluating a composite

event synchronously, every relevant primitive event that might participate in the

evaluation of its parent node and other ancestors must be considered. Therefore, all

event reporting sites in the subtree have to be checked for relevant events before an

event occurrence can be detected at the parent node. In most cases, checking reveals

that there are no relevant events. Occasionally there are relevant events which have

been delayed because of failure.

8.2.1 Evaluation of Nodes

The evaluation algorithms for event operator nodes are presented next. Since events

from one node/leaf arrive in the order of their occurrence, the garbage collection of

obsolete events is incorporated into the evaluation algorithms.

The evaluation of conjunction(,)-, sequence(;)-, and concurrency(‖)-nodes is sim-

ilar. The similarities are incorporated into an evaluation template. Operator-specific

parts are stated thereafter. The evaluation of disjunction(|)-, negation(NOT)-, and

iteration(!/+)-nodes differs considerably from asynchronous evaluation and involves

the SynchCheck procedure for checking a subtree for relevant event occurrences up

to a certain timestamp. The SynchCheck procedure is presented in Section 8.2.2.

Algorithm 8.2.2 The following procedures present the synchronous evaluation of

conjunction(,)-, sequence(;)-, and concurrency(‖)-nodes:

Event Op LOCK the node

IF e1 is signalled

IF E2’s list is not empty

. . . BLOCK 2 . . .

ELSE

Append e1 to E1’s list;

END

Set variable node.logical sent;

END

IF e2 is signalled

IF E1’s list is not empty

. . . BLOCK 2 . . .

101



ELSE

Append e2 to E2’s list;

END

Set variable node.logical sent;

END

UNLOCK the node

E1 , E2 . . . BLOCK 2 . . .

e2 = head of E2’s list; delete head of E2’s list;

Propagate e1 , e2 to parent node;

. . . BLOCK 3 . . .

## in accordance ##

E1 ; E2 . . . BLOCK 2 . . .

## GC: garbage collection of obsolete events ##

GC: Delete all e2’s with T (e2) < T (e1) from E2’s list;

IF there is e2 in E2’s list with T (e1) < T (e2)

Delete e2 from E2’s list;

Propagate e1 ; e2 to parent node;

ELSE

Append e1 to E1’s list;

END

. . . BLOCK 3 . . .

## in accordance, but no GC ##

E1 ‖ E2 . . . BLOCK 2 . . .

GC: Delete all e2’s with T (e2) < T (e1) from E2’s list;

IF there is e2 in E2’s list with T (e1) ∼ T (e2)

Delete e2 from E2’s list;

Propagate e1 ‖ e2 to parent node;

ELSE

Append e1 to E1’s list;

END

. . . BLOCK 3 . . .

## in accordance ##

Each node of a synchronously evaluated global event tree has a variable logi-

cal sent, which captures the minimum value of the next event occurrence. This vari-

able is set at the evaluation of an event operator node, either before the correspond-

ing node is unlocked or before the evaluation procedure returns. The SynchCheck

102



procedure uses logical sent in order to determine whether the recursive scanning of a

subtree can be stopped. The determination of the value for logical sent is discussed

later in this chapter.

The algorithms for conjunction(,)-, sequence(;)-, and concurrency(‖)-nodes are

similar to asynchronous evaluation, except that synchronous evaluation includes the

garbage collection of obsolete events. Moreover, since events from one node/leaf

arrive in the order of their occurrence, events are being appended to child lists

rather than being inserted, as in asynchronous evaluation.

Algorithm 8.2.3 The following procedure presents the synchronous evaluation of

disjunction(|)-nodes:

E1 | E2 IF e1 is signalled

LOCK the node

IF E2’s list is not empty

Delete and propagate all e2’s in E2’s list

with T (e2) < T (e1) to parent node;

8 IF there are e2’s in E2’s list with T (e2) ∼ T (e1)

8 Delete and propagate all e2’s in E2’s list

8 with T (e2) ∼ T (e1) to parent node;

Set variable node.logical sent;

Propagate e1 to parent node; RETURN ;

ELSIF there are e2’s in E2’s list with T (e1) < T (e2)

Set variable node.logical sent;

Propagate e1 to parent node; RETURN;

ELSE

Append e1 to E1’s list;

END

ELSE

Append e1 to E1’s list;

END

Set variable node.logical sent;

UNLOCK the node

SynchCheck: Check E2’s subtree for event occurrences

up to e1’s timestamp;

LOCK the node

IF e1 is still in E1’s list

Set variable node.logical sent;

Delete and propagate e1 to parent node;

END

103



UNLOCK the node

END

IF e2 is signalled

## in accordance ##

END

An event e1 ∈ E1 arriving at a disjunction(exclusive-or) node, E1 | E2, cannot

be propagated immediately. First, all e2 ∈ E2’s with smaller timestamps than e1

are propagated. After this, there may be e2’s left in E2’s list with concurrent or

larger timestamps. Since concurrent events occur virtually “at the same time”,

there is no meaning to “the order of occurrence”. Concurrent events are therefore

propagated according to the “first come first served” principle. That means, all e2’s

with concurrent timestamps are propagated before e1. e1 is also propagated, if there

are e2’s with larger timestamps. In these cases, the evaluation of the node stops at

this point. If there are no e2’s left in E2’s list with concurrent or larger timestamps,

e1 is appended to E1’s list, the node is unlocked, and the SynchCheck procedure is

started in order to check whether there are e2’s which occurred earlier than e1 but

have not yet arrived at the node because of delay or failure. In the meanwhile, the

disjunction node can be evaluated by other threads relating to newly arriving event

occurrences. However, the SynchCheck procedure cannot be performed a second

time before the first SynchCheck procedure returns. If this were possible, it could

for example lead to the accumulation of a large number of SynchCheck procedure

threads trying to check a remote site which has failed on a long-term basis. When

the SynchCheck procedure returns, e1 may have already been propagated due to

arriving e2’s with larger timestamps than e1. If this is not the case, that is, e1 is

still in E1’s list, the event is finally propagated.

The evaluation of a disjunction(inclusive-or) is similar to the evaluation of a

disjunction (exclusive-or), except that the lines indicated by 8 are substituted with:

IF there is e2 in E2’s list with T (e2) ∼ T (e1)

Delete e2 from E2’s list;

Propagate e1 ‖ e2 to parent node;

Algorithm 8.2.4 The following procedures present the synchronous evaluation of

negation(NOT)- and iteration(!)-nodes:

E1 ; NOT E2 ; E3

IF e2 is signalled

LOCK the node

104



Append e2 to E2’s list;

UNLOCK the node

END

IF e1 is signalled

LOCK the node

IF E3’s list is not empty

GC: Delete all e3’s with T (e3) < T (e1) from E3’s list;

IF there is e3 with T (e1) < T (e3)

Delete e3 from E3’s list;

GC: Delete all e2’s with T (e2) < T (e1) from E2’s list;

IF there is e2 in E2’s list with T (e1) < T (e2) and T (e2) < T (e3)

Set variable node.logical sent;

RETURN;

ELSIF there is e2 in E2’s list with e3 ; e2

Set variable node.logical sent;

Propagate e1 ; NOT e2 ; e3 to parent node; RETURN;

END

ELSE

Set variable node.logical sent;

Append e1 to E1’s list; RETURN;

END

ELSE

Set variable node.logical sent;

Append e1 to E1’s list; RETURN;

END

Set variable node.logical sent;

UNLOCK the node

SynchCheck: Check E2’s subtree for event occurrences

up to e3’s timestamp;

LOCK the node

IF there is no e2 in E2’s list with T (e1) < T (e2) and T (e2) < T (e3)

Set variable node.logical sent;

Propagate e1 ; NOT e2 ; e3 to parent node;

END

UNLOCK the node

END

IF e3 is signalled

## in accordance, but no GC for E1’s list ##

END

105



E1
! E2 IF e1 is signalled

LOCK the node

Append e1 to E1’s list;

UNLOCK the node

END

IF e2 is signalled

SynchCheck: Check E1’s subtree for event occurrences

up to e2’s timestamp;

LOCK the node

Set variable node.logical sent;

Delete all e1’s with T (e1) < T (e2) from E1’s list;

Propagate e1 ! e2 to parent node;

UNLOCK the node

END

A negation corresponds to a restricted sequence. After detecting the sequence

e1 ; e3, it is checked whether there is any proof that the negation event cannot

occur, that is, whether there is a corresponding e2 in E2’s list which occurred in

between e1 and e3. In this case, the negation is not detected. Further, it is checked

whether there is an e2 in E2’s list which occurred after e3. In this case, the negation

is detected. Otherwise, the node is unlocked and the subtree corresponding to the

middle child E2 is scanned for event occurrences up to e3’s timestamp. When the

SynchCheck procedure returns, E2’s list is checked again for event occurrences lying

in between e1 and e3. The negation is detected, if there are none. Note, that the

detected sequence e1 ; e3 is not stored while the SynchCheck procedure runs. The

reason is, that the negation could not be detected by another thread before the

SynchCheck procedure returns; it could only be not-detected by another thread,

that is, an e2 arrives that occurred in between e1 and e3.

Before an iteration can be detected, it must be ensured that all e1 ∈ E1’s with

smaller timestamps than an e2 ∈ E2 are available. Hence, the SynchCheck procedure

is employed for scanning E1’s subtree. The evaluation of E1
+ E2 is a combination

of E1 ; E2 and E1
! E2 and is therefore not stated explicitly.

Each node has a variable logical sent, which determines the minimum timestamp

of the next event occurrence. The variable is set at the evaluation of an event

operator node, either before the node is unlocked or before the evaluation terminates

(that is, the evaluation procedure returns). The value of logical sent depends on (i)

the last event propagated to the parent node (ii) the events stored in the child lists

106



and (iii) the event operator.

• Conjunction(,), Sequence(;), Concurrency(‖), Negation(NOT), Iteration(+):

If both left and right child lists are empty, logical sent corresponds to the

timestamp of the last event propagated to the parent node. If there are events

in one of the lists, logical sent has the timestamp of the head of that list.

Finally, if there are events in both lists, logical sent corresponds to the latest

timestamp of the heads of the lists.

• Disjunction(|), Iteration(!): logical sent corresponds to the timestamp of the

last event propagated to the parent node.

8.2.2 Synchronisation Procedure

There are several alternative methods for the synchronisation procedure SynchCheck.

The following methods have been investigated:

Dummy Events Each local event participating in a global composite event is

raised periodically as a dummy, if no “real” event has occurred for a certain

length of time. Dummy events are propagated along the hierarchical structure

of global event trees (evaluating, but not consuming any “real” events) and

cause the occurrence of higher-level dummies, corresponding to global com-

posite events. Dummies should be signalled periodically. If they are not, this

indicates a delay or failure.

Token Passing Tokens are passed in a virtual ring of sites. When a token returns

to its originator, this indicates that all sites were up and running at some

specific point in time.

Request Messages When information on event occurrences is needed, a request

is sent to the corresponding site and from there recursively to all sites which

may participate in it. This procedure continues until it is confirmed that all

relevant event occurrences have been signalled.

Although dummy events provide the information quickly, they cause an immense

and unjustified overhead on event traffic and event processing. “Real” events will

be detected later than necessary and a vast number of dummies will need to be

garbage collected periodically. Hence, it does not seem to be sensible to base the

synchronisation procedure on dummy events. On the other hand, token passing

107



does not provide the information required by the synchronisation procedure. Local

events may pass through numerous sites before they reach a certain node of a global

event tree. Hence, although the site of event occurrence is up and running, the event

may be stuck or delayed in a different site. Finally, request messages provide the

information required by the synchronisation procedure when it is demanded, hence,

not causing unnecessary event traffic and event processing overhead. Although the

detection of global composite events may incorporate a slight delay, this delay can

be limited in several ways. The synchronisation procedure developed in this section

is based on the last method, request messages.

SynchCheck Algorithm

The synchronisation procedure and the garbage collection procedure (see Section

8.1.2) are similar. However, in contrast to garbage collection, a (sub)tree has to

be evaluated only until it is guaranteed that no event occurrences up to a certain

timestamp exist. This timestamp is determined by the initiator of the synchroni-

sation procedure. Further, each node affected by a SynchCheck procedure must be

locked for concurrent SynchCheck evaluations. The reason is that SynchCheck can

originate at arbitrary nodes of a global event tree and not just at root nodes, as

garbage collection.

Algorithm 8.2.5 The following procedure SynchCheck checks a (sub)tree starting

with child for event occurrences up to the timestamp checktime. The subtree may

degenerate to a single leaf.

SynchCheck(child, checktime)

IF child is leaf

CASE leaf’s event type originates at

local site: Wait until Timestamp.Now > checktime + ∆local

RETURN;

remote site: SynchCheck RemoteTree(child.event type, checktime);

RETURN;

END

ELSE ## child is node ##

LOCK child

WAIT WHILE child.flag; ## wait until other thread completes SynchCheck ##

child.flag := TRUE; ## set flag for SynchCheck ##

UNLOCK child

## is the min timestamp of the next event occurrence larger than checktime ? ##

108



IF child.logical sent ≥ checktime

child.flag := FALSE; ## unset flag for SynchCheck ##

RETURN;

ELSE ## perform SynchCheck ##

CASE child.event op is

Conjunction, Sequence, Concurrency, Negation =>

left := Fork a thread(SynchCheck(child.leftchild, checktime));

right := Fork a thread(SynchCheck(child.rightchild, checktime));

IF child.event op = Negation

middle := Fork a thread(SynchCheck(child.middlechild, checktime));

END

Wait for left or right thread to return;

IF there are no event occurrences in the corresponding child list

with timestamps smaller than checktime THEN

Alert other threads;

Synch Completion();

ELSE

Wait for other thread(s) to return;

Synch Completion();

END

Disjunction =>

left := Fork a thread(SynchCheck(child.leftchild, checktime));

right:= Fork a thread(SynchCheck(child.rightchild, checktime));

Wait for left and right threads to return;

Synch Completion();

Iteration(!) =>

left := Fork a thread(SynchCheck(child.leftchild, checktime));

right:= Fork a thread(SynchCheck(child.rightchild, checktime));

Wait for right thread to return;

IF there are no event occurrences in the corresponding child list

with timestamps smaller than checktime THEN

Alert other thread;

Synch Completion();

ELSE

Wait for left thread to return;

Synch Completion();

END

END

END

END

109



Synch Completion()

LOCK child

child.logical sent := MAX{child.logical sent, checktime};
child.flag := FALSE;

UNLOCK child

RETURN;

The procedure SynchCheck is applied to one or more children of a node. The

procedure depends on whether a child corresponds to a leaf or a node. If it corre-

sponds to a leaf, the procedure depends on whether the leaf relates to a local or a

remote event. In the first case, the procedure returns as soon as the current time-

stamp exceeds the value of checktime plus ∆local (the delay of local event detection).

This guarantees that there are no local event occurrences up to checktime. Since

checktime is an earlier timestamp and ∆local is small, there is usually no waiting

involved. If the leaf relates to a remote event, the request for synchronous checking

is forwarded to the remote site containing the event detector of the leaf’s event type

and the procedure SynchCheck is applied to the root node of the corresponding event

tree. If a child corresponds to a node, the procedure can only proceed if the node is

not currently being SynchChecked; flag is set as soon as the subtree becomes avail-

able for synchronous checking. Maybe at that point, event occurrences with larger

timestamps than checktime have already been propagated to the parent node. This

is revealed by the variable logical sent. In this case, it is not necessary to proceed

scanning the subtree for smaller event occurrences. There are none, since events

from one node/leaf are signalled in the order of their occurrence. If logical sent is

smaller than checktime, there may be event occurrences with smaller timestamps

in the corresponding subtree. In this case, one thread is forked for each child of

the node, performing SynchCheck in the corresponding subtrees concurrently. The

further evaluation depends on the event operator. For a conjunction, sequence, con-

currency, and negation the return of the left or right thread is awaited. If no suitable

event occurrence has arrived at the node in the meanwhile, the procedure stops; it

is impossible to detect one of these events without a suitable event occurrence from

the left or the right child. For a disjunction, the return of both SynchCheck threads

is awaited, because only one event occurrence is necessary in order to detect a dis-

junction. Finally, for an iteration($), if the right thread reveals that there are no

suitable event occurrences, the procedure stops. Otherwise, the return of the left

110



thread is awaited.

8.3 Summary

Two different evaluation policies were introduced in this chapter; asynchronous

and synchronous evaluation represent extreme possibilities for dealing with delayed

events at the evaluation of event operator nodes.

Evaluating a global event tree asynchronously means evaluating nodes instantly

on the arrival of suitable event occurrences, whereas delayed events are not consid-

ered. Hence, events are not evaluated in the order of their occurrence, that is, do not

respect 2gg-restricted temporal order (see Definition 6.2.2). On the other hand, event

detection is not blocked by delayed events and is therefore faster. For most event

operators asynchronous evaluation results in inconsistency with respect to the pa-

rameter context or incompleteness of parameter computations. However, for a nega-

tion(NOT) it can lead to “wrong” event occurrences, because in E1 ; NOT E2 ; E3

a relevant event e2 ∈ E2 may be delayed. If this is not acceptable, a negation must

be evaluated synchronously.

Asynchronous evaluation is suitable for real-time applications [?, Chapter 16]

or any applications that require fast response times; it is crucial that an event is

detected as quickly as possible, but it is not crucial that the event parameters reflect

the system-wide chronological order of event occurrences.

In synchronously evaluated global event trees, each node is evaluated regard-

ing the 2gg-restricted temporal order of all events which may participate in an oc-

currence. The evaluation of a node blocks until all corresponding sites have been

checked for relevant event occurrences. This is done using the synchronisation proce-

dure SynchCheck. Although synchronous evaluation guarantees that events relating

to specific nodes are evaluated in the order of their occurrence, the evaluation can

block long-term, if there are site failures, network partitioning, or network conges-

tion.

Synchronous evaluation is suitable for applications requiring a high degree of

consistency and reliability, such as the traditional database applications of banking

and warehousing.

As alternatives to asynchronous and synchronous evaluation, a whole range of

evaluation policies is possible which lie in between the two; a global event tree

could be evaluated synchronously, specifying an upper time-limit for events to be

111



considered. For example, synchronous within two minutes specifies that a global

event tree is evaluated according to synchronous semantics, but that the evaluation

of a node continues after two minutes blocking.

112



Chapter 9

Prototype Implementation and

Evaluation

The goal of the prototype implementation is to realise the detection of global com-

posite events in distributed systems. For this purpose, it is not necessary to support

the full extend of primitive event specification and detection; the essential behaviour

is the signalling of primitive events and specifically, of their event type and time-

stamp. This information will be simulated by event simulators.

The prototype implementation is concerned with

• the structure and handling of timestamps according to the simplified semantics,

as discussed in Sections 6.4 and 6.5.

• the asynchronous and synchronous detection of global composite events com-

posed of simulated primitive and/or detected global composite events and

event operators conjunction(,), disjunction(|), sequence(;), concurrency(‖),
negation(NOT), and iteration(!), as discussed in Chapters 7 and 8.

The prototype implementation is not concerned with

• the realisation of a distributed database system for the specification and de-

tection of data manipulation events and transaction events.

• the employment of a programmable timer interface for the specification and

detection of time events.

• the handling of complex event parameters. The only parameter used for event

detection is the timestamp of an event occurrence. Other parameters have no

113



influence on the detection process.

9.1 Programming Environment

The mechanisms for detecting global composite events in distributed systems have

been implemented using Modula-3 for Network Objects [BNOW94]. Modula-3 for

Network Objects is a distributed programming system extending Modula-3 [Har92],

where communication over a network is done using network objects. A network ob-

ject is an object whose methods can be invoked over a network. The program con-

taining a network object is called the owner of the network object and the program

using it is called the client. An important feature of Modula-3 for Network Objects

is that a network object pointer can be passed as an argument or result between sites.

This provides a more powerful mechanism than ordinary RPC. Moreover, Modula-3

for Network Objects provides distributed garbage collection.

The prototype has been implemented and tested on a number of Sun SPARC

workstations at the University of Cambridge Computer Laboratory, connected by

an Ethernet network. FIFO network delivery can be assumed in this environment,

because communication is based on TCP (Transmission Control Protocol) [Bac92].

9.2 Architecture

The prototype includes two processes running independently of each other on each

site in the distributed test environment: an event simulator process and an event

detector process. In a test environment of n sites, there are 2× n processes, n event

simulators and n event detectors.

An event simulator simulates primitive event occurrences. There are two impor-

tant points to consider: which primitive events to simulate and when. The essential

information captured in a primitive event occurrence is the event type and the time-

stamp. Since primitive event types are site-related, a primitive event type is mod-

elled as a tuple consisting of the name of a corresponding event simulator site and a

number distinguishing it from the other types at that site. The timestamp denotes

the time of an event occurrence and in this case the time of the event simulation.

The timestamp is allocated after the simulation of a primitive event occurrence,

before it is signalled to the event detectors. Between simulating and signalling two

primitive event occurrences, the event simulator pauses for a certain time period.

This time period can be determined by the user.

114



An event detector receives event occurrences from multiple sites via different

input ports. In the current implementation, there is one input port for each event

reporting site1. Since network delivery is FIFO point-to-point, the event occurrences

arrive at a single port in the order in which they were sent. However, event occur-

rences arrive concurrently at different ports. For each signalled event occurrence,

a thread is forked to evaluate the global event trees at the local site. The threads

synchronise at the nodes of the global event trees. This means, if two event occur-

rences arrive at a node simultaneously, one thread is evaluated while the other one

is waiting. Different nodes can, however, be evaluated concurrently. Detected global

composite events are displayed to the user and/or are signalled to registered event

detector sites for further evaluation.

Figure ?? illustrates the system architecture with four sites. Event simulators

signal primitive event occurrences to sites via the corresponding input ports. Each

input port receives the simulated primitive and detected global composite event

occurrences from a single generating site. The event detectors evaluate incoming

event occurrences concurrently. Detected global composite events can be resignalled

to any event detector site.

9.3 Data Structures

There is a distinction between event types and event occurrences. Event oc-

currences are characterised by their timestamp and other event parameters. The

event occurrences flowing around in an event graph are stored in lists of event

occurrences. An event graph consists of leafs, nodes, and roots. In addition to

an event graph, each site has two hash tables: an event table and a site port

table. Figure ?? shows the dynamic data structures at an event detector site. Each

event simulator site has one hash table: an observer register.

9.3.1 Event Type

An event type is defined as an object type with two fields: site and event nr.

site is a string denoting the site from which the event type originates and event nr

is a cardinal identifying the event type in relation to site. Since primitive events

are simulated, no further information on event types is necessary. For example,

1In large-scale distributed systems, there will be one input port for multiple event reporting

sites, because of scalability.

115



pelican.cl.cam.ac.uk.3 determines event type number 3 originating at site

pelican.cl.cam.ac.uk.

9.3.2 Global Time

A global time is defined as an object type with the fields year, month, day, and

ticks, where year and ticks are cardinal numbers and month and day are subranges

of cardinal numbers. ticks denotes the global clock ticks (ticks of granularity gg)

since midnight on the same day. For testing purposes, additional fields hour, minute,

second, and fraction are kept.

9.3.3 Timestamp

A timestamp is defined as an object type with three fields: base, interval, and

offset. This representation of a timestamp corresponds to the simplified semantic

model, assuming no two primitive event occurrences at the same site within one

global clock tick (see Section 6.4). base depicts a global time read at an arbitrary

site in the distributed system. interval is a boolean and states whether the distance

between the base and the limit of the timestamp is 0 (interval = FALSE) or 1

(interval = TRUE) global clock tick. Finally, offset denotes a list of tuples

(host,bound) indicating which sites participate in the timestamp and to which

global time they relate (to the base or to the limit of the timestamp).

9.3.4 Event Occurrence

An event occurrence is defined as an object type with three fields: time occur,

time detect, and parameters. time occur and time detect are both timestamps

denoting the time of event occurrence and the time of event detection. Other param-

eters are captured in the field parameters which is simply a list of pointers. Each

event occurrence relates to a specific event type. However, the event type is not

stored explicitly, but is implicit depending on the position of an event occurrence in

an event graph.

9.3.5 List of Event Occurrences

At runtime, event occurrences accumulate at the nodes of event trees and are stored

in lists of occurrences. A list of occurrences is a list of event occurrence

objects and relates to a specific event type.

116



9.3.6 Leaf

A leaf of an event graph is defined as an object type with the following attributes:

event type indicates which event occurrences are to be inserted into the leaf, parent

is a pointer to the parent node in the event graph, and position determines whether

the leaf corresponds to a left, a middle, or a right child.

9.3.7 Node

A node of an event graph is defined as an object type with the following attributes:

parent is a pointer to the parent node in the event graph, operator states the

event operator, and position determines whether the node is a left, a middle, a

right child, or a root. Further each node contains information corresponding to

the left and the right child. Negation nodes have a third middle child. This

information consists of a list of occurrences and a pointer to the child node.

Synchronous Evaluation

Nodes which are synchronously evaluated have additional attributes logical sent

and flag, denoting the minimum timestamp of the next event occurrence and the

flag employed in SynchCheck respectively.

9.3.8 Root

A root is a subtype of node with two additional attributes event type and

registered sites. event type defines the event type of detected occurrences at

this node and registered sites indicates which sites have registered their interest

in the event type.

Asynchronous Evaluation

Roots which are asynchronously evaluated have additional attributes last gc and

flag, capturing the time of the last garbage collection and the flag used in Garbage-

Collect Tree respectively.

9.3.9 Event Table

An event table is a hash table mapping event types onto lists of leaves and/or root

nodes. All leaves and roots relate to the local site. There is one event table at each

site, serving as the interface for accessing the local event detection mechanisms.

117



9.3.10 Port

A port is a network object with three methods: signal event, request gc, and

request sy. Primitive and composite events are signalled at a site with the help

of the signal event method, whereas the other two methods are used to forward

requests for garbage collection and synchronous checking respectively to the site.

9.3.11 Site Port Table

A site port table is a hash table mapping sites to imported and exported port

network objects. One network object is exported for each site which may signal event

occurrences and one network object is imported for each site which has registered

an interest into detected event occurrences. There is one site port table at each site.

9.3.12 Observer Register

An observer register is a hash table employed at an event simulator site. It maps

event types onto lists of imported port network objects.

9.4 System Setup and Initialisation

There is a single coordinator process which coordinates the system setup and ini-

tialisation. In order to perform system setup and initialisation, each event detector

process exports a network object InitCEDetect having two methods setup and

connect and each event simulator process exports a network object InitPESim hav-

ing two methods setup and start simulate. The coordinator process imports these

network objects and calls the corresponding methods in turn.

9.4.1 First Step: InitCEDetect.setup

InitCEDetect.setup has one parameter, a string denoting a file accessible by the

corresponding detector process. This file contains the setup information for the

event detector, namely

(1) the evaluation policy asynchronous or synchronous

(2) the global event trees to be evaluated, and

(3) the event detectors from which simulated primitive and detected composite

event occurrences are signalled.

118



(1) determines the evaluation policy applied to the event graph at an event detector

process. If both evaluation policies are to be implemented at the same site, two

event detector processes are utilised. (2) relates to setting up the dynamic data

structures shown in Figure ?? and (3) is concerned with exporting port network

objects and storing them in the site port table.

9.4.2 Second Step: InitPESim.setup

InitPESim.setup has one parameter, a string denoting a file accessible by the cor-

responding simulator process. This file contains

(1) the simulated event types and

(2) the event detectors to which the simulated event occurrences are signalled.

For each simulated event type mentioned in (1), there is an entry in the observer -

register. A corresponding value consists of a list of imported port network objects,

relating to the event detectors to which simulated event occurrences of that type are

signalled.

9.4.3 Third Step: InitCEDetect.connect

The InitCEDetect.connect method completes the setup process at an event detec-

tor. In InitCEDetect.setup one port network object was exported for each site sig-

nalling event occurrences. However, detected global composite events are resignalled

to registered event detector sites. Hence, corresponding port network objects are

imported and stored in the site port table. Note, that InitCEDetect.connect

cannot be merged with InitCEDetect.setup, because importing port network ob-

jects implies that the corresponding event detectors are already installed.

9.4.4 Fourth Step: InitPESim.start simulate

At this point, all event simulators and event detectors are set up and initialised.

Hence, the event simulation and event detection can proceed. The InitPESim.-

start simulate method of each event simulator is called in turn, passing a string

parameter denoting a file accessible by the corresponding simulator process. This

file contains information on the simulation process as such.

119



9.5 Runtime Behaviour of the Event Simulator

The call of the method InitPESim.start simulate(name:TEXT) triggers the simu-

lation of primitive event occurrences at the corresponding event simulator site. The

file denoted by name contains the information on the event simulation process and

has the following form:

event1 pause1 event2 pause2 event3 . . .

event1 is a cardinal number relating to the event type at the local site. For

example, if the event simulator site is pelican.cl.cam.ac.uk and event1 is 3, an

occurrence of primitive event type pelican.cl.cam.ac.uk.3 is simulated. Simu-

lating an event occurrence means determining the event type and the timestamp

relating to the current point in time and signalling the corresponding values to all

event detector sites which are registered under event type in the observer register.

pause1 is a real number denoting a time period (in seconds). The event simulator

pauses for pause1 seconds after simulating the event occurrence relating to event1

and before simulating the event occurrence relating to event2. This procedure is

repeated for all eventn and pausen until the end of file is reached.

9.6 Runtime Behaviour of the Event Detector

9.6.1 Signalling Event Occurrences

Simulated primitive and detected global composite event occurrences are signalled at

an event detector site with the help of the signal event method of a corresponding

port network object. On the arrival of an event occurrence, the event table at the

local site is consulted in order to find an entry for the corresponding event type. If

there is no entry or the list of leaves is empty, the event type does not participate

in a global composite event and the event occurrence can therefore not be used.

Otherwise, the event occurrence is injected into all leaves in the list of leaves. The

ordering of a list of leaves reflects rule priorities; the first leaf corresponds to a rule

with a higher priority than the second leaf and so on (see Section 2.1). An injected

event occurrence does not reside in a leaf, but is directly propagated to the parent

node.

120



9.6.2 Evaluating Nodes

An event occurrence arriving at a node is evaluated according to the evaluation

procedures presented in Chapter 8.

Asynchronous evaluation requires nodes to be evaluated instantly, without con-

sidering delayed events. Garbage collection of obsolete events accumulating at se-

quence-, concurrency-, negation-, and iteration(+)-nodes, is performed separately.

Garbage collection starts with the root of a global event tree, when the correspond-

ing global composite event is detected and the last garbage collection was more than

one minute ago2. If a garbage collected leaf relates to a remote event, the proce-

dure GarbageCollect RemoteTree in Algorithm 8.1.4 involves calling the request gc

method of a corresponding port network object. This method has one attribute,

the event nr of the leaf’s event type, which determines the global event tree to be

garbage collected next. Asynchronous evaluation of nodes has been implemented as

shown in Section 8.1.

Synchronous evaluation requires that all relevant event occurrences are consid-

ered in the order of their occurrence, when a node is evaluated. Depending on

the event operator and the available event occurrences (the newly arriving event

occurrence and the event occurrences stored in the node’s child lists), a node is

evaluated instantly or delayed. Disjunction-, negation-, and iteration-nodes are

evaluated delayed, if the SynchCheck procedure is involved. Otherwise, they are

evaluated instantly. Conjunction-, sequence-, and concurrency-nodes are always

evaluated instantly. If a SynchChecked leaf relates to a remote event, the procedure

SynchCheck RemoteTree in Algorithm 8.2.5 involves calling the request sy method

of a corresponding port network object. The implementation of request sy corre-

sponds to the implementation of request gc. Synchronous evaluation of nodes has

been implemented as shown in Section 8.2.

Both asynchronous and synchronous evaluation involve procedures regarding

the handling of timestamps, as discussed in Sections 6.4 and 6.5. The procedure

Timestamp.Get allocates a new timestamp relating to the current point in time,

Timestamp.Compare compares two timestamps and indicates their temporal rela-

tionship (see Definition 6.4.5), and Timestamp.Join joins two concurrent or unre-

lated timestamps (see Definition 6.4.7).

2This value relates to the variable min gc frequency in Algorithm 8.1.3 which can be set to any

value.

121



9.6.3 Deriving Event Parameters

When an event occurrence is detected at any node of a global event tree, it is prop-

agated to the parent node or displayed to the user (in the case of a root node).

“It” means its event parameters: time occur, time detect, and parameters (see

Section 9.3.4). time occur, the time of event occurrence, represents the main time-

stamp of an event occurrence, which is essential in the whole event detection pro-

cess. It is derived according to the semantics of event operators (see Definition 6.5).

time detect denotes the time of event detection and is allocated just before an event

occurrence is propagated to the parent node or displayed to the user. time detect

is an auxiliary timestamp, used to determine the delay of global event detection, that

is, the time between the occurrence of an event and its detection. It is a measure of

the system’s performance. parameters is a list of pointers to the operand event oc-

currences of a detected event occurrence. There are two pointers for a conjunction,

sequence, concurrency, and negation, one pointer for a disjunction(exclusive-or), one

or two pointers for a disjunction(inclusive-or) and one or more pointers for an it-

eration (depending on the number of left child events). Since the operand event

occurrences may be composite themselves, the parameters form a tree.

9.6.4 Detecting Event Occurrences

When an event occurrence is detected at the root node of a global event tree, a

corresponding global composite event is raised. The event type attribute of the

root node determines the event type of the raised global composite event and the

registered sites attribute indicates which sites have registered their interest in

this event type. The site port table at the local site is then consulted in turn,

in order to find a reference to the port network object at the corresponding remote

site. The event occurrence is signalled to that site by calling the signal event

method of the port network object.

Detected event occurrences have a parameters attribute containing a hierar-

chical structure of pointers to constituent event occurrences. Since Modula-3 for

Network Objects allows the use of network object pointers to be passed as argu-

ments or results between sites (see Section 9.1), the parameters attribute does not

have to be marshalled, but can be transmitted as such. Figure ?? shows an instance

of a global event tree at event detector site 1 with network object pointers to sites

2 and 3. The use of network object pointers has numerous advantages:

122



• It minimises the copying of data. Event occurrences often have extensive pa-

rameters. Also, event occurrences of a certain event type are often used in more

than one event detector. Transmitting the reference to an event occurrence

saves marshalling and copying the event occurrence with all its parameters.

• Abstraction: it allows different local representations of objects and, in partic-

ular, of event occurrences at different sites, and can therefore be applied in

heterogeneous systems.

• Audit logging: each site can keep an audit trail of events structured for local

purposes. The global event trail will be a structured path through these local

logs.

• Traceability: the full structure can be traversed by any observer. This gives

the possibility of global logging and of alternative semantics.

9.6.5 Concurrency

The dynamic data structures at an event detector site are evaluated concurrently

by different threads:

• one thread for all event occurrences signalled at one of n port network objects

• one thread for each event occurrence injected into a leaf

• one thread for each event occurrence propagated to a parent node

• one thread for each event occurrence signalled to a remote event detector site

• asynchronous evaluation: one thread for each branch in a garbage collected

(sub)tree

• synchronous evaluation: one thread for each branch in a SynchChecked (sub)-

tree

The threads evaluating global event trees synchronise at nodes, that is, the eval-

uation of a node is a critical region and the node is locked while being evaluated.

Another measure for synchronisation is the employment of flags for garbage collec-

tion (asynchronous evaluation) and SynchCheck ing (synchronous evaluation). Only

one such thread can access a corresponding (sub)tree at any one time.

The extensive use of threads allows the concurrent evaluation of the global event

trees at an event detector site. This has the following advantages:

123



• It allows different nodes to be evaluated concurrently. This is especially useful

in synchronous evaluation, because the evaluation of a node can block for a

long time if an event reporting site has failed. Other nodes, which are not

influenced by the failed site, can be evaluated in the meanwhile.

• It allows garbage collection and SynchCheck ing to run in the background;

hence, not influencing normal evaluation activity.

• It reflects the concurrency inherent in distributed systems.

9.7 Evaluation

The goal of the prototype evaluation is to examine the differences between asyn-

chronous and synchronous evaluation. There are two aspects:

• What event occurrence is detected?

• When is an event occurrence detected?

The first aspect relates to a detected event occurrence as such and to its structure

as a composition of constituent event occurrences. The second aspect denotes the

delay of global event detection and is a measure of the system’s performance. The

differences between asynchronous and synchronous evaluation become clear at the

evaluation of disjunction(|)-, negation(NOT)-, and iteration(!/+)- nodes. The other

event operators are handled similarly in the two evaluation modes and will therefore

behave in the same way in each.

In the following, three tests are described relating to global composite events

with event operators disjunction, negation, and iteration. Larger network delays

were enforced for parts of the second and third test, in order to present the behaviour

of asynchronous and synchronous evaluation in critical situations (i.e. site failures

and network congestion). Therefore, the test results are not a representative cross-

section of normal runtime behaviour. The global clock granularity corresponds to

gg = 1/10sec. The event traces for parts of the second and third test are given in

Appendix A.

9.7.1 Test One

Figure ?? shows four global event trees evaluated at three sites: pelican, kook-

aburra, and osprey. There are two global event trees at pelican (relating to events

124



pelican.10 and pelican.20), one at kookaburra (relating to event kookaburra.10),

and one at osprey (relating to event osprey.10). When an event pelican.20

is detected, it is signalled to osprey, where it causes the detection of osprey.10,

which causes the detection of kookaburra.10, which finally causes the detection

of pelican.10. Three different tests were performed regarding simulated primi-

tive events pelican.1, kookaburra.1, and osprey.1 respectively. The test results,

representing the differences between time of occurrence and time of detection (in

global clock ticks), are illustrated in Table 9.13. The first and third column relate

to measurements taken during the day and the second and fourth column relate to

measurements taken at night.

Asynchronous Synchronous

pelican 1 2 2 6 6

1 1 4 4

2 2 4 4

1 1 3 4

1 1 3 4

kookaburra 1 2–4 3–5 4–6 3–5

2–4 3–5 3–6 3–6

2–4 2–4 4–6 4–6

1–4 3–8 3–5 7–10

2–5 2–7 7–9 6–8

osprey 1 1–3–5 1–2–4 1–4–6 1–3–9

1–2–4 0–2–4 1–3–5 2–3–5

4–8–10 1–3–5 4–5–7 3–4–6

1–3–5 1–3–6 3–4–7 2–3–5

1–3–5 0–2–7 2–3–8 2–3–6

Table 9.1: Delay of Global Event Detection

In the first test, the simulation of pelican.1 causes the detection of pelican.10.

The results confirm that asynchronous evaluation is considerably quicker than syn-

3Since the time of occurrence and the time of detection of an event may originate at different

sites, the synchronisation of local clocks has to be taken into account. In the test environment, the

precision Π of the synchronised local clocks is in the order of Π = 1/100sec and therefore small in

comparison with the global clock granularity gg = 1/10sec.

125



chronous evaluation. In synchronous evaluation, the whole subtree relating to

kookaburra.10 is SynchChecked before detecting pelican.10, whereas pelican.10

is detected instantly in asynchronous evaluation.

In the second test, the simulation of kookaburra.1 causes the detection of

kookaburra.10 (first value in m–n) and pelican.10 (second value in m–n). The

results show that the differences between asynchronous and synchronous detection

of kookaburra.10 are less significant. The reason is that the SynchChecked sub-

tree is flatter than in the previous test. The delay in the detection of pelican.10

incorporates the delay in the detection of kookaburra.10 and the transmission of

kookaburra.10 to pelican. The delay due to SynchCheck at pelican.10 is negligi-

ble, because the subtree consists of a single leaf at the local site.

In the third test, the simulation of osprey.1 causes the detection of osprey.10

(first value in m–n–o), kookaburra.10 (second value in m–n–o), and pelican.10

(third value in m–n–o). The differences in asynchronous and synchronous detection

of osprey.10 are again less significant, because the SynchChecked subtree is flatter.

Note, that this test considers a worst case scenario, because the global event trees

consist of disjunction nodes only. For disjunction nodes, the SynchCheck procedure

has to wait for both forked SynchCheck threads to return (see Algorithm 8.2.5).

This is not the case for other event operators. For example, if kookaburra.10 is

a sequence node, SynchCheck returns when the SynchCheck thread relating to the

left child kookaburra.1 returns and there are no relevant event occurrences in the

left child list. In general, SynchCheck stops as soon as it finds evidence that there

are no relevant event occurrences.

9.7.2 Test Two

Test two investigates the problems regarding the detection of negations. Figure

?? shows that the middle child of pelican.10 relates to the remote subtree of

kookaburra.10, which relates to osprey.10. On the detection of a sequence be-

tween pelican.1 and pelican.2, the asynchronous evaluation checks the available

middle child events and signals pelican.10, if there is no kookaburra.10 in be-

tween. On the other hand, the synchronous evaluation SynchChecks the subtree

relating to kookaburra.10, to determine whether there are relevant events.

Figures ?? and ?? present the test results for the asynchronous and synchronous

evaluation respectively4. In the first two cases of asynchronous evaluation and in

4Vertical lines indicate the occurrence of events and bullets indicate the detection of events.

126



synchronous evaluation, larger network delays were enforced by manually increasing

the time period between the detection and the signalling of an event.

osprey.10 is detected shortly after the occurrence of osprey.2 and transmitted

to kookaburra, where it causes the detection of kookaburra.10. kookaburra.10

is then transmitted to pelican. In the first two cases of asynchronous evalua-

tion, kookaburra.10 arrives after the occurrence of pelican.2 and the detection of

pelican.10. Hence, the negation is detected, although there is a kookaburra.10

which occurred in between pelican.1 and pelican.2 (the time of occurrence is

that of osprey.2). In synchronous evaluation, no negation is detected, because

the evaluation blocks until kookaburra.10 has arrived. In the third case of asyn-

chronous evaluation, the delays are less significant and kookaburra.10 arrives at

pelican before the occurrence of pelican.2. Hence, the negation is not detected.

The results confirm that different event occurrences may be detected for a nega-

tion in asynchronous and synchronous evaluation; in one case an event occurrence

is detected, in the other case an event occurrence is not detected. In asynchronous

evaluation, negation is detected with respect to the relevant events arriving at the

site “in time”, whereas in synchronous evaluation, negation is detected with respect

to all relevant events in the system.

9.7.3 Test Three

Test three investigates the problems regarding the detection of iterations. In Fig-

ure ??, the left child of pelican.10 relates to the remote event kookaburra.10.

On the detection of pelican.1, asynchronous evaluation signals the occurrence

of pelican.10 with all available kookaburra.10s. Synchronous evaluation em-

ploys the SynchCheck procedure beforehand in order to ensure that all relevant

kookaburra.10s have arrived.

Figures ?? and ?? present the test results for asynchronous and synchronous

evaluation respectively. In the first two cases of asynchronous and synchronous

evaluation, larger network delays were enforced by manually increasing the time

period between the detection and the signalling of an event.

At the first occurrence of pelican.1, there are no kookaburra.10s and thus

pelican.10 is detected with no left child events. However, at the second occur-

rence of pelican.1, there are three kookaburra.10s. In the first case of asyn-

chronous evaluation, the third kookaburra.10 arrives at pelican after the occur-

rence of pelican.1; hence, pelican.10 is detected with only two out of three

127



kookaburra.10s. In the second case, the second kookaburra.10 is delayed as well

and there is only one left child event at the detection of pelican.10. Finally in

the third case, the delays are less significant and all three kookaburra.10s arrive

in time. In synchronous evaluation, the second pelican.10 is not detected until all

three kookaburra.10s have arrived. The detection of the first pelican.10 takes a

little longer, because the subtree relating to kookaburra.10 is SynchChecked be-

forehand.

The results confirm that different event occurrences may be detected for an

iteration in asynchronous and synchronous evaluation; the number of left child events

may differ. In asynchronous evaluation, a relevant left child event may arrive too

late to contribute to a composite event occurrence.

9.8 Summary

This chapter described the prototype implementation realising the detection of

global composite events in distributed systems. Primitive event occurrences are sim-

ulated by event simulators placed at all sites of a distributed test environment, and

signalled to all registered event detectors. Event detectors evaluate global event trees

either asynchronously or synchronously. Detected occurrences of global composite

events are displayed to the user and/or are signalled to registered event detectors

for further evaluation. In order to evaluate the prototype, several tests were per-

formed illustrating the different runtime behaviour of asynchronous and synchronous

evaluation.

128



Chapter 10

Conclusions

This dissertation presented an approach to monitoring the behaviour of distributed

systems in terms of events. A summary of the main contributions and an outlook

on further work is given in this chapter.

10.1 Summary

An approach to event-driven monitoring of distributed systems must provide the

following functionality:

• It must support the specification of primitive and composite events. In order to

monitor the external and internal behaviour of distributed systems, primitive

events must relate to physical time and sensor readings as well as to occurrences

within the system (e.g. within a database or an application program). Further,

the event operators used to construct composite events must be applicable to

events at local and at remote sites.

• It must be semantically sound. A primitive or composite event expression

describes a specific system behaviour. The semantics must be well-defined,

that is, must determine clearly what this behaviour is.

• It must provide algorithms for the detection of primitive and composite events

at system runtime. The detection of primitive events is straightforward. The

detection of composite events is an incremental process, based on some un-

derlying computational model. The algorithms for the detection of composite

events must take account of the special characteristics of distributed systems.

129



The research in this dissertation was motivated by the observation that current

approaches to event-driven monitoring of distributed systems do not provide this

functionality. The commercial standards COM (Component Object Model) [?] and

CORBA (Common Object Request Broker Architecture) [?] introduce basic event

services. However, they do not support general composite events. Work in active

database systems demonstrates sophisticated methods for specifying and detecting

primitive and composite events in centralised systems. But, distributed systems

are not considered. Distributed debugging systems employ primitive and composite

events for monitoring distributed computations; the causal relationship of primi-

tive events is monitored in order to locate the cause of errors. Hence, distributed

debugging systems monitor the internal system behaviour only.

This dissertation has proposed an approach to event-driven monitoring of dis-

tributed systems which provides the full functionality of event specification, event

semantics, and event detection. Before these issues could be addressed, it was nec-

essary to review the research areas of active database systems and distributed de-

bugging systems, and to assess their applicability for monitoring the internal and

external behaviour of distributed systems.

Event specification was the subject of Chapter 5. Different kinds of primitive

events are supported relating to physical time (i.e. time events), to occurrences

within databases (i.e. data manipulation events and transaction events), and to oc-

currences within application programs (i.e. abstract events). Composite events are

made up of primitive and/or other composite events and event operators. The event

operators conjunction, disjunction, sequence, iteration, and negation are applicable

to events at local and at remote sites, whereas the concurrency event operator is

specific to events at remote sites. This chapter included a discussion of event pa-

rameters. In particular, each event has a timestamp parameter indicating when and

where it occurred. Timestamps play a special role in establising event semantics.

Chapter 6 addressed the semantics of events. The semantics identifies when and

where an event occurs. Since the semantics of a composite event depends on the

timestamps of constituent events, the structure and handling of timestamps must

take account of the notions of physical time and temporal order in distributed sys-

tems. It was essential to determine the temporal relationship between timestamps;

that is, whether two timestamps denote concurrent or sequential events. First, the

general semantic model was developed. Second, it was recognised that the fulfill-

ment of a simple assumption, namely if there are no two primitive event occurrences

130



at the same site within one global clock tick, leads to a simplified semantic model.

This assumption is satisfied when the frequency of primitive event occurrences is

sufficiently low. Finally, the semantics of composite events was formally defined for

both the general and the simplified semantic model.

Event detection was discussed in Chapters 7 and 8. Chapter 7 identified the goals

of event detection, defined the system architecture, and described the basic detection

mechanisms: global event trees representing global composite events are evaluated

concurrently at arbitrary sites of a distributed system. Chapter 8 presented the

algorithms for evaluating the nodes of global event trees. Two evaluation policies

were considered: asynchronous and synchronous evaluation. Differences between

the two are due to the different handling of site failures and network delays. In

asynchronous evaluation, nodes are evaluated irrespective of site failures and network

delays, whereas these are taken account of in synchronous evaluation.

A prototype has been implemented realising the detection of global composite

events with both asynchronous and synchronous evaluation. Timestamps have been

implemented with respect to the simplified semantic model. Chapter 9 outlined the

system architecture, the data structures, the system setup and initialisation, and the

system’s runtime behaviour. Further, several tests were described which illustrate

the differences between asynchronous and synchronous evaluation.

10.2 Outlook

Further work can be divided into the following tasks:

• Optimisation: In a distributed system, it is essential to minimise event traffic,

that is, to minimise the network load which is due to event monitoring. One

possibility is to realise event detection with network object pointers (see Sec-

tion 9.6.4). This saves copying of event data, i.e. of event parameters. Another

possibility is event filtering in order to send only relevant event occurrences to

remote event detectors. In this dissertation event filtering was achieved using

parameter restrictions (see Section 5.3.3). A more general approach merging

events and conditions is needed.

• Design: Specifying a desired system behaviour is a difficult task since event

types are scattered around the distributed system. Before specifying a compos-

ite event type, relevant constituent event types have to be located. Moreover,

131



the detector site of a global composite event type has to be decided. In or-

der to locate relevant event types, each site has to be extended with an event

interface expressed in some common interface definition language (IDL)1. In

order to decide on a detector site, some heuristic algorithm has to be applied,

either by the user specifying the event type, or by the system.

• Supporting system evolution: Taking up the previous point, system evolution

has to be considered. Event detectors need to be adaptable to system changes;

that is, new event types need to be implemented and existing event types need

to be re-implemented.

• Verifying runtime behaviour: Detected event occurrences participate in the

detection of other event occurrences. Hence, the overall effects of event moni-

toring are very complex. It may be convenient to use concurrency theory, i.e.

CCS (Calculus for Concurrent Systems) [?] or one of its extensions, to formally

verify runtime behaviour.

• Extending distributed object system standards: COM (Component Object Mo-

del) [?] and CORBA (Common Object Request Broker Architecture) [?] pro-

vide basic event services. It would be interesting to investigate how these

standards need to be extended in order to perform system monitoring as de-

scribed in this dissertation.

• Security: It is necessary to secure event monitoring, that is, to provide access

control to event detection mechanisms. Moreover, since detected events might

relate to the internal behaviour of objects, there is a tension between object

encapsulation and event detection. The security issue needs to be addressed

before event-driven monitoring can be employed on a widespread basis.

1Note, that the underlying distributed system may be heterogeneous.

132



Appendix A

Event Traces

A.1 Test Two

A.1.1 Asynchronous Evaluation

The following output represents the first and third part of the “results of asyn-
chronous evaluation” (see Figure ??).

osprey.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:22:7:797915 ticks 589277

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:22:7:754039 ticks 589277

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:22:7:730449 ticks 589277

osprey.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:22:9:890046 ticks 589298

pelican.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:22:12:893662 ticks 589328

Event Detected : osprey.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:22:9:890046 ticks 589298

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:22:9:948645 ticks 589299

No interval

osprey.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:22:9:890046 ticks 589298

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:22:12:474705 ticks 589324

No interval

133



kookaburra.cl.cam.ac.uk Lower bound

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:22:12:893662 ticks 589328

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:22:12:937007 ticks 589329

No interval

pelican.cl.cam.ac.uk Lower bound

osprey.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:51:54:193092 ticks 607141

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:51:54:168841 ticks 607141

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:51:54:136503 ticks 607141

osprey.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:51:56:306361 ticks 607163

pelican.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:51:59:214155 ticks 607192

Event Detected : osprey.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:51:56:306361 ticks 607163

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:51:56:373105 ticks 607163

No interval

osprey.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:51:56:306361 ticks 607163

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:51:56:589191 ticks 607165

No interval

kookaburra.cl.cam.ac.uk Lower bound

A.1.2 Synchronous Evaluation

The following output represents the first part of the “results of synchronous evalu-
ation” (see Figure ??).

osprey.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:29:47:909522 ticks 593879

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 6 16:29:47:906172 ticks 593879

pelican.cl.cam.ac.uk 1 :

134



Time of occurrence: 1996 Mar 6 16:29:47:905278 ticks 593879

osprey.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:29:49:998521 ticks 593899

pelican.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 6 16:29:53:6331 ticks 593930

Event Detected : osprey.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:29:49:998521 ticks 593899

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:29:50:55478 ticks 593900

No interval

osprey.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 6 16:29:49:998521 ticks 593899

No interval

osprey.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 6 16:29:52:186849 ticks 593921

No interval

kookaburra.cl.cam.ac.uk Lower bound

A.2 Test Three

A.2.1 Asynchronous Evaluation

The following output represents the “results of asynchronous evaluation” (see Figure
??).

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 12:4:2:492346 ticks 434424

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 12:4:2:96069 ticks 434429

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 12:4:3:146204 ticks 434431

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 12:4:4:22635 ticks 434442

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 12:4:5:296489 ticks 434452

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 12:4:6:37663 ticks 434463

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 12:4:7:456776 ticks 434474

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 12:4:8:578668 ticks 434485

Event Detected : pelican.cl.cam.ac.uk 10

135



Time of occurrence: 1996 Mar 7 12:4:2:492346 ticks 434424

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 12:4:2:632943 ticks 434426

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 0

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 12:4:3:146204 ticks 434431

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 12:4:3:306235 ticks 434433

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 12:4:5:296489 ticks 434452

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 12:4:5:646549 ticks 434456

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 12:4:7:456776 ticks 434474

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 12:4:7:586801 ticks 434475

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 12:4:8:578668 ticks 434485

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 12:4:8:623445 ticks 434486

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 2

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 13:44:28:997261 ticks 494689

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 13:44:29:155093 ticks 494691

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 13:44:30:245246 ticks 494702

136



kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 13:44:31:325397 ticks 494713

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 13:44:32:41555 ticks 494724

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 13:44:33:785699 ticks 494737

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 13:44:34:86585 ticks 494748

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 13:44:35:35785 ticks 494750

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 13:44:28:997261 ticks 494689

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 13:44:29:95136 ticks 494690

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 0

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 13:44:30:245246 ticks 494702

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 13:44:30:375272 ticks 494703

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 13:44:32:41555 ticks 494724

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 13:44:33:11563 ticks 494731

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 13:44:34:86585 ticks 494748

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 13:44:35:115901 ticks 494751

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 13:44:35:35785 ticks 494750

No interval

pelican.cl.cam.ac.uk Lower bound

137



Time of detection: 1996 Mar 7 13:44:35:96098 ticks 494750

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 1

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 14:2:12:85946 ticks 505328

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 14:2:13:1087 ticks 505330

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 14:2:14:71226 ticks 505340

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 14:2:15:131368 ticks 505351

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 14:2:16:201512 ticks 505362

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 14:2:17:311659 ticks 505373

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 14:2:18:391805 ticks 505383

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 14:2:18:9754 ticks 505389

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 14:2:12:85946 ticks 505328

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 14:2:13:33516 ticks 505330

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 0

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 14:2:14:71226 ticks 505340

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 14:2:14:171248 ticks 505341

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 14:2:16:201512 ticks 505362

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 14:2:16:471566 ticks 505364

No interval

kookaburra.cl.cam.ac.uk Lower bound

138



Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 14:2:18:391805 ticks 505383

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 14:2:18:641845 ticks 505386

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 14:2:18:9754 ticks 505389

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 14:2:19:45371 ticks 505390

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 3

A.2.2 Synchronous Evaluation

The following output represents the first part of the “results of synchronous evalu-
ation” (see Figure ??).

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 11:48:53:259937 ticks 425332

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 11:48:53:410016 ticks 425334

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 11:48:54:489702 ticks 425344

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 11:48:55:569388 ticks 425355

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 11:48:56:689072 ticks 425366

kookaburra.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 11:48:57:788752 ticks 425377

kookaburra.cl.cam.ac.uk 2 :

Time of occurrence: 1996 Mar 7 11:48:58:878435 ticks 425388

pelican.cl.cam.ac.uk 1 :

Time of occurrence: 1996 Mar 7 11:48:59:359274 ticks 425393

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 11:48:53:259937 ticks 425332

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 11:48:53:583094 ticks 425335

No interval

pelican.cl.cam.ac.uk Lower bound

139



Number of left child events 0

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 11:48:54:489702 ticks 425344

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 11:48:154:599669 ticks 425345

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 11:48:56:689072 ticks 425366

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 11:48:56:90901 ticks 425369

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : kookaburra.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 11:48:58:878435 ticks 425388

No interval

kookaburra.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 11:48:59:118363 ticks 425391

No interval

kookaburra.cl.cam.ac.uk Lower bound

Event Detected : pelican.cl.cam.ac.uk 10

Time of occurrence: 1996 Mar 7 11:48:59:359274 ticks 425393

No interval

pelican.cl.cam.ac.uk Lower bound

Time of detection: 1996 Mar 7 11:49:5:986357 ticks 425459

No interval

pelican.cl.cam.ac.uk Lower bound

Number of left child events 3

140



Bibliography

[Bac92] J. Bacon. Concurrent Systems. Addison-Wesley Publishing Company,

1992.

[BNOW94] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network objects. Tech-

nical Report 115, Systems Research Center, Digital Equipment Corp.,

1994.

[Har92] S.P. Harbison. Modula-3. Prentice Hall, 1992.

141


