
An abstract dynamic semantics for C

Michael Norrish

Computer Laboratory, University of Cambridge

6 May 1997

Abstract

This report is a presentation of a formal semantics for the C pro-
gramming language. The semantics has been defined operationally in a
structured semantics style and covers the bulk of the core of the language.
The semantics has been developed in a theorem prover (HOL), where some
expected consequences of the language definition have been proved.

Contents

1 Introduction 2

1.1 Motivation . 3

2 The C language 4

2.1 What has been omitted . 4

2.2 Basic definitions . 5

2.2.1 Degrees of under-specification 5

2.2.2 Program states and side effects 6

2.2.3 Notation—general observations 7

2.3 Expression evaluation . 8

2.3.1 Extra syntactic forms and undefined expressions 8

2.3.2 Expression evaluation contexts 9

2.3.3 Base cases—values out of memory 10

2.3.4 Value producing operators 13

2.3.5 Side effect operators . 16

2.3.6 Function calls—the interface with statement evaluation . 19

1

2.4 Statements . 20

2.4.1 Simple statements . 20

2.4.2 Interruptions . 21

2.4.3 Compound statements . 21

2.4.4 Conditional statements 22

2.4.5 Iteration . 23

2.5 Variable declarations . 24

3 Results 26

3.1 A derived “axiomatic” logic . 26

3.2 Further analysis of loops . 27

3.3 Purity analysis . 28

4 Related work 29

5 Future work and conclusions 29

1 Introduction

This work presents a formal description of the C language [1] in the tradition
of the formal definition of SML [17]. It is significant in two important ways.
Firstly, it is a demonstration that a language as complicated and as inherently
unco-operative as C can nonetheless be treated formally. Secondly, the model
has been mechanised in the HOL theorem prover [10]. This provides the theorem
proving community with a demonstration that large semantic descriptions are
both possible, and that they can be used for the basis of further reasoning. It
also suggests that mechanical work on real world verification problems may not
be the practical impossibility that common wisdom suggests.

The C programming language was first fully defined in 1989, in the ANSI stan-
dard [1], subsequently adopted as an ISO standard [15]. However it had been in
existence for a long time prior to that date. The very effort of standardisation
was made “to promote portability, reliability, maintainability, and efficient exe-
cution of C language programs on a variety of computing systems” [1, abstract],
an effort necessary because of the danger of diverging language implementations
blurring exactly what was and was not a C program. However, the standard
also makes admirable efforts to accommodate practice as it existed at the time.

2

1.1 Motivation

Why C? Formal language semantics have been developed in the past, notably
the specification of the language SML in [17]. Such formalisations can be very
valuable exercises in their own right, and numerous languages have been studied
in this light. Nonetheless, the question remains as to why C is a worthwhile
object of study.

The answer to this question has two facets. Pragmatically, a formal specification
of C has the potential to be very useful. C is a very widely used language: it was
used to write operating systems such as Unix, OS/2, and Windows; applications
such as Netscape and Microsoft Word; and it is used in fields from avionics to
compiler construction. Though formal verification is still an embryonic field
as far as industry is concerned, tools and techniques to perform verification
(with the advantages that this brings) must necessarily build on a fully formal
semantics.

On the theoretical front, C combines a number of interesting features, the study
of which is a worthwhile endeavour in its own right. Firstly, C’s expressions
have side effects. Although one would like to be able to consider programming
language expressions as if they were the mathematical idealisations that they
resemble, a C expression such as f(3) + g(5) is able to do more than simply
compute a value, but may alter the contents of memory as well. Many theoretical
treatments of verification in the past have preferred to deal with languages
where expressions are side-effect free, so there is still considerable interest in
the development of methods for dealing with side-affecting expressions.

C is also subject to the problem of non-determinism. For certain forms within
the language, the standard does not specify exactly how these are to be exe-
cuted, but merely requires that execution must satisfy certain constraints. Thus
an implementation is given latitude to choose from a number of possible choices.
This “under-determinedness” of C is not a mere curiosity confined to the in-
ner workings of a C program, but is something that can manifest itself in the
program’s external behaviour. Therefore, if one is to prove that a program’s
behaviour is to satisfy certain constraints, then one will need to verify that this
behaviour happens for all possible variations in the execution of the program.

Why in a theorem prover? Theorem provers are also a very useful way of
organising logical material that might otherwise be overwhelming in its com-
plexity. A user might forget the niggling flaw in the definition made six months
ago, but the machine will not. One can be confident that a theorem proved is
one which will not be later revealed to have some distressing hole in its proof.

C is a complicated language and embedding its semantics in the HOL theorem
prover has kept my theorems correct, at least with respect to my definitions.
What’s more, the same theorem proving support has ensured that many flaws
in my definitions have been detectable. For example, if the standard leads one

3

to expect a certain conclusion but the proof of this purported theorem does not
succeed, it might be because it has not been properly expressed, or it may be
because the definitions it relies upon are wrong themselves.

2 The C language

2.1 What has been omitted

C’s specification divides into two parts: the language and the library. The
library is as carefully specified as the language, and a logical specification of
its functions’ behaviour would be a necessary prerequisite to any useful work
verifying C programs in practice. Nonetheless, it is possible to get a good
understanding of the way in which C programs work by simply studying the
language core, as the library functions specified in the standard are on the whole
concerned with interacting with the operating system, or are utility functions
that one could imagine defining oneself. Therefore, this semantics concerns itself
just with the C language and not the library.

Perhaps more significantly, this semantics omits switch and goto statements.
Both statement forms would require a fairly significant effort to incorporate
into the semantics, as each would require a traversal of a statement’s abstract
syntax in the search for a particular label to jump to.1 Though this could be
implemented, it has remained at a fairly low priority so far.

Less significantly, I omit qualified types (types qualified with the keywords const
and volatile), union types, string constants and bit-fields within structs.

It is also worth pointing out that the semantics does not model the pre-processor,
but assumes that it is presented with an abstract syntax tree after the initial
phases of the pre-processor have occurred. It also makes the convenient (though
strictly speaking, incorrect) assumption that typedefs2 are little more than a
form of pre-processing, and that they have been “compiled out”, leaving only
basic and constructed types. Further, there are straightforward equivalences
defined in the standard for the ->, [], pre-increment, and pre-decrement oper-
ators. I choose not to model these explicitly, but assume that they have been
replaced at the syntactic level.3

What follows is what I term an abstract dynamic semantics. It does not concern
itself unduly with the type correctness of the program (a static issue), it tries to
treat memory as abstractly as possible, and it does not specify the behaviour of
the basic operators (+, -, &c). In treating memory abstractly, I follow the lead

1Furthermore, this traversal and search is not an entirely straightforward process, as it
must be prepared to allocate or deallocate space for variables if the label found is within a
different block.

2C’s typedef declarations establish transparent type aliases.
3The equivalences are: rp->fld is the same as (*rp).fld, a[i] is the same as *(a + i),

++i is the same as i += 1, and --i is the same as i -= 1.

4

of the standard itself. By glossing over the behaviour of the operators, I am
able to make a presentation of the core semantics with an elegant separation of
concerns.

The semantics defined here is a subset of that defined in HOL. The material
omitted is precisely those aspects of the semantics which are not abstract in the
sense used above. Thus the HOL semantics does include the operator definitions
that this article omits. The HOL semantics is called Cholera, and I will use that
name to refer to the semantics presented here as well. Where the distinction
needs to be made, I will clarify whether I mean the abstract or full semantics,
but what is true of one is typically true of the other.

2.2 Basic definitions

2.2.1 Degrees of under-specification

The standard under-specifies the semantics of the C language in three different
ways. Each of the three is described below, and the way in which each form of
behaviour is dealt with in Cholera is sketched (c.f. the glossary in [1, §1.6]):

Implementation-defined: An implementation-defined construct is one which
must have a definite meaning, but one for which the standard has passed
responsibility to the implementation. The implementation is required to
document its choice of meaning. An example is the byte-ordering within
multi-byte numeric objects (big-endian vs little-endian).

Cholera handles implementation-defined behaviour by defining, but under-
specifying some constant. In this way, it models the fact that there is a
well-defined behaviour, but makes it impossible for a user to rely on it
being a particular behaviour. For example CHAR BIT, the number of bits
in a byte, is defined to be at least eight, but this is all one can rely upon.

Unspecified: A construct or program form for which behaviour is unspecified
is one where the standard imposes no requirement. For example, the order
of evaluation of expressions is unspecified. Here an implementation need
not document its behaviour, and thus may choose to do different things
in quite similar, if not identical, situations.

Cholera handles unspecified behaviours by always allowing all possible be-
haviours. In the case of expression evaluation, all possible evaluation
orders can arise. One can not then claim that a program’s behaviour will
have a particular result without confirming that all possible behaviours
lead to the same result.

Undefined: Undefined behaviour results when a program attempts to do some-
thing which is semantically invalid. Cholera treats all such behaviour as
equivalent to a transition into a special state where no further action takes

5

place. In implementations, a program which attempts an undefined be-
haviour will in all likelihood do something, and this something may in
fact be quite reasonable. Nonetheless, there is no way of relying on unde-
fined behaviour to do anything in particular, so the Cholera approach of
effectively aborting it as soon as it occurs is safest.

Undefined behaviour occurs when uninitialised memory is accessed, when
a null pointer is dereferenced, when a side effect attempts to update a
memory object which has already been accessed in the same phase of
expression evaluation, and in a host of other situations.

2.2.2 Program states and side effects

Ultimately, a semantics gives a program meaning by describing the way in which
it transforms a “program state”. The state in Cholera models the state of an
abstract computer on which the described program is being run. In its simplest
form, a model of program state would necessarily include a description of the
abstract computer’s memory, but in Cholera it proves necessary to include rather
more than just memory.

If a formal semantics is to retain the connection between the high level syntax of
the language and what happens to memory, then it must also include the sort of
details that one might at first associate with compiler symbol tables. The types
of variables, the fields that go to make up struct types, and the mapping from
variable names to locations in memory must all be recorded. In the literature,
these details make up what is commonly known as the environment. In the
semantics that follows, I shall loosely use the term “state” to refer to both the
environment and the contents of memory. After all, both can be seen to change
as a program executes.

In C, changes to memory come about solely through the action of side effects.
These are created as the result of evaluating certain expression forms, principally
assignment expressions. However, side effects are not applied immediately upon
their creation, but can be kept pending for a while. Nor do multiple side effects
have to be applied in order. The motivation for this is that implementations
should have licence to make changes to memory in ways that are convenient for
them. This licence may allow useful optimisations to be performed, for example.

Cholera models this state of affairs by keeping a bag of pending side effects as
part of the state. As the side effects are generated, they are put into the bag.
The bag is emptied in a non-deterministic order, and at non-deterministic times,
subject only to the constraint that it must be empty when what is known as
a sequence point is encountered. Sequence points occur in certain syntactically
well-defined places, and will be flagged in the description that follows.

Finally, the standard imposes an important restriction on the way in which side
effects can be applied. Sequence points divide an execution up into a series of
consecutive phases. A piece of memory that is updated in a given phase may not

6

µ conversion to memory value
ϕ conversion to fn. reference value

Table 1: state independent functions

α address of variables τ typing function
ν retrieves values from memory o operator semantics
ρ memory references made

ϕα argument details about a function ϕβ body of a function
ξo structure field offsets ξτ structure field types

Table 2: state functions

be updated again or examined within the same phase, otherwise the behaviour
is undefined. The only exception to this rule allows an examination of an object
if its value is to be used in an update of the same object. These rules forbid
expressions such as i++ + i (a reference and an update in the same phase),
and i = i++ + 4 (two updates of the same object), but allow i = i + 1 (i is
both updated and referred to, but the reference is part of the computation of
i’s new value).

These restrictions have an important rôle in expression evaluation.

2.2.3 Notation—general observations

Each section of the semantics defines its own operators and miscellaneous no-
tation, but there are a number of general observations about notation that can
be made here. Each section of the semantics presents an “arrow” relation of
the form 〈v0, σ0〉 → 〈v, σ〉, where σ0 and σ are the initial and final states, and
where v0 is the form of C syntax being defined. The nature of v depends on the
precise relation being defined.

The following tables summarise the functions used in the rule definitions.

Table 1 shows functions used to abstract away the details of value representation
in the abstract computer’s memory. Both functions are left to the implemen-
tation to define, subject to various constraints. For example, implementations
have licence to use one’s complement as a representation for signed numbers.
This decision is abstracted away in the use of µ.

Table 2 “state functions”, which calculate commonly needed values from the
current state of the program. These functions appear as superscripts to state
variables.

Finally, Table 3 shows those functions which are used to modify state values.

7

add se adds a side effect to the state
apply se applies a pending side effect
clear se clears side effect records
decl var declares a variable, allocating space and type information
init decl var as with decl var but also gives an initial value
inst parms installs parameters in a function call
mark ref records references to memory
mem trans copies memory component of a state onto another
remove refs removes references to memory
struct decl declares a new struct type

Table 3: state modification functions

2.3 Expression evaluation

Expression evaluation uses what is commonly called a reduction or “small-step”
semantics. The relevant relations are →e, and its transitive closure →∗

e. The
action of →e can be seen as a gradual transformation of a piece of syntax into a
value. Of course, for this relation to be properly typed, the syntactic forms have
to be extended to include C values, as these are not valid pieces of C syntax.

What is a C value? In the standard, a normal value is essentially a finite
sequence of bytes. A value has a type, and if numeric can be treated as a
number. All values of the same type take up the same amount of space. Values
may be aggregate, (i.e., contain other values), and a change to a constituent
value is considered a change to the whole. In this report, values are emphasised
by underlining, and are accompanied by their type. C refers to values resident in
memory as objects. A second form of value, the lvalues, also play an important
part in the semantics. An lvalue is essentially a reference to an object, and so
may often “decay” into that object’s value.

2.3.1 Extra syntactic forms and undefined expressions

In the course of performing a small-step expression evaluation, it is necessary
to introduce new intermediate forms that do not correspond to any genuine
piece of C syntax. These intermediate forms are used to signal to the abstract
machine that a certain stage has been reached.

For example, the short circuiting logical operators (&& and ||) use an interme-
diate form corresponding to the stage of evaluation where the first argument
has been evaluated, but the second has not yet finished. Cholera’s treatment of
lvalues also requires two new forms. These are Λ and R. All of these new forms
will be explained further when the rules that use them are discussed.

Finally, we need to add an undefined value to the semantics. When an expres-

8

sion does something that the standard classes as undefined behaviour, then the
expression in question reduces to a special form (written U). Once created, this
will subsequently bubble its way up to the root of the syntax tree.

2.3.2 Expression evaluation contexts

Following the example of other presentations of reduction semantics (e.g., [8],
and ultimately [7]) Cholera’s expression semantics makes use of evaluation con-
texts. Informally, an evaluation context is a piece of syntax “with a hole in
it”. Contexts provide a convenient way to generalise a whole family of evalua-
tion rules where independent reductions occur in sub-expressions. The following
rule, using the E context, captures most of the ways in which evaluation can
proceed in the sub-terms of an overall expression:

〈e0, σ0〉 →e 〈e, σ〉

〈E [e0], σ0〉 →e 〈E [e], σ〉

This rule should be read as “If expression e0 can reduce to e, altering state σ0

to σ in the process, then the expression formed by inserting e0 into the hole of
the context E can start in σ0 and reduce to the corresponding expression with
e in place of e0, finishing in state σ.” The allowed forms for E are:

E [–] ::= – � e | e � – | 2– | – && e | – || e | – , e |
–++ | –-- | – . f | – �= e | – = e | (t)– | R– |
– ? e1 : e2 | –(e1, . . . , en) | e(e1, . . . , –, . . . en)

Here � stands for any of the standard binary operators (+, *, | etc.), and 2

stands for any of the unary operators -, !, ~, &, * and the intermediate form

&̂|. Finally, the t is a type in the type-cast expression, and the f is the field
name of some struct type.

The sequenced behaviour of the logical operators && and ||, as well as the
comma operator and the ?: operator is apparent here; only an evaluation that
looks at the first argument is acceptable. Conversely, there are two contexts for
the binary operators, giving rise to a significant non-determinism; the evaluation
of the operands can be interleaved at all levels. In particular, evaluation of
(a + b) + (c + d) can see evaluation of the sub-expressions a, b, c and d occur in
any order.

The E context is also used in the propagation of the U value.

〈E [U], σ〉 →e 〈U , σ〉

9

2.3.3 Base cases—values out of memory

In this section I present the expression evaluation relation’s fundamental, “base
case” rules. These are the rules which bring values out of memory and into
syntax trees as they evaluate. Later sections define the ways in which values
can be combined, and subsequently put back into memory.

Constants Cholera assumes that constants’ types have already been statically
determined. A value consists of two parts, a list of bytes and an accompanying
type. The function µ takes a value and a type and returns an appropriate
bit-pattern for that type.

〈(n, t), σ〉 →e 〈(µ(n, t), t), σ〉

As before, the underlining indicates that the syntax on the right-hand side is
actually a value.

Variables and lvalues A variable denotes a piece of memory and its contents.
Cholera translates all variables into lvalues, using the following rule (the Λ lvalue-
constructor takes the variable’s address and the object’s type as arguments):

〈id, σ〉 →e 〈Λ(σα(id), στ (id)), σ〉

For any state σ, the function στ returns the type of the variable.4 Similarly, σα

returns the address of a variable.

In many contexts, the semantics requires lvalues to become normal values. This
is controlled by another relation, ;. This relation can not be part of →e

because there are contexts in which we don’t want to have the lvalue information
disappearing (assignment, for one).

t not an array type

〈Λ(n, t), σ0〉 ; 〈(σν
0
(n, t), t), mark ref(σ0, n, t)〉

For any state σ, σν(n, t) returns the object at address n with type t. The
specification of the type is necessary because objects in memory overlap, and
one needs, for example, to be able to specify that one wants a field of a struct

rather than the whole thing. The mark ref function takes a state, an address
and a type and returns a new state which differs from the first argument only in
that it marks the piece of memory denoted by the combination of the address
and the type as having been referred to.

4As all variables are declared before being used, we can use a function here, rather than a
typing relation, as is done in SML where types are inferred.

10

Now, mark ref is a partial function. It is undefined if the part of memory
it attempts to mark as read has also been updated, or if it is uninitialised or
unallocated. The corresponding rule is

mark ref(σ0, n, t) = U t not an array type

〈Λ(n, t), σ0〉 ; 〈U , σ0〉

The case when the lvalue is of an array type needs to be dealt with separately.
C makes no provision for the manipulation of array values, and instead specifies
that array lvalues are converted into pointers to their first element, which will
necessarily share the same address. It is this rule which prompts the common
(though inaccurate) comment to the effect that “arrays and pointers are the
same in C”.

〈Λ(n, Array(t,m)), σ〉 ; 〈(µ(n, t*), t*), σ〉

The only issue to resolve is when the ; relation should be allowed to “fire”.
This is done with another evaluation context, called L. L is the same as E except
that it omits both arguments of assignment expressions5, the arguments of ++

and --, the unary (“address-of”) & operator, and the field selection . operator.
The rule in →e is

〈e0, σ0〉 ; 〈e, σ〉

〈L[e0], σ0〉 →e 〈L[e], σ〉

Note that this rule means that lvalues at the very top level of an expression
evaluation will not convert into normal values. This is handled specially at the
statement level. The context L is also unnecessarily conservative when it comes
to array lvalues, as the standard calls for array lvalues to decay into normal
values in even more contexts than non-array lvalues. In Cholera, this failing
only means that the assignment operators need to check that their left hand
sides are not of array type.

Structure values The field selection operator . pulls values out of memory
through struct values. This operator is unique in that it can produce either
lvalues or normal values depending on the nature of its first argument. When
the operand is an lvalue, the rule is

〈Λ(n, struct s) . f, σ〉 →e 〈Λ(n + σξo(s, f), σξτ (s, f)), σ〉

5While it should be clear why the left-hand side of the assignment should be immune to
decay, it is less clear why the right-hand side needs this protection; this issue is addressed in
section 2.3.5

11

Here σξo returns the offset of fields within a struct type, and σξτ returns the
type of fields within a struct type.

If the first argument to field selection is a normal value, then the result is
also a normal value, created by copying out the list of bytes within the value
corresponding to the field in question.

〈(m, struct s) . f, σ〉 →e 〈(m′, σξτ (s, f)), σ〉

where
n = sizeof(σξτ (s, f))
m′ = m[o . . . o + n − 1]
o = σξo(s, f)

Pointers As we have already seen, the notion of pointers is fundamental to the
way in which lvalues are manipulated. There are two pointer specific operators,
dereferencing (*) and taking addresses (&). The first of these takes a pointer
value and returns an lvalue, subject only to the constraint that the pointer not
be a (void *), a void pointer. Such a pointer is used as the generic pointer, and
can be used to store pointer values of any type, but it can never be dereferenced.

t 6= Void

〈*(µ(n, t*), t*), σ〉 →e 〈Λ(n, t), σ〉

The & operator is the inverse of this, requiring an lvalue as an argument, and
returning a pointer value.

〈&(Λ(n, t)), σ〉 →e 〈(µ(n, t*), t*), σ〉

Function reference values The C Standard promulgates the view that there
is such a thing as a pointer to a function. This is a superficially appealing view
as it enables the exploitation of a syntax shared with normal pointers. However,
this view is extremely misleading semantically. The standard itself recognises
this with both its constant need to distinguish between pointers to objects and
pointers to functions, and with the admission that dereferenced pointers to
functions and pointers to functions play exactly the same rôle.

It is much more fruitful to think of a pointer to function type as a variable of a
function reference type. The constants of this type will be the functions defined
in the program, and a special null value. In a C function call f(x,y), f is either
a function in the program called f (i.e., f is a constant of the function reference
type), or f is a pointer to a function (a variable of the reference type, which will
either be a reference to an existing function in the program, or an undefined
value).

12

The Cholera semantics keeps pointers to objects and function references entirely
apart.6 The rule for function reference constants is

〈f, σ〉 →e 〈ϕ(f, στ (f)), σ〉

where ϕ is a function that takes a function identifier and returns the bit pattern
that will map to the function in question. Function “pointers” are dealt with by
the rule for variables as they are no more than variables of the function reference
type.

2.3.4 Value producing operators

The term “value producing operator” is meant to contrast with the side effect
operators detailed in Section 2.3.5. Value producing operators generate new
values, but do not modify the memory part of the program state. The first rule
is the most general:

� ∈ B

〈(m1, t1) � (m2, t2), σ〉 →e 〈σo(�, (m1, t1), (m2, t2)), σ〉

The operator function σo calculates the effect of the given operator (� above),
returning both the value and the type of the result. This is a state-based
function because the addition and subtraction operators admit the possibility
of being applied to pointers. In this case the calculation of the correct values
will require the size of a type; which in the case of structs requires reference to
information about the types of fields. The types of the operator’s arguments are
also required to allow the operator to perform appropriate conversions.7 Finally,
the operator function will return U if the operation is undefined (as in division
by zero, for example). The set B includes all of the standard binary operators
(addition, subtraction &c), but excludes &&, || and the , operator.

There is a very similar rule for the unary operators ~, ! and -:

2 ∈ {~, !, -}

〈2(m, t), σ〉 →e 〈σo(2, (m, t)), σ〉

There is one further unary operator, the type-cast. This takes values and con-
verts them to values of the specified type. This is not possible for all pairs
of types, but where it is possible, the semantics is very easy to specify in the
abstract.

6Strictly the standard calls for a third type of pointer, one to an incomplete type, but these
are an artifact of the static semantics and do not feature at the dynamic level.

7For example, adding an int and a long will cause the int to be converted to a long and
the result will also be a long

13

t1 and t2 are conversion compatible

〈(t1)(µ(x, t2), t2), σ〉 →e 〈(µ(x, t1), t1), σ〉

Note that it is also possible for µ to return U when a value is not representable
in a given type. (This can happen when attempting to convert float values to
an integral type).

The rule for the comma-operator is the first to involve a sequence point. Before
evaluation can proceed to the second argument of the expression, it must be
the case that all pending side effects have been applied. Furthermore, when the
evaluation then proceeds, the state must be updated to forget the references and
updates made up to this point. This is because the restrictions on references
and updates to the same object only hold between two consecutive sequence
points. The clear se function updates the state in this way.

no pending side effects in σ0

〈(m, t) , e, σ0〉 →e 〈R(e), clear se(σ0)〉

The R constructor forces an expression to become a normal value. It is used here
to prevent the result of the comma-operator expression from being an lvalue.
The only rule for R is

〈R(m, t), σ〉 →e 〈(m, t), σ〉

The logical operators: && and || Because of the presence of their sequence
points, and like the comma-operator, evaluation of both operators proceeds with
a definite ordering imposed. The E and L contexts already make it clear that
their first argument will evaluate as far as a normal value without the second
argument being looked at. The following rules specify what happens next. First
the short circuit cases, where the sequence points don’t come into play because
the first expression is able to determine the value of the whole expression on its
own.

t is scalar m = µ(0, t)

〈(m, t) && e, σ〉 →e 〈(µ(0, int), int), σ〉

And for ||:

t is scalar m 6= µ(0, t)

〈(m, t) || e, σ〉 →e 〈(µ(1, int), int), σ〉

A type is scalar if it is arithmetic (i.e., numeric), or if it is a pointer. In the case
where t is a pointer type, µ(0, t) is to return the null pointer value, which may
not necessarily be a bit pattern corresponding to the number 0.

14

When the logical operators do not short-circuit, a sequence point is reached, and
the evaluation must proceed with the second argument. The fact that this point
has been reached is recorded through the use of the intermediate constructor

&̂|. The rule for && in this situation is

no pending side effects in σ0 t is scalar m 6= µ(0, t)

〈(m, t) && e, σ0〉 →e 〈&̂|(e), clear se(σ0)〉

The rule for || is similar:

no pending side effects in σ0 t is scalar m = µ(0, t)

〈(m, t) || e, σ0〉 →e 〈&̂|(e), clear se(σ0)〉

The rules for &̂| are

m = µ(0, t) t is scalar

〈&̂|(m, t), σ〉 →e 〈(µ(0, int), int), σ〉

m 6= µ(0, t) t is scalar

〈&̂|(m, t), σ〉 →e 〈(µ(1, int), int), σ〉

The conditional operator The conditional operator ?: is ternary. Evalua-
tion begins with the evaluation of its first argument, and then depending on the
resulting value, the value of the whole expression is either the second or third
argument. This value can not be an lvalue. The type of the result is the same
regardless of which argument is chosen, and is calculated according to some rel-
atively complicated rules, which I omit. I assume that the type tc of the result
has been calculated already, given the types of the two sub-expressions. The
result of the sub-expression’s evaluation is cast to this type using the type-cast
operator.8

no pending side effects in σ0 t is scalar m 6= µ(0, t)

〈(m, t) ? e1 : e2, σ0〉 →e 〈(tc)e1, clear se(σ0)〉

no pending side effects in σ0 t is scalar m = µ(0, t)

〈(m, t) ? e1 : e2, σ0〉 →e 〈(tc)e2, clear se(σ0)〉

8Incidentally, this is the only place in the semantics where it proves necessary to know an
expression’s type without actually having to evaluate it.

15

2.3.5 Side effect operators

An expression that causes side effects will do so through the action of one of a
limited set of operators. Before describing these operators, I’ll first describe the
way in which side effects alter the contents of memory. Side effects are denoted
♣(n,m), meaning that the value m is to be written to the address n.9 The
variables η, η1 etc. are also used to denote side effects.

Recall that side effects are not applied immediately upon generation. Instead,
they are “queued” in a bag of pending side effects. At any time, the abstract
machine can pull a side effect from this bag, and apply it, updating memory
with the new value. The rule for this is

η is pending in σ

〈e, σ〉 →e 〈e, apply se(σ, η)〉

The apply se function applies the side effect chosen, and also records the fact
that the affected part of memory has been updated. The apply se function is
undefined if the update it selects from the bag tries to update a piece of memory
that has already been updated or referred to:

η is pending in σ apply se(σ, η) = U

〈e, σ〉 →e 〈U , σ〉

The assignment operator(s) C defines both a traditional assignment oper-
ator (written =) and a number of compound assignments, where the action of
the assignment is combined with that of a normal binary operator. The mean-
ing of e1 �= e2 is defined to be the same as e1 = e1 � e2 (� a binary operator),
except that the expression e1 is only evaluated once (clearly important in the
presence of side effects).

The Cholera semantics generalises these operators by defining rules for a general
compound assignment. The simple assignment case is assumed to be a com-
pound assignment where the operator is a special “right hand side operator” ♦.
This is defined so that e1♦e2 = e1.

Assignment expressions need to include an extra component, a bag containing
a record of all the references made to memory in the course of the evaluation
of an assignment expression’s right hand side. Assignment expressions will thus
be written as e1

β

�= e2, where β is the bag of references to memory, and � is the

binary operator compounded with the assignment. Furthermore, it is assumed
that the bag in an assignment expression is always empty when an evaluation
begins.

9The use of the club suit is meant to suggest that this is something that is about to clobber
memory.

16

Finally, it is assumed that the right-hand side of the expression will be wrapped
in an R constructor. This ensures that the expression there will decay to a
value, but also that it will do so in a way that the following rule for assignment
will be able to “see”.

A näıve version of the semantics might do away with the R and extend the L
to include the right-hand sides of assignment expressions. Unfortunately, this
would allow the following transition, which leaves the bag β unchanged, to take
place:

〈Λ(n, t), σ0〉 ; 〈m,σ〉
;

〈e1
β

�= Λ(n, t), σ0〉 →e 〈e1
β

�= m,σ〉
L context

The correct rule controls the evaluation of the right hand side and monitors the
way in which references to memory are made (recall the mark ref function).
Allowing the näıve version of the rules would give two rules scope over the
situation, and the monitoring of references could be bypassed, as in the above
example.

So, the first rule for assignment controls the way in which evaluation of the
assignment’s right hand side proceeds:

〈e2, σ0〉 →e 〈e′
2
, σ〉

〈e1
β

�= e2, σ0〉 →e 〈e1
β′

�= e′
2
, σ〉

where

β′ = β + (σρ − σ
ρ
0
) − (σρ

0
− σρ)

I use + and − above to represent the bag operations of addition and subtrac-
tion. The σρ “function” represents the bag of recorded references to memory
in the state σ. The expression for determining β ′ mimics the changes to the ρ

component of the state. Thus, if the evaluation of the right hand side e2 makes
additional references β1 such that σρ = σ

ρ
0

+ β1, then β′ will equal β + β1.

However, it is also possible that the reference maps of program states will de-
crease. This will happen every time a sequence point is encountered, for exam-
ple. The β component of the assignment syntax is therefore a bag of references
to memory made in the course of the evaluation of the right hand side, and
which are still current.

The motivation for keeping track of these references is revealed in the next rule.
Previously (in section 2.2.2) it was noted that the abstract machine is allowed
to make references to memory that may seem to clash with an update, if the
references were made in the service of calculating the updated object’s new
value. This is precisely what happens in an expression such as i = i + 1. This
“permission to refer” is implemented in the Cholera model of the semantics by

17

removing the appropriate references when the assignment takes place. The rule
is

〈(t1)σ
o
0
(�, (m1, t1), (m0, t0)), σ0〉 →e 〈(m, t), σ0〉 t1 not an array type

〈Λ(n, t1)
β

�= (m0, t0), σ0〉 →e 〈(m, t), σ〉

where
m1 = σν

0
(n, t1),

σ = remove refs(σ1, β, n, t1) and
σ1 = add se(σ0,♣(m,n))

The value (m, t) is found by applying the operator � to the appropriate memory
values, and then casting this to the correct type for the lvalue into which the
value is going. The state σ0 is modified by removing references in β to memory
corresponding to the object assigned from the reference map, and by adding the
updating side effect to those pending in σ0.

The term remove refs(σ, β, n, t) returns a state identical to σ, except that β’s
recorded references to or within the object at location n with type t are removed
from the recorded references of σ. The function application in add se(σ, η)
returns a state identical to σ except that it has the additional side effect η

pending.

Now, the question that naturally arises when confronted with these ugly two
assignment rules is whether or not they conform to the natural language of
“references to the object assigned are allowed on the right hand side”. There
are two criteria to assess: the rules should not make things undefined that are
defined in the standard, and vice versa, they should not give meaning to things
that are undefined.

Consider the first case. The only way in which these rules might make something
incorrectly undefined would be if an allowable reference in the bag β and thus
also in σρ were to clash with an attempt to update the same object elsewhere,
thereby falling afoul of the rule forbidding reference and update of the same
object. However, if such an update takes place, then the expression is undefined,
because the allowable reference is only a prelude to another update of the same
object. This has to cause undefined behaviour because two updates of the same
object are also illegal. So, the rules will not make a difference in this way.

We must also consider the possibility that the two rules might give meaning to
something which is actually undefined. This can not be, as our method of em-
ulating what is required actually records references that shouldn’t be recorded.
This can only make things worse as far as defined-ness is concerned.

Post increment and decrement The rules for the post-increment (++) and
post-decrement (--) operators differ only slightly. Although the rule does look
at the value of the object (using σν), it does not record this as a reference to the

18

object with mark ref. This is because, as with the assignment, this is clearly
a reference made in order to calculate the fresh value. After pulling the fresh
value out of memory, all that is required is to make the new value a pending
side effect.

So, the rule for ++ is

t is a scalar type

〈Λ(n, t)++, σ0〉 →e 〈(m, t), σ〉

where
m = σν

0
(n, t)

σ = add se(σ0,♣(n, σo
0
(+, (m, t), µ(1, int))))

The rule for -- is just the same except that + signs have been replaced by -

signs:

t is a scalar type

〈Λ(n, t)--, σ0〉 →e 〈(m, t), σ〉

where
m = σν

0
(n, t)

σ = add se(σ0,♣(n, σo
0
(-, (m, t), µ(1, int))))

Recall that pre-increment (++x) and pre-decrement (--x) are both handled by
assuming translation to the equivalent x += 1 and x -= 1.

2.3.6 Function calls—the interface with statement evaluation

The final form of expression is the function call. There are two rules for this
as there is a sequence point after the arguments and the function designator
are evaluated. The E context ensures that these “inner” evaluations take place,
so the following rule merely records the fact (using the new “hat” intermediate
syntactic form) that the sequence point has been reached.

no pending side effects in σ0 all of f and the eis are values

〈f(e1, . . . , en), σ0〉 →e 〈f̂(e1, . . . , en), clear se(σ)〉

The call to the function is evaluation in this final expression rule.

〈σϕβ
0

(f), inst parms(σ0, σ
ϕα
0

(f), [e1 . . . en])〉 →s 〈RetVal(m, t), σ1〉

〈f̂(e1, . . . , en), σ0〉 →e 〈(m, t), σ〉

where

σ = mem trans(σ1, σ0)

19

The ϕα function returns information (names and types) about function argu-
ments. This information is then used by the inst parms function to install the
argument values (e1 to en) in memory, and to update the environment infor-
mation stored in the state. The ϕβ function returns the body of a function, a
statement. The →s relation is the statement relation, while the RetVal con-
structor packages a function’s return values. These statement specific constructs
are further explained in the next section. Finally, the mem trans function copies
the memory component of the first argument over the rest of the second argu-
ment, returning the composite state thus constructed.

2.4 Statements

C’s statements are rather fewer in number than its expressions, and the rules
are also rather simpler. In particular, it is possible to write the rules in what is
often called “an evaluation-order”, “natural” or “big-step” style. The statement
relation →s maps from statement-state pairs to statement value-state pairs. A
statement value is one of the following limited set of possibilities, each describing
how statement execution has come to finish at this point.

BreakVal a break statement was encountered
ContVal a continue statement was encountered
RetVal(m, t) a return statement (with value) was encountered

StmtVal an ordinary evaluation termination

All but StmtVal interfere with the statement sequencing rule. There is also an
undefined value, represented as before by U . I use v to vary over statement
values.

2.4.1 Simple statements

Empty statements The first statement evaluation rule is that for the empty
statement, written here just using the ;.

〈;, σ〉 →s 〈StmtVal, σ〉

Expression statements An expression statement consists only of an expres-
sion, which is evaluated for the side effects caused. Note the use of R which
gives the expression a valid L context in which to evaluate values which may be
lvalues.

〈R(e), σ0〉 →
∗

e 〈(m, t), σ〉 no pending side effects in σ

〈e, σ0〉 →s 〈StmtVal, σ〉

Of course, the expression evaluation may go astray, in which case we promote
the expression undefinedness to the level of statements:

20

〈R(e), σ0〉 →
∗

e 〈U , σ〉

〈e;, σ0〉 →s 〈U , σ〉

2.4.2 Interruptions

The break, continue and return statements all interrupt the normal flow of
control. It is gratifyingly easy to express their semantics:

〈break, σ〉 →s 〈BreakVal, σ〉

〈continue, σ〉 →s 〈ContVal, σ〉

〈R(e), σ0〉 →
∗

e 〈m,σ〉 no pending side effects in σ

〈return e, σ0〉 →s 〈RetVal(m), σ〉

〈return, σ〉 →s 〈RetVal(∅), σ〉

There are two rules for return because it exists in two forms, both with a value
to be returned and without. In the latter case, I use the ∅ symbol to stand for a
null (empty) value. No well-behaved program will attempt to make use of such
a value, as it will only be returned by functions returning void.

2.4.3 Compound statements

Blocks Statements can be grouped together in a block. A block consists of
a list of variable declarations followed by a list of statements. When the state-
ments of a block finish evaluating, they will do so in an environment different
from the external one. This is rectified as the block exits by using the mem trans

function, which restores the environment components of the state.

〈[d1 . . . dn], σ0〉 →v 〈VarDeclVal, σ1〉 〈[s1 . . . sm], σ1〉 →s 〈v, σ2〉

〈{[d1 . . . dn][s1 . . . sm]}, σ0〉 →s 〈v, mem trans(σ2, σ0)〉

Even variable declarations are not immune to failure, so that the following rule
is also necessary:

〈[d1 . . . dn], σ0〉 →v 〈U , σ〉

〈{[d1 . . . dn][s1 . . . sm]}, σ0〉 →s 〈U , σ〉

(The VarDeclVal value and →v relation are explained in section 2.5.)

21

Statement sequencing A list of statements, as occurs in a block, is executed
in order, with the requirement that for execution to continue, the statement
value of the last statement executed must have been StmtVal. The base case is
the empty list:

〈[], σ〉 →s 〈StmtVal, σ〉

A normal evaluation proceeds according to the following rule:

〈s1, σ0〉 →s 〈StmtVal, σ1〉 〈[s2 . . . sn], σ1〉 →s 〈v, σ〉

〈[s1, s2 . . . sn], σ0〉 →s 〈v, σ〉

On the other hand, an interrupted evaluation (here an undefined result is also
effectively an interruption) will look like

〈s1, σ0〉 →s 〈v, σ〉 v 6= StmtVal

〈[s1, . . .], σ0〉 →s 〈v, σ〉

This means that interruption statements will cause all further statements in a
sequential composition to be skipped.

2.4.4 Conditional statements

There are three rules for the if statement. The first copes with the failure of
the guard to evaluate properly.10

〈R(e), σ0〉 →
∗

e 〈U , σ〉

〈if (e) s1 else s2, σ0〉 →s 〈U , σ〉

The two rules where the expression does actually evaluate fully are entirely
straightforward. If the guard expression evaluates to a non-zero value then the
first branch is evaluated, and its statement value preserved.

〈R(e), σ0〉 →
∗

e 〈(m, t), σ1〉 〈s1, σ1〉 →s 〈v, σ〉

〈if (e) s1 else s2, σ0〉 →s 〈v, σ〉

where

t is scalar, m 6= µ(0, t), and there are no pending side effects in σ1.

Otherwise, the second branch is chosen:

10C supports if statements without else branches, but these are trivially modelled with
else branches of the empty statement.

22

〈R(e), σ0〉 →
∗

e 〈(m, t), σ1〉 〈s2, σ1〉 →s 〈v, σ〉

〈if (e) s1 else s2, σ0〉 →s 〈v, σ〉

where

t is scalar, m = µ(0, t), and there are no pending side effects in σ1.

2.4.5 Iteration

There are three looping constructions in C, the while loop, the for loop, and the
do-while loop. Cholera models them all with two special intermediate syntactic
forms, the O (loop) and T (trap) constructors. The first is the basis for a generic
looping mechanism, and the second is a mechanism which allows interrupt values
to be intercepted or “trapped”. The O constructor takes the loop guard and
the loop body as arguments, while the T constructor takes the interrupt value
to be intercepted and the statement which will be executed. The translations
for the three loop forms in C are

while (g) s =̂ T (BreakVal, O(g, T (ContVal, s)))
for (e1; e2; e3) s =̂ {e1; T (BreakVal, O(e2, {T (ContVal, s) e3;}))}
do s while (g); =̂ T (BreakVal, {T (ContVal, s) O(g, T (ContVal, s))})

Note that the juxtapositioning of elements inside a pair of braces above indicates
sequencing; the semi-colon is used as a statement terminator, not as a statement
separator. The rule for the for loop should suggest that while a continue
statement in the loop body may interfere with the rest of the loop body, it
will not prevent the third expression from being evaluated.

There are two very simple rules for the T construction. If the value returned
by the statement wrapped up is the one trapped, then a StmtVal is returned
instead of what was going to be returned.11

〈s, σ0〉 →s 〈v, σ〉

〈T (v, s), σ0〉 →s 〈StmtVal, σ〉

Otherwise, the return value is passed through unchanged.

〈s, σ0〉 →s 〈v, σ〉

〈T (v′, s), σ0〉 →s 〈v, σ〉

where

v′ 6= v

11There are very clear parallels here with the way in which exceptions in a language such
as SML are caught; here the exceptions are very simple, atomic values.

23

There are four rules for O. The first two specify the behaviour when the guard
expression doesn’t evaluate to true, which can happen in two different ways. The
guard might result in undefined behaviour, in which case the loop’s behaviour
is also undefined.

〈R(g), σ0〉 →
∗

e 〈U , σ〉

〈O(g, s), σ0〉 →s 〈U , σ〉

Alternatively, the loop guard may evaluate to a zero value:

〈R(g), σ0〉 →
∗

e 〈(µ(0, t), t), σ〉 t is a scalar type no pending side effects in σ

〈O(g, s), σ0〉 →s 〈StmtVal, σ〉

If, however, the guard does evaluate to a non-zero value, then the loop is entered.
The first rule below covers those cases where the body doesn’t evaluate to a
StmtVal; this causes the loop to exit. Consider then how this rule interacts with
the translations of the standard C forms; if a continue statement is encountered
while evaluating a loop body, then this will have been trapped by the T that is
always wrapped around the occurrences of the body in the translation. Thus,
this rule will not apply. In the case of the break statement, this rule will apply,
but the BreakVal will be trapped by the trap around the entirety of the loop.

〈R(g), σ0〉 →
∗

e 〈(m, t), σ1〉 〈s, σ1〉 →s 〈v, σ〉 v 6= StmtVal

〈O(g, s), σ0〉 →s 〈v, σ〉

where

t is a scalar type, m 6= µ(0, t), and there are no pending side effects in σ1.

Finally, if the loop body’s execution does terminate normally, the loop is entered
once more:

〈R(g), σ0〉 →
∗

e 〈(m, t), σ1〉 〈s, σ1〉 →s 〈StmtVal, σ2〉 〈O(g, s), σ2〉 →s 〈v, σ〉

〈O(g, s), σ0〉 →s 〈v, σ〉

where

t is a scalar type, m 6= µ(0, t), and there are no pending side effects in σ1.

2.5 Variable declarations

Variables can be declared in two possible contexts, either at the start of a block,
in which case they are by default automatic variables (which will cease to exist
in any meaningful sense after the block exits), or they can be declared at the

24

top level, in which case they are static, and have lifetimes equal to the duration
of the program. It is possible to declare static variables inside a block, but this
possibility is one that this semantics side-steps. Instead I claim that static local
variables are actually global variables, but with unique names that only occur
in the block where the variable is declared.

Upon declaration, variables can also be initialised. This naturally involves use
of the →e relation. Finally, though not strictly a variable declaration, structure
declarations can also occur wherever a variable declaration is permitted.

The →v relation takes declaration-state pairs and returns value-state pairs.
There are only two possible return values for variable declarations, VarDeclVal,
representing a successful execution, and U for a descent into undefinedness.

The rule for basic (automatic) variable declaration is:

〈t v, σ0〉 →v 〈VarDeclVal, decl var(σ0, v, t)〉

The decl var function updates the state argument’s environment, allocating
the variable in question some space in memory (space appropriate for its type),
and changing the name to address, and name to type maps in the state (σα and
στ respectively).

When a variable is initialised with an expression, the abstract machine must
first evaluate the expression, and then place the resulting value into the space
allocated. Again choosing to abstract away from memory management mecha-
nisms, I merely assume the existence of a state-modifying function to perform
this latter function. Note also the use of the cast, in order to ensure that the
value generated is of the appropriate type for the variable.

〈(t)e, σ0〉 →
∗

e 〈m,σ〉 no pending side effects in σ

〈t v = e, σ0〉 →v 〈VarDeclVal, init decl var(σ, v, t,m)〉

Of course, expressions can go astray, and this is the only variable declaration
rule where undefined behaviour can result:

〈(t)e, σ0〉 →
∗

e 〈U , σ〉

〈t v = e, σ0〉 →v 〈U , σ〉

Finally, the third type of declaration is for declaring new struct types. This
requires both a name for the type, and the names and types for all of the
constituent fields. This information is stored in the ξo and ξτ components of
the state record.

〈struct tag fields;, σ〉 →v 〈VarDeclVal, struct decl(σ, tag ,fields)〉

25

3 Results

As mentioned before, the Cholera semantics above has been defined in the HOL
theorem prover. This has subsequently supported the proof of a number of
results relating to the semantics. Most of these have been proved with an eye
to their later use in verification. They are presented here with that as the
underlying motivation (see also [18]).

3.1 A derived “axiomatic” logic

Following Gordon [9], I have proved a number of theorems mimicking the ax-
iomatic rules of Hoare [14]. Though Hoare’s rules are axioms defining the se-
mantics of his language, here the operational semantics is the ultimate author-
ity. The theorems do not define the language, but are statements about the
properties of an existing logical entity. It is the intention that their similarity
to Hoare’s axiomatic rules should allow them to be used in verification work,
hiding the underlying complexity of the operational semantics.

C’s various “ugly” features mean that it is impossible to derive rules that are
exactly the same as Hoare’s originals. Rather than attempt to encapsulate all
of C’s complexity in a series of complicated rules, I have chosen instead to try
and characterise programs for which simpler rules hold. This results in rules
accompanied by various side conditions. In addition, the emphasis has been on
making these side conditions syntactic in nature. This means that simple static
tests can determine the applicability or not of the rules.

The triple {P} S {Q} is an assertion about the partial correctness of S; if S is
executed in a state where P holds, then, if S terminates, it will result in a state
where Q is true.

These principles are illustrated in the derived rule for sequencing:

{P} S1 {P ′} {P ′} S2 {Q}

{P} S1 S2 {Q}

where

S1 contains no interrupt statements.

It is easy enough to show that this rule is sound, given the rules for sequencing.
It is too conservative a rule, in that it will not apply to examples where the first
statement has (say) an unreachable break statement in it, but it should still be
useful.

There is also a nice rule for while loops, which is a simple variant on the usual
rule for loops that dodges the issue of expression evaluation in the guard g by
referring to the semantics of the if statement.

26

{I} if (g) S else ; {I}

{I} while (g) S {I}

Another rule (which might well be combined with the above, but is presented
separately here for the purposes of exposition) allows us to express a useful loop
termination property:

{P} while (g) S {was(!g)}

where

S contains no interrupt statements

The special was operator takes a C expression and specifies that the state to
which it is applied is one which might result from the execution of the expression
returning a non-zero value. In other words, it specifies that the expression eval-
uated to true and arrived at the current state in the process. This is reminiscent
of a dynamic logic in which the modality operator is backwards looking.

Unfortunately, was has no obvious nice properties that might allow it be the
basis for a C reasoning system. In particular, it doesn’t seem likely that a
system such as the one presented in Boehm’s work [4] could grow out of it.
Boehm’s system relies on expressions being both terminating and deterministic,
properties not true of C expressions in general. On the other hand, C does not
fall into the category of languages for which “nice” descriptions are impossible,
as described in [5], as it does not allow nested function definitions.

3.2 Further analysis of loops

The usual rule that one wants to be able to use when analysing loop executions
states that the negation of the loop’s guard is true when a loop terminates. In C
this is not the case because the loop may have terminated because of a return

or break statement. This means that a loop’s post-condition must instead be
a disjunction: it terminated normally and the negation of the guard is true, or
the loop terminated abnormally and some other post-condition holds.

I have written a function within HOL that analyses loop bodies and automat-
ically generates a post-condition corresponding to all of the abnormal ways in
which a loop might exit. I have subsequently proven that the condition gener-
ated by this function does indeed hold when a loop terminates abnormally. The
conditions generated are strong enough to be able to state that in the example
of Figure 1, either P and ex cond will be true, or P will be false. This assumes
that neither expression introduces any side effects. If either does, the analysis
that Cholera performs still generates correct statements of what must be true
when the loop exits, but they are rather more complicated.

27

while (P) {

if (ex_cond)

break;

...

}

Figure 1: loop with abnormal exit

If one wishes to keep the analysis of the code at the “axiomatic” level of the
previous section, alternatives to this approach involving multiple post-conditions
are also possible. An example of this is the presentation of a wp semantics for a
language with an exit statement [16]. Earlier work along the same lines is found
in [2]. In C, one would want triples with four postconditions, corresponding to
the three different forms of interruption and normal execution.

3.3 Purity analysis

Expressions cause would-be “axiomatic” rules about C so much difficulty be-
cause they might cause side effects. Yet there are plenty of C expression which
will never cause side effects. I have developed a theory of these pure expressions.

A pure expression can be used much as are the expressions in traditional ax-
iomatic semantics. Because their repeated evaluation does not alter the state
of the machine, they can be the basis for rules such as

{I ∧ G} S {I}

{I} while (G) S {I ∧ ¬G}

where

G is pure and S is free of interrupt statements

Furthermore, it is the case that some expressions must be pure because of their
syntactic form. This is a particularly useful subset of the pure expressions
because this syntactic categorisation allows one to do a simple check to confirm
that a rule applies.

Therefore, if one chose to program in a subset of C where impure expressions
were uncommon, a verification tool based on the derived “axiomatic” semantics
would frequently be able to apply rules such as that given above. With both side
conditions syntactically checkable, the tool would be able to decide automati-
cally that one was working within the scope of the easiest rules. Such a system
might have to plunge the user into the depths of the operational semantics if
particularly complicated forms were encountered, but might otherwise present
quite a simple interface.

28

4 Related work

C has not been a popular language for formalisation work in the past. How-
ever, as both theorem proving technology and the theoretical semantics tools
have improved, the prospect of managing what is inevitably a complicated and
tedious project has become less intimidating. A number of other authors have
attempted to formalise some aspect of C. However, none of them address the
modelling of sequence points and side effects in expression evaluation.

The only work for which this is probably not a significant issue is that of Black
[3], where the attempt is to describe C at a much higher level than this work.
Here, an axiomatic semantics is developed ex nihilo, and expressions are char-
acterised at a much higher level than in Cholera.

In other work, the details of expression evaluation are simply not correct. The
evolving algebra semantics of Gurevich and Huggins [11, 12] relies on the mis-
taken assumption that side effects are applied as they are generated, and that
expressions involving binary operators can be evaluated by evaluating all of one
argument before switching to the other. Its rules for binary operators effectively
assume a big-step style semantics:

〈e1, σ0〉 →
∗

e
〈v1, σ

′〉 〈e2, σ
′〉 →∗

e
〈v2, σ〉

〈e1 � e2, σ0〉 →
∗

e
〈v1 � v2, σ〉

〈e2, σ0〉 →
∗

e
〈v2, σ

′〉 〈e1, σ
′〉 →∗

e
〈v1, σ〉

〈e1 � e2, σ0〉 →
∗

e
〈v1 � v2, σ〉

Subramanian and Cook present a semantics for a subset of C in [19]. This work
has the distinction of having been done in the theorem-prover Nqthm. However,
this work assumes a particular order of evaluation for binary operators, and also
leaves out such features of the full language as interrupt statements (break,
continue etc).

Finally, Cook et al. in the unpublished [6] present a denotational semantics that
denotes C forms as expressions in a custom-built temporal logic. This semantics
also makes the convenient assumption that C’s expressions are evaluated left-
to-right, but explicitly mentions ways in which this might be improved.12 As
with all the other work reviewed, there is no treatment of sequence points and
the associated restrictions on expression evaluation.

5 Future work and conclusions

I intend to pursue a verification project using the Cholera semantics as the basis
for a proof in HOL of the correctness of some C code. Because Cholera doesn’t
deal with system and library calls, this verification can’t attempt anything like
the thttpd code of [3], but will rather look at the C code written by John
Harrison as part of his work on binary decision diagrams in [13]. This code is

12Although the improvements mentioned might result in the big-step non-determinism of
[12].

29

over 300 lines long, uses a hash table, linked lists as buckets, and a promote-to-
front strategy when searching the lists. It is thus quite a complicated example
of data structure use, and seems a realistic small-scale verification exercise.

Cholera represents an important first step forward in the application of formal
methods to the verification of C programs. On the way to this admittedly remote
and difficult goal, a formalisation of the language has been achieved, demon-
strating that the techniques of operational semantics can deal with the challenge
of such an inconvenient language. Moreover, the development of a groundwork
for program verification has required the proof of a number of “meta-level” re-
sults and the development of an “axiomatic” theory for abstracting away from
the full tedium of the operational semantics. These results have an appeal of
their own, independent of the verification context in which I expect to use them.
This work suggests that C is not the monstrous language of received wisdom,
but rather one about which it is possible to reason formally.

References

[1] American National Standards Institute, 1430 Broadway, New York, NY
10018, USA. American National Standard Programming Language C, ANSI
X3.159-1989, December 1989.

[2] Michael A. Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica,
11(2):139–148, 1979.

[3] Paul Black and Phil Windley. Inference rules for programming languages
with side effects. In J. von Wright, J. Grundy, and J. Harrison, edi-
tors, Theorem proving in higher order logics. 9th international conference,
TPHOLs 96, volume 1125 of Lecture notes in computer science, pages 51–
60. Springer, August 1996.

[4] Hans-Juergen Boehm. Side effects and aliasing can have simple axiomatic
descriptions. ACM Transactions on Programming Languages and Systems,
7(4):637–655, October 1985.

[5] Edmund M. Clarke Jr. Programming language constructs for which it is
impossible to obtain good Hoare axiom systems. Journal of the ACM,
26(1):129–147, January 1979.

[6] J. V. Cook, E. L. Cohen, and T. S. Redmond. A formal denotational seman-
tics for C. A draft document, available from Trusted Information Systems’
web-site at http://www.tis.com/docs/research/assurance/formal-c.html,
September 1994.

[7] M. Felleisen and D. Friedman. Control operators, the SECD-machine, and
the λ-calculus. In Formal Description of Programming Concepts III, pages
193–217. North-Holland, 1986.

30

[8] Andrew D. Gordon. Bisimilarity as a theory of functional programming.
Mini-course. BRICS Notes Series NS–95–3, BRICS, Aarhus University,
1995. Extended version of MFPS’95 and Glasgow FP’94 papers.

[9] M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current trends in hardware
verification and automated theorem proving. Springer-Verlag, 1989.

[10] M. J. C. Gordon and T. Melham. Introduction to HOL: a theorem proving
environment. Cambridge University Press, 1993.

[11] Yuri Gurevich. Evolving algebras: a tutorial introduction. Bulletin of
EATCS, 43:264–284, 1991.

[12] Yuri Gurevich and James K. Huggins. The semantics of the C program-
ming language. In E. Borger, editor, Selected papers from CSL ’92, volume
702 of Lecture notes in computer science, pages 274–308. Spring-Verlag,
1993. Corrected version available from University of Michigan web-site:
http://www.eecs.umich.edu/gasm.

[13] John Harrison. Binary decision diagrams as a HOL derived rule. Computer
Journal, 38(2), 1995.

[14] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–583, October 1969.

[15] Programming languages – C, 1990. ISO/IEC 9899:1990.

[16] Steve King and Carroll Morgan. Exits in the refinement calculus. Formal
aspects of computing, 7(1):54–76, 1995.

[17] Robin Milner, Mads Tofte, and Robert W. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, 1990.

[18] Michael Norrish. Derivation of verificiation rules for C from operational def-
initions. In J. von Wright, J. Grundy, and J. Harrison, editors, Supplemen-
tary proceedings of TPHOLs ’96, number 1 in TUCS General Publications,
pages 69–75. Turku Centre for Computer Science, August 1996.

[19] Sakthi Subramanian and J. V. Cook. Mechanical verification of C programs.
In First workshop on Formal Methods in Software Practice (FMSP ’96).
Association for Computing Machinery, January 1996.

31

