Technical Report A

Number 404

Computer Laboratory

Adaptive parallelism for computing
on heterogeneous clusters

Kam Hong Shum

November 1996

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1996 Kam Hong Shum

This technical report is based on a dissertation submitted
August 1996 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-404

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-404

Abstract

Until recent years most parallel machines have been made up of closely-coupled
microprocessor-based computers. With the advent of high-performance worksta-
tions and high-speed networking, the aggregate computational power and mem-
ory capacity of workstation clusters have become attractive and indispensable
resources for parallel computing. Techniques to harness the power of workstation
cluster computing, however, require the development of practical methods for
controlling heterogeneous resources dynamically.

This dissertation proposes an integrated framework that comprises two related
parts. The first part of the framework is a software structure that enables par-
allel applications to be adaptable to workload imbalances at runtime. To re-
alize the adaptation, applications are partitioned into small components called
tasks. The tasks are then grouped into grains; each grain is an object that facili-
tates execution of tasks on a workstation. An application can therefore optimize
its performance by the reconfiguration of task-to-grain and grain-to-workstation
mappings. Based on the software structure, the implementation and evaluation
of workload distribution schemes for data-parallel and task-parallel applications
are presented. The second part of the framework is a resource management sys-
tem that allocates resources to parallel applications through competition. The
applications respond to allocation decisions by dynamic reconfiguration. The ob-
jectives of the system are to maximize the speedup of the parallel applications
and, at the same time, to allocate workstations fairly and efficiently to the appli-
cations. A prototype implementation which provides a testbed for studying the
dynamics of competition is constructed.

In addition, a new structure for organizing replicated parallel applications is de-
veloped and an architecture for a multi-user, multi-parallel program environment
based on the proposed framework is suggested. The effectiveness of the con-
cept and the framework is demonstrated by the results of experiments conducted
on the testbed. The parallel applications involved in the experiments consist
of block-matrix multiplication, cycle-searching of a non-linear iterated crypto-
graphic function, and simulators of an ATM network.

Preface

Except where otherwise stated in the text, this dissertation is the result of my
own work and is not the outcome of work done in collaboration.

This dissertation is not substantially tlie same as any I have submitted for a
degree or diploma or any other qualification at any other university.

No part of this dissertation has already been, or is being currently submitted for
any such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words, including tables, foot-
notes and bibliography.

Publications

Some of the work presented in this dissertation has been published, and is de-
scribed in references [SB94, Shu95, Shu96, SM96] and [SL96].

Trademarks

Alpha AXP and DECStation are trademarks of Digital Equipment Corporation.
Ethernet is a trademark of the Xerox Corporation.

MIPS is a trademark of MIPS Technologies Inc.

UNIX is a registered trademark of AT&T.

Contents

List of Figures ix
List of Tables . xiii
Glossary of Terms Xv
1 Introduction 1
1.1 Research Motivation 2
1.2 Research Scope 2
1.3 Dissertation Organization 3

2 Background 5
2.1 Introduction 5
2.2 The Emergence of Workstation Cluster Computing 5
2.2.1 Cost-Performance of Processing Power 6

2.2.2 High-speed Network Connections and Protocols 6

2.2.3 Aggregate Computational and Memory Capacities 7

2.2.4 Parallel Programming Paradigms 8

2.3 Addressed Issues & Related Research 10
2.3.1 Partitioning and Mapping 11

2.3.2 Workload Distribution 12

2.3.3 Parallel Application Scheduling e 14

2.4 The Need for an Integrated Solution 15

3 Structuring Workloads for a-Dynamic Environment 17
3.1 Imtroduction 17
3.2 Criteria for Structuring Parallel Workloads 17
3.2.1 Granularity e e e e e 17

3.2.2 System Dynamics and Heterogeneity 18

3.3 Market Price as a Structuring Metric 19
3.4 Structuring by Relative Processing Speed 20

v

3.4.1 Reconfigurable Software Structure
3.4.2 Partitioning Levels

3.4.3 Relation between Software Structure & Adaptation
3.4.4 Intra-Application Competition
3.4.5 Inter-Application Competition

3.6 Summary e e

Adaptive Execution of Parallel Applications

4.1 Introduction e e e e e e e e e

4.2 Adaptive Workload Distribution

4.3 Local Workload Distribution

4.4 DataParallelism
4.4.1 Data-Parallel Applications e
4.4.2 Distributing Workloads between Grains

4.5 Task Parallelism e e e

4.5.1 Parallel Simulation
4.5.2 The ATM Simulator Model
45.3 The Use of Virtual Tasks

4.6 Global Workload Distribution

4.6.1 Basic Conditional Actions

4.6.2 A Self-Tuning Mechanism :

4.7 Interplay between Local & Global Workload Distribution
4.8 Implementation Notes .:.

4.8.1 Approaches to Moving Workloads
4.8.2 Task-to-Grain & Grain-to-Workstation Mappings

483 Task Relocation
4.9 Experimental Results
4.9.1 Adaptation of the Data-Parallel Applications.

4.9.2 Adaptation of the Parallel Simulator . . :
4.10 Summary e e e e e e

Dynamic Space-Sharing through Competition

5.1 Introduction

5.2 Space-sharing and Time-sharing

5.3 Distinctive Features of the Comedians System
5.3.1 Related Competitive Approaches
5.3.2 Other Scheduling Systems

5.4 The Comedians System
5.5 Load Monitoring and Forecasting

vi

27
27
27
29
29
29
30
32
32
33
35
39
39
39
40
43
43
44
45
47
48
48
54

9.9.1 Load Forecasting Model e e e e
9.5.2 Trace Evaluation
5.6 Responses of Adaptive Parallel Applications
5.7 Auctionand Bidding L.
5.7.1 Share Auction

5.7.3 Holding an Auction
5.8 Experimental Results
5.8.1 Parameter Tuning
5.8.2 Dynamics of Competition
5.9 Summary

6 The Comedians on Heterogenedﬁs Clusters
6.1 Introduction
6.2 Execution States of Adaptive Parallel Applications
6.3 System Architecture
6.3.1 Responses to External Workloads
6.3.2 Holding a Share Auction on Heterogeneous Clusters
6.3.3 Bidding on Heterogeneous Clusters
6.4 Performance Profiles
6.5 SUMMATY vt e

7 Combining Parallelism with Replication
7.1 Introduction
7.2 From Replication to Coalition
7.2.1 Management of Replication
7.2.2 Weak and Strong Coalitions
7.3 Fault Tolerance through Replication.
7.3.1 The Fault-Tolerant Model
7.3.2 Costs and Benefits e
7.4 A Case Study of a Strong Coalition
7.4.1 The Replicated Parallel Simulator Model
7.4.2 Performance Evaluation
7.4.3 The RPSs & the Comedians System
7.4.4 Scheduling Policies
7.4.5 Experimental Results
7.5 SUMMATY o i e it e e e e e e e e

8 Conclusion and Further Work

vii

81
81
81
83
84
85
86
91
95

97
97
97
97
98
100
100
102
103
103
105
109
110
111
118

119

8.1 Summary [119

82 Further Work 121
83 Conclusion e L 122
Appendix 123
A Partitioning and Mapping using Market Price 123
A1l Introduction 123
A.2 Partitioning Algorithm L 125
A.2.1 Granulation of the Application e e e 125

A22 Merging Grains e 127

A.3 Mapping Algorithm L oo 129
A.3.1 Initial Assignment 129

A.3.2 Dynamic Exchanges 131

A.4 The Complexity of the Algorithms 133
A5 Summary e e 134
Bibliography : 135

viii

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3

3.4

4.1

4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2

Organization of the Dissertation 3
Generalization of Cluster Computing 8
Problems Tackled by Adaptive Workload Distribution 12
An Example of a Task-Graph 19
The Basic Reconfigurable Structure of an Application 21
Splitting and merging of the grains (by a factor of two) of an

application between different partitioning levels 22

Abstract Model of a Dynamic Environment for Adaptive Applica-
tloms e e 23

Problems Tackled and Solutions Provided by Adaptive Workload

Distribution 28
Conditional Actions of the LWD in each grain for Data-Parallel

Applications 31
The LWD for Data-Parallel Applications 31
Spatial Decomposition of an ATM Switching Network 34
The Parallel Simulation and its Conditional Actions of the LWD . 36
The LWD for the Parallel Simulation 37
Timing Diagrams of the Grains for the LWD 38

The Interplay between GWD and LWD for the Parallel Simulation 41
Grain Merging and Splitting for the Data-Parallel Applications . . 42

Mappings for the LWD and/or GWD - 44
Intra-/Inter-Grain Relocation of Tasks 46
The LWD and GWD in a DEC3100 Cluster 53
The LWD and GWD in a DEC Alpha Cluster 53
Functional Blocks of the Comedians System 62
Workstation Load Forecasting 65

1x

5.3

5.4

9.9
5.6
5.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10

Actual Current Hour Load and Predicted Current Hour Load (On

a day with less bursty load) 67
Actual Current Hour Load and Predicted Current Hour Load (On
a day with more bursty load) 67

Actual Period Mean and Predicted Period Mean (Period=2 hours) 67
Actual Period Mean and Predicted Period Mean (Period=5 hours) 67
Interaction between Cluster Scheduler (CS), Application Bidder

(AB), and Grains during an auction 70
The Conditional Actions for the Share Auction 73
The State Space of Execution States of an Application 82
System Architecture that supports Adaptive Parallel Applications =~ 84
Interaction between ABs and local and remote CSs 85
Share Auction across Multiple Clusters 86
An Example of Bidding 88
The Conditional Actions taken by Forward APs and Backward APs 90

Relative speedup and -snapshots of the experiments in the first
SCENATIO . .« v v e e e e e e e e e e e e e e e e 92
Relative speedup and snapshots of the experiments in the second
scenario L e e e e e e 93
(a) Profiling Execution States in the First Scenario; (b) Profiling
Execution States in the Second Scenario 94
The applications owned by a user and the execution states recorded

by Cluster Schedulers 99
(a) Replicated Parallel Applications without Checkpoints; (b) Repli-
cated Parallel Applications with Checkpoints 101
The RSSand RPS Models 104
Overall Turnaround Timeof RPSs - 106
The Execution State of RPSs in a Competitive Environment . . . 108
The System Viewof RPSs 109
Interaction between the Cluster Schedulers (CSs), Application Bid-

der (AB), and Grains of an RPS during a simulation restart. . . . 110
Relative Speedup obtained when simulation runs are performed by
different numbers of RPSs 113
Performance of the FNI-SA and FNI-DA policies for different sim-
ulation times 113
Performance of the FNI-SA and FNI-DA policies for different num-

bers of simulationruns L. 114

7.11

7.12
7.13
7.14

7.15

Al
A2
A3
A4
A5
A6
AT

Relative Speedup of the FNI-SA and FNI-DA policies when there

is one alien application running on the first cluster 114
Execution time in DEC3100 and DEC Alpha clusters (Case I) . . 116
Execution time in DEC3100 and DEC Alpha clusters (Case II) . . 116

Performance of the FNI-DA and FNI-DAC policies for different

simulation times [117
Performance of the FNI-DA and FNI-DAC policies for different

numbers of simulationruns 117
The Task Graph of an Application 124
Granulation of the Application. 126
Merging Grains e 129
Merging of two tasks W 130
An Example of the Merge Stage 131
Mapping Algorithm 132
An Example of the Mapping Algorithm Executed in Cluster #1 . 133

xi

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.10

9.1

5.2

9.3

5.4

Comparison between Intra-application and Inter-application Com-

petition L. 24
Limitations and strengths of the: LWD and GWD 43
Mappings involved in the operations of the LWD and GWD . .. 45
Time Taken for the GWD of the BMM (in msec.) 47
Performance of the BMM in a DEC3100 Cluster (in sec.) 49
Performance of the CSN in a DEC3100 Cluster (in sec.) 49

Effects of the LWD in a cluster of heterogeneous workstations (in
relative speedup); data sizes for the CSN and BMM are 300x300
and 1200x1200 respectively. 49
Effects of time window size on relative speedup (DEC38100 Cluster) 50
Effects of time window size on relative speedup (DEC Alpha Cluster) 50
Performance of the PSA in a DEC3100 Cluster (in sec.); each

simulation take 0.2 million time units. 52
Adaptation to a cluster of heterogeneous workstations; size of com-
munication link buffer is 1000. 54

Three applications in a cluster of twenty workstations (Scenario

One) e 76
Three applications in a cluster of twenty workstations (Scenario
Two) . . . Y (
Four applications in a cluster of twenty five workstations (Scenario
Three) 7
Two applications in a cluster of twelve workstations with Loader
Processes (Scenario Four) 7

X1il

Glossary

AB
AR
ATM
BB
BMM
COW

~ CPU
CS

CSN
DEC

ES

FB

FNI
FNI-SA
FNI-DA
FNI-DAC
GWD
HP
HPF
I/O

IP

LAN
LWD
LP

Application Bidder (Resource Negotiating Agent)
Application Reporter

Asynchronous Transfer Mode

Backward Bid

Block-Matrix Multiplication

Clusters of Workstations

Central Processing Unit

Cluster Scheduler (Resource Managing Agent)
Cycle searching for non-linear iterated cryptographic function
Digital Equipment Corporation

Execution State

Forward Bid

First N replications initiated scheduling policy
FNI with Static Assignment

FNI with Dynamic Assignment

FNI with Dynamic Assignment and Coalition
Global Workload Distribution
Hewlett-Packard

High Performance Fortran

Input/Output

Internet Protocol

Local Area Network

Local Workload Distribution

Loader Process

Xv

MAN
MPI
NOW

. OS

PB
PSA
PVM
RPS
RSS
SIMD
SPMD
TCP
UDP

Metropolitan Area Network
Message Passage Interface
Networks of Workstations
Operating System-

Potential Forward Bid

Parallel Simuldtor of an ATM Network
Parallel Virtual Machine
Replicated Parallel Simulator
Replicated Serial Simulator
Single Instruction Multiple Data
Single Program Multiple Data
Transmission Control Protocol

User Datagram Protocol

xvi

Chapter 1

Introduction

With the advent of recent technology, workstations have become a powerful and
yet cost-effective computational resource. The aggregate computing and memory
capacities of workstation clusters' have attracted a lot of parallel computing
users, especially those required to solve computationally intensive applications.
In the past, only dedicated, proprietary supercomputing machines were used to
solve scientific applications with intense computational requirements. However,
more and more of these applications can now run efficiently and economically on
workstation clusters, exploiting the benefits of parallelism. Parallel computing
on workstation clusters is a recent computing paradigm known as Workstation
Cluster Computing.

There are two different configurations of workstation clusters which have distinct
uses, namely Dedicated Clusters and Enterprise Clusters. The workstations of
Dedicated Clusters are usually homogeneous and geographically compact. With
full control of the cluster nodes, the management of these clusters can easily be
implemented in a centralized fashion. Most Dedicated Clusters are designed to
increase overall batch computing capabilities by running batch jobs on individual
workstations in the cluster.

The other type of configuration is called an Enterprise Cluster. Workstations
composing an Enterprise Cluster are typically heterogeneous and geographically
dispersed. Moreover, they are individually owned by single or multiple parties.
Parallel computing on these clusters relies on scavenging unused computing cy-

"Workstation clusters can also be termed Networks of Workstations (NOWs) or Clusters of
Workstations (COWs).

2 | , ‘ S Introduction

cles. In this dissertation, the scope of research is primarily focussed on topics .

related to Enterprise Clusters.

1.1 Research Motivation

Although the popularity of using networked workstations for parallel computing
has been growing steadily, the existing software support and system support for
this paradigm remain ad hoc and insufficient. Parallel computing on workstation
clusters has difficulty in guaranteeing good performance because the resources are
heterogeneous and subject to dynamic workload interference from other applica-
tions that are running on the same clusters. The potential of this new computing
paradigm can only be fully exploited by an integrated solution that addresses
the problems of parallel software design and resource management. The goal
of this integrated solution is the formation of a multi-user, multi-parallel pro-
gram environment in which resources can be allocated to applications fairly and
efficiently. In this environment, the applications should be adaptable to the allo-
cations through dynamic reconfiguration.

1.2 Research Scope

This dissertation argues that a reconfigurable software structure is the funda-
mental basis for the adaptation of dynamic resource availability on workstation
clusters. Runtime adaptation can then be realized by schemes of workload dis-
tribution based on the software structure. For resolving the problem of resource
allocation between applications, a job scheduling system is essential for control-
ling heterogeneous resources dynamically. A prototype system called Comedians
has been built to allocate resources to parallel applications through competition.
To provide an integrated solution, the schemes of workload distribution should
facilitate dynamic reconfiguration in response to the allocations made by the Co-
medians system. Finally, the concept of combining parallelism with replication
is used to organize parallel applications in the Comedians system so that the
management and performance of the applications can be improved.

1.3 Dissertation Organization 3

1.3 Dissertation Organization

Chapter 2 explains the emergence of workstation cluster computing and lists the
problems that hinder the development of this computing paradigm. Related work
on the development of workstation cluster computing is also reviewed. Finally,
this chapter concludes that an integrated solution for solving the problems is
needed.

Chapters 3 through 7 consist of the research content of this dissertation. Fig-
ure 1.1 depicts the structure of the research which mainly comprises the software
support of runtime adaptation (Chapters 3 and 4) and the system support of
resource management (Chapters 5, 6, and 7).

RESEARCH CONTENT |

Adaptive
Parallelism

Software Support}: System Support

Resource
Management

Runtime
Adaptation

(Chapter 3

Structuring
Parallel
Workloads

r Chapter 4

Schemes of
Workload
Distribution

Scheduling

Replication

Space-sharing
through
Competition

Coalition of
. | Parallel Applications

(Chapter 7

A Case Study
of a Strong
Coalition

Appendix A .

Partitioning &

Extension:

Basic Concepts &
Framework

Mapping using
Market Price

Heterogeneous
Clusters

Figure 1.1: Organization of the Dissertation

Chapter 3 describes two different metrics to structure parallel workloads in a
dynamic environment. The first metric is the market price derived by the sup-
ply and demand of different resources. Based on this metric, partitioning and
mapping algorithms are derived, which are presented in Appendix A. The second
metric is the relative processing speed of partitioned program elements running
on distributed processors. A reconfigurable software structure is suggested to be
supported by the second metric.

4 Introduction

Chapter 4 presents the design and implementation of workload distribution schemes
that are based on the reconfigurable software structure described in Chapter 3.
The schemes allow data-parallel and task-parallel applications to be adaptable to
changing environments through dynamic reconfiguration.

Chapters 5 and 6 introduce a parallel application scheduling system that applies
the runtime adaptation proposed in Chapters 3 and 4. The system facilitates
the space-sharing of workstations on heterogeneous clusters through competition.
The architecture and experimental results of a prototype implementation are also
examined.

Chapter 7 discusses the concept of combining parallelism with replication. The
chapter suggests a multi-user, multi-parallel program architecture on heteroge-
neous clusters. The concept is then tested by experiments using a case study.

Chapter 8 concludes the dissertation with a summary of the research and some
suggestions for future work.

Chapter 2

Background

2.1 Introduction

This chapter discusses the rapid emergence of workstation cluster computing.
Based on the discussion, the strengths and potential research areas of this new
computing paradigm are presented. Three of the most important issues that
need to be addressed to further the development of workstation cluster comput-
ing are partitioning and mapping, workload distribution, and parallel application
scheduling. The details of these issues are described and their related research
work is reviewed. This chapter concludes that an integrated solution to address
these issues is necessary to facilitate a multi-user, multi-parallel program envi-
ronment on heterogeneous workstation clusters.

2.2 The Emergence of Workstation Cluster Com-
puting

In recent years, workstation cluster computing has been emerging rapidly. Work-
stations are now widely available in most academic and commercial organizations.
In addition, the principal user of a workstation normally utilizes only a fraction
of his or her own workstation capacity [KC91, ML87]. There is an obvious need
to improve the utilization of workstations in a shared network.

Since the late ’80’s, researchers have proposed various systems that could harness

-

6 Background

the idle computing cycles of workstations. These systems, such as the Process
Server [Hag86], the Butler [Nic87], and the Condor [LLMS88], enable users to
utilize a network of workstations as a shared computing environment.

Although workstations are not intended for running parallel applications, the
popularity of using workstations in a shared network environment to solve com-
putationally intensive parallel applications has been growing unceasingly since
the early '90’s. Instead of being driven by the research and development efforts
of computer vendors, workstation cluster computing emerged naturally from the
demands of parallel users and the primary support of software and hardware.
What are the reasons for its popularity?

2.2.1 Cost-Performance of Processing Power

It is evident that workstation cluster computing is suitable for many workloads
for scientific numerical computations [THM*94, LH95, MIC96]. Researchers
[BDG*91, PWA193, NS92] have also demonstrated the capability of solving
Grand Challenge problems [GC91] using a workstation cluster. Workstations of-
fer an economic platform to develop parallel computing, particularly in academic
institutions, without the heavy investment of buying supercomputers. Nowadays,
workstations can offer better cost-performance than supercomputers because the
performance of a high-end workstation has been catching up with the perfor-
mance of a low-end supercomputer, and the sale of workstations is much greater
than that of supercomputers.

There is also a recent trend to run workloads other than scientific numerical com-
putations on workstation clusters. Examples include data mining [SNM*95] and
Web servers [KBM94, AYHI96]. Many more new applications such as commercially-
oriented software will also benefit from the cost-effective CPU cycles of worksta-
tions. Although workstation clusters will not completely substitute supercom-
puters for ultimate performance, they are complementary to supercomputers in
many respects.

2.2.2 High-speed Network Connections and Protocols

One of the major potential impediments to cluster computing in achieving good
performance is the limitation of inter-workstation communication. However, ow-

2.2 The Emergence of Workstation Cluster Computing 7

ing to the rapid development of high-speed transmission, fast switches and pro-
tocols, the potential for performance enhancement is great.

Most of the existing workstations are interconnected by Ethernet that transmits
information at around 10-100 Mbps, but with the introduction of standardized
communication facilities such as Asynchronous Transmission Mode (ATM), High
Performance Parallel Interface (HIPPI), and Fibre Channel Standard (FCS), the
potential transmission bandwidth ranges from hundreds of megabytes per second
to gigabytes per second. The development of network architectures has shifted
the bottleneck of communication in the local area from the limitation of band-
width to the overheads of protocol processing. The improvement of network inter-
face software is currently under active research. Researchers [LHD*94, DSP+95,
EBBV95, LC96] have recently shown that communication protocol overheads
can be reduced by using streamlined network interface software or bypassing the
general-purpose TCP/IP protocols.

2.2.3 Aggregate Computational and Memory Capacities

The aggregate computational and memory capacities of workstation clusters can
satisfy the requirements of many demanding applications that cannot be solved
economically on a single machine. In particular, the aggregate DRAM of work-
stations can be used as a giant cache for disk [ACP94]. Furthermore, the multiple
workstation disks can function cooperatively as redundant arrays of inexpensive
(workstation) disks (RAID) using the LAN as the I/O backplane [ACP94].

In addition, the aggregate heterogeneous computing power of different clusters
can be harnessed by parallel applications as a unified resource. The concept
of clusters can be generalized by heterogeneous computing. A heterogeneous
computing environment may consist of a combination of vector supercomputers,
massively parallel computers, specialist high-performance computers, and work-
station clusters. The computing clusters of the environment can be connected by
fibre-optic links over a wide-area network [NRS92]. Figure 2.1 shows that work-
station clusters can be the building blocks of an infrastructure for a heterogeneous
computing environment. The goal of using heterogeneous computing [FS93] is to
obtain superspeed processing for computationally demanding applications with
diverse computing needs.

8 Background

R

./ Workstation ;
. |7 " Cluster
___________ T
High-speed
Network
Vector

Processors

......

Figure 2.1: Generalization of Cluster Computing
2.2.4 Parallel Programming Paradigms

One of the key factors for the early success of workstation cluster computing is the
readiness of software support. Turcotte [Tur93] has presented a comprehensive
overview of no less than 60 software packages that provide parallel programming
support for a network of workstations. Nevertheless, the methods for developing
software systems for workstation cluster computing is still in an early stage. The
following sections describe the recent research directions for parallel computing
on workstation clusters.

Message Passing Environments

The availability of message passing programming libraries, such as PVM [GBD193],
P4 [BL92], Express [FK94], CHIMP [CHI], and MPI [GLS94] facilitates imple-
mentation platforms that are accessible to many people through the Internet.
These libraries allow unused computing cycles on workstations to be harnessed
for the development of parallel computing. '

The message passing paradigm relies on the explicit transmission of messages be-
tween systems. The message passing libraries can be regarded as coordination li-

2.2 The Emergence of Workstation Cluster Computing 9

braries [CG92] because serial computations are glued together by communication
and synchronization operations provided by the libraries. Among the libraries,
PVM and MPI are the most widely used.

Parallel Virtual Machine (PVM) was developed by Oak Ridge National Labo-
ratory, University of Tennessee, and Emory University, and is considered as the
de facto standard of message passing. It provides a mechanism for initializing
processes on distributed machines and communicating among these processes.
It promotes the utilization of a heterogeneous network of computers as a single
computational resource.

Message Passing Interface (MPI) has emerged as the future standard of message
passing in parallel computing environments. An MPI Forum was set up in 1993,
and over 40 academic, governmental and industrial organizations contributed to
the Forum. By making use of the experience of previous message passing sys-
tems, MPI aims to provide greater functionality, unified design and an emphasis
on user access to high performance protocols and hardware. In 1994, the final '
MPI-1 standard was released; it included the specification of a much richer set
of features than previous message passing libraries. Extensions such as real-time

communications, parallel I/O, and active messages will be added in the forth-
coming MPI-2 standard [DOSW96].

Distributed Shared Memory

The development of other high-level programming models that aim at more effi-
cient coding and higher software development productivity is also proceeding at
a rapid pace. Distributed shared memory (DSM) is one such programming model
that can be applied efficiently for cluster computing. DSM systems allow data
access through a globally shared memory even though data on éach distributed
node does not reside in a physically shared memory. The actual movement of
data between nodes is hidden from programmers. The primary advantage of this
model over the message passing model is easy parallel programming, because
programmers do not need to specify interprocessor communication explicitly, and
data structures can be accessed in a single address space. However, the imple-
mentation of the DSM system has to consider the problems of memory structure
and data consistency. As the number of distributed workstations increases, the
overheads in maintaining DSM systems also increase. Linda and TreadMarks are
two examples of DSM systems for workstation clusters.

10 Background

Linda [CG89] is a coordination language from Yale University based on a shared
associative memory. It is created by extending a sequential language (C or For-
tran) with five additional statements. The contents of the memory are organized
as tuples. Tuples are defined as objects that contain data and information on
how to process the data. A collection of tuples is called tuple space. There are
process tuples and data tuples; parallelism is achieved when the process tuples
exchange data by generating, reading, and consuming data tuples simultaneously.

TreadMarks [ACD%96] is a DSM system built at Rice University. It is a user-
level DSM system that runs on UNIX workstations. The shared memory in
TreadMarks is organized as a linear array of bytes via a relaxed memory model
called release consistency. It uses a multi-writer protocol to alleviate problems
caused by data inconsistency and application granularity.

High Performance Fortran

High Performance Fortran (HPF) [For93] is a programming language that sup-
ports data-parallel programming based on the style of implicit parallelism. The
objective of HPF is to develop a portable and efficient language for parallel com-
puter architectures. Discussions on a HPF standard were started in 1991 and the
first specification appeared in May 1993. The design of HPF was evolved from
the Fortran 90 [For91] programming language. Fortran 90 improved Fortran
77 by adding new features such as array operations, pointers, dynamic storage
allocation, and user-defined data types. HPF extended Fortran 90 to support
parallelism in a natural way. The enhancements include the support of array
alignment and distribution, data parallel constructs and compiler directives for
data partitioning. ’

2.3 Addressed Issues & Related Research

The paradigm of parallel computing on workstation clusters inherits many issues
that hinder the full exploitation of its potential power. Three of the most im-
portant issues are partitioning and mapping, workload distribution and parallel
application scheduling. These issues are related to one another and they demand
solutions from both software and system support.

2.3 Addressed Issues & Related Research 11

2.3.1 Partitioning and Mapping

Problem Definition

The problems of partitioning and mapping in parallel machines involve the as-
signment of parallel processes to processors. One problem arises when mapping
between processes and processors cannot be represented as a uniform one-to-one
relation. Partitioning is the development of methods to decompose applications
into small partitions that can efficiently be executed in parallel. Mapping is the
distribution of the partitions over suitable processors. If these problems are not
addressed properly, the performance of parallel computing will be affected ad-
versely by workload imbalances or excessive communication overhead owing to
poor process allocation.

The common solution to these problems is to minimize execution time by min-
imizing communication overheads and balancing workloads. However, there is
always a dilemma between using less processors to minimize interprocessor com-
munication and using more processors (but before the saturation effect occurs)
to maximize parallel execution. For cluster computing, the problems are fur-
ther complicated by the dynamic availability of communication bandwidth and
computational power.

Related Work

The conventional strategies of partitioning and mapping can be classified as being
either static or dynamic. In the case of static mapping, the information regarding
processors in the system, as well as processes of an application is assumed to be
known a priori. Since this problem is NP-hard [Cof74, LK78, GJ79], optimal
solutions can only be formulated for some special cases with strict assumptions .
[Hu61, CG72, Sto77, Bok81]. Previous research primarily focussed on finding
heuristic solutions under different situations [NT93]. Nevertheless, these heuris-
tic solutions apply only to particular communication or hardware characteristics
[Sah84, MA86] such as the interconnection of processors. In the case of dynamic
mapping, a mapping decision is made for a process only when it is executed
[SCMS82, SS84] because little knowledge is known or available a priori. Only
the dynamic approach of partitioning and mapping can be applied to distributed
multi-user systems like workstation clusters because resource availability changes
when the number of running applications varies.

12 A Background

2.3.2 Workload Distribution

Problem Definition

To support adaptive execution, applications require the capacity for distributing
processors; workloads adaptively according to runtime conditions. As depicted in
figure 2.2, there are two components of adaptive workload distribution, namely
dynamic load balancing and adaptation of external workload interference. The
runtime cost of supporting adaptive execution may be significant, yet the poten-
tial gains can often outweigh the cost incurred.

Adaptive Workload
Distribution

Dynamic
Load Balancing

Adaptation of External
Workload Interference

Dynamic Heterogeneous Independent Parallel Workload
Program Hardware Workload Interference
Workload Interference

Figure 2.2: Problems Tackled by Adaptive Workload Distribution

Dynamic Load Balancing

Dynamic load balancing is one of the most important and widely studied issues
[Qui94] in parallel processing because good performance can only be achieved
in a well-balanced situation. Dynamic program workload and heterogeneity in
workstations and network connections are two causes of workload imbalance that
need to be tackled by dynamic load balancing.

The program workload imbalance arises when demand in processing power varies
during the lifetime of an application. For example, in the land-battle simulation
described by Nicol and Saltz [NS88], different phases of the simulation demand
different levels of processing power. Higher processing power is needed when the
simulation process changes phase as combating units come close to fighting. A
reassignment of workload is therefore required to maintain optimal performance

2.3 Addressed Issues & Related Research 13

of the simulation. Another example is the protein structure prediction presented
in an article by Martino et al. [MJS*94]. The processing time of millions of
protein structures can be reduced by parallel computing. In the sequence of
structures, the atomic coordinates of the atoms change owing to the movement
of atoms in the protein structure. The number of neighbouring atoms for each
atom changes from structure to structure, and the workload varies accordingly.
Static assignment of the atoms across processors is therefore inadequate.

Heterogeneity is common in distributed systems. Although most workstations are
connected by a local area network, the scale of workstation cluster computing has
been extended to wide-area networks [Str95, DPCS95]. In many network settings
the number of workstations ranges from tens to hundreds. Workstations and their
interconnections are often heterogeneousmgfn architecture and configuration. This
leads to uneven distribution of computation and communication power.

Adaptation to External Workload Interference

In a shared-network environment, applications are subjected to workload inter-
ference from other users. The problem of workload interference, which is quite
unique to the applications running on workstation clusters because resources are
shared among them, can hamper reasonable performance. There are two types
of workload interference, one of which comes from independent jobs generated
by the owners or users of individual workstations. Since the owners have a high
priority in using the workstations, parallel applications should be unobtrusive to
them. The other type of workload interference comes from parallel applications.
Resource availability can be altered by the arrival of independent workload as well
as parallel workload. To be adaptable to different types of workload interference,
applications should have the abilities to change the number and distribution of
active processes at runtime. The abilities include migrating workload from one
machine to another and changing the demand on resources according to avail-
ability.

Related Work

Despite the importance of adaptive execution, most of the related work only pro-
vides support for either dynamic load balancing or adaptationof the workload
interference. In the work related to workload distribution, studies have been car-
ried out at different levels. At the language development level, Dataparallel C

-

14 I ‘ Background

[NQ93] is a parallel programming language that supports dynamic program load
balancing on a network of heterogeneous workstations. However, Dataparallel
C can only be used for data-parallel applications, and its programming model
is restricted to SIMD. The distributed object migration environment (Dome)
[ABL*95] from Carnegie Mellon University provides a library of distributed ob-
jects for parallel programming that performs dynamic load balancing. Piranha
[CFGK95] provides an adaptive version of master-worker parallelism which is im-
plemented on top of Linda. Depending on availability, the number of processors
working on a computation may vary in Piranha.

At the application development level, different approaches to implement adap-
tive runtime support for data-parallel programs are suggested by Prouty et al
[POW94], Edjlali et al. [EASS95], and Kaddoura et al. [KR95]. Dynamic process
migration is also used as an adaptive mechanism in response to external work-
loads. Two different schemes are introduced by Konuru et al. [KCO*94] and
Casas et al. [CCK*95] to provide a migratable system using PVM.

2.3.3 Parallel Application Scheduling

Problem Definition

Since parallel applications will demand a considerable amount of resources, re-
source scheduling is important both for maximizing the performance of individ-
ual applications and optimizing the utilization of resources. The traditional local
scheduler in the UNIX kernel of distributed workstations is not an adequate
answer to this problem, because parallel workloads need co-ordination between
workstations. A distributed or global scheduling system is essential to resolve
the contention of resources among the parallel applications running on the same
workstation clusters.

For the owners of workstations, a simple priority setting at each workstation is not
enough to safeguard the ownership of the workstations because the owners may .
not be willing to share CPU cycles with computationally intensive applications
that normally take hours to finish. For the parallel applications, the effectiveness
of execution depends on the quality of resource scheduling.

2.4 The Need for an Integrated Solution 15

Related Work

Work related to scheduling parallel applications on workstation clusters includes
DQS [GS91] which supports batch scheduling of parallel jobs using a centralized
queueing mechanism. DQS can also support both PVM and MPI applications.
Although DQS can control the execution of applications running on a network, it
can only start and stop them but it cannot relocate them. Condor [LLM88] ini-
tially offered process migration of sequential jobs, but there is a recent integration
of PVM and Condor called CARMI [PL95] which supports parallel job scheduling
by job suspension and resumption. The Prospero system (PRM) [NR94] provides
processor selection and allocation, task mapping, program loading, and execution
for a scalable infrastructure. The PRM:is also scheduled to apply the functions
provided by Condor to support task migration. In [SOW94] and [CCO*95], gang
scheduling is proposed to allocate time slices and node domains among the tasks
of different applications.

The Spawn system [WHH*92] applies a microeconomic paradigm to support
coarse-grain parallel programs and the remote execution of independent jobs. It
uses auctions to allocate resources among clients that bid monetary funds and
bidders increase their bids linearly over time. Funds encapsulate resource rights
and serve as a form of priority, and price equates to the supply and demand of
processing resources. The auction dynamics can be volatile, however, and the
overhead of bidding for resources at time slices is great.

2.4 The Need for an Integrated Solution

As shown in Sections 2.3.1 to 2.3.3, the past research efforts in tackling the prob-
lems of partitioning and mapping, workload distribution, and parallel application
scheduling do not co-ordinate with one another. The underlying motivations for
these research efforts, however, do have two points in common — the maximiza-
tion of application performance and the optimization of resource utilization. The
current trend of development is to tackle some of the problems by combining the
capacities of different systems, such as PVM and Condor. This is because the
existing approaches cannot provide a complete solution to both the programming
support and resource scheduling for parallel applications.

For a multi-user environment, there is an obvious need to investigate an integrated
solution to address all the above problems at the same time. If this integrated

16 Background

solution is realized, different applications should be able to use the resources of
workstation clusters as a unified resource or a virtual machine. Users should no
longer need to worry about which set of machines their applications are running
on in order to get the best performance.

Chapter 3

Structuring Workloads for a
Dynamic Environment

3.1 Introduction

This chapter describes two metrics to structure parallel workloads for a dynamic
workstation cluster computing environment. Criteria for structuring applications
are examined. The first metric is the market price acquired from the supply and
demand of different resources. The second metric is the relative processing speed
of partitioned program elements running on distributed processors. A comparison
- and an evaluation of these two metrics are presented in this chapter. The second
metric is chosen as the basis for building a reconfigurable software structure to
support adaptive parallelism on workstation-clusters.

3.2 Criteria for Structuring Parallel Workloads

¥

3.2.1 Granularity

Although the workloads of applications can be quantitatively defined by differ-
ent descriptions [CS93], two of the most important workload characteristics are
computation and communication requirements. The relation between these two
characteristics can be represented by a parameter called granularity. The granu-
larity of an application is determined by the computation-to-communication ratio

18 Structuring Workloads for a Dynamic Environment

of its processes. This ratio is measured by the number of calculations performed
by a procees to the total size of messages sent by the process. The processes of a
fine-grain application perform few operations between sending messages. In con-
trast the processes of a coarse-grain application spend a relatively high amount
of time in computation between communication intervals. An extreme case of
the coarse-grain applications is called embarrassingly-parallel [FJL*88], in which
no communication is needed between processes.

Although communication technology has been advancing quickly, the overhead of
communication is still a limiting factor in achieving a good performance in cluster
computing. However, a lot of target applications that range from medium-grain
to coarse-grain are suitable for cluster computing. The minimization of commu- -
nication overhead and the maximization of parallelism are two conflicting criteria -
in controlling granularity. Careful control of the granularity of an application by
partitioning and grouping workloads is important to enhance performance.

3.2.2 System Dynamics and Heterogeneity

As described in Chapter 2, the availability of resources is highly dynamic in a
cluster computing environment because the computation power and communica-
tion bandwidth of workstations are shared by multiple users. The applications
should be adaptable to the changing capacity of computation and communica-
tion in workstation clusters. In addition, the architectures and configurations of
workstations and communication interconnects are usually heterogeneous. The
methods for structuring parallel workloads are exacerbated by the problem of
heterogeneity. Stati¢ schemes of workload structuring obviously cannot provide
the adaptability required for cluster computing.

From the above brief review, the need for a suitable structuring method which
can tackle the issues of granularity, system dynamics, and heterogeneity is evi-
dent. On the one hand, the structuring method needs a metric to measure the
relative importance of computation and communication workloads. On the other
hand, the method should allow repartitioning at runtime in order to sustain good
performance in a dynamic environment.

3.3 Market Price as a Structuring Metric 19

3.3 Market Price as a Structuring Metric

In this approach to structuring, an application is represented by a connected
task-graph. Figure 3.1 exemplifies a task-graph in which a node indicates a task
and an edge is referred to as the communication required between the nodes
it connects. From the graph, the task connectivity and the computation and
communication requirements of an application can be outlined. Tasks are the
basic elements of an application. Usually the number of tasks is greater than the
number of workstations, therefore tasks have to be grouped into clusters of tasks
called grains for mapping as shown in Figure 3.1. Each grain is allocated to a
single workstation for execution.

Figure 3.1: An Example of a Task-Graph

Market price is used as a metric to structure parallel workloads because it can
evaluate the relative importance between computation and communication work-
loads. The market price is governed by the demand and supply of the traded
commodities and the competition created between the buyers and the sellers,
respectively. In market terms, grains are the buyers of the commodities: compu-
tation and communication capacities. The workstations are the sellers of these
commodities. The buyers should eventually bid to get the best possible deal in
terms of their power of payment and urgency of completion time. The tasks
are related to each other by their communication requirements in terms of unit
data (bytes or messages), while the workstations are related to each other by the
market price of communication per unit data. In some studies [AJ88, BKM89,

20 Structuring Workloads for a Dynamic Environment

BNG92|, however, the communication intensity between the tasks and the sys-
tem topologies have been used to partition parallel applications by conventional
methods. The sellers should eventually get the best possible price paid for the
commodities that they auction. In doing so, both the grains and the workstations
may compete with other grains and workstations.

The details of the partitioning and mapping algorithms [SB94] that use the mar-
ket price as a structuring metric are described in Appendix A. The algorithms
are based on a micro-economic approach which deals with parallel applications,
but assumes the existence of independent jobs executing on individual worksta-
tions as well. The algorithms consider two main phases: the partitioning phase
and the mapping phase. The application and the system data in each phase are
translated into prices. These phases can be reiterated to restructure the work-
load of an application whenever the demand for computation or communication
requirements of the application changes, or the availability of computation or
communication capacities of the workstations varies. '

The algorithms underlie the development of simple, fast, and flexible solutions to

the partitioning and mapping problems over clusters of workstations, inspired by
" market rules. They also aim to provide a balanced load distribution by partition-
ing the workloads of applications dynamically. There is no special requirements
on the interconnection scheme of the workstations or inter-task communication
requirements, in contrast to most of the earlier studies.

3.4 Structuring by Relative Processing Speed

In the above approach, the market price is used as the metric for measuring
workloads. Applications repartition acéording to changes in the market prices of
different resources. However, information about computation and communica- .
tion workloads is usually not known before program execution. In addition, this
approach requires a mechanism to maintain the up-to-date values of the market
prices in the whole system. '

An alternative metric to structuring the workloads is the relative processing speed
of partitioned program elements. Unlike the metric described above, this metric
does not assume knowledge of workloads and the state of market prices. Ap-
plications are initially structured as partitioned program elements by its users.
Then the structure can be reconfigured adaptively to the dynamic environment

3.4 Structuring by Relative Processing Speed© » 21

according to the values of the metric. The values of the metric are obtained
when different partitioned program elements in the same or different applica-
tions race or compete one another for completion. Based on the reconfigurable
software structure, applications are constructed as adaptive computation agents.
The details of the reconfigurable structure and competition are described in the
following sections.

3.4.1 Reconfigurable Software Structure

Akin tq the basic structure described in Section 3.3, applications are decomposed
into small elements called tasks that cannot be further decomposed. The compu-
tational structure of a problem can be decomposed according to its data structure
(domain decomposition) for data-parallel applications or its functional structure
(functional or spatial decomposition) for task-parallel applications. After decom-
position, the tasks can be grouped into agglomerations called grains; each grain
is an object that facilitates execution of a variable number of tasks on a single
workstation. The size of a grain is determined by the number of encapsulated
tasks in a grain.

T: Task, G: Grain, AP: Application

Figure 3.2: The 'Basic Reconfigurable Structure of an' Application

Figure 3.2 depicts the basic reconfigurable structure of an application. The num-
bers of tasks and grains can vary adaptively according to the environment by
changing task-to-grain and grain-to-workstation mappings. The task-to-grain
mapping relates logical task ‘numbers to logical grain numbers; it defines the
number of tasks in each grain and the granularity of an application. The grain-
to-workstation mapping relates logical grain numbers to physical identifiers for
execution. This mapping governs the assignment of grains into workstations and
determines the choice of workstations.

22 Structuring Workloads for a Dynamic Environment

Since the task-to-grain and grain-to-workstation mappings can be updated dy-
namically, the task distribution and execution location of each grain can vary in
different_situations. These may include differences in processing speed between
workstations, and dynamic workload interference on individual workstations. An
application can optimize its performance by adopting the best task-to-grain and
grain-to-workstation mappings for the current environment.

3.4.2 Partitioning Levels

Runtime adaptation will definitely introduce overheads into execution time. The
time for searching for suitable task-to-grain and grain-to-workstation mappings
in a changing environment is a major overhead. To minimize the searching time,
the possible task-to-grain mappings are confined by predefined groupings of tasks
called partitioning levels. The configurations of the partitioning levels are defined
by the programmer and stored as static information in an application. Program-
mers can select a set of possible partitioning levels that may be suitable for
different situations of resource availability. Although the computation structure
and communication topology of an application will affect the partitioning levels
of an application, detailed workload information is not required.

G1
T1,T2,T3,T4,T5,T6,T7 Partitioning Level 0
‘T8,T9,T10,T11,T12, :
T13,T14, T15, T16

Partitioning Level 1

........... Partitianing.Level 2

7N FN AN 7N

@_@ OF OROE EM 6 () (e i

" G16

Figure 3.3: Splitting and merging.of the grains (by a factor of two) of an
application between different partitioning levels

3.4 Structuring by Relative Processing Speed 23

Figure 3.3 shows an application which consists of 16 tasks. The grains of this ex-
ample can split or merge by a factor of two between two partitioning levels. These
partitioning levels provide very coarse-grain control for adaptability. To obtain
better adaptability, the grain-size at each partitioning level may be fine-tuned.
Therefore, the task-to-grain mapping of an application at each partitioning level
is variable.

3.4.3 Relation between Software Structure & Adaptation

In a large and dynamic environment, a global control for all applications is
not possible because up-to-date globaIi":’s"vsfstem states cannot be maintained ef-
ficiently. For parallel applications running on the environment, they should have
self-regulating capabilities that are based on local information. The parallel ap-
plications can act as adaptive computatibn agents that are adaptable to external
changes by adjusting their execution profiles and résource consumption. The goal
of designing a reconfigurable software structure is to form a basis for supporting
adaptive applications. An application is said to be adaptive if it can take actions
in response to changes in its surroundings.

/Vz‘ompetirion \/\

Information .+~

“/Agents to
provide
external

Information

Agents to X
provide
external

Information,

Figure 3.4: Abstract Model of a Dynamic Environment for Adaptive
Applications '

24 Structurilng"Wolrkloads for a Dynamic Environment

Figure 3.4 shows an abstract model of a dynamic environment for adaptive ap-
plications. Competition is used as a general approach to facilitate adaptation in
the environment. There are two types of competition that can lead to structure
reconfiguration: intra-application competition and inter-application competition.
Intra-application and inter-application competition are driving forces for the ac-
tions of adaptation. Table 3.1 compares the major differences between these two
forms of competition. :

Intra-application Inter-application
Competition Competition
Scope Between. grains | Between applications
Information Required | Relative speed of | Resource availability &
processing tasks Application status

Sources of Information || Neighbouring grains | External monitoring agents

Effects of Competition || Resolve local Resolve allocation of ‘
workload imbalances | resources among applications

Table 3.1: Comparison between Intra-application and Inter-application
Competition

3.4.4 Intra-Application Competition

One of the most important criteria to achieve optimal performance from parallel
computing is load balancing, that is, workload distribution among distributed
processors is balanced in proportion to their computation and communication
power. The traditional methods of load balancing involve matching between
application workloads (computation load and communication load) and hardware
capacities (processor speed and network bandwidth). These methods require
detailed knowledge of application workloads and hardware characteristics. A
new metric that does not require information about workloads is derived through
the intra-application competition. The metric is the relative processing speed
of tasks between grains; it is used to compare the resultant performance owing
to the computation and communication of tasks on distributed machines. This
metric is independent of application types and execution platforms.

3.5 Summary 25

For intra-application competition, competition appears in the form of racing be-
tween neighbouring grains. Workload imbalances can be detected by comparing
workloads between grains using the proposed metric. Workloads can then be
distributed locally between the grains of the same application. The conditional
actions of adaptation through intra-application competition are discussed thor-
oughly in Chapter 4.

3.4.5 Inter-Application Competition

For inter-application competition, external information is needed to improve re-
source utilization by avoiding unnecessary resource contention among applica-
tions. The external information also i:)i‘ovides guidance for an application to
expand or migrate to newly available workstations or withdraw its computations
from workstations that cause workload imbalances. As shown in Figure 3.4, the
information should be passed to applications from external monitoring agents.
The information includes parameters for evaluating resource availability, such as
the utilization rate of CPU, network bandwidth, and memory.

Besides the information about resource availability, status information about the
other competing applications is also required to make resource allocations. Inter-
application competition will not be fair and efficient if the applications do not
have access to information about resource availability and competing applica-
tions. In Chapters 5 and 6 a parallel application scheduling system is proposed
to provide all the supporting functions required for inter-application competition.

3.5 Summary

This chapter presented two different metrics to structure ‘parallel workloads in a
dynamic environment. The first metric measures workloads using market prices
adjusted by the supply and demand of different resources. The second metric
uses the relative processing speed of tasks between grains to structure workloads.
A reconfigurable software structure which is supported by the second metric was
suggested. The software structure is the basis of the work to support adaptive par-
allelism on workstation clusters through intra-application and inter-application
competition.

26

Structuring Workloads for a Dynamic Environment

Chapter 4

Adaptive Execution of Parallel
Applications

4.1 Introduction

The purpose of this chapter is to present two complementary schemes of adaptive
workload distribution based on the reconfigurable software structure described in
Chapter 3. The schemes allow parallel applications to reconfigure themselves at
runtime in order to be adaptable to workload imbalances. The workload im-
balances can be the results of dynamic program workload, heterogeneity, and
different forms of workload interference. In other words, the performance of a
parallel application may suffer if the amount of heterogeneous resources alters
during its lifetime in the environment. The tailor-made schemes for workload
distribution are implemented for different data-parallel and task-parallel appli-
cations. The evaluation of experimental results is described near the end of this
chapter.

4.2 Adaptive Workload Distribution

Figure 4.1 shows the problems that need to be addressed by adaptive workload
distribution and the solutions provided. The white oval blocks are the classifica-
tion of these problems which have been described in Section 2.3.2, and the grey
oval blocks represent the solutions provided by adaptive workload distribution.

28 Adaptive Execution of Parallel Applications

Distribution

23\ /Adaptation of External
/ _Workload Interference

Eqdaptive Workloacﬂ

Dynamic
Load Balancing

Dynamic Heterogeneous Independent Parallel Workload
Program Hardware Workload Interference -

Workload Interference

Figure 4.1: Problems Tackled and Solutions Provided by Adaptive Work-
load Distribution

Two schemes of workload distribution are proposed for automatic adaptation at
runtime, namely Local Workload Distribution (UWD) and Global Workload Distri-
bution (GWD). These schemes take different approaches to distributing workload,
but they can complement each other to enhance overall adaptability.

For Local Workload Distribution, tasks are grouped locally between neighbouring
grains. Grains and their neighbours race one another until all their tasks are
finished. If the relative processing speed of tasks between grains is different,
the tasks of the slower grains will be shared with the faster grains. Since the
slowest grain limits the performance of an application, the overall speedup can
be increased by sharing the workload of the slowest grain with its neighbouring
grains. It is possible that all the tasks of a grain are taken over by its neighbouring
grains. Basically, the LWD is designed to tackle the problem of dynamic load
balancing, but it can also resolve certain workload imbalances due to independent
workload interference. |

For Global Workload Distribution, an application can switch from one partition-
ing level to another partitioning level through splitting, merging, or migrating the
grains of the application. Although these partitioning levels restrict. the number
.of possible task groupings, they reduce the time to search for suitable task-to-
grain and grain-to-workstation mappings at runtime. The GWD aims to provide
solutions for the adaptation to external workload interference.

4.3 Local Workload Distribution 29

4.3 Local Workload Distribution

The Local Workload Distribution (LWD) distributes tasks among neighbouring
grains by comparing the relative processing speed of tasks between the grains.
The grains coordinate with their neighbouring grains so that workloads among
them can be shared dynamically and locally by racing one another until all their
tasks are finished. Through grain racing, the relative speed of processing tasks
can be compared between grains. If the processing speeds between the grains
are different, workloads will be balanced by sharing the tasks of slow grains with
faster grains. The LWD is enforced by conditional actions, therefore it will not
be activated if the workloads of the grains are balanced. The details of the
conditional actions for different applications are described in Sections 4.4.2 and
4.5.3. In contrast to the master-workers parallelism, the control of the LWD is
distributed, so the LWD provides a scalable load-balancing approach that can be
applied to large scale parallel applications. '

In the following sections, tailor-made implementations of the LWD for three par-
allel applications which have different computation and communication character-
istics and requirements are discussed: (1) a block-matrix multiplication program
(BMM); (2) a cycle-searching of a non-linear iterated function program for cryp-
tography (CSN); (3) a parallel simulator of an ATM Network (PSA). The first
two applications are classified as data-parallel applications and the third appli-
cation is referred to as a task-parallel application. For data-parallel applications,
the same algorithm is applied to a large data set. Each task receives a fraction
of the whole job related to its part of the data. For task-parallel applications,
tasks are defined by spatial or functional decomposition. These examples are
used to illustrate the fact that the LWD is amenable to different paradigms of
parallelism.

4.4 Data Parallelism

4.4.1 Data-Parallel Applications

Many' computationally intensive scientific computations are made up of opera-
tions on a large data set by multiple loops. To parallelize these computations,
each processor applies the same operations to a subset of the data set. This
regular parallelism on data is commonly realized as the data-parallel paradigm.

30 Adaptive Execution of Parallel Applications

Data parallelism is a natural paradigm for a large number of computational prob-
lems [Fox89]. High Performance Fortran (HPF) is the most recent international
effort to derive a language that aims to enhance the performance of data-parallel
applications on different hardware platforms. The extensions of HPF from For-
tran 90 include advanced constructs and compiler directives for data distribution.
However, the current standard for HPF does not include adaptive workload dis-
tribution.

Two examples of data-parallel applications to be discussed in this chapter are the
block-matrix multiplication program ‘(‘B'MM) and the cycle-searching of an non-
linear iterated function program for cryptography (CSN). For the BMM, input
and product matrices are partitioned into Nx/N matrix blocks. Each task is to for-
mulate a product block that is calculated by the equation: Cyy = YN Ay ;- Biy.
There is no communication between tasks, so every grain can work independently.

For the CSN, the input data set can also be arranged as a two-dimensional data
array. Different initial values lead to either new cycles or repeating cycles in a
non-linear iterated function. The program takes each initial value and searches
for which cycle it ends up in. For the sequential version of the program, cycle
information is stored by a big hash table; it is used to determine whether two
values lead to the same cycle. For the parallel version, each task takes a frac-
tion of the initial values and searches for cycles with reference to its local hash
table. No inter-task communication is required except infrequent broadcasts of
cycle information. It is carried out to unify cycle information in the local hash
tables. Initially, the application may take a long time to search for and create the
information on new cycles, but the time for searching decreases rapidly as more
cycles have been recorded. Unlike the BMM, the CSN consumes a lot of memory
and its execution time may not be directly proportional to the size of its input
data set.

4.4.2 Distributing Workloads between Grains

For both of the example applications, a two-dimensional data set can be parti-
tioned and numbered as shown in Figure 4.3. Initially the subsets of the data set
can be decomposed uniformly into small data domains; these domains are then
‘assigned as grains. The grains are further decomposed into smaller uniform data
domains as tasks. The grains are processed in different individual workstations
concurrently, whereas the tasks in each grain are processed sequentially in order

4.4 Data Parallelism

31

Conditional Action 1
If all its tasks are processed,
Informs its neighbouring grains about its completion,
Asks its next neighbouring grain for more unprocessed tasks

until all its neighbouring grains finish all their remaining tasks.
Conditional Action 2

If requests from other neighbouring grains are received while processing
~ its own tasks,

Dispatches n unprocessed tasks to the requesting grain.

Figure 4.2: Conditional Actions of the LWD in each grain for Data-
Parallel Applications

Each grain will ask for more tasks from its
neighbouring grains. The arrows show which
neighbouring grain will be asked by which grain first.

— G1 [G2] G3
v
G4 [~ G5 [+{ G6

Nine Grains in the
data parallel application

G7 [+ G8 [89 | i

Tasksqre processed in order
T ~ of asceritling task number.

.,
",
.,
.
S
.,

T |T2 | T3| T4

. |15 |16 | T7| T8
Sixteen Tasks *,
in Grain 9 |19 |T10|T11|T12

| 13| T14[T15|T18

Tasks are dispatched in order
of descending task number.

Figure 4.3: The LWD for Data-Parallel Applications

32 "~ ' Adaptive Execution of Parallel Applications

of ascendiﬁg task number. A neighbourhood can be formed by adjacent grains,
for example the nine grains in Figure 4.3 form a neighbourhood and each grain
has eight neighbouring grains..

Figure 4.2 shows the possible conditional actions of the LWD for data-parallel
applications; these actions are carri’ed‘out by each grain of an application. On
the one hand, if all the tasks of a grain are processed, the grain will inform its
neighbouring grains about its completion and request its neighbouring grains for
more unprocessed tasks until all its neighbouring grains are finished. The arrows
between the grains shown in Figure 4.3 indicate which neighbouring grain will be
asked by which requesting grain first. The requesting grain will then ask its next
neighbouring grain in order of ascending grain number. For example, the order
of request for G5 is G4, G6, G7, G8, G9, G1, G2, and G3. If the requesting grain
has the highest grain number, it will ask the neighbouring grain with the lowest
grain number for unprocessed tasks first. This order of request aims to reduce
the chance of being requested by more than one grain at a time.

On the other hand, if a grain receives requests from its neighbouring grains while
processing its own tasks, n unprocessed tasks will be dispatched to the requesting
grain. The tasks are dispatched to its neighbouring grains in order of descending
task number. As a result, ‘workloads among the grains in a neighbourhood can
be balanced locally.

4.5 Task Parallelism

4.5.1 Parallel Simulation

Discrete-event simulation modelling is one of the most common scientific appli-
cations that demands computationally intensive power from parallel machines.
Parallel simulation is an example of a task-parallel application because the log-
ical processes of the simulation can be defined by spatial decomposition. The
potential gain in speed of the execution time of a simulation in workstation clus-
ters is tremendous. Nevertheless, the conventional static schemes of allocating
simulation workload into distributed workstations are inadequate because the
assigned workload may change over time. An adaptive distributed simulation
should also take account of the differences in workstation architectures and net-
working technologies among workstation clusters.

4.5 Task Parallelism 33

This section describes the LWD for the parallel simulator of an ATM network
[Shu95) in workstation clusters. Since the scheme of the LWD for the parallel
simulation is dependent on the computation and communication configurations
of the simulation model, the complexity of building the LWD for the parallel
simulation is generally higher than for the data-parallel applications.

4.5.2 The ATM Simulator Model

Simulation is regarded as an important performance modelling tool for com-
munication networks. However, the simulation of a broadband communication
network, such as an ATM network, is extremely time-consuming owing to an enor-
mous number of packet-level operations for broadband switches and communica-
tion links involved in performance modelling. Parallel and distributed simulation
is therefore used to reduce the execution time. In previous work on speeding up
the simulation of ATM or BISDN networks, dedicated multi-processor machines
were used to execute parallel ATM network simulators [PC91, YKF91, BG92].
In a recent study [CG93], Chai and Ghosh carried out a distributed simulation
of an ATM network on a network of SUN Sparcstation-1 workstations. However,
the problem of load balancing was only tackled by manual adjustments.

The parallel simulator (PSA) described in this work is designed for the purpose of
evaluating the performance of the traffic flow control and call set-up algorithms
for an ATM network proposed by Li and Shum [Li90, LS94].

An ATM network is made up of switching nodes and inter-node communication
links. Figure 4.4a depicts an ATM network which consists of an array of nine
switching nodes. As shown in Figure 4.4b, a generic model of a switching node
(node G2 in Figure 4.4a) mainly consists of an ATM switch, a packet loader,
output buffers, and link buffers. The link buffers model the buffering effect of
“communication links for transmitting packets. A

According to the reconfigurable software structure, the switching nodes and com-
munication links of an ATM network can be decomposed spatially into logical
processes which are hereafter referred to as tasks. Tasks are the smallest logical
processes of the simulation model. Each task processes the events of multiplexing,
demultiplexing, and buffering packets that are all related to a specific outgoing
communication link as shown in Figure 4.4c. The tasks are then grouped into
grains; each grain facilitates execution of the tasks on a workstation. For exam-
ple, the tasks of the model shown in Figure 4.4a can be grouped into twenty-four

34

Adaptive Execution of Parallel Applications

| g0 ke
an [

O)
O g

C

O]

N (0 ON
O--N--Oes
J

O

al

.

O
Ol
L)

(
s

O

9

fOT
o)

J

a. An array of nine switching nodes is decomposed into nine grains

~N

Packet Source Packet Sink
| - _T Output Butfers of the Switch . . Link Buffers

Packets / Packets

from ATM b : to other
other — Link b switching
switching Switch nodes
nodes .

Packet w

Loader

. : M J

b. A Generic Model for a Switching Node (G2)

Buffers for Incoming Events Buffers for Outgolng Events

Loader

. T :DID > Event Messages
Event Mess:geks " H H to other Tasks
from other Tasks:. L L]
= T T T [} reltedtoLinka
Event
, Loader
Buffers for Incoming Events Buffers far Outgolng Events
Event M I - j:Ij.:D__’ Event Messages
from other Tasks/ H H to other Tasks
IEDj/ \‘jj:r_-lj——’ related to Link b
Event
Loader S
Buffers for Incoming Events Buffers for Outgolng Events
Event Messages | < jj:_m——_’ Event Messages
from other Tasks/ H H to other Tasks
j:‘:ED/ \‘:EE]:]:}__’ related to Link ¢
Event

c. The Decomposed Tasks of the Switching Node (G2)

Figure 4.4: Spatial Decomposition of an ATM Switching Network

4.5. Task Parallelism 35

grains, nine grains, three grains, and one grain.

Algorithms of conservative time window [Lub89] are applied to process event mes-
sages of the tasks in distributed workstations. The time window is the time period
when events can be processed safely without incurring causality errors [Lam78].
The events in a time window are packed into time-stamped event messages before
they are sent to other tasks. The basic operations of the conservative time window
algorithm are described as follows: for every time window, each task exchanges
time-stamped event messages locally with its neighbouring tasks according to the
interconnection of the simulated network. A task is first synchronized with its
preceding tasks for incoming event messages. Any pending events in the event-
lists for that time window will then be processed. Finally, its outgoing event
messages will be sent to its succeeding tasks. If the tasks are located at different
grains, the exchange of event messages between them is through explicit message
passing, otherwise event messages are transferred by internal data movement.

The target model for the simulation is an ATM Metropolitan Area Network
(MAN) [Li90, LS94] which has the same topology as the network shown in Fig-
ure 4.4a. Basically, the size of a time window is determined by the propagation
delay of the outgoing links, but the window size can be extended by the looka-
head technique described in [Nic88]. Since propagation delay in MANSs is very
high, the number of events in each simulation window is large enough to provide
a suitable granularity for the simulation on distributed workstations.

4.5.3 ’;[‘he Use of Virtual Tasks

Since the performance of the slowest grain will limit the overall performance of the
parallel simulation, the speedup can be increased by sharing the workload of the
slowest grain with its neighbouring grains. Figure 4.5 sunimarizes the simulation
operations and the conditional actions of the LWD. The protocol of the LWD will
only be deployed if any one of the conditions, shown in Figure 4.5, is satisfied.
The conditional actions are embedded in the operations of the simulation. A
sender-initiated [WM85] approach is adopted in which the task in a heavily loaded
workstation initiates the LWD. The load metric for comparing loading is the
relative processing speed of tasks which is the ratio of the average task execution
time (tegec) between grains. tege. is calculated by dividing the execution time of
a time window by the time window period. Its value can be normalized by the
relative task computing demand in the simulation.

36 Adaptive Execution of Parallel Appplications

The Parallel simulation (Conservative Time Window) :

Do Parallel: for each Grain,
Do Parallel: for each Task in the Grain,
While simulation not completed,
Begin
Wait and receive incoming time-stamped event messages
from its preceding tasks,
Process the events for the next time window period,
(Conditions for the local workload distribution are embedded),
Send outgoing time-stamped event messages to succeeding tasks.
End

Conditional Actions of the local workload distribution :

Action 1 ,
If :—,"‘— > « for more than 7 consecutive time windows,

exec

Set its Sharing-task status.
Send its internal states to its takeover task.
Action 2 '
If the Sharing-task status of its succeeding tasks is set,
Send a duplicate copy of event message to the takeover task
of its succeeding task.
Action 3
If it is waiting for any task for execution and,
If the internal states and incoming event messages are ready,
Execute the virtual task.
Action 4 .
If it is a virtual task, and is intercepted by the original task,
Reset the Sharing-task status of the original task.
Action 5
If it is intercepted by its corresponding virtual task,
Send signals to its preceding tasks to deactivate all the incoming
event messages.
Deactivate itself.

Definition of Symbols :

tezec 1 its normalized task exec. time for a time window,
t! .. is the normalized task exec. time for a time window of its takeover task,
v, 7 are the constant great than or equal to one.

Figure 4.5: The Parallel Simulation and its Conditional Actions of the LWD

4.5. Task Parallelism 37

Grain 3

Event Message from
Event Message from Task b to Task Ta
TasksTc& TdtoTaskTd || Th J-F---—-cacccaC \

Internal States from
TaskTbtoTaskTa |.”

A Duplicate Copy of Event Message from Task Td to Task Ta

_ a. The Virtual Task of Tb is invoked

Event Messages from Task Tc to Task Ta

Event from Task Td to Task Ta

b. The Virtual Task of Tb has taken over the original Tbh

Figure 4.6: The LWD for the Parallel Simulation

Both Zezec and a status vector called Sharing-task status will be exchanged be-
tween neighbouring grains during execution. They piggyback the outgoing event
messages of the task to the succeeding task. Each bit of the Sharing-task sta-
tus vector represents the status of a task. If a task’s average execution time
tezec 1S greater than or equal to « times of the average task execution time of
its takeover task ¢, .. for more than 7 consecutive time windows, it will set its -
Sharing-task status and send its internal states to one of its succeeding tasks,
called the takeover task. The values of v and 7 can be fine-tuned to adjust the
sensitivity of the LWD to the varying workload owing to the simulation and the
other users. On receipt of the Sharing-task status, the task’s preceding tasks will
send a duplicate copy of the event messages to its takeover task. If the grain of
the takeover task is idle and all the internal states and event messages are ready,
it will execute a virtual task to take over the original task. Once the virtual task
is started, it will race with the original task for completion.

38 . Adaptive Execution of Parallel Applications

G1

Task Tb is intercepted G2 l Task Tb
by the Virtual Task -
The Virtual Task is
intercepted by Task Tb G2] | TaskTo |
a. Two possible situations
New Syn. Old Syn.
Barrier Barrier

WithoutLWD G1 | Task Ta

With LWD G1 |

G2| . | | Task Tb

b. The old and new synchronization barriers

Time —

Figure 4.7: Timing Diagrams of the Grains for the LWD

Figure 4.6 depicts a simple example of performing the LWD. Tasks T, T, T, and
T, are all located in different grains. In the case of task T}, it receives incoming
event messages which come from tasks T, and T (the preceding tasks) and sends
outgoing event messages to task T, (the succeeding task). If task T} is placed in
a workstation which has a low relative processing speed for tasks, task 7, will
always wait for the incoming event messages to proceed. The transfer of duplicate
copies of event messages and the internal states of task T}, at the time when its
virtual task is invoked in the grain of task 7, is illustrated by Figure 4.6a. If
the LWD is deployed successfully, the original task 73 will be taken over by its
virtual task (Figure 4.6b).

Figure 4.7a shows two possible situations that may arise from the example of
Figure 4.6, where tasks T, and T}, are located in grains G1 and G2 respectively. If
the virtual task finishes before the original task, it will send an intercepting signal
to deactivate the original task, otherwise the virtual task will be deactivated if it
is intercepted by the event message from the original task. All the event messages
from the preceding tasks will be stopped if a task is deactivated and any out-of-
date interception is discarded.

4.6- Global Workload Distribution 39

Figure 4.7b shows the effect of the LWD in shortening the synchronization barrier
of G1. If the LWD is not applied, there will be a long idle time for G1 to wait
for the incoming event message from G2. Instead of waiting idle, G1 executes a
virtual task of T} to race with the original T,. The successful completion of the
virtual task shortens the idle time while waiting for the synchronization barrier.
It is possible that all the tasks of a grain are taken over by its neighbouring grains.
In this case, the number of active grains varies during the simulation run.

4.6 Global Workload Distribution

4.6.1 Basic Conditional Acf.'ii;)ns

Besides sharing tasks with neighbouring grains, the tasks of an application can
also be grouped into different pre-defined grain-sizes to enhance adaptability of
resource requirement at runtime. As described in Section 3.4.2, these pre-defined
groups of tasks are called partitioning levels. For the parallel simulation shown
in Figure 4.4a, its tasks can be possibly grouped into four partitioning levels
which consist of 1, 3, 9, and 24 grains. The basic conditional actions for the
Global Workload Distribution (GWD) are grain merging, grain splitting and grain
migration.

The grains of an application can split or merge into appropriate partitioning
levels under different situations of resource availability. If more workstations
become available, the grains can split to a higher partitioning level. On the
other hand, the grains merge to a lower partitioning level if the workstations
in which the grains are running become heavily loaded with external processes
or are particularly slow. In addition to grain splitting and merging, the grains
can also migrate to different workstations for execution in response to resource
contention. The grain migration process can be carried out at the same time as
grain splitting or grain merging. To perform these actions of the GWD, global
synchronization among all the grains is required.

4.6.2 A Self-Tuning Mechanism

In contrast to the LWD, external information about the environment is required
to avoid resource contention with other applications. An external agent process

40 Adaptive Execution of Parallel Applications

" called an Application Reporter (AR) is used to collect information about external
resource availability and report the information to each application. Based on
the external and internal information, the runtime configuration of an application
can be self-tuned to enhance performance. This self-tuning mechanism enables
an application to become adaptable to its environment through the GWD.

To collect the local information, each grain reports the average task execution
time t.ze. and the average communication and synchronization time t., of its tasks
to the AR at every time interval ¢,eport. For the workstations that do not have
ahy resident tasks, the AR obtains their workstation load and bandwidth utiliza-
tion from broadcast information in their local network. Therefore, any available
workstations and workload imbalances in computation or communication can be
identified. The availability of a workstation is determined by the number of active
processes and the amount of free memory in the workstation.

The self-tuning mechanism is deployed whenever there is a need to improve ex-
ecution performance. Grain merging is applied if there are not enough available
workstations to maintain the present partitioning level and the unbalanced work-
load situation cannot be improved by the LWD alone. If more workstations are
available, performance can be improved by grain splitting. Migration occurs if
any grain is mapped into a different workstation. After a partitioning level and
the required workstations are chosen, the grains are mapped into the worksta-
tions and the AR will inform every grain to invoke the global synchronization of
the GWD. - a ‘

4.7 Interplay between Local & Global Workload
Distribution

The GWD and LWD are the key elements to support adaptive execution of par-
allel applications. The GWD helps to partition grains into a suitable partitioning
level and relocate the grains from heavily loaded (or slow) machines to lightly
loaded (or fast) machines. On the other hand, the LWD refines the size of the
grains at each partitioning level to tackle local workload imbalances. Their com-
bined effect facilitates automatic grain-size tuning at runtime.

For the parallel simulation, a network of nine switching nodes connected bidirec-
tionally in a mesh can be decomposed into two partitioning levels as shown in
Figure 4.8a and 4.8c. Grain merging and splitting of the GWD will be activated

4.7 Interplay between Local & Global Workload Distribution 41

(a1 (~G2~] [~ G3
1@ _@r®
[
O
_

G | LWD

~
G4 O_-...Oes [,

a5 (o — _[— @ LWD

Figure 4.8: The Interplay between GWD and LWD for the Parallel Sim-
ulation

to alter substantially unbalanced workload situations. Figure 4.8 also shows that
the GWD can adjust the grain-size of the simulation in a flexible manner. For
example, the 3-grains in Figure 4.8c can be the result of grain merging from the
9-grains in Figure 4.8a or the 7-grains in Figure 4.8b.

Figures 4.8a and 4.8b depict the cases for the LWD when there are nine grains.
If the workloads of G2 and G4 are unbalanced, their tasks are shared by their
neighbouring grains, say the virtual tasks of T3, T4, and T'5 of G2 are invoked
by G1, G3, and G5 respectively. A similar situation occurs when there are three
grains (Figure 4.8c and 4.8d). If the workload of G5 is unbalanced, the virtual
tasks of T'8, T'11, and T'15 of G5 are invoked by G2 and the virtual tasks of 7'10,
T'14, and T'17 of G5 are invoked by G8.

42 Adaptive Execution of Parallel Applications

gm—
ot
| G1

G1 G2 G3

A 4
A

Y

G1 G2 G4 G5 G6

-
N

Y @3
\——/

G7 G8 G9

One Grain Three Grains Nine Grains
(Paritioning Level 0) (Partitioning Level 1) (Partitioning Level 2)

Figure 4.9: Grain Merging and Splitting for the Data-Parallel Applications

For the data-parallel applications, the same scheme of the LWD can be applied
even if the number of grains changes owing to grain merging or grain splitting
as shown in Figure 4.9. Again the GWD can work with the LWD at different
partitioning levels.

In the above.examples of data-parallel and task-parallel applications, the num-
ber of possible application configurations increased if the LWD and GWD work
together. However, unlike data-parallel applications, the configurations of task-
parallel applications are restricted by communication or data dependencies among
their tasks. '

The GWD or LWD does not in itself provide a complete solution for adaptive
workload distribution. For the GWD, the predefined partitioning levels may not
precisely suit all the possible unbalanced workload situations and the overhead
of global synchronization may grow as the number of tasks increases; hence the
LWD is introduced to balance the workload of a grain with its neighbouring grains
more efficiently.

On the other hand, the LWD for the task-parallel applications is restricted by
communication dependencies. For example, depending on the connectivity of the
simulated network, a task will only exchange event messages with its preceding
or succeeding tasks. If the workload of a task is unbalanced, a virtual task can
only be invoked by its takeover task. Thus, the LWD cannot be deployed if the
workload of the takeover task is also unbalanced. The GWD can then be applied
to alleviate this kind of problem. Since the GWD is more costly than the LWD,
it should be deployed less frequently. These two schemes of workload distribution

4.8 Implementation Notes 43

are therefore complementary to one another. Their limitations and strengths are
summarized in Table 4.1.

Limitations Strengths

LWD || e Limited workload distribution o Efficient local workload sharing
o Automatic grain-size fine tuning
e Scalability to large applications

GWD || e Limited/predefined partitioning ¢ Adaptation to significant workload imbalance
e Global synchronization overheads by grain splitting and grain merging
¢ Grain migration capability

Table 4.1: Limitations and strengths of the LWD and GWD

4.8 Implementation Notes

4.8.1 Approaches to Moving Workloads

As reported in [CKO%94], there are three basic approaches to implementing work-
load distribution for Unix workstations. The first approach [CCK*95] is to mi-
grate a Unix process of a parallel application from one host to another. In this
case, the application’s execution states including its data, heap, stack, register
context, and states in relation to the entire application are captured and trans-
ferred to another workstation. In the second approach, the object for migration
is a smaller process called a User Level Process (ULP) [KCO*94], which de-
fines a register context, stack, private data and heap space. The third approach,
known as Adaptive Data Movement (ADM) [POWY94], is an application-level
methodology for supporting adaptive computation through data movement by
the application.

Although the first and second approaches support a transparent migration for
applications, the third approach can provide a more efficient application-oriented
workload distribution. It can also support migration across heterogeneous plat-
forms because the migration only requires data redistribution. The challenge to
this approach, however, is the complexity of the programming.

44 Adaptive Execution -of Parallel Applications

The proposed approach is similar to ADM. Both of the approaches are based on
an application-level méthoddlogy, however, ADM can only apply to data-parallel
applications that are running in the pool of tasks paradigm. As illustrated pre-
viously by different data-parallel and task-parallel applications, our approach al-
lows the tailor-made schemes of the LWD and GWD to work for different types of
programming model. MoreoVer, the approach provides a basic support to tackle
the complexity of the programming by structuring the workloads of applications.
Finally, the ADM lacks the functions for applications to interface with other ex-
ternal resource managing agents. The importance of these functions is explained
in Chapter 5.

4.8.2 Task-to-Grain & Grain-to-Workstation Mappings

Parallel Virtual Machine (PVM) [GBD"93] is used as the message passing library
for communication in the example applications. The applications are written in
a single program multiple data (SPMD) model meaning that all workstations run
the same program. To facilitate inter-task communication, integer task identifiers
(PIDs) are used for identifying physical locations of the PVM processes!.

Task IDs . . Grain IDs _ Workstation IDs
4 N\ / N\
/ N\
T1 123789 . w1 | 786435
T2 |123789 >
G3 | 123789 .
T3 | 123789 :
: W7 | 123789
G6 | 786435 .
17 | 786435 . .
T8 | 786435 - | ——> W9 51388
T9 |7s643s
\ Ve
\ / N\ /

task_jds[] ——» grain_ids[] —— - ws_ids[]

Task-to-Grain Grain-to-Workstation
Mapping Mapping

Figure 4.10: Mappings for the LWD and/or GWD

!The number of active PVM processes running on the workstations can be adjusted;

the processes can be added or removed dynamically by pvm_addhosts() and pvm_delhosts()
respectively.

4.8 Implementation Notes : 45

Task-to-grain and grain-to-workstation mappings are used to relate the logical
identification of different objects with the physical locations of execution. As
shown in Figure 4.10, indices of the arrays are the the logical numbers of tasks,
grains and workstations, and the contents of the arrays are the PIDs. Since each
grain can only run on a workstation, the grain-to-workstation mapping is one-to-
one. On the other hand, a grain can consist of more than one task, thus the task-
to-grain mapping can be one-to-one or many-to-one. The PIDs of tasks, grains,
and workstations are then referred to as task IDs, grain IDs, and workstation IDs
respectively.

The workstation IDs are fixed at the time of program startup, but the grain
and task IDs are updated whenever the task-to-grain or grain-to-workstation
mappings varies. The task-to-grain and gram—to -workstation mappings are in-
stigated by the conditional actions of the LWD and GWD. The initial grain-
to-workstation mapping is determined by a simple assignment method in which
grains are assigned to the most lightly-loaded workstation first. However, the
grain-to-workstation mapping varies when grains migrate from one workstation
to another. In addition, the task-to-grain mapping changes when grain splitting,
merging, or the LWD occurs. Grain migration can also be carried out at the same
time as grain merging or splitting. The mappings involved in the operations of
the LWD and GWD are summarized in Table 4.2.

Workload Distribution Task-to-Grain | Grain-to- Workstation
Mapping Mapping
LWD v
' Grain Splitting Vv
Grain Merging Vv
GWD | Grain Migration
Splitting/Merging
together with Migration Vv

Table 4.2: Mappings involved in the operations of the LWD and GWD

4.8.3 Task Relocation

A task knows its next execution location from the new task ID generated from
the mappings. For the LWD, tasks relocate between neighbouring grains. For the
GWD, a new copy of the task IDs is sent by the Application Reporter (AR) to

46 Adaptive Execution of Parallel Applications

Figure 4.11: Intra-/Inter-Grain Relocation of Tasks

the grains. Since tasks in different grains check their new task IDs individually,
the relocation can be carried out in parallel. This may lead to inter-grain and
intra-grain relocation of tasks.

Figure 4.11 describes these two forms of task relocation. For intra-grain relo-
cation, only the logical identification of a task needs to be updated from the
task-to-grain mapping. For inter-grain relocation, tasks are relocated from one
grain to another. The relocation of tasks may lead to grain migration, merging or
splitting. If the grains of an application are merged to a lower partitioning level,
the tasks in some of the grains are relocated to other grains. In grain splitting,
some tasks of each grain are relocated to form new grains.

Functions? are written to set barriers for checking the conditions of the LWD and
GWD. These functions probe for the control signals inside computational loops.
If any control signal has been received, the conditional actions of the LWD or
GWD will be invoked accordingly.

For data-parallel applications, the time for carrying out task relocation depends
on the frequency of probing for control signals and the amount of program state
that needs to be transferred between grains for data redistribution. Table 4.3
shows the average times taken for different operations of the GWD of the BMM
in DEC3100 workstations. The operations include task relocation and communi-
cation between the AR and the grains. From the table, the values of the times?

are proportional to task size because control signals are probed whenever a task
is finished.

%Inside these functions, pvm_probe() is used to check the source and message labels of the
incoming message.

3The times for grain splitting, merging, and migrating at partitioning levels one and two are
similar.

4.9 Experimental Results 47

Task Size || Grain Splitting | Grain Merging | Grain Migration
5x5 74.22 42.97 27.34
10x10 - 93.75 93.75 82.03
20x20 121.09 156.25 136.72
30x30 199.22 : 222.66 187.50
40x40 277.34 390.63 308.59

- Table 4.3: Time Taken for the GWD of the BMM (in msec.)

For task-parallel applications, a global synchronization is required before any
task relocation takes place so that consié%éncy between communicating tasks can
be maintained. After the synchronization, the internal states of the tasks will be
transferred between grains. For the PSA, simulation event structures in the tasks
will also be rebuilt after relocation. The average times taken for grain migrating,
splitting, and merging of the PSA in DEC3100 workstations are 382.81 msec,
353.54 msec, and 452.43 msec respectively; each task in the grains has about
10Kbytes of internal state.

4.9 Experimental Results

The experiments are carried out on a range of workstations which consist of 50
DEC3100, 9 DEC Alpha, and 4 HP9000/700 workstations. All the workstations
are connected by Ethernet on different segments. Among the high performance
DEC Alpha workstations*, there are one DEC3000/500, four DEC3000/400, and
four DEC3000/300 and their memory capacities are also different. The CPU
speeds of the DEC3100 workstations are relatively slow and they have smaller
memory capacities’. The experiments are performed such that unexpected inter-
ference from other users is minimized so as to ensure a controlled environment.
External workloads are generated artificially by computationally intensive loader
processes.

4The SPEC marks (SPEC int92) of DEC3000/500, DEC3000/400, and DEC3000/300 are
84.4, 74.7, and 66.2 respectively. '

5The SPEC mark (SPEC int92) and main memory size of the DEC3100 workstations are
7.1 and 16-24Mb respectively.

.

48 Adaptive Execution of Parallel Applications

4.9.1 Adaptation of the Data-Parallel Applications

In this section, the experiments and results for testing the LWD for the blocked
matrix multiplication (BMM) and the cycle-searching of a non-linear iterated
function program (CSN) are presented. The data-parallel applications are run in
different situations of workload imbalance caused by external loader processes and
workstation heterogeneity. Tables 4.4 and 4.5 show the effects of external loader
processes (LPs) on the performance of the BMM and the CSN. Since the matrix
multiplication of the BMM can perform independently and deterministically, the
speedup of the application increases quite linearly to the number of workstations.
As can be observed from Table 4.4, the LWD improves performance by -balancing
the workload among workstations and does not incur heavy overheads.

For the CSN, since moving tasks from one grain to another may increase the
chances of creating new cycles, extra time may be taken in searching and creating
information on the new cycles. As a result, the improvement by the LWD shown
in Table 4.5 is modest. The results also show that the actual speedup of the CSN
is not noticeable until the data size increases to 300x300. Owing to the limitation
of memory capacity in the DEC3100s, the program with this data size is executed
on the other workstations and the speedup can be found in Table 4.6.

For mixed combinations of Alphas and HPs, the improvements in the performance
of the applications by the LWD are presented in Table 4.6. The relative speedup of
the BMM and CSN at different partitioning levels indicates that the applications
are adaptable to the heterogeneity of workstations. Unlike the BMM, the CSN
does not always deliver performance improvement because of the nondeterministic
time for searching cycles.

4.9.2 Adaptation of the Parallel Simulator

In this section, the experimental results of performing the LWD on the parallel
simulator (PSA) under different conditions are presented and evaluated. First,
the effect of the time window size on the speedup of the PSA is evaluated. Sec-
ondly, the adaptability of the PSA to external workload interference is examined.
The execution profile of the application exhibits a good speedup throughout its
runtime under different conditions of resource availability. Finally, the effective-
ness of grain-size determination is investigated when the application is executed
on a cluster of heterogeneous workstations.

4.9 Experimental Results ' 49

Number of Workstations
Data Size 9 3 1
Without LWD With LWD Without LWD With LWD

NoLP | 1LP| NoLP | 1LP NoLPIILP NaLP|1LP

480x480 60 117 61 69 177 353 179 221 530

600x600 116 232 118 132 345 538 347 402 || 1030
720x720 213 420 212 230 635 971 634 744 | 1878
780x780 268 488 269 285 803 1301 800 928 || 2384

Table 4.4: Performance of the BMM in a DEC3100 Cluster (in sec.)

e

Number of Workstations
Data Size 9. 3 1
Without LWD | With LWD || Without LWD | With LWD

NoLP| 1LP| NoLP|[1LP | NoLP| 1LP|[NoLP| 1 LP

30x30 773 1435 830 1151 927 1662 | 1015 | 1209 || 1467
60x60 1374 | 2747 | 1464 | 1951 1438 | 2773 | 1486 | 2224 || 1712
120x120 1516 | 2503 | 1607 | 2073 1896 | 3513 | 2071 | 3006 | 2291
180x180 1710 | 3131 | 1880 | 2887 2101 | 4059 | 2207 | 3847 || 2740

Table 4.5: Performance of the CSN in a DEC3100 Cluster (in sec.)

CSN BMM
Part. | No. of | Workstation No LWD | W LWD || No LWD | W’ LWD
Level | Grains | Combinations Relative | Relative Relative | Relative
Speedup | Speedup Speedup | Speedup
0 1 1 HP 1.00 - 1.00 -
1 Alpha 2.56 - 1.31 -
1 3 | 2 Alphas, 1 HP 3.01 3.61 3.00 4.37
1 Alphas, 2 HPs 2.92 3.68 T 3.97 3.97
3 HPs 2.39 2.64 2.92 4.00
3 Alphas 6.18 6.13 3.97 4.17
2 9 | 5 Alphas, 4 HPs | 3.00 3.08 5.97 10.35
' 4 Alphas, 5 HPs || 3.23 3.71 6.00 11.18
9 Alphas 8.95 7.63 9.05 11.79

Table 4.6: Effects of the LWD in a cluster of heterogeneous workstations (in
relative speedup); data sizes for the CSN and BMM are 300x300 and 1200x1200
respectively.

50 : Adaptive Execution of Parallel Applications

4,9.2.1 Factors of Communication

The time window size of the simulation model is determined by the number of
packets that can be stored in the communication link of the simulation network
during packet transmission. In other words, the window size is proportional to the
physical length of the links. For example, if the bandwidth of each unidirectional
communication link is 424Mbps and the packets are 53 byte ATM cells, then the
loading time for each packet is 1us. If the length of the single-mode optical fibre
communication link is 50km, then the size of the communication link buffer will
be 250 cells. The granularity of the simulation increases with the length of the
communication link.

Tables 4.7 and 4.8 show the relative speedup of the parallel simulation running on
different workstations without workload distribution. The results show that the
granularity has a direct influence on the performance of the simulation. When
the size of the time windows increases, the speedup is improved.

Part. | No. of | No. of Tasks Size of comm. link buffer

Level | Grains | per Grain 250 500 1000 1500 2000
0 1 24 1.00 121 130 132 1.38
1 3 7, 10 1.96 2.73 327 3.52 3.66 .
2 9 2, 3, 4 436 631 813 893 9.38
3 24 1 7.96 11.44 1830 21.52 22.88

Table 4.7: Effects of time window size on relative speedup (DEC3100 Cluster)

Part. | No. of | No. of Tasks Size of comm. link buffer

Level | Grains | per Grain 250 500 1000 1500 2000
0 1 24 1.00 114 123 124 1.29
1 3 7, 10 1.31 173 212 228 241
2 9 2, 3, 4 1.86 3.62 5.13 559 6.15

Table 4.8: Effects of time window size on relative speedup (DEC Alpha CGluster)

The number of tasks grouped in each grain at each partitioning level also affects
the relative speedup. The predefined grain-sizes of the network consist of a par-
titioning of 1, 3, 9, and 24 grains. In the partitioning level that has 24 grains,
there is only one task in each grain, so all the inter-task communication is done by
message passing between workstations. The increase in the rate of the speedup is

4.9 Experimental Results . : 51

far less than linear as the number of grains increases. This is because inter-grain
communication is more expensive than intra-grain communication.

The relative speedup for the simulation running on DEC3100 and DEC Alpha
workstation clusters is compared. Although the computing performance of a
DEC Alpha workstation is much higher than that of a DEC3100, the relatively
low communication performance of Ethernet limits the performance gain. The
results also illustrate that the granularity of the same application will change
when different workstations are used.

The above experiments are performed on workstations connected by Ethernet
using the PVM communication primitive (PVM-Ethernet®). Besides the PVM-
Ethernet, the simulation is also tested oii three HP9000 /700 workstations in two
different cases: (1) PVM communicating over Ethernet using PVM Route Direct
(PVM-Direct); (2) PVM communicating over an ATM network via IP (PVM-

IP/ATM).

By comparing the results in the PVM-Ethernet case, the benefit of using the
PVM-Direct and the PVM-IP/ATM is small when the simulation window is large,
that is when the computation-to-communication ratio is high. As the simulation
window reduces to smaller sizes (say 100 packets), improvement in speedup is
just less than 10% for PVM-IP/ATM and less than 20% for PVM-Direct. This
shows that the bottleneck for communication performance is the overhead of
supporting inter-process communication via PVM communication primitives but
not the transmission delay of the network. This is due to the fact that the startup
time per communication of PVM is much greater than the transfer time per byte8.

SIn the default situation of inter-process communication in PVM (datagram transmission),
all PVM processes communicate via TCP/IP to a routing daemon within a node, and the
routing daemon communicates to other daemons via UDP/IP.

"The PVM Route Direct option (stream transmission) can be used to allow a process to
communicate to another process with UDP/IP directly without going through the routing
daemon. As a result, the communication latency can be lowered.

8The communication time for transferring a message of m bytes can be modelled by a simple
linear function [BR89]: T¢omm = @+ fm, where a is the startup time and 3 is the transfer time
per byte. The empirical values [SS94a] of @ and 8 for PVM in 12-MIPS SUN Sparcstations
interconnected by 10 Mbits Ethernet for datagram and stream transmissions are 4.527 msec,
0.0024 msec and 1.661 msec, 0.00157 msec respectively. In other words, the startup time for
message transfer is a dominant factor especially when the message size is not large.

52 : Adaptive Execution of Parallel Applications

4.9.2.2 Adaptation to Workload Interference

As mentioned earlier, the granularity of the PSA increases when the size of com-
munication buffer increases. The effectiveness of the LWD to improve perfor-
mance for different granularities under workload interference is shown in Ta-
ble 4.9. The results displayed in the table indicate that the LWD is very effective
for the unbalanced situation when the application is running on nine worksta-
tions. This is because all the tasks in the heavily loaded grain are taken over by
neighbouring grains when the partitioning level of the application equals to two.

Size of Number of Workstations
Comm. Link 9 o |- 3 1
Buffer Without LWD With LWD . Without LWD With LWD
NoLP|1LP NoLP|1LP NoLP|1LP NoLP|1LP
250 165 318 179 158 374 1108 394 538 || 728
500 115 250 118 127 278 863 293 446 | 600
1000 92 224 95 106 223 759 224 460 || 553
2000 78 200 84 109 202 727 208 426 || 533

Table 4.9: Performance of the PSA in a DEC3100 Cluster (in sec.); each
simulation take 0.2 million time units.

Figures 4.12 and 4.13 illustrate the adaptability of the PSA in a DEC3100 cluster
and a DEC Alpha cluster under different situations of external workload inter-
ference. These figures show the relative speedup with and without workload dis-
tribution when different numbers of workstations are loaded with external loader
processes. In the event that there is no workload distribution, the speedup drops
sharply even when only one workstation is loaded with a loader process. How-
ever, if the LWD and GWD are deployed through self-tuning as described in
Section 4.6.2, the speedup will only be degraded according to the number of
workstations that are loaded. The number of active grains is different when the
number of available workstations varies. If the number of workstations is sufhi-
cient and they are available when needed, grain migration can be carried out to
maintain the maximum speedup to the migration level as shown in Figure 4.12.
As the number of available workstations decreases, the simulation will either in-
voke the LWD or merge to a lower partitioning level. There is no indication of
migration level in Figure 4.13 because migration can only be carried out within
the nine workstations in the DEC Alpha cluster.

4.9 Experimental Results

8 T T T T T T T

T
Workload Distribution without Migration ~e—
No Workload Distribution -+

From Partitioning
level 2 to level 1

Relative Speedup

3r { |
From Paritioning
level 1 to
2 . level 0
- S— S— A, ..,
1 dens R
. l | . . 1 1 1 L p
o . 2 3 4 5 6 7 8 9

No. of workstations loaded by an external loader process

Figure 4.12: The LWD and GWD in a DEC3100 Cluster

6 T T T T T T T T

Workload Distribution without Migration -e—
No Workload Distribution -~

From Partitioning
level 2 to level 1 B

Relative Speedup

From Paritioning|
level 1 to

L 1a,yel g
\
Frrecnnag,, ofrsnroasaisennans 1.,_"
1f T,
""" "*o.uc-l--'lno-
i l l . !] 1 1 1
: ; , 3 4 5 6 7 8 9

No. of workstations loaded by an external loader process

Figure 4.13: The LWD and GWD in a DEC Alpha Cluster

54 Adaptive Execution of Parallel Applications

4.9.2.3 Heterogeneity

Table 4.10 examines the effect of using the LWD on the relative speedup of the
simulation running on heterogeneous workstations. Since the memory capacities
and processing speeds of the DEC Alpha workstations (Alphas) vary from ma-
chine to machine, the execution time of the parallel simulator in the Alphas is
1.73 - 2.40 times faster than the HP9000/700 workstations (HPs). The simula-
tion is tested on different combinations of workstations at different partitioning
levels. For the combination of 5 Alphas and 4 HPs, all the eight tasks from the 4
HPs are taken over by. the virtual tasks in the Alphas because of the differences
in computing speeds between Alphas and HPs. For the other combinations of 9
grains, a different number of tasks are taken over by the virtual tasks from the
slower machines to the faster machines. The results also show that the simulation
is adaptable to the heterogeneity among the nine Alphas.

No. of | Workstation Without LWD With LWD
Grains | Combinations Relative Speedup || Relative Speedup | No. of virtual tasks
1 1 HP 1.00 - -
1 Alpha 1.73 - 2.40 - -
3 2 Alphas, 1 HP 2.37 3.09 2
1 Alpha, 2 HPs 3.13 3.05 0
3 HPs 2.22 2.22 0
3 Alphas 4.61 4.27 0
9 5 Alphas, 4 HPs 6.03 7.58 8
4 Alphas, 5 HPs 4.35 6.71 10
9 Alphas 8.39 9.79 2

Table 4.10: Adaptation to a cluster of heterogeneous workstations; size of com-
munication link buffer is 1000.

4.10 Summary

Based on the reconfigurable software structure described in Chapter 3, the de-
sign and implementation of two complementary schemes for supporting adaptive
execution have been presented in this chapter. The Local Workload Distribution
(LWD) is designed to tackle local workload imbalances, and the Global Work-
load Distribution (GWD) aims to solve significant workload imbalances caused
by external workload interference. The performance and adaptability of the LWD

4.10 Summary 55

and GWD for different data-parallel and task-parallel example applications have
been examined. The experimental results show that a performance gain can be
sustained when the applications are running in unbalanced situations owing to
workstation heterogeneity and external workload interference, though the gain
may be limited if the application is nondeterministic.

56

Adaptive Execution of Parallel Applications

Chapter 5

Dynamic Space-Sharing through
Competition

5.1 Introduction

Running parallel applications on the shared-network environment of workstation
clusters brings a new challenge to existing operating systems in which processes
are only scheduled locally by the kernels of the operation system on each work-
station. Resource sharing is necessary among the applications that are running
on the same clusters. Performance degradation will occur if applications are not
aware of the coexistence of other applications when contending for resources.
Although the total number of workstations in the clusters may be quite large,
resource contention between applications will still be high if the number of high-
performance workstations is smaller than the number of low-performance work-
stations.

The scheduling system for parallel computing on workstation clusters should be
able to allocate resources among a number of competing applications from multi-
ple users. The maximization of overall resource utilization and the minimization
of the turnaround time for individual applications are two primary objectives to
pursue. Without external scheduling mechanisms, both resource utilization and
application turnaround time will be adversely affected. The effect of resource
contention on applications is similar to the performance degradation owing to
the interference of external loader processes reported in Section 4.9.

In this chapter, a prototype scheduling system for parallel applications called

58 Dynamic Space-Sharing through Competition

Comedians is described and evaluated. In this system, parallel applications are
regarded as adaptive computation agents that compete with one another for re-
sources. The system provides supporting functions which include load monitoring
and forecasting, application interfacing, and auctioning. The Comedians system
aims to allocate workstations efficiently and fairly to parallel applications on a
cluster of workstations. The parallel applications respond to the resource alloca-
tions through reconfiguration.

5.2 Space-sharing and Time-sharing

In Chapter 4, an application adapts to the environment by a self-tuning mecha-
nism based on the information reported by its Application Reporter and grains.
The self-tuning mechanism invokes Global Workload Distribution (GWD) which
is used to alleviate the problems associated with substantial changes in resource
availability. This is done by grain splitting, merging and migration. However,
the self-tuning mechanism of each application does not co-ordinate with other
applications to identify available resources. If other parallel applications are also
running on the same clusters, the self-tuning mechanism is insufficient to guar-
antee a good resource utilization and a fair allocation among applications. A
scheduling system is therefore required to provide better resource allocation to
the applications. The conditional actions of the GWD should be deployed ac-
cording to these allocations.

There is a volume of previous research on time-sharing and space-sharing ap-
proaches applied to scheduling on multiprocessor systems. However, only a few
research systems applied these approaches to scheduling parallel jobs running on
workstation clusters. In the time-sharing and space-sharing approaches, a set of
jobs are sharing processors in the time and space domains respectively. The time-
sharing approach is not appropriate for the environment of workstation clusters
because of overheads in swapping and scheduling. Research on mixing time and
space sharing in a workstation cluster environment has also been reported by
Turner et al. [TNC94]. However, this approach requires careful control when
mixing applications with different communication and computation characteris-
tics, and does not guarantee performance gains.

Space-sharing is-a commonly pursued strategy for job scheduling on partitionable
multi-processor machines. In this strategy, the parallel jobs of an application are
given exclusive access to a set of processors. There are three approaches to space-

5.3 Distinctive Features of the Comedians System 59

sharing, namely static, adaptive, and dynamic. The static space-sharing approach
can achieve low system overheads and simplicity by running parallel jobs on a
fixed number of machines. For the adaptive space-sharing approach, the number »
of machines assigned for execution depends on the current system state at the
time of application arrival. Among the approaches, only the dynamic space-
sharing approach is adaptable to changes in workload interference and resource
availability because the number of assigned processors can change during the
execution of an application.

Regarding workstation clusters as a partitionable parallel computing machine,
a new scheduling technique which adapts the idea of dynamic space-sharing is
proposed. The design and 1mplementat10n of an environment which supports
dynamic space-sharing through competltlon is the centre-piece of the Comedians
system. The inter-application competition is organized by this system using the
mechanisms of auctioning and bidding.

5.3 Distinctive Features of the Comedians Sys-
tem

5.3.1 Related Competitive Approaches

Studies have shown that the microeconomic approach is an effective way to man-
age the resources of a distributed computer system. Algorithms are derived from
this approach to allocate different types of resources, such as the processor and
storage systems [DM88], communication channels [KSY85], file systems [KS86],
and memory systems [CH93]. In addition, various studies have been conducted
on the computational market for resource allocation of independent and paral-
lel applications [FYN88], [MFGHS88|, [WHH*92]. These studies are those most
related to the work presented in this chapter.

In [FYN88|, microeconomic algorithms for load balancing in distributed com-
puter systems were studied by Ferguson et al. However, only independent jobs
were considered in their algorithms. Each job receives a fund upon entry to the
system. This fund (money) is used to bid for the resources needed, according
to a preference rule. A preference of one processor to another can be based on
service time only, price only, or both. On the other hand, the processors auction
their computation and communication resources with the objective of maximiz-

60 Dynamic Space-Sharing through Competition

ing their profit. Ferguson et al have found that their microeconomic algorithms
can achieve effective load balancing compared to a traditional non-competitive
algorithm.

The other study is known as Enterprise; it is a market-like task scheduler for
distributed computing environments suggested by Malone et al. [MFGHSS]. In
this study, the jobs (clients) ask for bids by announcing their requirements, and
the idle processors (contractors) bid in response. The tasks, in turn, choose the
contractor with the best bid. Again the work only involves independent jobs, and
“there is no market-like price control mechanism that considers the supply-demand

element in the bidding process.

Waldspurger et al. [WHH192] conducted a study on distributed computational
economy (Spawn). This is meant to support parallel as well as independent jobs.
The processors auction the next available slice of processing time. Depending
on the strategy, an auction may consider giving discounts, or raise the prices.
The parallel application is represented by a tree of tasks. Each task is funded
from the root, to bid in the auction. The experiments conducted were based on
Monte Carlo applications which are suitable for decomposition into a number of
tasks, if so required. They suggested the use of a simple sharing rule in place
of an auction to determine prices, because of the increased overhead when the
granularity of the tasks decreases.

Although the Spawn system [WHH"92] uses auctioning and bidding to sched-
ule tree-structured applications, its mechanisms of auctioning and bidding are
different from the Comedians system. Since the allocation of computational re-
sources is the main objective of the Spawn system, the supply and demand of
the resources determine the price and bids. In the Comedians system, every
application is adaptable to workload imbalance as well as resource allocation.
The Comedians system not only tackles the resource allocation problem, but also
maximizes the execution speed of individual applications. Therefore, bids in the
Comedians system are formulated in terms of runtime performance information
supplied by applications. In addition, the frequency and the overheads of its
auctions are much smaller than the Spawn system because applications bid for
the sole execution rights of workstations (space-sharing) instead of time slices of
workstations (time-sharing). '

5.4 The Comedians System , 61

5.3.2 Other Scheduling Systems

As mentioned in Chapter 2, previous work on scheduling for parallel applica-
tions on workstation clusters appears in various references [LLM88, GS91, NR94,
SOW94]. Nevertheless, they ignore the problem of fair allocation of resources to
parallel applications running on the same workstations. The Comedians system
addresses the problems of fair and efficient allocation by taking a different ap-
proach. With the motivation of increasing speedup, parallel applications in the
Comedians system compete for workstations through auctions. No prior knowl-
edge about the performance behaviour of applications is required because the
values of bids are formulated by performance information collected at runtime.

Finally, one of the most distinctive features of the Comedians system is the
capability of interfacing with the support for adaptive execution of parallel ap-
plications. The Comedians system provides a resource allocation service to the
adaptive parallel applications and the applications respond to the allocations by
workload distribution. The system forms an important part of an integratedA '
framework to support adaptive parallelism in a multi-user environment.

5.4 The Comedians System

A prototype runtime system called Comedians [Shu96] (Competitive Environ-
ment for Distributed and Adaptive Applications) has been developed to allocate
resources on a cluster of workstations to parallel applications through compe-
tition. The objectives of the Comedians system are to maximize the speedup
of individual parallel applications and, at the same time, to allocate worksta-
tions efficiently and fairly to the applications. Individual applications respond
to the allocations made by the Comedians system by the conditional actions of
the GWD. The éystem can also work in conjunction with the LWD in a comple-
mentary way but can also work independently if either of them is not available.
This work suggests an integrated solution to the issues of runtime adaptation and
parallel application scheduling in a multi-user environment.

The Comedians system comprises two types of agent process that can offload
the applications’ work of identifying workload imbalances owing to external in-
terference and negotiating resources in workstation clusters. The first type of
agent process is called a Cluster Scheduler (CS). Each CS is a resource manag-
ing agent that manages a cluster of workstations and coordinates all the parallel

62 Dynamic Space-Sharing through Competition

Monitoring
Forecasting

To other
Labels:

CS Cluster Scheduler
(Resource Managing Agent)

AB Application Bidder
(Resource Negotiating Agent)

LWD Local Workioad Distribution
GWD Global Workload Distribution
WS Workstations

T Task

Signalling Messages :

(O Load Indices from workstations
@) Inter-ciuster Bidding,

(® Requests and Ack. for Auction
(@ Requests and Ack. for GWD
G signal for termination

@ Request and Ack. for performance
@) Requests and Ack. for GWD
Signals for LWD

Figure 5.1: Functional Blocks of the Comedians System

applications that are running on the cluster. A CS is responsible for:

e Maintaining status information of the workstations and parallel applica-
tions;

* @ Monitoring and forecasting the availability of workstations in its cluster;

e Holding auctions among parallel applications and generating the auction
results;

e Reporting the auction results which are the allocations of workstations to
the bidding applications.

The other type of agent process is called an Application Bidder (AB). Each AB
is a resource negotiating agent.that provides an interface between the grains of
an application and the coordinating CS. Its functions consist of:

5.5 Load Monitoring and Forecasting 63

e Monitoring and collecting the runtime performance of its grains;
e Sending the performance information to the CS that is holding an auction;

¢ Receiving the auction results from the CS and adapting the new allocation
by enforcing the GWD.

Figure 5.1 depicts the functional blocks of the system and the signalling messages
between the grains of applications. The Comedians system provides answers to
when, where and how the grains of an application should be activated.

5.5 Load Monitoring and Forécasting

In the Comedians system, only available workstations will be allocated to parallel
applications. It is therefore important to have an accurate measurement and
definition of the availability of workstations. The typical definition of workstation
availability [ML91, DO91, ADV*95] is based on a low load average and the lack
of keyboard activity for a specified period of time. The Comedians system defines
workstation availability not only by the current load measurements but also by
the predicted future load profile for a specified time period.

Workloads in the system are classified as independent workloads and parallel
workloads. The parallel workloads come from parallel applications that are run-
ning on the Comedians system. If a workstation is occupied by a grain of an
application, the workstation will be marked as unavailable. The independent
workloads include serial jobs generated by the owners of workstations and other
users. The independent workloads of each workstation in a cluster are collected
periodically by the CS so that the current and future availability of each work-
station can be estimated and forecasted.

The 5-minutes load average of a workstation x4, reported by each workstation,
is used to formulate the current load situation, where d denotes the day, h denotes
the hour, and m denotes the number of the 5-minutes load average. The one-
hour load average Xd n is calculated from the average value of the 5-minutes load
average as Xgp = 15 ZZ 1 Tdhi-

64 Dynamic Space-Sharing through Competition

5.5.1 Load Forecasting Model

In [Mut92], the working habits of the users of privately owned workstations were
predlcted using daily correlation. The predlcted workload of the hth hour of the
dth day Zd h, is formulated by equat1on 5.1. The constant value A represents the
significance of the past predicted values. If A is equal to 1, the prediction becomes
static. On the other hand; if Ais equal to 0, the current predicated value is equal
to the one-hour load average of the previous day. As noted by Mutka [Mut92],
better prediction can be made if the days are distinguished between weekdays
and weekends.

Zd’h =A- Zd—l,h + (1 - A) . Xd—l,ha where 0 < A <1 (51)

However, we also observe that workload can be affected by ad hoc computing re-
quirements. We therefore combine the daily correlation with an hourly correlation
to generate better load prediction that can respond both to current fluctuations
and daily trends of workstation load. Furthermore, the Ezponential Smoothing
Method [Gra77] is applied to formulate the future workload of a workstation for a
forecasting period (s hours). The predicted values of the future workload and the
current hourly workload can be calculated by equations 5.2 and 5.3 respectively.
The forecastlng penod represents a time window for future workload formula-
tion. For example if h is the current hour Ydhﬂ, Yd h+2, and Ydh+3 are the
future workloads of a workstation for the next three hours (s = 3).

Yh‘d,h+i = B*l. Xd,h—l + (1 - Bi+1) . Zd,h+i (5.2)

Yin = C-Yar+(1—C) Tapm (5.3)
where0<i<s, 0<B,C<1

The combination of the daily and hourly correlations is illustrated by Figure 5.2
in which the predicted workstation load of future hour ffd,h is calculated from
the load average of the previous hour and the predicted value owing to daily -
correlation. The value for the current hour Yy, is formulated by the predicted
value and current 5-minutes load average so that the most recent load information
can be reflected.

5.5 Load Monitoring and Forecasting 65

Hourly
Correlation Yan
'y

Time Axis for the

0 - 1 . < > current day d
(dhi1) Sminute (dh) ™, (dha1)™, (@h+®) ™, (d,h413)™,

' load average ! Y [o Loy

: i} paily : : :

' A i jCorrelation | i o

; Yd-1,h | ' ; i .~ Time Axis for

N ! s = . > the day d-1

: (@-1,h) : : P

1 1 1) 3

1 1 1 1 L

1 1 1 L})

1 1) 1 1

i A i i i i

i Yd-2,h; i | i+ Time Axis for

@zh > the day d-2

Figure 5.2: Workstaﬁi%n Load Forecasting

The relative importance of the daily and hourly correlations determines the values
of A and B. The hourly correlation should be a more prominent factor than the
daily correlation for publicly owned workstations. On the hand, for privately
owned workstations, the daily correlation may be the dominant factor. The
value of C shows the relative importance of the hourly prediction and the most
recent load.

Since the definition of workstation availability depends on the current and fu-
ture workstation load, the availability of a workstation can be deduced from the
values of Yy, and f/d,hﬂ-. If these values are less than a threshold value, it is
then said to be available. An average of the predicted values which is calculated
by equation 5.4 can also be used to rank the availability of workstations. Simi-
lar forecasting techniques can be applied to different types of resource, such as
memory and communication utilization.

zs: ?d,h+i/(3 + 1) ; (54)
=0

The forecasting model presented in this section can also work in conjunction with
the Social Contract proposed by Arpaci et al. [ADV*95]. The Social Contract
guarantees that an individual user will not be delayed more than a specified
number of times during any day. If a user has been delayed the specified number
of times, that user’s workstation will not be used by parallel applications tem-
porarily. The proposed forecasting model helps to provide the estimated current
and future availability of workstations and the Social Contract minimizes possi-

66 Dynamic Space-Sharing through Competition

ble interference from parallel workloads to users if misjudgements do occur. As
a result, this modified definition of availability conforms more closely to actual
usage and is less obtrusive than the other definitions, such as a fixed time period
of low load average and low keyboard activity.

5.5.2 Trace Evaluation

To evaluate the sensitivity of the forecasting equations, the predicted values of
hourly load are formulated from traces of load collected at a DEC5000/133 server
workstation called nene. The traces consist of the 5-min load averages from nene.
A week of traces are used to formulate a daily trend in each hour as shown in
equation 5.1 and the value of the constant A is set to 0.6. The workloads of
nene during the period of trace collection are mostly generated by independent
jobs. For the rest of the evaluation in this section, the daily trend is applied to
calculate the predicted current and future hourly load.

Figures 5.3 and 5.4 show the actual and predicted current hour load of nene
on two weekdays; one is with a less bursty load and the other is with a more
bursty load. As can be seen from these figures, the predicted current hour load
follows bloéely the overall trend of the actual current hour when the value of the
constant B is small. However, instantaneous response when using this value of B
for fluctuating load is poor. This implies that the value calculated by equation 5.3
should be used for predicting the current hour load, because it can reflect the
value of the most recent load.

For the future load for a period of time, Figures 5.5 and 5.6 illustrate the effects
of changing the value of the constant B of equation 5.2. The predicted values
of the future load are used to rank the future availability of workstations within
a certain period of time. The respective periods of prediction on the day with
a more bursty load shown in Figures 5.5 and 5.6 are two hours and five hours.
The actual and predicted period means are compared to test the accuracy of
the prediction. The actual period mean is smoothed out when the period of
prediction is long. It is found that equation 5.2 can provide a good estimation
of the future load when the value of the constant B is less than or equal to 0.3.
From the results shown in this section, equations 5.1, 5.2, and 5.3 should be used
together in predicting the current hour load and the future period load.

5.5 Load Monitoring and Forecasting

67

4.5 T T T T
Actual Hourly Load o—
Forecasted Load,A=0.6,B=0.3 4
R A=0.6,B=0.6 4 -
4 A=0.6,B=0.9 x--]
Daily Trend +—

5-minute CPU load

Figure 5.3: Actual Current Hour Load and
Predicted Current Hour Load (On a day with
less bursty load)

45 T T T T
Actual Period Mean, S=2 .o
Forecasted Period Mean,A=0.6,B=0.3,S=2 4|
A=0.6,B=0.6,S=2 @ -
4F ! 2=0.6,B=0.9,S=2 -]

X

5-minute CPU load

5 0 15 20
Figure 5.5: Actual Period Mean and Pre-
dicted Period Mean (Forecasting Period=2
hours)

Actual Hourly Load -—

A=0.6,B=0.6a -
A=0.6,B=0.9 »—-

§-minute CPU load

T
45T Forecasted Load,A=0.6,B=0.3 .t |

Daily Trend -— |

Hour

Figure 5.4: Actual Current Hour Load and
Predicted Current Hour Load (On a day with
more bursty load)

4.5 T T T T
Actual Period Mean .e—
Forecasted Period Mean,A=0.6,B=0.3,855 .fu
A=0.6,B=0.6,S=5 g —
4r ¥ A=0.6,B=0.9,S=5 -x--7|

5-minute CPU load

5 0 15 20
Figure 5.6: Actual Period Mean and Pre-
dicted Period Mean (Forecasting Period=5
hours)

68 ' " Dynamic Space-Sharing through Competition

5.6 Responses of Adaptive Parallel Applications

As mentioned in Section 4.6, the actions of switching between partitioning levels .
and relocating the grains during execution which are done by Global Workload
Distribution (GWD) include grain splitting, grain merging, and grain migration.
However, the full adaptability of applications can only be explored by the GWD
when the capabilities for load monitoring, forecasting and external scheduling
are provided. With this adaptability, not only can the resource utilization of
workstation clusters be enhanced, but the fragmentation problem' can also be
resolved, because the GWD provides preemptive mechanisms for an application
to reconfigure itself during the lifetime of its execution.

In the Comedians system, the GWD is invoked by the CS that monitors the
workstation cluster on which the application is running. The CS informs the
application when any external workload interference is detected or any auction is
being held. The AB of the application can then respond by enforcing the GWD.

In response to external workloads, grain migration or grain merging are invoked
to release heavily loaded workstations. Grain merging is applied if there are
not enough available workstations to maintain the present partitioning level. On
the other hand, if there are sufficient newly available workstations, grain splitting
will be deployed. New grains are created by redistributing the tasks from existing
grains to the newly available workstations.

The LWD will be activated whenever there is no CS or no available workstations
for migration. Moreover, it works in conjunction with the GWD by refining the
grain-size of an application at different partitioning levels. Since the availability
of a workstation is judged by the predicted values of the current and future load,
if grains are merged to a lower partitioning level or grains are deactivated by
the LWD due to the arrival of external workloads, then its partitioning level will
not be restored or split to a higher level right after the external workloads have
departed. This prevents the LWD and GWD from deploying too frequently. The
GWD may also be the outcome of competition among parallel applications.

1Processor fragmentation occurs when the number of assigned processors is smaller than the
number of processors needed to perform the current workload.

5.7 Auction and Bidding | 69

5.7 Auction and Bidding

5.7.1 Share Auction

An auction is a public sale of goods where people offer higher and higher bids until
the goods are sold to the person who offers the highest bid. For resource allocation
in computer systems, an auction is abstracted as a model for computational
resource management. The concept of a share auction [Wil79] is used to resolve
the competition of resources in a workstation cluster among parallel applications.
In a share auction, each buyer bids for both a quantity and a price. The buyer
with the highest price receives the quantity for which he bids at that price. If
any product remains, the buyer with the second highest price takes the quantity
he bids for, and so forth.

In the context of the Comedians system, the buyers are the Application Bidders
(ABs) of the applications, the quantities are the desired number of workstations
that the ABs want to occupy, and the prices are the bid values of the ABs.
Although there are many other auction models for selling resources [BB92], all
except the share auction have a single winner in each auction. In a share auction,
resources can be allocated to multiple bidders in a single auction according to
the bid values.

Share auctions are scheduled periodically, but the schedule period can be short-
ened by an increase or decrease in resource availability. The next auction will
be rescheduled to an earlier time whenever a new application arrives. As shown
in Figure 5.7, when a CS holds an auction, it announces the news of the auc-
tion to all the ABs of the existing applications. The ABs respond by requesting
their grains to report the completion time of a predefined fraction of a task at
the current partitioning level. The value of the completion time includes the
average computing and communication time required to finish the fraction of the
task. The measurement of the completion time is carried out at the iteration
boundaries of the task. Then the ABs submit the average value of the collected
completion times from all their grains to the CS; this average completion time is
known as unit task ezecution time. The average value is used instead of the max-
imum value because it is the approximate value of the completion time when the
LWD is applied. Upon receipt of the unit task execution time from the ABs, the
CS will store this information and formulate bids on behalf of the applications.

In summ-ary, the CS that is holding the auction has to update the following

70 | Dynamic Space-Sharing through Competition

CS that holds Grains of
the auction AB the AB
* Auctlon § Performance E.
Notification § e

Request

Unit Task
Execution Time ___...)

Mean Completion Time
of a fraction of Tasks

Auctlon

Task-Parallel

Auction tasks pause

Restlls

Intra-/ inter-
! Grain Relocation

Confirmation of Tasks

Confirmation /

= —

Figure 5.7: Interaction between Cluster Scheduler (CS), Application Bid-
der (AB), and Grains during an auction

Time

Task-Parallel
tasks resume

information before the result of an aﬁction is determined.

e The values of the unit task execution time of the participating applications.

e The current status of the applications that includes the current partitioning
level and the workstations they are now running on.

e The current and future availability of the workstations of its cluster.

The auction results are multicast to the ABs after the auction has been resolved.
The results of an auction sent to an AB contains a new partitioning level and
a set of workstations that are available to the grains of the AB. The AB then
invokes the GWD by transforming the auction results to task-to-grain and grain-
to-workstation mappings. A new copy of the task IDs is multicast to its grains
so that the tasks inside each grain can perform inter-grain or intra-grain relo-
cation concurrently. The mechanisms of the relocation have been described in
Section 4.8.3.

5.7 Auction and Bidding 71

5.7.2 Bid Formulation

Through the share auction, workstations can be shared among the ABs in pro-
portion to the values of their bids. The values of bids are formulated by the
performance information of applications which is extracted at runtime from the
grains of the applications. Therefore no prior knowledge about the runtime be-
haviour of applications is required. From the past and present performance in-
formation, the CS can formulate three types of bids: forward bid, backward bid,
and potential forward bid.

The forward bid (F'B;) of an application AP; is the ratio of the speedup of split-
ting to one higher partitioning level to the speedup of the current level. The bid
value exhibits the ability to improve spéédup by splittihg to one higher parti-
tioning level. This value can be formulated by the ratio of unit task execution
times reported by the ABs as shown in equation 5.5, where U;(0) is the unit
task execution time of AP; at the lowest partitioning level, and S;(c) and U;(c)
are the speedup and unit task execution time at the current partitioning level,
respectively.

_ Si{e+1) _ Ui(0)/Ui(c+1) _ Ui(e)
FB; = Si(c) o U;(0)/U;(c) - Ui(c+ 1) . (5.5)

The backward bid (BB;), on the other hand, shows the loss in speedup of an
application AP; by releasing workstations to another application APy with the
maximum forward bid to split. The bid value of application AP; (equation 5.6)
is obtained from the ratio of the unit task execution time at level ¢ — k to the
unit task execution time at level c, where k is the level to which AP; merges so
that AN workstations can be freed. AN is the number of extra workstations
demanded by APy for splitting; it is formulated by equation 5.7, where N, is the
number of workstations that AP; requires at partitioning level c¢f, and Nyyqi is
the number of available? workstations.

Sz(C) _ Ui(c - k) '

BBi = glech = Ui

(5.6)

AN = ANCf-}-l - NCf - Na'va,il (5'7)

2The definition of the availability of a workstation is described in Section 5.5.

72 Dynamic Space-Sharing throﬁgh Competition

The newly arrived and the first-time auction applications take priority over other
applications when splitting because the reported unit task execution time at
different partitioning levels helps the CS to formulate bids for their future bidding.
The latest unit task execution time at each partitioning level of applications is
recorded by the CS. This information is useful to formulate the forward and
backward bids because both of the bids require previous information of unit
execution time for their formulation. '

For the applications that do not have known performance information about their
higher partitioning levels, their potential forward bids will be used for bidding.
A potential forward bid of an application AP, is the ratio of the efficiency of the
current partitioning level F;(c) to the efficiency of the previous partitioning level
E;(c — p) (equation 5.8). The bid shows the potential of splitting an application
to a higher partitioning level. »

Ei(c) _ _ Si9/Ni()) _ Uilce—p)/Uil(c)
Bi(c—p) Sile—p)/Nic=p) Ni(c)/Ni(c—p)

PB; = (5.8)

5.7.3 Holding an Auction

When an application arrives, it will be informed by the CS via the AB about its
initial allocation of workstations. The AB will activate its grains on the most
available workstations at a partitioning level that is nearest but not equal to the
maximum partitioning level Npq;. The CS will then schedule the time for its
first auction. The conditional actions for each auction are shown in Figure 5.8,
where P denotes the set of all participating applications in an auction.

All the applications participating in an auction will go through these actions se-
quentially, but any application that has taken part in any one of these actions is
removed from the set P. First, the first-time auction applications will have the
highest priority to split using the available workstations or the workstations from
the application with the minimum backward bid. Secondly, the application with
the maximum forward bid will split to one higher level using the available work-
stations or the workstations from the application with the minimum backward
bid. To ensure stability, no action will be taken if the maximum forward bid is
less than the minimum backward bid by a factor of ¢, (¢ > 1). Finally, for the

5.7 Auction and Bidding | 73

Action 1: For the first-time auction AP,, where n € P
If Noyait > Ne, where N, is the nearest number to N,,qz
AP, splits to level c,
Else
It 3 AP, s.t. AP, has Min(BB;)an or Min(PB;), j € P
AP, splits to level ¢
AP, merges from level ¢; to ¢y — k

Action 2: For the AP; with known FB;, where i € P
Choose the APy with Maz(FB;)
If Ntwail Z (ch+1 - Nc,)
AP splits from level ¢y to ¢ + 1,

Else £
If 3 APy, sit. Maxz(FB;) > (¢ - Min(BBj)an), ¥ >1, i #j

AP; splits from level ¢f to ¢y + 1

AP, merges from level ¢, to ¢ — k

Action 3: For the AP; with unknown FB;, wherei¢c P
If3 APf, s.t. AP_f has Mam(PBz) and (Navail > (ch+1 - ch))
AP; splits from level ¢y to ¢y + 1

Figure 5.8: The Conditional Actions for the Share Auction

applications with unknown forward bid, the application with the highest poten-
tial forward bid will split first. In addition to the above actions, an application
will merge to a lower partitioning level if no gain in speedup has been reported
after splitting.

For all the conditional actions shown in Figure 5.8, Action 1 enables all the newly
arrived applications to obtain performance information for future bidding. Action
3 allows advancement of execution performance of the existing applications by
using available workstations and Action 2 corrects any previous actions so that
a better allocation can be obtained. In order to reduce the sensitivity of these
actions, an application will only split to a higher partitioning level if the gain in
speed is great enough. '

The conditional actions are aimed at finding stable allocations for the applications
in the Comedians system. The stable allocation can be termed as a Pareto
efficient :allocation [Var92], that is an allocation for which there is no way to
make all applications better off. If the runtime performance of the applications

74 , .. Dynamic Space-Sharing through Competition

does not vary frequently, the applications will be settled in a Pareto efficient
allocation because the actions can improve and correct the current allocation
within a sensitivity level controlled by the parameter .

5.8 Experimehtal Results

In this section, the experimental results for testing the Comedians system are
presented. From the results, the effectiveness of the Comedians system is demon-
strated. The three applications involved in the experiments are the block-matrix
multiplication (BMM), the cycle-searching of a non-linear iterated function pro-
gram for cryptography (CSN), and the parallel simulator of an ATM Network
(PSA). These applications are the same data-parallel and task-parallel appli-
cations that are used for experimenting the adaptive workload distribution de-
scribed in Chapter 4. In the experiments, the availability of workstations is
measured by the current load of the workstations.

5.8.1 Parameter Tuning

The values of the following parameters of the system can be fine-tuned to get the
right balance between.sensitivity and efficiency.

e The value of ¢
The value of 9 affects the sensitivity of invoking Action 2 in the share
auction. If the value is too small, excessive overheads will be incurred
because applications overreact to this action by grain splitting and merging.
On the other hand, the benefits of better allocation will be reduced if the
value is set too high. A suitable value should be chosen to avoid both of

the above cases. Throughout the experiments, the value of 9 is set to be
1.2.

e The minimum inter-auction period
This minimum inter-auction period should be adjusted by the arrival and
departure rate of parallel applications. For example, if the system becomes
more heavily loaded and dynamic, the period should be shortened. In
the experiments, no application will participate in an auction if the time
- between two auctions is less than 20 seconds.

5.8 Experimental Results 75

e The frequency of probing control signals
For invoking the GWD and collecting performance information, control
signals are sent from the AB to the grains of its application. The frequency
of probing the control signals of the AB in the grains can be adjusted to
reduce overheads and keep a suitable level of sensitivity.

e Exemption conditions for auctions
Each application in the Comedians system is regarded as an autonomous
agent; it can join or exempt itself from an auction according to its current
situation. An application will be exempted from an auction under the
following conditions.

— When the time of auction is near the end of its computation;

— When it had already reacted and committed to a predetermined num-
ber of auctions;

— When there is not enough time for measuring a reliable unit task
execution time at the current partitioning level.

The first two exemption conditions grant the application a higher prior-
ity for maintaining the current allocation of resources. The last condition
guarantees that the application has enough time for formulating bids based
on the measured unit task execution time. For some nondeterministic ap-
plications such as the CSN application mentioned in Chapter 4, more time
may be required for measuring the unit task execution time.

5.8.2 Dynamics of Competition

To test the dynamics of competition in the Comedians system, different numbers
of example applications are run on a cluster of DEC3100 workstations. All the
applications can be partitioned into one grain (level 0), three grains (level 1), and
nine grains (level 2). Tables 5.1-5.4 present the results of the auctions in different
scenarios. The workstation load collection is performed by the Cluster Scheduler
at every 20s. The action taken by each auction refers to the actions shown in
Figure 5.8.

Tables 5.1 and 5.2 show two similar scenarios in which three applications are
competing for resources in a cluster of twenty workstations. In the first scenario,
the applications arrive at different times. The first two applications (BMM1 and

76 Dynamic Space-Sharing through Competition

Time of || No. of occupied workstations

Auction Action | Comments
(in sec.) || BMM1 | BMM2 PSAL Taken .
60 3 - - - BMMI1 arrives and splits to level 1
100 9 3 - Action 1 | BMM1 splits by using avail. ws,
BMM2 arrives and splits to level 1
160 9 9 1 Action 1 | BMM2 splits by using avail. ws,
PSA1 arrives and runs at level 0
200 3 9 3 Action 1 | PSA1 splits by using BMM1’s ws,

BMM1 merges,

BMM1’s BB=2.914,

BMM?2’s BB=3.020

240 9 9 1 Action 2 | BMMI1 splits by using PSA1’s ws
PSA1 merges,

BMM1’s FB=3.010,

PSA1’s BB=2.865,

Note that this operation will not

: BMM1's FB _
oceur, if ¥ > Fearpr = 1.05

Table 5.1: Three applications in a cluster of twenty workstations (Scenario One)

Time of || No. of occupied workstations

Auction Action | Comments
(in sec.) || BMM1 | BMM2 | PSAl Taken
60 3 3 3 - All applications arrive,
Each takes 3 avail. ws

100 1 9 9 Action 1 | BMM2 splits by using avail. ws

: Action 1 | PSAL1 splits by using BMM1’s ws,
BMM1 merges

140 3 9 3 Action 2 | BMM1 splits by using PSA1’s ws,
PSA1 merges,

BMMU’s FB=3.213,

BMM2’s BB=3.109,

PSAl’s BB=2.172

260 9 9 - PSA1 terminates and frees 3 ws
Action 3 | BMMLI splits by using avail. ws

Table 5.2: Three applications in a cluster of twenty workstations (Scenario Two)

5.8 Experimental Results

7

Time of No. of occupied workstations
Auction Action | Comments
(in sec.) || BMM1 | BMM2 | PSA1 | PSA2 Taken
60 3 - - - - BMM1 arrives and splits to level 1
100 9 3 - - Action 1 | BMM1 splits by using avail. ws
BMM2 arrives and splits to level 1
140 9 9 3 - Action 1 | BMM2 splits by using avail. ws
PSA1 arrives and splits to level 1
180 3 9 9 - Action 1 | PSA1 splits by using BMM1’s ws
220 9 9 3 - Action 2 | BMML1 splits by using PSA1’s ws,
PSA1 merges,
BMM1’s BB=2.878,
BMM2’s BB=3.205
280 9 9 3 3 PSA2 arrives and splits to level 1
320 3 9 3 9 Action 1 | PSA2 splits by using BMM1’s ws
360 9 9 3 3 Action 2 | BMM1 splits by using PSA2’s ws,
PSA2 merges,
BMM1’s FB=2.907,
PSA1’s FB=2.146,
BMM2’s BB=3.187,
PSA2’s BB=1.323

Table 5.3: Four applications in a cluster of twenty five workstations (Scenario

Three)
Time of || No. of occ.ws
Auction No. of | Action | Comments
(in sec.) || PSA1 | CSN1 LP Taken
80 1 1 10 - PSA1 and CSN1 arrive and takes 1 ws each
140 3 1 6 Action 1 | PSA1 splits to level 1 by using avail. ws
180 3 3 6 Action 1 | CSN1 splits to level 1 by using avail. ws
340 3 9 0 Action 3 | CSN1 splits to level 2,
PSA1’s PF=3.171,
CSN1’s PF=3.301

Table 5.4: Two applications in a cluster of twelve workstations with Loader

Processes (Scenario Four)

78 Dynamic Space-Sharing through Competition

BMM2) split to the highest partitioning level using available workstations in the
cluster. ‘After the arrival of the third application (PSA1), the application splits
to a higher level and forces one of the other applications to merge because the
first-time auction application has a higher priority than the other to split. The
BMM!1 is chosen to merge to a lower level because it has a lower backward bid
than the BMM2. If the value of 1 is greater than or equal to 1.05, the allocation
of workstations will become stable, otherwise the PSA1 will merge to level 0 and
the BMM1 will be restored to level 1 in the next auction.

In the second scenario, all the applications arrive at the same time and each ap-
plication takes three available workstations for execution. In their first auction,
all applications request splitting, but only the BMM2 gets the available work-
station to split. The PSAIL splits by forcing the BMM1 to merge. In the next
round of auctioning, the BMM1 wins back the workstations from PSA1 because
it has the highest forward bid and its forward bid is greater than the backward
bid of the PSA1. The allocation of workstations becomes stable until the PSA1
terminates and the BMM1 can then split further to level 2.

In the third scenario, there are four applications in a cluster of twenty five work-
stations. Table 5.3 illustrates how a stable allocation of workstations is made
among the applications. The applications arrive one by one so that the first and
the second applications (BMM1 and BMM2) can split to the highest level by
using available workstations in the cluster. However, the third and the fourth
applications (PSA1 and PSA2) do not have enough available workstations to do
so; they have to compete for workstations through auctions. The BMM1 wins
the auctions because it has the highest forward bid and the PSA2 has to merge .
because it has the smallest backward bid.

- Table 5.4 shows the fourth scenario in which the PSA1 and CSN1 are compet-
ing in a cluster of twelve workstations. Each application can initially gets one
workstation for execution because external loader processes (LPs) are running
on the rest of the workstations. When four workstations become available, the
applications then split to level 1. When all the external loader processes are
finished, the CSN1 wins the newly available workstation because it has a higher
potential forward bid than the PSA1. However, as illustrated in the experiments
in Sections 4.9.1 and 4.9.2.3, the speedup performance of the PSA1 is better than
that of the CSN1, so the PSA1 will win back the workstations if the measured
speedup of the CSN1 later drops. To obtain a more reliable bid value that can
reflect the actual speedup of a nondeterministic application, the time between
measuring unit task execution time should be sufficiently long.

5.9 Summary 79

5.9 Summary

Since resource contention between parallel applications can lead to performance
degradation, a new scheduling system called Comedians is proposed to maximize
the speedup of individual applications and to allocate workstations efficiently and
fairly to the applications based on dynamic space-sharing. The design, implemen-
tation, and testing of the Comedians system are presented in this chapter. The
system facilitates adaptive execution of applications by providing load monitor-

ing and forecasting, Global Workload Distribution, and mechanisms for auction
and bidding.

The effectiveness of the system is tested and the results of the experiments exhibit
the dynamics of competition between parallel applications in different scenarios.
The results of the experiments show that stable or Pareto efficient allocations can
be obtained through the three simple conditional actions of the share auction
if the runtime behaviour of applications does not vary frequently. Moreover,
the system provides a useful testbed for studying the dynamics of competition
between parallel applications.

80

Dynamic Space-Sharing through Competition

Chapter 6

The Comedians on
Heterogeneous Clusters

6.1 Introduction

Workstations in a distributed network are seldom homogeneous; they are often
different in processing speed, memory capacities, and communication bandwidth.
Nevertheless, workstations can be grouped into clusters according to their differ-
ent characteristics. Management of these clusters can only be scalable if a dis-
tributed control scheme is applied. To fully deploy workstation cluster computing,
the aggregate computing power of heterogeneous workstations must be used by
parallel applications as a single virtual machine. This chapter describes an ex-
tension of the Comedians system [SM96] to facilitate a competitive environment
for parallel applications on multiple and heterogeneous workstation clusters. The
extension enhances the system to tackle the job scheduling problem with respect
to heterogeneity between the clusters. o

6.2 Execution States of Adaptive Parallel Ap-
plications

Akin to the problem of process mapping in multiprocessor systems, the number of
possible task-to-grain and grain-to-workstation mappings in heterogeneous clus-
ters is large and the optimal mapping problem is NP-complete [Cof74, LK78,

82 ' SR - The Comedians on Heterogeneous Clusters

GJ79]. The optimal solution can only be worked out in some special cases [Hu61,
CG72, Sto77, Bok81]. In 4 Shared network environment, dynamic workload and
workstation heterogeneity should also be taken into consideration when a m'ap-
ping is selected. It is therefore more crucial to find a quick and efficient way of
searching for suitable mappings at Tuntime.

To enable fast workstation allocation, the number of possible task-to-grain and
grain-to-workstation mappings is restricted. The mapping problem is simplified
by representing the sizes of the grains as partitioning levels, and by grouping
workstations into clusters according to their processing speeds. As defined in
Section 3.4.2, each partitioning level of an application is a predefined grouping
of tasks. A parallel application will only switch from one partitioning level to
another partitioning level®. The grains of an application can also be executed in
workstations across heterogeneous clusters. As a result, the possible mappings
of a parallel application are limited by the dimensions of partitioning level and
cluster type. The.representations that-are used-to identify the runtime config-
urations of applications are referred to as ezecution states (ES). An example of
this two-dimensional state space of execution states of an application is shown in
Figure 6.1.

Cluster Type

dec-1 dec-2 hp hp-alp | alp-hp alpha [} ...

Partitioning 0
Level

merging § migrati%g merging merging & migrating
A 4

0
o
!
o

migrating ‘. i .| migrating
2 g‘.....‘. 3 _g b

splitting & migrating splitting

Figure 6.1: The State Space of Execution States of an Application

If an application is running on two or more different clusters, the application is
said to be running on a pseudo-cluster. For example, if an application is running
on HP and DEC Alpha workstations, we may call its cluster type hp-alpha if

'In addition, the size of the grains between two partitioning levels can be refined by changing
task-to-grain mappings invoked by the Local Workload Distribution.

6.3 System Architecture - 83

the number of occupied HP workstations is greater than that of DEC Alpha
workstations, otherwise alpha-hp.

Parallel applications can only change their execution states by coordinating with
the Comedians system. Figure 6.1 also shows all the possible movements of an
execution state. These movements are the outcomes of the Global Workload
Distribution (GWD) which are the results of auctions or responses to workload
interference through the Comedians system. To change the execution state of an
application, an application can either migrate its grains to workstations in other
clusters without changing its partitioning level (the horizontal movements of ES),
or split/merge its grains to different partitioning levels (the vertical movements
of ES). Grain migration can also be carried out at the same time as grain split-
ting and merging (the diagonal moverﬁéhts of ES). The solid arrows shown in
Figure 6.1 represent the preferable movements of ES because splitting grains to
a higher partitioning level and migrating grains to a faster workstation cluster
can normally enhance performance until a saturation point is reached.

6.3 System Architecture

Figure 6.2 depicts the system architecture that supports the execution of adap-
tive parallel applications on heterogeneous workstation clusters. The Comedians
system serves as a resource management medium between the clusters and the
applications. An application can run on more than one workstation cluster. One
of the clusters is specified as the local cluster and the others as the remote clus-
ters. All the up-to-date information of the application is recorded in the CS of the
local cluster (local CS); this information is updated whenever the execution state
of the application changes. Consistency and efficiency in updating the status of
applications are the two main design goals of the Comedians system operating
on multiple clusters.

An application has to register with the workstation clusters in which it will exe-
cute. However, the CS can refuse the registration of the application if its cluster
is overloaded. As shown in Figure 6.3a, an application will first register at its
local CS and the local CS will then send the registration message to its remote
CS. Similarly, when an application terminates, the termination signal will be sent
to the local CS and the local CS will then send it to the remote CS.

84 The Comedians on Heterogeneous Clusters

Workstation The Comedians Adaptive Computation
Clusters Agents

Parallel Simulator

WS-Cluster 1

h for Non-li Funct.

Figure 6.2: System Architecture that supports Adaptive Parallel Appli-
cations '

6.3.1 Responses to External Workloads

Distributed Cluster Schedulers (CSs) invoke the GWD responding to dynamic
workload in individual workstations. Since the grains of a registered application

‘will only run on available workstations, two parallel applications will not share

the same workstations for execution. If external processes from the workstations’
owners or other users arrive at the workstations in which the grains of a parallel
application are currently running, the performance of both the external processes
and the parallel application may suffer greatly. Therefore, the CS will inform the
AB of the application to migrate its grains from the heavily loaded workstations
to other available workstations. If there are not enough workstations available for
migration, the grains of that application will be merged to a lower partitioning
level releasing the heavily loaded workstations. In either of the above cases, the
application will acknowledge the CS that initiates the migration or merging; the
CS will then inform the local CS and other CSs that are involved in this operation
(Figures 6.3b and 6.3c).

6.3 System Architecture L 85

¥ merging =
request

Remote CS Local CS

Local CS

a. Registration / Termination b. Migrating Grains ¢. Merging Grains

The CS that

holds the sucli

status

ack. update
cs
7 splitting

) request Local CS

* d. Performance Reporting e. Splitting Grains

Figure 6.3: Interaction between ABs and local and remote CSs

6.3.2 Holding a Share Auction on Heterogeneous Clusters

Figure 6.4 illustrates the actions involved in a share auction across multiple clus-
ters. To hold an auction, the CS first broadcasts the news of the auction to all the
ABs that have been registered in the cluster. It also sends requests to related CSs
for the number of available workstations in the remote clusters. If the CS that
holds the auction is not the local CS of the application, the auction notification
will be sent to the local CS before sending to the AB. Similarly, the current unit
task execution time will be collected by the local CS first and then it is forwarded
to the CS that holds the auction (Figure 6.3d). The local CS should always keep
the most up-to-date status of the application. :

Similar to the measurement defined in Section 5.7.1, the value of the unit task
execution time U;(z,y) of application AP; at cluster type z and partitioning level
y is the mean completion time of a predefined fraction of a task uy(z,y) collected
from the grains of the application. The value of uy(z,y) includes the average
computing and communication time required to finish the fraction of a task.

Upon receipt of all the unit task execution times from registered applications,
the CS will record and store the information. An auction will then be held and
the result will be sent to the involved ABs. After confirmation from the ABs has

86 The Comedians on Heterogeneous Clusters

CS that holds Grains of
the auction Local CS AB the AB
Engaged
Auction §......Z07 " Perf
Noticificationf > Engaged’ 7?9:’;22709

e Mean Completion Time
Auction e of a fraction of Tasks

————
Auction
Regults

Time /
Confitmation /

Disengaged| Disengaged | :

Figure 6.4: Share Auction across Multiple Clusters

Unit Task
‘Execution Time

Task-Parallel
tasks pause

Intra-/ inter-
Grain Relocation
of Tasks

Task-Parallel
tasks resume

been received, all the CSs are disengaged and the status of the applications in
the local CSs are updated. For sending and receiving of the auction results and
confirmation from the ABs, the local CS will be bypassed.

Orce a CS holds an auction or a CS/AB agrees to participate in an auction, it
then switches from a disengaged status to an engaged status. If a CS/AB has
been engaged, it will not take part in another auction or other grain movement.
After the result of the auction is received by all the involved ABs, the CSS/ ABs
will then be disengaged. This ensures the status information of applications is
updated in an orderly and consistent way. If an auction is turned down by an
engaged local CS, or the CS that holds the auction has been engaged by another
CS, the time of the next auction will be resclieduled randomly within a predefined
reauction period.

6.3.3 Bidding on Heterogeneous Clusters

From the past and current records of performance information, the CS may for-
mulate three types of bids, namely forward bid, backward bid, and potential
forward bid. These bids enable applications with different performance records

6.3 System Architecture _ 87

to compete for workstations. Formulation of bids and auction results are modified
based on the details described in Chapter 5.

The forward bid (FB;) of an application AP; is the ratio between the speedup
of an execution state (z7,y;) and the speedup of the current execution state
(¢, ye). The bid value exhibits the ability to improve speedup by moving forward
to another better execution state which has been visited previously. This value
can be formulated by the ratio of unit task execution times reported by the ABs
as shown in equation 6.1, where U;(z;, 0) is the unit task execution time of AP; at
its local cluster and its lowest partitioning level, S;(z.,y.) and U;(z.,y.) are the
respective speedup and unit task execution time at the current execution state.

Fo

FB — Si(zs,ys) _ Ui(z1,0) /Ui(z7, y5)
: Si(mwyc) Ui(zlao)/Ui(xcayc)
Ui(zca yc)

Ui(zy,yy)

The backward bid (BB;), on the contrary, shows the loss in speedup of an ap-
plication AF; by releasing workstations to application AP; with the maximum
forward bid. The bid value of AP; (equation 6.2) can be formulated by the ratio
of the unit task execution time at a lower previous execution state (z,ys) to the
unit task execution time at the current execution state (z.,y;). AP; moves to
the execution state (zp,ys) so that AP can move forward to the execution state
(z,y;) by using the workstations freed by it.

BB, - Si(ze,ye) _ Uilzo, ys) (6.2)

Si(zv,yp) Uiz, ye)

For the applications that do not have known performance information about their
higher execution states, their potential forward bids will be used for bidding. A
potential forward bid of an application AP; is the ratio of efficiencies between
Ei(z1,y.) and E;(zi,y.—p), where z; is the local cluster type, y. is the current
partitioning level, and y._, is the lowest partitioning level of which the unit task
execution time is known or can be estimated. N;(y.) is the number of occu-
pied workstations at the current partitioning level. The bid value (equation 6.3)
exhibits the potential of AP; to split to a higher execution state.

88 The Comedians on Heterogeneous Clusters

E; (wh yc)
E; (wl y yc—p)

Si(z1, Ye) /Nz (yC)
Si(@1, Ye—p) [Ni(Ye—p)
Ui(1, Ye—p) /Ui (%1, Ye)

N; (yc) /Nz (yc—p)

PB;, =

(6.3)

i

In formulating the potential forward bid, if the actual value of the unit execu-
tion time is not known, its estimated value can be calculated by equation 6.4,
where P, /P, is the estimated ratio of CPU processing speeds of the workstations
between the current cluster z, and the cluster type z. The ratio? of P, /Py is
initially estimated by the CPU processing speeds of the workstations in a cluster.
The ratio will later be updated by the actual performance of the application, that
is, the unit task execution times collected at the next round of the auction.

P,
Ui (@,y) = 5= - Ui,) (6.4)
T

Cluster Type

dec-1 | dec2 | hp hp-alp | alp-hp | alpha -

Partitioning 0
Level

2 RN PR Max.
armrnfannnad (" YRS PO > FBi or PBi

Figure 6.5: An Example of Bidding

After an application has registered in its local and remote CSs; it will first run on
the available workstations of its local cluster at a partitioning level that is nearest
but not equal to the highest level it can reach. Its local CS will then schedule

- 2This ratio can have different values for integer operations and floating point operations.

6.3 System Architecture | 89

the time for the first auction. The results of each auction are the outcomes of
the following three conditional actions. All the applications participating in an
auction will go through these actions sequentially, but each application can only
take part in at most one of these actions. Figure 6.6 describes all the conditional
actions taken by applications involved in an auction, where ES;(z, y) represents
the execution state of an application AP; at cluster z and partitioning level y.

e Action 1

First-time auction applications will try to split to a higher partitioning
level in the local cluster using available workstations. If the number of
the available workstations (/Vyue:) is not enough for splitting, the applica-
tion with the minimum backward bid will release its workstations through
grain migration (Figure 6.3b) or grain merging (Figure 6.3c). For the first-
time auction applications, the only information known to the CS that holds
the auction is the unit task execution time at the current execution state
Ui(®¢, yc)- Therefore they take priority over other applications when split-
ting in the local cluster because the reported unit task execution times at
different execution states help the CS to formulate forward and backward
bids for future bidding.

e Action 2

For applications with known forward bids, the application with the maxi-
mum forward bid will move forward to a higher execution state either by
grain splitting or grain migration. For grain splitting, the CS that holds the
auction sends a splitting request to the AB of the application. If this CS
is not the local CS of the application, updated status information for the
application will also be sent to the local CS (Figure 6.3e). The application
will take the available workstations and/or the workstations released by
the application with the minimum backward bid through grain migration
or grain merging. Figure 6.5 shows an example where an application with
the maximum forward bid moves to a higher execution state by forcing
another application with the minimum backward bid to a lower execution
state. To reduce sensitivity, no action will be taken if the maximum forward
bid is less than the minimum backward bid by a factor of %, and the value
of the maximum forward bid must be greater than one.

e Action 3
For applications with unknown forward bids, the application with the max-
imum potential forward bid will move to a higher execution state. If a

90 The Comedians on Heterdgeneous Clusters

Action 1: For the first-time auction AP,, where n € P
If Nayait > N, where N, is the nearest number to Npqq
AP, : ES,(z0,%0) LAY ESn(zo,y5),
Else
If 3 AP,, s.t. AP, has Min(BB;j)an or Min(PB;), j € P
APn : Esn(flto,yo) i) ES,,,(:L‘l,yf),
AP{, : ESb(ml,yl) ﬂn) ESb(:l:b,yb),

Action 2: For the AP; with known FB;, wherei€ P
Choose the APy with Max(FB;)
If Nayeq in local and/or remote clusters is enough for APy to move
to a better execution state
AP; : ESf(z0,%0) — ES;(z¢,y5),
Else) .
If 3 APy, s.t. Maz(FB;) > (¢ - Min(BBj)an), ¥ > 1, i #J
APy : ES¢(zo,y0) LY ES¢(zs,yy),
APy : ESy(z1,v1) % ESy(zs,),

Action 3: For the AP, with unknown FB;, wherei € P
If 3 APy, s.t. APy has Maz(PB;) and
Navear in local and/or remote clusters is enough for AP to move
to a better execution state
APy : ES¢(z0,30) ™5 ESy(zy,95)-

Changing Execution States by GWD Operations :

-3 : Grain Splitting
T : Grain Merging and/or Grain Migrating
™ : Grain Splitting and/or Grain Migrating
% . Grain Splitting or Grain Migrating or
Grain Merging if the grains is merging from a cluster of slow machines

to a cluster of fast machines.

Figure 6.6: The Conditional Actions taken by Forward APs and Backward APs

6.4 Performance Profiles : 91

potential forward bid is selected, the possible results include grain merging,
grain migration and grain splitting (Figure 6.5). Grain splitting and grain
migration for this action will only take place on the available workstations
in the cluster that carries out the auction. No application will merge its
grains except when the application with the maximum potential forward bid
merges its grains from slow workstations in a cluster to faster workstations
in another cluster.

6.4 Performance Profiles

In this section, the experiments and results for examining the performance profiles
of competing applications on multiple and heterogeneous workstation clusters are
presented. The experiments are carried out on three workstation clusters which
consist of DEC Alpha, HP9000/700, and DEC3100 workstations. The configura-
tions of hardware used in the experiments here and the experiments described in
Section 4.9 are similar. The parallel applications used in the experiments consist
of the block-matrix multiplication (BMM) and the parallel simulator of an ATM
Network (PSA).

The interaction of parallel applications in two scenarios are investigated by ex-
periments. In the first scenario, three BMM programs (AP1, AP2 and AP3) are
competing in two workstation clusters (DEC-1 and DEC-2 cluster) and each of
the clusters consists of ten DEC3100 workstations. The DEC-1 cluster is the local
cluster of AP1 and AP2 and the DEC-2 cluster is the local cluster of AP3. AP1
and AP2 arrive one by one at the DEC-1 cluster and they occupy workstations in
the DEC-2 cluster when there are not enough available workstations for splitting
in the DEC-1 cluster. A stable allocation for the applications is obtained after
AP3 splits to level one in the DEC-2 cluster. Figures 6.7a and 6.7b show the
relative speedup and the snapshots of the applications. The speedup values are
relative to the execution time of the applications in a DEC3100 workstation at
partitioning level 0.

In the second scenario, two BMM programs (AP4 and AP6) and one PSA pro-
gram (AP5) are invoked in three clusters. These clusters include six DEC Al-
pha workstations (Alpha cluster), five HP workstations (HP cluster) and thirty
DEC3100 workstations (DEC-3 cluster). This scenario is common in many aca-
demic and corporate environments where there is a large pool of slow machines
and a relatively smaller number of fast machines. It is quite obvious that all

92 " The Comedians on Heterogeneous Clusters

12 —— T : T — T
) ’ <— apl
- AP2
&= AP3
i0r 1
SR e +
3
g 8 —
&
2
I .
o
~
)
]
4+ N
L — : -
ot 4
[r—— 1 B-———-H'—'———‘——‘JI
o 1 1 1 1 1 Ll 1
0 40 80 120 160 200 240 280 320
Pime (in seconds)
(a)
No. of workstations- -
~ occupied in DEC-2 Cluster
] Yo. of workstations
10 | occupied in DEC-1 Cluster
]
8
w8
o
i
b
2 6
W
0
2
4
2

0 —ar1 APIAPZ APIAFZ APLAPZAPS APLAPIAPI
20 80 120 180 280
Snapshots (in seconds)

(b)

Figure 6.7: Relative speedup and snapshots of the experiments in the first scenario: there
are two clusters, each has 10 DEC3100.

.6.4 Performance Profiles

93

Relative Speedup

of Workstations

No.

14 T T T
Arrival of two ELPs = AP4
on two workstations 8 ggg
121 J .
Migration of
10 - two Grains _I—_
8t 4
61 [.
4r 4
—
['c Toem—
2 o -
0 100 200 300 400

Time (in seconds)

(a)

No. of workstations
occupied in Alpha Cluster
No. of workstations

101 occupied in HP Cluster
No. of workstations
occupied in DEC-3 Cluster

= N

5AP6 AR4,

ARLARS APLAPSAPG AR4AY!

20 60 100 160 240
Snapshots (in geconds)

(b)

Figure 6.8: Relative speedup and snapshots of the experiments in the second scenario: there
are three clusters, one has 6 DEC Alpha, the second one has 5 HP, and the third one has 30

DEC3100.

94 The Comedians on Heterogeneous Clusters

applications will compete for the fastest workstations in the Alpha cluster.

Figures 6.8a and 6.8b present the relative speedup and the snapshots of the
applications in this scenario. The DEC-3 cluster is the local cluster of AP4 and
AP5 and the HP cluster is the-local cluster of AP6. The applications arrive
nearly at the same time on their local cluster and compete for more and faster
workstations. After AP4 and AP5 have split to level two on the DEC-3 cluster
by Action 2 of the share auction, they merge to level one on the Alpha cluster
in order to gain better values of speedup. When external loader processes are
invoked in two workstations of the Alpha cluster on which the grains of AP4
are running, the grains are migrated to two available workstations on the HP
cluster. After AP5 has terminated, AP6 migrates from the HP cluster to the
Alpha cluster because it has a higher forward bid value than AP4.

DEC1- DEC2- DEC1- DEC2-
DECt pec2 DECi DEC2 DEC1 pec2 pect1 DEC2
P.L.O I
P.L.0 | ?i .
P.L.1 I P.L.1 _ ® AP2
. AP3
PL.2 I pL2|OT> I ®
t=20) =80
DEC1- DEC2- DEC1- DEC2-
DEC1 pec2 DECt1 DEC2 DEC1 pgc2 DEC1 DEC2
P.L.0O | P.L.0 ® l
P.L1| & I P.L.1 v I
PL.2 = I PL.2 @/ I
=120 =180
(a)
HP- Alph HP- Alpha .
DEC3 HP AIpha-Hg aAlpha DEC3 HP Alpha-HP Alpha
P.L.0 I P.L.O ® I P4
B P.L1 v || I ® APS
-1 (e | — L "1 @ ars
PL.2 I pL.2 |9 |
t=20 t=60
HP- Alpha HP- Alpha
DEC3 HP Alpha-HP Alpha DEC3 HP ajpha-Hp AlPha
P.L.0 I P.L.O I
P.L.1 ° @I P.L.1 o I
PL.2 ' I PL.2 I
t=100 t=240
(b)

Figure 6.9: (a) Profiling Execution States in the First Scenario; (b) Pro-
filing Execution States in the Second Scenario

6.5 Summary : 95

To monitor the status of all applications in the Comedians system, the exe-
cution states of applications can be collected from all the Cluster Schedulers.
Figures 6.9a and 6.9b show the execution profiles of applications involved in sce-
nario one and two after each auction has taken place. The dots represent the
execution states of the applications and the arrows show the transitions from the
current execution state to the next execution state in the state space of cluster
types and partitioning levels. For example in Figure 6.9a, the AP2 in the first
scenario has visited three different execution states before settling down at the
stable allocation. -

Since the execution states of each application are recorded by its local Cluster
Schedulers, the ratio of P,,/P; and the unit task execution time at the execu-
tion states that have been visited will become the performance history of the
application. The information can be reused for the next execution of the same or
similar applications on the same clusters. This information is especially useful for
formulating bids when the applications start running on the clusters. By using
the performance history, the time for reaching a stable allocation of workstations
can be shortened. ‘

6.5 Summary

To facilitate an efficient mechanism for finding suitable application configura-
tions in a multi-user, multi-parallel program environment, the concept of execu-
tion state is introduced in this chapter. The reason for using execution states
to represent application status is to reduce substantially the number of possible
configurations of an application because partitioning level and cluster type are
the only parameters to represent an execution state and the values of these pa-
rameters are reasonably small. Based on this concept, the Comedians system is
extended to utilize the aggregate computing power of heterogeneous workstation
clusters efficiently. A

This chapter also presents the design and implementation of the share auction
that is used to allocate workstations in heterogeneous clusters to applications.
Experimental results show that the share auctions held by distributed Cluster
Schedulers can achieve stable allocations among competing applications.

96

The Comedians on Heterogeneous Clusters

Chapter 7

Combining Parallelism with
Replication |

7.1 Introduction

The concept of replication, which is used to manage applications in the Comedians
system, is presented in this chapter. Replicated applications are defined as an
organized group of related applications that coexist in workstation clusters. The
benefits of applying the concept to parallel applications are also discussed. The
~ objective of this work is to provide runtime support for a multi-user, multi-parallel
program environment. This chapter is organized as follows. First, a new structure
that manages replicated applications as coalitions is described. Secondly, an
efficient fault-tolerant model using replicated applications is suggested. Finally,
a case study of running replicated parallel simulators in the Comedians system
is used to demonstrate the importance of replication.

7.2 From Replication to Coalition

7.2.1 Manégement of Replication

Workstation clusters will become an indispensable computing resource only if
they can satisfy the diverse computing needs of different users. The need to
manage different applications is especially great when the number of applications

98 Combining Parallelism with Replication

running on workstation clusters is large. In a competitive environment envisaged
by the Comedians system, replicated applications owned by the same user can
form a coalition. The coalition partners share a common mission — that is to
serve the computing needs of their owners. The purposes of forming a coalition
of applications are as follows: '

1. Priority Setting: Among the members of a coalition, the urgency of com-
pletion can be defined by setting the priority of running on newly available
workstations. A better use of priority can improve resource utilization.

2. Competition: An application will not compete with other coalition part-
ners for resources. In other words, an application will not split to a higher
partitioning level and/or migrate to faster machines (a higher execution
state) at the expense of forcing other coalition partners to merge to a lower
partitioning level and/or migrate to slower machines (a lower execution
state).

3. Shared Knowledge: Knowledge about the current and past execution
performance of coalition partners can be shared to facilitate better initial
workstation assignments and resource allocations. For example, the shared
knowledge can be used to formulate improved bids.

4. Monitoring: The amount of resources occupied by a coalition or by a user
can be identified and monitored. Resources should be allocated to each .
user fairly and no user should consume an unlimited amount of resources.
A budgetary control system can be applied for this purpose.

7.2.2 Weak and Strong Coalitions

To identify applications owned by individual users, the applications are labelled
by replication numbers. The replication numbers add a new dimension to the exe-
cution state of an application which can be represented by a notation ES;(p,c,),
where p is the partitioning level, ¢ is the cluster type, and r is the replication
number. The replication number is composed of a user identification and a repli-
_ cation identification. Besides the current status, the execution states also indicate
the ownership of individual applications.

Coalitions can be further classified as different types to exercise different man-
agement policies. Among the applications owned by a user, the applications

7.2 From Replication to Coalition 99

Applications owned by User A:

Weak Coalition

Ve

Strong Coalition
{ESi(pl,C1,7‘1), N ,ESj(pl, 62,7'2), e ,[Esk(pn, 61,7‘.,,,), e ,ESk_,_m(pn,cl,rn_,_m)T, . }

The Status Information of Applications recorded by Cluster Schedulers:
CS1 - User A: {ESi(ph Cl,Tl),ESH_l (pz,cl,rl), ey
[ESk (pn, C1, T’n)a SRR Esk+ﬁi~(pna cly”'n+m)]}

User B: {ESu(pl,cl,rl),ESu+1(p2,c1,r1),...,}
CS2 - User A: {ESj(pl,Cl,Tl),ESj+1(p2,Cl,7‘2),. . .,}
User B: {ESv(pl,cl,rl),ESv+1(p2,cl,7‘1), ey

[ESs (pn> C1, Tn),) ESs-i—m(pna , Tn+m)]}

Figure 7.1: The applications owned by a user and the execution states
recorded by Cluster Schedulers

with similarities can be classified as special coalitions. The competition for re-
sources between different coalitions can be carried out according to the types
of the coalition. Two types of coalition are defined namely weak coalition and
strong coalition. Weak coalition represents individual groups of programs that
are owned by a common owner. Strong coalition consists of related applications
that are working co-operatively for a common objective.

For example, the identical and independent runs of a simulation with different
input parameters or random number seeds can be executed concurrently to form -
a strong coalition. Applications in a strong coalition are also members of a weak
coalition of the same user.

Figure 7.1 shows the execution states of the applications owned by a user and

100 Combining Parallelism with Replication

the execution states recorded by Cluster Schedulers (CSs). In this example, user
A owns a number of applications that are grouped into coalitions and are run-
ning on two clusters. The execution states inside curly brackets represent the
applications of a weak coalition and the execution states inside square brack-
ets comprise the applications of a strong coalition. Although each user owns a
number of applications, the execution states of applications are hidden from the
user. In other words, users will not know how and where their applications are
running because the applications adapt to the environment automatically. All
the execution states are maintained by the local CSs of the Comedians system
that update the execution states whenever the.applications reconfigure.

7 .3» Fault Tolerance through Replication

Fault tolerance is one of the most important issues for distributed computing
because distributed nodes are subject to system or hardware failure. Parallel
computing in workstation clusters is also vulnerable to failure especially for long
running applications. Recent solutions [LFS93, PL96, KRS96] to the fault toler-
ance problem on workstation clusters are based on total or partial recovery from
the previous checkpointed states of applications.

A simple yet efficient fault-tolerant model that applies the idea of replicated
execution is presented. Replicated execution [SS94b] provides fault tolerance
by having a number of processes running the same program concurrently. The
concept of using replicated execution for fault tolerance have been applied to
distributed operating systems [Ng90] and distributed systems [OL88, MPS89]. In
this section, replicated execution is used to provide fault tolerance for adaptive
parallel applications in the Comedians system.

7.3.1 The Fault-Tolerant Model

In the simplest case, replicated copies of an application run on different work-
stations concurrently until one of them finishes; the fastest application will then
inform the other replicated applications to terminate (Figure 7.2a). The final
result of the application is fault-proof as long as at least one of the applica-
tions can complete its computation. However, the obvious disadvantage of this
method is the requirement of exceedingly large amounts of resources to support
the redundancy.

7.3 Fault Tolerance through Replication 101

N Low
\ Priority

Time i Checkpoint

_ High
7 Priority

Checkpoint

High
Priority

Termination

Termination -

(a (b)

Ol: Signal to pause & transfer internal states
B; Start a new replication

Figure 7.2: (a) Replicated Parallel Applications without Checkpoints;
(b) Replicated Parallel Applications with Checkpoints

To minimize the demand of workstation resources for fault tolerance, the repli-
cated applications form a strong coalition in the Comedians system. Only one
of them in the coalition has a high priority to obtain resources. When the com-
petition for workstations is keen, only the high priority application can compete
with other applications for splitting to higher partitioning levels or running on
fast workstations. The other low priority coalition partners will not consume
excessive resources.

Figure 7.2b describes an example of running three replicated applications concur-
rently. Only one of the applications is initially set as the high priority application.
Checkpoints are introduced to synchronize the progress of the replicated applica-
tions. The coalition partners race with one another until one of them reaches the
checkpoint; the fastest application will stop other applications and transfer its
internal states to them. As a result, the best progress of the applications can be
maintained at every checkpoint by reloading checkpointed states from the fastest
application to the other applications.

102 : E Combining Parallelism with Replication

At each checkpoint, the grains of the fastest application will be synchronized and
a ready signal for a checkpointed state transmission will be sent to the local CS
via the Application Bidder. The local CS will then request the grains of the other
applications to pause and get ready‘for the receipt of the checkpointed states.

If a failure is detected at one of the grains of the high priority application, one
of the low priority applications will switch to high priority. If a low priority
application fails, no action needs to be.taken until the next checkpoint. At the
next checkpoint, the above synchronization procedures will be instigated and a
new low priority replicated application will be restarted by the latest checkpointed
states. The idea of racing between coalition partners is similar to the racing
between grains in the scheme of the Local Workload Distribution for task-parallel
applications described in Section 4.5.3.

7.3.2 Costs and Benefits

This fault-tolerant model for cluster computing is qﬁite different from the con-
ventional approaches to support fault tolerance. The benefits of this model are
listed as:

1. Checkpointed states do not require expensive disk reads and writes because
the states are transferred between applications.

2. No recovery or rollback from checkpoints or core dump files [L.S92] is re-
quired. The only recovery procedure that needs to be performed when a
high priority application fails is to invert the priority of one of the remain-
ing applications. If the number of remaining applications is more than one,
then it is optional whether to restart a new replicated application at the
next checkpoint.

3. The consumption of workstation resources is dependent upon resource avail-
ability. When availability is low, the low priority applications can reconfig-
ure to lower their execution states. Otherwise, the replicated applications
will race with one another and maintain the best progress by transferring
checkpointed states.

4. The fault-tolerant model can easily be implemented on top of the infras-
tructure of the Comedians system. The Cluster Schedulers help to detect
process failures and to synchronize grains at each checkpoint.

7.4 A Case Study of a Strong Coalition 103

The costs associated with this model are as the following:

1. Extra workstations are still needed to run low priority replicated applica-
tions. Despite this requirement, it is common in many situations that slow
machines greatly outnumber the fast machines. Therefore, the low prior-
ity applications can always run on the slow but available workstations. In
an extreme case, each low priority application can run on the minimum
number of workstations that can satisfy the memory requirement of the
application. '

2. There are overheads in global synchronization and communication of all
the replicated applications. However, the cost of the global synchroniza-
tion and communication is still significantly lower than the cost of reading
and writing checkpointed states on disks. Moreover, the need for global syn-
chronization is common for all the fault-tolerant methods using consistent
checkpointing [CL85, LNP91].

7.4 A Case Study of a Strong Coalition

A case study is set up to test the usefulness of forming a strong coalition in the
Comedians system. Although the example applications used in this case study are
the replication of a parallel discrete-event simulation, most of the derived ideas
could be extended to other kinds of applications. The analysis and experimental
results of this case study show that the strong coalition of parallel simulations
provides an effective way of speeding up simulation modelling.

7.4.1 The Replicated Parallel Simulator Model

Many discrete event simulations are regarded as computationally intensive. To
reduce the turn-around time of simulation, parallelism is introduced to perform
simulation operations in multi-processor or multi-computer machines. Parallel
simulation is a promising approach to exploiting potential parallelism in many
simulation modelé. In a parallel simulation, a model is decomposed into logical
processes and then the logical processes execute in distributed processors. A
number of parallel simulation techniques [Fuj90, NF94] have been devised to
formulate statistical results efficiently and accurately.

104 _ Combining Parallelism with Replication

=
=7

Serial Simulation Runs:

n3s[33i3s

(a) The Replicated Serial Simulator (RSS) Model

Assigns

=i
=)

T =l
ermination /
Conditions ZNTV“//

Workstation

' o L™,
=) B

Partitionable Simulatioxi Runs:

Assigns

Results & Tests
Termination
Conditions

(b) The Replicated Parallel Simulator (RPS) Model

Figure 7.3: The RSS and RPS Models

Another approach to parallelism applied to simulation is to run multiple serial
simulation programs on multiple processors in parallel and average the results at
the end of the runs. This approach is referred to as replicated serial simulator
(RSS) [BI87, Hei88, Lin94], which belongs to a wide class of parallelism known as
serial program, parallel subsystem (SPPS) [Pfi95]. The major advantage of this
approach is to provide a simple implementation to reduce the overall turnaround
time of multiple simulation runs. Figure 7.3a shows the RSS model in which the
replication of serial simulation runs are assigned to individual workstations.

However, the RSS model may not be adequate if the time and computational com-
plexity of the simulation is too demanding to be executed serially. For example,
the simulation of a broadband communication network, such as the simulation of
an ATM (Asynchronous Transfer Mode) network as described in Section 4.5.2,

7.4 A Case Study of a Strong Coalition 105

is extremely time-consuming because a great number of packet-level operations
is involved in performance modelling. An effective approach [SL96] to speeding
up the simulation of an ATM network on workstation clusters is proposed in
this section. In this approach, multiple simulation runs are performed by repli-
cated parallel simulators (RPSs) concurrently. This approach aims at combining
the benefits of the parallel simulation approach and the RSS approach, which
are reductions in the turnaround time of each simulation run and the overall
turnaround time of all the runs. By analogy with the SPPS, this parallelism can
be termed as parallel program, parallel subsystem (P3S).

As shown in Figure 7.3b, partitionable simulation runs are assigned to different
groups of workstations. Since the execution platform of the simulation is in a
shared-network environment, the RPSs must compete with other applications for
resources. The size of the workstation groups varies according to the availability
of workstations. An RPS must be reconfigurable at runtime and adaptable to
interference from dynamic workloads generated by other applications or other
RPSs. Moreover, the approach of RPSs demands computational power from a
large number of workstations. Thus availability is an important factor to promote
the deployment of RPSs.

For both the RSS and RPS models, simulation stops when the reported simulation
results of the runs satisfy a termination condition, for example when a desirable
confidence interval of output results is obtained. If the termination condition is
not satisfied, new simulation runs will continue to be assigned for execution.

7.4.2 Performance Evaluation

Figure 7.4 briefly depicts the relation between the overall turnaround time, par-
allelism, and replication of the RPS model. To make the evaluation tractable,
- the RPSs are assumed to be running on a dedicated homogeneous workstation
cluster. The parallelism axis represents the number of workstations on which
RPSs are running, and the replication axis denotes the number of running RPSs.
For a given number of workstations (W), parallelism (P) and replication (R) can
be applied concurrently to minimize the overall turnaround time.

From Figure 7.4, the parallel speedup will be saturated when there is no im-
provement of speedup by increasing the number of processors because of commu-
nication overheads and other bottlenecks. The replication speedup will also be
saturated when the number of machines exceeds the number of simulation runs

106 Combining Parallelism with Replication

(N). The working region (the shaded area) contains all the possible execution
states of RPSs (W < P - R) excluding all the areas where saturation can occur.
The working frontier is the line (W = P - R) on the edge of the working region
where maximum utilization of workstations can be achieved.

T (Overall Turnaround Time)

Saturation Point
of Parallelism

P (Parallelism)

1,1, Tl xy : Working

Frontier

Working
Region:
We<=P *R

Saturation Point
of Replication

N1, T,] R (Replication)

Figure 7.4: Overall Turnaround Time of RPSs

Like the RSS, the first N replications initiated (FNI) scheduling policy [BI87,
Hei88, Lin94] must be applied to the RPSs to obtain statistically accurate simu-
lation results. In this scheduling policy, N results of simulation runs are recorded
from the first N replications initiated, where the value of N is determined by
the termination condition of the simulation. The overall turnaround time for
performing N replications by RPSs using the FNI scheduling method can be es-
timated by equation 7.1. The End Effect' (H,) is the time the last R RPSs have
to wait until the RPS with the longest execution time completes.

1Suppose the execution times of the RPSs are i.i.d. random variables T; (1 < i < R) with
an exponential distribution and means equal to 1. Then the expected value for the longest
residual execution time is (cf., [BI87, Lin94]):

[oe]
1
| — =1 — e—t\R—1 g4 — - —
E[lrélzasx Tl] R te (1—e) dt = E - = Hp

=0 1<i<R "

The overall turnaround time shown in Figure 7.4 excludes the contribution of the End Ef-
fect. If the End Effect is excluded, the overall speedup owing to parallelism and replication is

7.4 A Case Study of a Strong Coalition 107

N
T = — 2 1+ End Effect 7.1
5P 5.(®) (7.1)
N N
~ +H, as S, (R)=-x==~R,
s@ Rt = 5@ =m
> N . 1
- SP(P)'% 1§i§Ri
N 1
= + -
E,(P)-W 2y

Remark No. 1: It can be deduced from the result of equation 7.1
that the overall turnaround time can be minimized if the number of
available workstations (W) and the efficiency of parallelism (E,(P))
are maximized. Therefore, the best execution state of the RPSs
should lie on the working frontier with the maximum efficiency of
parallelism.

If N < W, the saturation point of replication (Figure 7.4) will be
the limiting factor. There are always enough workstations to support
both parallelism and replication.

If N > W, there is a choice between using the RSS and RPS model.
If the time and computational complexity is too demanding for the
simulation to run serially, owing to the memory limitation in a single
workstation say, then parallelism can bring superlinear performance,
that is, over 100% efficiency of parallelism. In these cases, the RPS
model should be deployed. Otherwise, the RSS model is a better
choice because it does not require inter-machine communication so it
can always deliver 100% efficiency of parallelism.

For a competitive environment, the number of available workstations can vary
during the lifetime of an application. As shown in Figure 7.5, the working frontier
shifts according to the value of W. If the value of W changes, the RPSs will have
to adjust their execution states on the working frontier dynamically at runtime.

formulated as the product of parallel speedup and replication speedup:

Souerall = Sp(P) ’ ST‘(R)

108 Combining Parallelism with Replication

Parallelism
A

W is changjng

: Working
...... 1 X3 Frontiers :
: W=P*R
1 X2
X1
Replication

Figure 7.5: The Execution State of RPSs in a Competitive Environment

Remark No. 2: Another advantage of the RPS model over the
RSS model is its adaptability to resource availability. Besides the
capability of deploying the LWD described in Chapter 4, an RPS
can change its execution state through the Comedians system. The
Cluster Schedulers (CSs) of the Comedians system can measure the
runtime efficiency E,(P) of the RPSs and provide them with suit-
able allocations to change the attributes of the execution states. The
attributes are parallelism, cluster type and replication.

If more workstations become available, the grains of an RPS can split
to a higher partitioning level, otherwise the grains merge to a lower
partitioning level or migrate to other workstations if the workstations
on which the grains are running are heavily loaded with external pro-
cesses.

In addition, the number of the RPSs can be altered by restarting a
different number of RPSs, but it is less responsive than the GWD
because once an RPS is started, it will run to completion. On the
other hand, the RSSs can only respond to the environment by program
restart or migration.

7.4 A Case Study of a Strong Coalition 109

7.4.3 The RPSs & the Comedians System

Workstation The Comedians Adaptive Computation
Clusters Agents

Nine-Grain RPS

o

Figure 7.6: The System View of RPSs

The adaptive execution of RPSs is supported by the Comedians system. As
shown in Figure 7.6, the Comedians system provides the resource management
functions in workstation clusters. The competition between RPSs and other ap-
plications is solved by the auctions held by CSs. The RPSs of the same user form
a strong coalition. Other parallel applications of other users that are running on
the Comedians system are regarded as alien applications to the coalition. On
the other hand, the alien applications regard the coalition as independent paral-
lel applications. For example, the parallel block-matrix multiplication program
- shown in Figure 7.6 is an alien application to the coalition of the RPSs.

If the number of simulation runs is greater than the number of RPSs, the RPSs
must be able to restart themselves. Figure 7.7 depicts the interaction between
the CSs, AB and grains of an RPS during a simulation run restart. If the grains
of the RPS have completed the present simulation run, the AB will check whether
the termination condition of simulation is satisfied. If the termination condition
is satisfied, the AB will inform the grains to terminate; otherwise the grains will
wait for a new allocation of workstations before restarting the next simulation run.
The AB also sends a message to its local CS about the completion of its present
run. The local CS then allocates available workstations to the AB and informs

110 Combining Parallelism with Replication

remote CSs to update the status of the RPS. The next simulation run restarts
when the grains receive a new copy of task-to-grain and grain-to-workstation
mappings from the AB.

Local CS and AB of Grains of
other CSs the RPS the RPS

Completion of a
simulation run
: / Simulation
Check Termination / Stopped
Condition H

Local CS informs | }4

other CSs Terminate or Wait

Workstations to start

Ranother simulation run Simulation

Pl Restarted

Time

Task-to-Grain & ~
Grain-to-workstation
Mappings

Figure 7.7: Interaction between the Cluster Schedulers (CSs), Applica-
tion Bidder (AB), and Grains of an RPS during a simulation restart.

7.4.4 Scheduling Policies

The rules of competition are determined by the scheduling policies of the RPSs.
As mentioned earlier in Section 7.4.2, the first N replications initiated (FNI)
scheduling policy is applied by the RPSs to obtain statistically accurate sim-
ulation results. Since the FNI does not specify any control over workstation
allocation, an RPS will compete with all the other applications in the Comedians
system based on its runtime performance. To harness the dynamic computa-
tional resource of workstation clusters, special scheduling policies are proposed
to be built on top of the FNI. These policies are enforced by the CSs of the Co-
medians system. Three scheduling policies are tested and compared in this case
study; they are FNI-SA (Static Assignment), FNI-DA (Dynamic Assignment),
and FNI-DAC '(Dynamz'c Assignment with Coalition,).

7.4 A Case Study of a Strong Coalition 111

In the FNI-SA policy, an RPS can only be executed on the workstations of its
local cluster, but different RPSs can be assigned to different local clusters. On the
other hand, the RPSs in the FNI-DA policy can be executed on the workstations
of multiple clusters dynamically. The FNI-DA and the FNI-DAC policies are
basically the same except that the FNI-DAC policy allows the RPSs from the
same user to become coalition partners.

Since RPSs from the same user have a single objective — the completion of all
simulation runs, the RPSs should not compete with one another for workstations.
Instead the RPSs with earlier initiated simulation runs should have higher priority
than the others to get resources because the simulation terminates as soon as the
first N replications finish their runs. This special condition allows the RPSs to
be executed more efficiently on workstation clusters by forming a coalition. If a
coalition is formed, other parallel applications that are running on the Comedians
system are regarded as alien applications to the coalition.

There are two requirements for being a member of a strong coalition of RPSs:

e An RPS will not compete with other RPSs that are in the same coalition.
In other words, an RPS will not split to a higher partitioning level at the
expense of forcing other coalition partners to merge to a lower partitioning
level or to migrate to slower workstations.

e Among coalition partners, the earliest initiated replication has the highest
urgency to finish. Therefore, an RPS has a priority over other coalition
partners to run on newly available workstations if its simulation run was
initiated earlier than the others.

7.4.5 Experimental Results

In this section, the experiments and results for testing and evaluating the pro-
posed scheduling policies are presented. The experiments are carried out on
DEC3100 and DEC Alpha workstation clusters in which all the workstations are
connected by Ethernet in different segments. The simulation model for the RPSs
is the same as the model of the parallel simulator of an ATM network (PSA). The
RPSs can be partitioned into one grain (partitioning level 0), three grains (parti-
tioning level .1), and nine grains (partitioning level 2). Different simulation runs
of the RPSs have different sets of random number seeds for simulation operations
in the grains.

112 , Combining Parallelism with Replication

The scheduling policies are tested in' two scenarios. In the first scenario, sim-
ulations are running on two homogeneous DEC3100 workstation clusters; each
cluster consists of twenty-four workstations. Figure 7.8 shows the relative speedup
of the FNI-SA and the FNI-DA policies for different numbers of RPSs. The figure
records the maximum, the mean, and the minimum relative speedup of the RPSs
for finishing ten simulation runs;-each run performs a simulation of half a million
time units. The values of the speedup are relative to the execution time of an
RPS in a DEC3100 workstation at partitioning level 0.

7.4.5.1 Comparison between Static and Dynamic Assignments

The performance of the FNI-SA and the FNI-DA policies is similar until the
number of RPSs becomes five. In this case, three RPSs are running on the first
cluster and two RPSs are running on the other. There are not enough work-
stations for all the RPSs to split to the highest partitioning level. As indicated
in Figure 7.8, the speedup is improved by applying the FNI-DA policy in this
situation because the RPSs can relocate their grains to the remote cluster for
execution. The discrepancy of the speedup between the maximum and the mini-
mum is great when four RPSs are running, because two of the RPSs perform one
more simulation run than the other RPSs. Discussion will later concentrate on
the minimum speedup (or the maximum turnaround time) of the RPSs because
it determines the overall turnaround time of the simulation.

Figures 7.9 and 7.10 are used to compare the FNI-SA and the FNI-DA policies
when five RPSs are running on the two clusters of DEC3100 workstations and
the length of simulation time or the number of simulation runs varies. As can be
seen from Figure 7.9, the benefit of reducing the overall turnaround time using
the FNI-DA policy increases gradually when the simulation time is lengthened.
Figure 7.10 shows the difference of these two policies for different numbers of
simulation runs: each simulation run performs half a million simulation time
units.

These two policies are also tested in the situation when an alien application is run-
ning on one of the clusters. The alien application is a block-matrix multiplication
program (BMM) which has the same partitioning levels as the RPSs. Figure 7.11
depicts the relative speedup of the simulation when different numbers of RPSs
are running with the alien application. When the number of RPSs increases to
three, the relative speedup of RPSs for the FNI-SA drops because two RPSs and

the alien application are competing for workstations on the same cluster. The

7.4 A Case Study of a Strong Coalition 113

22 T T T T
«—FNI-
201 «~—FNI-S
18+ ,*—FNI-DA
,9+~FNI-S
7" FNI-D,
16 [

14 | FNI-SA & FNI-DA:

| Max. Value
Mean Value
Min.

12

Value

Relative Speedup

10

2 1 1 1 1
1 2 3 4 5

No. of RPSs

Figure 7.8: Relative Speedup obtained when simulation runs are performed by different

numbers of RPSs (Scenario One: two DEC3100 clusters; each cluster has 24 workstations.)

3000

2500

2000

1500

Turnaround Time (seconds)

1000

500 1 L L 1 1 . 1
600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

Simulation Time

Figure 7.9: Performance of the FNI-SA and FNI-DA policies for different simulation times
(Scenario One: two DEC3100 clusters; each cluster has 24 workstations.)

114 Combining Parallelism with Replication

2000

1800

-
]
o
o

1400

1200

1000

Turnaround Time (seconds)

800

600

00 1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 22

No. of Simulation Runs

Figure 7.10: Performance of the FNI-SA and FNI-DA policies for different numbers of sim-

ulation runs (Scenario One: two DEC3100 clusters; each cluster has 24 workstations.)

13 T T — T
) ’?__“__\ -
121 / i 7
rl
r
nr FNI-DA / i
/

10 / .
Q ¢
3 /
3 - FNI-SA
& of -

-

8 8r i
3

7 - -t

6 - —

5 - -

<
4 1 1 1 1
1 2 3 4 5 6
No. of RPSs

Figure 7.11: Relative Speedup of the FNI-SA and FNI-DA policies when there is one alien

application running on the first cluster (Scenario One: two DEC3100 clusters; each cluster has

24 workstations.)

7:4 A Case Study of a Strong Coalition _ 115

results show that the FNI-DA policy can sustain performance gain by allowing
one of the RPSs to migrate its grains to the remote cluster when there are not
enough workstations available in its local cluster. 'However, when the number of
RPSs is greater than or equal to five, both clusters become overcrowded.

7.4.5.2 The Effect of Coalition Formation

In the second scenario, the simulation is performed on two heterogeneous worksta-
tion clusters — one cluster of thirty DEC3100 workstations and the other cluster
of six DEC Alpha workstations, Since the speedup of an RPS at partitioning level
one in DEC Alpha workstations is higher than the speedup at partitioning level
two in DEC3100 workstations, the RPSs will compete for DEC Alpha machines
even at the expense of merging to a lower partitioning level. As described in Sec-
tion 7.4.4, the FNI-DAC policy is a modified version of the FNI-DA policy, which
is proposed to facilitate the coalition of the RPSs. Experiments are conducted
to compare the FNI-DA policy with the FNI-DAC policy. Figures 7.12 through
7.15 depict the performance of the policies when there are three running RPSs.

Figures 7.12 and 7.13 illustrate the execution time of the three coalition partners -
of RPSs for different periods of simulation run. The shaded and white time slots
depict the allocations of DEC Alpha and DEC3100 clusters respectively. Since
the six DEC Alpha workstations can only accommodate two RPSs at partitioning
level one at the same time, one of the RPSs has to execute in the DEC3100 cluster.
When an RPS running on the DEC Alpha cluster terminates, the RPS with the
earliest initiated time will migrate from the DEC3100 cluster to the DEC Alpha
cluster.

The End Effect of the RPSs will become significantly important in this set-
ting of heterogeneous clusters because the difference in processing speed between
DEC3100 and DEC Alpha workstations is quite great. The formation of a coali-
tion can reduce the End Effect because the earliest initiated RPS can always
execute in the faster cluster. The figures show that the RPSs run on the DEC
Alpha cluster alternately.

Owing to the competition for workstations in the Comedians system, it is possible
that some RPSs are constantly excluded from running on DEC Alpha machines.
As a result, the overall turnaround time will be restricted by the slowest RPS.
This special case of the FNI-DA policy is compared with the FNI-DAC policy.
Figures 7.14 and 7.15 suggest that the difference in the overall turnaround time

116 Combining Parallelism with Replication

T T 1 T T T

Execution Time N
in DEC3100

Execution Time
in DEC Alpha

RPS3

RPS2

RPS1

0 500 1000 1500 2000 2500 3000 3500

Time in Seconds.

Figure 7.12: The execution time of three RPSs in DEC3100 and DEC Alpha clusters; each
simulation run takes 0.75 million time units (Scenario Two: two heterogeneous clusters; one
has 30 DEC3100 workstations, the other has 6 DEC Alpha workstations.)

Execution Time
in DEC3100

Execution Time
in DEC Alpha

" 51 0 1 _man B

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time in Seconds

Figure 7.13: The execution time of three RPSs in DEC3100 and DEC Alpha clusters; each
simulation run takes 1 million time units (Scenario Two: two heterogeneous clusters; one has
30 DEC3100 workstations, the other has 6 DEC Alpha workstations.)

117

7.4 A Case Study of a Strong Coalition

Turnaround Time (seconds)

2200 T K T T T T,
2000 71
1800 T
FNI-DA E—
1600 (with one RPS being b
excluded f£rom running in
DEC Alpha works stions
1400 1

1200

1000

800

0
600000 800000

FNI-DAC
(With Coalition)

1 1 L 1]

1e+06 1.2e+06 1.4e+06 1.6e+06
Simulation Time

Figure 7.14: Performance of the FNI-DA and FNI-DAC policies for different simulation times
(Scenario Two: two heterogeneous clusters; one has 30 DEC3100 workstations, the other has 6
DEC Alpha workstations.)

Turnaround Time (seconds)

5500 T T T T T T T T T

5000 [A

4500 - // J

W w B
(o] o [}
o o o
o o o

N
[43]
(@]
o

\S]
o
o
o

L -~
FNI-DA & FNI~DAC /
Each run has 1 million t:lme,'i;ni

FNI-DA & FNI-DAC
ach run has 0.75 million time urits

FNI-DA & FNI-DAC A
Each run has 0.5 million time’'units

1 1 1 1 1 1 1 1 1

4 6 8 10 12 14 16 18 20 22
No. of Simulation Runs

Figure 7.15: Performance of the FNI-DA and FNI-DAC policies for different numbers of

simulation runs (Scenario Two: two heterogeneous clusters; one has 30 DEC3100 workstations,

the other has 6 DEC Alpha workstations.)

118 , Combining Parallelism with Replication

between these two policies rises slowly when the length of simulation time per run
or the number of simulation runs increases. It is found that the FNI-DAC policy
generates a better overall performance on heterogeneous workstation clusters be-
cause the priority of workstation allocation of the FNI-DAC policy is determined
by the order of initiation. ‘

7.5 Summary

Replication was found to be a useful technique to complement parallelism for a
multi-user, multi-parallel program environment. Replicated applications owned
by a user can be grouped as a weak coalition or a strong coalition to facilitate
better resource management. Moreover, an efficient way of supporting fault tol-
erance can be provided by replication..

RPSs (Replicated Parallel Simulators) were suggested as part of a case study of
a strong coalition to speed up the simulation of an ATM network. It can be
observed from performance evaluation that the RPSs can greatly enhance perfor-
mance for computationally intensive simulation. The design and implementation
of a runtime system which harnesses the aggregate computing power of worksta-
tion clusters by the RPSs in the Comedians system were presented.

Scheduling policies were proposed to be built on top of the FNI (First N replica-
. tions initiated) policy so as to provide better resource allocations for the simu-
lation runs of the RPSs. The policies were tested and evaluated by experiments
in the scenarios of homogeneous and heterogeneous workstation clusters. The
experimental results show that the overall performance of the simulation can be
enhanced significantly by applying replication to parallel simulation modelling.
The results also indicate that the overall performance can further be improved
if (i) the RPSs can relocate their grains to remote clusters dynamically; (ii) the
RPSs can form a coalition so that the priority of workstation allocation decreases
with the order of initiation.

Chapter 8

Conclusion and Further Work

This dissertation has presented a framework to support adaptive parallelism on
heterogeneous workstation clusters. The framework comprises software support
for adaptive workload distribution and system support for parallel application
scheduling. By managing replicated applications based on the framework, a
multi-user, multi-parallel program environment was created. This chapter con-
cludes the dissertation and suggests scope for further work.

8.1 Summary

Chapter 3 described two different metrics to structure parallel workloads in a
dynamic environment. The chapter proposed a reconfigurable software structure
that provides the basis of adaptability to dynamic resource availability and work-
load imbalances. The structure allows applications to decompose into tasks and

the tasks can be grouped into grains. The performance_of applications can be.

optimized by suitable task-to-grain and grain—to—workstation mappings.

In Chapter 4, the schemes of workload distribution, namely Local Workload Dis-
tribution (LWD) and Global Workload Distribution (GWD), were designed for
distributing workloads based on the above reconfigurable structure. The LWD
distributes workloads locally between neighbouring grains and the GWD resolves
significant workload imbalances by grain migration, splitting, and merging. The
schemes were tested on different examples of data-parallel and task-parallel ap-
plications in situations subjected to workload imbalances arising from dynamic
workload interference and heterogeneity.

120 Conclusion and Further Work

Chapter 5 presented a system called Comedians that can maximize the speedup of
individual parallel applications and, at the same time, allocate workstations fairly
and efficiently to the applications. There are two types of agent processes in the
Comedians system, namely Cluster Scheduler (CS) and Application Bidder (AB).
The CS manages the workstations in a cluster and the AB provides an interface
between an application and the CSs. The mechanisms of allocation are auctions
and bidding which are driven by competition between applications. No prior
knowledge about the runtime behaviour of applications is required because the
values of bids are formulated according to the execution times of grains collected
by the ABs. Each application responds to external workload and auction results
through dynamic reconfiguration. The experimental results showed that stable
or Pareto efficient allocations can be achieved through competition in different
scenarios.

The functions of the Comedians system were enhanced in Chapter 6 so that
workstations in heterogeneous clusters can be utilized by parallel applications as
a single virtual machine. Auction and bidding are carried out across multiple
clusters. Execution states were introduced to represent the status of running
applications in a simple and efficient way.

Finally, Chapter 7 introduced the concept of combining parallelism with repli-
cation. Coalitions are formed to organize replicated parallel applications. The
concept enables better management of applications and facilitates efficient fault
tolerance. A case study was carried out to realize the concept by implementing
special scheduling policies for the model of replicated parallel simulators. The ef-
fectiveness of the scheduling policies was demonstrated by experiments performed
with the Comedians system.

In brief, the design, implementation, and evaluation of the following novel and
related ideas were presented in this dissertation:

1. A software structure and schemes of adaptive workload distribution that
optimize the performance of different types of parallel application by dy-
namic reconfiguration at runtime.

2. A scheduling system that facilitates fair and efficient resource allocation to
parallel applications on heterogeneous workstation clusters through compe-
tition.

3. The management of replicated parallel applications by coalition formation.

8.2 Further Work : 121

4.

8.2

A multi-user, multi-parallel program environment on heterogeneous clus-
ters.

Further Work

Automatic generation of the reconfigurable software structure
In the current implementation, it is a ‘programmer’s responsibility to define
boundaries between tasks and grains, and to choose a suitable workload
distribution scheme for a particular parallel programming paradigm. The
burden of programmers could be reduced by a special compiler that can gen-
erate boundaries for possible reconfigurations and apply a suitable workload
distribution scheme automatically.

Large scale experiments of auction and bidding

The maximum number of workstations involved in the current experiments
for the Comedians system is about sixty. Further experimental work on
studying the dynamics of application competition could be conducted on a
larger network with higher heterogeneity in machines and connections. A
theoretical study of the interaction of adaptive parallel applications in the
Comedians system could also be investigated.

Cluster computing for next-generation applications

The examples of parallel applications used for illustrations and experiments
in this dissertation were mainly scientific computational problems. The
benefit of solving new applications by workstation clusters could be inves-
tigated. These applications may require high computational power and the
exploration of large data sets through the Internet, such as Web servers,
video servers, and data-mining engines. To meet the dynamic demand of
these applications, a variable number of high-performance workstations in-
terconnected with a high-speed network can work cooperatively as a highly
scalable and available virtual server.

Relation between efficient data transfer and resource scheduling
For real-time applications, response time is an important factor for per-
formance. The time for data transfer such as parallel I/O latency and
communication protocol overheads should be minimized. New scheduling
algorithms for cluster computing could be derived to hide the data transfer
time by workload and I/O optimization.

122 Conclusion and Further Work

e Distributed Artificial Intelligent Agents

In the dissertation, parallel applications in the Comedians system can be
regarded as adaptive computation agents for intensive scientific computing.
Besides scientific computing, applications that demand multiple require-
ments of resources such as database searching and continuous media pro-
cessing will require reasoning power to handle highly complicated resource
negotiation. On the other hand, the Comedians system could be modified
to provide resource arbitration of CPU time, communication bandwidth,
and storage capacity between these applications. The challenge of this sys-
tem is to organize applications that demand diverse but correlated resource
requirements.

8.3 Conclusion

This dissertation has examined an integrated framework to implement a multi-
user, multi-parallel program environment on workstation clusters. Experimental
studies have shown that the framework enables adaptive parallel applications to
harness the resources of heterogeneous workstation clusters as a single virtual
machine.

Three distinct but complementary functions have been set up to achieve adaptive
parallelism, namely the adaptability, resource allocation, and coalition formation
of parallel applications. First, the dissertation has shown that both data-parallel
" and task-parallel applications which are based on the reconfigurable software
structure can reconfigure adaptively according to resource availability by apply-
ing suitable tailor-made workload distribution schemes. Secondly, the Comedians
system has been shown to be effective and flexible in allocating workstations to

competing applications through auctioning and bidding. Based on the results of '

auctions, individual applications can respond to different allocations by dynamic
reconfiguration. Finally, fault tolerance and overall performance enhancement
capabilities in managing replicated parallel applications through coalition forma-
tion have been demonstrated. '

The functions of adaptability and resource allocation have separate control over
parallel applications so that detailed design of individual functions can be imple-
mented and refined independently. However, they work co-operatively to facili-
tate a unified support for adaptive parallelism.

Appendix A

Partitioning and Mapping using
Market Price

A.1 Introduction

The algorithms of partitioning and mapping that use market price as a metric
for structuring workloads are presented in this appendix. Applications are led
through two phases: partitioning and mapping. The partitioning phase includes
two stages: granulation and merge. The granulation stage involves computing
the proportion of the application and the number of grains for each workstation
cluster; the merge stage groups the tasks into grains. In doing so, the workstation
cluster size, processing, interference, and communication prices incurred by the
individual workstations need to be considered. This partitioning phase is similar
to the clustering algorithms proposed in [GE76, Efe82, BNG92]. These cluster-
ing algorithms minimize interprocess communication cost by grouping processes
into clusters. However none of these algorithms evaluate the computation and
communication capacity using dynamic information, such as the market price,
that can reveal the current supply of and demand for the resources.

Following the partitioning phase, each selected workstation cluster will have a
number of grains to be properly mapped to the constituent workstations. The
mapping phase produces the best possible distribution based on the price de-
termined by market rules. It, too, involves two stages: initial assignment and
dynamic grain exchange between the workstations to improve the initial assign-
ment. The components of the price involve computation, communication, and

124 Partitioning and Mapping using Market Price

other factors that may be preséht in market rules, and which would normally show
variations because of the supply of and the demand for the resources concerned.

The algorithms of the partitioning and mapping phases can be re-activated when-
ever the computation or communication requirements of the application change
or the computation or communication capacity of the workstation cluster varies.
In the latter case, the prices can reveal the availability of resources dynamically.

Figure A.1: The Task Graph of an Application

Let the application be represented by a triple © = (T, E,C) where T is a set
of tasks, F is the set of task execution times, and C is the set of inter-task
communication requirements. The DCS is a set of clusters, I' = {I';|s € n}. A .
workstation cluster is a set of workstations, I'; = {W;;,|i € n,j € m;}. The
workstations are related to each other by the price of unit data communication
between them. Obviously, the price would be infinity if they were not related at
all. Figure A.1 shows an example of the connected task-graph of an application.

The following list documents all the symbols used in the rest of the appendix:

A.2 Partitioning Algorithm : 125

Ci;; Communication requirement (no. of bytes) between two tasks
Cr Total communication requirement among tasks of an application
E; Task Execution requirement (no. of instructions)

E7 Total task execution requirement of an application

Nz Total number of tasks

N Total number of clusters

Wr Total number of available workstations

Mg No. of available workstations (ws) in a workstation cluster

PP unit processing price of a workstation cluster

T
P} unit communication price of a workstation cluster
P?. unit communication price between two ws in different clusters
G Total number of grains
gi No. of grains in a workstation cluster
r; Total grain-size in a workstation cluster -
t¥ Maximum expected processing time of an application
Minimum expected processing time of an application
ty Maximum expected communication time of an application
te Maximum expected inter-cluster communication time
X; ws processing capacity (instr./sec.) offered by a workstation cluster
Y; ws communication capacity (bytes/sec.) offered by a workstation cluster

Z;; inter-cluster communication capacity (bytes/sec.) offered by two workstation clusters

A.2 Partitioning Algorithm

A.2.1 = Granulation of the Application

Since each grain is run on a single workstation, the size of a grain (grain-size) is
an indication of the capacity offered by the hosting workstation. The higher the
capacity, the larger will be the grain-size. When an application is mapped onto
a number of workstation clusters, the algorithm shown in Figure A.2 computes
the total grain-size (r,) and the number of grains (g;) for a workstation cluster
b. The prelude to the algorithm is to compute the normalized total price for
each workstation cluster, which is a function of computation and communication
capacities of the cluster. The workstation clusters (I'¥) are sorted in ascending
order of their normalized total prices as indicated at the bottom end of the
algorithm.

First, for each workstation cluster b (initially, b=1), the algorithm chooses g, be-
tween the lower and upper bounds imposed by the application and workstation

126 Partitioning and Mapping using Market Price

Cluster_Grain (b,r;) : initially the cluster number b=1, the grain size ry =1
Begin
Mb — f Xb 2 “Th]
Mb — f Xy t] Tb]
gy My - f (P ;)
While [gé > (Mot . g(P)))]
If (g5 > Mp)
G g1
Else
Termination : fail to satisfy execution requirements
If (g5 > My)
If (b=N) or [g > (FrZpeste (P)]
Termination : fail to satisfy execution requirements
Else
Thp41 € T * (1 — %f—)

Th <— Tp* A;,"
gp Mg‘
Cluster_Grain (b+ 1,7p41)
Else
9 +— 9
End

Definition of Symbols :

I'* = {T¥|i € n}, and I'{ are arranged in sorted normalized total price order :

o r c
(% PP+ Pt)<(x+1 Pf+1+7‘,i‘:-13’f+1)

f(PPy, (Pt) and h(Py,,,) are the utilization rate of average processing power,
communication capacity, and inter-cluster communication capacxty, and P}

bymaz>’
£
and By, 005 Py mag are the maximum prices of the respective resources.
P Pt
Py — Y — b b4-1
f(P) Ma Q(P) pt “: h(bb+1)— P rmas

Figure A.2: Granulation of the Application

A.2 Partitioning Algorithm 127

execution data. Second, it checks whether the inter-workstation communication
requirement is also satisfied. Since the average communication cost is propor-
tional to gy, the communication constraint can be represented as Y;-g(Pf) > %’;LN%
If the communication requirement is not satisfied, the value of g, will be re-
duced, otherwise it will check whether g, is greater than the number of available
workstations in the workstation cluster. If the computation and communication
capacities are insufficient, the algorithm will split the application into grains of
appropriate sizes to be allocated to this cluster. Grains can be assigned to other
workstation clusters only if the inter-cluster communication requirement is satis-

fied. The algorithm runs recursively until the entire application is granulated.

A.2.2 Merging Grains

The second stage of the partitioning algorithm is to merge tasks into G grains
for each I'j according to the values of g;. The merging algorithm, described in
Figure A.3, starts with selection of nuclei for each grain. The nuclei are the
most demanding tasks in terms of computation and communication costs (®)..
Each nucleus may merge with a number of non-nucleus tasks. With each merge,
the computation and communication costs of the merging non-nucleus tasks are
added to those of the nucleus. Out of the T' tasks, G nuclei aré chosen. From
b=1to b= N, g, nuclei are allocated to I'{. The nuclei will be selected one by
one, and the one with the highest value of ® will be selected first.

The merging decision is determined by the value of, so called, decoupling force (df)
between a nucleus and a non-nucleus task. The df between ¢; and ¢;, consists
of two components as shown in Definition of Symbols section of the merging
algorithm in Figure A.3. The first term indicates the computation cost of merging
two tasks. The second term is the difference between the communication cost of
running two tasks that have been merged and the communication cost of running
two separated tasks.

The interference costs account for the cost of incompatibility of task pairs [Lo88].
I? is called the processor-based interference cost incurred by process switching
and synchronisation; I°! is the interference cost incurred by interprocess commu-
nication. In addition, when two communicating tasks are executed on the same
processor, the overhead in multiplexing/demultiplexing the aggregate communi-
cation data should also be considered as illustrated in (Figure A.4). I°2 represents
this overhead which possesses the following property :

128 Partitioning and Mapping using Market Price

ni+n;—2 ni nj
SOOI, > Y I3, D) + > I3, 0) (A1)
] 1 1
Higher values of df represent greater advantage in separating the tasks, thus,
favouring parallel execution. Therefore, merging two tasks with the minimum
values of df will maximize the benefit of concurrency, under the computation
and communication constraints of the workstation clusters. For a task t;, it will
merge with a nucleus ¢; if the decoupling force df (7, j) is the minimum.

In summary, the decoupling force plays an important role in the merging algo-
rithm. There are three distinctive advantages of using it as a metric in merging
a task with a nucleus:

1. Load Balancing _
If only computation cost is taken into consideration, a task will merge with
a nucleus with the smallest computation cost. In this case, a task is more
likely to merge with a smaller nucleus or a nucleus allocated to a more
lightly-loaded cluster than otherwise.

9. Minimization of Communication Overheads

If two tasks are merged, the cost of inter-workstation communication be-
tween them can be saved. However, if tasks are assigned to the same work-
station, they also share the same communication facilities, such as the com-
munication processor. Conversely, the tasks assigned to different processors
will not compete for the same communication facilities. Nevertheless, the
inter-workstation communication can be expensive. The difference between
merging and parallel execution is evaluated by the decoupling force.

3. The Relative Importance of Processing and Communication
The prices of computation and communication are used to measure the rela-
tive importance of computation and communication. Use of the decoupling
force gives appropriate weight to balancing the processing load as against
minimizing communication overheads.

Figure A.5 shows an example of merging the application shown in Figure A.1
into grains. In this example, the results of the granulation algorithm on the
application shown in Figure A.1 is {g;} = {4,3,1}, meaning that four grains,
three grains and one grain will be mapped into the first, second, and third cluster
respectively. These clusters are the elements of the set I'*. The grains will then be
allocated to workstations in three workstation clusters by the mapping algorithm.

A.3 Mapping Algorithm 129

Merging
Begin
Select G tasks from T to be nuclei with highest values of &,
among them select g, nuclei to I,
For every t; € T except the nuclei
For every nucleus t; allocated to I'j
Calculate decoupling force df (4, j)
Merge t; into t; with the minimum value of df (i, j),
(break ties by smaller value of E;)
Select gy nuclei to be allocated to I'j as grains
End

Definition of Symbols :
G= Zi\; Gi,
®=E;-F +(3;Cyj) - By,
df (i, 5) = [(Ei + E;) + IP(6,)] - Py +
{026) + 19) ~
(S92, 1) + S 1203,1) + Cigl} - B
where I? is processor-based interference cost,
I°! is interference cost due to intertask communication, -

I°? is interference cost due to multiplexing and demultiplexing,
n; is the number of communication links of task t;

Figure A.3: Merging Grains

A.3 Mapping Algorithm

A.3.1 Initial Assignment

After the merging process, the mapping algorithm that assigns the allocated
grains into workstations will be executed on one of the workstations in each
workstation cluster, called the cluster controller. The algorithm (Figure A.6)
has two parts: initial mapping and dynamic exchange. In the first part, the grain

130 Partitioning and Mapping using Market Price

n, comm. links n 4 comm. links

i

/ Merging t, and t 3

<“------

n,+ ny- 2 comm. links

/\

Figure A.4: Merging of two tasks

with the maximum total cost of computation and communication is assigned
to the workstation with the minimum total price. The processing price of the
workstation (ng) is then updated according to the proportion of consumption
as in Equation A.2.

X
P, = PP-(1+5x) (A.2)
y y Xb

where X7 is the total computation capacity of a workstation in T'j.

After the first assignment, the next adjacent grain with the maximum total cost
is assigned to the workstation with the minimum total price. Besides the pro-
cessing price, the link communication prices (P,f,aﬁ) along the path between the
workstations to which the two adjacent grains are assigned are also updated by
Equation A.3. This mapping process is repeated until all the grains have been
mapped.

Y, .
b
where W, o and W, g are the adjacent workstations along the path between work-
stations W, and Wy to which ¢; and ¢; are assigned respectively, and YT is the

total communication capacity of a workstation in I'j.

A.3 Mapping Algorithm ‘ 131

To cluster #1

cluster #1 cluster #2 clugter #3

{number of grains for cluster i} = (91) = {4,3,1}

Figure A.5: An Example of the Merge Stage |

A.3.2 Dynamic Exchanges

The second part of the mapping algorithm involves dynamic exchanges to im-
prove the initial mapping. First, the cluster controller searches for the maximum
difference between the cost of grain execution in the cluster. If the difference
is greater than € and the number of dynamic exchanges for this mapping is less
than 7, then evaluation for grain exchange continues. The values of € and 7 are
specified constants. Secondly, if the maximum gain in a grain exchange (¥,,) is
greater than e, then the grain exchange will be performed. After each exchange,
the processing and communication prices related to the exchange are updated
accordingly. The algorithm repeats until all the differences of the total prices are
not greater than €, or the number of grain exchanges is equal to 7. Figure A.7
depicts the formation of the four grains that are allocated to cluster number 1
and the mapping process of these grains into workstations.

132 . Partitioning and Mapping using Market Price

Initial assignment
Begin
Select a grain t; with Max(P} - E; + (32, Cij) - PY)
Assign t; to W5 € Ty with Min(F}, - B; + (35; Cij)- Max(Fy ..,)),
where W, , € T} is an adjacent nodes of W ¢
Update processing price of W), ; by applying Eqn. A.2
While there are any grain t; which have not been assigned
Select t; adjacent to t; with Max(Pf - E; + Cy; - P})
Assign t; to W,y € T with Min(Pf, - Ej + Cij - Pl ;)
Update processing prices of Wy, by applying Eqn. A.2.
Update link communication prices along (Wp o, W,y)
to which ¢; and ¢; are assigned by applying Eqn. A.3
If all the adjacent grains of ¢; have been assigned,
Select the ws to which ¢; is assigned as W 4,

and the assigned grain with Max(Fy - E; + (3_; Ci) - Fy) as t.
End

Dynamic Exchange
Begin
While in the current mapping,
there exists (Maz(®;) — Min(®;,) >¢€) & (No. of Exchange <17) s.t.,
ti,t; €T and Wb,x;Wb,y € Fg,
If Max(¥5,,) > €

Perform task exchange between W, ; and Wy,
Update processing prices of the exchanged tasks by applying Eqn. A.2

Update link communication prices along (Wp, 5, W) by applying Eqn. A.3
Else

Termination.
End

Definition of Symbols :

®iz = E; - PY, + 3. (Cix - P 1.2)

oy = (Piz — Bje) + (Bj,y — Piy)

where ®; ; is the total price of executing ; in Wj g,

Pf; ¢, 1s the price on the path (W} ., Ws,2), if t; was assigned to Wp,z,

tx is the adjacent grain to ¢;,

¥,y is the gain incurred, if the tasks ¢; on Wy, and t; on Ws , are switched.

Figure A.6: Mapping Algorithm

A.4 The Complexity of the Algorithms _ 133

Figure A.7: An Example of the Mapping Algorithm Executed in Cluster #1

A.4 The Complexity of the Algorithms

For the partitioning phase, the function Cluster_Grain(b,r;) of the granulation
algorithm will be executed recursively until the values of g, are all formulated for
N workstation clusters. Thus the time complexity of the granulation algorithm is
O(N). Since the decoupling force of the merging algorithm has to be calculated
between every non-nuclei task and every nucleus, the complexity is bounded by
O(G - Nr), where G is the total number of grains and Ny is the total number of
tasks (usually Np > G).

For the mapping phase, the time complexity of the initial assignment is O(G).
To examine the requirement of grain exchange, the calculation of total cost for
grain execution demands O(7n - G?) number of operations. However, the time
complexity of these operations can be reduced to O(g?) if all cluster controllers
perform dynamic exchange for mapping grains onto their workstations in parallel.

134 Partitioning and Mapping using Market Price

A.5 Summary

This appendix provides solutions to the problem of partitioning and mapping in
a dynamic environment, but with simplification and flexibility provided by the
market rules which are often translated into market price. The approach includes
two main phases: partitioning and mapping. In each phase, low complexity
algorithms are developed to enable fast reiteration. The algorithms could allow
dynamic adjustments, effected by the changes in the workstation clusters and/or
the applications. All that is required is to incorporate the changes into the new
auction and bidding prices of the commodities (computation and communication
capacities).

Bibliography

[ABL*95]

[ACD96]

[ACPY4]

[ADV+95]

[ATSS]

[AYHI96]

[BBY2]

J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Stafkey, and
P. Stephan. Dome: Parallel programming in a heterogeneous multi-
user environment. Technical report, CMU-CS-95-137, School of Com-
puter Science, Carnegie Mellon University, 1995. (Cited on page 14).

C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel. Treadmarks: Shared memory computing

on networks of workstations. IEEE Computer, pages 1828, February
1996. (Cited on page 10).

T.E. Anderson, D.E. Culler, and D.A. Patterson. A case for NOW
(Networks of Workstations). Technical report, UC Berkeley, 1994.
(Cited on page 7).

R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Ander-
son, and D.A. Patterson. The interaction of parallel and sequen-
tial workloads on a.network of workstations. In Proc. of Sigmet-
ric’95/Performance’95, pages 267-278, 1995. (Cited on page 63).

R. Agrawal and H. V. Jagadish. Partitioning techniques for large-
grained parallelism. IEEE Trans. on Computers, 37(12):1627-1634,
1988. (Cited on page 20).

D. Andresen, T. Yang, V. Holmedahl, and O.H. Ibarra. SWEB:
Towards a scalable world wide web server on multicomputers. In Proc.
of 10th International Parallel Processing Symposium, IEEE IPPS’96,
pages 850-856, 1996. (Cited on page 6).

E.K. Browning and J.M. Browning. Microeconomic theory and appli-
cations. New York: Fourth Edition, Harper-Collins Publishers Inc.,
1992. (Cited on page 69).

136

BIBLIOGRAPHY

[BDG*91] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V.S. Sunderam.

[BG92]

[BI87]

[BKMS89]

[BL92]

[BNG92]

[Bok81]

[BR89)

[CCK+95]

Solving computational grand challenges using a network of heteroge-
neous supercomputers. In Proc. Fifth SIAM Conference on Parallel
Processing, 1991. (Cited on page 6).

A. Bhimai and S. Ghosh. Modeling and distributed simulation of com-
plex Broadband ISDN networks under overload on loosely-coupled
parallel processors. In Int. Conf. Comm., IEEE Comm. Society,
pages 1280-1284, 1992. (Cited on page 33).

V.C. Bhavsar and J.R. Issac. Design and analysis of parallel Monte
Carlo algorithms. SIAM Journal on Scientific and Statistical Com-
puting, 8:573-95, 1987. (Cited on pages 104 and 106).

M. Bozyigit, U. Kalaycioglu, and M. Melhi. Load balancing in dense
distributed systems. In 4th International Symposium on Computer
and Information Sciences, pages 345-361, Cesme, October 1989.
(Cited on page 20).

R. Bulter and E. Lusk. User’s guide to the P4 programming system.
Technical report, ANL-92/17, Argonne National Laboratory, 1992.
(Cited on page 8).

N.S. Bowen, C.N. Nikolaou, and A. Ghafoor. On the assignment
problem of arbitrary process systems to heterogeneous distributed
computer systems. IEEE Trans. on Computers, 41(3):257-273, 1992.
(Cited on pages 20,123).

S.H. Bokhari. A shortest tree algorithm for optimal assignments
across space and time in a distributed processor system. IEEE Trans.
on Software Engineering, 7(6):583-589, 1981. (Cited on pages 11 and
82).

L. Bomans and D. Roose. Benchmarking the ipsc/2 hypercube multi-
processor. Concurrency: Practice and Ezperience, 1(1):3-18, Septem-
ber 1989. (Cited on page 51).

J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole.
MPVM: A migration transparent version of PVM. Technical report,
CSE-95-002, Computer Sci. & Eng. Dept., OGI, 1995. (Cited on
pages 14 and 43).

BIBLIOGRAPHY 137

[CCO*95]

[CFGK95]

[CG72)

[CG89)]

[CGY2]

[CGY3)]

[CHO3]

[CHI]

[CKO+94]

[CL85]

[Cof74]

D.L. Clark, J. Casas, W. Otto, R.M. Prouty, and J. Walpole. Schedul-
ing of parallel jobs on dynamic, heterogeneous networks. Technical
report, OGI, 1995. (Cited on page 15).

N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive
parallelism and Piranha. IEEE Computer, January 1995. (Cited on

page 14).

E.G. Coffman and R.L. Graham. Optimal scheduling for two-
processor systems. Acta Informatica, 1:200-213, 1972. (Cited on
pages 11 and 82).

N. Carriero and D. Gelernter. Linda in context. Communications of
ACM, 32(4), April 1989. (Cited on page 10).

N. Carriero and D. Gelernter. Coordination languages and their sig-
nificance. Communications of ACM, 35(2), Feb. 1992. (Cited on

page 9).

A. Chai and S. Ghosh. Modeling and distributed simulation of a
Broadband-ISDN network. IEEE Computer, 26(9):37-51, September
1993. (Cited on page 33).

D.R. Cheriton and K. Harty. A market approach to operating
system memory allocation. Technical report, URL: http://www-
dsg.standford.edu/Publications.html, Standford University, 1993.
(Cited on page 59).

CHIMP, Edinburgh Parallel Computing Center.
ftp://ftp.epcc.edu.ac.uk/pub/chimp/release/chimp.tar.z. (Cited on
page 8).

J. Casas, R. Konuru, S. W. Otto, R. Prouty, and J. Walpole. Adaptive
load migration systems for PVM. In Proc. of the Supercomputing ’94,
1994. (Cited on page 43). '

K.M. Chandy and L. Lamport. Determining global states of dis-
tributed systems. ACM Trans. on Computer Systems, 3(1):63-75,
Feb. 1985. (Cited on page 103).

E.G. Coffman. Computer and Job-Shop Scheduling Theory. New
York: Wiley, 1974. (Cited on pages 11 and 82).

138

BIBLIOGRAPHY

[CS93]

[DMs8]

[DOY1]
[DOSW96]

[DPCS95]

[DSP+95]

[EASS95]

[EBBV95]

[Efe82]

[FIL*88]

M. Calzarossa and G. Serazzi. Workload characterization: A sur-
vey. Proceedings of IEEE, 81(8):1136-1150, August 1993. (Cited on

page 17).

K.E. Drexler and M.S. Miller. Incentive engineering for computa-
tional resource management. In Huberman B.A., editor, The Ecol-
ogy of Computation. Amsterdam:North-Holland, 1988. (Cited on

page 59). :

F. Douglis and J. Ousterhout. Transparent process migration: Design
alternatives and the Sprite implementation. Software - Practice and
Ezxperience, 21(8), August 1991. (Cited on page 63).

J.J. Dongarra, S.W. Otto, M. Snir, and D. Walker. A message passing
standard for MPP and workstations. Communications of the ACM,
39(7):84-90, July 1996. (Cited on page 9).

P.W. Dowd, F.A. Pellegrino, T.M. Carrozzi, and S.M. Srinidhi. Ge-
ographically distributed computing: ATM over the NASA ACTS
Satellite. In IEEE MILCOM’95, October 1995. (Cited on page 13).

P.W. Dowd, S.M. Srinidhi, F.A. Pellegrino, T.M. Carrozzi, D.L.
Guglielmi, and R. Claus. Impact of transport protocols and mes-

sage passing libraries on cluster-based computing performance. In
IEEE MILCOM’95, October 1995. (Cited on page 7).

G. Edjlali, G. Agrawal, A. Sussman, and J. Saltz. Data parallel
programming in an adaptive environment. Technical report, CS-
TR-3350, University of Maryland Inst. for Advanced Comp. Studies,
1995. (Cited on page 14). ‘

T. Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level
network interface for parallel and distributed computing. In ACM
SIGOPS’95, pages 40-53, 1995. (Cited on page 7).

K. Efe. Heuristic models of task assignment scheduling in distributed
systems. IEEE Computer, 15(6):50-56, 1982. (Cited on page 123).

G.C. Fox, M. Johnson, G.‘Lyzenga, S. Otto, J. Salmon, and D.W.
Walker. Solving Problems on Concurrent Processors. Prentice Hall,
1988. (Cited on page 18).

BIBLIOGRAPHY 139

[FK94]

[For91]

[For93]

[Fox89]

[FS93]

[Fujoo]

[FYNS8S|

[GBD+93)

[GCo1]

[GET6]

[GI79)]

J. Flower and A. Kolawa. Express is not just a message passing

system: current and future directions in Express. Parallel Computing,
20:597-614, 1994. (Cited on page 8).

Fortran 90, international organization for standardization and inter-
national electrotechnical commission. [ISO/IEC 1539:1991 (E)], 1991.
(Cited on page 10).

High Performance Fortran Forum. High Performance Fortran Lan-
guage Specification. Scientific Programming, 2(1-2):1-170, 1993.
(Cited on page 10).

G.C. Fox. 1989- the first year of the parallel supercomputer. In Proc.
of the Fourth Conference on Hypercubes, Concurrent Computers, and
Applications, pages 1-37, 1989. (Cited on page-30).

R.F. Freund and H.J. Siegel. Heterogeneous Processing. IEEE Com-
puter, pages 13-17, June 1993. (Cited on page 7).

R. Fujimoto. Parallel discrete event simulation. Comm. of the ACM,
33(10):30-53, October 1990. (Cited on page 103).

D. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms
for load balancing in distributed computer systems. In 8th Int. Conf.
on Distributed Computing Systems, pages 491-499, 1988. (Cited on
page 59).

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. - PVM 8.0 User’s Guide and Reference Manual, Feb.
1993. (Cited on pages 8 and 44).

Grand challenges: High performance computing. Committee on
Physical, Mathematical, and Engineering Sciences, National Science
Foundation, Washington, D.C., 1991. (Cited on page 6).

V.B. Gylys and J.A. Edwards. Optimal partitioning of workload for
distributed systems. In Proc. COMPCON Fall’76, pages 353-357,
1976. (Cited on page 123).

M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: Freeman, 1979.
(Cited on page 11 and 82).

140

BIBLIOGRAPHY

[GLS94]

[Gra77]

[GS91]

[Hags6]

[Hei8$]

[Hu61]

[KBM94]

[KC91]

[KCO+94]

[KR95]

[KRS96]

W. Gropp, E. Lusk, and A. Skjellum. Using MPI - Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1994.
(Cited on page 8).

C.W.J. Granger. Forecasting Economic Time Series. Academic Press
Inc., 1977. (Cited on page 64).

T.P. Green and J. Synder. DQS, a distributed queueing system. In
Workshop on Heterogeneous Network-based Concurrent Computing,
October 1991. (Cited on pages 15 and 61).

R. Hagmann. Process Server: Sharing processing power in a work-
station environment. In 6th International Conference on Distributed
Computing Systems, pages 260-267, 1986. (Cited on page 6).

P. Heidelberger. Discrete event simulations and parallel processing:
Statistical properties. SIAM Journal on Scientific and Statistical
Computing, 9(6):1114-1132, November 1988. (Cited on pages 104
and 106). '

T.C. Hu. Parallel sequencing and assembly line problems. Oper. Res.,
9:841-848, November 1961. (Cited on pages 11 and 82).

E.D. Katz, M. Bulter, and R. McGrath. A scalable HI'TP server.
Computer Networks and ISDN Systems, 27:155-164, 1994. (Cited on

page 6).

P. Krueger and R. Chawla. The étealth distributed scheduler. In
11th International Conf. on Distributed Computing Systems, pages
336-343, 1991. (Cited on page 5).

R. Konuru, J. Casas, S. W. Otto, R. Prouty, and J. Walpole. A
user-level process package for PVM. In Proc. of 1994 Scalable High-
Performance Computing Conference, Knoxville, TN, 1994. (Cited on
pages 14 and 43).

M. Kaddoura and S. Ranka. Runtime support for parallelization of
data-parallel applications on adaptive and nonuniform computational
environments. Technical report, School of Computer and Information
Science, Syracuse University, 1995. (Cited on page 14).

F. Knop, V. Rego, and V. Sunderam. Fail-safe concurrency in the
EcliPse system. Concurrency: Practice and Ezperience, 8(4):283-312,
May 1996. (Cited on page 100).

BIBLIOGRAPHY 141

[KS86]

[KSY85]

[Lam78]

[LC96]

[LFS93]

[LH95]

[LHD+94]

[Li90]

[Lin94]

[LK78]

J.F. Kurose and R. Simha. A microeconomic approach to optimal
file allocation. In 6th Int. Conf. on Distributed Computing Systems,
pages 28-35, 1986. (Cited on page 59).

J.F. Kurose, M. Schwartz, and Y. Yemini. A microeconomic approach
to optimization of channel access policies in multiaccess networks. In
5th Int. Conf. on Distributed Computing Systems, pages 70-77, 1985.
(Cited on page 59).

L. Lamport. Time, Clocks, and the Ordering of Events in a Dis--
tributed System. Comm. of the ACM, 21(7):558-564, July 1978.
(Cited on page 35).

M. Lauria and A. Chien. MPI-FM: High performance mpi on worksta-
tion clusters. Technical report, Dept. of Computer Science, University
of Illinois at Urbana-Champaign, 1996. (Cited on page 7).

J. Leon, A.L. Fisher, and P. Steenkiste. Fail-safe PVM: A portable
package for distributed programming with transparent recovery.
Technical report, Tech. Rep. CMU-CS-93-124, School of Computer
Science, Carnegie Mellon University, 1993. (Cited on page 100).

C.K. Lee and M. Hamdi. Parallel image processing on a network
of workstations. Parallel Computing, 21:137-160, 1995. (Cited on

page 6).

M. Lin,-J. Hsieh, D. Du, J. Thomas, and J. MacDonald. Distributed
network computing over local ATM networks. Technical report, Tech.
Rep. TR-94-17, Computer Science Department, University of Min-
nesota, 1994. (Cited on page 7).

S.-Y.R. Li. Algorithms for flow control and call set-up in multi-hop
Broadband ISDN. In Proc. INFOCOM, June 1990. (Cited on pages 85
and 33).

Y.-B. Lin. Parallel independent replicated simulation on a network of
workstations. In Proc. of 8th Workshop on Parallel and Distributed
Simulation, pages 73-80, 1994. (Cited on pages 104 and 106).

J.K. Lenstra and A.H.G.R. Kan. Complexity of scheduling under
precedence constraints. Oper. Res., 26:22-35; January 1978. (Cited
on pages 11 and 82).

142

BIBLIOGRAPHY

[LLM88|

[LNPY1]

[Lo88]

[LS92]

[LS94]

[Lub89]

[MASE6]

[MFGHSS]

[MIC96]

[MJS*94]

M.J. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of
idle workstations. In 8th Int. Conf. on Distributed Comp. Systems,
pages 104-111, 1988. (Cited on pages 6, 15, and 61).

K. Li, J.F. Naughton, and J.S. Plank. Checkpointing multicomputer
applications. In Proc. of the Tenth Sym. on Reliable Distributed Sys-
tems, pages 2-11, Sept.. 1991. (Cited on page 103).

V.M. Lo. Heuristic algorithms for task assignment in distributed
systems. IEEE Trans. on Computers, 37(11):1384-1397, 1988. (Cited
on page 127).

M.J. Litzkow and M. Solomon. Supporting checkpointing and process
migration outside the Unix kernel. In Proc. of the Winter Useniz
Conference, 1992. (Cited on page 102). '

S.-Y.R. Li and K.H. Shum. Distributed algorithms for flow control
& call set-up in a broadband packet network. In Proc. of 12th Eu-

ropean Fibre Optic Communications and Networks, pages 182-186,
1994. (Cited on pages 35 and 33).

B. D. Lubachevsky. Efficient distributed event-driven simulations of
multiple-loop networks. Comm. ACM, 32(1):111-123, January 1989.
(Cited on page 35).

C.E. McDowell and W.F. Applebe. Processor scheduling for linearly
connected parallel processors. IEEE Trans. Computer, 35(7):632-638,
July 1986. (Cited on page 11).

T.W. Malone, R.E. Fikes, K.R. Grant, and M.T. Howard. Enterprise:
a market-like task scheduler for distributed computing environments.
In The Ecology of Computation. Amsterdam: North-Holland, 1988.
(Cited on page 59). :

P.G. Meisl, M.R. Ito, and I.G. Cumming. Parallel synthetic aperture
radar processing on workstation networks. In Proc. of 10th Interna-
tional Parallel Processing Symposium, IEEE IPPS’96, pages 716—723,
1996. (Cited on page 6).

R.L. Martino, C.A. Johnson, E.B. Suh, B.L. Trus, and T.K. Yap. Par-
allel computing in biomedical research. Science, 265:902-908, August
1994. (Cited on page 13).

BIBLIOGRAPHY 143

[ML87]

[ML91]

[MPS89]

[Mut92]

[NF94]

[Ng90]

[Nic87]

[Nic88]

[NQ93]

[NR94]

[NRS92]

M.W. Mutka and M. Livny. Profiling workstations’ available capacity
for remote execution. In 12th IFIP WG 8.8 Symposium on Computer
Performance, Brussels, Belgium, 1987. (Cited on page 5).

M.W. Mutka and M. Livny. The available capacity of a privately
owned workstation environment. Performance Evaluation, 12(4):269-
84, July 1991. (Cited on page 63).

S. Mishra, L.L. Peterson, and R.D. Schlichting. Implementing fault-
tolerant replicated objects using Psync. In Proc. of the 8th Sym. on
Reliable Distributed Systems, 1989. (Cited on page 100).

. M.W. Mutka. Estimating capacity for sharing in a privately owned

workstation environment. IEEE Trans. on Software Engineering,
18(4):319-328, April 1992. (Cited on page 64).

D. Nicol and R. Fujimoto. Parallel simulation today. Annals of Op-
erations Research, 53:249-286, December 1994. (Cited on page 103).

T.P. Ng. Design and implementation of a reliable distributed oper-
ating system - Rose. In Proc. of the 9th Sym. on Reliable Distributed
Systems, 1990. (Cited on page 100).

D. A. Nichols. Using idle workstations in a shared computing environ-
ment. In Eleventh ACM Symposium on Operating Systems Prmczples
pages 5-12, 1987. (Cited on page 6).

D. Nicol. Parallel discrete-event simulation of FCFS stochastic queu-
ing network. SIGPLAN Notice, 23(9):124-137, September 1988.
(Cited on page 35).

N. Nedeljkovic and M.J. Quinn. Data-parallel programming on a
network of heterogeneous workstations. Concurrency: Practice &
Ezperience, 5(4):257-268, June 1993. (Cited on page 14).

B.C. Neuman and S. Rao. The Prospero Resource Manager: A scal-
able framework for processor allocation in distributed systems. Con-
currency: Practice and Ezperience, 6(4):339-355, June 1994. (Cited
on pages 15 and 61).

H. Nakanishi, V. Rego, and V. Sunderam. Superconcurrent sim-
ulation of polymer chains on heterogeneous networks. In Proc. of

144

BIBLIOGRAPHY

[NS88]

[NS92]

[NT93]

OLg)

[PC1]

[PAi95]

[PL95]

[PL96]

[POW94]

[PWA+93]

the Fifth High-Performance Computing and Communications Con-
ference: Supercomputing’92, 1992. (Cited on page 7).

D. Nicol and J. H. Saltz. Dynamic remapping of parallel computations
with varying resource demands. IEEE Trans. on Computer, 37(9),
September 1988. (Cited on pages 12).

H. Nakanishi and V.S. Sunderam. Superconcurrent simulation of
polymer chains on heterogeneous networks. In Proc. IEEE Super-
computing Symposium, 1992. (Cited on page 6).

M.G. Norman and P. Thanisch. Models of machines and computation
for mapping in multicomputers. ACM Computing Surveys, 25(3):263—
302, 1993. (Cited on page 11). '

B.M. Oki and B.H. Liskov. Viewstamped replication: A new primary
copy method to support highly-available distributed systems. In Proc.
of the Tth ACM Sym. on Principles of Distributed Computing, 1988.
(Ciited on page 100).

C. 1. Phillips and L. G. Cuthbert. Concurrent discrete event-driven
simulation tools. IEEE J. Select. Areas in Comm., April 1991. (Cited
on page 33).

G. F. Pfister. In Search of Clusters: The Coming Battle in Lowly
Parallel Computing. New Jersey: Prentice Hall PTR, 1995. (Cited
on page 104).

J. Pruyne and M. Livny. Parallel processing on dynamic resources
with CARMI. In Proc. of Workshop on Job Scheduling Strategies for
Parallel Processing, IEEE IPPS’95, 1995. (Cited on page 15).

J. Pruyne and M. Livny. Managing checkpoints for parallel programs.
In Proc. of Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, IEEE IPPS’96, 1996. (Cited on page 100).

R. Prouty, S. Otto, and J. Walpole. Adaptive execution of data par-
allel computations on networks of heterogeneous workstations. Tech-
nical report, CSE-94-012, Computer Sci. & Eng. Dept., OGI, 1994.

(Cited on pages 14 and 43).

D.H. Porter, P.R. Woodward, S. Anderson, J. MacDonald, K. Chin-
Purcell, R. Hessel, D. Perro, 1. Zacharov, J. Ryan, L. Wildra, and

BIBLIOGRAPHY 145

[Qui%4]

[Sah84]

[SBo4]

[SCMS82]

[Shu95]

[Shu96]

[SL96]

[SM96]

M. Galles. Attacking a grand challenge in computational fluid dy-
namics on a cluster of silicon graphics challenge machines. In Proc.
of Cluster Workshop, 1993. (Cited on-page 6).

M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill
International, 1994. (Cited on page 12).

S. Sahni. Scheduling multipipeline and multiprocessor comput-
ers. IEEE Trans. Computer, 33(7):637-645, July 1984. (Cited on
page 11). '

K.H. Shum and M. Bozyigit. A load distribution through compe-
tition for workstation clusters. In Proc. of the Ninth International
Symposium on Computer and Information Sciences, pages 810-817,
Antalya, November 1994. (Cited on page 20):

J.A. Stankovic, N. Chowdhury, R. Mirchandaney, and I. Sidhu. An
evaluation of the applicability of different mathematical approaches
to the analysis of decentralized control algorithms. In IEEE COMP-
SAC, pages 62-69, 1982. (Cited on page 11).

K.H. Shum. Adaptive distributed simulation for computationally in-
tensive modelling. In M. Merabti et al., editor, Proc. of the 11th U.K.
Performance Engineering Workshop for Computer and Telecommu-
nication Systems. Springer-Verlag, 1995. (Cited on page 33).

K.H. Shum. Adaptive distributed computing through competition.
In Proc. of the International Conference on Configurable Distributed
Systems, Maryland, May 1996. IEEE Computer Society. (Cited on

page 61).

K.H. Shum and S.-Y.R. Li. Runtime support for replicated parallel
simulators on workstation clusters. In Proc. of Furo-Par’96, Lec-
ture Notes in Compter Science, Lyon, August 1996. Springer-Verlag.
(Cited on page 105).

K.H. Shum and K. Moody. A competitive environment for paral-
lel applications on heterogeneous workstation clusters. In Proc. of
the Heterogeneous Computing Workshop (HCW’96), IEEE IPPS’96,
presented in the joint session with the 2nd Workshop on Job Schedul-
ing Strategies for Parallel Processing, Hawaii, April 1996. (Cited on

page 81).

146

BIBLIOGRAPHY

[SNM+95]

[SOW94]
[5584]
[SS94a]

[SS94b]

[Sto77]
[Str95)

[THM*94]

[TNC94]

[Tur93]

P. Stolorz, H. Nakamura, E. Mesrobian, R.R. Muntz, E.C. Shek,
J.R. Santos, J.Yi, K. Ng, S.-Y. Chien, C.R. Mechoso, and J.D. Far-
rara. Fast spatio-temporal data mining of large geophysical datasets.
In Proc. of the First International Conference on Knowlege Discov-
ery and Data Mining, AAAI Press, pages 300-305, 1995. (Cited on

page 6).

K.A. Sagabi, S.W. Otto, and J. Waipole. Gang scheduling in hetero-
geneous distributed systems. Technical report, OGI, 1994. (Cited on
pages 15 and 61).

J.A. Stankovic and 1.S. Sidhu. An adaptive bidding algorithm of
processes, clusters, and distributed groups. In Int. Conf. Distributed
Comput. Syst., pages 49-59, May 1984. (Cited on page 11).

B.K. Schmidt and V.S. Sunderam. Empirical analysis of overheads in
cluster environments. Concurrency: Practice and Ezperience, 6(1):1-
32, February 1994. (Cited on page 51).

M. Singhal and N.G. Shivaratri. Advanced Concepts in Operating
Systems. New York: McGraw-Hill, 1994. (Cited on page 100).

H.S. Stone. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Trans. on Software Engineering, 3(1):85-93, 1977.
(Cited on pages 11 and 82). ‘

V. Strumpen. Coupling hundreds of workstations for parallel molec-
ular sequence analysis. Software-Practice and Experience, 25(3):291—
304, March 1995. (Cited on page 13).

C. Trefftz, C.C. Huang, P.K. McKinley, T.Y. Li, and Z. Zeng. De-
sign and performance evaluation of a distributed eigenvalue solver
on a workstation cluster. In Proc. of 14th International Conference

on Distributed Computing Systems, pages 608-615, 1994. (Cited on

page 6).

S.W. Turner, L.M. Ni, and B.H.C. Cheng. Time and/or space sharing

in a workstation cluster environment. In Proc. of Supercomputing’94,
pages 630-639, 1994. (Cited on page 58).

L.H. Turcotte. A survey of software environments for exploiting net-
worked computing resources. Technical report, MSSU-EIRS-ERC-

BIBLIOGRAPHY 147

[Var92]

[WHH+92]

[Wil79]

[WMS85]

[YKF91]

932. Engineering Research Center, Mississippi State University, 1993.
(Cited on page 8).

H.R. Varian. Microeconomic Analysis. Third Edition, New York:
Norton International Student Edition, 1992. (Cited on page 783).

C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and
W.S. Stornetta. Spawn: A distributed computational economy.
IEEE Trans. on Software Engineering, 18(2):103-117, February 1992.
(Cited on pages 15, 59, and 60)

R. Wilson. Auctions of shares. Quarterly Journal of Economics,
93:675-89, 1979. (Cited on page 69).

Y .-T. Wang and R. J. T. Morris. Load sharing in distributed systems.
IEEE Trans. Computers, C-34, March 1985. (Cited on page 85).

T. Yokoi, N. Kishimoto, and Y. Fujii. ATM network performance
evaluation using parallel and distributed simulation technique. In

. Proc. of the Teletraffic and Datatraffic, ITC-13, pages 815-820, 1991.

(Cited on page 33).

