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Abstract

A novel protocol has been formally analyzed using the prover Isabelle/HOL,
following the inductive approach described in earlier work [10]. There is no
limit on the length of a run, the nesting of messages or the number of
agents involved. A single run of the protocol delivers session keys for all the
agents, allowing neighbours to perform mutual authentication. The basic
security theorem states that session keys are correctly delivered to adjacent
pairs of honest agents, regardless of whether other agents in the chain are
compromised. The protocol’s complexity caused some difficulties in the
specification and proofs, but its symmetry reduced the number of theorems
to prove.
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1 Introduction

Security protocols are notoriously prone to error. One problem is the com-
binatorial complexity of the messages that an intruder could generate. An-
other, quite different, problem is that of specifying precisely what the proto-
col is to accomplish: proof of identity, session key distribution, establishment
of shared secrets, etc.

Researchers are developing methods of analyzing protocols formally—
either to search for attacks [5] or to prove correctness properties [2, 4, 7].
Recently, I have announced a new proof method, based on inductive models
of protocols and an intruder [10]. Unlike model-checking approaches, it
imposes no restrictions for the sake of finiteness. The automated provers
in Isabelle/HOL [9] let the user analyze a typical protocol in a few working
days. Below I shall describe an application of the method to an unusual,
variable-length protocol.

The Otway-Rees protocol [8], which assumes a shared-key setting, allows
an agent A to establish a session with some other agent, B. An authentica-
tion server generates a fresh session key Kab and distributes it to A and B.
This protocol is widely accepted as correct; in previous work, I have proved
basic guarantees for each party. At the end of a run, the session key just
received is known only to the server and the other party, provided both
A and B are uncompromised. Like many similar protocols, it has a fixed
number of steps and all messages have simple, fixed formats.

The recursive authentication protocol [3] generalizes Otway-Rees to an
arbitrary number of parties. First, A contacts B. If B then contacts the
authentication server then the run resembles Otway-Rees. But B may choose
to contact some other agent C', and so forth; a chain of arbitrary length may
form. During each such round, an agent adds its name and a fresh nonce to
an ever-growing request message.

For the sake of discussion, suppose that C' does not extend the chain
but instead contacts the authentication server. The server generates fresh
session keys Kab and Kbc: in the general case, one key for each pair of
agents adjacent in the chain. It prepares two certificates for each session
key: one for each party. It gives the bundle of certificates to the last agent
(C). Each agent takes two certificates and forwards the remainder to its
predecessor in the chain. Finally, A receives one certificate, containing K ab.

Such a protocol is hard to specify, let alone analyze. Neither the number
of steps, nor the number of parties, nor the number of session keys are
fixed in advance. The server’s response to the agents’ accumulated requests
cannot be given as a simple pattern; it requires a recursive program.

Even which properties to prove are not obvious. One might simplify the
protocol to distribute a single session key, common to all the agents in the
chain. But then, security between A and B would depend upon the honesty
of C, an agent possibly not known to A. There may be applications where
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C,S,Nc, {Kcs,S,Nc}Ke,
B,C,Nb, {Kbc,B,Nc}Kc,
A,B,Na,~ {Kbc,C,Nb}Kp,

{Kab,A,Nb}Kp,

{Kab,B,Na}Ka

{Kab,B,Na}Ka {Kbc,C,Nb}Kb,

{Kab,A,Nb}Kp,
{Kab,B,Na}Ka

Figure 1: The Recursive Authentication Protocol with Three Clients

such a weak guarantee might be acceptable, but it seems better to give a
separate session key to each adjacent pair. I have proved a general guarantee
for each participant: if it receives a certificate containing a session key and
the name of another agent, then only that agent (and the server) can know
the key. (In the sequel, “server” will always mean “authentication server.”)

The paper describes the protocol in detail (§2). It reviews the inductive
approach to protocol analysis (§3) and describes how it was extended with
hashing (§4). It presents the formal model of the protocol (§5) and describes
the main results proved (§6). It discusses possible attacks on the protocol
(§7) and offers a few conclusions (§8).

2 The Recursive Authentication Protocol

The protocol was invented by John Bull of APM Ltd., who (in a private
communication) describes its objectives as follows:

The project is exploring a model of security where application
components are in control of security policy and its enforcement.
The novelty of the approach is that the infrastructure no longer
provides security for the applications, but provides them with
the means to defend themselves.

The description below uses traditional notation, slightly modified. Let
Hash X be the hash of X and Hashyx Y the pair {Hash{X, Y}, Y}. Typically,
X is an agent’s long-term shared key and Hash{X, Y} is a message digest,
enabling the server to check that Y originated with that agent. Figure 1
shows a typical run, omitting the hashing.

Agent A starts a run by sending B a request:

1. A — B : Hashg.{A, B, Na,—}



Here Ka is A’s long-term shared key, Na is a fresh nonce, and (—) is a
placeholder indicating that this message started the run. In response, B
sends something similar but with A’s message instead of the placeholder:

2. B — C : Hash{B, C, Nb,Hash ko {A, B, Na, —}}

Step 2 may be repeated as many times as desired. Each time, new compo-
nents are added to the message and a new message digest is prefixed. The
recursion terminates when some agent performs step 2 with the server as
the destination.

In step 3, the server prepares session keys for each caller-callee pair. It
traverses the accumulated requests to build up its response. If (as in §1) the
callers were A, B and C in that order, then the final request is

Hashk {C, S, Nc,Hashgp{B,C, Nb,Hashk.{A, B, Na, —}}}.
7 T

The arrows point to the occurrences of C'; which appear in the outer two
levels. C has called S (the server) and was called by B. The server generates
session keys Kcs and Kbc and prepares the certificates {Kcs, S, Nc} . and
{Kbc, B, Nc} .. The session key K cs is redundant because C' already shares
Kc with the server. Including it allows the last agent in the chain to be
treated like all other agents except the first: the initiator receives only one
session key.

Having dealt with C’s request, the server discards it. Looking at the
remaining outer two levels, the request message is

Hashgp{B,C, Nb,Hashg,{A, B, Na,—}}.
T T

The server now prepares two certificates for B, namely {Kbc, C, Nb} ., and

{Kab, A, Nb} ;. Note that Kbc appears in two certificates, one intended

for C' (containing nonce N¢ and encrypted with key Kc¢) and one for B.
At the last iteration, the request message contains only one level:

Hashio{A, B, Na, —}.
T

The (—) token indicates the end of the requests. The server generates one
session key and certificate for A, namely {Kab, B, Na} .

In step 3 of the protocol, the server replies to the request message by
returning a bundle of certificates. In our example, it would return five
certificates to C.

3.5 = C:{Kcs,S,Nc} ., {Kbc, B, Nc} .,
{Kbc, C, Nb} oy, {EK ab, A, Nb} ¢,
{Kab, B, Na},
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In step 4, an agent accepts the first two certificates and forwards the rest
to its predecessor in the chain. Every agent performs this step except the
one who started the run.

4. C — B :{Kbc,C, Nb} o}, {IKab, A, Nb} s,
{Kab, B, Na} .,
4. B — A:{Kab,B,Na},

The description above describes a special case: a protocol run with three
clients. The conventional protocol notation cannot cope with arbitrary num-
bers of participants, let alone recursive processing of nested messages. Sec-
tion §5 below will specify the protocol as an inductive definition.

My version of the protocol differs from the original in several respects:

e The dummy session key Kcs avoids having to treat the last agent
as a special case. All agents except the first take two certificates.
An implementation can safely omit the dummy certificate. Removing
information from the system makes less information available to an
intruder.

e In the original protocol, an agent’s two certificates were distinguished
only by their order of arrival; an intruder could easily exchange them.
To correct this flaw, I added the other party’s name to each certificate.
Such explicitness is recommended as good engineering practice [1]. It
also simplifies the proofs; a similar change to the Otway-Rees protocol
cut the proofs in half [10]. Bull and Otway have accepted my change
to their protocol [3].

« 9

e The original protocol implements encryption using exclusive “or
(XOR) and hashing. For verification purposes, encryption should be
taken as primitive. Correctness of the protocol does not depend upon
the precise form of encryption, provided it implemented properly. The
original use of XOR turned out to be flawed (see §7).

e Protocol messages contain some information that is important for engi-
neering purposes but logically redundant. Omitting such information
both simplifies and strengthens the proofs. Adding redundancy to a
safe protocol cannot make it unsafe.

3 Review of the Inductive Approach

Informal safety arguments, which involve reasoning that dangerous states
are unreachable, are made rigorous using induction. Protocols are modelled
in standard predicate calculus and set theory.! A protocol specifies a set of

T have used higher-order logic as a typed set theory. An untyped approach, based
perhaps upon ZF set theory, is also feasible.



possible traces. Each trace is a list of events and may contain numerous runs,
including interleaved and aborted runs. Each event has the form Says A B X,
which represents the attempt by A to send B the message X.

One simplification in the model is the lack of an event to represent the
reception of a message. We cannot assume that each message reaches its
destination; we cannot identify the sending of a message in step ¢ with the
receipt of that message. But we can identify the sending of a message in
step i + 1 with the receipt of a satisfactory message from step ¢. The model
describes what may happen but never forces an agent to respond to any
message. Thus, the model identifies the following circumstances:

e Message X was intercepted before it could reach B.
e Message X reached B, but B was down.
e Message X reached B, but B declined to respond.

An inductive definition consists of a set of rules. Modelling a protocol re-
quires one rule for each protocol step. A typical protocol step A — B : X
requires a rule saying that an existing trace can be extended with the event
Says A B X. If the step is the response to another message Y, then the rule
will be subject to the condition Says B AY. Other conditions may refer to
messages that A has already sent earlier in the same run, typically for the
purpose of confirming that a challenge has triggered an adequate response.

Agent names such as A and B are variables ranging over all agents,
though rules frequently have conditions such as A # B or A # S.

An additional rule models the attacker, Spy. He cannot crack ciphers by
brute force, but has somehow got hold of some agents’ long-term keys. He
reads all traffic, decrypting messages using keys he holds and accumulating
everything so obtained. At any point, he may send spoof messages composed
using the data at his disposal. (Interception of messages does not have to
be modelled explicitly, as remarked above.) He is accepted by the others as
an honest agent.

To model the spy’s capabilities, three operators are defined on sets of
messages.

e parts H is the set of all components of H that are potentially recover-
able, perhaps using additional keys.

e analz H is the set of all messages that can be decrypted from H using
only keys obtainable from H.

e synth H is the set of all messages that can be built up from H.

These operators are themselves defined inductively and satisfy numerous
useful laws. The spy draws spoof messages from the set synth(analz H),
where H includes the history of past traffic and the spy’s initial knowledge.
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4 A Formalization of Hashing

Hitherto, I have considered messages to be built from agent names, nonces
and keys by concatenation and encryption. The recursive authentication
protocol assures integrity by means of hashing. Encryption could be used
instead, but hashing is easily added to the model.

The datatype msg now admits messages of the form Hash X, where X is
a message. Like all the message primitives, Hash is assumed to be injective
(collision-free). The operators analz and synth treat hashing in the obvious
way. The definition of analz requires no change; the effect is to say that
nothing can be decrypted from Hash X. For synth, we insert the rule

X € synth H = Hash X € synth H,

allowing hashing to be used freely when composing spoof messages.

A question arises concerning the treatment of hashing by parts: is X a
part of Hash X7 The protocol involves messages of the form Hash{Ka, X'}.
A yes answer would imply Ka € parts H, even if Ka were uncompromised;
we could no longer reason about the security of long-term keys in the normal
way [10]. A no answer seems right. It causes parts H to return the items
potentially recoverable from H, which is a subset of the ingredients of H.
Contrast the tasks of recovering the mainspring from a watch and recovering
the eggs from a cake. An “ingredients” operator is not needed just now.

The new laws concerning Hash X resemble those for other atomic data,
such as nonces.

parts({Hash X} U H) = {Hash X'} U (parts H)
analz({Hash X} U H) = {Hash X'} U (analz H)
Hash X € synth H = Hash X € HV X € synth H

These laws state that Hash X contributes nothing other than itself to the

result of parts or analz. The addition of Hash as a new message form does

not invalidate any of the 90 or so laws concerning parts, analz and synth.
The Hashx Y notation is trivially defined in Isabelle:

Hash[X]Y = {Hash{X,Y},Y}.

Requests in the protocol have the form Hashx Y, where Y may contain
another request. Rewriting a request by the definition of Hashx Y would
cause exponential blowup. Instead, we can apply laws that treat Hashx Y
as a primitive. The following law concerns parts; an analogous one holds for
analz:

parts({Hashx Y}U H) = {Hashx Y }U({Hash{X, Y} }U(parts({Y }UH)))



A further law is subject to X ¢ synth(analz H), as when X is an uncompro-
mised long-term key:

Hashx Y € synth(analz H) <=
Hash{X,Y} € analzH AY € synth(analz H)

This law says that the message Hashx Y can be spoofed iff Y can be and a
suitable message digest is available (an unlikely circumstance). Blowup can
still occur using such laws, but it is no longer inevitable. A formula such as
Nonce N € parts H will simplify to the obvious outcome.

5 Modelling the Protocol

For the most part, this protocol is modelled just like the fixed-length proto-
cols considered previously [10]. The inductive definition rules for the empty
trace and the spy are standard. The other rules can be paraphrased as
follows:

1. If evs is a trace, Na is a fresh nonce and B is an agent distinct from A
and S, then we may add the event

Says A B (Hashghk a{A, B, Na, —}).

A’s long-term key is written shrK A. For the token (—) I used the name
S, but any fixed message would do as well.

2. If evs is a trace containing the event Says A’ B Pa, where Pa =
{Xa,A,B,Na, P}, and Nb is a fresh nonce and B # C, then we
may add the event

Says B C' (Hashghk g{B, C, Nb, Pa}).

The variable Xa is how B sees A’s hash value; he does not have the
key needed to verify it. Component P might be (—) (if A started the
run) or might have the same form as Pa, nested to any depth. Agent
C might be the server or anybody else.

All the proofs about the protocol become simpler if the equation Pa =

- is never applied. The proofs therefore hold of a weaker protocol in
which any agent may react to any message by sending an instance of
step 2. Ill-formed requests may result, but the server will ignore them.

3. If evs is a trace containing the event Says B’S Pb, and B # S, and if
the server can build from request Pb a response Rb, then we may add
the event

SaysS B Rb.
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The construction of Rb includes verifying the integrity of Pb; this
process is itself defined inductively, as we shall see. The rule does
not constrain the agent B, allowing the server to send the response to
anybody. We could get the right value of B from Pb, but the proofs
do not require such details.

4. If evs is a trace containing the two events

Says B C' (Hashghk g{B, C, Nb, Pa})
Says C' B {Crypt(shrK B){Kbc,C, Nb},
Crypt(shrK B){Kab, A, Nb}, R}

and A # B, then we may add the event
Says BAR.

B decrypts the two certificates, compares their nonces with the value
of Nb he used, and forwards the remaining certificates (R).

The final step of the protocol is the initiator’s acceptance of the last cer-
tificate, Crypt(shrK A){Kab, B, Na}. This step need not be modelled since
A makes no response.

For many protocols, an “oops” message can model accidental loss of
session keys. One then proves that an old, compromised session key cannot
later become associated with new nonces [10]. An oops message cannot
easily be expressed for the recursive authentication protocol because a key
never appears together with both its nonces. Despite the lack of an oops
message, the spy can get hold of session keys using the long-term keys of
compromised agents; I trust the model is adequately realistic.

5.1 Modelling the Server

The server creates the list of certificates according to another inductive
definition. It defines not a set of traces but a set of triples (P, R, K) where
P is a request, R is a response and K is a session key. Such triples belong
to the set respond evs, where evs (the current trace) is supplied to prevent
the reuse of old session keys. Component K returns the newest session key
to the caller for inclusion in a second certificate.

The occurrences of Hash in the definition ensure that the server accepts
requests only if he can verify the hashes using his knowledge of the long-term
keys. The inductive definition consists of two cases.

1. If Kab is a fresh key (that is, not used in evs) then

( HaShshrKA{[Aa Ba NCL, _}a
Crypt(shrk A){Kab, B, Na},
Kab) € respondevs.
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This base case handles the end of the request list, where A seeks a
session key with B.

2. If (Pa, Ra, Kab) € respond evs and Kbc is fresh (not used in evs or Ra)
and

Pa = Hashgn,k 4{A, B, Na, P}
then

(Hashghk 5{B, C, Nb, Pa},
{Crypt(shrK B){Kbc,C, Nb},
Crypt(shrk B){Kab, A, Nb}, Ra},
Kbc) € respondevs.

The recursive case handles a request list where B seeks a session
key with C' and has himself been contacted by A. The respond re-
lation is best understood as a pure Prolog program. Argument Pa of
(Pa, Ra, Kab) is the input, while Ra and Kab are outputs. Key Kab
has been included in the response Ra and must be included in one of
B’s certificates too.

An inductive definition can serve as a logic program. Because the concept
is Turing powerful, it can express the most complex behaviours. Yet, such
programs are easy to reason about.

5.2 A Coarser Model of the Server

For some purposes, the respond evs relation is needlessly complicated. Its
input is a list of n requests, for n > 0, and its output is a list of 2n + 1
certificates. Many routine lemmas hold for any list of certificates of the form
Crypt(shrK B){K, A, N}. The inductive relation responses evs generates the
set of all such lists. It contains all possible server responses and many
impossible ones.

The base case is simply (—) € responses evs and the recursive case is

{Crypt(shrk B){K, A, N}, R} € responsesevs

if R € responsesevs and K is not used in evs.

In secrecy theorems (those expressed in terms of analz), each occurrence
of Crypt can cause a case split, resulting in a substantial blowup after simpli-
fication. Induction over responses introduces only one Crypt, but induction
over respond introduces three. Of course, responses includes some invalid
outputs; some of the main theorems can only be proved for respond.



10 6 MAIN RESULTS PROVED

5.3 Alternative Formats for Certificates

In the original protocol, B took two certificates of the form
Crypt(shrK B){K, Nb}. He inferred the name of the other key-holder from
the certificates’ arrival order, which an attacker could change. This vulner-
ability had to be corrected. I experimented with putting both session keys
into a single certificate of the form

Crypt(shrK B){Kab, Kbc, Nb}.

An enemy can no longer exchange the keys. But each session key still appears
in two certificates; Kbc would also appear in

Crypt(shrK C){Kbc, Kcd, Nc}.

This format would have required two sets of proofs: one concerning the first
session key in a certificate and one concerning the second. I therefore took
Abadi and Needham’s advice and chose certificates of the form

Crypt(shrk A){Kab, B, Na}.

Now, permuting the certificates can do no harm: each quotes the name of
the other holder of the session key. Moreover, this format preserves the
protocol’s symmetry.

6 Main Results Proved

For the most part, the analysis resembles that of the Otway-Rees protocol.
Simple consistency checks, or “possibility properties,” are proved first. Reg-
ularity lemmas come next: elementary facts such as that the long-term keys
of uncompromised agents never form part of any message. (They do form
part of hashed messages, however; recall the discussion in §4 above.) Secrecy
theorems govern the use of session keys, leading to the main guarantee: if the
certificate Crypt(shrK A){Kab, B, Na} appears as part of any traffic, where
A and B are uncompromised, then Kab will never reach unintended par-
ties. Another theorem guarantees that such certificates (for uncompromised
agents) originate only with the server.

Possibility properties do not express liveness, but merely that the pro-
tocol can sometimes run to completion. They imply basic properties, such
as that message formats are compatible from one step to the next. Though
logically trivial, their machine proofs require significant effort (or compu-
tation) due to the complexity of the terms that arise and the number of
choices that can be made at each step. I proved cases corresponding to runs
with up to three agents plus the server and spy. General theorems for n
agents could be proved by induction on n, but the necessary effort hardly
seems justified.
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Security properties are proved, as always, by induction over the protocol
definition. For this protocol, the main inductive set (recur) is defined in
terms of another (respond). All but the most trivial proofs require induction
over both definitions. The inner induction over respond might be proved as a
preliminary lemma if it is used more than once or if its proof is complicated.

The set responses specifies the general form of the outputs generated by
respond:

(PA,RB,K): respond evs ==> RB: responses evs

This easily-proved result justifies performing induction over responses in-
stead of respond; if it leads to a proof at all, it will lead to a simpler proof.

Elementary results are no harder to prove than for a fixed-length pro-
tocol. The outer induction yields six subgoals: one for each protocol step,
plus the base and fake cases. The inner induction replaces the step 3 case
by two subcases, namely the server’s base case and inductive step. There
are thus seven subgoals, few of which typically survive simplification. Only
the theorems described below have difficult proofs.

Nonces generated in requests are unique. This theorem states that there
can be at most one hashed value containing the key of an uncompromised
agent (A ¢ lost) and any specified nonce value, Na.>2

4 B> P’. VB P.
Hash {|Key(shrK A), Agent A, Agent B, Na, P|}
€ parts (sees Spy evs)
— B=B’ A P=P’

Although it is not used in later proofs, unicity of nonces is important. It lets
agents identify runs by their nonces. The theorem applies to all requests,
whether generated in step 1 or step 2. For the Otway-Rees protocol, each of
the two steps requires its own theorem. The reasoning here is similar, but
one theorem does the work of two, thanks to the protocol’s symmetry. The
nesting of requests does not affect the reasoning.

Secrecy proofs require the lemma

(Key K € analz (ins(Key Kab) (sees Spy evs)))

(K=Kab V Key K € analz (sees Spy evs))

where Kab is a session key. (Equality between formulae denotes if-and-only-
if.) Rewriting using it extracts session keys from the argument of analz. The
lemma may be paraphrased as saying that existing session keys cannot be
used to learn new ones [10]. It is hard to prove. For the induction to go
through, it must be generalized to an arbitrary set of session keys:

2The set spiesevs consists of everything the spy can see. It contains all the messages
in the trace evs and the long-term keys of all compromised agents, namely those in the
set lost. This particular theorem is not concerned with the spy but with possible message
histories.
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V K KK. KK C Compl (range shrkK) —
(Key K € analz (Key‘ ‘KK U (sees Spy evs)))

(K € KK V Key K € analz (sees Spy evs))

The inner induction over respond leads to excessive case splits. It was to
simplify this proof that I defined the set responses.

Unicity for session keys is unusually complicated because each key ap-
pears in two certificates. Moreover, the certificates are created in different
iterations of respond. The unicity theorem states that, for any K, if there is
a certificate of the form

Crypt(shrK A){K, B, Na}

(where A and B are uncompromised) then the only other certificate con-
taining K must have the form

Crypt(shrK B){K, A, Nb},

for some Nb. If (PB, RB, K) € respond evs then

J A B. VABN.
Crypt (shrK A) {l|Key K,Agent B,N|} € parts{RB}
— (A’=A A B’=B) V (A’=B A B’=A)
This theorem seems quite strong. An agent who receives a certificate imme-
diately learns which other agent can receive its mate, subject to the security
of both agents’ long-term keys. One might hope that security of session keys
would follow without further ado. Informally, we might argue that the only
messages containing session keys contain them as part of such certificates,
and thus the keys are safe from the spy. But such reasoning amounts to
another induction over all possible messages in the protocol. The theorem
must be stated (stipulating A, A’ ¢ lost) and proved:
Crypt (shrK A) {lKey K, Agent A’, N|}
€ parts (sees Spy evs)
— Key K ¢ analz (sees Spy evs)
The induction is largely straightforward except for the step 3 case. The
inner induction over respond leads to such complications that it must be
proved beforehand as a lemma. If (PB, RB, Kab) € respond evs then

V AA N. A& lost A A> € lost

—

Crypt (shrK A) {l|Key K,Agent A’ ,N|} € parts{RB}

—

Key K ¢ analz (ins RB (sees Spy evs))

A slightly stronger result is that the key enclosed in a certificate does not
reach any unintended agents, even honest ones.

Although each session key appears in two certificates, they both have the
same format. A single set of proofs applies to all certificates. The protocol’s
symmetry halves the effort compared with Otway-Rees, which requires two
sets of proofs.
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7 Potential Attacks

One must never assume that a “verified” protocol is infallible. The proofs
are subject to the assumptions implicit in the model. Attacks against the
protocol or implementations of it can still be expected. One “attack” is quite
obvious: in step 2, agent B does not know whether A’s message is recent;
at the conclusion of the run, B still has no evidence that A is present. The
spy can masquerade as A by replaying an old message of hers, but cannot
read the resulting certificate without her long-term key.

Allowing type confusion (such as passing a nonce as a key) often admits
attacks [6, 7] in which one encrypted message is mistaken for another one
that is intended for another purpose. The recursive authentication protocol
appears to be safe from such attacks: it has only one form of encrypted
message, with only one purpose. However, the implementation of encryption
must be secure.

The original protocol description suggested an unsound form of encryp-
tion. Each session key was encrypted by forming its exclusive “or” with a
hash value, used as a one-time pad. Unfortunately, each hash value was
used twice: B’s session keys Kab and Kbc were encrypted as

Kab ® Hash{Kb, Nb} and Kbc® Hash{Kb, Nb}.

By forming their exclusive “or”, an eavesdropper could immediately obtain
Kaba® Kbe, Kbe® Kcd, etc. Compromise of any one session key would allow
all the others to be read off. Using say Hash{Kb, Nb + 1} to encrypt the
second key would be secure, assuming a good hash function.

This attack (found by Peter Ryan and Steve Schneider) is a valuable
reminder of the limitations of formal proofs. It does not contradict the
proofs, which regard encryption as primitive. The inductive approach can
probably be extended to cope with exclusive “or”. But such a low-level
description violates the principle of separation of concerns. It requires longer
proofs and can only be recommended if the protocol specifically requires one
form of encryption. Perhaps we need formal tools to allow implementations
of encryption to be proved correct independently of the protocols using them.

8 Conclusions

Analyzing this protocol took about two weeks of normal working days, in-
cluding the formalization of hashing and experimentation with different for-
mats for certificates. Streamlining and maintaining the proofs has taken
additional time. The proofs are modest in scale: fewer than 30 results are
proved, using under 130 tactic commands; they run in under three minutes.

The inductive approach readily models this complex protocol. It is per-
fectly suited to Isabelle/HOL’s inductive definition package, simplifier and



14 REFERENCES

classical reasoner. Proofs can be generated using modest human and compu-
tational resources. The approach does not search for attacks, but establishes
positive guarantees. In the present case, it has suggested ways of strengthen-
ing the protocol by adding explicitness. Bull has suggested that the protocol
might be modified to distribute session keys between agents that are not ad-
jacent in the request chain. Such variants can probably be analyzed with
little difficulty by modifying the existing proof script.
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A Isabelle Specifications and Theorems

Isabelle users will understand this material best, but I hope all readers will
gain an impression of the notation. Figure 2 defines the relation respond evs,
which specifies the server’s interpretation of requests. The set responses evs
is omitted because it does not form part of the specification itself (it merely
simplifies some of the proofs). Figure 3 specifies the protocol itself. T have
omitted some comments.

consts respond :: "event list => (msg*msgxkey)set"
inductive "respond evs"
intrs

(*The message "Agent Server" marks the end of a list.x)
One "[| A # Server; Key KAB ¢ used evs |]
—> (Hash[Key(shrK A)]
{|Agent A, Agent B, Nonce NA, Agent Server|},
{ICrypt (shrK A){|Key KAB,Agent B,Nonce NA|}, Agent Server|},
KAB) € respond evs"

(*The most recent session key is passed up to the callerx)
Cons "[| (PA, RA, KAB) € respond evs;
Key KBC ¢ used evs; Key KBC ¢ parts {RA};
PA = Hash[Key(shrK A)] {l|Agent A, Agent B, Nonce NA, P|};
B # Server |]
—> (Hash[Key(shrK B)] {|Agent B, Agent C, Nonce NB, PA|},
{ICrypt (shrK B) {l|Key KBC, Agent C, Nonce NB|},
Crypt (shrK B) {|Key KAB, Agent A, Nonce NBI|},
RAI},
KBC) € respond evs"

Figure 2: Specifying the Server

Figure 4 presents the formal statements of the main theorems of §6, in
close to raw Isabelle syntax. The proof scripts are omitted because they are
unintelligible. A proof requires four commands on average, of which at least
two are quite predictable: induction and simplification.
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consts recur :: event list set
inductive "recur"
intrs

(*Initial trace is empty*)
Nil "[] € recur"

(*The spy MAY say anything he CAN say.*)
Fake "[| evs € recur; B#Spy;
X € synth (analz (sees Spy evs)) |]
— Says Spy B X # evs € recur"

(*Alice initiates a protocol run.*)
RA1 "[| evs € recur; A#B; A#Server; Nonce NA ¢ used evs |]
—> Says A B
(Hash[Key(shrK A)]
{lAgent A, Agent B, Nonce NA, Agent Server|})
# evs € recur"

(#Bob’s response to Alice’s message. C might be the Server.x*)
RA2 "[| evs € recur; B#C; B#Server; Nonce NB ¢ used evs;
Says A’ B PA € set evs;
PA = {|XA, Agent A, Agent B, Nonce NA, P|} |]
—> Says B C (Hash[Key(shrK B)]{|Agent B, Agent C, Nonce NB, PA|})
# evs € recur"

(*The Server receives Bob’s message and prepares a response.*)
RA3 "[| evs € recur; B#Server;
Says B’ Server PB € set evs;
(PB,RB,K) € respond evs |]
— Says Server B RB # evs € recur"

(*Bob receives the returned message and compares the Nonces with
those in the message he previously sent the Server.x)
RA4 "[| evs € recur; A#B;
Says C’ B {ICrypt (shrK B) {|Key KBC, Agent C, Nonce NB|},
Crypt (shrK B) {l|Key KAB, Agent A, Nonce NB|},
RAI}
€ set evs;
Says B C {|XH, Agent B, Agent C, Nonce NB,
XA, Agent A, Agent B, Nonce NA, P|}
€ set evs |]
—> Says B A RA # evs € recur"

Figure 3: Specifying the Protocol
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(PA,RB,KAB) € respond evs —> RB € responses evs

[l evs € recur; A ¢ lost |]
— 3 B’ P’. VBP.
Hash {|Key(shrK A), Agent A, B, NA, P|}
€ parts (sees Spy evs) — B=B’ A P=P’

evs € recur —

V K KK. KK <= Compl (range shrkK) —
(Key K € analz (Key‘‘KK Un (sees Spy evs))) =
(K € KK V Key K € analz (sees Spy evs))

[l evs € recur; KAB ¢ range shrk |] —
Key K € analz (ins (Key KAB) (sees Spy evs)) =
(K = KAB V Key K € analz (sees Spy evs))

(PB,RB,KXY) € respond evs

—> 3 A” B’. V A BN.
Crypt (shrK A) {l|Key K, Agent B, N|} € parts {RB}
— (A’=A N B’=B) V (A’=B A B’=A)

[l (PB,RB,KAB) € respond evs; evs € recur |]

—> VA A N. A &€ lost A A’ & lost —
Crypt (shrK A) {l|Key K, Agent A’, N|} € parts{RB} —
Key K ¢ analz (ins RB (sees Spy evs))

[l Crypt (shrK A) {|Key K, Agent A’, N|} € parts (sees Spy evs);
A ¢ lost; A’ ¢ lost; evs € recur |]
—> Key K ¢ analz (sees Spy evs)

Figure 4: Some Theorems in Isabelle’s Syntax



