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A Classical Linear \-calculus®

G.M. BIERMAN

Gonville and Caius College,
Cambridge. England.

ABSTRACT

This paper proposes and studies a typed A-calculus for classical linear logic. I
shall give an explanation of a multiple-conclusion formulation for classical logic due
to Parigot and compare it to more traditional treatments by Prawitz and others. I
shall use Parigot’s method to devise a natural deduction formulation of classical linear
logic. This formulation is compared in detail to the sequent calculus formulation. In
an appendix I shall also demonstrate a somewhat hidden connexion with the paradigm
of control operators for functional languages which gives a new computational inter-
pretation of Parigot’s techniques.

1 INTRODUCTION

In the past classical logic (CL) has often been dismissed as having no interesting proof
theory. However following a rather pleasing interplay between theoretical computer science
and practical computer science, there has been a renewed interest in CL and, in particular,
the constructive content of classical proofs. This content appears to have links with, at
the theoretical level, game theory [13] and at the practical level, certain control operators
for functional programming languages [23]. To some extent Girard’s linear logic [21] has
also renewed interest in game theory and functional programming languages. The refined
connectives of linear logic have helped shed new light on work on games [12]. The games
models have proved useful for programming language semantics: the recent fully-abstract
models of PCF [2, 26] are good examples of this. In addition, intuitionistic linear logic
(ILL) has been proposed as a resource-sensitive foundation of functional programming
languages. Thus it would seem useful to reconsider the work on CL in a linear setting,
viz. to reconsider classical linear logic (CLL).

Gentzen’s natural deduction is a very suitable deduction system for intuitionistic logic
(IL) but seems less so for classical logic.! One could say that classical logic is a logic of
symmetry whereas natural deduction is, by its very nature, an asymmetric system. To
that extent Gentzen's alternative system, the sequent calculus, seems better suited as the
system for CL. ‘

The Curry-Howard correspondence [24] allows us to annotate natural deductions with
terms. For IL this yields the typed A-calculus. For the sequent calculus it is not entirely
clear what the appropriate annotations are. In fact there are a number of choices and there
is no real consensus on the best. It might seem prudent to revisit natural deduction, where

* A preliminary version of this paper appears as Towards a Classical Linear A-calculus in the Proceedings
of the Tokyo Conference on Linear Logic, Volume 3 of Electronic Notes in Theoretical Computer Science,
Elsevier. 1996.

1“One may doubt that this is the proper way of analysing classical inferences.” [32, Pages 244-5].
y g
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the question of syntax is settled, and see if we might be able to produce a more symmetric
system. Shoesmith and Smiley [34] made an early attempt at this by defining a multiple-
conclusion natural deduction system but unfortunately it was quite complicated. More
recently Parigot [30] has introduced a variant of multiple-conclusion natural deduction
which seems better suited for handling CL.

In this paper I shall consider in detail Parigot’s formulation of CL, which I shall call
CL,. I shall motivate it by considering more traditional formulations. This paper is
organised as follows. In §2 I shall give two presentations of CL,; one which appears in
Parigot’s original work and the other a more type-theoretic one.? Via the Curry-Howard
correspondence one derives a term calculus for CL,, which is called the (typed) Au-
calculus. In §2 I shall also study the particularly tricky area of reduction. In §3 I shall
follow a similar method to derive a natural deduction formulation of CLL that I shall call
CLL,. There are some surprises here to do with the exponential modality (!). Applying
the Curry-Howard correspondence to CLL,, yields the (typed) linear Au-calculus. In §4 I
shall consider the process of reduction for the linear Au-calculus. In §5 I shall show how
to map sequent proofs in CLL to deductions in CLL,, and then use this to compare the
process of cut-elimination with the term reduction process. In §6 I shall consider briefly
the Q- and T-translations of Schellinx, at the level of terms, between CL, and CLL,. In
Appendix A, I shall propose a novel computational interpretation of the Au-calculus, which
suggests that it can be thought of as a programming language with catch and throw-like
control operators. In Appendix B I shall briefly give another presentation of the linear
Au-calculus based on Benton's mixed presentation of the linear A-calculus [6].

Before continuing I should clarify the réle of this work. In his seminal paper [21],
Girard presented proof mets, which are a succinct presentation of proofs in CLL. One
important feature of proof nets is that formulae which are equivalent with respect to the
dualities (for example, & and (¢-pL)L) are considered to be equal. This cuts down
considerably the number of proofs. What I am striving for here is a calculus which does not
have these equivalences built-in. Consider an anologous situation for the A-calculus with
products and coproducts. We might consider the formulae ¢ A (1 Vv) and (¢ A9)V (¢ Av)
to be equivalent and in (categorical) models they are isomorphic. However we certainly
don’t insist on them being equal (they are distinct types!). Indeed it is hard to imagine
a programming language where this is so. Thus I suggest that the linear Au-calculus is a
more realistic foundation for a programming language based on CLL. A language based
on proof nets would probably be some variant of Abramsky’s proof expressions [1, Section
6].

2 Frowm IL 1O CL

In this paper I shall only consider propositional formulations of the various logics. For
both IL and CL, formulae are given by the grammar

¢u=p|loAP|PVe[$D 4,

where p is taken from a countable set of atomic formulae which includes a distinguished
member, L, which denotes falsum.

?A similar presentation has been given independently by Ong [29].
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Figure 1: Sequent Calculus formulation of IL

2.1 Sequent Calculus

Gentzen’s sequent calculus [20] is a wonderfully symmetric system. Deductions form a
tree of sequents of the form I' - A where both I' and A represent collections of formulae
(whether this ‘collection’ is a set, multiset, list or just a single formula, is dependent on the
formulation and the logic in question). Inference rules introduce connectives on the right
and the left of the ‘turnstile’ (hence the symmetry). Although for the sequent calculus it
is easier to see the formulation of IL as a subsystem of CL, I shall present them here in
the opposite order, as that will match the discussion of the natural deduction formulation.

For IL, sequents are of the form I' ~ ¢ where I' denotes a multiset of formulae. The
formulation is given in Figure 1. For CL, sequents are of the form I' + A where both '
and A are multisets of formulae. This formulation is given in Figure 2. I have chosen to
give rules for negation directly in CL. In IL, negation is defined as —¢ & pDOL.

To demonstrate that the formulation of Figure 2 does capture classical provability,
here are derivations of Peirce’s Law and the law of the excluded middle.

Identity
_(;5_!:_(/)_ Weakeningp
¢ 1,9 .

———eee (D) Identity
Hé¢DY, ¢ p+9 50)
L
(¢D¥)Dd ¢
(Or)
H({(@>¥)D¢)D¢




Identity
P9
'A 'eA

—— Weakening ——— Weakening
T,6+ A S AN h

[¢,0 A I'-4,¢,9

——— Contractiony ————————— Contractiong
Lo A P A

I'-A¢ I'¢ - A’
LTV - AA

Cut

oA I, - A A9 I'-A9
————(A\r) ———(Az)
T,oNY A T,ony A TrAANY

Téor-A T - A A I'A
v ‘

Ve U R -
T,pVe A T A ¢V T A ¢V

T A¢ Ly - A Tg +1,A
Tooves " Treopa
T'r¢,A T, A
LprA  Tr-¢A

Or)

(-r)

Figure 2: Sequent Calculus formulation of CL
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An important result for both these sequent calculus formulations is that instances of the
Cut rule can be eliminated. In fact the proof of this assertion gives an algorithm for doing
so (albeit a delicate one). This result is known as the cut-elimination theorem or Gentzen’s
Hauptsatz.

Theorem 1. (Gentzen) Given a derivation w of i, I' + ¢ (e I' + A), a derivation
7' of ' - ¢ (I' ~ A) can be found which contains no instances of the Cut rule.

Proof. For a nice presentation of the proof see the paper by Gallier [19]. n

2.2 Natural Deduction

Natural deduction was also originally proposed by Gentzen [20] and was later popularised
by Prawitz [31]. Deductions proceed in a tree-like fashion where a single conclusion is
derived from a (finite) number of assumption packets. More specifically, these packets
contain a multiset of propositions and may be empty. Within a deduction we may ‘dis-
charge’ any number of assumption packets. This discharging can be recorded in one of two
ways. Gentzen originally proposed annotating assumption packets with (natural number)
labels. Occurences of inference rules which discharge packets are then annotated with the
labels of the packets they discharge. Thus a deduction is of the form

51'31 e ¢Z’k
1.
The second alternative for annotations is to label every stage of the deduction with a
complete list of the undischarged assumption packets. I shall refer to this as natural
deduction in ‘sequent-style’. I shall generally use the second method, although the first is
sometimes used for clarity.

What distinguishes the natural deduction system from others is that there are rules
for both introducing and eliminating a connective. Writing deductions in a sequent-style,
' + ¢; this means that the inference rules are solely concerned with the conclusion ¢.
This is what differentiates it with, for example, a sequent calculus formulation where we
have rules for manipulating formulae on both sides of the turnstile. This is why it is
said that the natural deduction system is essentially asymmetric. The natural deduction
formulation of IL is given in Figure 3.

A good question is how one might extend this natural deduction formulation of IL to
CL. We saw that for the sequent calculus the extension was to allow many conclusions.
Extending natural deduction to allow for many conclusions seems to imply a graph-like
structure. Alternatively we might consider simulating the multiple conclusions by storing

them as a disjunction of formulae, which can then be treated as a single formula. Consider
the sequent calculus implication-right rule from Figure 2.

5
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Figure 3: Natural Deduction Formulation of IL.
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If we consider simulating this in natural deduction, we have for the premiss

I'é

OR)

O &) vep

and clearly we wish to introduce an implication, but only over the formula . The impli-
cation introduction rule will only allow

r [g

V&) vy
Oz
05 (V2)v9)

What is needed is the ability to abstract over just one of the conclusions. This seems to
be precisely what we can not do in IL. Indeed the axiom

).

ImpD: (¢ D (¢ V) D ((¢ D %) V)

is a sufficient (if unusual) addition to IL to give CL. Rather than continue with this ‘sim-
ulation’ of CL, traditional proof theory considers adding new rules to yield a formulation

of CL. For example, Gentzen [20] and later in more detail, Prawitz [31], suggested adding
either axioms of the form



A

or a rule

(6]

i
— RAA.
¢

Parigot’s system can be thought of as continuing with the simulation approach and adding
sufficient extra machinery to make that method work. Thus we continue considering the
many conclusions as a whole, but now where at most one of them will be distinguished as
being ‘active’. The others are ‘passive’ which is signified by being labelled (I shall label
the active formula with a bullet). Thus deductions are of the form

T

Y T e
where ¢ is the active formula and the t); are passive. The introduction and elimination
rules are now considered to apply to just the active formula. To handle the example
alluded to earlier, the system is extended with rules which enable active and passive roles
to be swapped. To facilitate this, two new rules are introduced

r T
. d a
¢*, X an (AP

Passify Activate.
a’z ,(p.)

It is important to realise that neither an active formula, ¢, nor a passive formula, %,
respectively, need to be present for these rules to be applied; or, in other words, we can
consider the rules able to perform an implicit Weakening if necessary. (I shall overcome
this slight messiness later by having explicit structural rules). This enables us to handle
the earlier example, as follows

T (4]
a’ A” ¢
u Passify
P, A, Qb
e Activate
P*, A,
o)
(¢ ) "rl)) aAa 2
Parigot’s formulation of CL was given originally as follows.
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Figure 4: Natural Deduction formulation of CL: CLy

As it stands this formulation appears to be a conservative extension of the (implication
fragment of the) natural deduction formulation in Figure 3. But this is a slight illusion
because of the earlier caveat—in any instance of the rules (except the Activate) the active
formula need not exist. Thus

NéorX

IR

is a perfectly valid instance of the Dz rule where there is no active formula in the upper
sequent and 1 is a completely fresh formula. To make the réle of active and passive
formulae more precise I shall present the formulation with explicit structural rules. This
requires adding a new distinguished atomic formula, 1. A result of this decision is that
there is always exactly one active conclusion in any deduction. The resulting system, which
I shall call CLy, is given in Figure 4. I have also added the conjunction and disjunction
connectives to Parigot’s original formulation.

Judgements in CL, are of the form I' i~ ¢°,3 where I' denotes a multiset of formulae
and ¥ denotes a multiset of formulae labelled with ‘passification variables’, which we write
as 9 The bullet annotation signifies that a formula is active. The Passify rule is not
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permitted if ¢ is L.
CL, is a sound and complete formulation of CL in the following sense.

Theorem 2. (Parigot) Fcr, ' — A iff For, T+ A,

'To demonstrate the power of CLy,, here are derivations of Peirce’s law and the law of the
excluded middle.
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(It is quite instructive to compare these deductions to the sequent calculus derivations in
§2.1.) We can apply the Curry-Howard (formulae-as-types) correspondence to CLy, to get
what Parigot calls the (typed) Ap-calculus.? This is given in Figure 5.

Passify

Passify

Contractionp

Activate

31 have diverged a little from Parigot’s original syntax. Rather than his pa: .M, I write passj‘lS (M), and
rather than his [a: ¢ M, I write actf (M).
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Figure 5: The Ap-calculus
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Raw terms are then given by the grammar

M = gz Variable
| Az M Abstraction
| MM Application
|  (M,M) Pair
| fst(M) First Projection
| snd(M) Second Projection
| inl(M) Left Injection
| inr(M) Right Injection
| case Mofinl(z) - M | inr(z) - M Conditional
| pass¢(M) Passification
| act?(M) Activation;

where 7 is taken from some countable set of variables, ¢ is a well-formed type (formula)
and a is taken from some other countable set of passification variables.

Typing judgements are of the form, I' > M: ¢, %, where I' is a multiset of pairs of
variables and types written z:, M is a term from the above grammar and ¥ denotes a
multiset of pairs of passification variables and types written a: ¢. For conciseness we drop
the convention from the formulation of CL,, that the active formula is annotated with a
bullet, whence the convention that the non-labelled formula on the right of the turnstile
is the active formula.

2.3 Reduction Rules

There are B-rules corresponding to the introduction-elimination pairs, along with com-
muting conversions for the disjunction (as these are quite well known, I shall not give
them here) and commuting conversions for the Activate rule. These are as follows.

(Ae: g M)N  ~pg Mz := N]
ft((M,N)) ~p M
snd((M,N)) ~g5 N
case inl(M) of inl(z) — N |inr(y) = P ~g N[z := M]
caseinr(M) of inl(z) — N |linr(y) = P ~g Ply:= M]
act(pass®(M)) ~p M where a ¢ FN(M)
(actf>Y(M))N  ~.  act?(M[passt>?(P) « pass?(PN)])
fst(act?"V(M)) ~.  act@(M[pass"¥(P) < pass?(fst(P))])
snd(act?Y(M)) ~.  act?(M[pass¢ ¥ (P) <« pass?(snd(P))])
case (act$V¥ (M)) of ~e  act?(MpasstV¥(R) «

inl(z) = N ||inr(y) = P

In the f-rule for the unit, FN(M) denotes the set of free names, or passive formulae labels
in the term M (I shall omit its rather obvious definition). In the commuting conversions
for the Activate rule, I have used the notation M[N <« P] to denote the term M where all
occurrences of the subterm N have been replaced by the term P. In fact this notation for
term substitution is somewhat overloaded and is worth elucidation. Consider, for example,
an instance of the first commuting conversion, viz.

“Ideally, following the type-theoretic approach for the presentation of the Ap-calculus, the reduction
rules should be presented as equations-in-context.

11
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L

. 2
I'vM:1l,a:¢ D¢, T :
Activate

Tact>Y(M):¢ D, % I'v N:g, 5
I, I b act?>¥(M)N: ¢, %, %'

(De).

There are three distinct possibilities depending on the passive formula a: ¢ D .

1. If @ is introduced by an instance of the Weakening, rule. In this case it is replaced
with another instance where the weakened passive formula is a: 1.

2. If ¢ is introduced by an instance of the Passify rule. Thus m is of the form

- I>P:¢. DY, +
— b passt Y (P): L,a: D o, +

Passify

(note that this instance may appear several times in ;). These applications are
then replaced with

T2
b Pig P+ > N: ¢, 5
_T'» PN:9, 5, +
—, "> pass? (PN): L,a:9, %', +

(De)

Passify

3. If a is of type ¢ DL then we get special instances of the above cases. In case (1) the
instance of the Weakening rule would disappear altogether and in (2) the application
would be rewritten instead to

w2
—bPigOL,+ "> N: ¢, 3
_I'sPN:L, %, +

(D¢)

where, again, a disappears.

Despite the complexities of the commuting conversion, Parigot has (impressively)
shown the following results for this reduction system.

Theorem 3. (Parigot)

1. The Ap-calculus is strongly normalising; and

12



2. The Ap-calculus is confluent.

Remark 1. The ability to introduce a passive formula by the Weakening, rule allows some
strange behaviour, when considering the untyped Ap-calculus. As mentioned by Parigot,
the term act,(M), where a is not a free name of M, can be applied to any number of
arguments and still give the same result, viz.

acta(M)Nl <o N, ’v)’c“ acta(M)

for any number of terms Ny,..., Ng.

2.4 Comparison with Cut-Elimination

It is folklore that the sequent calculus formulation of CL has the undesirable feature of
several disastrous critical pairs. A simple example of this is the following derivation [22,
Page 151].

T T2
T+ A _— T'A _—
— earening —————— eakening
T A, R T,¢ - A £
Cut
'r-A

Given the usual process of local cut-elimination, it is not clear whether to reduce this proof
to m or to mg. It is interesting to note that this example translates (where I write M (mr)
to denote the translation of a sequent calculus derivation, 7, to a deduction in CL,) to
the following application of substitution in Parigot’s formulation

M(ma) [z 1= M(m1)]

where « is not a free variable of M(m2), and so by the definition of substitution, this is
equal to

M(T{'z).

Thus Parigot’s formulation resolves critical pairs essentially by its syntactic form for the
structural rules.?

Another important property of Parigot’s formulation is that ¢ and ¢ are not forced
to be equal by the proof theory. Of course we have the derived rules

gD LlozgD L I‘DM:(]B
TyzpD LoaM: L
Fepdz¢gDdLlaM:(¢D>L)D L

(De)

(o1)

%A similar trick is used by de Paiva and Pereira in their multiple conclusion formulation of IL [15].

13




and
o P
X ©: ¢ > pass? (z): L, ¢°
ToM: (6o L)L bAz.pass? (z): ¢ O L®, ¢
I'> M(\z.pass?(z)): L®, 4°
I'> act? (M (Az.pass? (z))): ¢
Composing the first with the second gives

Passify

(o)

(D¢)

Activate.

act((Az.zM)(\z.pass(z))) ~pg act((Az.pass(z))M)
~rg act(pass(M))
~g M,

but composing the second with the first yields
My.y(act(M (Az.pass(z)))

which is in (head) normal form.®

2.5 Further Consideration on Normal Forms

One motivation for the commuting conversion given in §2.3 is that the Activate rule can
act as a barrier between an introduction-elimination pair and so we add a reduction to
remove it. This has both a familiar and unfamiliar feel to it. We are used to this notion
of commuting conversions to permit B-reductions when considering the disjunction in
IL. However in this case, it introduces a new, unfamiliar, form of substitution, teztual
substitution, where whole subterms are replaced.

One could take these ideas further. Gentzen, as mentioned in §2.2, suggested adding
the rule

(-]
L

—— RAA
¢

to IL to get a formulation of CL. However, Prawitz [32] noted that applications of this rule
can be restricted to cases where ¢ is atomic. This is achieved by both factoring formulae
through the de Morgan dualities (thus eliminating certain problematic connectives) and
by transformation. For example, an application of the above rule where ¢ = ¢ D 9 is
transformed to

5This property enables Ong [29] to define a categorical model. It is well known that a CCC with an
isomorphism AL = A collapses to a boolean algebra.

14
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359 7

where clearly the size of the formula used in the application of the RAA rule has been
reduced. Prawitz suggests transforming all applications of this rule until they involve only
atomic formulae. However the use of the de Morgan dualities is vital here; Prawitz [31,
Footnote 1, Page 50] mentions that this technique does not extend to all the connectives
(the problematic one being the disjunction).

Ong [29] suggests a similar strategy for the Au-calculus by rewriting applications of the
Activate rule until they are of atomic type, although his motivation is to ensure confluence
when considering n-reduction. Given that this technique requires the use of the formula
equivalences when considering all the connectives, I shall not consider it here.

3 Frowm ILL To CLL

Linear logic is the logic obtained by removing the structural rules of Weakening and
Contraction. This has the effect of refining the traditional connectives into two different
kinds: multiplicative and additive. Of course what remains is a terribly weak logic. To
regain full logical power the structural rules are re-introduced but in a controlled way,
via the exponentials. A fuller introduction to linear logic can be found, for example, in
Troelstra’s book [35], the article by Lincoln [27] or the original article by Girard [21].

3.1 Sequent Calculus

Unlike the case for IL and CL, the grammar for intuitionistic linear and classical linear
formulae are different. For ILL the grammar is

pu=p|¢R¢| | pkd| P& |9,

where p is taken from some countable set of atomic formulae which contains the distin-
guished elements I (the unit for ®), t (the unit for &) and f (the unit for ®). The sequent
calculus formulation of ILL is given in Figure 6.

As is the case for CL, to extend this formulation to CLL we add multiple conclusions.
Interestingly this introduces three new connectives (and a unit). A multiplicative disjunc-
tion (‘par’, %), its unit L, an exponential (‘why not’, ?) and a linear negation (—1).” The
sequent calculus formulation is given in Figure 7.

"This is a slightly contentious point. There is a fragment of linear logic, full intutionistic linear logic [25,
10], which has multiple conclusions and these ‘classical’ connectives and, yet, can still be seen as an
intuitionistic fragment.
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The linear negation is extremely well-behaved and gives a number of formulae equiv-
alences, reminiscent of the de Morgan dualities of CL, viz.

Wt = ¢,
(pop)t = Iyt
(eBY)L = ¢teyt
oYL = Pttt
w%ﬁ;i = g;_eawi,

(?qs}i = 1L,

= 1,
£ = t.

As is the case for CL, the (linear) implication can be seen as a defined connective, viz.

p—op E glay.

These equivalences give the possibility of writing any sequent I' - A as 't A and so
give a one-sided sequent calculus formulation of CLL. This leads to the notion of a proof
net, but this is not explored here. Again the reader is refered to the paper by Girard [21].

8.2 Natural Deduction

The natural deduction formulation of ILL proved harder to formulate and is studied
quite closely in my thesis [8]. The difficulty is in giving the correct formulation of the
exponential, !. The feature of this natural deduction formulation is that linearity entails
that packets contain exactly one formula. The natural deduction formulation is given in
Figure 8. (I shall drop any further consideration of the additive units, t and f, as their
computational content appears limited.)

It is possible to extend the natural deduction formulation of ILL using Parigot’s
methodology, outlined in §2.2. However this process is not entirely straightforward. Firstly
it has to be established what the unit is in the linear equivalent of the Passify and Activate
rules. It turns out that it is, L, the unit for Par (%).8 There is no way to build-in the
classical connectives directly; rather they have to be defined as follows

¢t $—o.L,
7 % (¢)L and

¢By (PN

A surprise is that the Promotion rule has to be extended for the classical formulation.
It seems that, rather, its ILL formulation is a particular instance of the full classical
formulation.

The natural deduction formulation of CLL, CLLy,, is given in Figure 9. Again the Lz
is only permitted if the formula being passified is not L. This formulation is sound and
complete in the usual sense.

def

Theorem 4. b I' = Aiff Fepp, I' = A.

Applying the Curry-Howard correspondence to CLL,, yields the (typed) linear Au-calculus,
which is given in Figure 10.

8 As the passification rule really introduces the par unit and the activation rule eliminates it, they shall
be referred to as introduction and elimination rules.
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Raw terms are then given by the grammar

M = =z Variable
| Az M Abstraction
| MM Application
| MeM Multiplicative Pair
| let M bez®zin M Depairing
| (M, M) Additive Pair
| fst(M) First Projection
| snd(M) Second Projection
| inl(M) Left Injection
| inr(M) Right Injection
| case M ofinl(z) — M| inr(z) - M Conditional
| promote M|M for &|@ in M Promote
| derelict(M) Derelict
| discard M in M Discarding
| copy M asz,zin M Duplication
| unit?(M) Passification
| deunit?(M) Activation;

where, as for Au-calculus, z is taken from some countable set of variables, ¢ is a well-formed
type (formula) and a is taken from some countable set of passification variables.

Typing judgements, again as for Ap-calculus, are of the form, I' > M: ¢, X, where T’
is a multiset of pairs of variables and types, written z:1, M is a term from the above
grammar and ¥ denotes a multiset of pairs of passification variables and types, written
a: . As is the case for ILL, in well-typed terms of the multiplicative-exponential fragment
(®,—0,%,1,?) variables occur exactly once.

4 REDUCTION RULES

From the linear A-calculus (ILL) there are both §-rules and commuting conversions. Of
course, the reductions for the Promotion rule have to be suitably extended. The S-rules
are as follows.

Az:p.M)N ~pg Mz :=N]
let M®N bez®yin P~ Plz:=M,y:=N]
fst((M,N)) ~pg M
snd((M,N) ~g N
caseinl(M) of inl(z) — N |inr(y) - P ~p Nz := M|
caseinr(M) of inl(z) — N |inr(y) = P ~g Ply:=M]
derelict(promote M|Bfor #j@din N)  ~g N [zi = M,

unitL“}""oJ‘(R) < derelict(P;) R]
discard (promote M|P for #|@in N)inR ~»3 discard M, Pin R

copy (promote Mlﬁ forZ|dinN)asy,zinR ~g copy Masg',z" in
copyﬁas u]",’uﬁ’ in
R [y := promote &' |w' for Z|@ in N,
z 1= promote =’ [w for Z|& in N|

Rather than give all the commuting conversions for the ILL connectives (they are given
in full in my thesis), I shall only give the ‘promote-of-promote’ one, which for ease of
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typesetting I shall present as two reduction rules depending on where the inner Promotion
rule occurs.

promote @|(promote f:|]\2 for &|@ in N) for §lbin P
~ promote §, L|M for 7|@ in P[unitz‘P—ol(R) < NR)

and

promote (promote L| M for &|@ in N)|§ for y|bin P

~, promote L|M, @ for '|a’, B in Ply := promote 5’!73‘;, for Z|d in N].
(The term P; is defined in the following section.) There is a S-rule corresponding to the
introduction-elimination pair for the L,° and a number of commuting conversions for this

unit (as per the discussion in §2.3). These are as follows.

deunit? (unit? (M)) ~pg M
(deunit? PY(M)N  ~,  deunit? (M[unit? ¥ (P) < unit? (PN)])
let deunit?®¥ (M) be z@y in N ~»,  deunit? (M[unit?®¥ (P) < unit?(let P be z®y in N)])
fst(deunit‘f:&“/’(M)) ~e deunitf(M[unit(‘f&’/’(P) < unit? (fst(P))])
snd(deunitf&’/‘(M)) ~se  deunit? (M[unitf&’/’(P) < unit? (snd(P))])
case (deunit?®¥ (M) of ~e  deunit? (M[unit?®¥(R) «
inl(z) = N |inr(y) = P unit? (case Rof inl(z) — N ||inr(y) — P)])
derelict(deunit! (M))  ~»,  deunit? (M[unit!? (P) < unit? (derelict(P))])
copy (deunit?(M))asz,yin N~  deunit? (Munit'? (P) < unit? (copy P as z,y in N)])
discard (deunit’? (M))in N ~»,  deunit? (M[unit'$(P) < unit?(discard P in N)])

. Of course there are n-rules for the connectives. Those for the ILL connectives have
appeared elsewhere (8, Figure 4.3] and the new one, for the L, is

unitg’(deunitﬁ(M)) ~y o Mla =]
A vital property of this formulation is the so-called subject reduction property.

Theorem 5. If I'> M:¢*, % and M ~»g. N then I'> N: ¢°, X

I conjecture that, as for the Au-calculus, the properties of strong normalisation and con-
fluence hold for the linear Au-calculus.

5 CoOMPARISON WITH CUT-ELIMINATION

In this section I shall first show how to translate derivations in the sequent calculus for-
mulation to deductions in the CLL,. Given this translation I shall consider the principal
steps in the cut-elimination process for CLL and show how they are reflected in CLL,,.10

Before giving the translation from the sequent calculus formulation of CLL to CLL,,
I shall identify a particularly useful term. Its derivation is

“Here is an advantage of linearity: we need no side-condition for this rule as we do for the non-linear
system.

°Tn fact, for ease of reference, I shall use the term annotations, viz. the linear Ap-calculus.
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fil{p—o L)—o Lpf:l(¢p—o L)—o L z:l(p—o L)ba:l(p—o 1)

Fil(g—o L)—o L, a: (o L) fu: L | (7o)
z:l(p—o L) z:l(¢p—0 L) zl(p— L) > Af.fo: ((p—o L)—o0 L)—o L ~*
Promote
z:!(p—o L) b promote z| — forz| — in Af.fz:!(({(p— L)—o L)—o 1) L)
z:!(p—o L) b unit(promote z| — for z| — in Af.fz): L, b:I(({(¢—o L)—o L)—o 1) (z
>Az.unit(promote z| — forz| — in Af.fz): I(¢— L)—o L,b:!((!{(¢p—o L)—o L)—o 1) ~7) N
punit(Az.unit(promote z| — for z| — in Af.fz)): L, b:1(({(p—o L)—o 1)—o L),a:!(¢p—o L)—o L ( JI_) )
£)

>deunit (unit(Az.unit (promote :cl — for w| —in A f2)H((g—o L)—o L)—o 1), a:!(¢—o L)—o L

I shall refer to this term as P,, where a is the final passive variable. I shall also use
the shorthand Pz to represent the obvious extension of the above term. An important
property of this term is the following,.

Lemma 1. For all appropriately typed terms M, (derelict(P,))M ~ . unit(M).

Proof.
(derelict(deunit(unit(Az.unit(promote z| — for z|. — in Af.fz))))) M
~e  (deunit(unit(Az.unit(derelict(promote z| — for z| — in Af.fz))))) M
~g  (deunit(unit(Az.unit(Af.fz)))) M
~e o unit(Az. (A f. fz)M))
~pg  unit(Az. M)
~y unit(M)

I shall show how to translate sequent derivations in CLL to deductions in CLL, by
defining a procedure, M, inductively over the sequent derivation.

o A proof of the form

Identity
¢+ ¢
is translated to
Identity
Tip> i
o A proof of the form
1
T,¢,% - A
e (R
T ¢y + A
is translated to
M(m)
2 PRY b 21 pRY I‘,a::gb,y:.wDM:A

, (®e)
[ z: p@ > let z be 2@y in M: A
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e A proof of the form

m W?
I‘I—.(f),A F'I—-"L,b,A'
, ~— (o)
I, - ¢, A, A
is translated to
M(m1) M(mg)
T M:g, A b Nigp, A
®
T,I' > MQN: g, A, A/ (®z)
e A proof of the form
s! '/T?
T g,A T4 - A
, — (=oc)
T, p—op, T - AA
is translated to
M(m1)
. M(’/Tz)
fip—op> frd—oy) I'vM:¢,A .
(—o¢) '
L, fig—op> fM:ah, A Mz N A
[,I"b N[z = fM]: A", A
e A proof of the form
m
I,¢ - 9,0
— T (~oR)
[ ¢—oh, A
is translated to
M(?Tl)
T, 2> M, A
—oz
T Xz M:p—oyp, A
e A proof of the form
m 7T?
T,é - A 'y - A
)

O,T, 0B — A, A
is translated to
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M(.Wl) M(W2)

I‘,m:qﬁt;M:A M,y:p> N: A

_ (L) ; - (L)
T,z ¢ unit(M): L, A I, y:9 b unit(N): L, A )
' Az.unit(M):¢—o L, A z) I b Ay.unit(V):p—o L, A’ o I)
2 dBb 2B T,T b (zunit(M)@Og.unit(M)): (d— L)@(h—o L), A, A’ ( )I
—og

[T, 2: % > z (Az.unit (M))®(Ay.unit(M))): L, A, A

. . . (Le)
I, TV, z: % > deunit (2 ((Az.unit(M))@(Ay.unit(M)))): A, A

e A proof of the form

71

T ¢, A
Tronl
L'+ ¢, A

is translated to
M(m)

Tb M:p,c:,b:b, A

Counit(M): Lye:g,bip,a:p, A
z:¢p—o Lvz:id—o L TI'>deunit(unit(M)): ¢, b:¢,a:0,A

T, z: (¢p—o L) >z deunit(unit(M)): L, b:9), a: @, A(—o¢)

yih—o Lpyip—o L T, z: (¢—o L) > deunit(z deunit(unit(M))): 9, a: p, A

z:(¢—o L)®(xp—o L) b 2 T,z: (¢—o L),y: (¥—o L) by deunit(z deunit(unit(M))): L,a:p, A

T,z (¢— L)®(1p—o 1) > let z be z®y in y deunit(z deunit(unit(M))): L,a: ¢, A (
T'> Az.let z be z®y in y deunit(z deunit(unit(M))): ¢, a: p, A

(L)
Le)

Le)
(—o¢)

®¢)

(—oz1)

e A proof of the form
T

I’|~‘¢,A
S ¢ B )
Lot - A

is translated to
M(ﬂ'l)
ot bzt I‘bM:qb,A
[,e:¢toaM: LA
T, z: ¢+ > deunit(zM): A

—og)

Le)
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e A proof of the form

is translated to

o A proof of the form

is translated to

o>z 1o

1

T,6 A
'~ ¢t A

(*r)

M(m)

I‘,:E:qﬁl;M:A
, (Lz)
T,z ¢ unit(M): LA
T'b \a: gunit(M): ¢, A (~oz)

T

T,¢ A
————— Dereliction,
g - A

M(m1)
Derelict

x: ¢ > derelict(z): ¢

I‘,y:qSI;M:A

Substitution

e A proof of the form

is translated to

T,z:l¢p> My := derelict(z)]: A

™

T ¢A

e Derelictiony
'+ 7¢,A

z:(p—o L) bz l(p—0 1)

M(m)

Dereliction

z: (p—o L) b derelict(z): p—o L

ToM:¢,A

e A proof of the form

is translated to

(—oe)

Iz (-0 L) > (derelict(z))M: L, A

> Az.(derelict(z))M: 76, A

1
I A .
——— Weakening
T,l¢ - A ‘

M(_Wl)

z:lpox: o To M:A

Weakening

I,z:l¢>discard zin M: A
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e A proof of the form
M
I A

— Weakeningp, -
T 2%, A e

is translated to
M(m1)

zl(p—o L)px:l(p—0 L) T'v M:A
I,z l(¢p—o L) >discard z in M: A
T, z: l(¢—o L) b unit(discard z in M): L, A
T'> Az.unit(discard  in M): 7¢, A

Weakening
(L1)

——oz)

e A proof of the form
1

T,l¢,16 - A
g - A

Contractiong

is translated to
M(m1)

zildpzilg I‘,a::!d),y:.!d)DM:A

Contraction

I, 2:1¢> copy zasz,yin M: A

e A proof of the form
1

T 76,76, A
T+ 74,A

Contractiong

is translated to
M(m1)

I‘DM:?([;, e, A z:(p—o L) b z:l(p—o L)
Dz l(p—o LYp Ma: L,e: 74, A N
I,z (¢—o L) > deunit(Mz): 7¢, A 2 y:l(pg— L) y:l(p—o 1)

(—o¢)

(—o¢)

zl(¢p—o L) b z:l(p—0 L) T,z (o L),y: l(p—o L) > (deunit(Mz))y: L, A

onir.

[, z:1(¢—o L) > copy z as z,y in (deunit(Mz))y: L, A

, , —oz)
> Az.copy z as z,y in (deunit(Mz))y: 74, A

e A proof of the form
T

IT, 6 + 7A

——— Promotion,
0,7 — 7A
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(where ?7A =7¢p, 7A’) is translated to

M(?fl)

0,y > M: 70, 7A!
D,y dounit(M): L,a@:7A

(L)

o
0> &0 oPa:l(?A—0 1),d:7A  Z:1T b Ay.unit(M): ¢—o L, d:7A (~ez)
Prom.
2:7¢> 2: 79 Z: 1T > promote | P for Z|@ in Ay.unit(M): (¢— L),a: 7A )
—og
Z: 1T, z: 7¢ > z(promote Z| Py for Z|d in Ay.unit(M)): L,a: 7A )
le
Z:1T, z: 7¢ > deunit(z(promote Z| Pz for Z|d@ in Ay.unit(M))): 7, 7A'
e A proof of the form
1
T - ¢,7A
. Promotiong
T 1, 7A
is translated to
M(m)
FICb&IT bPs(7A— 1),a@7A &I M:¢,ad 7A
Promotion

Z: 1T > promote Z|P; for Z|&@in M: ¢, a: TA

One of the features of CLL is that the cut-elimination process is much better behaved
than it is for CL. For example, trying to construct the critical pair of §2.4 flounders, i.e.

TrA Weakoni I~ A Weakon
_— earening _— eakening
T A7 R T, 1p - A £
20ut?

LT = AA

where the instance of Cut is not even valid! Hence the problematic critical pairs from CL
are removed by moving to the linear framework with its more refined connectives.

It is now possible to reconsider the (better behaved) process of cut-elimination for
CLL, by translating the steps across to CLL,. I shall demonstrate this by considering
four instances of principal cuts.

o (B, Bc)-cut.

'+ o¢,9,A Mo A T4y 1r-A"
'~ ¢%Y, A I ¢ — A, A
T, T" - A, A, A"

)

Cut

L+¢,9,A TV ¢prA
Cut
~out LT - A A Y T, = A"
O, T - A A A"

Cut
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The former deduction is translated to

(N[y := z(Az.unit(M))])[z := Au.deunit(uP)]
= N[y := (Au.deunit(uP))(Az.unit(M))]

~g  Nly := deunit((Az.unit(M))P)]

~g Ny := deunit(unit(M[z := P]))

which is the translation of the latter.
e (Promotiong, Dereliction)-cut
' ¢,7A ¢ A
————— Promotiong ———— Dereliction,
T+ 19,7A TV 1p - A’
T, T 74, A’

Cut

. IT - ¢,7A ' ¢ I—A’Ct
cut U
IT, T 1 7A, A

The former deduction is translated to

N[z := derelict(w)][w := promote §|Pg for #|@ in M]
= N{z := derelict(promote §|P;z for §|@ in M)]
~g N[z := M[§ := §,unit(R) <« derelict(Pz)R]]
~MBeq Nz = M]
which is the translation of the latter. (The last step holds by Lemma 1.)
e (Promotiong, Weakening,)-cut.

T - ¢,7A - A

—————— Promotiong ————— Weakening,

T 19,7A ¢~ A
I, T 77, A

'~ A
~eut I‘/,!P ~ A/
0 - A 7A
The former deduction is translated to

Cut

Weakeningy,

Weakeningy,

discard (promote Z|P; for Z|d in M) in N
’\AE discard Pz in discard Zin N

which is the translation of the latter.
o (*r,t)-cut.
LA | I' ¢, A
—_— (tn -
I'A ¢t I, ¢t - A
LT = AA

Cut

M ¢, A I,¢ - A
~eut Cut
I, - AA

The former deduction is translated to
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deunit! (zN)[z := Az.unit? (M)]
= deunitd ((\z.unit? (M))N)
~g  deunit? (unit?(M[z := N]))

which is the translation of the latter.

Thus we can show that term reduction captures the steps of cut-elimination in the following
sense.

Theorem 6. If T 1 A~ogy T A then M(m1) ~% o M(m).

Uj

6 TRANSLATIONS

Just as there are translations from IL into ILL [8, Chapter 2, §5], there are also transla-
tions from CL into CLL. These have been studied by Schellinx [33] in his thesis. As he
points out they are (necessarily) quite complicated, requiring a large number of exponen-
tials. Interestingly there is no unique ‘optimal’ solution as is the case for IL. Rather there
are two candidates. The T-translation which is based on a linear decomposition of ¢ D 1
as 17¢—o?; and the Q-translation which interprets ¢ D 1 as l¢p—o?lp. They are defined
as follows.

@ def p (p atomic)

#ou0 & 1400710
pAe 14010
¢V yYQ 2169 My,
p’ def D (p atomic)
pOYT = 174707
dAYT = 1797177
pvyT L 2gTRwT

Theorem 7. Forn TQ - NAQiff For, T + A iff Forp 1777 +~ 7AT.

These equivalences can be presented for CL, and CLL,. Rather than give all the details
I shall show how the implication rules for CL, are translated using both the Q and T

strategies.
The implication introduction rule

Dyzido M:,d: A
TedxxM:¢pD,a@: A

(21)

is T-translated to

2 (179" =79 )—o L) b 2: (174" -7 T )—o 1) DT, 2:17¢T > MT: 27, @ 7AT
2 1((17¢T—oT)—o L) b derelict(z): (17¢T -0 )—o L 7T b Ao MT: 1267 o7y, @: 7AT
10T, 2: (179 T~ T)—o L) b derelict(z)(Ae. M "): L,a: 7A
1707 b Az.derelict(z) Mz M T): 2(12¢T —o?T), @: 24T
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The implication elimination rule
I'>M:9p D9, A I'e N:g, A
T,I' b MN:o, A, A/

(De¢)

is T-translated to
T o MT:2(17¢T -7 T), ?AT 10T o A 1((17¢T —o?9T)—o 1), 5: 7AT, e 79T
LT T s MTA: L, 77, 2AT 2AT
PTT 1207 b deunit (M T A): 7T, 2AT, 2A"T

where A is given by the deduction

FIT T o NT 297, 578"

21707 -7 b 2:17¢T —o79pT  F: 1717 b promote F|P; for #B in NT:17¢7, 5 7A"T

F1T'T, 2:17¢ 7T~ b z(promote F|P; for Flbin NT): 797, 5: TA"T

G107, 2:17¢T 0797 b unit(z(promote F{P; for b in NT)): L, b: 2A"T ¢: 79T
71707 > Az.unit(z(promote §|P; for §lBin NT)): (176" —o?pT)—o L,5: 7A"T c: 79p7

#:170'T b promote P, for #1b, ¢ in Az.unit(z(promote §|P; for B in NT)): (1767 -9 )0 L), b: 74" e: 79T

The implication introduction rule
0w M, a: A
iz M:¢p D9,d: A

(21)

is Q-translated to

F09, 219 MU MR, & 11AC

2111 =) —o L) b 2:1(1(1p -0 Y —o L) F:10% Az MY 12?1y ®, & 71AQ

21119 —?1p Q) —o L) b derelict(z): 1(1¢2—o?19pY)—o L 10 > promote §|Pz for 7@ in Ae. M 112 —719Y), &@: 1AQ

T, 2:1(1(1p2—o?1p?) —o L) b derelict(z) (promote | Pz for 7| in Az.M®): L, @ 1A

IT? b Az.derelict(z) (promote | Pz for | in Az MQ): 71(1¢%—?19?), @: 71AC
Finally, the implication elimination rule
I'sM:¢ D9, A ' N:¢, A
I, > MN:y, A, A

(D¢)

is Q-translated to
T M:21(19—0?1hQ), 21AQ Qb A: (11— —o 1), a: Ty ?, AR
I MU 1, a: T, AR 2IAQ
09, 1179 5 deunit (M QA): 219, NAQ AR
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where A is given by the deduction

& (12— %) b 2: 116 —0719p9)

e 1(1p 0?1 ?) b derelict(z): 1§ —oMpQ 4 169 b y: 16°
e 1(1% 719 ), : ¢Q b derelict(z)y: 712

z:1(1¢%—0719%), y: ¢ b unit(derelict(z)y): L, a: 71p%

2:1(1¢%—0?19p%) b Ay.unit(derelict(z)y): ¢ —o L, a: 7192

T N 269 AT 2 1(19%—0?19%) b promote z| P, for z|a in Ay.unit(derelict(z)y): (142 —o L), a: 21p°

', 2: (1% —?19?) b N promote z|P, for z|a in Ay.unit(derelict(x)y): L, a: M2, 11A'Q

T Az.N? promote z| P, for z|a in Ay.unit(derelict(z)y): (1?71 —o L, a: 7pQ, 71AQ

IT'® > promote 2| Py , for 2|5, a in Az.N® promote z|Pa for ]a in Xy.unit(derelict(z)y): 1(1(1¢° -2y —o L), a: 21%, 71A"
Filling in all the details gives the following theorem.
Theorem 8. L, T  21AQ iff Fen, I' = A iff Ferr, 1PTT — 2AT.

In fact these translations preserve reductions as well, although I shall not give any details
here. Unlike the case for the various translations of IL into ILL [7], it is quite hard to
determine computational interpretations of these two translation strategies.

7 TOWARDS A PROGRAMMING LANGUAGE

In the formulations of CL, and CLLy, I have included all of the connectives separately.
Of course the formulae equivalences of both logics mean that, in fact, we could trim this
down. For CL,, both Parigot [30] and Ong [29] restrict their attention to a fragment with
just the implication connective (and the Activate and Passify rules). For CLL, the most
obvious fragment includes just the linear implication (—o) and the exponential (). As an
illustration of how this might work, I shall show how the tensor (®) and its unit (I) can
be simulated with just these connectives. Term formation for these connectives is then
defined as

MeN % z.(zM)N,
let M be z®y in N deunit? (M (Az.Ay.unit? (IV))),
x = Aml .z,
let M be * in N deunit? (M (unit? (N))).

The f-rules are preserved by this translation, viz.

let M®N bez®yin P % deunit?(\z.(zM)N)(\z.\y.unit? (P)))

~g  deunit? ((Az.Ay.unit? (P))M N)
~%  deunit? (unit? (Plz := M,y := N]))
~g Plz:= M,y := NJ;

let  be x inM % deunit?(\z.z)unit? (M))
~g  deunit? (unit? (M))

~g M.

If either CL,, or CLL, were to be made into a programming language, a design decision
would have to be made as to which connectives were built-in and which ones were defined.
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Although experience might tell otherwise, it would seem likely that any programming
language would be as verbose as possible, whereas an intermediate language might well
profit for having only a few connectives.

8 CONCLUSIONS AND FUTURE WORK

In this paper I have demonstrated how Parigot’s techniques can be applied to the linear
case to yield a classical linear A-calculus. In addition I hope to have at least shed some
new light on the relationship between Parigot’s work and more traditional treatments of
classical logic in natural deduction. I would claim that the linear Ap-calculus, considered
as a programming language, is of more use than one based on proof nets. As mentioned
earlier, proof nets rely on equivalent types being considered equal—this would present
an unusual programming paradigm where, for example, the type inference mechanism
would have to be adapted to factor all types by the various equivalences. In the linear
Au-calculusthere are explicit coercion terms.

Others have proposed natural deduction formulations of CLL. Troelstra [35] presents
linear versions of Gentzen’s original proposals. Martini and Masini [28] present a different
formulation with the motivation of having the par connective as fundamental and not, as
it is in this paper, derived. Albrecht et al. [3] give yet another formulation which is very
compact and appears to be closely related to a proof net formulation (in particular, the
formulae equivalences are essential and implicit).

In particular I would promote the computational interpretation suggested in Ap-
pendix A, for both the linear and non-linear calculus. It provides (after sugaring) a
programming language with catch and throw-like control operators; but one which has a
correspondence with a proof theory. This alone makes it worthy of further study. Other
work on relationships between classical logic and control operators for functional languages
tends to be in the other direction, viz. using the control operators to understand classical
logic (e.g. [4}). ‘

A semantic study would also be desirable. Ong [29] has proposed a categorical se-
mantics and a class of game-theoretic models for CL,. It would be interesting to see
if a similar extension of linear categories [9] would produce some sort of %x-autonomous
category [5]. I should also like to investigate to what extent this work can be adapted to
give a natural deduction formulation of classical S4, in the same way that work on ILL
can be adapted for intuitionistic S4 [11].
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A A COMPUTATIONAL INTERPRETATION

In §2.2 Parigot’s formulation was motivated in terms of proof theory, but a worthwhile
question is whether there is a more convincing computer science explanation. Consider
again the Lz rule,

Lo M: ¢, %
b unit?(M): L, a: 6,2

(Lz).

A key to understanding this rule is to give a computational explanation of the passive
formulae. To do so I shall rewrite it as the following

ToM:¢,%
T'okM: L ki¢g—o L, X

Catch.

Here & is to be thought of as a continuation variable; and thus Catch can be seen as a
special kind of application. A judgement Z:I'> M:¢,R: ¥ consists of a term, M, with
(typed) free variables, #, and (typed) free continuation variables, . (Hence X is now a
multiset of continuation variables.) The Lg rule can similarly be rewritten as

I'eM: L ki¢g—o L, 3
I'> throw (M): ¢, %

Throw.

Before understanding this rule we need to introduce some standard terminology from
work in continuation-passing, e.g. [17]. To formalise the notion of an evaluation order,
Felleisen [op. cit.], defined an evaluation context. This is essentially a term with a ‘hole’
in it, written E[ ]. Placing a term, M, in that hole is written F[M]. These contexts
are devised so that every closed term, M, is either a canonical value or can be written
uniquely as E[N], where N is a redex. Reduction then proceeds towards a canonical value
as follows.

M= E[N]= EN|=. =V.

The context F[—] can be thought of as representing the rest of the computation that
remains to be done after N has evaluated (to a value). In this sense it can be thought of
as a continuation of N. The various continuation, or control, operators which have been
introduced (e.g. [14, 16]), can be explained with reference to this continuation.

To understand this computational interpretation of the (linear) Au-calculus we need
to introduce an additional context which contains a multiset of labelled terms (the con-
tinuations). For example given a closed term

pM:d, k11— L, ... Kpipp—o L,

we need a multiset of continuations £ = [My, ..., M,], where bM;: p;—o L. Evaluation is
then written as

E[N)E = M'
where M = E[N], as discussed above. The important evaluation rules are
BlxM]€t{r:N[-]} = E[N[M]E,
Elthrow®(M)]E = MEt{x:E[-]};
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where £ {{k: N[~|} denotes the extension of the continuation multiset & with k: N[—].
Thus Throw captures the current continuation and places it in the continuation multiset,
labelled with . The Catch catches a continuation!! from the multiset and replaces the
continuation variable with the caught term.

Whilst this context view of continuation passing is by far the most intuitive (it essen-
tially describes an abstract machine), it has traditionally been presented in an untyped
setting (e.g. [17]). When moving to a typed setting it becomes a little messy. The problem
is that for the second evaluation rule given above to be type correct, the continuation F -]
must be of type L. Of course there are no closed terms of type L so, at first sight, this
rule appears useless. Griffin [23] noticed a similar problem for Felleisen’s calculus and
suggested that instead of evaluating a term M of type ¢; the expression C(\k: ¢ DL kM)
is evaluated with the evaluation rule being applied to the inner term M.12 The term C is
that of type ——=¢ D ¢. Applying these ideas to the linear Au-calculus, the term C is given
by

c & Ay: (p—o L)—o L .deunit? (y(Az: f.unit? (z))).
The two rules given earlier are adjusted suitably and we add a new rule
C(Ak:p— L .kV) =V,
where V' is a value. This reduction rule is justified by the following reasoning

(Ay: (p—o L)—o L deunit? (y(\z: p.unit? (z)))) (Me: p—0 L .kV)

~g  deunit? (Ak: g—o L .kV)(Az: pounit?(z)))

~g  deunit? (\z: gounit? (z))V)

~sg  deunit? (unit? (V)
The rather complicated formulation of the Promotion rule from §3.2 becomes slightly
clearer with this continuation interpretation. The rule is rewritten as

I‘11>M1:!¢1,21 A1[>P1:!((!(p1-—0 J_)—O J_),Tl

Tpo Mpildn, 2, Ap b P l{(om—o L)—o L), Ty,

T, g b N, k1t (fpr—0 L)—o L, .o Kt (o —o0 L)~ L
', A b promote ]\Zf|]3 for Z|R in N: 19, T

Thus the promoted term can be seen not only as a sort of closure for the free variables, as
is the case for ILL, but also for the continuation variables; where we build in substitution
for both classes of variable. As this closure can be freely duplicated and discarded, the
continuation terms, F;, must be of a non-linear type.

It should be emphasized that this interpretation is not dependent on linearity, viz.
it can be formulated for the Au-calculus as well. In comparison to other works where
authors have used continuation-passing work to explain classical logic, this interpretation
is essentially in the other direction, viz. using classical logic to suggest a continuation-
passing technique. The advantage here is that a quite complicated programming feature
is given directly by a proof theory. Filinski [18] has suggested that linear versions of
conventional continuation-passing ideas are of some use, and I would hope that these
advantages apply to this system.

Promotion.

Hinearity guarantees that the continuation exists.

12 An alternative solution is to devise a system of reduction rules which somehow matches the context
view of evaluation. After completing this paper, Luke Ong informed me of his (as yet unpublished) work,
where he defines such a system for both call-by-value and call-by-name versions of the Ap-calculus.
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Identity,
Oizppyod; YT

;T o>y M, 25T
—0
O:T > Az: 0. M: p—o9p, 55T

)

O,y M:gp—op, ;T

O;I' >y N:¢, T Y

O;T,I" > MN:9, 3,5, T
;> M: ¢, 5T
O;T >y unit?(M): L,a:6,%; T

(Lz)

O,y M: La: 9, 5T
0;T 1> deunit? (M): ¢, %; T

0>, MaY
0;~ > F(M):F(a); T

(Fz)

;' > M:F(a), 5T

Identity
O,zabp i, T "

O, z:ap, M:5,7T
O, dmaM:adfT

(1)

O>, M:aDg,Y >, N:5,T

(De)
O bp MN:B,T

b, M:a,Y
O >y passs(M):f,a:0, T

(fr)

Op, M:f,a:a,Y

fe)
O ppacti(M):a, Y
O;—p>y M: ;Y
(Gz)

O n G(M): G(¢), T

O,z > N:¢, ;¥

(Fe)

©:T,T" > let M be F(z) in N: ¢, 3, %3 Y
0>, M:G(¢4), T
0; — 1>y derelict(M): ¢; T

(Ge)
Figure 11: A linear/non-linear presentation of the linear Ay-calculus

B AN ALTERNATIVE FORMULATION

In this appendix I shall sketch rather briefly how one can apply the ideas of Benton [6]
to the linear Au-calculus (for brevity I shall only discuss the (—o,!)-fragment). Benton
proposed (following a categorical insight) to present ILL in three parts: a linear subsystem,
a non-linear subsystem and a third part containing operations to move between the two
subsystems. The exponential can then be thought of as a composite of these operations.
I shall not go into any real detail here, the reader is referred to Benton’s paper [op. cit.].
I shall use the following conventions: « to range over non-linear formulae, ¢ to range
over linear formulae, T to range over linear contexts, © to range over non-linear contexts,
¥ to range over linear passive contexts and YT to range over non-linear passive contexts.
Formulae are then defined by the grammars

a == pladal|G(¢), and
¢ u= q|¢—od|F(a);

where p ranges over some countable set of non-linear atomic formulae including a dis-
tinguished member f, and g ranges over some countable set of linear atomic formulae
including the distinguished member L. '

We have two forms of deduction, linear and non-linear, which are of the form ©;I" >,
M:¢,%;Y and © >, M:a, 7Y, respectively. Rather than explain these forms of deduction
I shall simply give the term assignment rules in Figure 11.

The S-rules for this formulation are then quite succinct
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(Az: . M)N ~p Mz :
(Azia.M)N ~g M|
deunit? (unit? (M)) ~g M
acty(passy(M)) ~sp M where a ¢ FN(M),
let F(M)beF(z)inN ~sp Nz :=M],
derelict(G(M)) ~p M.

There are also commuting conversations, which I leave to the reader to discover. It is
possible to translate between this linear/non-linear formulation and the linear \u-calculus.
First we need some translations between types.

o def
(p—op)° & go—ope,
(¢)° € FG(4°));

¢ ¥ g
(p—opp)* T gr—oyr,
Fla)* < Ya»),
o def L ifp=f
o= p otherwise,
(@2 B = la*—op*,

Gg)x ¥ ¢~

Theorem 9.

1. > M: ¢, % then there is a term M° such that —;I'° >; M°: ¢°, £°; —.
2. IfO;T >; M: ¢, %; T then there is a linear Ap-term M* such that !0* I M*; ¢*, X%, IT*,
3. f © >y, M:a, Y then there is a linear Auy-term M* such that !0* b M™*: o*, 1 T*,

However, as is the case for ILL, it is not immediately clear how much of an improvement
this formulation is. A smaller set of reduction rules has been gained at the expense
of a loss of information about Weakening and Contraction, which surely are the raison
d’étre of linear proof theory. Of course, at the level of a programming language, explicit
duplication and erasure of data structures would be quite tiresome and it seems that this
mixed presentation might be of some practical value.
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