Technical Report A

Number 411

Computer Laboratory

Formalising process calculi
in Higher Order Logic

Monica Nesi

January 1997

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1997 Monica Nesi

This technical report is based on a dissertation submitted April
1996 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Girton College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-411

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-411

Abstract

In the past few years, several methods and tools based on process calculi have been
developed for verifying properties of concurrent and communicating systems. In this
dissertation the interactive theorem prover HOL is used as a framework for supporting
reasoning about process calculi based on all the various components of their formal
theory. The aim is to build a sound and effective tool to allow both verification of
process specifications and meta-theoretic reasoning. In particular, the process calcu-
lus CCS is embedded in the HOL logic. This is achieved by first addressing the pure
subset of this calculus (no value passing) and then extending it to its value-passing
version. The CCS theory is mechanised in HOL by following a purely definitional
approach. This means that new objects are embedded in HOL using definition mech-
anisms which guarantee that no inconsistencies are introduced in the logic, and by
deriving new facts from definitions and/or previously proved theorems by formal
proof.

Pure CCS agent expressions are encoded as a type in the HOL logic, in which
initially actions are represented as strings, agents with infinite behaviour are given
through the rec-notation and agent summation is the usual binary operator. Recur-
sive agents are then allowed to be defined through systems of recursive equations
and to be parameterised. This makes the type of CCS expressions polymorphic and
parameterised on the parameters’ type. Operational and behavioural semantics and
a modal logic are defined and their properties and laws derived in HOL. Several proof
tools, such as inference rules, conversions and tactics, are developed to enable users to
carry out their proofs in an interactive way and to automate them whenever possible.
Properties of infinite state systems, e.g. a counter which can expand indefinitely, can
be formally verified in the resulting proof environment.

Then, value-passing CCS is mechanised in HOL by translating value-passing ex-
pressions into pure ones. This entails a more general polymorphic type for pure
agent expressions that includes an indexed summation operator. The translation is
proved to be correct with respect to the semantics of value-passing CCS and then
used at meta-level, together with the HOL formalisation for pure CCS, for developing
behavioural theories for the value-passing calculus. A proof environment is thus de-
rived, in which users will directly work on value-passing specifications. A verification
example illustrates how proofs about the data are neatly separated from proofs about
the process behaviour and how w-data-rules can be used in a practical way to reason
about value-passing agents defined over an infinite value domain.

Contents

1

3

Introduction

1.1 Background and Related Work L.
1.1.1 Automata Based Tools
1.1.2 Theorem Proving Based Tools

1.2 On Formalising a Process Calculus in the HOL Proof Assistant

1.3 Outline of the Dissertation

Pure CCS in HOL

2.1 Pure CCS e
2.1.1 The Syntax and Operational Semantics
2.1.2 The Strong and Observation Semantics
2.1.3 The Axiomatic Characterisation of Observation Congruence .
214 A ModalLogic

2.2 Mechanisation of Pure CCSin HOL
221 TheSyntax
2.2.2 The Operational Semantics
2.2.3 The Strong and Observation Semantics
2.2.4 The Laws for Observation Congruence

2.2.5 The Modal Logic ‘

2.3 Reasoning about CCS Specifications
2.3.1 Rewriting modulo Behavioural Equivalences in HOL
2.3.2 Verification Strategies
2.4 A Verification Example o 0oL
2.4.1 Proving Behavioural Equivalences
2.4.2 Checking Modal Properties
2.5 Summary

Polymorphic Versions of Pure CCS in HOL

3.1 Recursive Agent Definitions L.
311 AFewExamples
3.1.2 Formalising Recursive Agent Definitions in HOL

3.2 Proving the Correctness of an Infinite Counter

1x

10
14
17

19
19
19
99
23
25
2
26
29
31
33
37
38
38
40
43
44
47
51

53
o4
54
57
62

3.2.1 Verifying Behavioural Equivalences
3.2.2 Checking Modal Properties

Extending the Syntax for Pure CCS
3.3.1 Polymorphic Actions
3.3.2 An Operator of Indexed Summation.
3.4 Another Mechanisation of the Expansion Law
3.5 Summary

3.3

Value-Passing CCS in HOL

4.1 The Value-Passing Syntax in HOL..
4.2 'Translating Value-Passing CCS into Pure CCS
4.3 The Operational Semantics for Value-Passing CCS.
4.4 Proving the Correctness of the Translation
4.5 Behavioural Equivalences over Value-Passing CCS
4.6 A Verification Example L.

4.6.1 The Proof in HOL
4.6.2 Discussion
4.7 Summary

Conclusions and Future Work
5.1 Summary of Thesis
5.2 Development and Some Measures of the Work
5.3 Future Work

The HOL System
A.1 The Meta-Language ML
A.2 Higher Order Logic
A.3 Primitive Rules of Definition
A.4 Derived Rules of Definition
A.5 Proofs in HOL

...............................

The Reader-Writer System
B.1 Proving Behavioural Equivalences
B.2 Checking Modal Properties

The Infinite Counter
C.1 Verifying Behavioural Equivalences
C.2 Checking Modal Properties

D The Value-Passing Example

Bibliography

117
117
119
121

125
125
127
131
132
134

139
140
145

149
149
157

161

173

Chapter 1

Introduction

The top-down design of a complex system usually starts with an abstract specification
of the task that the system is intended to achieve. This description is then trans-
formed into a detailed implementation possibly through several specifications of the
same system at different levels of abstraction. The correctness of the transformation
steps can be guaranteed by verifying that the different descriptions of the system are
equivalent when “uninteresting” details, e.g. internal communications between sub-
systems, are ignored, or that a low level description is a “satisfactory” implementation
of a more abstract one.

Process calculi, such as ACP [9], CCS [95, 97], CSP [66], EPL [58], LOTOS [10],
MELJE [6] and m-calculus [99], are generally recognised to be a convenient tool for
specifying concurrent and communicating systems at different levels of abstraction
and for reasoning about them. These formalisms are based on an algebra of actions,
i.e. a syntax with operators to construct actions and a set of laws giving their meaning,
and a syntax for process specifications (or agent expressions) with operators to build
them. The meaning of the process constructors is usually given through a structural
operational semantics defined via labelled transition systems following Plotkin’s SOS
approach [110].1 '

Process calculi, also called process algebras due to their largely algebraic na-
ture, are then equipped with one or more notions of behaviourdl semantics (such
as bisimulations and behavioural equivalences/preorders) and with modal/temporal
logics, which are defined and interpreted in terms of labelled transition systems. Be-
havioural semantics have also been characterised through sets of (in)equational laws.
Examples in the literature are strong equivalence and observation (weak) equiva-
lence/congruence [97], trace and testing equivalences/preorders [34] and branching
bisimulation [45]. Suitable sets of laws have been proved to be correct and complete
aziomatisations for the associated behavioural equivalences/preorders over subsets of
the various process algebras.

The analysis of concurrent and communicating systems can be very delicate and

! Amongst the process calculi mentioned above, CSP is an exception to this.

error-prone. Mechanical support is thus essential, both to make the analysis feasible
and to ensure correctness, even when dealing with moderate size systems. In the
past few years, various approaches have been proposed for verifying concurrent and
communicating systems, and several verification tools have been developed which
work in the framework of process calculi [72, 88]. Most of these tools deal with pure
process algebras, where process communication is just synchronisation; only a few of
them are able to cope with value-passing calculi, where data are exchanged during
communication.

In this dissertation, an interactive proof environment for supporting both rea-
soning about the process algebra CCS (Calculus of Communicating Systems) and
verification of CCS agents? is developed using higher order logic and the general pur-
pose theorem prover HOL [51]. The formal theory of the process calculus is embedded
in the HOL system by encoding CCS agent expressions as a type in the HOL logic.
Based on this mechanisation, operational and behavioural semantics and modal log-
ics can be defined and their properties and laws derived in the HOL system. When
formalising the CCS theory in HOL, the principle of a purely definitional mechanisa-
tion is adopted. This means that new objects are embedded in HOL using definition
mechanisms which guarantee that no inconsistencies are introduced in the logic, and
by deriving new facts from definitions and/or previously proved theorems by formal
proof.

The resulting formalisation supports both reasoning about the process algebra it-
self (meta-theoretic reasoning) and verification strategies for CCS specifications based
on mechanised formal proof. In the work described in this dissertation, the theorem
proving methodology is applied to the CCS language, but it can be adopted to for-
malise any other process calculus. This approach enables one to deal with both the
operational and algebraic/axiomatic components of a process calculus in a unified
framework. Different versions and extensions of a calculus are also mechanised in the
same logical environment. The HOL formalisation of both pure and value-passing
versions of the CCS calculus is presented in the following chapters. Other versions of
the calculus could be treated as well, such as the ones dealing with notions like time,
probability, priority.

The following section contains a brief overview of the approaches and (some of
the) tools for process algebra verification. Their main characteristics are recalled and
discussed, thus serving as an introduction and a motivation for the approach taken in
this dissertation to reasoning about process calculi. Besides the references reported
in the paragraphs below, the reader is referred to the surveys in [72, 88| for a more
detailed description, comparison and evaluation of the various verification tools.

2The process language under consideration is Milner’s calculus presented in [97]. There, the
author prefers to call his theory ‘process calculus’ rather than ‘CCS’ as in [95] or ‘process algebra’.
Nevertheless, in what follows the terms ‘CCS’ and ‘process algebra’ will often be (ab)used when
referring to Milner’s process calculus.

1.1 Background and Related Work

"The correctness of process algebra specifications can be expressed and verified in dif-
ferent ways using the various semantics, logics and/or algebraic laws. One typical
verification problem considers two different descriptions of the behaviour of a system,
an abstract one usually referred to as a specification (Spec), and a more detailed one,
referred to as an implementation (Impl). The aim is showing that the implementation
is correct with respect to the specification or, in other words, that the implementation
meets the specification (behavioural verification). This means proving that a certain
behavioural relation R exists between the two descriptions, i.e. Spec R Impl where R
can be either an equivalence/congruence or a preorder relation. Proving the equiva-
lence/congruence of two specifications may be too strong a requirement, even if the
behavioural semantics under considération is weak. In this case, it might be suffi-
cient to verify that Spec C Impl with respect to a given preorder relation [, namely
proving that the low level description performs everything which is also performed
by the abstract one.

A different verification problem considers process logics. Given a description of a
system and a modal/temporal formula providing a partial specification of that system
through some property (such as capacity, safety, liveness, deadlock, etc.), the problem
is to check whether or not the system specification has that modal/temporal property
(model checking).

The behaviour of a process specification can also be investigated by running the
operational semantics of the process calculus under consideration (simulation). Thus,
the behaviour of a system is simulated by executing its transitions and compared
with the behaviour of another specification of the same system. This alternative
description can just be a trace of events and the aim is checking whether or not the
trace occurs in the behaviour of the given system.

Other kinds of reasoning about process algebra specifications include minimisa-
tion, i.e. transforming a specification to its reduced form with no redundant tran-
sitions with respect to a given behavioural relation, and eguation solving, i.e. a re-
finement strategy which tries to build the missing part in the imi)lementation of a
system, when given its abstract specification and the part already implemented.

The implementation methods of process algebra verification can be roughly di-
vided into two classes. The first class consists of automata based approaches, where
specifications are analysed by (wholly or partially) constructing and exploring the
assoclated transition systems. Efficient decision procedures from automata theory
based on partitioning algorithms [105] can then be used to automatically minimise
specifications, verify behavioural equivalences and show that a specification has a
given property. The second class of verification methods includes theorem proving
based approaches, which work on the syntactic representation of specifications with-
out resorting to any other internal representation. These methods largely rely on the

algebraic nature of the process calculi and support symbolic manipulation, equational
reasoning and powerful proof techniques, like induction, in a more interactive way.

1.1.1 Automata Based Tools
The Concurrency Workbench

The Concurrency Workbench [30] is a verification tool for CCS agents, where different
verification techniques and styles can be combined together in a flexible and modular
way. It supports the verification of a variety of behavioural equivalences/preorders,
including strong equivalence, observation equivalence/congruence, testing equiva-
lences/preorders and branching bisimulation. There is only one routine for verifying
equivalences, based on bisimulation equivalence [97], and only one routine for checking
preorders, based on the divergence preorder [123]. The various equivalences/preorders
are verified by combining these general routines with suitable process transformations.
Moreover, automata can be minimised with respect to observation equivalence and,
when generating the automata representing CCS agents, term rewriting techniques
are used for reducing their state space, so that automata can sometimes be made
finite rather than infinite.

The Concurrency Workbench also supports model checking in a very expressive
temporal logic, (a version of) the propositional p-calculus [78, 118]. Other temporal
logics can be introduced by defining new constructors in terms of existing ones using
a macro mechanism.

Another facility provided by the Concurrency Workbench is an algorithm for
synthesising solutions to equations of the form (E | X)\L = E’, where FE is a finite
state agent that represents an incomplete implementation, X is an agent variable that
stands for the missing part, L is a set of actions and E' is a finite state (deterministic)
agent specification that the implementation is to satisfy. The solution is determined
in a semi-automatic way by transforming equations into simpler ones.

The Concurrency Workbench has also been used for reasoning about value-passing
CCS specifications under the assumption that the value domain is finite. In [19] the
syntax and the operational semantics of a language for value-passing CCS is defined
independently of pure CCS. This language is then implemented via a translation into
pure CCS. Because the value domain is finite, the Concurrency Workbench can be
used to perform verification on the (finite state) agents resulting from the translation.

AUTO

The AUTO system [14, 117] is a verification environment for MELJE finite state pro-
cesses. It includes computation of automata from MEIJE terms, reduction of au-
tomata with respect to several behavioural semantics and transformations of au-
tomata according to abstraction criteria. Strong and weak bisimulation congruences

are used to reduce the components of a system before composing them in parallel.
Finiteness of MEIJE processes is obtained through a two-layer structure for input
terms. At the lower layer, one defines processes (or automata) using the dynamic
operators (i.e. action prefix, summation and recursion). At the upper layer, these
processes are composed into networks using the static operators (i.e. parallel compo-
sition, relabelling and restriction).

The MAUTO system generalises AUTO to a large class of process algebras, which
are compiled from the rules of their structural operational semantics. One application,
developed inside the LITE toolset (see below), is an instantiation of MAUTO for the
Basic LOTOS process algebra (i.e. LOTOS without abstract data types).

More efficient partitioning algorithms for checking behavioural equivalences are
implemented in the FCTOOL system. A characteristic feature is its interface based
on a common format for labelled tfansitions systems, which allows easy use and
interaction with other tools.

The AuTo package is also provided with a graphical editor, AUTOGRAPH, dealing
with hierarchical networks of automata. It is able to produce input terms for AUTO
and display automata generated by AuTO and MAUTO.

Finally, ECRINS is a parameterised tool for manipulating process algebra terms.
A process calculus is described by its syntax and operational semantics. This de-
scription mechanism is general enough to allow the definition of most process calculi.
Recursive definitions are provided through a built-in operator for recursion. A be-
haviour evaluator computes the semantics of closed and open terms via transition
systems and sets of conditional rules respectively. The evaluator can be used inter-
actively and controlled with tactic programs. Algebraic laws for strong bisimulation
can be proved and their proofs mixed with axiomatic reasoning based on rewriting.
ECRINS can also be seen as a transition system generator for AuTo, thus allowing
AUTO to perform verification on a variety of process calculi.

EMC

Finite state concurrent systems can be automatically verified to meet logical speci-
fications using the model checker EMC [28]. Concurrent systems are specified in a
restricted subset of the CSP calculus and interpreted as Kripke structures, and logical
specifications are expressed in the propositional branching time temporal logic CTL.
The model checker EMC determines that a system meets its specification by checking
whether the structure of the system is a model of the given CTL formula by means
of a very efficient algorithm, the complexity of which is linear in both the size of the
structure and the size of the logical specification. A counterexample facility is also
provided: when the model checker determines that a formula is false, it will try to
find a path in the structure for which the negation of the formula is true.

The EMC system has then been modified to encode a state graph by means of

BDD’s (Binary Decision Diagrams [18]). This symbolic representation avoids the
explicit construction of the global state graph, which is thus checked by a symbolic
model checking algorithm. Whenever the BDD representation is able to capture
some of the regularity in the state space, finite state systems with an extremely large
number of states can be automatically verified [20]. A model checking algorithm
for formulas of the p-calculus has then been implemented in EMC, from which CTL
model checking and verification of strong and observation equivalences can be derived.

Combining AUTO and EMC

In [33] a verification environment is presented which allows both behavioural and
logical properties of concurrent systems to be verified by integrating the AUuTO and
EMC tools. The process logic used in this framework is ACTL, namely an action
based version of the branching time logic CTL. The integration of the two tools is
achieved by means of two translation functions: a model translator from the labelled
transition systems built by AUTO into labelled state Kripke structures and a logic
translator from ACTL to CTL. In this way, a process algebra specification is verified
to have an ACTL property by checking the satisfiability of the CTL formula (resulting
from the logic translation) using the EMC model checker on the Kripke structure

_corresponding to the transition system for the given specification.

TAV

The TAV system [47] is another verification tool for process algebra specifications,
essentially CCS agent expressions. It provides both equivalence checking and model
checking. Bisimulation equivalences are verified by computing the minimal bisimu-
lation rather than the maximal one as the previously described verification tools do.
The modal logic under consideration is Hennessy-Milner logic extended with recur-
sion, thus resulting in a rather expressive language [81]. A distinctive feature of the
TAV system is that explanations are always provided for the answers given to the
user. For example, whenever two specifications are not bisimilar, a modal formula
is returned which distinguishes them. Moreover, if a specification has a given modal
property, a proof in the proof system in [81] is returned, otherwise a proof for the
dual property can be obtained.

The TAV system has then been extended with modal transition systems to al-
low the refinement of a given specification to a single implementation [83]. The
operational semantics of CCS is interpreted in terms of modal transition systems, a
refinement ordering is defined by extending the notion of bisimilarity, and strong and
weak refinements can be checked and constructed.

Finally, an equation solving mechanism is provided [84], which automatically syn-
thesises solutions to systems of equations of the form C(X) ~ Ey,...,Cph(X) ~ E,,
where C; and E; (1 <i<mn) are arbitrary finite state CCS contexts and agents respec-

tively, and X is an agent variable. The solution set is characterised by a (disjunctive)
modal transition system.

Aldébaran

The Aldébaran tool [41] offers facilities for minimising and comparing transition sys-
tems modulo several behavioural equivalences and preorders. It also includes tech-
niques, such as “on the fly” verification [42], for the comparison of transition systems
without generating their global state spaces. Aldébaran can be used from within
the C&ESAR system [44] for reasoning about LOTOS specifications, once the CESAR
compiler has produced labelled transition systems from LOTOS terms.

MEC

The verification tool MEC [4] allows the construction and analysis of transition sys-
tems representing communicating processes. A global transition system is constructed
as the synchronised product of the component processes, in which the states of the
system are the tuples of the states of its components and the transitions are the tuples
of the transitions of the components, provided that such transitions are allowed to be
executed simultaneously. These systems can be automatically checked to have logical
properties, which are defined in a language that can express most of the branching
time temporal logic properties.

Squiggles

The tool Squiggles [12] allows one to verify behavioural equivalences of Basic LOTOS
processes by implementing the partition algorithms in [105]. Finite state transition
systems are built and minimised with respect to strong, weak and testing equivalence.
LOTOS specifications can also be input directly in their graphical format and the
CESAR compiler is used to translate processes into transition systems for Squiggles.

LITE

LITE (LOTOS Integrated Tool Environment) is a toolset resulting from the ESPRIT
LotoSphere project [11]. In particular, the verification of LOTOS specifications is
carried out by the LOLA tool [111]. In LOLA (possibly parameterised) LOTOS
behaviour expressions can be analysed by expanding them and testing whether certain
traces of events can occur (property testing). Behavioural equivalences and their laws
are used to reduce the expansion process. Moreover, a parameterised expansion allows
some full LOTOS specifications to be dealt with, by keeping variable definitions as
such without expanding them over the value domain and identifying behaviours which
are equal except for some value expressions.

FDR

FDR (Failures Divergence Refinement) [43] is a tool for proving properties of CSP
programs. The theory of refinement in CSP allows correctness conditions, such as
safety and liveness, to be encoded as the most non-deterministic process satisfying
them. Whether an implementation Impl meets a specification Spec can be verified
by checking that Impl refines Spec. A normalisation procedure transforms a CSP
specification into a form such that the implementation can be checked against it
by exploring the reachable states using model checking techniques. Thus, processes
must be finite state and those failing the automatic checks can be investigated in an
interactive way using debugging facilities.

SPIN

SPIN is a tool for checking the logical consistency of distributed system specifica-
tions, based on CSP and extended with some new powerful constructs [67]. A formal
model is built using the input language PROMELA (Protocol Meta Language). Both
synchronous and asynchronous communication can be specified, and concurrent pro-
cesses can be created and deleted dynamically. The correctness of distributed systems
can be expressed in a general linear time temporal logic.

The Mobility Workbench

The Mobility Workbench [122] is a tool for manipulating and analysing mobile con-
current systems specified in the 7-calculus. Its basic functionality is to decide the
(strong and weak) open bisimulation equivalences for agents with finite control (sim-
ilar to finite state CCS agents) which do not admit parallel composition within re-
cursively defined agents. The bisimulation algorithm is implemented with an “on
the fly” technique. In fact, due to problems of name instantiation in the m-calculus,
the bisimulation relation is constructed while generating the transitions systems of
the two agents to be verified. The Mobility Workbench also provides facilities for
simulating the behaviour of agents in an interactive way and for finding deadlocks.

Symbolic Verification Tools

An automata based approach to process algebra verification is very efficient and per-
mits automatic checking of properties. However, this approach has a few problems
and limitations. One problem is the well-known state ezplosion: the number of states
of a concurrent system potentially increases exponentially in the number of its parallel
components. Techniques to control state explosion have been proposed which are able
to reduce the problem. These range from applying the laws for behavioural equiva-
lences to minimise the state space of parallel subsystems before composing them, to
performing verification while generating the transition systems. However, the state

space of a system often contains a number of computations that are hidden at the
global level and thus irrelevant to its external behaviour. Global context conditions
do not permit the construction of the minimal process representation by minimising
the single components. In [29] global properties of a composite system can be deduced
from local properties of its components using additional interface processes to model
the environment of a component. However, state explosion is significantly reduced
only in the case of loosely coupled systems. A similar method is used in [52] where
state explosion is controlled by requiring the user to supply additional information,
called interface specifications, on the way subsystems interact. The approach is based
on the successive construction of minimal partially defined transition systems, guided
by “guesses” of the interface specifications. The correctness of the method does not
depend on the correctness of these specifications, but its efficiency does.

Many of the tools described abové have been recently extended by means of sym-
bolic verification algorithms, in which finite state graphs are represented using BDD’s.
These algorithms sometimes allow one to circumvent the state explosion problem, and
very large and complex systems can be checked efliciently and automatically. Never-
theless, BDD’s do not prevent state explosion in all cases and new methods have been
proposed to combine them with other symbolic manipulation techniques [31]. One
approach is to combine model checking with theorem proving: model checking is ap-
plied as much as possible and semi-automatic or interactive proof techniques are used
when automatic verification is not feasible [68]. This means that axioms and rules
of the given logic are formalised in the theorem prover and proofs are constructed
by applying such rules. In [79] model checking is used to verify local properties of
the components of a system and then theorem proving is applied to show that these
properties imply the correctness of the composite system. Another hybrid approach
is taken in [73] where an efficient implementation of a form of model checking, called
symbolic trajectory evaluation, is integrated with the HOL theorem prover. This
methodology allows one to (almost) automatically solve many hardware verification
problems which could be very difficult in a pure theorem proving environment.

A limitation of automata based approaches is that they can deal with only fi-
nite state speciﬁcations.. In such a framework, there is no easy way to accommodate
the verification of infinite state processes and value-passing specifications (unless the
value domain is finite, because value-passing agents can, in this case, be translated
into finite state agents, e.g. [19]). Furthermore, even in the area of finite state specifi-
cations there are restrictions on the kind of verification proofs that one can perform.
Recursively defined parameterised processes which are finite state are very common.
Let the following specification describe the behaviour of a buffer of capacity n >1 [97]:

Buffer,,(0) ¥ in. Buffer, (1)

Buffer, (k) ¥ in. Buffer,(k+1) + out. Buffer,(k—1) (0<k<n)
Buffer,(n) ¥ out. Buffer, (n—1)

Such a specification is parameterised on the capacity n and the number % of the data
presently stored in the buffer. For any fixed n, the specification Buffer, (k) is a finite
state process, thus model checking and equivalence verification can be carried out
using an automata based tool. Given one of these tools, a table is typically provided
that displays, for increasing values of n, the number of states of the automata repre-
senting the buffer specification and the performance of the tool. However, properties
of specifications like the one above can be naturally verified using mathematical in-
duction. General and powerful proof techniques such as induction, case analysis,
contradiction, are not available in an automata based tool. Hence, it is not possible
to formally prove in a rigorous way that the above specification satisfies a certain
property “for all n € IN”, even though the theory behind process calculi supports
such a kind of reasoning. Some induction techniques have been encoded in automata
based tools, such as the SMV system which combines induction methods with sym-
bolic model checking [90]. These techniques allow one to prove properties of a system
which are independent of the number of its components. Typically, the user must
provide a process or network invariant to serve as the inductive hypothesis and then
the proof is checked automatically. Further work on using model checking techniques
for reasoning about inductively defined systems can be found in [124] and in various
papers in [31]. |

Finally, the approaches based on a finite state machine representation lack any
insight into the meaning of the specifications. When performing verification, these
tools usually deliver a yes/no answer and very frequently the answer is no; in this
situation the user is not provided with any suggestion about what went wrong and in
which part of the specification the error was located. Some of the above verification
systems provide debugging facilities and, in particular, the TAV system is able to
return explanations in terms of modal properties and their proofs. Nevertheless, the
user might prefer to interact with the verification system and control the verification
phase, even when dealing with finite state processes and specially when specifications
with data are considered and the interaction between the data component and the
process behaviour can be tricky. Apart from being necessary to address problems
which are, in the general case, undecidable, a system that leaves some crucial decisions
to the user can, for efficiency reasons, also be useful when tackling decidable problems.
This methodology also has the advantage of providing a better understanding of the
specifications and of the correctness criteria one is trying to verify.

1.1.2 Theorem Proving Based Tools

In the past few years, several investigations into verification environments based on
the algebraic nature of the concurrency calculi have been carried out. This approach
allows one to manipulate the specifications in a homogeneous way by working only
on their symbolic representation. Various proof tools have been developed based on

10

equatiohal reasoning. They include:

e (semi-)automatic rewriting based tools, in which term rewriting techniques are
exploited to apply the (in)equational laws that characterise the behavioural
equivalences/preorders;

e specially designed axiomatic tools in which the syntak of a process calculus and
its behavioural laws are defined and then used to construct proofs;

e proof tools developed by embedding a process calculus in general purpose the-
orem provers.

Term Rewriting Techniques

The various behavioural equivalences for process algebras are characterised by sets of
equational laws. These axiomatisations can be analysed by means of term rewriting
techniques to see if these laws can be transformed into rewriting rules (i.e. oriented
equations), while maintaining the same deduction power as in the original axiomati-
sation. In other words, this means to “complete” the set of laws into a term rewriting
system which is canonical, i.e. terminating and confluent. Termination means that
all rewriting sequences are finite and terminate in a term which is a normal form
of the term from which rewriting started. Confluence means that any term has a
unique normal form, namely all terminating rewriting sequences from a given term
will terminate in the same term. Thus, a canonical term rewriting system, if it exists,
provides a decision procedure for the corresponding behavioural equivalence. Com-
pletion procedures [37] are applied to derive a canonical term rewriting system from
equational presentations. In the case of process algebras, these procedures are mod-
ulo AC (Associativity and Commutativity), as these two axioms occur among the
laws that characterise the operator of binary summation.

In [2] a canonical term rewriting system is found for a version of the process
algebra ACP with the laws of the branching bisimulation semantics (taken from [8]).
Also in the case of finite CCS (no recursion), the axiomatic presentation of branching
bisimulation can be completed into a canonical term rewriting system [35].

In [76] the application of term rewriting techniques to the verification of LOTOS
specifications has been studied. The behavioural laws for several subsets of the LO-
TOS algebra are defined in the RRL system and completion procedures are applied to
these sets of laws. A canonical set of rules is obtained only for a restricted subset of
Basic LOTOS. When moving to larger subsets of specifications, the rule set becomes
incomplete and strategies are needed to avoid non-termination of the rewriting se-
quences. Moreover, recursion cannot be handled in this setting and some control over
the verification process is desirable. Thus, the behavioural laws are defined in PAM
(see below) where recursion can be treated and interactive proofs can be performed.
This equational approach is then extended to full LOTOS (i.e. with abstract data

11

types). Proofs of correctness for some full LOTOS specifications are carried out by
hand using a combination of equational reasoning and bisimulation techniques. Such
proofs are not formalised in any verification tool.

In [35, 36] an interactive system for reasoning about CCS and LOTOS specifica-
tions is implemented in Quintus Prolog by following an equational approach. Both
the operational semantics and the laws for behavioural equivalences are seen as Horn
theories and logic-functional techniques are used. The behaviour of a process can be
explored by executing the rules of the operational semantics. The behavioural laws
can be applied as rewriting rules for reducing processes to their normal forms both
automatically and interactively to perform single transformations.

As mentioned above, term rewriting techniques alone appear to be quite restric-
tive and therefore it is not always possible to rely on a fully automatic verification.
In fact, even in the simple case of finite processes, there are behavioural semantics,
such as observation congruence and testing equivalence, whose axiomatic presenta-
tions do not admit an equivalent canonical term rewriting system. This is due to
the fact that the completion of the behavioural laws diverges, namely it generates
infinitely many new rewriting rules [65]. Moreover, as soon as the recursion operator
is added to the syntax of the process algebra, the unfolding rule makes rewriting
non-terminating and more difficult to treat [38]. Thus, rewriting strategies have to
be developed to guide the rewriting sequences towards the normal forms and prevent
non-termination [69, 70, 71]. A rather similar approach is also adopted in [1] for
deciding the strong early equivalence between finite terms of the m-calculus. Terms
are first reduced to a prefixed form by means of a rewriting strategy which applies the
basic behavioural laws. The equivalence is then decided using a proof system derived
from its operational definition based on bisimulation. Such a strategy is implemented
as a tactic in the HOL theorem prover.

Hence, a system with a meta-language to facilitate programming additional strate-
gies is needed. Furthermore, proofs by reduction are not the only verification tech-
nique, as one would like to be able to use operational means, induction, case analysis,
contradiction, etc. A framework which provides more general and powerful proof tech-
niques is thus required. In order to achieve this, specially designed proof tools can
be developed or general purpose theorem provers can be used as the infrastructure
to encode the theory of process algebras.

PAM

‘The parameterised proof tool PAM (Process Algebra Manipulator) is based on the
axiomatic presentation of behavioural semantics [86]. A meta-language allows users
to define their own process calculus and carry out proofs in it in an interactive way.
Several concurrency calculi have been mechanised in PAM including ACP, CCS, CSP
and LOTOS. A calculus is defined by entering its signature and the set of axioms which

12

characterise the behavioural semantics under consideration, without resorting to the
operational semantics. The core of PAM is a rewriting machine and the axioms are
applied using term rewriting techniques. Recursive agents are dealt with by means
of folding/unfolding rules and unique fixpoint induction. Tactics are provided for
combining simple transformation steps into more powerful ones. Help facilities and
a window based user interface make proofs easier to carry out.

PAM has been extended to VPAM [87], which deals with value-passing specifi-
cations according to the theory of symbolic bisimulation [61]. VPAM is based on a
proof system in which data and boolean expressions are treated symbolically. This
means that, when value-passing agents are analysed, boolean and value expressions
are not evaluated, and input variables are not instantiated. In this way, reasoning
about data is separated from reasoning about agents and is performed by extracting
proof obligations, which can be verified by another theorem prover later or on-line
with the main proof about the process behaviour (see Chapter 4 for further details).

PSF

The axiomatic tool PSF is specifically implemented for reasoning about the PSF
process algebra (i.e. an extension of the ACP algebra with abstract data types) within
the PSF Toolkit [89]. Typically, the user interacts with the proof assistant PSF by
specifying the axioms and tactics to be applied during the verification of behavioural
equivalences.

Instead of building a theorem proving environment from scratch and specialised
in reasoning about process algebras, one can think of embedding the process algebra
theory in general purpose theorem provers. In this way, the features of the particular
theorem prover are inherited, such as the type theoretic approach, the logic, the proof
environment and proof techniques.

LOTOS and the Boyer-Moore Theorem Prover

In [5] the Boyer-Moore theorem prover is used to formalise Basic LOTOS specifica-
tions. The syntax, the transition rules of the operational semantics and the laws for
observation equivalence are asserted in the theorem prover, and simple transitions
and equivalences are automatically proved. No inductive proof mechanisms can be
used because of the restrictions of the Boyer-Moore shell data type.

pCRL and the Coq system

The specification language pCRL combines processes with abstract data types [53]
in a way similar to the PSF algebra. The process component is still based on ACP
with branching bisimulation semantics (taken from [8]) and is extended with data
that are defined through many sorted equational specifications. A proof theory has

13

been given to yCRL in a natural deduction style [54]. It includes axioms and rules
that express equivalences over data and processes and formalise the relationship be-
tween the two components. The proof theory of uCRL has been implemented in
the Coq system [114] by extensively using its inductive mechanisms. According to
the algebraic approach to defining semantics, both the equations about data and the
laws for branching bisimulation are directly asserted in Coq. A version of unique
fixpoint induction over recursive processes, called Recursive Specification Principle,
is formalised by means of a rule that, given two processes and a recursive equation,
checks that the processes “satisfy” the equation and that such an equation is guarded.
The correctness of several protocols has been verified using yCRL and its embedding
in Coq [77].

To conclude this brief overview of verification tools for process algebras, it is worth
stressing that the described approaches are not to be considered as opposed to each
other or contradictory, rather they are complementary. As already mentioned, there is
a lot of ongoing research on combining (automatic) model checking with (interactive)
theorem proving. Moreover, new tools have been derived by interfacing an algebraic
tool with an automata based one, thus allowing different verification styles to be
adopted in the resulting environment. This kind of interaction is restricted to those
process algebra specifications for which the automata based tool can build finite state
automata. Examples are the combination of PAM with the Concurrency Workbench
and the ECRINS tool. For instance, the interface between PAM and the Concurrency
Workbench allows PAM to pass parts of its proofs to the Concurrency Workbench,
so that they can be checked automatically.

1.2 On Formalising a Process Calculus in the HOL
Proof Assistant

In this thesis, higher order logic and the general purpose theorem prover HOL [51]
are used to develop an interactive proof environment for supporting reasoning about
process algebra theory and its applications. The aim is to build a verification system
based on theorem proving which: (i) is logically sound, (ii) allows meta-reasoning to
be carried out, (iii) is interactive but allows automation whenever possible, (iv) can
be used in a practical and effective way.

Higher order logic is a good formalism for mechanising other mathematical lan-
guages because it is both powerful and general enough to allow sound and practical
formulations. Several logics have been mechanised in higher order logic [50] and the
theorem proving system HOL is used in these mechanisations. The HOL system was
originally developed by Gordon [49] for reasoning about hardware systems, but in the
past few years the range of its applications has widened considerably. The HOL proof

14

assistant is now used for mechanised theorem proving in many areas, including de-
sign and verification of critical and real-time systems, program refinement, program
correctness, compiler verification and concurrency.

The HOL logic is a version of (classical) higher order logic based on Church’s
simple theory of types [26]. The interface to the logic is the functional programming
language ML [32]. The approach to theorem proving in HOL is based on the LCF
methodology [107] for interactive and secure theorem proving by mechanising the
logic in a strongly typed language like ML. Theorems are represented by abstract
data types and the user can interact with the theorem prover by ML procedures
which operate on such data types. Theorem proving tools are ML functions and user-
defined ML programs can only perform valid logical inferences. Typically, a purely
definitional approach is taken when using the HOL logic. This means that new entities
are only introduced by means of (primitive and derived) definition mechanisms which
allow one to extend the logic in a sound way. Propositions and theorems are then
derived from definitions and/or previously proved theorems by formal proof. This
guarantees that inconsistencies are not introduced into the logic.

The HOL system can be used in two ways: (I) for proving theorems directly
in the HOL logic whenever higher order logic is a suitable specification language,
e.g. in hardware verification [48]; (11) as a theorem proving environment to support
reasoning about other formalisms.

According to the former approach, a formal system (such as the theory for a pro-
cess algebra) is mechanised in HOL by translating its syntactic objects into appro-
priate denotations in higher order logic. In this way, the embedded system inherits a
certain amount of syntactic infrastructure from the HOL logic. For example, variable
binding and substitution in a process algebra can be formalised using A-abstraction
and f-reduction in higher order logic. This approach allows one to build an environ-
ment suitable for reasoning about applications of the embedded system, but not for
meta-reasoning about the embedded system itself. In fact, meta-theorems about the
formalised system cannot be proved in the HOL logic.

The latter approach allows for both reasoning about applications and meta-
reasoning about the mechanised system. The formalism to be represented in HOL
is not translated into terms of higher order logic, but is encoded as a type in the
logic. These types are objects within the logic which can be referred to, properties
about them can be expressed and meta-theorems about the embedded language can
be proved. In the case of a process algebra, this language is formalised in HOL as a
type of agent expressions, to which meaning is then given by defining operational and
behavioural semantics. This approach has been strictly followed in [93], where Mil-
ner’s m-calculus is mechanised in the HOL system. In that formalisation all syntactic
operations over agent expressions, such as substitution, are defined within the logic
and then referred to explicitly in theorems and propositions involving such operations.
The HOL mechanisation of the m-calculus in [1] uses the same methodology. Similar

15

approaches are adopted in [7] where notions of program refinement are formalised in
HOL, and in [21, 22] where CSP trace and failure-divergence semantics are embedded
in HOL and some of their laws are formally derived. However, in these works substi-
tution and other syntactic operations are not defined explicitly, but inherited from
higher order logic.

The approach taken in this dissertation is similar to the ones above, as it is mainly
the type based one. However, some operators and syntactic operations of the embed-
ded calculus will be mechanised by translating them into HOL terms and rules. In the
initial stage of the described research, the pure subset of the CCS process calculus is
considered. The formal theory for some behavioural semantics, namely strong equiva-
lence, observation equivalence and congruence, and for a slight extension of Hennessy-
Milner modal logic is embedded in HOL.? The resulting formalisation is the basis for
the definition of verification strategies by mechanised formal proof. These include
strategies that exhibit different degrees of user interaction depending on the subsets
of CCS under consideration [23], proofs of correctness by mathematical induction for
parameterised specifications [100] and verification of modal properties [101].

The formalisation of the pure calculus in HOL is given in two steps, hoping that
this will make it easier to understand. First, pure CCS with binary summation, rec-
notation and a string based encoding of actions is embedded in HOL. The labelled
transitions, the operational and axiomatic characterisations of behavioural seman-
tics and a modal logic are mechanised in HOL; and proof tools are defined to allow
reasoning to be performed on agent specifications. Next, rec-notation is replaced by
systems of recursive equations, actions can be of any type and the more general for-
mulation of the CCS syntax with indexed summation is introduced. This will result
in a polymorphic version of the type for pure agent expressions.

The process calculus is then extended to its value-passing version. The approach
taken to formalising value-passing CCS is based on Milner’s translation from the
value-passing calculus to its pure subset [97]. A type for value-passing agent expres-
sions is defined in the HOL logic, such that an input prefixed agent a(z).F is encoded
through a A-abstraction that binds the variable x in the expression E. Thus, the
HOL A-abstraction is used to formalise variable binding and the HOL [-reduction
implements the substitution of values for variables in value-passing agents. The
translation is then defined and proved to be correct with respect to the semantics of
value-passing CCS, in the sense that the translation preserves all the transitions that
a value-passing expression can perform.

A proof environment for the value-passing calculus is derived using the translation
and the HOL formalisation for pure CCS, thus avoiding redoing all the proofs of the
properties of operators and of the behavioural laws. In fact, these are proved by sim-
ply translating the value-passing expressions into their pure versions, and then using

3In the following, the term ‘HOL’ will be used to denote both the version of higher order logic
implemented in the HOL system and the theorem proving environment.

16

the corresponding results already proved for pure CCS. In the resulting environment,
reasoning about value-passing specifications is performed without translating them
into their pure versions. Moreover, the proofs about the data component can be
neatly separated from the proofs about the process behaviour in the spirit of what
advocated by Hennessy in [59].

One goal of the formalisation of a process calculus in HOL is to allow meta-
reasoning to be performed on the embedded calculus. The translation from value-
passing CCS to its pure subset is an example of the meta-reasoning that can be
carried out in the HOL-CCS environment. The translation is used at meta-level for
developing behavioural theories for the value-passing calculus, and properties about
the relationship between pure and value-passing calculi can be formally proved.

The formalisation of the value-passing calculus is parameterised on the data com-
ponent and is carried out by keeping such a language as general as possible. This
means that no knowledge about the value domain V' and its particular structure is
assumed. The idea is to investigate what can be obtained by formalising V as a
polymorphic set, that can then be tailored to the particular application by properly
instantiating the type variable for the data. If the value domain is known through
its constants and constructors, it can be defined as a type in higher order logic and
substitution of value constants for value variables can be recursively defined on the
structure of the value domain. When the value domain is instead given as a poly-
morphic set, HOL infrastructure such as A-abstraction and S-reduction can be used
to mechanise variable binding and substitution.

Finally, note that a parallel and independent formalisation of pure CCS in HOL
has been carried out in [112], where CCS is used for describing and analysing the be-
haviour of hardware systems. In that preliminary work, the relabelling and recursion
operators are not included in the CCS syntax and the parallel composition operator
is replaced by other constructors inspired by the ACP algebra. Both operational
and observation semantics are defined as inductively defined relations and then some
simple laws are formally derived.

1.3 Outline of the Dissertation

The dissertation is organised as follows.

e Chapter 2 introduces the syntax and the operational semantics of pure CCS,
followed by the theory of the strong and observation semantics, the axiomatic
characterisation for observation congruence and the Hennessy-Milner logic. All
these components are then formalised in HOL. The version of pure CCS under
consideration includes binary summation and rec-notation, and the HOL mech-
anisation assumes that labels are represented by strings of characters. Proof
tools and techniques are then developed to help reasoning about CCS specifi-

17

cations. The resulting proof environment is used to verify the correctness of
a simple scheduler, namely a reader-writer system, in two ways. First, two
different descriptions of the reader-writer system are proved to be observation
congruent. Second, it is formally checked that the reader-writer system has a
mutual exclusion property.

Chapter 3 extends the syntax of pure CCS. Agent constants and defining equa-
tions are introduced to replace the rec-notation. This new notation allows (mu-
tually recursive) infinite state systems to be specified in a very convenient and
readable way. As a verification example, a specification of an infinite counter is
proved to be observation congruent to a low level implementation and to satisfy
a certain modal property. The main correctness results and most intermediate
theorems in this example are proved by mathematical induction. The syntax of
pure CCS is then extended to include an operator of (possibly infinite) indexed
summation. This leads to the use of function types in the definition of the
recursive type for CCS expressions. Pure actions are made polymorphic and
the formalisation of the expansion law for the parallel composition operator is
revisited and mechanised in terms of indexed summations.

Chapter 4 extends the HOL formalisation to the value-passing calculus. The
syntax of value-passing CCS is mechanised in HOL and then the translation
from value-passing agents to pure agents is defined. The translation is proved
to preserve the transitions that a value-passing agent expression can perform.
Next, a proof environment is developed for value-passing CCS based on the
translation and the proof environment for pure CCS. Reasoning about value-
passing specifications in HOL is shown by proving the observation congruence
between two different specifications of a simple communicating system.

Chapter 5 provides a summary of the work described in this dissertation and
its main contributions. Some directions and ideas for further research are also
proposed.

Appendix A contains a brief introduction to higher order logic and the HOL
system. The overview is not meant to be complete. The aim of this appendix is
to recall only the information essential for understanding the HOL formalisation
presented in the earlier chapters and the HOL sessions given in the following
appendices.

Appendices B, C and D present the HOL code corresponding to the proofs of
correctness which have been described in the previous chapters in a more infor-
mal way. Further comments about such proofs and their HOL mechanisation
are also provided. l

18

Chapter 2

Pure CCS in HOL

This chapter describes a pure process algebra and its mechanisation in the HOL
system. In order to make the presentation of the HOL formalisation easier, a version .
of the pure CCS calculus is introduced which is slightly different from the one given
in [97]. The more general formulation of the pure syntax will be mechanised in
Chapter 3, thus obtaining in the end a HOL formalisation of Milner’s calculus.

In the following sections, several definitions and theorems about CCS will be
recalled. The HOL formalisation of some of them, namely HOL definitions and theo-
rems, usually equipped with the name under which they are stored in the HOL theo-
ries, will be presented. Excerpts of HOL sessions will be enclosed in boxes. In order
to help readability, HOL definitions, theorems and transcripts will be edited to show
proper logical symbols instead of their ASCII representations, e.g. the usual symbol
for universal quantification ‘v’ will be used instead of the HOL symbol ‘I’. Moreover,
CCS expressions will sometimes be parsed and pretty-printed (modulo ASCII syntax,
e.g. @ will be written —a in boxes) so that the notation normally associated with CCS
can be adopted instead of its HOL representation.’

2.1 Pure CCS

The essential information about the syntax, the operational and behavioural seman-
tics and Hennessy-Milner logic for pure CCS is recalled in this section. The reader is
referred to [64, 97, 98] for more details about the calculus.

2.1.1 The Syntax and Operational Semantics

Pure CCS is a subset of the CCS language which does not involve value passing.
The communication between agents is simply synchronisation and no values, or more

!Note that a parser and a pretty-printer for the CCS notation have not yet been implemented
in the HOL system. Parsing and pretty-printing are done manually, thus all misprints, if any, are
only the author’s fault. -

19

generally data, are exchanged. The calculus consists of the inactive agent nil (called
0 in [97, 98]), a countable set X of agent variables ranged over by X, and the
following operations on agent expressions: prefiz (.), binary summation (+), parallel
composition (|), restriction (\), relabelling ([1) and recursion (rec). The syntax of
pure agent expressions £, ranged over by E, E', ..., is as follows:?

Eu=nil | X |uwFE | E+E | E|E| E\L| F[f] | recX.E
where

e u ranges over actions, which are either labels (visible actions, also referred to
as ports) or the silent (or invisible) action 7.

e L is a subset of labels ranged over by [. Labels consist of names and co-
names where, for any name a, the corresponding co-name is written @. This
complement operation has the property that [= .

e A relabelling f is a function from labels to labels such that relabelling co-names
has the property that f(I) = f(I). A relabelling function f is then extended to
actions by defining f(7) = 7.

In the expression rec X. E the agent variable X is bound by the operator rec. An
occurrence of the agent variable X is free in E if it is not bound by any operator
rec. For any expression E, Fu(FE) denotes the set of free variables in E. An agent
expression F is closed if Fv(E) =), otherwise E is an open agent expression. Closed
agent expressions are called agents. The set of agents is denoted by P and ranged
over by P, P, Q, etc.

An agent variable X is guarded in F if every free occurrence of X in E occurs
within some subexpression . F’ of E. An agent variable X is sequential in E if every
subexpression of E which contains X, apart from X itself, is of the form u. E’ or
E1 + E,. An agent expression F is finite if it contains no recursion and is sequential
if it ‘contains no parallel composition, restriction and relabelling.

Let E denote the set of agent expressions {E;:i¢€ I} for some indexing set I.
Then E{E/X} denotes the simultaneous substitution of E; for all free occurrences
of agent variable X; in the expression F (with variable renaming where necessary).

The meaning of the operators is the following.

e The agent nil cannot perform any action (inaction).
e The agent expression u. E' can perform the action u and then behaves like E.

e The agent expression £ + E' behaves like either E or E'.

2An equivalent notation for the recursion operator is fix and recursive expressions are then
written fix(X = E) and, more generally, fix;({X;=FE; :i € I'}) where I is an indexing set and j € I.

20

The agent expression E | E’ can perform the actions of E and E’ in parallel;
moreover, F and F’ can synchronise through the action 7 whenever they are
able to perform complementary actions.

e The agent expression E'\L behaves like E but cannot perform an action u if
either v or @ is in L.

e The actions of F[f] are renamings of those of the agent expression E via the
relabelling f.

e The expression rec X. F denotes a recursive agent which is a “solution” of the
recursive agent equation X = F.

The operational semantics of the above operators is given via labelled interleaving
transitions — over agent expressions based on their structure. This means that, in
the inference rules defining the operational semantics, the transitions of a composite
expression are defined in terms of the transitions of its component expression(s).
There is no transition rule for the inactive agent, as it cannot perform any action.
The meaning of the other operators is given through one or more transition rules, each
one with zero or more hypotheses (and possibly side conditions) and one conclusion.
The transition relation E —+ E’ is inductively defined by the rules in Figure 2.1.

| PREFIX: T

| wE-E
| : .)
. E-—SE . E— E'
; SUMl E+F i) E' SUM2 F+E l) E!
PARl: —Z—E _ pARo: __E-—E DARS: e L
. ElFi)EIIF ’ F[ELF[E’ . ' E|FL)E’|F’
RESTR: —Z2E 3,5 RELAB: E- B
o e EICET
REC: E{recX.E/X} - E'

recX.E = E'

Figure 2.1: The transition rules for pure CCS.

The last rule asserts that the actions of a recursive expression rec X. E are all the
actions of its unfolding F{rec X. E/X}.

The above calculus differs from the one described in [97] in two ways. First, the
rec-notation instead of agent constants and defining equations is used for denoting
processes with infinite behaviour. Recursive agent definitions through agent con-
stants and defining equations and their mechanisation in HOL will be illustrated in
Section 3.1. Second, the inactive agent nil and the binary summation ‘+’ are intro-
duced as basic operators of the calculus. Actually, they are instances of the more gen-

21

|

eral form of the summation operator, namely indexed summation, presented in [97].
Indexed summation and its formalisation in HOL will be described in Section 3.3.2.

2.1.2 The Strong and Observation Semantics

In the literature several behavioural semantics have been defined for CCS. Examples
are strong equivalence and observation equivalence/congruence [64, 97], trace and
testing equivalences [34] and branching bisimulation [45]. Each of these semantics
has been characterised in terms of axiomatisations, i.e. collections of equational laws
for the CCS operators, which have been proved sound and complete for subsets of
CCS expressions.

The distinction between the various behavioural semantics lies in the notion of
behaviour and in the way the silent action 7 is dealt with. In what follows, the strong
and observation semantics are considered and the relevant definitions are briefly re-
called.

Both strong and observation equivalence are defined in terms of a bisimulation
relation between agents. A binary relation S CP x P over agents is a strong bisimu-
lation if for all P, Q, P S @ implies that for all actions u

(i) whenever P -+ P’, then for some @', @ - @' and P'S Q';
(ii)whenever Q — @', then for some P', P % P' and P'S Q.

Thus, a strong bisimulation contains those pairs of agents such that any action of the
first agent can also be performed by the other agent and leads to agents which are
strongly bisimilar as well, and vice versa. Note that the silent action 7 does not have
any special status. P and) are defined to be strongly equivalent, written P ~ @Q, if
and only if P S () for some strong bisimulation S. In other words, strong equivalence
~ is the union of all strong bisimulations.

Weaker equivalences in which (some of) the occurrences of the T-action can be
ignored are observation equivalence and congruence. In order to define them, the weak
transition relation == for any sequence s of actions is first introduced. Given agent
expressions E, F' and a sequence of actions s = u;...u, (n>0), then £ = F if
E (D)% =5 (-5)* ... 2 (—)* F, where (——)* denotes the reflexive-transitive
closure of the transition relation —. If s = ¢ (empty sequence), then E == F if
and only if E (—)* F.

A binary relation S CP x P over agents is a weak bisimulation if for all P, @,
P S @ implies that for all actions u# T

(i) whenever P —% P, then for some @', Q =% Q' and P’ S Q';
(ii)whenever Q —+ @', then for some P, P == P’ and P'S @';
and

(i) whenever P — P’, then for some @', @ == @' and P’ S Q";
(i) whenever @ — @', then for some P, P == P' and P'S Q.

22

Note that any 7-action of an agent need not be matched by a 7-action of the other
agent. P and @) are defined to be observation equivalent, written P = @, if and only
if PS @ for some weak bisimulation S. In other words, observation equivalence = is
the union of all weak bisimulations.

Hence, in order to prove the strong (observation) equivalence of two agents P
and @, it is sufficient to show that there exists a strong (weak) bisimulation which
contains the pair (P,@). An alternative approach is to use equational reasoning:
given a collection of equational laws which are known to hold of the behavioural
semantics under consideration, the equivalence between P and @ can be proved by
applying these laws using the principle of “substituting equals for equals”. This is
possible if the behavioural equivalence is a congruence, where a congruence over CCS
agents is a relation which is preserved by all CCS operators. Strong equivalence is
indeed a congruence, while observation equivalence turns out not to be a congruence
relation as it is not preserved by summation contexts. Nevertheless, observation
equivalence can be refined. to a congruence relation by defining that two agents P
and @ are observation congruent, written P =, Q.3 if for all actions u

(i) whenever P — P, then for some @', @ = @' and P’ =~ @Q';
(ii)whenever @ — @', then for some P/, P == P' and P' ~ Q'.

This means that every initial action (7 included) of an agent must be matched by
an equal action of the other agent (plus some silent actions, possibly) and vice versa.
Observation congruence is preserved by all CCS operators and its axiomatic presen-
tation allows one to perform equational reasoning on agents by substituting equals
for equals. Note that observation equivalence is preserved by the summation opera-
tor under the hypothesis of stability. An agent P is stable if P has no 7-derivative,
namely P cannot perform any silent action. If P ~ () and P and @ are both stable,
then P =, Q. Thus, under the hypothesis of stability the observation equivalence is
not only preserved but even strengthened. '

Strong congruence, observation equivalence and observation congruence are then
extended to agent expressions. Let X be the set of free agent variables which occur
in agent expressions E and F. Then E =, F if and only if E{P/X} ~, F{P/X} for
all agents P. Strong congruence and observation equivalence over agent expressions
are defined in a similar way.

2.1.3 The Axiomatic Characterisation of Observation Con-
gruence

The axiomatic presentations which characterise the behavioural equivalences for CCS
can be separated into two sets of algebraic laws: those common to all equivalences,

3In this dissertation, the usual notation ‘=" for observation congruence is replaced by ‘~,’ (as
used in [64]) in order to avoid confusion with the HOL equality relation.

23

referred to as basic laws, and those concerning the silent action 7 which distinguish
the various equivalences, referred to as 7-laws.

By means of the basic laws, any finite agent can be proved equivalent to a se-
quential one, i.e. an agent containing only nil, prefix and -summation operators. The
basic laws (here given for observation congruence) are shown below:

P+(Q+R) ~. (P+Q)+R (A1)
P+Q ~. Q+P (A2)
P+P =, P (A3)
P+nil =, P (A4)
nil\L =, nil (A5)
(P+QN\L ~. PAL+Q\L (A6)
(u. P\L =, u.(P\L) if u,w ¢ L, nil otherwise (A7)
nil[f] =, nil (A8)
(P+Q)[f] = P[f]+QIf] (A9)
(u. P)[f] = f(u). P[f] (A10)
IfP = iu,Pz and Q@ = ivj.Qj then (A11)
i=1 Jj=1

PlQ ~ ﬁ;ui.m|Q>+§vj.<P|Qj>+Z{T.<R|Qj>:ui=v—j}

In the following, (A11) will be referred to as the ezpansion law. This law can be
combined together with the laws for the relabelling and restriction operators to get
what will be referred to as the ezpansion theorem.* The 7-laws for the observation
congruence are the following:

u.7. P =, u.P (T1)
P+7P =, 17.P" (T2)
u.(P+7.0Q)+uQ ~ u.(P+1.0Q) (T3)

The axiomatic theory of observation congruence for finite pure CCS is given by the
laws (A1)-(A11) and (T1)-(T3). These laws have been proved correct and complete
with respect to the definition of observation congruence in [64, 97].

The recursion operator is characterised by the following laws:

recX.E =, E{recX.E/X} (A12)

Let Fv(FE) C{X} and X be guarded and sequential in E. (A13)
If P ~, F{P/X} then P =, rec X. E.

4Note that the expression “expansion law” is used in [97] to refer to what is called “expansion
theorem” here (following the notation in [95]), in which relabelling and restriction may also occur,
besides parallel composition. In this dissertation, the expansion law is just the law for the parallel
operator, which can be derived as a particular instance of the expansion theorem. Furthermore, note
that there exist different formulations of the law (A11) in the literature. Above, this law is recalled
as presented in [95, 64]; another formulation, taken from [97], will be described and embedded in
HOL in Section 3.4.

24

The unfolding law (A12) asserts that a recursive expression rec X. F is observation
congruent to the expression F{rec X.E/X} obtained by “unwinding” rec X. E once.
In other words, rec X. E is a solution (or a fixed point) of the recursive equation
X = E up to observation congruence. The law (A13) expresses the uniqueness of
such a solution. In order to prove that an agent P is observation congruent to
rec X. F, it is sufficient to show that P “satisfies” the recursive definition, that is P
is observation congruent to the agent obtained by replacing every free occurrence of
X in E with P itself. The conditions of guardedness and sequentiality of X ensure
the uniqueness of fixed points modulo observation congruence.

Given the subset of finite state sequential agents, the recursion laws (A12)-(A13)
together with (A1)-(A4) and the 7-laws (T1)—(T3) have been proved sound and com-
plete for observation congruence in [96]. In that paper, a further set of laws is also
given for transforming unguarded récursive expressions to guarded ones in a sound
and complete way.

2.1.4 A Modal Logic

The modal logic under consideration is a slight extension of Hennessy-Milner logic [64]
as presented in [118]. Its formulas, ranged over by ®, are defined by the following
syntax:®

Pu=tt | =2 | PAD | [A]D

where A ranges over sets of actions. The meaning of the first three formulas is familiar:
tt denotes the constant true formula, = ® is a negated formula and ®; AP, is a
conjunction of formulas. The modalised formula [A]®, where the modal operator
[A] is sometimes referred to as boz, means that ® holds after every performance of
any action in A. This logic is a slight extension of Hennessy-Milner logic [64] in the
sense that modalities are parameterised on a set of actions instead of a single action.

Modal logics are interpreted on labelled transition systems. For any formula &
of the logic it is defined when an agent P has (or “satisfies”) the property ®. The
notation P |= ® is used to mean “P satisfies ®”, and P }£ ® to mean “P fails to have
the property ®”. The satisfaction relation |= is inductively defined on the structure
of formulas:

P tt

Pl -® iff P&

P=®A®, iff PE & andP £ &,

P [A]® iff forall P andu€A, if P~ P'then P' & &

5The usual notation, also adopted in [118], for the modal operators, that is —, A, V, [A] and (A),
is here replaced by a bold version =, A, V, [A] and (A) respectively. This is done to avoid

confusion with the HOL logical connectives -, A and V, the CCS relabelling operator [f] and the
HOL list constructor [e1;...;en]-

25

Every agent has the property tt. An agent has the property = ® when it fails to
satisfy the property ®, and it has the property ®; A®, when it has both properties
®; and ®,. An agent satisfies [A] ® if after every performance of any action in A
all the resulting agents have the property ®.

Derived operators, including the dual {A) (sometimes referred to as diamond) of

[A], are defined as follows:

T = att
<I>1VQ>2 = -I(-l.(I>1A—lq)2)
(A)® = -[A]-~0

The intended meaning of the diamond operator {A} is the following:
P | (AY® iff forsome P'andu€A, P— P'and P! E @

Properties such as capacity and necessity can be expressed within Hennessy-Milner
logic. The modal formula {A) tt expresses a capacity to perform an action in A, since:

P | (A)tt iff forsome P’ andu€ A, P> P

and [A]ff expresses an inability to perform any action in A. Using the notation in
which, given a set of actions Act, [—] stands for [Act] and [-u] for [Act—{u}]
(and analogously for the diamond operator), the property that an agent P must
perform a given action u (necessity) can be expressed as follows:

P = {(—)tt A[-u]ff

where the formula {—) tt states that some action can be performed, and [-u]ff
expresses that every action but u is impossible.

2.2 Mechanisation of Pure CCS in HOL

This section describes the formalisation in HOL of the various components of the CCS
theory presented above.

2.2.1 The Syntax

The first step in the mechanisation of the calculus is the definition of the types for
labels and actions. A label (or port) can be seen as the name of a visible action,
"so labels can be assumed to be strings of characters. The type for labels has then
a certain structure based on whether labels are complemented (co-names) or not
(names). Actions are either labels or the constant 7. The syntactic types label and
action can thus be defined as the following concrete data types:

label = name string | coname string

26

action = tau | label label

using the derived rule for (recursive) type definitions (Section A.4). Given the above
specifications, this rule automatically derives a theorem of higher order logic for each
type being defined, which characterises the type in a complete and abstract way. The
theorems for the types label and action are the following:

FVf0 f1. 3! fn. (Vs. fn(name s) = f0s) A (Vs. fn(coname s) = f1 s)

FVe f.3! fn. (fntau=¢€) A (VI fn(labell) = f1)

As these types are not recursive, these theorems simply assert the admissibility of
defining functions over labels and actions by cases.

The notion of complement is defined by a function over the type label as follows:
Vs. Compl (name s) = coname s A Vs. Compl (coname s) = name s
and then extended to actions with the following definition:
V1. Compl_Act (label {) = label (Compl [)

Using case analysis on the type label, the property that 1 =1for any [can be proved,
thus obtaining the following theorem in HOL:

F V1. Compl (Compl) = I

The type relabelling for relabelling functions is defined as the subset of functions
of type label — label such that relabelling respects complements. This is obtained
using the type definition mechanism in HOL (Section A.3), but the details of this
formalisation are not presented here. A relabelling function is then extended to
actions by defining a function relabel such that 7 is renamed as 7:

(Vrf. relabel rf tau = tau) A
(V rf L. relabel rf (label [) = label (REP_Relabelling rf 1))

where REP_Relabelling is the representation function for the new type relabelling.
The possibility of defining a relabelling function with the usual substitution-like
notation [l3/l1,...,1;/l,] where I} renames I; (1<j<n), is also provided. A con-
structor RELAB: (label x label)list — relabelling is defined which, given a list of pairs
of labels, returns the associated relabelling function. For example, the relabelling
[u'/u,d [a,d /d] can be written in HOL as the term

RELAB [name %', name u; name a’, name a; name d’, name d]

of type relabelling, where v',u,d',a,d',d are all strings.

27

The type CCS of pure agent expressions can now be defined by means of the rule
for concrete recursive types as follows:

CCS = nil |
var string |
prefix action CCS |
sum CCS CCS |
par CCS CCS |
restr CCS' (label)set |
relab CCS relabelling |
rec string CCS

Agent variables, whether bound or free, are formalised as strings denoting “place-
holders” which can be replaced by agent expressions. Similarly to the types label and
action, a complete characterisation of the type CCS is automatically derived:

- Ve £0 f1 £2 f3 f4 f5 f6.
A fn.
(fnnil=¢) A

(Vs. fn(vars) = fOs) A

(VAC. fn(prefix AC) = f1(fnC) AC) A

(VC1 C2. fn(sum C1C2) = f2 (fn C1) (fn C2) C1C2) A
(VC1C2. fn(par C1C2) = f3(fnC1) (fnC2) C1C2) A
(VC s. fn(restr C's) = f4 (fnC) s C) A

(VC R. fn(relabC R) = f5 (fnC) RC) A

(Vs C. fn(recs C) = f6 (fnC) s C)

This theorem of higher order logic is the basis for reasoning about the type CCS.
For example, many syntactic notions can be defined by primitive recursion over
the type CCS. As recalled in Section 2.1.2, weak bisimulation, observation equiv-
“alence and observation congruence are first defined over agents, i.e. agent expressions
with no free agent variables, and then extended to agent expressions. A function
Fv: CCS — (CCS)set that returns the set of free agent variables which occur in a
given agent expression, is defined in HOL by primitive recursion over the type CCS.
Agents are then characterised as those expressions whose set of free agent variables
is empty, as asserted by the predicate Is_Agent:

VE.IsAgent E = (Fv E =0)

In particular, a recursive expression rec X. F is closed if its body E has (at most)
the free variable X:

Is_Agent_rec: +VX E. Is_Agent(rec X F) = (FvE) C {var X}

The conversion Is_Agent_CONV has been defined in HOL for deriving whether or not
an agent expression is an agent.

28

Another example is the function CCS_Subst which, given two expressions F and E’
and a string X denoting an agent variable, implements the substitution E{E’'/X} of
E’ for all free occurrences of the variable X in E. Such a function is defined through
primitive recursion over the type CCS.® The following theorem (proved by structural
induction over the type CCS) characterises the free variables of a substitution:

FVars_CCS_Subst:
- EE' X. (Fv(CCS_Subst E E' X)) C (((Fv E) — {var X}) U (Fv E))

From such a theorem a property can be derived, which will be useful when proving
the unfolding law for the recursion operator:

Is_Agent_CCS_Subst_rec:
VX E. Is_Agent (rec X E) D Is_Agent (CCS_Subst E (rec X E) X)

Thus, given a closed recursive expression rec X. F, the result of substituting such an
expression for the free occurrences of X in its body F is an agent.

2.2.2 The Operational Semantics

Once the type CCS of agent expressions has been defined in HOL, the next step is the
formalisation of the labelled transition relation which gives the operational meaning
of the CCS operators. This relation can be embedded in HOL using the derived
principle for inductively defined relations (Section A.4). A transition E —+ E' is
represented by Trans E' u E’, where the relation Trans: CCS — action — CCS — bool
is defined as the intersection of all relations that satisfy the rules of the operational
semantics. The mechanism for inductive definitions proves that this intersection is
closed under the transition rules and is the least such relation. Proving that the
relation Trans satisfies the transition rules results in the following list of theorems,
which state the labelled transition rules given in Figure 2.1:

PREFIX: F Vu E. Trans (prefixu E) u E

SUM1: +FVEuwEl Trans Eu E1l D (VE'. Trans (sum E E') u E1)

SUM2: FVEuEL Trans Eu E1 D (VE'. Trans (sum E' E) u E1)

PARl: +VEuEl Trans EuEl D (VE'. Trans (par E E') u (par E1 E'))
PAR2: FVEwELl Trans Eu E1 D (VE'. Trans (par E' E) u (par E' E1))

PAR3: +VEEL1E E2.
(3. Trans E (label I) E1 A Trans E' (label(Compl [)) E2) D
Trans (par E E') tau (par E1 E2)

6Note that, in order to avoid capture of free variables, CCS_Subst works under the implicit
(i.e. informal) assumption that no agent variable, which occurs bound in a recursive expression, also
occurs free in any other agent expression (referred to as Barendregt convention in [120]). This aspect
is instead treated formally in Melham’s formalisation of the m-calculus [93], in which the possibility
of free variable capture is dealt with explicitly.

29

RESTR: FVEu E' L.
(3. Trans Eu E' A
((u =tau) V ((u=labell) A (I¢L) A (Compli&€L)))) D
Trans (restr E L) u (restr E' L) ‘

RELAB: FVEu FE'.
Trans Ew E' O (Vrf. Trans (relab E rf) (relabel rf u) (relab E’ rf))

REC: FVYE X u F1l.
Trans (CCS_Subst E (rec X E) X)u E1 D Trans (rec X E) u E1

Proving that Trans is the least relation closed under the transition rules results in a
rule induction theorem, from which a tactic is generated for proofs by induction over
the structure of the derivations defined by the transition rules. The theorem

TRANS Is_Agent: -FVEu E'. Trans Eu E' D Is_Agent E D Is_Agent E’

asserts that the derivatives of an agent are themselves agents. Its proof is an appli-
cation of rule induction.” This theorem will be useful when proving properties about
the behavioural semantics.

The inductive definition package provides other tactics for supporting goal di-
rected proofs about the relation Trans. A tactic that reduces a goal which matches
the conclusion of a transition rule can be defined for each of the theorems corre-
sponding to the transition rules. For example, a tactic SUM1_TAC is generated from
the above theorem SUMI, such that proving the goal I' * Trans (sum E1 E2) u F is
reduced to proving ' # Trans F'1 u E.

The theorem for performing exhaustive case analysis over the inductively defined
relation allows one to derive that, if there is a transition Trans E u E’, this can only
happen if one of the cases given by the transition rules holds. From this theorem
several properties about the relation Trans and the CCS operators can be derived. A
few of them are presented below:

NIL.NO_-TRANS: FVuFE.-Transnilu ¥

TRANS_PREFIX_EQ:

- YuEu' E'. Trans (prefixu E) ' B' = (v =u) A (E' = E)
TRANS_SUM_EQ:

- VEE wE" Trans(sum E E')u E" = Trans Eu E" V Trans E' u E"

TRANS_REC_EQ:
F VX EwE' Trans(rec X E) u E' = Trans (CCS_Subst E (rec X E) X) u E'

Many other theorems about Trans are proved, which will be used when deriving prop-
erties about the various behavioural semantics. Moreover, the theorems about Trans
allow one to “animate” the operational semantics and thus simulate the behaviour of

"Note that the theorem is written in a form suitable for applying rule induction.

30

agent specifications. Given any agent expression F, the conversion Run_CONV returns
a theorem stating the possible transitions of F in the following form:

FYuE TransEuE =((u=u)) A(E'=E1)) V...V ((u=u,) A (E' = E,))

where uy, . .., u, are the (immediate) actions that E can perform and E; is the agent
derivative into which E evolves after performing u;, 1<j <n.

2.2.3 The Strong and Observation Semantics

The various behavioural semantics are defined based on the formalisation of the la-
belled transition relation and then the algebraic laws are derived by formal proof. The
HOL-CCS environment includes the mechanisation of the strong semantics (bisimula-
tion and equivalence) and the observation semantics (weak bisimulation, observation
equivalence and congruence). In what follows, the HOL definition of strong bisimula-
tion and equivalence is briefly presented and then the formalisation of the observation
semantics is illustrated.

Using the HOL restricted quantification, strong bisimulation is formalised by the
following constant definition (Sections A.2 and A.3):

V Bsm.
Strong_Bisim Bsm =
(VE E':: 1s_Agent.
Bsm EE D
(Vu.
(VE1:: Is_Agent.
Trans Eu E1 D (JE2:Is_Agent. Trans E' u E2 A Bsm E1 E2)) A
(VE2:: Is_Agent.
Trans E' w E2 D (JE1:: Is_Agent. Trans Eu E1 A Bsm E1 E2))))

Restricted quantifications formalise the fact that the variables denote terms in the
set P of agents. As recalled in Section 2.1.1, this is usually expressed by saying that
P is ranged over by given symbols P, @, ..., and then using such letters to denote
the set of terms under consideration. Thus, these symbols also carry, implicitly, some
kind of semantic meaning which must instead be explicitly encoded in HOL. In the
HOL formalisation of CCS, two variables E and P of type CCS denote any agent
expression. If agents are to be considered, then this has to be explicitly asserted
using, for example, the predicate Is_Agent.®

Several properties about Strong_Bisim have been formally derived in HOL, such as
proving that the identity relation is a strong bisimulation, the converse of a strong

8Nevertheless, it is worth noting that in the definition of Strong_Bisim (as in many of the following
definitions), only the restricted universal quantification ‘VE E' ::Is_Agent’ is strictly necessary. Given
such a condition on E and E’, the fact that E1 and E2 are agents can be easily obtained by modus
ponens with the theorem TRANS Is. Agent.

31

bisimulation is a strong bisimulation and the union and the composition of two strong
bisimulations are strong bisimulations.

The strong equivalence E ~ E' over agents, represented in HOL by the relation
Strong_Equiv E F', is defined using the function new_resq_definition (Section A.3)
for defining constants with restricted quantified arguments:

VE E'::Is_Agent. Strong_Equiv E ' = (3Bsm. Bsm E E' A Strong_Bisim Bsm)

Using the theorems about strong bisimulation, it is easy to show that strong equiv-
alence is a congruence relation, namely an equivalence relation preserved by all CCS
operators over agents.

As far as the observation semantics is concerned, the reflexive-transitive closure
of the transition relation E — E', represented in HOL by Eps E E', is first defined
using the derived rule for inductive definitions. Based on the relation Eps, the weak
transition relation E == E’ is formalised in HOL by making a constant definition:

VE u E'. Weak_Trans E u E' = (3E1 E2. Eps E E1 A Trans E1u E2 A Eps E2 E')

The following theorem can now be proved, it asserts that a transition Trans Eu E' is
a particular weak transition Weak_Trans E u E':

TRANSIMP_WEAK_TRANS: FVEu E'. Trans Eu E' O Weak_Trans E u E'

The notion of weak bisimulation is then encoded by the following constant defi-
nition for Weak_Bisim : CCS — CCS — bool:

vV Wbsm.
Weak_Bisim Wbsm =
(VE E' :: Is_Agent.
Wbsm E E' D
(V1.
(VE1:: Is_Agent.
Trans E (label [) E1 D
(3E2:: Is_Agent. Weak_Trans E’ (label l) E2 A Wbsm E1 E2)) A
(VE2:: Is_Agent.
Trans E' (label 1) E2 D
(3E1:: Is_Agent. Weak Trans E (label [) E1 A Whsm E1 E2))) A
(VE1:: Is_Agent.
Trans Etau E1 D (JE2:Is_Agent. Eps E' E2 A Wbsm E1 E2)) A
(VE2 :: Is_Agent.
Trans E' tau B2 D (JF1:Is_Agent. Eps E E1 A Wbsm E1 E2)))

Theorems similar to the ones for strong bisimulation are derived for weak bisimulation
by making use of the above theorem TRANS_IMP_WEAK_TRANS.

32

The observation equivalence E ~ E’ over agents is defined as the following constant
Obs_Equiv with restricted quantified arguments:

VE E'::ls_Agent. Obs_Equiv E E' = (3Wbsm. Wbsm E E' A Weak_Bisim Wbsm)

Using the theorems about weak bisimulation, it is shown that the observation equiv-
alence is an equivalence relation and is preserved by all CCS operators over agents,
except for summation. It is proved that observation equivalence is preserved by the
summation operator under the hypothesis of stability of agents, where the predicate
Stable is defined as follows:

VE ::1s_Agent. Stable E = (Vu.VE':: Is_Agent. Trans Eu E' O —(u = tau))

Based on the definition of observation equivalence, the observation congruence

E =, E' over agents is formalised through a constant definition by defining the relation
Obs_Congr : CCS — CCS — bool as follows:

VE E':lIs_Agent.
Obs_Congr F E' =
(Vu.
(VE1 :: Is_Agent.
Trans Eu E1 D (3E2:: Is_Agent. Weak_Trans E' u E2 A Obs_Equiv E1 E2)) A
(VE2:: Is_Agent.
Trans E'yw E2 D (3E1::1s_Agent. Weak_Trans E v E1 A Obs_Equiv E'1 E2)))

Theorems similar to those proved for the previous equivalences are derived, such as
showing that observation congruence is an equivalence relation and is preserved by
all CCS operators over agents.

The relationship between the different behavioural equivalences is also formally
derived. A fact which will be useful when proving the behavioural laws in the next
section, is that strong equivalence implies both observation equivalence and congru-
ence, as the following theorem says as far as observation congruence is concerned:

STRONG.IMP_OBS_CONGR:
F VE E':: Is_Agent. Strong_Equiv E E' O Obs_Congr E E'

Moreover, it is proved that observation congruence implies observation equivalence,
plus several other properties given in [97] that formalise meta-reasoning about the
process calculus CCS in the HOL system.

2.2.4 The Laws for Observation Congruence

The laws for the CCS operators (Section 2.1.3) are usually shown to be correct by
starting from the definition of observation congruence and then exhibiting an ap-
propriate weak bisimulation. All of them have been formally derived in HOL, but

33

their mechanisation follows a different approach based on strong equivalence by ex-
ploiting the implication asserted by the theorem STRONGIMP_OBS_CONGR. The
basic laws are common to all the behavioural semantics and it is easier to deal with
strong bisimulation than with the relation == which includes any possible sequence
of silent actions. This means that the basic laws are proved for strong equivalence
and then derived for the other equivalences by simple inference steps. Obviously,
the 7-laws for any behavioural equivalence other than strong equivalence must be
proved directly, unless they are derivable from other equivalences (e.g. the 7-laws for
observation congruence hold for observation equivalence as well).

The formalisation of a few laws for observation congruence is given below to
illustrate its similarity to the presentation in Section 2.1.3. They are the laws for
the summation operator (A1)-(A4), the 7-laws (T1)-(T3) and the unfolding law for
recursion (A12):

SUM_ASSOC.R: FVE E'E":: Is_Agent.
Obs_Congr (sum (sum E E') E") (sum E (sum E’ E"))

SUM_COMM: F VE E':lIs_Agent. Obs_Congr (sum E E') (sum E' E)
SUMIDEMP: I+ VE:: Is_Agent. Obs_Congr (sum E E) E
SUM_IDENT.R: F VE:: Is_Agent. Obs_Congr (sum E nil) E

TAU_1: F Vu. VE :: Is_Agent. Obs_Congr (prefix u (prefi-x tau E)) (prefix u E)
TAU_2: F VE :: Is_Agent. Obs_Congr (sum E (prefix tau E)) (prefix tau F)
TAU_3: F Yu.VE E'::1s_Agent.

Obs_Congr

(sum (prefix u (sum E (prefix tau E'))) (prefix u E'))
(prefix u (sum E (prefix tau E')))

UNFOLDING: FVX E.
Is_Agent (rec X E) D
Obs_Congr (rec X E) (CCS_Subst E (rec X E) X)

Note that all the expressions on the left and right-hand sides of the observation con-
gruences can be easily proved to be agents, under the assumption that the variables
E, E', E" of type CCS denote agents. In the unfolding law the assumption is not on
the agent expression E, which typically is not an agent, but on the recursive expres-
sion rec X F. The right-hand side CCS_Subst E' (rec X E') X is also an agent using the
theorem Is_Agent_CCS_Subst_rec (Section 2.2.1).

The only law which requires some explanation is the expansion law (A11) of Sec-
tion 2.1.3 for the parallel composition operator.® This is due to the notation for
indexed summation which needs to be formalised in HOL. In particular, “finite” in-
dexed summations of prefixed agents are used in (A11l), where indexes range over

9The unique fixpoint law is not yet mechanised in HOL.

34

natural numbers. Finite summations of agent expressions can be formalised by
means of a function SIGMA such that, given a function f: num — CCS and an index
n:num, the expression SIGMA f n denotes the summation of n+ 1 agent expressions
(...(fO+f1)+...)+ f n. The function SIGMA is defined by primitive recursion:

(Vf. SIGMAfO = f0)A
(V fn.SIGMA f (n+1) = sum (SIGMA f n) (f (n+1)))

The transitions of the agent summation SIGMA fn are given by the following theorem,
which is proved by mathematical induction on n:

SIGMA_TRANS_THM_EQ:
FVn fuFE. Trans (SIGMA fn)u F = (3k.k<n A Trans (f k) u E)

The summands f ¢ in SIGMA f n can be checked to be prefixed expressions using the
predicate ls_Prefix:

VE.lsPrefix E = (3uE'. E = prefix u E')

and the action and process components of prefixed expressions are extracted by means
of the projection functions PREFACT and PREF_PROC respectively:

Vu E. PREFACT (prefixu E) = u
VYu E. PREF_PROC (prefixu F) = E

A function ALL_SYNC is then defined by primitive recursion, which computes the sum-
mation of all possible synchronisations between two agent summations given through
the functions f, f':num — CCS of length n, m respectively. ALL.SYNC makes use of
a function SYNC which computes the summation of all possible synchronisations be-
tween a single prefixed expression u. E and a summation. Such a function is defined
again by primitive recursion:

(Vu E f.
SYNCu E f0O =
(((u = tau) V (PREFACT (f 0) = tau)) = nil |
((LABEL u = Compl (LABEL (PREFACT (f 0)))) =
prefix tau (par E (PREF-PROC (f 0))) | nil))) A
(Vu E fn.
SYNCuE f (n+1) =
(((uw = tau) V (PREFACT (f (n+1)) =tau)) = SYNCuFE fn |
((LABEL u = Compl (LABEL (PREFACT (f (n+1))))) =
sum (prefix tau (par E (PREF_PROC (f (n+1))))) (SYNCu E fn) |
SYNCu E f n)))

where LABEL is a function which simply projects the label from an action:

V1. LABEL (label) = 1

35

The function ALL.SYNC is thus defined as follows:

(Vf f'm.

ALL.SYNC f 0 f'm = SYNC (PREF-ACT (f 0)) (PREF_PROC (f 0)) ' m) A
Vfn f'm.

ALLSYNC f (n+1) f'm =

sum

(ALL.SYNC fn f'm)

(SYNC (PREFACT (f (n+1))) (PREF.PROC (f (n+1))) f' m))

The law (A11) is finally derived by proving the following theorem:

EYfnf' ' m.

(Vi.i<n D Is_Agent (f i) A Is_Prefix(fi)) A

(V4. 7<m D lIs_Agent (f'j) A Is_Prefix(f' 7)) D

Obs_Congr

(par (SIGMA f n) (SIGMA f'm))

(sum

(sum
(SIGMA (Xs. prefix (PREF_ACT (f ©)) (par (PREF_PROC (f 7)) (SIGMA f' m))) n)
(SIGMA (Aj. prefix (PREFACT (f’ 7)) (par (SIGMA f n) (PREF_PROC (£’ 5)))) m))
(ALLSYNC f n f''m)) :

The law is formulated under the assumption that the summands in the two in-
dexed summations are prefixed agents. This is checked by the predicates Is_Agent
and Is_Prefix for all summands. Using such predicates, the subtype of all functions
f :num—CCS such that, for all 4, f1i is a prefixed agent, could be defined through type
abstraction (Section A.3). Thus, the function f in any agent summation SIGMA f n
would be chosen as an element of such a type, rather than defining it as a raw function
from numbers to agent expressions and then checking that each summand is a prefixed
agent. Nevertheless, the formalisation of the above notation for indexed summations
is completely hidden from the user and raw functions seem adequate for the given
purpose. A conversion for the application of the expansion law (A11) is defined that
includes the translation from a CCS summation to a SIGMA form and vice versa, and
checks that all summands are prefixed agents. It is also very natural to use numbers
as the indexing set for CCS summations and then define the necessary functions by
primitive recursion. A further alternative to this formalisation is to adopt set indezed
operations using a package developed in HOL by Newey [94], based on previous work
by Chou [25]. This package enables the lifting of a binary, associative and commuta-
tive operator with identity, such as CCS binary summation, to operate on a collection
of terms indexed by a set. This offers the possibility of explicitly writing (and rea-
soning about) “finite” summations of agents given through indexing sets by defining
a new indexed summation operation. However, possibly infinite indexed summations
of CCS agents will be needed when mechanising the translation of value-passing ex-

36

pressions into pure expressions in Chapter 4. Their HOL formalisation (Section 3.3.2)
is just an extension of the above functional approach.

2.2.5 The Modal Logic

The first step in the formalisation in HOL of the modal logic is to represent its syntax.
This is done by defining a concrete data type eHML of formulas of the extended
Hennessy-Milner logic using the derived rule for recursive type definition:

eHML = tt |
neg eHML |
conj ML eHML |
box (action)set eHML

Similarly to the definition of the types label, action and CCS (Section 2.2.1), a theo-
rem which completely characterises the type eHML is automatically derived in HOL.
Given this theorem, the satisfaction relation Sat: CCS — eHML — bool is defined by
primitive recursion over the type eHML, thus obtaining the following theorems:!°

SAT tt: F VE::Is_Agent. Sat E'tt

SAT neg: F VE:: Is_Agent.V Fm.Sat E (neg F'm) = —Sat E Fm

SAT conj: + VE:: Is_Agent.V Fm Fm/.
Sat E (conj Fm Fm') = Sat E Fm A Sat E Fml

SAT box: F VE :Is_Agent. VA Fm.
Sat F (box A Fm) =
(Vu.VE'::Is_Agent.u € A A Trans Eu E' D Sat E' Fm)

The derived operators of the modal logic are then defined:
ff = neg tt
VFm Fm'. disj Fm Fm' = neg (conj (neg F'm) (neg Fm'))
VA Fm. dmd A Fm = neg (box A (neg Fm))

and the related theorems for the relation Sat are easily proved by rewriting with the
above definitions and the satisfaction rules for the basic modal operators:

SAT ff: F VE:lIs_Agent. - Sat F ff

SAT disj: + VE::ls_Agent.V Fm Fm.
Sat E (disj Fm Fm!) = Sat E Fm V Sat E Fm/

SAT. dmd: - VE ::Is_Agent. VA Fm.
Sat F (dmd A Fm) = :
(Ju.3E ::Is_,Agent.u € A A Trans Eu E' A Sat E' Fm)

10 Actually, as the HOL rule for primitive recursive definitions (Section A.4) is not extended to
deal with restricted quantification, the relation Sat is first defined using new_recursive definition
and the predicate Is_Agent, and then the above theorems with restricted quantification are derived.

37

A tactic that reduces a goal which matches the structure of formulas is defined for each
case of the satisfaction relation. For example, the tactic SAT_conj_TAC is generated
from the theorem SAT _conj so that proving a goal I' * Sat F/ (conjAFm Fm) is reduced
to proving that E is an agent plus the subgoals ' * Sat E Fm and I' * Sat E Fm.

2.3 Reasoning about CCS Specifications

Once the formal theory for the CCS behavioural semantics and modal logic has been
embedded in the HOL system, a collection of proof tools can be developed to assist
in verifying properties of agent specifications. These tools include inference rules,
conversions and tactics, which can be used either interactively in a stepwise fashion
or composed together to give automatic strategies whenever possible.

2.3.1 Rewriting modulo Behavioural Equivalences in HOL

Basic rules, conversions and tactics are first needed for rewriting CCS expressions with
respect to behavioural relations. The built-in HOL rewriting tools for the equality
relation cannot be used, as rewriting is performed modulo a behavioural equivalence.
For each behavioural equivalence Beh and for each CCS operator op, a conversion
has been defined in HOL that applies the algebraic laws for op with respect to Beh.
Given a CCS expression E which contains one or more instances of the left-hand
sides of the laws for op, the theorem returned by the corresponding conversion as-
serts the behavioural equivalence Beh E E’, where E' is the result of applying the
laws for op to E. Depending on the definition of the conversion, the expression F’
can still contain subexpressions which can be rewritten with the same laws, so the
same conversion can be used once more. Let 0C_RELAB_ELIM_CONV be the conversion
“which applies the basic laws (A8)—(A10) for the relabelling operator with respect to
observation congruence (Section 2.1.3). Consider the following interaction with the
HOL system:

#let E = "(a.b.nil + c.b.nil) [bil/bl";;
E = "(a.b.nil + c.b.nil) [bil/b]" : term

#0C_RELAB_ELIM_CONV E;;

F Obs_Congr
((a.b.nil + c.b.nil) [b1/bl)
((a.b.nil [b1/b]) + (c.b.nil [b1/bl))

#(0C_TOP_DEPTH_CONV OC_RELAB_ELIM_CONV) E;;
F Obs_Congr ((a.b.nil + c¢.b.nil) [b1/b]l) (a.bl.nil + c.bl.nil)

38

The conversion OC_RELAB_ELIM_CONV applies only the law (A9) to the term E. Using
the function OC_TOP_DEPTH_CONV which repeatedly applies a conversion for observa-
tion congruence until it fails, the laws (A8)-(A10) for relabelling are applied, thus
renaming the occurrences of the action b with b1 and deleting those of the relabelling
operator.!! The conversions for applying the behavioural laws also check that the ex-
pressions being manipulated are actually agents using the conversion Is_Agent_CONV.
Starting from these conversions, the associated tactics have been defined which
apply the algebraic laws for given operator op and behavioural equivalence Beh
to a goal. For example, the tactic OC_RELAB_ELIM_TAC is defined by converting
OC_RELAB_ELIM_CONV into a tactic. More complex conversions and tactics can be
defined in terms of smaller conversions and tactics. The tactic OC_EXP_THM_TAC that
applies the expansion theorem for observation congruence is defined by composing
the tactics for the relabelling, parallél composition and restriction operators.
Sometimes, the application of a given theorem to a behavioural relation in the
current goal is instead desired. In this case, a substitution tactic for the behavioural
relation can be used, provided with the theorem to be applied. Let RELAB_SUM be

the theorem which formalises the law (A9) for observation congruence in HOL:

'k VE E':: Is_Agent. Vrf.
Obs_Congr (relab (sum E E") rf) (sum (relab E rf) (relab E' rf))

This theorem can be applied if the terms which instantiate the variables E' and E’ are
agents. In fact, the equational laws for behavioural equivalences are formalised in HOL
as implicational theorems: restricted quantification like ‘VE :: Is_Agent. P[E]’ is just
a short-hand notation for ‘VE : CCS. Is_/Agent E O P[E]’. Substitution tactics can be
defined for conditional rewriting modulo behavioural equivalences by adapting some
functions for conditional (equational) rewriting in HOL [125]. These tactics apply the
given implicational theorem under the assumptions that the terms being manipulated
are agents, and a subgoal for each of such assumptions (which need to be checked) is
generated besides the main behavioural subgoal. Actually, it is not necessary to have
proofs about behavioural equivalences cluttered with subgoals for checking whether a
given expression is an agent. This syntactic check can be done automatically by the
substitution tactics and the assumptions removed (if the check is successful, otherwise
the substitution step is not valid).!? The tactic 0C_SUBST1_TAC does this and rewrites
a goal by substituting the right-hand side of the given observational theorem for every
occurrence of its left-hand side in the goal. Hence, given the goal

#g "Obs_Congr ((a.b.nil + c¢.b.nil) [bi/bl) E'";;
"Obs_Congr ((a.b.nil + c¢.b.nil) [bi1/bl) E™

- 11The reader is referred to [106] for further information on basic conversions, such as DEPTH_CONV
and TOP_DEPTH_CONV, which are here extended to deal with behavioural equivalences.

12In Section 4.5 conditional rewriting modulo behavioural equivalences will be implemented to
reason about data in value-passing agents.

39

the application of (a specialised version of) the theorem RELAB_SUM through the tac-
tic 0OC_SUBST1_TAC would result in an invalid step, as no information about whether
E' is an agent is given:!3

#e (OC_SUBST1_TAC

(SPEC "[b1/bl"

(RESQ_SPECL ["a.b.nil"; "c.b.nil"] RELAB_SUM)));;
0K..

evaluation failed Invalid tactic

By providing such information, the substitution is successfully applied:

#set_goal (["Is_Agent E'"],
"Obs_Congr ((a.b.nil + c.b.nil) [bi/bl) E'™;;
"Obs_Congr ((a.b.nil + c.b.nil) [bi1/b]) E'
["Is_Agent E'"]

#e (OC_SUBST1_TAC

(SPEC "[b1/b]"

(RESQ_SPECL ["a.b.nil"; "c.b.nil"] RELAB_SUM)));;

0K..

"Obs_Congr ((a.b.nil [b1/b]) + (c.b.nil [b1/b]l)) E™
["Is_Agent E'"]

When dealing with behavioural relations, it is often the case that only one agent
expression needs to be rewritten with a single theorem or a list of theorems. For this
purpose, tactics such as 0C_LHS_SUBST1_TAC and OC_RHS_SUBST1_TAC that rewrite,
respectively, the left-hand side and the right-hand side of an observation congruence
with a single theorem, have been defined. In the above example, 0C_LHS_SUBST1_TAC
can be used instead of 0C_SUBST1_TAC. Rewriting with a list of theorems (modulo ob-
servation congruence) can instead be performed using tactics like 0C_LHS_SUBST_TAC
and OC_RHS_SUBST_TAC.

2.3.2 Verification Strategies

Several verification strategies can be defined based on the HOL mechanisation of the
CCS calculus, depending on the subset of specifications under consideration, the kind
of property to be proved, the proof techniques to be applied, the complexity of the
specifications and the level of confidence one has in their correctness.

When dealing with finite CCS expressions, the observation congruence of two
agents can be decided by means of an automatic rewriting strategy. In fact, the

!3Note that this information is required by the transitivity rule of observation congruence, in
order to justify (or validate) the HOL proof.

40

complete axiomatisation for observation congruence over finite CCS (Section 2.1.3)
can be used for rewriting the two agents into their normal forms with respect to
the algebraic laws. As mentioned in Section 1.1.2, a complete term rewriting system
which is equivalent to the axiomatisation does not exist. However, it is possible to
define a rewriting strategy that proves the observation congruence of two finite agents
by first reducing them to their normal forms, and then checking their equivalence
(modulo associativity and commutativity for the summation operator) [69]. This
strategy adopts criteria for selecting the law to be applied, which depend on the
state of the proof and on the state of the expression being manipulated. It is fully
automatic and has been embedded in HOL [23].14

When verifying recursive agents, automatic verification strategies are still possi-
ble whenever agents are finite state. But even in this case one might prefer to be
able to guide the verification process, in particular when one is not confident in the
correctness of the specifications and when the outcome of the automatic verification
is negative and no feedback is given about what is wrong. Moreover, partially inter-
active strategies are essential for reasoning about infinite state specifications. The
steps of an interactive verification strategy, called lazy expansion in [23], are defined
for dealing with the unfolding law (A12) for recursion and the expansion law (A11)
for parallel composition, at the same time keeping the size of the expression being
manipulated to a minimum. This strategy implements the usual verification method
for recursive agents: it first expands the specifications with the definitions of the
agents involved, then applies the behavioural laws (and possibly other theorems) by
reducing the resulting expressions as much as possible, and finally folds back some
subexpressions by rewriting with the definitions of the agents, thus controlling the
termination of the application of the unfolding law.

Agent specifications are often parameteriéed and their definitions depend on the
parameters’ values. In this case the above verification strategies must be enriched
with other (mathematical) proof techniques, which are typically available in a theorem
proving framework. Parameters can be indexes, so that the verification process in-
volves some form of induction. For example, the verification of specifications indexed
over natural numbers is usually by mathematical induction. In other situations, case
analysis can be sufficient to carry out a proof for indexed specifications. Case analysis
and contradiction are also useful when dealing with parameterised specifications and
value-passing expressions (as it will be shown in Sections 3.2 and 4.6).

All these strategies and proof techniques are used to verify several properties of
CCS agents. Behavioural equivalences can be verified with either an “operational”
or an “equational” approach. When the behavioural semantics under consideration
is defined in terms of bisimulation, two different descriptions, say Spec and Impl,

MNote that the formalisation in [23] is based on a non-definitional version of CCS in HOL.
However, given the HOL mechanisation of CCS presented in the previous sections, the rewriting
strategy can now be formalised in a purely definitional way.

41

of the same system can be proved to be equivalent by exhibiting a bisimulation
which contains the pair (Spec, Impl). This can be done in HOL in two steps. In the
case of strong bisimulation, an ML function build_strong_bisim is defined which,
given two CCS agents, attempts to compute a strong bisimulation containing the
two agents. This function returns a triple (s,bsml,thml), where s is a string saying
whether or not there exists a bisimulation, bsml is a list of pairs of agents, and
thml is a list of pairs of theorems corresponding to the agents in bsml and giving
their possible transitions (using the conversion Run_CONV presented at the end of
Section 2.2.2). If the function fails to find a bisimulation, namely s says that there
is no bisimulation, then the list bsml contains those pairs of agents which have been
tested for bisimilarity before the detection of failure. In this list there is at least
one pair of agents for which the definition of bisimulation fails, namely an action of
one of the agents is not matched by an equal action of the other. In this way some
information is provided about non-bisimilar subexpressions and their location in the
given specifications. If the function build_strong_bisim is successful, then the
resulting list bsml is transformed into a binary relation bsm and, using the theorems
in thml, the conversion CHECK_STRONG_BISIM is applied to prove that bsm is indeed
a strong bisimulation. For example, this operational approach can be used to prove
that the two recursive terms rec X.a.a. X and rec X.a. X are strongly equivalent.
In HOL this is checked as follows:

#build_strong_bisim "rec X (a.a.X)" "rec X (a.X)";;
(‘there exists a strong bisimulation®,
[("rec X (a.a.X)", "rec X (a.X)");
("a.rec X (a.a.X)", "rec X (a.X)"M],
[(F Vu E.
Trans (rec X (a.a.X)) uE = (u=2a) A (E = a.rec X (a.a.X)),
+ Vu E.
Trans (rec X (a.X)) u E
(- Vu E.
Trans (a.rec X (a.a.X)) u E = (u
F Vu E.
Trans (rec X (a.X)) u E (u=2a) A (E =recX (a.X0))1)
(string # (term # term) list # (thm # thm) list)

(u=2a) A (E=recX (a.X)));

a) A (E = rec X (a.a.X)),

#CHECK_STRONG_BISIM it;;
F Strong_Bisim
Az y.
(x = rec X (a.2.X)) A (y = rec X (a.X)) V

(x = a.rec X (a.a.X)) A (y = rec X (a.X)))

Moreover, model checking is given in terms of transition systems, thus an approach
based on the operational semantics of the process calculus is also used when checking

42

that a specification has a given modal/temporal property. Examples of verification
of modal properties will be presented in Sections 2.4.2 and 3.2.2.

Alternative to this operational way of verification is an approach based on equa-
tional reasoning, in which agent specifications are manipulated by applying the above
verification strategies, such as lazy expansion, which involve the use of equational
laws. Examples of this kind of reasoning about pure and value-passing specifications
will be shown in Sections 2.4.1, 3.2.1 and 4.6. Furthermore, a proof (by mathematical
induction) of the correctness of an implementation for the parameterised specification
of the buffer given in Section 1.1.1 has been mechanised in [100].

2.4 A Verification Example

This section shows how the HOL formalisation of the CCS calculus and the associated
proof tools can be used to verify properties of pure agents by considering a simple
example, namely a reader-writer system. In this simplified version of a scheduling
problem, a reader and a writer contest via a semaphore to access a shared resource.
Let the reading and writing tasks to be performed on the resource be simply specified
by begin actions br and bw and by end actions er and ew. The abstract behaviour
of this scheduler can be described as a completely non-deterministic alternation of
reading and writing tasks, as specified by the following recursive agent Spec:

recX. (r.br.er. X + 7. bw. ew. X)

At a less abstract level, the scheduler can be seen as the c-omposition of three agents,
i.e. a reader, a writer and a semaphore, running in parallel and synchronising be-
tween each other. Reader and writer make their requests to access the resource by
performing the action p. If the resource is available, the semaphore can synchronise
non-deterministically with either of the two by executing the action p. If the reader
has obtained access to the resource, it can perform its reading task by executing the
actions br and er. The reader signals the release of the resource through another
synchronisation with the semaphore by executing the action ©. The writer behaves
similarly but with writing actions bw and ew replacing the reading ones. Thus, the
behaviour of the two agents Reader and Writer is specified by the following terms:

rec X.p. br.er.v. X
rec X.p.bw.ew. 7. X

The semaphore Sem simply controls the access to the resource by performing the
actions p and v indefinitely:
recX.p.v. X

An implementation Impl of the reader-writer system is obtained by composing in
parallel the agents Reader, Writer and Sem and by restricting over the synchronising

43

actions p and v:
(Reader | Sem | Writer)\{p, v} .

The following subsections give two verification proofs for the correctness of the reader-
writer system.

2.4.1 Proving Behavioural Equivalences

The correctness of the implementation of the reader-writer system with respect to its

specification can be shown by proving that Impl and Spec are observation congruent.!® -
The agent expressions in this example are all agents, thus the laws for observation

congruence can always be applied. The agent variable X is guarded and sequential in

the body of the recursive expression for Spec. Thus, the unique fixed point law (A13)

(Section 2.1.3) can be used and, by taking P as Impl, verifying Impl =, Spec reduces

to proving that Impl “satisfies” the recursive definition of Spec, i.e. that the following

observation congruence holds:

Impl =, 7.br.er.Impl + 7. bw. ew. Impl

In what follows, two HOL (backward) proofs for this observation congruence are

presented. In order to make the proofs more readable, agents are written in the usual

CCS notation, while using the HOL predicate Obs_Congr (defined in Section 2.2.3)

to denote the observation congruence. Moreover, a goal given by an assumption list

I'={A;;...; A,} and a term ¢ is written I' * ¢ (if " is empty, the goal is simply 7 t).

The HOL sessions with the ML code for these proofs can be found in Appendix B.1.
The goal to be proved is the following:

Obs_Congr Impl (7. br. er. Impl + 7. bw. ew. Impl)

The lazy expansion strategy is able to solve this goal. The idea is to rewrite the
left-hand side of the behavioural goal so to transform it into an expression provably
congruent to the right-hand side. Thus, only the left-hand side is expanded using the
definitions of the agents:!¢

Obs_Congr
(recX.p.br.er.v. X | (recX.p.v. X | recX.p. bw. ew.7. X))\{p,v})
(7. br.er. Impl + 7. bw. ew. Impl)

15 A forward proof of the same behavioural relation is presented in [23], but such a proof is based
on a non-definitional formalisation of pure CCS in HOL. The observation congruence of a Basic
LOTOS version of the reader-writer system is also verified in [76] using the tool PAM.

16Note that parallel composition is formalised in HOL as a binary operator. The agent Impl is
thus defined as either ((Reader | Sem) | Writer)\{p,v} or (Reader | (Sem | Writer))\{p,v}. The two
agents are equivalent as parallel composition is associative with respect to observation congruence,
as formally derived in HOL. The second agent definition is chosen in this example.

44

By unfolding the recursive agents once and using the agent definitions again, the
following goal is obtained:

Obs_Congr
((p. br. er.v. Reader | (p.v.Sem | D. bw. ew.v. Writer))\{p, v})
(7. br. er. Impl + 7. bw. ew. Impl)

The expansion theorem for observation congruence is applied and this means, in
particular, using the expansion law (A1l) and the restriction laws (A6)—(AT7) (Sec-
tion 2.1.3) for deleting those summands obtained by expansion that are prefixed by
some action in the restriction set. Only the synchronisations are left:

Obs_Congr
(7. ((p. br. er.v. Reader | (v.Sem | bw. ew.
7. ((br. er.v. Reader | (v.Sem | P. bw. ew.
(7. br.er. Impl + 7. bw. ew. Impl)

. Writer))\{p,v}) +
. Writer))\{p,v}))

ST~

Another expansion step pulls the only possible actions bw and br out of the parallel
and restricted subexpressions:

Obs_Congr ~ (2.1)
(7. bw. ((p. br. er.v. Reader | (v.Sem | ew.w. Writer))\{p,v}) +
7. br. ((er.v. Reader | (v.Sem | P.bw. ew.w. Writer))\{p,v}))
(7. br. er. Impl + 7. bw. ew. Impl) -

At this point the proof can proceed in two different ways. The first one consists of
manipulating only the left-hand side of the behavioural goal using the lazy expansion
strategy, as done so far. Two further expansion steps lead to the following goal:

Obs_Congr
(7. bw. ew. 7. ((P. br. er.T. Reader | (Sem | Writer))\{p,v}) +
7. br.er.7. ((Reader | (Sem | P.bw. ew.T. Writer))\{p,v}))
(7. br.er. Impl + 7. bw. ew. Impl)

Either the writer or the reader has terminated its task and then released the resource
by synchronising again with the semaphore. This generates the new occurrences of
the internal action 7. They can be removed using the 7-law (T1) (Section 2.1.3):

7 Obs_Congr
(1. bw. ew. ((P. br. er.v. Reader | (Sem | Writer))\{p,v}) +
7.br.er. ((Reader | (Sem | P.bw. ew.T. Writer))\{p, v}))
(7. br. er. Impl + 7. bw. ew. Impl)

By folding back the subexpressions for Reader and Writer using the behavioural
theorems

Readerlemma : + Obs_Congr (p. br. er.v. Reader) Reader
Writer lemma : = Obs_Congr (p. bw. ew.v. Writer) Writer

45

the following goal is obtained: -

#* Obs_Congr
(1. bw. ew. ((Reader | (Sem | Writer))\{p,v}) +
7. br. er. ((Reader | (Sem | Writer))\{p,v}))
(1. br. er. Impl + 7. bw. ew. Impl)

This goal is simply solved by rewriting with the definition of Impl and the com-
mutativity law (A2) for binary summation with respect to observation congruence
(Section 2.1.3). '

After the first two expansion steps, a different proof technique could be used which
manipulates both sides of the behavioural goal (2.1). The substitutivity property of
the binary summation operator with respect to observation congruence, which in HOL
is the theorem

OBS_.CONGR-PRESD_BY_SUM :

FVE1 E1 E2 E2':: Is_Agent.
Obs_Congr E1 E1' A Obs_Congr E2 E2' D
Obs_Congr (sum E1 E2) (sum E1' E2)

can be used to split the verification in smaller proofs about the components (rep-
resented by the premisses of the above theorem) of a summation agent. Given the
goal (2.1), the inference rule OBS_.CONGR_PRESD_BY_SUM is applied backward, af-
ter using the commutativity law (A2) once, in order to get the subgoals in the right
order. The two following subgoals are obtained:

7 Obs_Congr
(1. bw. ((p. br. er.T. Reader | (v. Sem | ew.
(7. bw. ew. Impl)

Obs_Congr
(1. br.((er.v. Reader | (v. Sem | p. bw. ew.
(7. br. er. Impl)

<

. Writer))\{p, v}))

. Writer))\{p, v}))

<

Once more, it is possible to transform both subgoals before using the lazy expansion
technique. The substitutivity rule of the prefix operator with respect to observation
congruence, formalised in HOL by the theorem

SUBST_PREFIX :
FVE E':: Is_Agent. Obs_Congr E E' O (Vu. Obs_Congr (prefix u E) (prefix u E'))

can be applied backward twice; for example, the first subgoal above becomes:
% Obs_Congr ((p. br. er. . Reader | (v. Sem | ew.©. Writer))\{p, v}) (ew. Impl)

and is then solved using the expansion theorem, the 7-law (T1) and the definition
of Impl. Transformations similar to the ones already shown are produced with the

46

difference that reasoning is carried out separately on the (smaller) components of the
original (larger) system. This is the advantage of dealing with a behavioural congru-
ence, as it allows the analysis of an entire composite system to be reduced to that of
its (simpler) components. Moreover, proofs become more readable because .expres-
sions of smaller size are considered at each step. From the HOL implementation point
of view, this can also have effects on the performance of tactics like 0C_EXP_THM_TAC,
which implements the expansion theorem for observation congruence by looking for
subterms to be rewritten starting from the deepest ones.

2.4.2 Checking Modal Properties

The correctness of the implementation Impl of the reader-writer system can also be
checked against a modal formula, which provides a partial specification of the system
by expressing properties that Impl must have. The basic safety property that the
reader-writer system must satisfy is mutual ezclusion, namely the reading and writing
tasks cannot be carried out on the common resource at the same time. This means
that, when either the reader or the writer is working on the resource, the other agent
cannot access it. One way to express this mutual exclusion is through the following
modal formula @, where the notation given at the end of Section 2.1.4 is adopted to
express the notion of necessity of an action:!”

[F1([or] (=) tt A[—er]fE) A [bw] ((=) tt A[-ew]H))

This formula says that, after a synchronisation has taken place (i.e. the access to the
resource has been given to either reader or writer), whenever the action br is per-
formed (i.e. the reader has obtained access to the resource), then the next action must
be er and whenever the action bw is executed, then the next action must be ew.!® An-
other modal formula that expresses mutual exclusion by stating which actions cannot
occur, rather than which actions must occur, is [7] ([6r] [bw]f A [bw] [br]fF).
This formula says that an action br cannot be followed by an action bw and vice
versa.

Let us prove that the agent Impl has the property ®, namely Impl = ®. In order
to check this in HOL, the derived modal operator of necessity is first defined:

Vu. nec u = conj (dmd Univ tt) (box (Univ — {u}) ff)

where Univ : (action)set denotes the universe of actions. The satisfaction relation for
the necessity operator, E = nec u, is derived from the ones for the modal operators

17From now on, braces of singleton sets of actions inside the box and diamond operators will be
omitted.

!8Note that a weaker formulation [A] and {A4)) of the modal operators could be used, which is
interpreted on the transition relation =, thus allowing 7-actions to be ignored. Moreover, the
above safety property can be expressed to hold forever, namely over the infinite recursive behaviour
of the reader-writer system. This requires an extension to the modal logic, i.e. the p-calculus [118],
which is not treated here.

47

in the definition of nec and is given by the following theorem directly in terms of the
transitions of the agent F:

SAT nec: F VE::Is_Agent. Vu.
Sat E (necu) =
(3E’:: Is_Agent. Trans Eu E') A
—(Ju/. AE :: Is_Agent. —(u'=u) A Trans Eu' E')

This theorem asserts that an agent F necessarily performs an action « if and only if
FE can perform u and cannot perform any other action different from wu.

The HOL proof of the goal # Impl = @ is outlined below. Once more, the usual
CCS notation is used for the agents and the satisfaction relation, while the HOL
predicate Trans is used to denote the transition relation. Assumptions of the form
‘Is_Agent E’ and subgoals for checking that a given specification is an agent are left
out. The HOL code for this proof is reported in Appendix B.2.

Because the modal logic is interpreted on transition systems, the proof technique
for verifying that an agent has a given property mostly involves computing the agent
transitions and showing that they are (or are not) allowed by the modal formula.
In HOL this often means proving that there is an inconsistency between transitions.
The proof of Impl = ® starts by rewriting the goal with the definition of ®:

* Impl = [r]([or] ({=)tt A[—er]fE) A [bw] ({=) tt A[—ew]fT))

By applying the satisfaction relation for the box operator (Section 2.1.4), the new
goal is:

?* Yu.VE':: Is_Agent.
ue{r} A TransImplu E' D

E' E [or]({=)tt A[—er]H) A [bw] ({—) tt A [—ew]fT)

The condition u € {7} is true if and only if v = 7 and the transitions of Impl can be
derived using the conversion Run_CONV (Section 2.2.2):

?* Yu.VE':: Is_Agent.
(u=7)A
((u=7) A (E' = (Reader | (v.Sem | bw. ew.T. Writer))\{p,v}) V
(u=7) A (E" = (br.er.v. Reader | (v.Sem | Writer))\{p,v})) D
E' = [br] (=) tt A[—er]fE) A [bw] ({—) tt A[—ew]fT)

Given any action u and agent E’, let us assume the antecedent of the implicational
goal to be true and try to prove its conclusion. In the HOL jargon, this means that
the antecedent of the implication is moved into the assumption list of the goal by
stripping the universal quantifiers and the implication. Moreover, the conjunctions in

48

the antecedent are split and, as the antecedent contains a disjunction, two subgoals
are generated:

{u=7; E'=(Reader | (v.Sem | bw.ew.7. Wrz'ter))\‘{p, v} (2.2
P B D] (YA L] A Du] () 66 A[-eu])
{u=7; E'= (br.er.v. Reader | (v.Sem | Writer))\{p,v} } (2.3)
P B E [r]({=) tt A[-er]f) A [bw] ({-) tt A[-ew]f)

Let us prove (2.2). The satisfaction relation for conjunctive formulas can be applied,
thus obtaining two subgoals:

{u=171; E' = (Reader | (v.Sem | bw.ew.
* E' = [or]({(—)tt A[—er]ff)
{u=71; E'=(Reader | (v.Sem | bw.ew.
2 B b [l (o) st A[-ew]®)

S

. Writer))\{p,v} } (2.4

<

. Writer))\{p,v} } (2.5

The proof of subgoal (2.4) makes use of the satisfaction relation for the box operator:

{u=7; E' = (Reader | (v.Sem | bw.ew.v. Writer))\{p,v} }
* Yu.VE":ls Agent. ue{br} A Trans E'u E" D E" |= {-)tt A[—er]ff

As before, let us rewrite the condition u € {br}, assume the antecedent of the im-
plicational goal and try to prove its conclusion. Using the conversion Run_CONV, the
transitions of agent E' can be computed and added to the assumption list. This
yields the following goal:

{v=171; B' = (Reader | (v.Sem | bw.ew.w. Writer))\{p, v} ;
' =br; Trans E'u' E" ;
v =bw; E" = (Reader | (v.Sem | ew.v. Writer))\{p,v} }
*E" E(-)ttA[-er]f

The assumptions of this goal are inconsistent, as the action »' has been derived to
be equal to the two different constants br and bw. The conversion Action_EQ_CONV
that decides equality. of pure actions is used to derive a theorem whose conclusion is
false, thus solving subgoal (2.4).

The proof of subgoal (2.5) is slightly different as £’ can execute the action bw in
the modal formula that E' must satisfy. After applying the satisfaction relation for
the box operator, the modal formula {—) tt A [—er]ff (expressing the necessity of
the action er) is rewritten using the theorem SAT nec. The outermost connectives

49

are then stripped, thus producing two subgoals:

{u=7; E' = (Reader | (v.Sem | bw.ew.v. Writer))\{p,v}; (2.6)
v =bw; Trans E'v' E" }
? JE':ls_Agent. Trans E” ew E'

{u=7; E' = (Reader | (v.Sem | bw.ew.
w' =bw; Trans E'v' E"
—(u" = ew) ; Trans E" u" E" }

> F

. Writer))\{p, v} ; (2.7)

Sl

where the last two assumptions and the conclusion F of subgoal (2.7) are obtained
by stripping the outermost connectives of the second conjunct in the right-hand side
of the theorem SAT_nec and instantiating its existentially quantified variables. The
agent E' can execute bw and evolve into (Reader | (v. Sem | ew.w. Writer))\{p, v}.

Thus, the existentially quantified variable in subgoal (2.6) can be instantiated with
(Reader | (v. Sem | v. Writer))\{p, v}:

{u=71; E'=(Reader | (v.Sem | bw.ew.T. Writer))\{p, v} ;
v =bw; Trans B'v' E" ;
E" = (Reader | (v.Sem | ew.w. Writer))\{p,v} }

? Trans E” ew (Reader | (v.Sem | w. Writer))\{p, v}

The goal is solved by applying the transition rules for the restriction, parallel and
prefix operators. Subgoal (2.7) is solved by deriving a contradiction about the value
of action u”, thus concluding the proof of subgoals (2.5) and (2.2). Subgoal (2.3) is
proved with proof steps similar to the ones for subgoal (2.2).

A concluding remark concerns the predicate Is_Agent. As it can be seen in Ap-
pendix B.2, when applying theorems/rules with restricted quantification either in
backward or in forward manner, it must be verified that the specifications under con-
sideration are agents. Although there exist HOL conversions and tactics to deal with
restricted quantified variables, using restricted quantification leads to longer and less
readable proofs. The verification of such a predicate can be automated to a certain
extent, like in the substitution tactics/conversions for the behavioural equivalences
(as discussed in Section 2.3.1). More practically, whenever applications specified in
CCS are considered, it can be assumed that all specifications are actually agents. The
situation might be different when performing meta-reasoning on the process calculus.
In the rest of the dissertation, unless where necessary, HOL proofs will be abstracted
from the issue of checking the predicate Is_Agent for the given specifications.

20

2.5 Summary

This chapter has presented the HOL formalisation of some components of the theory
for the CCS process calculus. The syntax, various semantics, the laws for observation
congruence and a modal logic have been embedded in higher order logic. This is
done using the primitive and derived rules of definition provided by the HOL system
and by deriving all other properties and theorems by formal proof. Actions, agent
expressions and modal formulas are mechanised as concrete recursive data types, and
then several functions are defined by primitive recursion over these types. New types,
such as the one for relabelling functions, are encoded by means of the type abstraction
mechanism. The derived rule for inductive definitions is used to define the transition
relation over agent expressions, and then bisimulation and behavioural equivalences
are introduced into the HOL logic by making constant definitions and using restricted
quantification over agents. Properties about the various types, transition relations,
bisimulations, behavioural equivalences and their laws, are formally derived starting
from the mechanisation of the syntax and the various semantics.

This methodology allows users to take advantage of all components of the formal
theory for process calculi in a unified framework and to define their own verification
strategies. As an example, two different proof methods are adopted when showing the
correctness of the reader-writer system (Section 2.4 and Appendix B). The first proof
is based on equational reasoning, and the axiomatic characterisation of observation
congruence is used by applying the behavioural laws with a lazy expansion strategy.
The second proof is about checking modal properties, thus an operational technique
based on the labelled transition relation is mostly used.

Various conversions and operators for constructing conversions from smaller ones,
and several tactics and operators for constructing tactics from smaller ones and from
conversions, have played a fundamental role in the HOL mechanisation of CCS. Dif-
ferent degrees of automation can be chosen, in the sense that conversions and tactics
can be defined to perform only one or more computation steps. The HOL proofs
shown in Appendix B are fairly interactive, but “bigger” tactics could be defined
by composing the smaller ones, such as those for the expansion theorem, unfolding,
resolution, etc. In the case of finite state specifications, these tactics would be able
to automatically solve the original goal.

It is fair to note that the reader-writer example used to show how reasoning
about pure agents can be performed in HOL is just a toy system. The verification of
both the observation congruence between implementation and specification and the
mutual exclusion property can be trivially checked by any finite state machine tool.
The automaton associated to the reader-writer system is really small, thus verification
is very fast. Nevertheless, in its simplicity this verification example introduces the
kind of formal proofs which can be carried out in the HOL-CCS environment and
shows how different proof styles (such as the two proofs in Section 2.4.1) can be used

51

when considering a behavioural congruence. The example and, more generally, the
HOL formalisation of pure CCS also give evidence of the various technical details that
need to be formalised when embedding a calculus in a theorem prover, such as the
predicate Is_Agent and the notation for finite indexed agent summations.

The reader-writer system can be easily extended to the general case of n processes
competing for access to a common resource. Particular access orderings, e.g. round
robin access, can also be specified, thus yielding typical scheduling systems such as
Milner’s scheduler [97]. In general, the correctness of inductively defined systems,
both finite and infinite state, is shown using induction. Proofs by mathematical
induction of the correctness of specifications will be presented in Chapter 3.

The law (A13) of unique fixpoint induction has not yet been derived in HOL, while
this is provided by axiomatic tools such as PAM and the embedding of 4CRL in Coq.
Therefore, the HOL proofs of behavioural congruences start from a goal to which
unique fixpoint induction has already been applied by hand. The formal theory for
deriving the law (A13) is currently being mechanised in HOL.

Extensions to the Hennessy-Milner logic and the subset of CCS can be embedded
in the HOL system. For example, more expressive temporal logics can be represented
in higher order logic and proof tools, such as the tableau system for the p-calculus [118,
16], can be soundly mechanised. Related work about embedding temporal logics in
higher order logic includes various mechanisations of TLA in HOL [24, 126] and in
Isabelle [75], and a formalisation of ACTL in HOL [46, 80]. As far as extensions to
the CCS calculus are concerned, in the next chapter the pure syntax is extended to
include agent constants and (possibly infinite) indexed summations.

02

Chapter 3

Polymorphic Versions of Pure CCS
in HOL |

This chapter presents two new HOL formalisations of the pure CCS calculus. The aim
is twofold: (i) to mechanise the pure calculus as given in [97] and (ii) to mechanise
it in such a way that value-passing agent expressions, which will be considered in
Chapter 4, can be translated into pure agent expressions.

The first objective is achieved in two steps. First, agent constants and defining
equations are formalised in HOL, thus replacing the rec-notation in the CCS syntax.
Defining agents with infinite behaviour through systems of recursive equations also
gives the possibility of specifying (pure) parameterised agents easily. Pure agent
constants A are explicitly allowed to have arity n >0, thus agent constants of the
form A(ey, ..., e,) can be defined in HOL. This leads to a polymorphic type for pure
expressions which is parameterised on the type of the parameters of agent constants.
Based on this new formalisation of the pure calculus, the correctness of an infinite
counter is verified in HOL by proving that two different descriptions of the counter are
equivalent modulo observation congruence and that the specification of the counter
has a given modal property.

Second, an operator of indexed summation is included in the HOL type for pure
agent expressions, thus replacing the binary summation operator. This achieves
aim (i) above and leads to a new formalisation of the expansion law based on the new
summation operator. Moreover, it is a step towards aim (ii), due to the translation of
value-passing input expressions into (possibly infinite) indexed summations. Finally,
pure labels are not assumed to be strings any more but can be of any type, namely
the HOL types for pure labels and actions also become polymorphic.

All these transformations on the HOL formalisation of the pure syntax result in a
polymorphic type for pure agent expressions, which is parameterised on the types for
the indexing domain of indexed summations, the parameters in parameterised agent
constants and the labels (or ports). This new formalisation allows value-passing agent
expressions to be translated into pure expressions as it will be shown in Chapter 4.

53

3.1 Recursive Agent Definitions

So far, the only way of defining agents with infinite behaviour has been through the
rec-notation (Section 2.1.1). This differs from the notation based on agent constants
and (recursive) defining equations used by Milner when introducing his calculus [97,
98]. In this section a brief comparison between the two notations is given by means
of a few examples, and the formalisation in HOL of agent constants and recursive
definitions is then presented.

3.1.1 A Few Examples

As Taubner says in [120], there are two common notations for recursion in process
algebras. One defines recursive agents through a system of recursive equations. This
notation is legible, concise and very convenient from a practical point of view. The
other is the rec-notation which, from a theoretical point of view, is closer to A-calculus
and has the advantage that all information is encoded in the rec-terms. This means
that one clause in the syntax is sufficient for recursion and no system of defining
equations is needed. However, this notation can easily become illegible.

Let us consider the following CCS agents which will also be used when defining an
infinite counter in Section 3.2.1. An implementation of the counter can be built by
“linking” together (several copies of) a cell C' and an agent B defined as follows [97]:

C £ up.(C™C)+ down.D
D £ d.C+a.B
B £ up.(C™B)+ around. B

(3

where the linking operator is a derived CCS operator defined in terms of rela-
belling, parallel composition and restriction (its definition is not relevant here and is
given in Section 3.2.1). The agents C, D, B are mutually recursively defined through
a (finite) system of recursive equations. However, these agents can also be easily

expressed as the following closed rec-terms:

C ¥ recX. (up. (X™X) + down. (d. X +a. (recY. (up. (X"Y) + around.Y)))
B ¥ recY. (up. (C™Y) + around.Y)
D=dC+aB

These agents can be simply introduced in HOL through constant definitions (Sec-
tion A.3). The definition of D is the same as the one given initially. As far as the
agents C' and B are concerned, as it is more convenient to rewrite them using their
definitions as recursive equations, these can be derived by formal proof up to the
behavioural equivalence under consideration. In the case of observation congruence,

54

this means proving the following theorems in HOL:

- Obs_Congr C (up. (C™C) + down. D)
- Obs_Congr B (up. (C™B) + around. B)

and then using such theorems for rewriting C' and B up to observation congruence.

Unfortunately, it is not always so simple to write the rec-terms corresponding to
a system of recursive equations. Let us consider the following system which defines
the agent constants A, B and C:

A Y ¢d.A+b.B+cC
B ¥ g A+V.B+c.C
C ¥ aA+b.B+c.C

A rec-term that denotes the agent A is the following:

rec A.
a. A+
b.(recB.a.A+V.B+c.(recC.a. A+b.B+.C)) +
c.(recC.a.A+b.(recB.a.A+¥.B+c.C)+c.C)

where A, B, C are now denoting the agent variables bound by the rec operators.
In this term some recursive subexpressions need to be duplicated due to the scoping
rules of rec-terms. For instance, in the last summand of the body of the outermost
rec operator, the recursive term denoting the agent B must be given explicitly again,
because it is not in the “right” scope and thus cannot be simply referred to with
an occurrence of the corresponding bound variable.! The rec-term above is just one
of several rec-terms that denote A and it is clear that the transformation from a
system of recursive equations to the rec-notation can easily lead to very cumbersome
rec-terms.

In [120] Taubner has shown that the two notations for recursion in process al-
gebras are equivalent. In fact, he gives a (back and forth) translation between the
two notations and proves that they are strongly equivalent. Hence, one can define
agent constants through systems of (mutually) recursive equations in a more conve-
nient way than using the rec-notation. Given a finite set I of agent identifiers (or
constants) and the set terms of terms generated by a CCS-like syntax, a mapping
A: K — terms formalises the defining equations of the agent constants. Both the
operational semantics of the agents in terms and the translation are parameterised
on the function A, that can be seen as the environment containing agent identifiers
and corresponding agents, in which a process algebra term is evaluated, executed and
verified.

1This phenomenon is called horizontal sharing and it is well known that the p-calculus (u X. E
is just another notation for rec X. E) is not able to cope with it [70].

95

However, one would also like to be able to deal with parameterised agent constants.
Taubner’s translation considers “parameterless recursive processes” and the set K of
agent identifiers is assumed to be finite. His translation and the strong equivalence
between the two notations for recursion hold in the framework of finite state agents,
i.e. agents whose labelled transition systems have a finite number of states. In the
presence of parameterised recursive agents, a set of defining equations may well define
an infinite family of agents depending on the domain of the parameters, thus leading
to an infinite set K of agent constants.

Let us recall the defining equations that specify the behaviour of a buffer of
capacity n>1 (Section 1.1.1):

Buffer,(0) = in. Buffer,(1)
Buffer, (k) % in. Buffer, (k+1) + out. Buffer,(k—1) (0<k<n)
Buffer,(n) € out. Buffer,(n—1)

Such a specification is parameterised on the capacity n of the buffer and the number
k of the values presently stored in the buffer. Whenever the capacity n is fixed, the
above specification can also be given through a rec-term. In fact, Buffer, defines a
finite state agent for any fixed n, as the other parameter k£ can only range between 0
and the given n. For example, if n=3 a rec-term for Buffers(0) is as follows:

rec Byg. in. (rec Bs;. in. (rec Bsy. in. out. Bsy + out. B;) + out. By)

where Bsy (0 <k <3) denotes an agent variable bound in a rec-term.
Let the behaviour of a counter be specified by means of the following defining
equations [97, 118] (this specification will be analysed in Section 3.2):

def
Countery = up. Counter; + around. Counter

Counter, = up.Counterny, + down. Counter, (n>0)

The agent expression Counter, is parameterised on n €N, which represents the
“state” of the counter, i.e. how many items are currently being counted. Actually,
Counter,, represents an infinite family of agents, one agent for each number n, which
are mutually recursively defined and different from each other. The counter is an
example of systems with evolving structure; it is an infinite state system and there is
no rec-term that denotes Counter, which is “finite”, in the sense that it has a finite
number of subterms.

In Chapter 4 the value-passing version of the CCS calculus will be considered. In
the value-passing framework, specifications can also be parameterised on data which
are exchanged during communication. Whenever the value domain is infinite, value-
passing specifications denote infinite state agents. For example, a storage register
holding a value y is defined in [97] as follows:

Reg(y) £ put(z). Reg(z) + get(y). Reg(y)

56

The register is parameterised on a value denoted by the variable y, and the value
domain over which the variables z and y range may be infinite, thus resulting in an
infinite state agent associated to Reg(y).

The following section illustrates how parameterised agent constants and their
defining equations can be embedded in the HOL system. '

3.1.2 Formalising Recursive Agent Definitions in HOL

When moving from the rec-notation to systems of recursive equations, the syntax of
the pure calculus (Section 2.1.1) becomes the following:?

Ex=nil | X | Ales,....en) | w.E | E+E | E|E | E\L | E[f]

where A ranges over a set of (possibly parameterised) agent constants K. In a
way slightly different from the presentation of the pure calculus in [97], agent con-
stants are explicitly allowed to have parameters. Thus, the more general expression
A(ey,...,ey,) is used to denote an agent constant rather than just A or A, ..en €K.
Each agent constant A with arity n >0 (i.e. the number of its parameters) has a defin-
ing equation A(zy,...,z,) % P that gives the agent P (containing no free variables
except zi,...,Z,) associated to A. :

Every parameterised agent is identified through its name, which is assumed to
be a string of characters, and its parameters. Parameters can be of any type and
the definition of the type of pure agent expressions thus becomes polymorphic, as
it is parameterised on a type variable § that represents the parameters’ type. The
type (B)CCS is defined in HOL by giving the following signature to the recursive type
definition mechanism:

CCS =il |
var string |
conp string (|
prefix action CCS |
sum CCS CCS |
par CCS CCS |
restr CCS (label)set |
relab CCS relabelling

The theorem of higher order logic that characterises the type (8)CCS is similar to
the one in Section 2.2.1, apart from the clause for the constructor rec which is now
replaced by that for conp. A term conp s x denotes a parameterised agent whose
name is given by the string s and whose parameters are denoted by z. The type
variable 3 can be instantiated to represent any structure for the parameters. They

2Note that the recursion operator is replaced by agent constants, while agent variables (which in
the previous version of CCS were either free or bound by a recursion operator), are maintained in
the definition. This still gives the possibility of writing open agent expressions in the new signature.

o7

can be a single natural number like in the counter specification, a pair of natural
numbers like in the buffer example, pairs or lists of any objects and any other data
type (possibly polymorphic and recursive).

A parameterless agent constant is identified simply through its name. A derived
constructor con is introduced for defining parameterless constants in terms of the
'operator conp:

Vs. con s = conp s ARB

where the type of the constant ARB = ez: . T (from the HOL theory bool) is instan-
tiated to the parameters’ type (.
The rule for the transition relation for agent constants is as follows [97]:

PP def
AL P A=P

This rule says that the transitions of a constant A are the transitions of the agent P,
_ provided there exists a defining equation A £ P. The defining equations for (possibly
parameterised) agent constants are introduced in HOL as a new (polymorphic) type
using the rule of type definition (Section A.3). The abstract type (3)Def-Fun is
defined as the subset of the type of all functions Df : string — — (8)CCS such that

Df sz is an agent for every constant identified through name s and parameters z.
The characteristic function of such a subset is given by the predicate Is_Def_Fun:

V Df.Is_Def_Fun Df = (Vs z.ls_Agent (Df s z))

The type definition mechanism derives a bijection between the new type (8) Def-Fun
and the subset of the function type string — f — (8)CCS, whose elements satisfy
Is_Def_Fun. In what follows, defining equations will be simply given through raw
functions Df : string — 8 — (8)CCS by defining a constructor Def_Fun which creates
a defining equations function by simply abstracting the given raw function:

V Df. Def_Fun Df = ABS_Def_Fun Df

where ABS_Def_Fun is the abstraction function for the type (8)Def-Fun.® Given a
defining equations function Df :(8)Def_Fun, a function Lookup which returns the
agent associated to a given constant is defined as follows:

V Df s z. Lookup Df s z = (REP_Def_Fun Df) sz

where REP_Def_Fun is the representation function for the type (5)Def-Fun. Thus,
the function Lookup simply takes the function that implements Df and applies it to

30ther ways of representing defining equations are obviously possible. For example, lists of
equations A = P which better resemble the usual CCS notation could be used and the constructor
Def_Fun would take a list of equations and return a function in (3)Def. Fun.

58

the name and parameters of the given agent constant. It can then be proved that
the agent expression associated to any constant conp s z is indeed an agent:

Is_Agent_Lookup: + V Df sz. Is_Agent (Lookup Df s x)

A defining equations function Df is then given as a parameter to the definition of
the transition relation, so that the labelled transitions — pf are now computed with
respect to a particular Df. In this way, the transition relation Trans actually defines
a class of transition systems parameterised on the defining equations. Behavioural
equivalences and modal logics are consequently parameterised on the mapping Df as
well. The rule of the transition relation for agent constants in HOL is as follows:

CONP: FVDf sz u E. Trans Df (Lookup Df sz)u E D Trans Df (conpsz)u FE

This theorem says that the transitions of an agent constant conp s z are the transi-
tions of the agent associated to the name s and the parameters x through the defining
equations function Df. The rule for parameterless agent constants is derived from
the rule CONP and the definition of the constructor con:

CON: FVDf su E. Trans Df (Lookup Df s ARB) u E D Trans Df (cons)u E

The equational versions TRANS_CONP_EQ and TRANS_CON_EQ of CONP and CON
respectively, in which implication is replaced by equality, are derived as well.

In what follows, the mechanisation in HOL of the defining equations for the agents
A, B, C and for the buffer (given in the previous section) is described. The defining
equations of the specification and implementation of the counter will be formalised
in HOL in Section 3.2.1.

Parameterless agents

The agent constants A, B, C of Section 3.1.1 are parameterless and defined through
mutual recursion. They can be introduced in HOL by defining the following abbrevi-
ations by constant definition:

A = conA B = conB C=conC
where A, B and C are constants of type string. The function Df : string— 5— (8)CCS
that represents the defining equations for A, B and C is then defined:

Df = (As (z: B).
(s=A4)=(ad.A + b.B) + c.C|
((s=B)=(a.A+V.B) + c.C|
((s=C)=(a.A + b.B)+ ¢.C | ARBag))))

where a, @/, b, V', ¢ and ¢’ are constants of type string and ARBag = ¢P. Is_Agent P
denotes an arbitrary agent. Df is automatically checked to be a defining equations

99

function using the function PROVE_IS_DEF_FUN that, given the definition of Df and
the definitions A_DEF, B_DEF and C_DEF for A, B and C respectively, proves that Df
indeed represents a defining equations function:

#let Def_thm = PROVE_IS_DEF_FUN Df [A_DEF; B_DEF; C_DEF];;
Def_thm = F+ Is_Def_Fun Df

In order to compute the transitions of the various agent constants, the agent
Lookup (Def_Fun Df) s ARB needs to be evaluated for a given string s. This is done
using the conversion CON_EVAL_CONV that, when provided with the function Df, the
theorem Def_thm and the string identifying an agent constant, returns the agent
associated to it. The following theorem is returned for the constant B:

B_.THM: Lookup (Def_Fun Df) BARB = (a.A + V.B) + ¢.C

By rewriting with the definition of B, the theorems TRANS_.CON_EQ and B_THM,
and using the conversion Run_CONV (Section 2.2.2), the following theorem is obtained:

F VYuE.
Trans (Def FunDf)Bu E = -
(u=a) A(E=A))V (u=b) A (E=B)) V ((u=c) A (E=0))

It asserts that the agent constant B can either perform the action a and then behave
like A or perform the action & and still behave like B or perform the action ¢ and
then behave like C.

The buffer

The defining equations define several agent constants parameterised on the capacity
n > 0 of the buffer and the number & of the items currently in the buffer (0<k<n). A
function Buffer : num — num — (num x num)CCS that returns a parameterised agent
constant whose name is Buffer and whose parameter is a pair of natural numbers is
defined as follows:

Vn k. Buffern k = conp Buffer (n, k)

The following function represents the defining equations for the buffer specification:

Buffer_Df =
(As z.
((s = Buffer) =
let (n,k) = (Fstz, Snd z) in
0<n=
((k =0) = in. (Buffern1) |
((0 <k A k<n) = in. (Buffern (k+1)) + out.
((k =n) = out. (Buffern (n—1)) | ARBag)))
ARBag) |
ARBag))

(Buffer n (k—1)) |
l

60

Buffer_Df is checked to be a defining equations function by means of a parameterised
version of PROVE_IS_DEF_FUN, thus yielding a theorem Buffer_Def_thm similar to
Def_thm above. Analogously, the conversion CONP_EVAL_CONV is defined to compute
the agent associated to a parameterised agent constant. Differently from the pa-
rameterless counterparts which only deal with the name of the agent constant, the
parameterised versions must also be provided with the actual parameters and a con-
version for deciding equality between elements of the parameters’ type. Moreover,
further rewritings on the theorem returned by CONP_EVAL_CONV might be needed in
order to get a reduced expression. For example, the agent denoting a buffer with
capacity n = 2 and containing one item is given by the following theorem:

#REWRITE_RULE [LESS_0; NOT_SUC; LESS_SUC_REFL; INV_SUC_EQ; PRE]
(CONP_EVAL_CONV Buffer_Df Buffer_Def_thm num_EQ_CONV
"‘Buffer‘" "(SUC(SUC 0), SUC 0)");;
F Lookup(Def_Fun Buffer_Df) ‘Buffer‘ (SUC(SUC 0),SUC 0) =
sum '
(prefix(label(name ‘in‘)) (Buffer (SUC(SUC 0)) (SUC(SUC 0))))
(prefix(label(coname ‘out‘)) (Buffer(SUC(SUC 0))0))

where num_EQ_CONV is a built-in conversion for proving (in)equality of constants in
IN. Some rewritings with arithmetic theorems are necessary to reduce the theorem
resulting from the evaluation performed by CONP_EVAL_CONV. Note that this evalua-
tion step can provide information about incorrect actual parameters. For instance, if
one attempts to assign a value greater than n to k, only arbitrary agents are returned
when reducing the outcome of the evaluation with CONP_EVAL_CONV:

#REWRITE_RULE [NOT_SUC; NOT_SUC_LESS; SUC_ID]
(CONP_EVAL_CONV Buffer_Df Buffer_Def_thm num_EQ_CONV
"‘Buffer‘" "(a,SUC n)");;
F Lookup(Def_Fun Buffer_Df) ‘Buffer‘(n,SUC n) =
(0 < n = ARBag | ARBag)

The transitions for parameterised agents are computed in a way similar to the
ones for parameterless constants, and then the laws for the behavioural equivalences
are derived. The only relevant changes concern the laws for the recursion operator.
For example, in the case of parameterised agents, the law UNFOLDING for observa-
tion congruence (Section 2.2.4) is replaced by the following law (Proposition 4(1) on
page 65 in [97]):

OBSCONGR_CONP:
F VDf sz E. (Lookup Df sz = E) D Obs_Congr Df (conpsz) E

By applying modus ponens between the parameterless version of the above theorem
and B.THM, and then rewriting with the definition of B, the following observation

61

congruence is obtained:
t Obs_Congr (Def_Fun Df) B ((a.A+b'.B) +¢. C)

This allows the constant B to be replaced by the agent associated to it modulo
observation congruence.

The new version of the recursion law (A13), i.e. unique fixpoint induction, is as
follows. Given an indexing domain I, let the expressions F; and variables X; (i € I)
be such that Fv(E;) C{X;:i €I} and X; be guarded and sequential in each E;. Then,
if P a, E{P/X} and Q ~, E{Q/X}, then P ~, Q.

Summing up, in this section the HOL formalisation of indexed agent constants P
and parameterised agent constants P(i) has been presented. The introduction of a
mapping Df which associates an agent to each constant identified through its name
and parameters enables one to deal with (mutually recursive) indexed or parame-
terised specifications using a convenient and concise notation. The formalisation of
the CCS theory developed in Chapter 2 remains the same, except for the introduction
of the mapping Df : (8) Def_-Fun and for replacing the laws for rec with the laws for
conp and con. Both finite state and infinite state (pure) agents can be soundly intro-
duced in HOL and reasoning about them can be performed as shown in the following
section.

3.2 Proving the Correctness of an Infinite Counter

This section illustrates how properties of infinite state agents can be analysed and
verified in the HOL-CCS environment by presenting two proofs of correctness for the
counter introduced in Section 3.1.1. The following family of agents Counter,, (n € N)
defines the behaviour of the counter:

Countery = wup. Countery + around. Countery

def

Counter, = up.Counterny1 + down. Counter,_; (n>0)

Whenever the counter is in the initial state of a counting process (n=0), it can
either count once by performing an action up and evolve to Counter;, or execute an
action around and still behave like the agent Countery. Whenever the counter is in a
state n >0, i.e. something has already been counted, it can either perform a further
counting action up and evolve to the counter in the state n+ 1, or count down by
executing an action down and move back to the agent Counter,_;.

Two proofs of correctness of the counter are described in the following subsections.
In the first proof a more detailed description of the counter is proved to meet the
above specification by showing that the two descriptions are observation congruent.
The second proof checks that the specification of the counter has a given modal
property. The counter is a specification inductively defined over natural numbers
and the proofs will make extensive use of mathematical induction.

62

3.2.1 Verifying Behavioural Equivalences

As mentioned in Section 3.1.1, an implementation of the counter can be built by
“linking” together several copies of a cell C' and one agent B defined as follows:

C ¥ up. (C™C)+ down.D
D d.C+u.B
B ¥ up.(C™B)+ around. B

[T ¥

where the linking operator is a derived CCS operator defined in terms of rela-
belling, parallel composition and restriction. For any agent expressions E, E', the
appropriate linking operation ETE' is defined by

(E W' /u,d [a,d'/d] | E' [v'[up,d[around,d' [down])\{v', d',d'}

such that v, a’, d' & Sort(E) U Sort(E'), where Sort denotes the syntactic sort of agent
expressions [97]. Given two agent expressions in parallel, linking them means renam-
ing the labels of some of their actions with fresh names (hence the non-membership
condition) and then making them private to the agent expressions by restricting over
such new labels.*

The agent B cannot perform any action down, while a cell C' can always perform
the actions up and down. Thus, an implementation Impl(n) of the counter in the
state n can be defined by the following chain:

n times

def T
Impl(n) = C™...7C™B

The agent Impl(n) is shown to be a correct implementation of the counter by proving
that Impl(n) and Counter, are observation congruent. By unique fixpoint induction
this means proving that Impl(n) “satisfies” the defining equations of Counter,,, thus
resulting in the following observation congruences:

Impl(0) =, wup.Impl(1) + around. Impl(0)
Impl(n) =, up.Impl(n+1)+ down. Impl(n —1) (n>0)

The proof is by induction on the parameter n and is sketched below in the way it has
been formalised and carried out in HOL, following the guideline in [97]. The HOL
code for this proof is reported in Appendix C.1.

The two descriptions of the counter are first introduced in HOL. The above linking

4In this particular application the linking combinator is treated as a binary operator defined over
agent expressions only, given specific relabelling functions and restriction set. However, the general
formulation of the linking operator could be defined for any agent expressions, relabelling functions
and restriction set, thus resulting in an operator with five arguments.

63

operator Link is defined as a binary infix operator as follows:®

FVYEE'
E Link E' = ((E [v'/u,d'/a,d'/d]) | (E' [u'/up,d’/around, d’/down]))\{v',a’,d'}

The agents C, D and B are introduced in HOL by the following definitions of agent
constants of type (num)CCS:

C =conC D =conD B = con B

The families of agents Counter, and Impl(n) are embedded in HOL through the
functions Counter and Impl of type num — (num)CCS:

Vn. Counter n = conp Counter n
Vn. Impln = conp Impl n

The expressions involved in the above definitions are all agents. Their defining equa-
tions are given as a system of mutually recursive equations, which is represented in
HOL by the following function CDfr:

CDfr =
(Asn.
((s = Counter) =
(n=0) =

up. (Counter 1) + around. (Counter 0) |
up. (Counter (n+ 1)) + down. (Counter (n —1)) |
((s=C) = up.(CLink C) 4 down.D |
(s=D) = d.C+a.B|
((s =B) = up.(CLink B) + around. B |

((s =Impl) = ((n=0) = B | CLink (Impl(n —1)))|ARBag))))))
CDfr is proved to be a defining equations function using PROVEIS_DEF_FUN. Let
CDf be defined as the abstraction of CDfr, namely CDf = Def_Fun CDfr. Using the
conversions CON_EVAL_CONV and CONP_EVAL_CONV, the agent associated to given con-
stant name and parameter in the environment defined by CDf can be computed.
The resulting theorems together with the unfolding law for the behavioural equiva-
lences are used to derive behavioural theorems that assert the equivalence between
a constant and the associated agent. Such theorems are needed for rewriting agents
modulo behavioural equivalences. For observation equivalence and constants C, D
and B, these theorems are:

C.OE.THM: F Obs_Equiv CDf C (up. (C Link C) + down.D)
D_OE.THM: | Obs_Equiv CDf D (d.C +@.B)
B_.OE.THM: I Obs_Equiv CDf B (up. (C Link B) + around. B)

5Note that the condition on whether the labels in the restriction set are not in the sort of the
given agents is not formalised. For the moment it is implicitly assumed to be true. It will be possible
to express it explicitly as soon as the notion of sort is mechanised in HOL.

64

The corresponding theorems for observation congruence are referred to as CCOC_THM,
D_OC_THM and B_OC_THM. Some observation equivalences/congruences involving
the linking operator are needed for proving the inductive case of the main proof. In
HOL they are the following theorems:

OBS_EQUIV_D_C: Obs_Equiv CDf (D Link C) (C Link D)
OBS_EQUIV.D.B: F Obs_Equiv CDf (D Link B) (B Link B)
OBS_CONGRB_B: Obs_Congr CDf (B Link B) B
OBS_.EQUIVD.Impl: F Vn.Obs_Equiv CDf (D Link (Impln)) (Impln)

The proofs of OBS_EQUIV_D_C and OBS_EQUIV_D_B are both an application of the
lazy expansion strategy to the left-hand side of the behavioural goal plus the 7-laws
for observation equivalence. The theorem OBS_.CONGR_B_B is instead proved using
the expansion theorem only. The proof of OBS_EQUIV_D_Impl is by induction on the
parameter n and makes use of the associativity of the linking operator and the first
three theorems above.

In order to verify that the implementation of the counter meets the specification,
by unique fixpoint induction the family of agents denoted by the function Impl must
be observation congruent to the one denoted by Counter, whenever Counter has been
replaced by Impl. This is formalised in HOL by the following goal:

? Vn. Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter})
By applying mathematical induction the two cases to be proved are:

? Obs_Congr CDf (Impl 0) ((CDf Counter 0){Impl/Counter}) (3.1)

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) } (3.2)
? Obs_Congr CDf (Impl (n+ 1)) ((CDf Counter (n+ 1)){Impl/Counter})

Rewriting with the definitions and the behavioural theorems of the agents involved
is sufficient to solve the basis case (3.1). First, the definitions of Counter and Impl
are used, thus obtaining the goal:

% Obs_Congr CDf (Impl 0) (up. (Impl 1) + around. (Impl 0))

The agent constant Impl is then rewritten up to observation congruencé for n=1 and
n=0:

7 Obs_Congr CDf B (up. (C Link B) + around. B)

The theorem B_.OC_THM solves this subgoal. The proof of the inductive case (3.2)
begins in a way similar to the basis case by rewriting with the definitions of the agents

65

and functions involved, namely Impl, Counter, and Link:

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) }

Obs_Congr CDf
((Clu'fu,d'/a,d'/d] | (Impln) [v/up,d | around, d' | down))\{v, d,d'})
(up. (Impl (n+2)) + down. (Impl n))

The inductive hypothesis also needs to be rewritten using the definition of Counter,
so that it can be applied to the goal. Note that the agent associated to name
Counter and parameter n in CDf depends on the value of n. The aim of the in-
ductive step in a proof (by mathematical induction) of a given property P is to show
that P n O P(n+1) for all n€IN. This means proving P0DP 1, P1D> P2, and
so on. Given the inductive definition of the specification of the counter, the proof of
P 0> P1 involves agents which are different from the ones occurring in the proof of
Pn>P(n+1) for all n>0. Therefore, by performing case analysis on the value of
the parameter n, the proof of the inductive case splits into two subproofs:

{ Obs_Congr CDf (Impln) ((CDf Counter n){Impl/Counter}) ; (3.3)
n=0}
Obs_Congr CDf
((C[u'[u,d'/a,d'/d] | (Impln) [v'/up,a’/around, d' | down])\{v/,d', d'})
(up. (Impl (n +2)) + down. (Impl n))

and

{ Obs_Congr CDf (Impln) ((CDf Counter n){Impl/Counter}) ; (3.4)
n=n'+1}
7 Obs_Congr CDf
((C[v'/u,d' /a,d'/d] | (Impln) [v'/up,d'/around, d' | down])\{v', d,d'})
(up. (Impl (n +2)) + down. (Impl n))

Subgoal (3.3) is rewritten using the new assumption n=0 and the definition of C:

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) ;
n=0}
? Obs_Congr CDf
(((up. (CLink C) + down.D) [v'/u,d'/a,d'/d] |
(Impl 0) [u'/up, o'/ around, d'/ down|)\{v',d,d'})
(up. (Impl 2) + down. (Impl 0))

The inductive hypothesis is rewritten with the assumption n =0 and the definitions
of Counter and Impl, added to the assumption list and then applied to the left-hand

66

side of the goal:

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) ;
n=0;
Obs_Congr CDf (Impl 0) (up. (Impl 1) + around. (Impl 0)) }
Obs_Congr CDf _
(((up. (C Link C) + down.D) [v'/u,d /a,d'/d] |
(up. (Impl 1) + around. (Impl 0)) [v'/up, o’/ around, d'/ down])\{v', d', d'})
(up. (Impl 2) + down. (Impl 0))
The expansion theorem is used to transform the left-hand subterm by applying the
laws for relabelling, parallel composition and restriction:

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) ;
n=0;
Obs_Congr CDf (Impl 0) (up. (Impl 1) + around. (Impl 0)) }

* Obs_Congr CDf

(up.
(((CLink C) [v'/u,d'/a,d'/d] |
(w'. ((lmpl 1) [u'/up, a’ [around, d'/ down]) +
a'. (Impl 0) [/ /up, d' [around, d'/ down])))\{v', d', d'}) +
down.
(D [w'/u,d'/a,d /d] |
(«'. ((Impl 1) [v'/up, o'/ around, d' | down]) +
a'. ((lmpl 0) [v'/up, a' [around, d' | down])))\{v', ', d'}))
(up. (Impl 2) + down. (Impl 0))
The above expansion shows that the actions of the second component in the parallel
compositions are hidden by restriction, as they are renamed with labels occurring in
the restriction set. Thus, this agent component does not contribute to the behaviour
of the left-hand side of the goal and can be folded back by replacing it with the
agent (Impl 0) [u'/up, d’/around, d'/down], because these two agents are observation
congruent by the inductive hypothesis and the expansion theorem. The following
goal is obtained: '

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) ;
n=0;
Obs_Congr CDf (Impl 0) (up. (Impl 1) + around. (Impl 0)) }

#* Obs_Congr CDf

(up.
(((CLink C) [v//u,d'[/a,d'/d] |
] (Impl 0) [v'/up, d'/around, d’' | down]))\{v', ', d'}) +
own.
((D [/ /u,a'/a,d'/d] |
(Impl 0) [v'/up, a'/around, d'/ down])\{«, ', d'}))
(up. (Impl 2) + down. (Impl 0))

67

The goal is then folded back using the definition of the linking operator:

{ Obs_Congr CDf (Impln) ((CDf Counter n){Impl/Counter}) ;
n=0; '
Obs_Congr CDf (Impl 0) (up. (Impl 1) + around. (Impl 0)) }
Obs_Congr CDf
(up. ((C Link C) Link (Impl 0)) + down. (D Link (Impl 0)))
(up. (Impl 2) + down. (Impl 0))

The last steps of the proof apply the associativity of the linking operator and the
previously proved theorem OBS_EQUIV_D_Impl by means of the theorem PROPG6:

-V Df.VE E' :: Is_Agent.
Obs_Equiv Df E E' D (Yu. Obs_Congr Df (prefix u E) (prefix u E"))

to strengthen observation equivalence in the presence of the prefix operator. The new
goal is:

{ Obs_Congr CDf (Impl n) ((CDf Counter n){Impl/Counter}) ;
n=0;
Obs_Congr CDf (Impl 0) (up. (Impl1) + around. (Impl0)) }
7 Obs_Congr CDf
(up. (C Link (C Link (Impl 0))) + down. (Impl 0))
(up. (Impl 2) + down. (Impl 0))

This goal is simply solved using the definition of Impl. The remaining subgoal (3.4)
is proved with steps similar to the ones for subgoal (3.3). The correctness of Impl(n)
with respect to Counter, modulo observation congruence is thus formally verified.

3.2.2 Checking Modal Properties

The parameterised specification of the infinite counter is now checked to possess
a certain modal property. This property, given in [118], can be informally stated
as “whatever goes up may come down in equal proportions”. The (parameterised)
formula that expresses such a property in Hennessy-Milner logic is the following. Let
[up]™ @ be the formula ® when m =0 and [up] [up]m_IQ) when m > 0, and similarly
for {down)™. The aim is to show that the following relation holds for all m, n € N:

Counter, = [up]™(down)™ tt (3.5)

This result is proved by induction on the parameter m. The proof is sketched below
in the way it has been formalised and carried out in HOL.

The specification of the counter has been encoded in HOL in Section 3.2.1. In order
to define the parameterised formula ® = [up]m(down)m tt, the m-times application

68

of a modal operator f : (action)set— eHML— eHML to a set of actions A and a modal
formula Fm is defined as the primitive recursive function Raise:

(Vf A Fm. Raise f AO Fm = Fm) A
(Vf Am Fm. Raise f A (m+1) Fm = f A(Raise f Am Fm))

The intuition at the base of the proof of the relation (3.5) is that the proof of the
inductive case can be done in a simple way if it is reduced to showing (as a separate
result) that for all m, the counter in any state n satisfies the above formula ¢ for
m+1 if and only if it satisfies the same formula for m. This allows us to reduce
the subgoal for the inductive case to the inductive hypothesis and prove (35) easily.
Actually, a stronger result will be proved as it holds for all formulas F'm and not
only for tt, which is the particular formula in the property ®. The key result to be
proved is thus the following:

Vmn Fm.
Counter, = [up]™ {down)™ " Fm iff Counter, = [up]™{(down)™ Fm

This relation, referred to as Key_Lemma, is itself proved by induction on m. Its proof
makes use of the following HOL theorems:

Box_Dmd_THM:

= Vn F'm.
Sat CDf (Countern) (box {up} (dmd {down} Fm)) = Sat CDf (Counter n) Fm

Box_THM: |
 Vn Fm. Sat CDf (Counter n) (box {up} Fm) = Sat CDf (Counter (n+1)) Fm

These theorems establish relations between the specification of the counter and some
modal formulas. In particular, Box Dmd_THM considers the counter in any state n
and a formula modalised with the box and diamond operators. Box-THM deals with
a formula containing the box operator only and shows that Countery = [up]Fm for
all n and Fm, if and only if Counter,,; = Fm. Both theorems are proved by case
analysis on the parameter n and then applying a tactic consisting of rewriting with
the definition of the counter, the satisfaction relation Sat and the properties for the
transition relation Trans, so that a contradiction is derived (in a way similar to the
proof technique used in Section 2.4.2). A parametric tactic is defined in HOL which
is then invoked in the proofs of the above theorems with appropriate arguments. The
only difference is that Box_Dmd_THM also involves the diamond operator, so in its
proof it is necessary to rewrite with the theorem

Dmd-THM:
- Vn Fm. Sat CDf (Counter (n+ 1)) (dmd {down} Fm) = Sat CDf (Counter n) Fm

stating that for all n € N and formula Fm, Counter,i, = {down)Fm if and only if
Countery = Fm.

69

Moreover, when proving the inductive case of Key Lemma, some manipulations
of the modal formula are needed to transform it into a suitable form to which other
rewritings can be applied. A transformation is given by the theorem Raise_Perm
expressing the equality f™ = f(f™) = f™(f) for all m € N and modal operator f:

Raise_Perm: - Vm f A Fm. Raise f A (m+1) Fm = Raise f Am (f A Fm)

The HOL proof of Key_Lemma is sketched below, where the usual CCS notation for
agents and satisfaction relation is adopted. Note that all the reasoning holds in the
environment defined by CDf, even though this is not made explicit in this informal
presentation of the proof. Given the goal,

* VYmn Fm.
(Counter,, = [up]m+1(down)m+1Fm) =
(Counter, | [up] {down)™ Fm)

applying mathematical induction on the variable m produces the two subgoals:

* Vn Fm. (3.6)
(Counter,, = [up_]l(aloum)1 Fm) =
(Counter,, = [up]o(down)OFm)

{Vn Fm. (3.7)
(Counter,, = [up]m+1(d0wn)m+1Fm) =
(Counter,, = [up] {down)™ Fm) }

* Yn Fm.
(Counter, = [up]m+2(down)m+2Fm) =
(Counter,, = [up]m+1(down)m+1Fm)

Rewriting with the definition of Raise and the theorem Box.Dmd_THM solves the
basis case (3.6). As far as the inductive case (3.7) is concerned, given any number
n and formula Fm, the left-hand side of the induction subgoal is rewritten using the
definition of Raise and the theorem Box_THM, thus getting the new subgoal:

{Vn Fm.
(Counter,, k= [up]m+1(d0wn)m+lFm) —
(Counter,, = [up] {down)™ Fm)}

> (Counterny; = [up]™ {down)™* Fm) =
(Counter, = [upT™ (down)™"" Fm)

The theorem Raise_Perm is then applied to the (m + 2)-times application of the dia-

70

mond operator in left-hand side of the goal:

{Vn Fm.
(Counter, b= [up]™ {downy™ ' Fm) =
(Counter, &= [up]™{(down)™ Fm) }

* (Counterny, E [up]™ (down)™"" (down) Fm) =
(Counter, = [up]™ {down)™"" Fm)

The inductive hypothesis can now be applied on the left-hand side:

{Vn Fm.
(Counter,, = [up]m+1(down)m+1Fm) =
(Counter,, = [up] " {down)™ Fm) }

* (Counteryy1 | [up]™(down)™ {down) Fm) =
(Counter, = [up]m+1(down)m+1Fm)

The induction subgoal (3.7) is finally solved by rewriting with the symmetric forms
of the theorems Raise_Perm and Box_THM and the definition of Raise. As mentioned
before, Key_Lemma is a stronger relation than the one actually needed for the proof
of the relation (3.5) in two ways: it holds for every formula Fm and not only for tt
and, once a given number m has been fixed, it is true for any state n of the counter.

Finally, the main property (3.5) can be checked in HOL by induction on m. The
basis case is solved by rewriting with the definitions of the Raise operator and the
satisfaction relation for the true formula. The induction step is proved by apply-
ing Key_Lemma and then rewriting with the inductive hypothesis. The detailed ML
code for the proofs of Key Lemma and the main property (3.5) are reported in Ap-
pendix C.2.

3.3 Extending the Syntax for Pure CCS

In Chapter 4 the value-passing calculus will be formalised in HOL based on Milner’s
translation into pure CCS. In order to be able to translate value-passing expressions
into pure ones, the present mechanisation of the syntax for pure CCS needs to be
extended to cope with the translation of value-passing actions and input prefixed
agent expressions. This will lead to polymorphic pure actions and to the use of
function types in recursive type definitions for representing (possibly infinite) indexed
summations of agent expressions. This section presents the revised version of the HOL
theory for pure CCS which will be the base for the formalisation of value-passing CCS.
Milner’s translation will be recalled and defined in HOL in Section 4.2. Here, it is
enough to anticipate that an input prefixed expression a(z).E is translated into an
indexed summation of prefixed expressions. Such a summation ranges over the value

71

domain V under consideration, which may be infinite. Moreover, an input action
a(v), where a is an input port and v is the value being received, is translated into a
pure action a, for each v€ V.

3.3.1 Polymorphic Actions

Independently of the HOL formalisation of value-passing actions (which will be given
in Section 4.1), the pure action a, resulting from the translation of a value-passing
action a(v), would be an action label (name s) for some string s which is the result
of a “combination” of the port a and the value v. This combination can be easily
obtained if a polymorphic version of the pure actions is defined, in which ports can
be of any type a. The polymorphic versions (a)label and («)action for the syntactic
types label and action are thus the following:

label = name « | coname «
action = tau | label (a)label

The type variable « is appropriately instantiated depending on the particular appli-
cation. For example, label (coname 7) is an action of type (num)action and, if bye is
a constant of type string, then the action label (name bye) is of type (string)action.

The operations of complement and relabelling of labels are defined on the poly-
morphic type («)label, and then extended to the type (a)action, similarly to their
definitions for the string-based version of pure CCS (Section 2.2.1).

When moving from the formalisation of pure CCS in which ports are strings, to
the more general one in which ports can be of any type «, no relevant changes occur
in the HOL code. All the proofs of properties and laws for the CCS operators go
through unchanged, apart from adding some type information. The only interesting
(and expected) change occurs in the definition of the conversions and tactics for
applying the laws for the restriction, relabelling and parallel operators. In order to
apply these laws, it is necessary to decide whether two labels are equal or not, or
whether a label is in a given set of labels. In the polymorphic formalisation, these
conversions and tactics have a procedure as a parameter to decide equality over the
type which instantiates the type variable a. In the string-based formalisation such
a decision procedure was defined in a straightforward way using the built-in HOL
conversion string_EQ_CONV for equality of strings.

3.3.2 An Operator of Indexed Summation

The agent summation into which an agent expression a(z).F is translated may be

infinite depending on the value domain V. In Section 2.2.1 the syntax for pure CCS

with the inactive agent and the binary summation operator has been mechanised in

HOL. In what follows, the formalisation of an operator of indexed summation within
a type for recursively defined agent expressions is presented.

72

Given the pure syntax in Section 3.1.2, the introduction of an operator of indexed
summation leads to the following new version:

E =X | Ale,...,en) | w.E | Si;Ei | E|E | E\L | E[f]

The meaning of the new operator is as follows. The agent expression > ;s E; is the
(possibly infinite) summation of all expressions F; as i ranges over the indexing set
I. This agent expression may behave like any of its summands F;. The inference rule
for the transitions of a summation agent expression is:

SUMM: B

Yier Bi 2 B jel
Special cases of the summation operator are the inactive agent nil (when I is the
empty set) and the binary summation F; + Fy (when I = {1,2}).
The summation operator Y ;.; E; can be formalised in HOL by means of a function
f, defined on a set I of indexes, which returns an expression E; for each i€ I. The
speciﬁcaition for the type (v, 8, a)CCS of pure CCS expressions, where the type vari-
ables 7, § and « represent the types of indexes, parameters and ports respectively, is
the following:
CCS = var string |

conp string 3 |

prefix (a)action CCS |

summ (y — CCS) (7)set |

par CCS CCS |

restr CCS ((a)label)set |

relab CCS (a)relabelling

Using the extended version of the recursive type definition package (Section A.4), the
theorem of higher order logic for the type (v, 3, a)CCS is derived:

Vi1 fa fs fa fs fe fr-
3 fn.
(Vsl. fn(var s1) = f1 s1) A
(Vs1 z2. fn(conp sl z2) = fo s1 22) A
(VA1 C2. fn(prefix A1 C2) = f3 (fn C2) A1 C2) A
(Vf1s2. fn(summ f1s2) = fs(fno f1) f1s2) A
(VC1 C2. fa(par C1C2) = f5(fn C1) (fn C2) C1 C2) A
(VC1 s2. fn(restr C1 s2) = fo (fn C1) C1 82) A
(VC1 R2. fn(relab C1 R2) = f; (fn C1) C1 R2)

where o denotes composition of functions. Given an agent expression summ f1s2, the
clause for the indexed summation operator asserts that the unique function fn, which
satisfies the recursive definition, is recursively applied to the agents defined through
the function f1 and the indexing set s2.

73

The inactive agent and the binary summation operator can then be defined as
instantiations of indexed summation. The inactive agent is formalised in HOL as a
summation over an empty indexing set:

nil = summ ARB {}

where ARB is instantiated to an arbitrary function from the indexing domain 7y to
(7, 8, ®)CCS. The operator ‘+’ is defined as a summation over an indexing set of two
distinct elements as follows:

VE E'" (v, ,a)CCS.
sumE E' =
letz =ez:v.T in
lety =¢ey:y.~(y =z) in
summ (Ai. i =2)=FE | ((t =y)=E' | nil)) {z,y}

where ez:7.T denotes some element, say x, of type v and ey: v.—(y = z) denotes an
element, say y, of type v which is distinct from z. ’

The constructor con for parameterless agent constants is defined similarly to its
definition in Section 3.1.2. Note that the formalisation of parameterised and param-
eterless agent constants through conp, con and defining equations, plus related func-
tions and conversions, remains unchanged when going from the agent type (8)CCS
to (v, 8, a)CCS. .

The derived operators are easily proved to be distinct and one-to-one starting
from their definitions and the corresponding properties for the basic operators. For
example, the following theorem asserts that the operator sum is one-to-one:

sum_One_One:
Jab:vy.~(a=0b)
FVEE E"E". (sumEE =sum E"E")=(E=E") A (E'=E")

Note that binary summation is defined under the assumption that there exist two
distinct elements in the indexing domain. From now on, every proposition involving
the binary summation operator will have such an assumption. As soon as the type
variable v is instantiated to an indexing type that contains (at least) two distinct
elements, this assumption can be removed by discharging it wherever it appears.
Unless specified otherwise, the assumption Jab: . =(a = b) will be denoted by a dot
‘.” before the symbol ‘.

Note also that the operator of indexed summation does not introduce any difficul-
ties when defining the transition relation and proving the algebraic laws of the various
behavioural equivalences. The following theorem gives the operational semantics of
the indexed summation operator by asserting that the transitions of a summation
agent expression are all (and only) the transitions that any of the expressions in the

74

summation can perform:

TRANS_SUMM_EQ:
F VDf fIuE. Trans Df (summ fI)u E = (3i.i€ I A Trans Df (f i) u E)

Properties about the transitions of any indexed summation can be derived from this
theorem, e.g. that the inactive agent has no transitions. Behavioural congruences are
preserved by the indexed summation operator. In the case of observation equivalence,
this holds if for every index in the indexing set the corresponding summand is stable:

OBS_EQUIV_PRESD_BY_SUMM:
- YDff I
(Vi.iel D
Is_Agent (f i) A Is_Agent (f'7) A
Obs_Equiv Df (f %) (f"4) A Stable Df (fi) A Stable Df (f'4)) D
Obs_Equiv Df (summ f I) (summ f'I)

Properties for the inactive agent and binary summation can be derived as particular
instances of the ones for indexed summation.

3.4 Another Mechanisation of the Expansion Law

The introduction of the indexed summation operator in the HOL formalisation of
pure CCS has no relevant effects on the proofs of the properties and algebraic laws
for the other operators. They are unchanged, apart from updating some type infor-
mation as the agent type has more type variables. However, given the presence of the
indexed summation operator, one might want to reconsider the mechanisation of the
expansion law (A11) in Section 2.1.3. The HOL formalisation of this law described in
Section 2.2.4 can still be adopted, but it is obvious that a finite indexed summation
defined through the function SIGMA is just a special case of an indexed summation
defined through the constructor summ and applied to some function f over a finite
indexing set I.

Let us recall that, given a function f:num — (v, 8,a)CCS and an index n: num,
the term SIGMA f n encodes the summation ((f 0 + f1) + ...) + f n of agent
expressions, where ‘+’ is the binary summation operator. The constructor summ has
two parameters, a function f:vy — (7, 8,a)CCS and an indexing set I : (y)set which
represents the domain of f. Thus, in the formulation of the expansion law based on
SIGMA, the type variable 7 is instantiated to the type num and the indexing set I
is given by {0,...,n}. The law (A11) can be mechanised using indexed summations
ranging over natural numbers and it is reasonable to assume that, whenever one
wants to write CCS expressions containing indexed summations, natural numbers are
chosen as the indexing domain. Hence, when formalising the expansion law based

75

on summ, the type variable -y is instantiated to the type num and the expansion law
is derived for agents of type (num, ,a)CCS. By replacing SIGMA with summ, the
expansion law PAR_LAW for observation congruence is the following HOL theorem:

FVDf fnf' m.
let [1={i:i<n}andI2={j:j5<m} in
((Vi.ie Il D lIs_Agent (fi) A Is_Prefix (fi)) A
(V4. j€I2 D Is_Agent (f'j) A Is_Prefix (f'5)) D
Obs_Congr Df
(par (summ f I1) (summ f' I2))
(sum
(sum
(summ (A¢. prefix (PREFACT (f ¢)) (par (PREF_PROC (f ©)) (summ f' I2))) I1)
(summ (\j. prefix (PREF_ACT (f’ 7)) (par (summ f I1) (PREF_PROC (f §)))) I2))
(ALL.SYNC f n f''m)))

Note that the assumption about the existence of (at least) two distinct elements in
the indexing domain has been discharged, as it is trivially true for the domain IN.
The summations in parallel are given through two functions f, f’ over the indexing
sets 11,12 respectively. The let-construct defines I1 and 72 so that they can be
referred to in the theorem instead of writing down the actual sets. The predicates
Is_Agent and Is_Prefix and the functions PREF_ACT, PREF.PROC and ALL_SYNC are the
polymorphic versions of the ones in Section 2.2.4. Apart from replacing SIGMA f n
with summ f {0,...,n} and using the theorem TRANS_SUMM.EQ (Section 3.3.2)
rather than SIGMA_TRANS_ THM_EQ (Section 2.2.4), the new expansion law is ex-
actly the same as the previous one. Moreover, the following theorem states that any
indexed summation over a finite indexing set is observation congruent to the recursive
application of binary summation through SIGMA:

SUMM_SIGMA: + Vn f.
(Vi.i<n D Is_Agent(fi)) D
(V Df. Obs_Congr Df (summ f {i:7<n}) (SIGMA f n))

This theorem allows one to define the conversions for the application of the new
formalisation of the expansion law by reusing the ones for the previous version. In
fact, if two agents in parallel are both given through the constructor summ, then
there is no transformation to be performed and the above theorem PAR_LAW can be
applied directly. However, the binary summation operator (and possibly parentheses)
will be typically used in applications instead of indexed summation. In this case,
it is necessary to convert the parallel agents into indexed summations of the form
summ f {0,...,n} such that the new expansion law can be applied. This is achieved
through the theorem SUMM_SIGMA. ‘

Nevertheless, one might not like to make the assumption that v is the type num
and prefer to keep it as a type variable. Actually, this is what is needed when the

76

value-passing version of the CCS calculus is translated into the pure one (Section 4.2).
In fact, the translation function will instantiate the type variable « for the indexing
domain of the pure agent expressions to the disjoint sum of the indexing and value
domains of the value-passing expressions. A simple solution to the problem of keeping
v as a type variable is to go back to the first formalisation of the expansion law
through the function SIGMA. Contrary to the above mechanisation based on the
constructor summ, one does not care about defining the expansion law in terms of
the basic operator summ, but defines the function SIGMA on top of the CCS syntax .
for representing finite summations built from the repeated application of the binary
summation operator. In this way, the expansion law can be defined in general over
agents of type (v, 3, «)CCS, where 7 is not instantiated to any particular type. From
the user’s point of view, this means that one is not constrained to the type num for
the type variable v when defining his/her own agents, which is instead the case in
the above formalisation of the expansion law based on summ. This is particularly
convenient in the common situation in which there are no indexed summations in the
user’s applications: the user needs not know that a specific type must be provided
for the indexing domain and can leave the type for such a domain unspecified. Thus,
even though instantiating v with the type num is reasonable, the solution based on
SIGMA seems to be preferable.

In spite of this, one might be interested in investigating the HOL mechanisation
of the expansion law with the constructor summ and the type variable . This raises
the issue of how to enumerate the elements of a set over any type. In the above
formalisation based on the indexing domain IN, it is easy to enumerate the objects
by starting from 0 and then proceeding using the other constructor of the type,
i.e. the successor operator SUC. But what about enumerating the elements in a set
over any type y? Given an agent F; + ...+ Fj (with various arrangements of
parentheses for binary summation possible), the operator summ must be provided
with a function f:v — (v,8,a)CCS and a set I = {ey,...,ex}: (y)set, such that,
for example, fe; = Ey,...,fex = Ey. This means that an enumeration function
is needed: given any type ' and a set s:(7')set, Enums returns some function
ef :num — +' that enumerates the elements in the set s:

Vs. Enums = (ef.s = {fn:n<Card s})

where Card is the cardinality function over sets (from the HOL theory sets).

A mechanisation of the parallel law for pure CCS based on enumerating elements
of any type is not only interesting from the theoretical point of view, as the formalisa-
tions presented above give reasonable solutions to this problem, but is also motivated
by the following issue. As it will be discussed more extensively in Chapter 4, one of
the aims of embedding the translation from value-passing CCS to the pure calculus
in HOL, is to be able to derive the properties and laws for the value-passing calculus
from the ones for the pure subset without having to redo their proofs. The derivation

77

of the expansion law for value-passing agents raises the following problems. First, the
translation of an input prefixed (value-passing) agent is a possibly infinite summa-
tion. The above formalisations of the expansion law for pure CCS deal with agents
in parallel which are finite summations, and thus are unable to cope with the result
of translating parallel components which contain input prefixed agents. Second, the
expansion law (A11) assumes that the two expressions is parallel are summations of
prefixed agents. These prefixed summands are all denoted by means of the same op-
erator prefix in the HOL formalisation of pure CCS. As it will be shown in Section 4.1,
the prefix operator in value-passing CCS cannot be mechanised through a single con-
structor. This is due to the fact that prefixing an agent expression E with an input
action a(z) is semantically different from prefixing it with an output action a(e), as
a binding for the variable z is introduced in a(z). E. Thus, three different operators
for input, output and 7-prefixed agent expressions will be used when mechanising the
value-passing syntax in HOL. When translating a summation of agents, each of which
can be either of these three kinds of agents, output and 7-prefixed expressions will
be translated into prefixed pure expressions, while input prefixed expressions will be
translated into possibly infinite pure summations. This means that the result of the
translation is not in the expected syntactic form to apply the expansion law for pure
agents, but some transformations must be carried out to get the desired structure of
the parallel expressions.

The syntactic differences between the formalisations of pure and value-passing
expressions, mainly concerning the prefix operator, can be abstracted from if a se-
mantic formulation of the expansion law, based on the transition relation, is adopted.
This formulation is the one given in [97] and is recalled below. Let n > 1, then

P1||Pn e (38)
S {u.(P|...|P|...|P): P P} +
S {r(P|...| B |...|Pl|...| P): B, = P}, P =5 P, i< j}

In this law there is a bit of abuse of the CCS notation. In fact, the indexed summation
operator is not used as defined in the syntax: no indexing set is provided to the sum-
mation operator, which is instead applied to a set of agents. The original definition
of the indexed summation operator ;¢ ; F; can also be written as . {E;:¢ € ['}, thus
resulting in a particular instance of the more general specification Y { E[z] : Pred|z]}
used in the law (3.8). Moreover, in this notation there is no information about any
indexing or enumeration of the agents in the given sets.® Once more, there is the

1t would be very convenient to have the possibility of defining a type
CCS =...|summ (CCS)set | ...

in HOL, but unfortunately this is not feasible because the cardinality of the powerset of the type
CCS is strictly greater than that of the type CCS being defined. Thus, the above type specification

78

problem of how to identify or enumerate the elements in a (finite or infinite) set of
any type for which no indexing is provided.

Enumc s

Figure 3.1: Constructing the arguments for summ.

Given a summation Y { F[z]: Pred[z]}, let us discuss how such an agent expression
can be formalised in terms of summ. Let Enumcs be an enumeration function for a
(possibly infinite) set s: (y')set defined in HOL as follows:

Vs:(y')set. Enumcs = (efinum —v.s={z:3n.z = fn})

Given a set s: ((y, 8, «)CCS)set of pure agent expressions and an enumeration func-
tion for s, namely Enumc s:num — (v, 8,@)CCS, a function Fn':vy — num can be
composed with Enumc s so that a function f:vy— (v, 8, @)CCS is obtained. The func-
tion F'n' can be taken as the inverse of the one-to-one function fn:num — v which
exists if the universal set over the type 7 is infinite, as stated by the following HOL
theorem:

fnnum_index: = Infinite Univ O (3fn. One_One fn)

where Univ: ()set denotes the universal set over the type . This existing function
is given a name, say F'n, by making a constant specification:

Fn.THM: F Infinite Univ O One_One Fin

This means that under the hypothesis that the indexing domain is infinite, for any

set of CCS expressions s: ((y, §, &) CCS) set, the function f:v— (v, 8, a)CCS defined
as the composition

(Enumc s) o (Inv Fn)

is the function argument to the operator summ. The indexing set I:(-y)set which
represents the domain of such a function f is defined as the image of the function Fn

does not have a solution in HOL, as there is no one-to-one mapping of the powerset of the type into
the type itself [55].

79

over the set of numbers which is the domain of the enumeration function. Thus, I is
the set given by
Image Fin {n: (Enumc s n) € s}

The situation is depicted by the drawing in Figure 3.1.

Let us now consider the summations over sets in the expansion law (3.8). If
n =1, there is no parallel composition and no synchronisation, thus the observation
congruence reduces to:

P ~; > {u.P:P—= P}

which states that any agent P is observation congruent to the (possibly infinite)
summation of all those agents obtained by prefixing each action u of P to the agent
P’ into which P evolves when doing u. This set will be referred to as the ¢ransition
set of an agent expression F and is defined in HOL as follows:

V Df E. Trans_Set Df E = {prefixu E': Trans Df Eu E'}

The transition set can be either finite (finitely branching transition system) or infinite
(infinitely branching transition system). An enumeration function for such a set will
exist if the set is countable, namely its elements can be enumerated, according to the
following definition:”

Vs:(v')set. Countable s = (If:num — . s={z:3In.xz = f n})

If a set s is countable, then the function Enumc s is just the enumeration function for
s. This is stated by the following theorem:

Enumc THM: Vs:(7')set. Countable s D (s = {z:3n.z = Enumcsn})

At this point it is possible to prove that any agent is behaviourally equivalent to
its countably infinite branching tree (the finite case is just a special instance of the
countable case). For observation congruence the theorem is as follows:

TRANS_SET_THM:
Infinite Univ
F VDf.VE :: Is_Agent.
let s = Trans Set Df F in
(Countable s D
Obs_Congr Df
E
(summ ((Enumc s) o (Inv Fn)) (Image Fn {n: (Enumc s n) € s})))

Let us now derive the expansion law (3.8) for n=2. The functions Trans_Set_Par_L
and Trans_Set_Par_R are first defined which compute the sets of agent expressions into

"A HOL formalisation of countable sets by Harrison can be found in [57].

80

which a parallel composition evolves as the result of the transitions of either of the two
parallel components. Both sets are defined as the image of an appropriate function
on the transition set of either component:

VDfEE.
Trans_Set_Par L Df E E' =
Image (Az. prefix (PREF-ACT z) (par (PREF_PROC z) E')) (Trans_Set Df E)

VDf EE'.
Trans_Set_.Par RDf E E' =
Image (Az. prefix (PREFACT z) (par E (PREF-PROC z))) (Trans_Set Df E')

Then, the function Sync_Set encodes the set of agent expressions resulting from the
synchronisation between the two parallel components:

VDf EE.
Sync Set Df EE' =
{prefix tau (par E” E™) :
31. Trans Df E (label[) E” A Trans Df E' (label (Compl 1)) E"}

Various properties about such sets are proved in HOL which are then used in the
proof of the expansion law. For example, under the assumption that the transition
set of an agent expression is countable, it is easy to derive that the sets computed
by Trans_Set_Par_L and Trans_Set_Par_R are countable. This is just a consequence of
a more general theorem asserting that the image of a function on a countable set is
countable:

IMAGE_COUNTABLE: Vs:(v')set. Countable s D (Vf. Countable (Image f s))

The expansion law for observation congruence over agents with possibly infinite, yet
countable, transition sets is finally derived:

COUNTABLE_PAR_LAW:

Infinite Univ
FVYDf.VE E':: Is_Agent.
let sl = Trans_.Set_Par_L Df E E’
and sr = Trans_Set_Par_R Df E E'
and ss = Sync Set Df F E' in
(Countable (Trans_Set Df E) A Countable (Trans_Set Df E') D
Obs_Congr Df
(par E E")
(sum
(sum
(summ ((Enumc sl) o (Inv Fn)) (Image Fn {n : (Enumc sl n) € sl}))
(summ ((Enumc sr) o (Inv Fn)) (Image Fn {n: (Enumc sr n) € sr})))
(summ ((Enumc ss) o (Inv F'n)) (Image Fn {n : (Enumc ssn) € ss}))))

81

Once more, note that the assumption about the existence of (at least) two distinct
elements in the indexing domain (because binary summation occurs in the above
term) is discharged, as it can trivially be derived from the infinity hypothesis for
such a domain. Similarly to the other laws for observation congruence (Section 2.2.4),
the above theorem is derived by some forward inference from the same result with
respect to strong equivalence. In that proof, in order to apply the definition of strong
equivalence, the parallel composition and the summation term must be proved to
be agents. This is trivial for the parallel term ‘par E E" given that E and E’ are
agents, while a few proof steps are needed for the summation term. In this part of the
proof, properties of the predicate Is_Agent and of the sets defined by Trans_Set._Par_L,
Trans_Set_Par_R and Sync_Set are used together with the theorems Fn THM and (the
polymorphic version of) TRANS. Is_Agent (Section 2.2.2). The parallel law for strong
equivalence is then proved in the usual manner, namely by providing the appropriate
strong bisimulation which contains the two given agents.

3.5 Summary

In this chapter, agent constants and their defining equations have been introduced
into the HOL formalisation of the pure calculus. They replace the rec-notation used
in Chapter 2 and allow processes with infinite behaviour (and possibly mutually
recursive) to be specified in a simple and convenient way. Agent constants may be
parameterised, i.e. defined in terms of the values of some parameters. This is different
from the presentation in [97], where pure agent constants are actually parameterless
(nullary combinators) and parameterised constants A(es,...,e,) are considered as
parameterless constants A., .., given an infinite set of agent constants K. Thus,
parameterised agents of type (8)CCS are identified not only by their name (the con-
stant) but also by their parameters. Moreover, the variable # for the parameters’
type can be instantiated with any concrete (recursive) data type. This introduces
the data ingredient in the pure CCS framework: data are not yet exchanged during
communication, like in the value-passing setting, but the behaviour of pure agents
can be defined based on data and this can lead to infinite state specifications.

Parameterised agents have also been formalised in HOL in [15]. There, process
names are given through function invocations represented by a type variable invoc,
and a function #nwocwval : invoc — process mapping process names to processes, is a
parameter to the transition relation, in a way similar to a defining equations function
Df. Both parameterless and parameterised processes are considered by refining the
type of process names to be the disjoint sum invoc + (par — invoc), where par is the
type variable for the parameters’ type.

The new polymorphic formalisation of pure CCS expressions has a few advantages.
First, it gives the possibility of specifying pure (finite or infinite state) parameterised

82

agents, such as Buffer, and Counter,, in a very convenient and readable form. Simple
raw functions are used for defining constants. This allows one to add new constants
and/or modify the agents associated to given constants very easily. Furthermore,
conversions are provided for checking that the given function actually represents a
defining equations function. Second, there is no difficulty in extending agent con-
stants to constants with agent parameters (see Chapter 9 in [97])'. The definition of
the type (8)CCS remains the same and the type variable 3 for parameters is instan-
tiated to the agent type (B8)CCS itself (possibly in disjoint union with the types of
other parameters). In this case, the combinator conp would take a string s and an
agent P as its arguments, and return the agent constant with name s and parame-
terised over agent P. Third, value-passing parameterised agent constants and their
defining equations will be translated into the pure calculus in a simple and natural
way (Section 4.2).

The resulting HOL formalisation has been used to verify properties of param-
eterised specifications. The correctness of an implementation for the (finite state)
specification Buffer, has been proved in [100, 102]. The correctness of a simple
counter has been verified in Section 3.2 and Appendix C by showing how reasoning
about infinite state systems can be carried out in the HOL-CCS environmelnt.8 In a
theorem proving framework, inductively defined systems can be naturally analysed
and verified by manipulating the process algebra specifications by means of powerful
proof techniques, such as equational reasoning, various forms of induction (mathe-
matical, structural, etc.), case analysis, etc. This kind of reasoning is instead more
difficult to accommodate in an automata based framework, even in the case of finite
state specifications.

The second part of this chapter has refined the CCS syntax even further by in-
troducing the indexed summation operator > ;.; E; and deriving the inactive agent
and the binary summation in terms of the more general operator. This has led to a
new polymorphic version of the pure calculus in HOL, namely the type (v, 8, a)CCS,
parameterised over the types of the indexing domain, the parameters of agent con-
stants and the ports. Such a type has been derived using an extended version of the
HOL type definition package, which can deal with ty-valued functions, where ty is
the type being defined.

Following the approach in [15], the type for the CCS syntax with the indexed
summation operator could be defined using the built-in HOL rule for recursive type
definition without resorting to any extended version. This can be achieved by defining
the CCS type in terms of “names” (i.e. the above mentioned function invocations) for
the processes returned by CCS-valued functions. Thus, the operator summ would have
the type v — invoc and the CCS syntax would also be augmented with a constructor
Call which takes a function invocation of type invoc and returns the process invoked

8 An early version of the verification of the modal property for the counter specification can be
found in [101].

83

by such a call. The semantics of the operator Call is just to activate the process
associated to the name given by the function invocation.

Once indexed summations have been defined in HOL, different mechanisations
of the expansion law for the parallel composition operator have been investigated.
Under the assumptions that the indexing domain is infinite and agents have countable
transition sets, it is possible to analyse their actions and verify their equivalences.
This is another example of the kind of meta-theoretic reasoning that can be carried
out in the HOL-CCS environment about the embedded calculus itself. A further
example will be provided by the translation from the value-passing calculus to the
pure one in the next chapter.

84

Chapter 4
Value-Passing CCS in HOL

A lot of research has been dedicated to the development of methods and tools for rea-
soning about pure process calculi. Indeed, most of the verification systems recalled in
Section 1.1 work on agent specifications in which communication is simply synchro-
nisation, namely no data is transmitted. In this chapter, the value-passing version of
the CCS calculus presented in [97] is considered, and the proof environment developed
for pure CCS in HOL is extended to dealing with value-passing specifications.

Value-passing CCS is a process calculus in which actions consist of sending and
receiving values through communication ports, and the transmitted data can be tested
using a conditional construct. The algebra of value-passing actions is thus richer
than the pure one. In fact, a pure action is just a label or port s equipped with
information about its status, namely whether the port is an input one (a name s) or
an output one (a co-name 5). However, in a pure setting, there is no transmission
of data, so directionality is not an issue and it is possible, for example, to rename
a name s with a co-name s’, s#s’. This is not true any more when value passing
is considered. In value-passing actions the complement operation actually denotes
directionality. Besides the silent action 7, value-passing expressions can be prefixed
with prefixes of the form ‘a(z).” (input prefix) and ‘G(e).” (output prefix). Thus,
besides the input/output information, a port a is followed by a value expression
which, in particular, is a value variable z for input prefixes.

The main difficulty in dealing with value-passing specifications lies in the seman-
tics of the input prefix operator. Given a domain V of values, the meaning to an
input prefixed expression a(z). F is given by the rule

b

INPUT: o). B M Sioa) veV
where E{v/z} denotes the substitution of the value v for all free occurrences of z in
the expression E. Such occurrences are bound in the expression a(z). E by the prefix
‘a(z).”. The rule INPUT asserts that the agent a(z). E can perform the action a(v) of
receiving any value v € V' in the variable z through the input port a. Whenever the
value domain V is infinite, the above rule gives rise to infinitely branching transition

85

systems (unbounded non-determinism).

Value-passing versions of the CCS process algebra have been introduced in [97, 59].
In [97] Milner presents a value-passing calculus by defining its signature and giving
the semantics to the operators by translation into the pure version of the calculus.
The transition relation for value-passing expressions, the behavioural semantics as
well as their laws, can then be derived from those of the pure calculus through the
translation. This approach relies on an operator of (possibly infinite) indexed sum-
mation, because the translation a(ﬁE of an input prefixed agent is defined as the
summation Y ,cy aU.E{Wx}. It is generally thought that this indexed summation
operator makes the mathematical details more complicated. However, the HOL for-
malisation of such an operator presented in Section 3.3.2 shows that it is possible
to reason about (possibly infinite) indexed summations and prove properties about
them without much difficulty.

Given the rule INPUT, the substitutivity rules for the input prefix operator are
of the following form:

YoeV E{v/z} ~ E'{v/z}
CL(:L’)E ~Npe! a,(:c).E’

where the behavioural equivalences ~p, and ~pe are such that ~pe = ~pe Or ~pg
is stronger than ~y, (e.g. observation equivalence is strengthened into observation
congruence). In [59] it is claimed that this kind of rule, called w-data-rule, should be
avoided if one wants a “realistic and useful” proof system. This is because this rule is

an infinitary (non-recursively enumerable) rule, due to the possibly infinite number
of its premisses, and thus makes any proof system including it ineffective, although
sound and complete. Some w-data-rules will be derived in HOL in Section 4.5 and it
will be shown how to effectively use this kind of rule in the verification example in
Section 4.6.

When presenting his version of value-passing CCS in [59], Hennessy does not resort
to any translation and defines a denotational semantics for his calculus based on
Acceptance Trees. This model allows him to represent any input prefixed expression
as a function mapping values to semantic objects and to get a well-behaved algebraic
complete partial order with the standard proof techniques. A proof system is then
proposed which is sound and complete for finite terms with respect to the denotational
semantics and does not contain w-data-rules. Such a proof system provides powerful
methods for reasoning about value-passing agents based on the idea of separating
reasoning about the data from reasoning about the process behaviour as much as
possible. The proof systems given in [60] follow the same approach, but there the
denotational semantics is replaced by a symbolic operational semantics that allows
many value-passing agents to be represented in terms of finite symbolic transition
systems, although the standard transition systems are infinite. The verification tool
VPAM (Section 1.1.2) is based on such proof systems.

The approach taken in this dissertation to formalising value-passing CCS in HOL

86

is Milner’s one based on the translation into the pure calculus. This is motivated by
the following considerations:

e The translation is an interesting piece of meta-theory which relates the pure
and value-passing versions of a calculus for communicating systems. This meta-
reasoning will allow us to compare the two methods for giving the semantics
of the value-passing calculus, namely the one based on the translation and the
direct one according to the SOS approach, thus showing the correctness of the
translation (Section 4.3).

e Given the HOL formalisation for pure CCS, the translation from the value-
passing syntax to the pure one will enable us to derive the properties and the
laws for the various semantics of the value-passing calculus without having to
redo all the proofs. These proofs can be simply carried out by translating the
value-passing expressions into their pure versions, and then using the corre-
sponding results already proved for pure CCS.

e Once the properties and behavioural laws have been derived, reasoning about
value-passing specifications will be performed without translating them into
their pure versions (which would contain possibly infinite indexed summations).
The translation is used at meta-level for developing behavioural theories for the
value-passing calculus, and users of the verification environment will only work
on value-passing specifications. '

e Not only is the translation worth mechanising, but it is also interesting from
the point of view of its HOL formalisation. In fact, it introduces the use of poly-
morphism in the HOL type of CCS actions, and raises the problem of defining
an operator of (possibly infinite) indexed summation over recursively defined
agent expressions. These issues have already been discussed in Section 3.3.

The version of the value-passing calculus under consideration is the one presented
in [97]. Differently from Chapter 2, where first rec-notation and then agent constants
and defining equations were introduced, the syntax of the value-passing calculus is
directly given with parameterised agent constants and defining equations. Further-
more, the indexed summation operator is included in its syntax.

In the following sections, the syntax for the value-passing calculus is embedded
in HOL and the translation is then defined by exploiting some HOL infrastructure,
such as A-abstraction and #-reduction to represent variable binding and substitution
of values for value variables. Then, the operational semantics for the value-passing
calculus is recalled and formalised in HOL by defining the transition relation over
value-passing expressions. Hence, the translation is shown to be correct with respect
to the semantics of value-passing CCS by formally proving that for each value-passing
transition there exists a corresponding one between the translations of the agents

87

and actions involved. Behavioural equivalences for value-passing agents can thus be
defined based on the translation and the corresponding equivalences over pure CCS.
Their properties and algebraic laws are derived by resorting to the corresponding
properties and laws for pure CCS, and reasoning about value-passing agents can
be performed by applying the derived theorems without translating them into their
pure versions. To illustrate how the resulting proof environment can be used to
analyse value-passing specifications, the observation congruence between two different
descriptions of a communicating system is verified in HOL. This example system is
taken from [59] and the HOL proof is finally compared with the one carried out in
Hennessy’s proof system.!

4.1 The Value-Passing Syntax in HOL

The syntax of Milner’s value-passing calculus [97] is recalled in this section. The
denotation and meaning of many of the symbols and operators are the same as in
Sections 2.1.1, 3.1.2 and 3.3.2. Below, only the new symbols and operators are
explained.

Given a domain V of values, let value constants, value variables and value expres-
sions over V' be denoted by v, z and e respectively. Let X be a set of agent variables
ranged over by X and K be a set of agent constants ranged over by A. An arity n >0
is assigned to each constant A€ K. Let I and b denote indexing sets and boolean
expressions respectively. The label a ranges over the set of ports at which data can
be input. For any input port a there is a corresponding output port @, from which
data can be sent. The set of input and output labels (or ports) is ranged over by I,
and L ranges over subsets of labels. The set of value-passing actions, ranged over by
u, includes input actions a(v), output actions @(e) and the silent action 7. Actions
with no value parameters are special cases of value-passing actions.

The syntax of value-passing expressions, ranged over by E, is the following:?

E 2= X | Aler,-..,en) | SicrBi | a@).E | ae).E | 7.E |
E|E | E\L | E[f] | if b then E

As in pure CCS, agent variables give the possibility of writing open expressions. Each
agent constant A with arity n has a defining equation A(xy,...,z,) & F, where the
expression £ may contain no agent variables (thus, E is an agent) and no free value
variables except z1,...,Z,.

The meaning of the new operators is as follows.

1Preliminary versions of the work described in this chapter are given in [103, 104].

2Note the overloading of symbols: the same symbols used for the operators, variables and con-
stants over the pure calculus also denote the value-passing counterparts. They will be distinguished
in the HOL formalisation.

88

e The agent expression a(z).F can perform the action a(v) of receiving any value
v €V at the input port a, and then behaves like E{v/z}, i.e. the agent expres-
sion obtained by substituting the value v for all free occurrences of the variable
z in the expression F.

e The agent expression @(e).E can output the value expression e by performing
the action @(e) and then behaves like E.

e The agent expression 7.F can perform the action 7 and then behaves like E.

e The conditional expression if b then E behaves like E if the boolean expression
b is true, and cannot perform any action otherwise. The two-armed conditional
expression if b then F else F’ can be defined in terms of the binary summation,
one-armed conditional and booléan negation as (if b then E)+(if — b then E’).

The operational semantics for value-passing agent expressions will be formally
given and mechanised in HOL in Section 4.3. In what follows, the syntax for the
value-passing calculus is embedded in HOL.

A label is simply the name of a port at which communication is performed, and a
port can be either an input or an output port. Labels can be restricted and renamed
via the restriction and relabelling operators respectively, while values (which appear
in actions) are neither restricted nor renamed.

The polymorphic versions (a)labelv and (a, B)actionv of the types for value-
passing labels and actions are defined similarly to the ones for pure labels and actions
(Section 3.3.1):

labelv =in a | out &

actionv = tauv | labelv («)labelv

where o and [are the type variables for ports and values respectively. For exam-
ple, let a and hello be constants of type string. Then, the value-passing action
labelv (ina) 5 is an input action of type (string, num)actionv, the labels of ports and
the values under consideration being strings and natural numbers respectively, and
labelv (out T) hello is an action of type (bool, string)actionv.

The complement operation Complv is defined on the polymorphic type (a)labelv
similarly to its definition in the formalisation of pure CCS, and then extended to the
type (a, B)actionv in a straightforward way by defining the new function Compl_Actv.

Because there is no data transmission in pure CCS, the direction of a commu-
nication is not relevant. Therefore, it is possible to change the status of a port by
renaming a label which is a name into a co-name and vice versa. On the contrary, in
value-passing CCS the status of a port is fixed and an input port cannot be renamed
into an output port and vice versa. Thus, relabelling functions over value-passing ex-
pressions are simply defined as functions that rename ports, i.e. the relabelling type
is the function type o — a. The renaming of ports is then extended to value-passing

89

labels and actions by means of the function relab_labv : (a—a) — (a)labelv— (a)labelv
defined as follows:

(Vrf p. relablabv rf (inp) = in(rf p)) A
(V rf p. relabiabv rf (out p) = out (7f p))

and the function relabelv : (o — &) — (a, B)actionv — (o, §)actionv:

(Vrf. relabelv rf tauv = tauv) A

(V rf [z. relabelv rf (labelvlz) = labelv (relab_labv rf 1) z)

These functions respect the complement operation and 7 is renamed as 7. Moreover,
a constructor RELABv : (a X a)list — (o —), namely the value-passing counterpart of
RELAB (Section 2.2.1), allows one to write a relabelling function in the substitution-like
mnotation. Given a list of pairs of ports, RELABv returns the value-passing relabelling
defined through that list.

The syntax for value-passing agent expressions is defined in HOL similarly to that
for pure CCS (Section 3.3.2). Besides the clause for indexed summation, a function
type is also used for the mechanisation of the input prefix operator. In fact, an input
prefixed expression a(z).E is formalised in HOL by means of the operator In which
takes as arguments a port e and a function f from values to agent expressions. This
function will be given as a M-abstraction Az. E[z] which binds the value variable z
in the expression F|[z]. In this way, the notion of A-abstraction in HOL is used to
formalise the variable binding in an input prefixed expression. '

The specification for the type (7, 8, @)CCSv, where the type variables v, and «
represent the types of indexes, data and ports respectively, is thus the following:

CCSy = Var string |
Conp string |
Summ (y — CCS) (7y)set |
In a (8 — CC) |
Out a § CCSy |
Tau CCY |
Par CCSv CCSv |
Restr CCSv ((«)labelv)set |
Relab CCS (oo — «) |
Cond bool CCSv

Note that the type variable § represents the type of both communication values and
parameters of agent constants. It often happens that values and parameters are of
the same type, e.g. the register example at the end of Section 3.1.1. Whenever values
and parameters happen to range over different types, the type variable g will be
instantiated to the disjoint union of the two types, or two type variables for the data
component could be introduced in the mechanisation of value-passing expressions.

90

The following theorem of higher order logic characterises the type (v, 8, «)CCSv:

FVf1 fa fs fa [5 fo f7 fs fo fro-
3! fn.
(Vsl. fn(Var s1) = fis1) A
(Vsl z2. fn(Conp s1z2) = fys122) A
(Vf1s2. fn(Summ f1s2) = f3(fno f1) f1s2) A
(Vzl f2. fn(lnzl f2) = fo(fno f2) 21 f2) A
(V21 22 C3. fn(Out 21 22 C3) = f5(fn C3) 2122 C3) A
(VC1. fn(Tau C1) = f (fn C1) C1) A
(VC1 C2. fa(Par C1C2) = f, (fn C1) (fn C2) C1C2) A
(VC1 s2. fn(Restr C1s2) = fg(fn C1) C1s2) A
(VC1 £2. fn(Relab C1 f2) = fo (fn C1) C1 f2) A
(Vb1 C2. fn(Cond b1 C2) = fio (fn C2) b1 C2)

This theorem is the basis for reasoning about value-passing agent expressions in
HOL. The formalisation of the inactive agent nil, the binary summation ‘+’ and
parameterless agent constants over the value-passing calculus, represented in HOL by
the operators Nil, Sum and Con respectively, is similar to the one for the operators nil,
sum and con in pure CCS. The two-armed conditional operator is defined as follows:

VbE E'. Cond_Elseb E E' = Sum (Cond b E) (Cond —b E')

and theorems asserting that Cond_Else is one-to-one and distinct from the other'op-
erators are derived similarly to the ones for Nil, Sum and Con.

The defining equations for value-passing agent, constants are introduced through a
type (8,7, @) Def-Funv,® which is similar to the corresponding type for pure defining
equations (Section 3.1.2). The definition of (3, v, @) Def_Funv is based on the function
Fv_v for computing the free variables in value-passing expressions and the predicate
Is_Agentv over the value-passing syntax. The type (0, v, @) Def-Funv is provided with
functions Lookupv and Def_Funv, namely the value-passing versions of Lookup and
Def_Fun.

Pure actions are just a special case of value-passing actions, namely those which
do not take any value parameter. Likewise, prefixing a pure action to a value-passing
expression is a particular case of the value-passing prefixing operations. In what
follows, the HOL formalisation of these special cases is briefly discussed.

Actions with no value parameters can be defined in terms of value-passing actions
of type (a, B)actionv by assigning them a special value different from all the values
in the type 8. This can be done by augmenting the value domain with a type which
provides this special value. In HOL the disjoint sum one+ 3 can be taken as the type
for the new value domain, where one is the HOL type containing the only constant one

3Note that the type variables before the type constructor Def Funv occur in an order different
from the one in the type (v,8,a)CCSv. This is due to the order in which they appear in the
associated HOL definitions.

91

(Section A.2) and § is the actual value domain. In this way, any value-passing action
u: (o, one + f)actionv with no value parameters can be defined through a constant
definition as follows:

u = labelv (in p) (Inl one)

if u is an input action (corresponding to a name in the pure calculus) and
u = labelv (out p) (Inl one)

if u is an output action (corresponding to a co-name in the pure calculus), where p: o
is the port of the given action. As an example, let a be the HOL type string and let
the common acknowledgement action ack and its complement ack be defined as

ack = labelv (in ‘ack’) (Inl one)

ack_bar = labelv (out ‘ack’) (Inl one)

It can now be proved that ack_bar is indeed the complementary action of ack. By
rewriting with the definitions of ack, ack_bar, Compl_Actv and Complv, the following
theorem is derived:

F Compl_Actv ack = ack_bar

Given the type (7, one+ §,a)CCSv for value-passing expressions, the operators
which prefix an expression F with an input or output action with no values can be
defined in terms of the constructors In and Out by means of the following constant
definitions:

VpE.Inpp E =Inp (Az. (Islz = E | Nil))
Vp E.Outpp E = Out p (Inlone) F

On one hand, the A-abstraction in the definition of the “pure” input prefix operator
Inp returns the expression F if the input value is of type one, namely it is its left
component (as values are of type one+). On the other hand, the value expression
in the definition of the “pure” output prefix operator Outp is just the left injection
of the special value one. For example, the terms Inp ‘ack’ Nil and Outp ‘ack’ Nil
denote the agents that send and receive (respectively) an acknowledgement and then
terminate. The operational semantics of these particular value-passing expressions
will be derived in Section 4.3.

4.2 Translating Value-Passing CCS into Pure CCS

To help understanding the HOL formalisation of the translation from the value-
passing syntax to the pure one, Milner’s translation from [97] is recalled below.
For each value-passing expression E (without free value variables) on the left, the

92

translation F is given on the right:

X X
Aley,...,en) Aey,en
Yier Bi EieIE\i
a(z).E 2 vev av.E{Wx}
ale).E a.E
| .F r.E
Ei | E; | E, | E;
E\L E\{l,:leL,veV}
E[f] E[f] where f(L)=f(l),

if b then E { E if b=true

nil otherwise

Moreover, the defining equation A(Z%) &' F for an agent constant, where Z stands for
T1,...,Tn, is translated into the indexed set of defining equations {A; & E{?}7£} :
veVn}

The translation from the value-passing calculus into pure CCS is given recursively
on the structure of value-passing expressions. It is not primitive recursive though,
as in the clause for the input prefix constructor, a(z).E = Soev Go-E{v/z}, the
recursive occurrence of the translation function is not applied to the subterm E' but
to the expression E{v/z}. However, the formalisation of the input prefix operator
through A-abstraction and composition of functions makes it possible to define the
translation in HOL as a primitive recursive function over the type (v, 8, «)CCSv. This
is achieved by composing the translation function with the function argument of the
input prefix operator and using the extended version of the mechanism for primitive
recursive function definition (Section A.4).

Given an expression E: (v, 8, @)CCSv and a value domain V : (3)set, the recursive
function CCSv_To_CCS: (v, 8, @)CCSv — (B)set — (v + B, 8, a x B)CCS translates E
into a pure expression whose types for indexes, parameters and ports are v+, 8 and
a % 3 respectively. The disjoint sum -« + instantiates the type variable for indexes
in the type for pure expressions, because the result of translating an input prefixed
expression of type (v, 8,2)CCS is a summation over the value domain V: (3)set. This
means that the indexing domain of the resulting expression is extended to include
values as indexes too. Moreover, the type variable for parameters in the type for
pure agent expressions is the same variable 3 for the data component in value-passing
expressions. The function CCSv_To_CCS also takes as an argument the value domain
V. This is due to the presence of predicates of the form v € V in the translation of
the input prefix and restriction operators. The translation function is defined in HOL

93

as follows:

(Vs V. CCSv_To_CCS (Var s) V =var s) A
(Vsz V. CCSv_To.CCS (Conpsz) V =conp s z) A
VfIV.
CCSv_To_CCS (Summ fI) V =
summ (Ai. (CCSv_To_CCS o f) (Outld) V) {Inlj:5€I}) A
(Vo fV.
CCSv_ToCCS(Inp /) V =
summ
(Av. prefix (label (name (p, Outr v))) ((CCSv_To_CCS o f) (Outrv) V))
{Inrv' ;v €V}) A
(Vpe E'V.
CCSv_ToCCS(Outpe E)V =
prefix (label (coname (p, e))) (CCSv_To.CCS E V)) A
(VE V. CCSv_To_CCS (Tau E) V = prefix tau (CCSv.To_.CCS E V)) A
VEE'V.
CCSv._To_CCS (Par E E') V = par (CCSv_To_CCS E V)(CCSv.To.CCS E' V)) A
(VELV.
CCSv.To.CCS(Restr E L)V =
restr
(CCSv_To.CCSEV)
({name (p,v): (inp)€ L A veV} U {coname (p,v): (outp) €L A vEV})) A
(VE rf V.
CCSv_ToCCS(Relab E rf) V =
relab (CCSv_To_CCS E V') (ABS_Relabelling (Relab_-TR 7f))) A
(Vb E V. CCSv.To.CCS (Cond b E) V = (b = CCSv_.To.CCS EV | nil))

where ABS_Relabelling is the abstraction function of the type (a)relabelling, and
the function Relab TR: (@ = «a) — (a x B)label — (« x B)label translates a value-
passing relabelling into a function that renames pure labels which are, in turn, the
translations of value-passing labels (see below for the translation of value-passing
labels and actions):

. (Vrf pz. Relab_TR rf (name pz) = name (rf(Fst pz),Snd px)) A
(V rf pz. Relab_TR rf (coname pz) = coname (rf (Fst pz), Snd pz))

As far as the translation of agent constants is concerned, when A(ey,...,e,) is
translated into the pure constant A, . .., it is implicitly assumed that the set of
pure agent constants is infinite (or “big enough”, depending on V'), and the defin-
ing equations are translated into a (possibly infinite) set of pure defining equations.
Due to the way parameterised agent constants have been formalised in HOL, a value-
passing agent constant Conp s z is simply translated into the corresponding pure
one conp s z with the same name and parameters. The value-passing defining equa-
tions Df are translated by means of the following function Df_TR, which translates

94

the value-passing agent Lookupv Df s z corresponding to the value-passing constant
identified by the name s and parameters z:

VV Df. Df-TRV Df = Def_Fun (As z. CCSv_To_CCS (Lookupv Df s z) V)

Note that the condition that the value-passing expression being translated does
not contain any free value variables is not formalised in the above definition for
CCSv_To_CCS. This is due to the fact that no knowledge is assumed about the value
domain, hence it is not possible to express such a condition on value-passing expres-
sions. Whenever a specific data domain is considered, the structure of its expressions
will be known together with the operators to construct them and consequently it will
be possible to formalise the above condition.

The formalisation of an input prefixed expression a(z).F through a A-abstraction
that binds the variable z in the expression E, allows one to use the §-reduction in
the HOL logic to mechanise the substitution of a value constant v for a variable z in
value-passing expressions (i.e. E{v/z}), boolean expressions b and value expressions
e. Let E be the agent expression

in(z). (if z <5 then out(z +1). nil)

where the labels of ports are strings, the value domain V' is the set of natural numbers,
and indexes are of any type . The expression F is represented in HOL as the term ¢

In in (Az. Cond (z < 5) (Out out (z + 1) Nil)) : (v, num, string) CCSv

By applying the translation function CCSv_To_CCS to the term ¢ and the value domain
N of natural numbers, represented in HOL by the universal set Univ: (num)set, and
by rewriting with the definition of composition of functions and [-reduction, the
following theorem is obtained:)

F CCSv_To_CCS (In in (Az. Cond (z < 5) (Out out (z + 1) Nil))) Univ =
summ
(M.
prefix
(label (name (in, Outr v)))
((Outrv) <5 =
prefix (label (coname (out, (Outr v) +1))) (CCSv_To_CCS Nil Univ) |
nil))

{Inrv" : v" € Univ}

whose right-hand side is the translation of ¢ of type (y+num, num, stringxnum)CCS.
This term is similar to the schema of expressions given in [97], where the bound
variable x has been replaced by the value Outrv both in the boolean expression z < 5
and in the value expression x + 1. Note that, due to the definitions of the inactive

95

agent and of CCSv_To_CCS, it is not possible to prove that the translation of the
value-passing inactive agent Nil is equal (i.e. ‘=’ in the HOL sense) to nil. However,
it is possible to prove that these two (pure) expressions perform the same transitions
(none in their case). Thus, any behavioural equivalence between them can be derived,
as asserted by the following theorem for observation congruence:

OBS_CONGR_CCSv_.To_.CCS_Nil: + VYV Df. Obs_Congr Df (CCSv_To_CCS Nil V) nil
The same holds for binary summation

OBS_CONGR._CCSv_To_CCS_Sum:

.=-VV Df.VE E'::Is_Agentv V.
Obs_Congr
Df
(CCSv_To.CCS (Sum E E") V)
(sum (CCSv_To_CCS E V) (CCSv_To.CCS E' V))

and for the two-armed conditional:

OBS_.CONGR_-CCSv_To_CCS_Cond Else:

.FVV Df b.VE E':: Is_Agentv V.
Obs_Congr
Df
(CCSv_To_CCS (Cond_Else b E E') V)
(b = CCSv_.To.CCSEV | CCSv_To_.CCS E'V)

Note that the predicate Is_Agentv : (3)set — (v, 8, @) CCSv — bool is parameterised on
the value domain V, in a way similar to CCSv_To_CCS. Rewriting with the above
behavioural theorems does not cause any problems, as agent expressions are typically
manipulated modulo a behavioural equivalence. Nevertheless, when reasoning about
value-passing agents, it would be preferable to work directly on the value-passing
expressions without resorting to their translation into pure CCS. In the following
sections, the development of a proof environment for the value-passing calculus is
described based on the translation and the HOL formalisation of pure CCS. Once
this environment has been derived, reasoning will be performed on the value-passing
agents without translating them into pure expressions.

Finally, it is worth noting that no translation functions for value-passing labels and
actions are used in the definition of CCSv_To_CCS. This is due to the formalisation of
the input, output and 7-prefix operators which do not have an action as parameter.
However, translation functions for value-passing labels and actions will be necessary
in Section 4.4 when proving the correctness of the translation. Their definitions are
briefly outlined below.

The presence of a type variable for the ports in the formalisation of pure actions
(Section 3.3.1) allows us to translate the value-passing actions into the pure ones

96

by simply mapping each input action a(v) into a pair (a,v):(a x B)action. For
example, if a is a constant of type string, then the value-passing action labelv (ina) 5 of
type (string, num)actionv is translated into the pure action label (name (a, 5)) of type
(string x num)action, where the compound type string X num instantiates the type
variable in (a)action. Similarly, an output action @(e): (o, B)actionv is translated

into a pure action (a,e): (a x f)action. The translation from value-passing labels to
pure ones is thus defined:

(Vpz. Labelv.TR (inp) z = name (p,z)) A
(Vpz. Labelv_TR (out p) z = coname (p, z))

The translation from value-passing actions to pure ones is defined as follows:

(Actionv_TR tauv = tau) A
(V1z. Actionv_TR (labelv [z) = label (Labelv_.TR [z))

Both translations for value-passing labels and actions are proved to be one-to-one.

4.3 The Operational Semantics for Value-Passing
CCS |

Before developing a proof environment for value-passing specifications based on the
translation into pure CCS, let us check that the translation defined in the previous
section is correct with respect to the semantics of the value-passing calculus. In other
words, one would like to prove that the translation preserves all the transitions that
a value-passing agent expression can perform. Given any value-passing expression
E, this means that if E %+ E' for some action u and agent expression E’, then

E-X F , namely the translation of E is able to perform the pure action resulting
from the translation of u and then evolve to the translation of E’.

To achieve this correctness result, an operational semantics based on labelled
interleaving transitions is first given to the value-passing operators. Given value
domain V and defining equations Df, the transition relation £ — E' is inductively
defined by the inference rules in Figure 4.1.

The transition relation for value-passing agent expressions is formalised in HOL
using the derived rule for inductive definitions. A transition F — E’' with respect
to a value domain V and a defining equations function Df, is represented in HOL by
TransvV Df Ew E'. The relation Transv: (8)set — (8, v, &) Def-Funv — (v, 3, @) CCSv
— (o, B)actionv— (7, B, «) CCSv — bool is parameterised on V and Df, thus returning
a class of inductively defined relations, one for each given value domain and defining

97

E{ei/z1,.nen/zn} ey def
CONPyv: AlZ1,...,20) = E
A(e1,..s€n) 2 E (@1 on)

SUMMy: 2B
Eie] B; = Eé
INPUTv: 200 veV
a(z) . E — E{v/z}
OUTPUTv: N TAUv: e
ae). Y E T E->E
PARlv: —E—E PAR2y: _E—E
E|F — E'|F _ F|E-— F|E'
PAR3v e p¥p
E|IF I E'|F
RESTRv: —Z2E 541 RELABv: —E—=E
S e B[1Y 5
. b E-SE
CONDy: ifbthen E - E'

Figure 4.1: The transition rules for value-passing CCS.

equations. The labelled transition rules in Figure 4.1 are the following HOL theorems:

CONPv: FVV DfseulFE.
Transv V Df (Lookupv Df se)u E D TransvV Df (Conpse)u F

SUMMv: +VV Df fuEI
(3. TransvV Df (fi)uE A i€l) D
TransvV Df (Summ fI)u E

INPUTv: FVYV Dfe.eecV D (Vpf TransvV Df (Inp f) (labelv (in p) €) (f €))
OUTPUTv: -VV Df pe E. Transv V Df (Outp e E) (labelv (out p) €) E
TAUw: FVYV Df E. TransvV Df (Tau E) tauv F

PAR1v: FVV Df EuE1l.
TransvV Df Eu E1 D
(VE'. Transv V Df (Par E E') u (Par E1 E'))

PAR2v: VYV Df Eu El.
TransvV Df Eu El D
(VE'. Transv V Df (Par E' E) u (Par E' E1))

PAR3v: FYV Df E E1E' E2.
(Fle.
Transv V Df E (labelvie) E1 A
Transv V Df E’ (labelv (Complv ()) E2) D
Transv V Df (Par E E') tauv (Par E1 E2)

98

RESTRv: FVV Df EuwE'L."

(Fle.
TransvV Df Eu E' A
((u = tauv) Vv

((u=Ilabelvie) A (I¢L) A (Complvig€L)))) D
Transv V Df (Restr E L) u (Restr E' L)
RELABv: -V V Df EuE'.

TransvV Df EuE' D
(Vrf. Transv V Df (Relab E rf) (relabelv rf u) (Relab E' rf))

CONDv: FVV DfbEuF'.
b A TransvV Df EuwE' O Transv V Df (Cond b E) u E'

Note that, due to the HOL formalisation of agent constants and defining equations,
the substitution {e;/z1,...,€e,/2,} in CONPv is implemented in the corresponding
HOL rule by simply replacing the formal parameters z,...,z, with the actual ones
€1,-..,en. Moreover, the HOL rule INPUTv allows any value expression e over V to be
received without being first evaluated to its value v. Thus, given an input port p, in
HOL an input action is the more general p(e) rather than p(v). Any value expression
can be exchanged and its value is evaluated by need and checked to be in the value
domain V. This guarantees that all the exchanged data belong to V. Finally, the
definition of INPUTv implies that the early version of behavioural equivalences for
value-passing CCS will be considered.

The transitions for value-passing expressions which contains actions with no value
parameters are derived from the above rules. If @) is the agent Outp ‘ack‘ Nil given at
the end of Section 4.1, its transitions can be computed by simply rewriting with the
definitions of @, Outp, ack_bar and the rule OUTPUTYv to get the following theorem:

F Transv V' Df Q ack_bar Nil

where V' is the set {v:v = Inl one} of all values in disjoint sum with one on the left
and Df is any defining equations function over value-passing agent constants. If P
is the agent Inp ‘ack‘ @, its actions can be similarly computed by rewriting with the
definitions of Inp, ack, the rule INPUTv (suitably instantiated) and the theorem ISL
(from the theory sum, Section A.2). The following transition is derived:

F Transv V' Df P ack @)

This theorem asserts that the value-passing agent P can do the action ack and evolve
into the agent Q.

99

4.4 Proving the Correctness of the Translation

The issue of correctness of the translation, mentioned at the beginning of the previous
section, is now considered. The following result is proved in HOL:

TRANSv_IMP_TRANS:

FYV Df EuFE'.
TransvV Df Eu E" D
Trans (Df_-TRV Df) (CCSv_To_CCS E V') (Actionv_TR u) (CCSv_To_.CCS E' V)

This theorem is proved by rule induction, namely by induction over the structure of
the derivations defined by the transition rules for Transv. This induction gives rise
to 11 subgoals, one for each transition rule. Let us show the proof of two of them,
namely the cases of value-passing indexed summation and input prefixed expressions.
The subgoal to be proved for the summation case is the following:

{ Trans (Df_TR V Df) (CCSv_To_CCS (f i) V') (Actionv.TR u) (CCSv_.To.CCS E V) ;
iel}
Trans (DfZ-TR V. Df)
(CCSv_To.CCS (Summ fI) V)
(Actionv_TR w)
(CCSv_To.CCSEV)

The assumptions of the goal are just the premisses of the inference rule SUMMyv to
which induction has been applied. The first step of the proof consists of rewriting the
goal with the definition of the translation and the theorem o.THM for composition
of functions, i.e. FVf gz. (fog)z = f(gx):

{ Trans (Df_-TRV Df) (CCSv_To_CCS (f %) V') (Actionv_.TR u) (CCSv_To_.CCS E V) ;
iel}
? Trans (D_-TRV Df) ,
(summ (Ai. CCSv_To_CCS (f (Outl¢)) V) {Inlj:je€1})
(Actionv_TR u)
(CCSv_To.CCSE V)

The transition rule SUMM (Section 3.3.2) for a pure summation agent expression is
applied in a backward manner to reduce the goal to the following:

{ Trans (Df_-TRV Df) (CCSv_To_CCS (f %) V') (Actionv_.TR u) (CCSv_.To.CCS EV);
iel}
[a=%
Trans (Df_-TRV Df)
((Az. CCSv_To_CCS (f (Outl 7)) V) ©) (Actionv_-TR u) (CCSv_.To_.CCS E V) A
ie{lnlj:jel}

100

Beta-reduction is applied and the existentially quantified variable 7 in the goal is then
instantiated with the index Inl ¢:v+ 3 (due to the translation, indexes range over a
disjoint sum type):

{ Trans (Df_-TRV Df) (CCSv_-To_CCS (f ¢) V) (Actionv_TRu) (CCSv_To.CCSEV);
iel}
* Trans (Df_-TRV Df)
(CCSv_To_CCS (f (Outl (Inl2))) V') (Actionv_.TR u) (CCSv.To_.CCS E V) A
(Inld)e{Inlj:jel}

By rewriting with the theorem OUTL (from the theory sum, Section A.2), the first
conjunct of the goal is reduced to the first assumption. Thus, the second conjunct is
left to prove:

{ Trans (Df_-TR V' Df) (CCSv_To.CCS (f i) V) (Actionv_.TR u) (CCSv_.To.CCSE V) ;
iel}
* (Intg)e{inlj:jel}

Using set theory and the assumption 7 € I, the subgoal for the case of indexed sum-
mation is finally proved. A similar proof works for the transitions of an input prefixed »
expression, except that the translation of actions is needed besides the one for ex-
pressions. The subgoal is as follows:

{eeV}
* Vpf.
Trans (Df_-TR V Df)
(CCSv_To_CCS (Inp f) V) (Actionv_TR (labelv (in p) e)) (CCSv_To_CCS (f e) V)

The only assumption is e € V, namely the condition in the above transition rule
INPUTv. Given any port p and input function f, rewriting with the definition of the
translation and the theorem o_THM produces the new goal:

{eeV}
* Trans (Df_- TRV Df)
(summ
(Av. prefix (label (name (p, Outr v))) (CCSv_To._CCS (f (Outr v)) V))
{lnrv:veV})
(Actionv_TR (labelv (in p) €))
(CCSv_To-CCS (f ¢) V)

The translations Actionv_TR and Labelv_TR for value-passing actions and labels are
applied to rewrite the goal:

101

{eeV}

? Trans (Df_-TRV Df)
(summ
(Av. prefix (label (name (p, Outr v))) (CCSv_To_CCS (f (Outr v)) V))
{Inrv:veV})

(label (name (p, €)))
(CCSv_ToCCS (fe) V)

The proof now proceeds similarly to the one for the summation case by applying the
rule SUMM backward and §-reduction:

{eeV}
*+ i
Trans (Df. TRV Df)

(prefix (label (name (p, Outr ¢))) (CCSv_To_.CCS (f (Outr 7)) V))

(label (name (p, €)))
(CCSv_ToCCS (fe) V) A

i€{lnrv:veV}

The existentially quantified variable ¢ is instantiated with the index Inr e:y 4+,
namely the right injection of the value expression e € V. Rewriting with the the-
orem OUTR: - Vz. Outr (Inr z) = z yields the following goal:

{eeV}
Trans (Df.-TRV DY)
(prefix (label (name (p, €))) (CCSv_To_CCS (f e) V))
(label (name (p, €)))
(CCSv_To_CCS (fe) V) A
(Inre) e {lnrv:veV}

The goal is now solved by applying the theorem PREFIX for the prefix operator
and using set theory and the assumption. The remaining subgoals of the proof by
transition induction are proved with similar tactics.

One might wonder whether the implicational theorem TRANSv_IMP_TRANS can
be made an equivalence. The problem is that the translation CCSv_To_CCS is not
one-to-one, i.e. syntactically different value-passing terms can be translated into the
same pure term. In fact, the translation is not purely syntactic as the clause for
the conditional operator depends on the value of the boolean expression. Infinitely
many (finite) value-passing terms can be constructed using the conditional operator
so that they are syntactically different but are translated into the same pure term.
Nevertheless, these value-passing terms have the same transitions. Thus, the oppo-
site implication of TRANSv.IMP_TRANS could be derived by considering equivalence
classes of value-passing terms having the same transitions, namely strong equivalent
agents. A rather similar reasoning is carried out in [40] where the ECRINS system is

102

used for defining a translation from Basic LOTOS to MEIJE and proving its correct-
ness automatically. The proof of correctness is structural and each LOTOS term is
shown to have the same semantics as its corresponding MEIJE term.

The correctness of the translation expressed by TRANSv_IMP_TRANS allows one
to soundly define the behavioural semantics for value-passing expressions in terms
of the translation into the pure calculus and the corresponding semantics over pure
expressions. In this way, properties and laws for the value-passing behavioural se-
mantics can be derived through the corresponding theorems for pure CCS, as shown
in the next section.

4.5 Behavioural Equivalences over Value-Passing

CCS

The behaviour of a value-passing agent expression E can be explored by translating F/
into its pure version E and then using the inference rules of the operational semantics
for the pure calculus. Similarly, the equivalence of any two value-passing agents F;
and F,, with respect to a given behavioural semantics, can be verified by checking
the behavioural equivalence between the two pure agents E; and E, resulting from
the translation. In this way, behavioural equivalences over value-passing agents are
directly defined in terms of the corresponding equivalences over pure agents without
resorting to the notion of bisimulation.

The translation function CCSv_To_CCS is parameterised on the value domain V/,
as the result of translating a value-passing expression depends on the value domain
under consideration. This is easily illustrated by an agent whose behaviour depends
on the data component. Consider the recursive agent

A = a(z).if even(z) then é(z). Aelse o(z). A

The agent A repeatedly inputs a value n €V through the port a and then emits n
through the port € if n is even, otherwise n is sent out through the port 0. The pure
agent A resulting from translating A is ¥, cy an. (even(n) = €,. A | 0,. A), which
denotes different agents depending on V.

When defining the transition relation Transv over value-passing expressions, the
value domain V is given as a parameter to its definition, together with the defining
equations Df for agent constants. The same thing happens when defining behavioural
equivalences, as the behaviour of value-passing specifications depends on their data
component. Two value-passing agents may perform the same transitions and thus
be behaviourally equivalent with respect to a given value domain, but they are not
if the value domain is changed, even slightly. For example, the two agents B &
a(z).b(z +2). B and C ¥ a(z). if even(z) then b(z + 2). C perform exactly the same
actions (and are therefore equivalent) over the value domain of the even numbers,

103

while they are not equivalent over a larger domain including, for example, some
odd numbers. What follows shows how behavioural equivalences over value-passing
agents are defined in HOL based on the translation and the corresponding behavioural
equivalences over pure CCS. In particular, observation equivalence and congruence
are considered and the formalisation of some of their properties and laws is presented.
The HOL relation Obs_Equiv_v: (8)set — (8,7, &) Def-Funv — (v, 3, «)CCSv —
(7, 8, 0)CCSv — bool denotes the observation equivalence over value-passing agents
with respect to given value domain V and defining equations Df. The relation
Obs_Equiv_v is defined in terms of Obs_Equiv, i.e. the observation equivalence over
pure CCS (Section 2.2.3), as follows:

VV Df.VE E':: Is_Agentv V.
Obs_EquivvV Df EE' =
Obs_Equiv (Df_-TRV Df) (CCSv_To_CCS E V) (CCSv_To_CCS E' V)

The observation congruence Obs_Congr_v is embedded in HOL in a similar way. Prop-
erties of both observation equivalence and congruence over value-passing agents can
be easily derived. The standard proof consists of rewriting the property to be proved
with the definition of the given behavioural equivalence and applying the correspond-
ing property over pure agents. For example, the following theorems asserting that
Obs_Equiv_v is an equivalence relation, are proved using this proof technique:

OBSEQv_REFL: +VV Df.VE:Is_AgentvV. Obs_EquivwvV Df E E

OBSEQvSYM: FVYV Df.VE E’::Is_Agentv V.
Obs_EquivwV Df EE" O ObsEquivvV Df E'E

OBSEQv_.TRANS: FVV Df.VE E' E" .. Is_Agentv V.
Obs_EquivwV Df EE' A Obs_EquivwV Df E' E" D
Obs_Equiv.vV Df E E"

Congruence (or substitutivity) properties are derived in a similar way. The following
inference rules are two of them.

OBSEQv_SUBST.OUTPUT:
FVYV Df ee.VE E'::1s_Agentv V.
(e=¢€) N ObsEquivvV Df EE'" D
(Vp. Obs_Equiv.v V Df (Outpe E) (Outpe' E'))

OBSEQv_SUBST_INPUT:

FVYV Df ff.
(Vv.veV D
Is_.Agentv V (f v) A ls_Agentv V (f' v) A Obs_Equiv.v V Df (f v) (f'v)) D
(Vp. Obs_Equiv.vy V Df (Inp f) (Inp f'))

The inference rule OBSEQv_SUBST_OUTPUT asserts that if the value expressions e
and €’ are equal and the agents F and E’ are observation equivalent, then for any port

104

p the output prefixed agents p(e). E and p(e’). E' are also observation equivalent. The
f theorem OBSEQv_SUBST_INPUT encodes the w-data-rule for observation equivalence.
| If this rule is interpreted backward, this means that, in order to prove that two input
prefixed agents with equal ports are observation equivalent, it is enough to show that
the prefixed expressions (given through A-abstractions) are observation equivalent
agents when applied to any value v in V. In the proof in Section 4.6, a stronger
version of this w-data-rule will be used which strengthens observation equivalence to
observation congruence in the presence of a prefix operator. This rule is

OBSEQv_OBSCv_INPUT:
-VV Df f f.
(Vv.veV D
| Is_.Agentv V (f v) Alls_Agentv V (f' v) A Obs_Equiv.v V Df (fv) (f'v)) D
| (Vp. Obs_Congr_vV Df (Inp f) (Inp f'))

and can be seen as the value-passing version of proposition PROP6 (Section 3.2.1)
for the input prefix case.

Many of the algebraic laws for the behavioural equivalences over the value-passing
calculus, such as the 7-law 7. F =& E for observation equivalence,

TAU_WEAKv: +VV Df.VE ::Is_Agentv V. Obs_Equiv.vV Df (Tau E) E

are derived with a simple proof technique: rewriting the law to be proved with the
definition of the behavioural equivalence and then applying the corresponding law
over pure agents. The proof of other laws, such as the ones for the parallel and
restriction operators, is not so straightforward, but still rather simple. The following
are a few laws for the parallel composition of two prefixed agents:*

OBSEQv_PAR_OUT_IN_SYNC:
. F VeV
ecV D
(VDfpFE f.
Is_Agentv V (Outpe E) A Is_.AgentvV (Inp f) D
Obs_Equiv.v V' Df
(Par (Outpe E) (Inp f))
(Sum
(Sum (Outpe (Par E (Inp f)))(Inp (Az. Par (Out p e E) (f))))
(Tau (Par E (1 €)))))

“Note that the premisses about the value-passing expressions being agents could also be stated
in a different way. For example, rather than saying ‘Is_Agentv V (Out p e E)’, it is enough to say
‘Is_AgentvV E’ as the following theorem holds: + VV pe E.Is_AgentvV (Outpe E) = Is_AgentvV E.
This theorem and a similar one for the operator In are used in the proof of these laws.

105

OBSCv_PAR INPUT_INPUT:
.EVYVDfpfo f.
Is_.Agentv V (Inp f) A Is_Agentv V (Inp' f') D
Obs_Congrv V Df '
(Par (Inp f) (Inp' f))
(Sum (Inp (Az. Par (f z) (Inp’ ')))(Inp’ (Ay. Par (Inp f) (f' v))))

OBSEQv_PAR_IN_OUT_NO_SYNC:

. EVpp.
~(p=p) D
(VV Df feE.

Is_Agentv V (Inp f) A Is_,AgentvV (Outp' e E) D
Obs_Equiv.v V Df

(Par (Inp f) (Outp e E))
(Sum (Inp (Az. Par (f z) (Outp’ e E))) (Outp’ e (Par (Inp f) E))))

The above theorems illustrate two important notions in the HOL formalisation of the
value-passing calculus. First, there is no need to check that free and bound value vari-
ables of parallel agents have empty intersection. Free occurrences of value variables
will not be captured because the HOL system automatically applies a-conversion and
renames variables, if necessary. Second, the law OBSEQv_PAR_OUT_IN_SYNC is an
implicational theorem, whose antecedent requires to check that the value expression
being exchanged is in the value domain. This derives from the definition of the trans-
lation and it is interesting to note that this occurs only in those theorems where there
is data communication, while it is not required when no communication takes place.
Substitution tactics for implicational theorems are defined using some functions
for conditional rewriting in HOL developed by Wong [125]. For example, the tactic
OEv_LHS_IMP_SUBST1_TAC substitutes a given implicational theorem in the left-hand
side of an observational goal, by reducing the goal to two subgoals, one about the
data and one about the process behaviour. The particular instance of the antecedent
of the theorem being applied is added as a new assumption to the assumption list of
the subgoal for the process behaviour. Tactics like OEv_LHS (RHS) _SUBST1_TAC can
be used to rewrite with non-implicational theorems, where LHS/RHS means that the
substitution is performed only on the left/right-hand side of the observational goal.

4.6 A Verification Example

This section shows how the proof environment derived for the value-passing calculus
can be used to verify the correctness of specifications. In particular, Hennessy’s
example processes given in [59] are considered and proved to be observation congruent.

The following equation defines the abstract specification Spec of a simple system:

Spec = in(z). if div(6, z) then out(6 * z). Spec else Spec

106

Such a system repeatedly inputs a number n through a port in and then checks if n
is a multiple of 6. If it is, the number 6 *n is output along the port out and then
the system goes back to input and check a new number. If 6 does not divide n, no
action is performed and the system simply goes back to its initial state. The same
behaviour can be obtained by composing in parallel two communicating agents P
and @, which check the divisibility by 6 of the input number in two steps. The agent
constants P and @ are defined by the following equations:

P = in(x). if even(z) then b(2 * z). a(2). P else P

Q = b(z). if div(3, z) then out(3 x 7). @(0). Q else 7(0). Q

Then, they are composed in parallel and the ports a and b are made private to P and
@ as follows:

Impl = (P|Q)\{a, b}

Thus, the agent P inputs a number n through the port in and then checks if n
is even. If not, P goes back to its initial state. If m is even, P communicates
the value expression 2xn to) through the private channel b and then waits for
an acknowledgement from () along the other private channel a. The agent @) tests
whether 3 divides the received value m = 2 xn. If it does, the number 3 x m is sent out
through the port ouf and then @ synchronises with P through the port a by sending
an acknowledgement in the form of the value constant 0. After such a communication
both P and @ can go back to their initial states. If m is not divisible by 3, only the
communication along the channel a takes place and then P and @ are ready to input
numbers again.’

In order to prove that the agent Impl is a correct implementation of the description
Spec, it will be shown that Spec and Impl are observation congruent, namely

Spec =, Impl (4.1)
By unique fixpoint induction this reduces to proving:
Impl =, in(z). if div(6, z) then out(6 x z). Impl else Impl (4.2)

As unique fixpoint induction over value-passing agents is not yet formalised in the
HOL system, the HOL proof of the observation congruence (4.1) will start from the
congruence (4.2).

4.6.1 The Proof in HOL

All the expressions in this example are agents. Let DfH be the defining equations func-
tion for the parameterless agent constants Spec, P, Q and Impl. The value domain

5The acknowledgement could be defined as an action with no values, but the above definitions are
as given in [59], except that rec-notation is here replaced by agent constants and defining equations.

107

under consideration is the universal set of natural numbers, that is Univ : (num)set in
HOL. There are no indexed summation agents in this example, so the type variable ~y
will represent any type of indexes. As done in the previous examples, value-passing
agents will be parsed and pretty-printed, so that the notation in Section 4.1 can be
adopted instead of its HOL representation. A few steps of the HOL proof, which
follows the guideline in [59], are informally presented below. The corresponding HOL
transcripts can be found in Appendix D.

Given the universal set of natural numbers as the value domain and the environ-
ment defined by DfH, the initial goal is the following observation congruence:

{Jab.~(a=10)}
* Obs_Congr.v Univ DfH Impl (in(z). if div(6, z) then out(6 x z). Impl else Impl)

A tactic similar to the lazy expansion strategy used for verifying pure specifications
(Section 2.4.1) can also be adopted when reasoning about value-passing agents. The
only difference is that, as the behaviour of value-passing specifications depends on
the values being exchanged, the proof will be influenced by the data component. This
means that some proof steps will perform, for example, case analysis on value and
boolean expressions, thus splitting the proof in various subproofs.

The first step of the proof expands the left-hand side of the behavioural goal with
the definitions of the agents Impl, P and @, up to observation congruence:

{3Jab.-(a=0)}
Obs_Congr_v Univ DfH
((in(z). if even(z) then b(2 x z). a(z). P else P |
b(z). if div(3, z) then out(3 * z).@(0). @ else a(0). Q)\{a, b})
(in(z). if div(6,) then out(6 *). Impl else Impl)

The left-hand side of the goal is an instance of the expansion theorem. This will be
applied in a few steps, the first of which is to rewrite the internal parallel composition
with the law OBSCv_PAR_INPUT.INPUT.

{Jab.~(a=0)}
#* Obs_Congr_v Univ DfH
((in(@).)
(if even(z) then b(2 x z).a(z). P else P |
b(z'). if div(3, 2") then out(3 * ='). a(0). Q else 2(0). Q) +
b(y).
(zz(w) if even(z) then b(2 * z). a(z). P else P |
if div(3,y) then out(3 % y).a(0). Q else 2(0). @))\{q, b}
(in(z). if div(6, z) then out(6 * z). Impl else Impl)

Note how the HOL system has renamed the bound value variables of the input pre-
fixed terms inside the parallel composition. By applying the laws for the restriction

108

operator and for deleting inactive summands, the new goal is as follows:

{3ab. -(a=0b)}
Obs_Congr_v Univ DfH
((in(z). _
((if even(z) then b(2 * z).a(z). P else P |
b(z"). if div(3,z") then out(3 x z'). a(0). Q else a(0). Q)\{a, b}
(in(z). if div(6, z) then out(6 * x). Impl else Impl)
So far, the steps of the proof have manipulated only the left-hand side of the ob-
servational goal with the aim of reducing it to a term provably equivalent to the
right-hand side. The current goal is an observation congruence between two input
prefixed agents with the same port. The w-data-rule OBSEQv_OBSCv_INPUT can be
applied backward, as the goal matches the conclusion of such a rule, and the whole
goal is transformed:

{3ab.—(a=0b)}
* Yo
v€Univ D
Obs_Equiv_v Univ DfH
((Az. (if even(z) then b(2 * z). a(z). P else P |
b(z'). if div(3, z') then out(3 x z').@(0). Q else a(0). @)\{a, b}) v)
((Az. if div(6, z) then out(6 * z). Impl else Impl) v)

The antecedent of the current goal is trivially true and then S-reduction is applied:

{Jab.~(a=0b)}
? Obs_Equiv_v Univ DfH
((if even(v) then b(2 * v). a(z). Pelse P |
b(z"). if div(3,2") then out(3 * z'). a(0). @ else @(0). Q@)\{qa, b})
(if div(6,v) then out(6 * v). Impl else Impl)
More transformations can be performed on the left-hand side of the goal by applying
the following distributivity laws for the parallel and restriction operators with respect
to the two-armed conditional:

OBSEQv_PAR_DISTR_COND_L:

. FVV Dfb.YE E'E"::ls.Agentv V.
Obs_Equiv.v V Df
(Par (Cond_Else b E E') E")
(Cond_Else b (Par E E") (Par E' E"))

OBSEQv_RESTR_DISTR_COND:

. F VYV DfbLVEE'::Is_Agentv V.
Obs_Equiv.v V Df
(Restr (Cond_Else b E E') L)
(Cond_Else b (Restr E' L) (Restr E' L))

109

Both sides of the goal are then rewritten with the theorem that gives the observation
semantics for the operator Cond_Else:

OBSEQv_COND_ELSE:

.+ YV Df b.VE E':: Is_Agentv V.
Obs_Equiv.v V' Df (Cond_Else b E E') (b= E | E')

thus getting the following goal (do not confuse the parallel operator ‘|’ with the
symbol ‘|’ in the HOL conditional):

{Jab.~(a=0)}
7 Obs_Equiv_v Univ DfH
(even(v) =
(b(2 *v).a(z). P |
b(z'). if div(3,2') then out(3 x 2').@
(P | b(').if div(3,z") then out(3 *
(div(6,v) = out(6 * v). Impl | Impl)

(0). @ else @(0). @)\{a, b} |

z').a(0). Q else @(0). Q)\{a, b})

The interaction between the data and behaviour components of the agent specifica-
tions now becomes interesting. Both sides of the observation equivalence depend on
some condition on the data. The way to proceed is to perform a case analysis on one
of the two boolean expressions. Since the HOL proof is carried out in an interactive
manner, one can take advantage of this interaction when dealing with data. The
idea is to derive new facts about data such that some case analysis and inconsistency
checking can be avoided. For example, the two boolean expressions in the current
goal are not completely unrelated. It is easy to show that if 6 divides v, then v is an
even number, while the implication in the opposite direction is not true. Hence, one
can perform a case analysis on the divisibility condition and then avoid a further case
split on the even condition, when the boolean expression div(6,v) is assumed to be
true. The case split on the divisibility condition generates two subgoals as follows:

{3ab.~(a=0b); div(6,v) } * ... (4.3)
{3ab.—(a=0); ~div(6,v) } * ... (4.4)

where the dots ‘...” stand for the observation equivalence shown in the previous step.
Let us prove subgoal (4.3). The condition even(v) is derived from its assumptions
by applying some theorems about divisibility and multiplication and using built-in
conversions for reducing numbers. The goal is then rewritten with the assumptions,
thus becoming as follows:

{Jab.~(a=0); div(6,v) ; even(v) }

? Obs_Equiv_v Univ DfH
((b(2xv).a(z). P | L
b(«). if div(3, 7') then out(3 x 2'). @(0). Q else a(0). @)\{a, b})
(out(6 * v). Impl)

110

The two prefixed agents in the left-hand side can synchronise through the common
port b and exchange the data 2 v, which will replace the value variable 2/. The
theorem OBSEQv_PAR_OUT_IN_SYNC is applied and two subgoals are produced, one
for the proof about the exchanged value expression, and the other for the proof about
the process behaviour under the assumption on the data just transmitted:

{3Jab.~(a=0); div(6,v) ; even(v) } (4.5)
* (2%v)€Univ

{3ab. —(a=0); div(6,v) ; even(v); (2*v)€Univ} (4.6)
?* Obs_Equiv_v Univ DfH
(((b(2 * v).
l()c(z(;) P | b(z'). if div(3,z") then out(3 x z'). @(0). Q else @(0). Q) +
(5(2'* v).a(z). P | if div(3, z) then out(3 * z). @(0). Q else a(0). Q)) +

(a(z). P |
_if div(3,2 * v) then out(3 * (2 x v)).@(0). Q else a(0). Q))\{a, b})
(out(6 * v). Impl)

Subgoal (4.5) is easily solved as the exchanged data belongs to the value domain Univ.
As regards the process subgoal (4.6), note that the application of the law for parallel
composition has also introduced the summands associated to the actions that the
parallel agents can do without synchronising. These two summands are removed by
applying the laws for the restriction operator (as the port b appears in the restriction
set) and the laws for deleting occurrences of the inactive agent. In the new goal only
the T-prefixed summand associated to the previous communication is left:

{3ab.=(a=0); div(6,v); even(v); (2 *v)€Univ}
Obs_Equiv_v Univ DfH

(7. ((a(2). P | if div(3,2 = v) then out(3 * (2 * v)).a(0). Q else a(0). Q) \{a, b}))
(out(6 * v). Impl)

The left-hand side contains a silent action which is not matched in the right-hand side.
This T-action can be removed using the law TAU_-WEAKv for observation equivalence:

{3ab.=(a=0); div(6,v); even(v); (2*wv)€Univ }
Obs_Equiv_v Univ DfH

((_agz) P | if div(3,2 * v) then out(3 * (2 x v)).a(0). Q else a(0). Q) \{a, b})
(out(6 * v). Impl)

The distributivity laws for the parallel and restriction operators are applied again,

111

thus leading to another case analysis situation:

{3ab.=(a=0); div(6,v) ; even(v); (2 *v) € Univ}
7 Obs_Equiv_v Univ DfH
(div(3,2 xv) =
(a(2). P | out(3* (2x*v)).a(0). Q)\{a,b} |
(al2). P | a(0).Q)\{a,b})
(out(6 * v). Impl)

Once more, the case split on the boolean expression can be avoided by deriving it
from the assumptions with some forward reasoning:

{3Jab.~(a=0); div(6,v) ; even(v); (2*v)€Univ; div(3,2xv) }
*

The newly-derived assumption is used for rewriting the goal. The law for the parallel
operator OBSEQv_PAR_IN_OUT_NO_SYNC and the laws for restriction and deletion
of inactive summands are applied again, thus getting the goal:

{3Jab.—(a=0); div(6,v) ; even(v); (2xv)€Univ; div(3,2xv) }
? Obs_Equiv_v Univ DfH

(0ut(3 % (2% v)). ((a(2). P | @(0). @)\{a,b}))
(out(6 * v). Impl)

The substitutivity property OBSEQv_SUBST_OUTPUT for the output operator can
be used in a backward manner and two subgoals result from its application, one for
the data (the two expressions in the output agents have to be proved equal) and the
other for the process behaviour:

{3ab.—(a=0); div(6,v) ; even(v); (2*v)€Univ; div(3,2xv) } (4.7)
* 3x(2%xv)=6xv
{3ab.=(a=0); div(6,v) ; even(v); (2+v)€Univ; div(3,2*v) } (4.8)
? Obs_Equiv_v Univ DfH ((a(2). P | @(0). @)\{a,b}) Impl
The data subgoal (4.7) is easily solved by applying associativity of multiplication and
using the built-in conversion for evaluating arithmetic expressions. As before, the

process subgoal (4.8) is rewritten using the laws for parallel and restriction operators
and for inactive summands, and the following goal is obtained:

{3ab.=(a=0); div(6,v) ; even(v); (2*v)€Univ; div(3,2%v); 0€Univ }
Obs_Equiv_v Univ DfH (7. (P | Q)\{a,b})) Impl

Note that the assumption about the value 0, exchanged during the communication
through the port a, has been added to the assumption list of the goal. This is simply

112

solved by rewriting with the definition of Impl and the law TAU_ WEAKv. This solves
subgoal (4.3), namely the first subgoal generated by the case split on the divisibility
condition. The proof of the second subgoal (4.4) is similar to the one for subgoal (4.3),
except that the case analysis on the condition even(v) will have to be performed, as
it cannot be derived from the data conditions in the assumptions of the subgoal. This
concludes the presentation of the proof of correctness for the communicating system
in the HOL-CCS environment.

4.6.2 Discussion

The above verification proof shows how delicate and complex reasoning about com-
municating systems can be, even in the case of very simple examples. Hennessy’s
idea [59] of dissociating the reasoning about the data as much as possible from the
reasoning about the processes, can be achieved in the HOL-CCS environment by split-
ting the verification process in two parts, one for the data and one for the process
behaviour, any time a proof step is performed which involves dealing with values.
This can be due to rewriting with an implicational theorem, whose antecedent is a
condition on the values, or to the backward application of an inference rule, whose
premisses contain conditions on the values. In these cases, HOL tactics generate
distinct subgoals for the data and process components, thus separating the reason-
ing about the data from the reasoning about the process behaviour. However, the
behaviour of an agent depends on the data and, when an implicational theorem is
applied, the subgoal for the process behaviour is enriched with a data assumption
representing this dependence. In [59, 61] proofs about data are separated from proofs
about the process behaviour and may be checked using different and possibly spe-
cialised theorem provers. In HOL, both kinds of reasoning can be carried out in the
same logical framework, namely the HOL system itself, provided that the system is
equipped with the means (i.e. theories) for reasoning about the given value domain,
such as the various theorems and conversions about numbers plus related operations
and predicates used in the above verification example.

The HOL formalisation of value-passing CCS shows that in HOL it is possible
to deal with w-data-rules and use them in a practical way, even when value-passing
agénts are defined over an infinite value domain. This is a benefit which derives
from using a theorem proving system. In the above proof, the inference rule OB-
SEQv_OBSCv.INPUT is applied backward but, whenever it is possible to prove a
theorem which instantiates its antecedent, an w-data-rule can also be used as a for-
ward rule. When verifying behavioural equivalences in the HOL-CCS environment,
several proof styles can be adopted and mixed together. It is possible to rewrite only
one side of a behavioural goal by applying the algebraic laws for the equivalence under
consideration, using tactics or conversions working on the left/right-hand side of the
behavioural goal. Substitution tactics rewrite a goal with a (possibly implicational)

113

theorem, which needs to be suitably instantiated, while one or more applications of
the laws for a particular operator can be automatically applied by means of conver-
sions. Moreover, inference rules like the substitutivity laws can be used backward to
- transform the whole goal into one (or more) new subgoal(s). Forward and backward
styles can be used together: the main proof is usually backward, but some forward
inference starting from the assumptions of the goal and/or other theorems may be
useful to derive new facts.

‘ Finally, the above proof is fairly interactive, while Hennessy’s proof system aims at
automatic proofs as much as possible. In [59] case analysis is automatically performed
on conditional agents, the various conditions are accumulated and then checked for
(in)consistency. Proofs about data are not expected to be run together with the main
proof about the process behaviour. They are instead seen as proof obligations that
can be checked by separate and possibly specialised theorem provers. For the moment,
verification in HOL is very much interactive. This interaction is exploited for some
decision making, e.g. how to perform case analysis and avoid some inconsistency
checking by deriving new facts about data, and possibly for detecting errors, thus
improving the understanding of the specifications under consideration. When dealing
with data, it is not possible in general to achieve fully automatic reasoning, but some
steps could be made more automatic and the proof less interactive.

4.7 Summary

This chapter has presented an embedding of value-passing CCS in HOL that translates
value-passing agent expressions into pure ones. This mechanisation allows one to
reason about both the value-passing calculus and its applications. The translation
from the value-passing version to the pure one and the proof of its correctness are
examples of the kind of meta-reasoning that can be carried out in HOL. However,
users of the proof environment who are only interested in applications, will work
directly on value-passing specifications without resorting to the translation, which is
only used at meta-level for developing behavioural theories for value-passing agents.

More work and experience in verifying communicating systems in the HOL-CCS
environment is needed, in particular when the value domain is more complex. This
also involves to derive the general formulation of the expansion law for value-passing
agents, as the current expansion laws (like the ones in Section 4.5) are of very re-
stricted forms. Moreover, modal logics have been extended to deal with value-passing
agents, as in [63]. It would be interesting to formalise a modal logic for the value-
passing calculus in HOL based on the current proof environment for CCS. In this
way, another verification method for the correctness of specifications would be pro-
vided, as done in the previous chapters for the pure CCS setting. Finally, unique
fixpoint induction still needs to be embedded in HOL. This recursion law for a value-

114

passing calculus has recently been formalised in the tool VPAM based on the theory
developed in [62].

Related work about verification systems for value-passing calculi can be found
in Section 1.1. In particular, besides the tool VPAM, a symbolic approach is also
implemented in LOLA (Section 1.1.1), where a parameterised expansion allows full
LOTOS specifications to be analysed by representing the labelled transition systems
in a symbolic way. This entails to keep variable definitions as such without expanding
them over the value domain and to identify behaviours which are equal except for
some value expressions. Before applying the parameterised expansion, some prepro-
cessing is performed on the LOTOS specifications using LOTOS behavioural equations
as rewriting rules. The data component of full LOTOS is also treated operationally
by applying equations on the data types as rewriting rules and using term rewriting
techniques.

115

Chapter 5

Conclusions and Future Work

This chapter gives a brief summary of the work presented in this dissertation and the
results achieved. Extensions and directions for further research are then outlined.

5.1 Summary of Thesis

Process calculi provide formal theories to aid the design and verification phases of
concurrent and communicating systems. The same notation can be used both for
defining descriptions of a system at different levels of abstraction and for reasoning
about them. In the work described in this thesis, the HOL theorem prover has been
used as a logical framework for building a practical and sound proof-assistant tool
for process algebra specifications. Several components of the theory of a particular
process calculus, namely Milner’s one presented in [97] and here referred to as CCS,
have been embedded in the HOL logic. This work started by considering a version
of the pure subset of the CCS calculus with rec-notation, inactive agent and binary
summation. Next, rec-notation has been replaced by agent constants and defining
equations and the more general indexed summation operator has been included in
the HOL formalisation, so that inactive agent and binary summation could be derived
as special cases of indexed summation. In this way, Milner’s presentation of the pure
calculus as given in [97] was embedded in HOL. Finally, the value-passing version
has been formalised based on the mechanisation of pure CCS and the definition of a
translation between the two calculi.

No contribution to the formal theory of CCS or similar calculi is given in this
dissertation, whose subject is instead an investigation on how this theory can be
effectively used for reasoning about concurrent and communicating systems and about
the process calculus itself. In fact, the idea is to provide a logical environment in which
verification of properties of communicating systems and meta-theoretic reasoning can
be carried out. As recalled in Chapter 1, a wide collection of verification methods
and tools have been developed in the past few years. Many of such tools are much
more efficient and easy to use than the one proposed in this dissertation. They are

117

very good and convenient from the application and user’s point of view, but they
offer no or few facilities for performing meta-reasoning on the process calculi. The
aim of the work presented in this thesis was to provide both facilities based on the
HOL proof assistant.

The resulting proof environment contains a collection of conversions, tactics and
strategies, which allows one to verify properties of process algebra specifications using
powerful techniques, like mathematical induction, within various logics, like modal
logic. It is possible to reason about a variety of specifications, such as pure ex-
pressions, value-passing agents, parameterised or indexed processes, finite state and
infinite state systems. With respect to tools based on finite state machines, it is
worth noting that the correctness of infinite state systems can be formally proved.
These systems can be pure specifications with an evolving structure, such as the
infinite counter in Section 3.2, or value-passing specifications defined over an infi-
nite data domain. In these cases, general and powerful proof techniques are often
required, such as induction, contradiction, case analysis, equational reasoning, etc.,
and incremental or interactive proofs need to be carried out. It is also convenient to
define proofs parametrically so that they can be used to deal with a class of processes
and/or logical properties. No “real” system has been verified in the HOL-CCS proof
environment. Properties of simple example systems taken from the literature about
process algebra verification have been formally proved in HOL, but their proofs show
how many details need to be taken into account, even when dealing with moderate
size examples.

Different approaches to verification can be combined in a theorem proving frame-
work. The behaviour of a system can be explored by running the operational se-
mantics of the calculus. Behavioral equivalences between different specifications can
be proved by finding a suitable relation between them (e.g. a bisimulation) or the
algebraic theory can be applied by means of equational reasoning to transform the
symbolic representation of the specifications. Logical properties that give a partial
specification of a system can be checked using the operational semantics. The basic
tools for performing verification based on both operational and algebraic/axiomatic
methods are provided in the HOL formalisation of the CCS calculus.

The theorem proving approach taken in this dissertation also provides facilities for
coping with some of the limitations of the automata based approaches. In fact, rea-
soning about infinite state specifications can be carried out using the mathematical
techniques typically available in a theorem proving framework. Moreover, manip-
ulating the symbolic representation of process specifications gives insight into the
specifications themselves and the properties one is trying to verify.

The mechanisation exploits the definition mechanisms and the rich set of proof
tactics available in the HOL system and the facility for defining new tactics from the
built-in ones. It also takes advantage of the subgoal package for backward proofs,
thus resulting in quite natural and simple proofs. Forward and backward styles are

118

used together: the main proof is usually backward, but in several occasions some
forward inference is performed starting from the assumptions of the goal and/or
other theorems to derive new useful facts. This is not only typical of the reasoning
about the data component in value-passing specifications, as it has been shown in
the verification example in Section 4.6. It is used when checking modal properties in
Sections 2.4.2 and 3.2.2 and, actually, this style has also been adopted in the proofs
of many of the properties and laws for CCS agents.

Examples of proof techniques for deriving properties about the calculus are struc-
tural induction, case analysis and rule induction. They are fundamental tools at the
meta-reasoning level for proving theoretical results about the various process calculi,
such as properties of agent expressions, transition relations and the correctness of the
translation between pure and value-passing CCS. As shown by the HOL formalisa-
tion of different versions of the CCS calculus, these proof tools can help investigate
variants of a process calculus and develop the formal theory for new calculi.

Embedding the formal theory of a specification language in a theorem prover is
very time-consuming, specially when following a purely definitional approach to its
formalisation. Before proving many interesting theorems, a lot of infrastructure must
be encoded in the logic and every result formally checked. More work than is orig-
inally expected can be involved when mechanising definitions or proving properties,
because axioms written by hand are often packed with notation which itself needs to
be formalised. HOL primitive and derived definition mechanisms, the built-in theo-
ries, all theorems and tactics provided by the induction definition package greatly aid
the formalisation task, but still it is a lot of (often tedious) work. However, it is worth
noting that the resulting HOL formalisation for the various notions is very similar to
their conventional presentation, thus demonstrating the suitability of HOL for sup-
porting other notations. For example, the formalisation of the algebraic laws for the
behavioural equivalences illustrates their similarity to the mathematical presentation.

5.2 Development and Some Measures of the Work

The research described in this thesis started with a non-definitional formalisation of
pure CCS in HOL. The idea was to understand whether the HOL system could provide
a suitable infrastructure for developing a proof environment for process algebras. The
verification examples considered in [23, 100] showed the suitability of the HOL proof
assistant for this purpose. Thus, the task of formalising the theory of pure CCS in
a purely definitional way was then undertaken. This resulted in the work described
in [101, 102] and in a preliminary version of Chapter 2.

An unsatisfactory treatment of inductively defined agents in [100, 101] (i.e. the
use of the function new_axiom [51]) was recovered by introducing (parameterised)
agent constants and defining equations in the HOL mechanisation of pure CCS. The

119

HOL proofs of correctness of the infinite counter were revised -based on the new
formalisation, thus yielding a preliminary draft of the work illustrated in Sections 3.1
and 3.2.

The extension to value-passing CCS based on the translation into the HOL em-
bedding of pure CCS took a considerable time, specially the formalisation of the
indexed summation operator and the input prefix operator. A preliminary version of
Sections 3.3, 4.1 and 4.2 was presented in [103]. The research continued by deriving
the behavioural theories for value-passing CCS and by revisiting the expansion law
for pure CCS, thus completing the study presented in Chapters 3 and 4.

An important feature missing in all this work was the distinction between agents
and agent expressions, in the sense that all CCS terms were assumed to be agents. At
that time the interest was mainly in reasoning about CCS applications, and agents
were always considered in verification examples. The need for the distinction be-
tween open and closed agent expressions arose later, when proving meta-theorems
about CCS recursive agents. This led to a final revision of the theories and examples
developed in the dissertation with the introduction of the predicate Is_Agent and the
use of restricted quantification.

In HOLSS only a subset of basic conversions, rules and functions is available in the
restricted quantified version [125]. The restricted counterparts of more rules, func-
tions and definition mechanisms were necessary when formalising the CCS theory in
HOL. For this purpose a few rules and tactics have been defined for dealing with re-
- stricted quantified variables directly. However, when doing proofs involving restricted
quantification, the conversions for transforming a term with restricted quantification
into one without it, have often been used. As far as the definition mechanisms are
concerned, the approach was mostly to define the new notion by means of predicates
and the usual definition mechanisms, and then derive the desired formulation with
restricted quantification. A wider collection of tools for dealing with restricted quan-
tification, and in general conditional rewriting, has been developed in hol90 [119].

This section ends with some information about the “size” of various theories of
the HOL formalisation of the CCS calculus. The measure is given through (i) the
number of lines of ML code, (ii) the number of HOL definitions (e.g. type, constant
and function definitions) and theorems which have been proved, and (iii) the number
of primitive inferences generated when building the theories.

The ML code for the mechanisation of the syntax of pure CCS (Section 2.2.1) is
about 500 lines (including that of auxiliary functions and conversions) and contains
19 definitions and 44 theorems (7 of which are auxiliary theorems on sets, that were
not provided in the theory sets). The theories for the pure syntax generate 19094
primitive inferences. The ML source of the theories for the operational semantics
(Section 2.2.2) is about 500 lines and includes 1 definition, namely that of the tran-
sition relation, and 44 theorems. The primitive inferences generated when building
these theories are 17144.

120

The ML code for the strong semantics is 756 lines. Most of this code is for the
proofs of substitutivity of the CCS operators: 4 definitions are introduced in HOL
and 22 theorems are proved with 11768 primitive inferences. The formalisation of the
notation for the expansion law and its properties (Section 2.2.4) occupies 372 lines
with 6 definitions and 18 theorems. The proof of the strong version of the expansion
law is 186 lines and generates 3609 primitive inferences. The same law for observa-
tion congruence is derived with a proof of just 44 lines of ML code and 556 primitive
inferences. In the proof of the reader-write problem, one application of the tactic
OC_EXP_THM_TAC for the expansion law generates between 5000 and 7800 primitive
inferences. When moving to the polymorphic CCS type with agent constants and
indexed summations, the strong version of the law COUNTABLE_PAR.LAW (Sec-
tion 3.4) is 252 lines of ML code and is proved by means of 3521 primitive inferences.

As far as the HOL theories of value-passing CCS are concerned, the ML source
for the syntax is about 600 lines with 14 definitions and 27 theorems. The primitive
inferences produced are 134201. The ML code for the translations of value-passing
labels, actions and agent expressions is about 200 lines, consists of 5 definitions and
12 theorems, and generates 6023 primitive inferences.

5.3 Future Work

The HOL-CCS proof environment can be extended, combined with other tools, made
more practical, efficient and user-friendly. The work presented in this thesis has laid
the fundamentals for reasoning about process specifications in a formal way using the
theorem proving technology. Future research will consider the following issues: more
automation in verification proofs, combination of the HOL-CCS logical framework
with an automata based tool, extensions to the process calculi, semantics and logics
which have been addressed in this dissertation.

So far, verification proofs in the HOL-CCS environment are pretty much inter-
active, but several steps could be automated. For example, the application of the
algebraic laws, typically the expansion theorem, could be scaled up so that several
expansions are performed in one step instead of a single expansion at a time. The ba-
sic steps implemented by the current versions of the various tactics can be combined
together and more powerful tactics can be obtained. This has already been done
up to a certain extent and the tactic for the expansion theorem is itself an example
of a “bigger” tactic which puts together the tactics for relabelling, restriction and
parallel composition. Likewise, conversions and tactics like the one for the restriction
operator are able to apply several laws for restriction in one step (Section 2.3.1). The
same tactic could be modified in such a way that all possible rewritings with the laws
for that operator are applied, so that the resulting term is in a reduced form with
respect to those laws. During the verification phase, understanding of the manipu-

121

lation being applied, the rewriting steps, their outcome, etc. is a major factor, thus
tactics for basic steps or a simple combination of basic steps have been implemented.
Nevertheless, they can be made more automatic and several steps can be performed
by only one tactic, possibly with the help of other tools, such as a new simplifier
using ideas from other systems, e.g. Isabelle [108, 119].

The HOL formalisation of process calculi can be combined with a tool based on a
different approach to verification, such as a finite state machine tool (see Section 1.1.1
for related work about combining model checking and theorem proving). A theorem
prover allows properties to be verified in a rigorous and formal way, while automata
based tools are very efficient and can deal with very large specifications. The verifica-
tion process could be run on a finite state machine tool, whenever possible, and then
the theorem prover could be used to check the result formally or to help detecting
errors in specifications by means of interactive proofs. In particular, a combination
of the theorem prover Isabelle and the SMV system is currently being investigated
by Paulson [109] with the more general aim of integrating “oracles”, namely exter-
nal and independent reasoning tools, to help verifying temporal properties of system
specifications.

Extensions to the process calculi, the behavioural semantics and the logics consid-
ered in the thesis can be easily embedded in the HOL system. The theorem proving
methodology has indeed the advantage of being flexible and open-ended, in the sense
that the formal theory of different process calculi can be represented in the HOL
logic, various behavioural semantics and logics for a given process calculus can be
formalised and proof tools can be soundly derived.

The theory of process calculi is still developing in many directions, such as process
mobility (m-calculus), time, probabilities, non-interleaving semantics. In this thesis
the well-studied core of the theory for process algebra, made of interleaving semantics,
pure calculi, modal logics, has been embedded in HOL and then extended to a value-
passing calculus. Probabilistic and real-time process algebras could be mechanised in
HOL. Behavioural semantics could be enriched with the formalisation of preorder and
refinement relations, besides equivalences. An interesting extension to the work done
so far would be investigating the formalisation of algebraic specification languages
in which data are given through abstract data types, e.g. LOTOS. As the process
component of the LOTOS formalism is close to the CCS algebra, it might be possible
to derive proof techniques for LOTOS specifications from the HOL-CCS environment
based on the translation from Basic LOTOS to CCS given in [13]. This work would
parallel and could be compared with the research being carried out using the PSF
tool and the theorem prover Coq for the specification language pCRL (Section 1.1.2).

The modal logic considered in this dissertation can be extended to the value-
passing calculus by adapting the work in [63]. More expressive temporal logic [118, 16]
can be represented in higher order logic and proof tools, e.g. the tableau system
(extended to deal with infinite state processes in [17]), can be soundly mechanised.

122

The tableau system decision procedure has been implemented in some verification
tools, e.g. the Concurrency Workbench. Such a technique can also be naturally
described as a goal directed proof system and, as such, is amenable to be formalised
in a theorem proving system which provides goal directed proofs. This demonstrates
further evidence that the formal theory for a process language can be embedded
in a theorem proving system to provide an effective approach to the mechanical
verification of concurrent systems.

123

Appendix A

The HOL System

This appendix contains a brief introduction to the HOL proof assistant. The aim
is to present those notions of higher order logic, definition mechanisms and theorem
proving infrastructure, which have been used in the formalisation of process calculi in
HOL. A detailed description of the HOL system can be found in [51]. The version of
the system used in this dissertation is the original one, referred to as HOL88, where
the so-called ‘Classic ML’ (an early version of ML derived from LCF [32]) is adopted
as the -meta-language.

A.1 The Meta-Language .ML

ML is an interactive programming language. At top level one can evaluate expressions
and perform declarations. The result of evaluating an expression is its value and type
being printed; making a declaration results in a value being bound to a name.

In what follows, HOL sessions will be displayed through boxes in sequence, each
box representing some interaction steps with the HOL system via the ML language.
The ML prompt is #, thus lines beginning with # show text typed by the user, which
is always terminated by a double semicolon ‘;;’. The other lines in the boxes show
the system’s response.

#‘hello!‘;;
‘hello!‘ : string

The ML expression ‘hello! ¢ is a string, i.e. a sequence of characters enclosed between
string quotes. Its type is string.

A declaration let z = e evaluates the expression e and binds the resulting value
to the name z. The value of the last expression evaluated is always recorded in the
variable it (note that declarations do not affect the value of it):

125

#let x = 3 * 4;;
x =12 : int

#it;;
‘hello!‘ : string
The general form of declaration let 21 =e; and --- and z, = e, results in binding the

value of each expression e; to the name z;. A declaration d can be made local to the
evaluation of an expression e by evaluating the expression d in e.

#let x =3 and y = 4 in x * y;;

12 : int
#it;;
12 : int

A declaration let f z =e defines a function f with formal parameter z and body e.

#let £ x = x * Xx;;

f =-: (int -> int)
#f 4;;

16 : int

Functions are printed as a dash followed by their type, because a function as such is
not printable. The application of a function f to an argument z can be written as
f z, even though the notation f(x) is also allowed. Functions can also be curried and
partially applied.

#let £ x y = x *x y;;

f =-: (int -> int -> int)
#let g = £ 3;;

g = - : (int -> int)

#g 45,

12 : int

Functions can be written as A-abstractions. The expression \z.e evaluates to a
function with formal parameter z and body e. The declaration let f = \z.e is thus
equivalent to let fz = e.

126

#\x. x * x;;
- : (int -> int)

#it 4;;
16 : int

The ML type checker is able to infer the type of expressions if there is enough infor-
mation.

#[3; 4]1;;
[3; 4] : int list

#tl it;;
[4] : int list

The ML expression [3; 4] is a list of integers and its type is int 1list, where list
is a unary type constructor. The function t1 takes a non-empty list and returns the
tail of that list.

ML types can be polymorphic, i.e. they can contain type variables (denoted by
*, **, etc. in HOL notation). The type list is indeed polymorphic and so are
functions operating on lists, e.g. t1: * list -> * list. In the above example, the
type variable * is instantiated to type int, thus getting the particular type int list.

Besides 1ist, type constructors include # for pairs (product type) and + for
the disjoint union of types. These are both binary type constructors, * # *% and
* + *%, and are provided with primitive functions for performing typical opera-
tions on such types. Among others are the ML functions fst: (x # *x) -> x and
snd: (* # *x) —-> *x for extracting the first and second components of a pair, and
inl: % -> (x + #x) and outl: (* + **) -> * for injecting and projecting the
left summand of a disjoint union.

A.2 Higher Order Logic

The formulation of higher order logic in HOL is based on an extension of Church’s
simple theory of types [26]. The standard predicate calculus is extended in the HOL
logic by allowing variables to range over functions and predicates, and arguments
of functions can themselves be functions (hence higher order). Moreover, functions
can be written as A-abstractions and terms of the HOL logic can be polymorphic
(with type variables ranged over by «, 8,7,... represented in HOL by *, **, ... as
mentioned above).

Terms of the HOL logic (object-language terms) are represented in ML by an
abstract type called term and they are distinguished from ML expressions by enclosing
them in double quotes. Terms can be manipulated through various built-in ML

127

functions. For example, given the expression x \/ y, which in ML evaluates to a term
representing the disjunction xVy, the function dest_disj: term -> (term # term)
splits the disjunction into the pair of its two disjuncts:

#"X \/ yn;;
"x \/ y" : term

#dest_disj it;;
("x", "y") : (term # term)

The types of terms of the HOL logic are similar to those of ML expressions. The
ML type called type represents the types of HOL terms, which are expressions of the
form ": ... ". The built-in function type_of returns the logical type of a term.

#(3,4);;
(3, 4) : (int # int)

#u(3’4)n;;
"3,4" : term

#type_of 1it;;
":num # num" : type

There are four kinds of terms: variables, constants, function applications and A-
abstractions. A A-term \z.t denotes a function v — t[v/z], where t[v/z] denotes the
result of substituting v for z in the term <.

#'\x. x * x";;
"\x. x * x" : term

#type_of it;;
":num -> num" : type

The type checking algorithm tries to infer the type of HOL terms using the types
of constants and operators that occur in the same quotation. Above, the type of
the multiplication operator ":num -> (num -> num)" is used to determine the type
of the function denoted by the A-term. If there is not enough type information, a
type checking error results and the user has-to provide some more type information
explicitly.

In HOL conditional expressions are represented by "b => ¢, | t»" (pretty-printed
as b= 1, | to) with the obvious meaning ‘if b then ¢, else 5

128

#u (X
“((X

(y+ 1)) =>x1|y";;
y+ 1) =>x | y" : term

#type_of it;;
":num" : type

The ML language is used to manipulate terms of the HOL logic. In particular,
ML is used to prove that certain terms are theorems. Theorems of the logic are also
represented by abstract data types, and the user can work on them only through
ML functions. The ML type for theorems is thm. A theorem is represented by a
finite set of terms called assumptions and a term called conclusion. Given a set of
assumptions I and a conclusion ¢, I' - ¢ (or simply F ¢, if I' is empty) denotes the
corresponding theorem. In order to introduce theorems into the logic, they must
either be postulated as axioms or derived from existing theorems and definitions by
formal proof.

A theory is a collection of logical types, type operators, constants, definitions,
axioms and theorems. Theories enable a hierarchical organisation of facts, i.e. if facts
from other theories need to be used, the relevant theories must be declared as parents.
There are several built-in theories in HOL. Examples are the theories bool, sum, one,
prim_rec and sets.

The theory bool contains the definitions of various constants and type operators,
such as the usual logical constants of the predicate calculus T, F, =, /\, \/, ==>, =,
t, 7 and ?! to represent true T, false F, negation —, conjunction A, disjunction V,
implication D, equality =, universal quantification V, existential quantification 3 and
unique existential quantification 3!, respectively. Hilbert’s choice operator ¢ (written
@ in HOL notation) is another primitive constant defined in the theory bool. If P
has type a — bool, then the term ez. P x denotes some element of the set whose
characteristic function is P. If the set is empty, then ex. P x denotes an arbitrary
element of the set denoted by a. This implies that all logical types must denote
non-empty sets, since for any type «, the term ez : . T represents an element of the
set denoted by a. The product type o x § for ordered pairs is also defined in the
theory bool together with its constants, such as Fst:a x f—a and Snd:a x =
for selecting the first and second components of pairs, and the theorems describing
such operations.

The theory bool also includes the definitions of constants for dealing with re-
stricted quantification. For example, the semantics for restricted universal and ex-
istential quantification is given by the constants Res_Forall and Res_Exists defined as
follows:

VPt ResForall Pt = (Vz:a. Pz D tx)

VP t.ResExists Pt = (dz:a. Pz A tx)

Given a quantifier Q, a variable z : & and any predicate P : o — bool, the HOL parser

129

and pretty-printer allow one to write terms of the form Qz:: P. ¢[z] to denote the
(restricted) quantification of x over those values of type o which satisfy P. The
notation ‘::’ can be used with abstraction and any binder, including user defined
ones. A few theorems about the properties of restricted universal and existential
quantifiers are provided in the theory res_quan developed by Wong [125].

The built-in theory sum contains the definition of the type operator for the (binary)
disjoint union o+ (8 of types together with the associated constants, such as the ones
for injecting and projecting left and right summands

Inl:a = a4 B Outl:a+8—a
Inr:—=a+p Outr:a+8—0

and those for testing membership of the left and right summands

Isl: ¢ + B — bool
Isr:a+ B — bool

Several theorems about the properties of these constants are built-in in the theory
sum. Some of them are used in the proofs presented in this thesis, such as

OUTL: FVz.Outl(Inlz) =2
ISL: F (Vz.Isl(Inlz)) A (Vy. = lsl (Inry))

The theory one defines the type one which contains exactly one element. This
element is denoted by the constant one and is defined as ez:one. T. Among the
theorems which characterise the type one is the theorem F Vv : one. v = one asserting
that there is only one value of type one.

Constants, definitions and theorems concerning primitive recursive functions are
given in the theory prim_rec. The following is the basic theorem num_Axiom

FVef. A fn. (fn0=¢e) A (Vn.fa(n+1)=f(fan)n)

stating the validity of primitive recursive definitions on the natural numbers. This
means that for any e and f there exists a unique total function fn which satisfies the
primitive recursive definition whose form is determined by e and f.

The theory sets contains constants, definitions and theorems about finite and
infinite sets. The basis is the polymorphic type (a)set which is just an object-
language abbreviation for the type a — bool. In fact, a set is represented by its
characteristic function and the elements of a set s: («)set are just those values of
type « for which the corresponding predicate is true. Generalised set specifications
are also supported, that is for any expression F|z] and predicate P[z], {E[z] : Pz]}
(represented in HOL by {E[x] | P[x1}) is the set of all values E[z] for which P[z]
holds. The theory sets provides a wide collection of theorems about the various
operations on sets and their properties.

130

Rules of definition are included in the HOL logic for extending theories in a purely
definitional way. This is done by defining new constants and types in terms of prop-
erties of existing ones. This feature extends Church’s formulation and plays a funda-
mental role in the formalisation described in this dissertation. The rules of definition
are briefly presented in the following sections.

A.3 Primitive Rules of Definition

The primitive basis of the HOL logic includes three rules of definition for extending
the logic in a sound way.

The rule of constant definition allows one to introduce a new constant c as an
object-language abbreviation for a closed (no free variables) term ¢. This is achieved
by defining an equational axiom - ¢ = . Among the various properties that the
constant ¢ must satisfy is the condition that ¢ may not occur in the term ¢. Thus,
recursive definitions cannot be introduced into the logic using the rule of constant
definition. The functions new_definition and new_infix_definition are some of
the ML functions implementing the rule of constant definition. Constants whose
arguments can be restricted quantified variables are defined through the ML function
new_resq_definition.

Given a theorem of the form + 3 ... 2,. Pz, ..., z,], the rule of constant speci-
fication (implemented by the ML function new_specification) allows one to give a
name to existing values 1, ..., 2z, for which P[z;, ..., z,] holds. This is obtained by
introducing new constants cy, ..., ¢, and deriving the theorem F Pjcy, ..., ¢,

The rule of type definition (provided by the ML function new_type_definition)
allows one to define a new type constant or type operator. Given a type a, let
P: o — bool be the characteristic function of some (non-empty) subset of the set
denoted by a. From the theorem - 3z : . P x, the rule of type definition derives the
existence of a bijection from the elements of a new type 3 to the subset of elements
of type « that satisfy P, as asserted by the theorem

F3f:f—=oa (Voy. (fz=fy) D (x=y))A(Vz. Pr = (Fy. z = fy))

This theorem introduces the new type to name the non-empty subset of elements
of type a that satisfy the predicate P. Functions to denote the above bijection and
its inverse can be defined. A representation function REPs: f — o maps a value of

‘the new type [into the value of type « which represents it. The abstraction function

ABSg: o — 8 maps a representation of type o to its abstract value of type 3. ABSg
is the left inverse of REPg and, for those elements of type « that satisfy P, REPg is
the left inverse of ABSg:

- Va. ABSs (REP; @) = a
FVr. Pr = (REPg (ABSg7) =)

131

These mappings allow one to define operations on the values of the new type 8 in
terms of operations on values of the representing type a.

A.4 Derived Rules of Definition

The primitive rules of definition are of very restricted forms and this means that all
other kinds of definitions must be derived from the primitive ones by formal proof.
This can sometimes lead to rather complex formalisations. However, several derived
rules of definition have been mechanised in HOL and are supported in a fully auto-
matic way. These rules include recursive concrete type definitions, primitive recursive
function definitions over these types and certain forms of inductive definition, all de-
veloped by Melham [91, 92].

The derived rule of recursive type definition (define_type in ML) allows one to
define arbitrary concrete recursive types in terms of their constructors [91]. The input
to this definition mechanism is a specification of the syntax of the operators written
in terms of existing types and recursive calls to the type being defined:

(a1 on)rty w= Cytyr...ty™ | ... | Cutyl ... tyhm
where Cy, ..., Cy, (m > 1) are distinct constructors, each taking k; arguments (k; > 0),

and each ty] is either the recursive type rty or an existing logical type (not contain-
ing rty). If one or more of the tyg is rty, then the type specification defines a
recursive type. Non-recursive types defined through this type definition mechanism
are just special cases. If the type being defined is recursive, at least one constructor
must be non-recursive, i.e. the type of all its arguments may not be rty. The type
(a1, ...,ay)rty is polymorphic in the type variables oy, ..., a, if n>1; if n=0 then
Tty 1s a type constant.

The above type specification denotes the set of all expressions which can be finitely
generated using the constructors Cq, ..., C,,, which are distinct and one-to-one. Given
such a type specification, the rule of recursive type definition performs all the formal
inference necessary to define the type in higher order logic and derives an abstract
characterisation of the type (ai,...,a,)rty in a fully automatic way. This char-
acterisation is a theorem of higher order logic asserting that there exists a unique
function which satisfies the primitive recursion defined by the type specification for
(o4, ..., a,)rty. The recursive type definition package also provides functions which
automatically prove that the type constructors are distinct and one-to-one and derive
theorems for structural induction and case analysis.

The derived mechanism of primitive recursive function definition (provided by the
ML function new_recursive_definition) automates existence proofs for primitive
recursive functions defined over concrete recursive types. The system proves the
existence of a total function satisfying the recursive defining equations, and then a
constant specification introduces a new constant to denote such a total function.

132

Shepherd [115] has extended the recursive type definition package in HOL88 to
deal with specifications of the form '

(oo)ty=...|C...(a—=ty)...|...

where function types occur as the type of some arguments of some constructors,
provided that the type ty does not occur in « [55]. The idea is to represent the
recursive type by a pair of types, where the elements of type o — ty are encoded as a
set of pairs which define the function. The inductive definition package (see below)
is then used to introduce a relation which plays the role of the uniquely defined
function in a recursive type definition. Hence, this relation is shown to induce such a
unique function (i.e. each element has exactly one target in the relation). Functions
for proving that the type constructors are distinct and one-to-one, plus theorems for
structural induction and case analysis, are provided similarly to the ones in the built-
in type definition package. The mechanism of primitive recursive function definition
is extended as well.

The derived rule for inductive definitions (new_inductive_definition in ML)
allows one to define relations which are inductively defined by a set of rules [92]. Let
R be an n-place relation defined through a set of rules of the form

R(#,..., 1)) ... R(t,...,t)
Ci...Cp
R(t1,...,tn)
where the terms R(ti,...,#) for 1<i<k are the premisses of the rule, ¢; ...c, are

the side conditions (not involving the relation R being defined) and R(%y, .. .,t,) is the
conclusion of the rule. The relation R is closed under the above rule if the conclusion
is true whenever the premisses and the side conditions are true. The relation R is
inductively defined by a set of such rules if R is the least relation closed under all the
rules.

In the inductive definition package, any such relation is simply defined as the
intersection of all relations closed under a given set of rules. The system automatically
proves that the resulting relation is itself closed under the set of rules and is the least
such relation. The theorems resulting from this definition mechanism constitute
a complete characterisation of the properties of the newly-defined relation. They
include a list of theorems (one for each rule) which assert that the relation satisfies
those rules, and a theorem which states a principle of rule induction for the relation.
Given the above relation R, rule induction allows one to prove that every element
in R has a property P, i.e. R(x1,...,,) implies P(z,...,2,), by simply proving
that the relation {(z1,...,2,) | P(z1,...,2,)} is closed under the rules that define
R. This is due to the fact that R is the least relation closed under the same rules.
The theorem of rule induction allows proofs by induction to be performed over the
structure of the derivations defined by the set of rules. Furthermore, the inductive

133

definition package provides a theorem for performing exhaustive case analysis over
the inductively defined relation.

The rule for inductive definitions also enables one to formalise classes of induc-
tively defined relations. Let R be an n-place curried function to be defined and
V1,...,Un be n distinct variables. Let vj,,...,v;,(1 <jpr<n,1<k<s) be those vari-
ables that denote the parameters of the class of inductively defined relations. R can
be seen as a function which maps the parameters v;,,...,v;, to inductively defined
relations, one for each value of vj,,...,v;,, thus representing a class of inductively
defined relations. :

A.5 Proofs in HOL

Theories are extended in a sound way by deriving new theorems by formal proof. To
prove a theorem in a theory, one must apply a sequence of proof steps to either axioms
or previously proved theorems using ML programs called inference rules (forward
proof). The core of the deductive system in HOL is made up of eight primitive
inference rules, from which all other rules are derived. Among the primitive inference
rules is f-conversion, implemented by the ML function BETA_CONV, which reduces a
B-redex (Az.u)wv to the term u[v/z] by returning the theorem - (Az.u)v = ulv/z]
(by renaming variables where necessary to avoid free variable capture). |

#BETA_CONV "(\x y. x + y)y";;
- \xy. x+ypy=QNy’. y+7y)

In fact, conversions are ML functions that map a term ¢ to a theorem + ¢ = u
expressing the equality of ¢ with some other term u [106]. Inference rules typically
transform theorems into other theorems, e.g. the rule BETA_RULE which, given a
theorem I" F ¢, returns the theorem resulting from reducing all the 3-redexes, at any
depth, in the conclusion .

#let thm = ASSUME "f = ((\x y. x +y) y¥)";;
thm=f = (\xy. x+py I-f=Nxy. x+y)y

#BETA_RULE thm; ;
f=0Nxy.x+pyl-£f=Qy’. y+7y)

BETA_RULE is defined in terms of BETA_CONV using the ML functions DEPTH_CONV, that
applies a conversion repeatedly to all subterms in a bottom-up order, and CONV_RULE,
which transforms a conversion into an inference rule.

Among the derived inference rules is the basic rewriting rule REWNRITE_RULE which,
given a list of equational theorems (namely theorems whose conclusion is of the form
t = u) and a theorem thm, replaces any subterm in thm that matches the left-hand

134

side of any of the theorems in the list by the corresponding instance of the right-hand
side.

#MULT_O; ;
- Im. m*0=20

#MULT_ASSOC; ;
|- 'mnp. m* (n*xp)=(m*xn) *xp

#REWRITE_RULE [MULT_O] (SPECL ["1"; "O"; "O"] MULT_ASSOC);;
- T

Note how the theorem MULT_ASSOC for associativity of multiplication has been ‘spe-
cialised’ using the inference rule SPECL. Given a list of terms and a theorem, SPECL
instantiates (some of) the universally quantified variables in the conclusion of the the-
orem (by renaming variables where necessary to avoid free variable capture). When
specialising only one variable, the rule SPEC can also be used. Restricted universally
quantified variables can be instantiated using the inference rules RESQ_SPECL and
RESQ_SPEC. Given a term list [uy;...;u,| and a theorem I - Vz; 1 Pi. ...Vx,:: P,.t,
the rule RESQ_SPECL returns the theorem I', P uy,..., Py u, b t[ur/z1]. .. [us/zs).
Some built-in basic tautologies are also implicitly used by REWRITE_RULE. The
search for subterms to be replaced is performed top-down and recursively, until no
more replacements can be done. This may lead to unwanted and/or unnecessary
reductions or even non-termination of the rewriting process. Other versions of the
rewriting rule, such as ONCE_REWRITE_RULE that rewrites subterms once, and substi-
tution rules, such as SUBST that replaces selected subterms, may be used instead.

#ONCE_REWRITE_RULE [MULT_O] (SPECL ["1i"; "O"; "0"] MULT_ASSOC);;
-1 *x0=0

Besides forward proofs, the HOL system supports another way of carrying out
a proof, called goal directed proof or backward proof. The idea is to do the proof
starting from the desired result (goal) and manipulating it until it is reduced to a
subgoal which is obviously true. ML functions that reduce goals to subgoals are called
tactics and were developed by Milner. The HOL system provides a subgoal package
due to Paulson [107], which implements a simple framework for interactive proofs. A
goal given by an assumption list " and a term ¢, written ' # ¢ (if I" is empty, the goal
is written ? t), can be set by invoking either the function set_goal or the function
g (an abbreviation of set_goal whenever I' is empty), which initialises the subgoal
package with a new goal.

As an example, let us prove the above theorem MULT_O:

#set_goal([],"!m. (m * 0 = 0)");;
"!Im. m *x 0 = Q"

135

The current goal can be expanded using the function expand (written e for short)
which applies a tactic to the top goal on the stack and pushes the resulting subgoals
onto the goal stack. By applying mathematical induction with the built-in tactic
INDUCT_TAC, two subgoals corresponding to the basis case (the subgoal at the bottom
of the subgoal list) and to the induction step are generated:

#e INDUCT_TAC;;

0K..

2 subgoals

"(SUC m) * 0 = O"
[nm*0=0u]

"o ox 0 = Q"

Tactics corresponding to conversions and inference rules are defined in HOL. For ex-
ample, rewriting tactics such as REWRITE_TAC and ASM_REWRITE_TAC, which adds the
assumptions of the goal to the given list of theorems, are fundamental in goal directed
proofs. The basis case is solved by rewriting with the definition of multiplication:

#MULT; ;
|- (In. 0xn=0)/\(mn. (SUCm) *n=(m*n) + n)

#e (REWRITE_TAC [MULT]);;
0K. .

goal proved

|- 0%x0=0

Previous subproof:
"(SUC m) * 0 = O"
['m % 0 = OII]

When a tactic solves a subgoal, the package computes a part of the proof and presents
the user with the next subgoal. The definition of multiplication is used once more to
transform the induction subgoal:

#e (REWRITE_TAC [MULTI);:

0K..

"(m* 0) +0
1 ["m * 0

ov
oll]

The zero summand can be deleted by applying properties of addition (given in HOL
by the theorem ADD_CLAUSES):

136

#e (REWRITE_TAC [ADD_CLAUSES]);;
0K..
"mx Q0 = O

1 [nm*o=0n]

The induction subgoal is thus reduced to the inductive hypothesis and simply solved
by rewriting with it:

#e (ASM_REWRITE_TACI1);;

OK. .

goal proved
[-m*0=0

|- (m*0) +0=0
|- (SUCm) *0=0
|- 'm. m* 0 =0

Previous subproof:
goal proved
() : void

Conversions can be mapped into tactics using the ML function CONV_TAC, such as
the tactic BETA_TAC (defined in terms of BETA_CONV) for applying S-conversion to the
conclusion of a goal.

#g "(\x. x + 1)1 = SUC 1";;
"(\x. x + 1)1 = SUC 1"

#e BETA_TAC;;
0K. .
"1 +1 = 8uC 1"

Tactics can be composed using other ML functions called tacticals. For example,
tactics can be sequenced by means of the (infixed) tactical THEN: given tactics 73 and
15, the ML expression 77 THEN 75 evaluates to a tactic that first applies 77 and then
applies T» to each subgoal produced by 77. Another sequencing tactical is THENL:
given a tactic T' that generates n subgoals and a tactic list [T3;...;7},], then the
tactic T THENL [T1,...,T,] first applies T and then applies 7; to the ith subgoal
produced by 7.

When a theorem is proved, it can be stored in the current theory using several
standard functions. Among the others, TAC_PROOF takes a goal and a tactic, and
applies the tactic to the goal in an attempt to prove it; or one can use the function
prove_thm which takes a string s, a boolean term ¢ and a tactic tac, and attempts to
prove the goal ?* t <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>