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Abstract

To act intelligently, agents must be able to adapt to changing behavioural possibilities.
Thfs dissertation proposes a model that enables them to do this. An agent learns
sensorimotor predictions from spatiotemporal correlations in sensory projections,
motor signals, and physiological variables. Currently elicited predictions constitute

its model of the world.

Agents learn predictions for mapping between different sensory modalities. In
one example, a robot records sensory projections as points in a multidimensional
space. It coordinates hand-eye movements by using closest-point approximations to
map between vision and proprioception. Thus, one modality elicits predictions more
closely identifiable with another. In a different example, an agent generalizes about a
car’s sensorimotor relations by weighting sensorimotor variables according to their
mutual influence: it learns to navigate without any a priori model of the car’s

dynamics.

With feedback from miscategorization, an agent can develop links betweeri
categorical representations and the relevant objects they distinguish. Wavelet analysis
* provides a neurologically plausible means of accentuating invariance that can subserve
categorization. In some experiments, categorical representations, derived from inter-
category invariance after wavelet analysis, proved to be efficient and accurate at

distinguishing different species of mushrooms.

In a simulation of fish chemoreception, agents learn sensorimotor predictions that
uncover salient invariance in their environment. Predictions are formed by quantizing
a sensory subspace after each dimension has been weighted according to its impact on
physiological variables. As these predictions also map from motor signals to likely
changes in sensory projections, the agent can chain backwards from desired outcomes

to form plans for their attainment.
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Chapter 1. Symbol Systems and Symbol Grounding

Introduction

This dissertation explores how robots might learn internal symbols for represehtation
that are grounded in sensorimotor activity. It outlines a possible path to robots that
learn to interact with their environment directly—that is, without need for a pro-
grammer to anticipate what they must respond to and how they must respond to it.
The approach is ecological, sensorimotor, and adaptive in the sense that it takes
account of the fact that a robot’s relation to its environment depends on internal

adaptations that are conditioned by its particular body, internal variables, and history.

Symbol systems have proved to be very powerful at simulating essential proper-
ties of thought. Unfortunately, there have been serious problems with explaining how
extrinsic properties of the world could influence the causal roles of their symbols.
This dissertation seeks ways to exploit the strengths of symbol systems while
overcoming some of their weaknesses, especially those related to their symbols’ lack

of grounding.

What is a Symbol System?

Working in such disparate fields as psychology, neuroscience, philosophy of mind,
linguisticé, and artificial intelligence, proponents of symbolic representation have set
themselves a highly ambitious task: the explanation or simulation of thought and its
physical manifestations. To this end many of them have exploited a powerful tool
and metaphor. It has even been called the only game in towﬂ. It emerged in part from
synergy between propositional logic and the technological marvel of our day, the
digital computer. I am referring here to the symbol system. Most attempts to
operationalize thinking share much in common with it. Its symbolic representations
are often said to reflect a mental realm of concepts and relations which serve to
represent actual objects and events. In stronger versions these representations are

expressed formally in what Fodor (1975) calls a language of thought or mentalese for




short. Harnad (1990a) reconstructs from Fodor (1975), Newell (1980), Pylyshyn
(1980) and others the following definition of a symbol system:

A symbol system is (1) a set of arbitrary physical tokens (scratches on
paper, holes on a tape, events in a digital computer, etc.) that are (2) ma-
nipulated on the basis of explicit rules that are (3) likewise physical to-
“kens and strings of tokens. The rule-governed symbol-token manipulation
is based (4) purely on the shape of the symbol tokens (not their
“meaning”), i.e. it is purely syntactic, and consists of (5) rulefully com-
bining and recombining symbol tokens. There are (6) primitive atomic
symbol tokens and (7) composite symbol-token strings. The entire sys-
tem and all its parts—the atomic tokens, the composite tokens, the syn-

- tactic manipulations (both actual and possible) and the rules—are all (8)
semantically interpretable: The syntax can be systematically assigned a
meaning (e.g. as standing for objects, as describing states of affairs). (p.
336)

Like Descartes’ pineal gland, an intended purpose of a symbol system is to link
the mental and the material (Stoutland, 1988). It is meant to offer an intermediate and
functional level of explanation between physics and the beliefs, goals, and desires of
folk psychology. This level has been dubbed the cognitive level. According to Fodor
and Pylyshyn (1988), “any level at which states of the system are taken to encode
properties of the world counts as a cognitive level; and no other levels do” (p. 9).
Analogies have been drawn between symbol systems and computer software because
a symbol system’s operation is conceived of as being independent of any particular
physical realization, be it a digital computer or a brain (e.g. Dennett, 1991). Because
under this theory mental states can be implemented in limitless ways, mental

categories do not necessarily reduce to brain categories.

A long historical development of ideas lies behind symbol symbols. Key
components may be found in the work of Leibniz (195'0). Inspired by Hobbes’ view
of all reasoning being mere calculation, in De Arte Combinitoria Leibniz sought to
devise a logical calculus on an idea from his schooldays that all complex concepts were
but combinations of a few elementary concepts. Researchers have only seriously
explored the ramifications of this in the last forty years. To cite one example,

Masterman (1961) developed a semantic network for machine translation at Cam-




bridge; she constructed a dictionary of 15,000 concept entries from a mere 100

primitive concept types (e.g. STUFF, THING, FOLK, BE, DO).

Some Useful Properties of Symbol Systems

Underlying the symbol system approach is the premise that cognitive processes
perform their function by virtue of their attunement to the constituent structure (i.e.
the syntax) of mental representations. In summarizing this position, Fodor and
Pylyshyn (1988) state that a typical cognitive process transforms any mental
representation satisfying a particular structural description into a mental representa-

tion satisfying a different structural description (p. 12). Additionally, symbol

systems have the property that we can systematically relate the semantics of a

representation to its syntax. The over-all semantic content of a complex representa-

tion is detérmined by its constituent structure plus the semantic content of its
syntactic parts. Harnad likewise highlights the utility of symbol systems being
systematic: in order that propositions may be assigned a semantic interpretation
(Harnad, 1990a, p. 343). According to Fodor and Pylyshyn, constituent structure
depends on the parts as well as the whole being semantically evaluable (p. 19).

They further elucidate how two ideas from computation have formed the bedrock
of ‘classical’ theories of cognition. Both require the postulation of a syntactic level

distinct from the physical and semantic level:

The first idea is that it is possible to construct languages in which certain
features of the syntactic structures of formulas correspond systematically
to certain of their semantic features. Intuitively, the idea is that in such
languages the syntax of a formula encodes its meaning; most especially,
those aspects of its meaning that determine its role in inference. All the
artificial languages that are used for logic have this property and English
has it more or less. (p. 28) [The second idea] is that it is possible to de-
vise machines whose function is the transformation of symbols, and
whose operations are sensitive to the syntactical structure of the symbols

that they operate upon. (p. 30, emphasis removed)

Fodor and Pylyshyn show how these two ideas straightforwardly conjoin in the

notion of a symbol system:




If, in principle, syntactic relations can be made to parallel semantic rela-
tions, and if, in principle, you can have a mechanism whose operations on
formulas are sensitive to their syntax, then it may be possible to con-
struct a syntactically driven machine whose state transitions satisfy se-
mantical criteria of coherence. Such a machine would be just what’s
required for a mechanical model of semantical coherence of thought; cor-
respondingly, the idea that the brain is such a machine is the foundational

hypothesis of Classical cognitive science. (p. 30)
Fodor and Pylyshyn justify the reliance of classical theories on constituent

structure on the grounds that it explains the systematicity, productivity, and inferential
coherence of thought (pp. 33-49; Fodor, 1981, pp. 147-149). As they explain,

systematicity arguments infer the internal structure of mental representa-

tions from the patent fact that nobody has a punctate intellectual compe-
tence (p. 40). [Clognitive capacities always exhibit certain symmetries
so that the ability to entertain a given thought implies the ability to en-
tertain thoughts with semantically related contents (p. 3).

This ability is understood to be intrinsic to the system (p. 37). They take the
systematicity of thought to follow from that of language:

[J]ust as you don’t find people who can understand the sentence ‘John
loves the girl’ but not the sentence ‘the girl loves John,’ so too you don’t
find people who can think the thought that John loves the girl but can’t
think the thought thét the girl loves John. Indeed, in the case of verbal
organisms the systematicity of thought follows from the systematicity of
language if you assume—as most psychologists do—that understanding a
sentence involves entertaining the thought that it expresses. (p. 39) '

After presenting several more illustrations of systematicity, they reiterate, “all the

evidence suggests that punctate [i.e. unsystematic] minds can’t happen” (p. 49).

The productivity of thought is based on the assumption that people can entertain
an unbounded number of belief states. “Productivity argurﬁents infer the internal
structure of mental representations from the presumed fact that nobody has a finite
intellectual competence™ (p. 40). (As was the case with systematicity, this stance
mirrors a Chomskyan argument about linguistic competence; it derives from the fact
that people can understand and produce an unbounded number of sentences.) To

explain the productivity of thought without recourse to constituent structure would



require an unrealistic—indeed, astronomical—number of unique internal categories (or

microfeatures, see p. 23).!

Fodor and Pylyshyn cite two standard counter-arguments in response to the
challenge that behaviour is less systematic and productive than classical theories
predict. Since the theories model competence and not performance, they are not
required to account for errors or limitations in human performance. Finite perform-
ance could result from “the interaction of an unbounded competence with resource
constraints” (p. 34), and apparently nondeterministic behaviour could be caused by
“the interaction of multiple deterministic sources” (p. 58). The former might explain,
for example, why people cannot understand sentences of arbitrary complexity; the

latter, why they make grammatical errors.

As for inferential coherence, Fodor and Pylyshyn draw attention to how the

. syntax of a mental representation connects it with its inferential role:

The rule of existential generalization 'applies to formulas in virtue of their

syntactic form. But the salient property that’s preserved under applica-

tions of the rule is semantical: What’s claimed for the transformation

that the rule performs is that it is truth preserving. (p. 28)
They, however, make an important distinction. “The point of Classical modeling
isn’t to characterize human thought as supremely logical” because syntactic transfor-
mations might preserve semantic properties other than truth-value (e.g. “warrant,
plausibility, heuristic value, or simply semantic non-arbitrariness™). Rather, “it’s to
show how a family of types of semantically coherént (or knowledge-dependent)
reasoning is mechanically possible. Valid inference is the paradigm only in that it is
the best understood member of this family.” (fn. 19)

The ideas motivating symbol systems may be summarized as follows: Intentional
states (thoughts, desires, and the like) are semantically interpretable (because they are

about things). Many have found it reasonable to assume that, moreover, these states

! Chalmers (1993) among others have shown Fodor and Pylyshyn’s (1988) attacks on
connectionism, and exposition of its limitations, to be seriously flawed. Nevertheless,

they well summarize the assumptions underlying classical cognitivist approaches.



have causal powers (most importantly, the power to cause behaviour).? But, as
Turing (1950) made clear, a digital computer’s symbols can also be semantically
interpretable and causally effective. Their causal powers derive from how the
symbols are instantiated in physical materials. In modern-day computers they most
often depend on the physical properties of silicon, such as those influencing its

electrical conductivity.

The trick is for the computer to manipulate the symbols syntactically, based on
how they are realized physically, while maintaihing—as much as possible—their
semantic coherence. Thus, for example, given symbols that are valid propositions, the
computer is to infer other symbols that are also valid propositions. It appears
possible at least to set up highly constrained symbol systems that allow symbols to
act causally without much (if any) loss of semantic coherence (e.g. automated theorem
provers). However, for decades a nexus of problems has beset the simulation of more
general kinds of intelligence. Sometimes falling under the rubric frame problems’, they
relate to an agent’s need to take actions and predict their consequences in an ever
changing world. These problems expose the difficulty in maintaining a correspon-
dence between internal symbols and external states of affairs. These difficulties can

arise even in deterministic “blocks worlds.””*

? For an opposing viewpoint see, for example, Churchland (1986).

* McCarthy and Hayes (1969) originally identified the frame problem with the program-
mer’s problem of how to set up an agent’s representational form within the situational
calculus so that the agent could predict that most facts about the world were unaffected by
its action without recourse to frame axioms (also see Hayes, 1987). However, as a
number of contributors in Ford and Pylyshyn (1996) have pointed out, the frame
problem has come to be associated with more general problems of temporal reasoning.
These include (but are not limited to): the prediction problem, the revision problem, the
qualification problem, the control problem, Hamlet’s problem (see Janlert, cﬁap. 4), the
relevance problem, the holism problem,. the relevance-holism problem (see Lormand,
chap. 6), the persistence problem, the temporal projection problem, and the ramification
problem (see Morgenstern, chap. 8). In chapter 7, we examine the frame problem and

related problems in greater detail.

‘In fact, the original frame problem first arose in a completely deterministic environ-

ment in which the effect of every action was codified in the situation calculus.




Besides the frame problem, there is a further obstacle in using symbol systems to
model intentional states. According to Fodor (1994b) a thought’s inferential (ie.
causal) role cannot fix its content because the content depends at least partly on its

relation to external states of affairs.” If this is right,

then (some of) the intentional properties of thoughts are essentially ex-
trinsic; they essentially involve mind-to-world relations. But we are still
following Turing in assuming that the computational role of a mental rep-
resentation is determined entirely by its intrinsic properties (its weight,
shape, or electrical conductivity, as it might be). The puzzle is that it is,
to put it mildly, hard to see how the extrinsic properties of thoughts could
supervene on their intrinsic properties.... But the idea that the imple-
mentation of intentional laws is computational is the only serious cogni-
tive science we’ve got; without it, the semantic coherence of the
intentional is completely a mystery. (p. 299)

Hume (1975, 1978) had proposed that laws (or prmclples) of association
structured thought—in particular, spatiotemporal contiguity, resemblance, and
causation. (The latter he claimed was based on contiguity and ‘constant conjunc-
tion’.) However, Fodor (1994) scoffs at the idea that such laws could attune the
causal relations between mental representations to keep them true to the external
world. “As everyone has known since Kant—but somehow forgets every thirty
years or so—semanti(':ally coherent processes are not, in general, associative; and
associative processes are not, in generél, semantically coherent” (p. 296). Fodor’s
rejection of associationism, which he criticizes for being insensitive to structure,
follows from his conception of thinking—fundamentally, in terms of structure-
sensitive operations (Fodor & Pylyshyn, 1988, p. 67).

Nevertheless, a symbol system that generates propositions purely on the basis of
properties intrinsic to that system (e.g. a symbol’s constituent structure) cannot
model how real intentional states come to be connected to the things they represent.

We shall turn to this point next.

> The reasons for this will become increasingly clear in chapters 2 and 3, where we discuss
category induction (see, Harnad, 1987; Schyns, Goldstone, and Thibaut, in press). Also
see externalist arguments in the philosophy of language.



The Symbol Grounding Problem

To date the most successful models of higher-level intelligence have been symbolic.
However, these models typically suffer from a basic limitation pertaining to how
symbols are related to the external world. Harnad (1990a) has identified this limita-
tion as the symbol grounding problem. Symbol systems typically rely either on

(1) a human designer to hardwire connections between internal symbols

and external states of affairs, or on

(2) ahuman user to feed in symbols as input and then interpret and act on

the symbols the system outputs.

In other words, symbol systems typically require a separate perceptual system—
either a human mind or connections explicitly set up by a human mind—to map and
maintain a consistent mapping between the symbol system’s active representations
and the states of affairs they are supposed to denote in the physical world.® In either
case, as Harnad notes, their intentionality is parasitic on human minds. This, of

course, places limits on their capacity to model both natural and artificial intelligence.

In the absencé of symbol grounding, Harnad (1990a) likens the activity of a
symbol system to someone who does not know Chinese (or any other language)
trying to learn Chinese from a Chinese-Chinese dictionary. You want to know what a
symbol refers to, so you look it up, only to find more meaningless symbols. You
move from symbol to symbol without ever arriving at the actual thing that the symbol
represents. Thus, to escape infinite regress, the meaning of some symbols must not

be derived from other symbols.

Jakob Fries drew similar conclusions concerning scientific statements and what he
called the predilection for proofs. He argued that the call for all statements to be
logically justified by other statements leads to infinite regress. He concluded that the
mediate knowledge represented in the symbols of a language must be justified by the

S Point (8) merely asserts that the symbols are grounded. It is unclear whether this means
the symbols ‘are required to be interpretable to the agent of which they are a part or
merely to an outside observer (see Dennett, 1987)—presumably both. Devising large-
scale representational systems capable of maintaining semantic coherence is difficult

because of the symbol grounding problem and the frame problems.




9

immediate knowledge of perceptual experience. Haugeland (1985) 'discusses infinite
regress in the derivation of symbol meaning in relation to Al programs whose only
connection to the world is through textual exchanges with their users. Once again,
only in the mind of their user are the symbols of these programs connected to the
things they represent. In Plato’s Cratylus Socrates also argued that knowledge of
things cannot be derived from symbols but must be gained through an investigation of

interrelations between things.’

As Kant pointed out in his Critique of Pure Reason, by itself a formal definition
of a dog is not sufficient to recognize a dog when you see one. Schyns, Goldstone,

and Thibaut (in press) explain this in more contemporary terms:

there is a conceptual difﬁculfy with the idea that (innate) theoretical
knowledge constrains perceptual information: Going from theories to
predict perceptual data is underconstrained. To illustrate, if a categorizer
is instructed that a set of objects with an unknown complex structure is a
set of hammers, an existing theory of hammer would list the components
representing these objects in memory. However, unless the theory also
specifies all possible perceptual appearances of these components, a seg-
mentation procedure would still have difficulties locating the actual parts
in a new object: The perceptual realization of the parts depends on the
new stimulus itself. This problem is analogous to the symbol grounding
problem (Harnad, 1990). (§3.3.1)

The flip side of the symbol grounding problem is what Harnad terms the herme-
neutic hall of mirrors (Harnad, 1990b, 1990c). He notes that, not only are a symbol
system’s operations—and the resulting output—semantically interpretable (by point
eight of the definition), but that their property of systematicity ensures their
c‘oherlence.8 As he explains, this means that our interpretation of the system’s present

and future output will continue to corroborate past interpretations. However, our

7 “How real existence is to be studied or discovered is, I suspect, beyond you and me. We
must rest content with the admission that knowledge of things is not to be derived from
names. No; they must be studied and investigated in their connection with one another.”
(Plato, 1953, pp. 104-105)

® This is an in principle argument, which assumes that the symbol system can deliver as

promised. In practice, there is still the frame problem and other problems to overcome.
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interpretation plays no role in the workings of the symbol system; its operation is
driven solely by the application of formal rules to representations, both of which are
intrinsic to the system. We alone fix the meaning of the symbol system’s output.
But, as Harnad advises, there is always the danger that semantically-coherent symbol
manipulation will lull the user iﬁto a false sense that the system actually knows what
its talking about—in spite of the fact that the connection between its symbols and the

world depends only on the user.

Harnad (1993) proposes that the frame problem is another consequence of not
letting external properties of the world influence the causal role of symbols. He
suggests that the reason ungrounded symbol systems suffer from the frame prob-
lem—the reason they suddenly produce a result that utterly clashes with our
interpretation—is because they have only formal, syntactic constraints governing
their operation. What they lack are bottom-up nonsymbolic constraints. Thus, their
behaviour is hopelessly underdetermined. In the coming chapters we shall be looking

at ways to build systems that are grounded in these nonsymbolic constraints.

Summary

An essential feature of intentional states is that they are about circumstances in the
outside world. The fact that we can recognize this means that they are, at least to
some extent, semantically evaluable. Common sense—whether it be right or wrong—

tells us that intentional states also have causal powers: we act because of what we

believe.’

It so happens that we can order a computer’s symbols in such a way that they are
both semantically evaluable and causally effective. This has lead to the development
and study of symbol systems. Symbol systems are representational systems that
manipulate symbols systematically—that is, according to their ¢onstituent struc-
ture—while maintaining their semantic coherence. Many cognitive scientists

recognize that our mental faculties must (more or less) encompass properties of

° One example of the prevalence of this-assumption is the fact that it underlies our legal

system and how it apportions responsibility.
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symbol systems in order to explain the systematicity, productivity, and inferential

coherence of human thought.

A problem arises because intentional contents are at least paftly determined by
their relation to the external states of affairs they represent. ' But if this is the case,
how can the exclusively intrinsic properties of a symbol system wholly determine the
causal role of intentional contents? Somehow we need to let these extrinsic properties

in; we need to let them influence the workings of the symbol system.

The symbol grounding problem is one consequencé of not letting them in: the
. problem of causally connecting a symbol system’s internal symbols to the external
objects, events, and states of affairs they represent (Harnad, 1990a). For symbol
systems to model embodied cognition, the meaning of a symbol cannot be derived
solely from the meanings of other symbols. To let a human user’s interpretation of
the symbols ground them cannot explain extrinsic aspects of intentional contents
because the user is standing in for the very aspects that we seek to explain. For an
engineer simply to hardwire connections between internal symbols and external
objects is equally unsatisfactory because of the difficulty of anticipating what new

symbol categories a system might need a priori.

Harnad (1993) proposes that ungrounded symbol systems suffer from the frame
problem because their operations are underconstrained: they only have formal,
syntactic constraints but are completely lacking in nonsymbolic, bottom-up con-
straints (see chapter 7). In chapter 3 we examine his candidate solution to the symbol
grounding problem: that an empirical process of category induction grounds (at least

some) symbols from the bottom up (1990a, 1987).

Overview

Chapter 1. Symbol systems have proved useful for characterizing the systematicity,
productivity, and inferential coherence of intentional contents. - But as presently
conceived they fail to explain how extrinsic properties could bear on their symbols.
Their causal role is determined purely in terms of properties intrinsic to the system.
Harnad (1990a) has identified the symbol grounding problem with the problem of
causally connecting the system’s symbols with the external objects, events, and states

of affairs they are supposed to represent.
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Chapter 2. Theories which propose to ground all symbols by means of the a priori
feature detectors of an encapsulated perceptual module only beg questions: How did
the detectors evolve? How do they detect new kinds of invariance? How can
encapsulated sensorimotor constraints influence 'reasom'ng? Encapsulation and a
priori feature detectors pose problems not only for understanding intentional states
but also for developing clever robots. As behavioural possibilities depend on variable
bodily and environmental relationships, a robot needs flexible representations that can

adapt to unanticipated change.

Chapter 3. Harnad (1987, 1990a) proposes a theory of category induction: an agent
empirically develops categorical representations that are causally linked with the
sensory projections of the'objects they distinguish. These representations exploit the
i1‘1variant features of objects with the aid of feedback from miscategorization. Wavelet
analysis provides one neurologically plausible way to accentuate invariance prior to
categorization. Daugman (1980) has used 2-D Gabor wavelets to account for cortical
cells’ sensitivity to scale, localization, orientation, and quadrature phase relationships.
In experiments I found that categorical representations could efficiently and accurately
distinguish different species of mushrooms. The representations were derived from

inter-category invariance in the ihput after it had been decomposed using wavelets.

Chapter 4. Intelligent robots could learn predictions from spatiotemi)oral correlations
in sensory projections, motor sigrials, and internal variables in order to detect and
exploit changing behavioural possibilities. Memory-based models, which learn
sensorimotor relationships, have proved to be more flexible, robust, and biolggically
plausible than conventional models for robotic control because they are capable 6f
adapting to bodily and environmental change without human intervention. Clocksin
and Moore (1989) have shown that a robot can learn to map from stereoscopic vision
to proprioception. Their approach can be made to conform with a broadly defined
theory of representation based on neurophysiological predictions (Sommerhoff &
MacDorman, 1994, §5) and it can be used to integrate sensory information from a-
wide range of sources through the mutual elicitation, maintenance, and revision of

predictions.

Chapter 5. In a simulation, a robot builds up a mapping from a remote-controlled
car’s current perceived state and motor signals to its perceived state in the next time

step. Based on limited experimentation, it extract correlations between different
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sensorimotor variables and uses this information to predict its dynamics in novel
states.  Thus, its empirically developed model allows it to plan optimal paths

through unvisited areas of its environment.

Chapter 6. A fish simulation is used to outline an empirical, bottom-up approach to
grounding cognitive categories. The agent stores in a coordinate space information
about its motor signals, current sensory projections, and predicted future values of
internal variables. Through a process of quantization and progressive refinement, it
forms categorical representations that can detect relevant sensorimotor invariance.
Instantiated representations reflect the presence of particular objects and agents in the
environment. The fish exploits these representations to discover and home in on food

and avoid dangers.

Chapter 7. We propose three ways of moving the fish simulation towards the
behavioural capacities of a symbol system without sacrificing its bottom-up ground-
ing: (1) learning to map from (leamed).extemal categories and motor signals to
consequent external categories; (2) enhancing its mapping by removing incidental
categories; and (3) learning to exploit constituent structure. SymbolA systems usually
have only formal, syntéctic constraints. Harnad (1993) points out that, although

these systems are underdetermined, their semantic interpretability can lead us to

| overinterpret them. Evidence revealing this is typically identified with the frame

problem. Learned bottom-up constraints could help a robot’s representations better
capture the stabilities of the world by limiting the formally admissible to the empiri-
cally admissible.

Appendix A. The point of the appendix is not to propose a reinforcement-based
alternative to symbol systems, since there is not enough evidence to posit such an
alternative. It is rather to show that the reinforcement learning models that have been
mathematically explored in Al tend to suffer from their own problems of grounding
states and actions. In these systems it is-normally the robot’s designer who must
determine how raw sensory data is mapped onto the set of possible perceived states.
Additionally, the choice of action is usually artificially constrained. Appendix A
proposes a method of state and action generalization based on an extension of Q-
learning. It permits both states and actions to be empirically grounded in sensorimo-

tor projections.
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Chapter 2. A Review of Some Past Approaches

Introduction

In this chapter we will examine f‘odor’s theory of perceptual analysis. The intended.
purpose of his theory is to show how representations can be causally linked with the
objects they represent. It is typical of many theories that are based on a ﬁxed set of a
priori features—for example, Biederman’s (1987) Recognition-By-Components or
Schank’s (1972) Conceptual Dependency. These theories categorize and represent
objects (events, relations, etc.) by means of nondecomposable atomic elements. As
noted in the last chapter, a finite set of atomic elements and rules for their combina-
tion can be used to generate an unbounded number of representations. Moreover,
they can be used to represent systematic relations among objects (see Fodor &

Pylyshyn, 1988). However, fixed features come at a price:

Fixed feature theories limit new representations to new combinations of
the fixed features. Consequently, all possible categorizations are bounded
by the possible combinations of the features.. If a categorization requires
a feature not presented in, or derivable from the feature set then the cate-
gorization cannot be learned. This is a rather limiting view of representa-
tional change. There may be occasions when features not originally
present in the system are useful for distinguishing between important
categories in the world that newly confront the organism. (Schyns et al.,

in press, §1.1)
By employing a fixed set of a priori features, it is possible to seal off a symbol
system from the details of sensorimotor activity. This can simplify such traditionally
symbolic tasks as abstract planning. Unfortunately, as we shall see, it also seals off

the symbol system from the very bottom-up constraints that could help to improve

planning and to circumvent the symbol grounding and frame problems.
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Fodor’s Perceptual Analysis

Although Fodor criticizes Hume’s associationism, his language of thought hypothesis
has certain points of compatibilify with it. Fodor (1975) allows for the composition
of complex representations from atomic symbols as the result of experience. This is
analogous to how Hume conceived of complex ideas developing from simple ones. As
Hume first put forth in his Treatise of Human Nature (1739), “The idea of a sub-
stance... is nothing but a collection of simple ideas, that are united by the imagination,
and have a particular name assigned to therri, by which we are able to recall, either to
ourselves or others, that collection” (1978, p. 16). In his Enquiries Hume asserts that
we can conceive of a virtuous horse because we can conceive of virtue and unite that
with the familiar figure of a horse (1975, p. 19). This resembles Fodor’s suggestion
that the concept airplane may be composed of the concepts flying and machine on the
basis of experience (p. 96) or Harnad’s (1990a) suggestion that zebra may be
composed of horse and stripes. It is worth noting that the system’s capacity for
representing airplane is intrinsic to the system; it only requires the combination of

existing terms. The combination is, nevertheless, provoked by experience.

Where Harnad and Fodor differ is on the question of how symbols are to be
grounded. Whereas Harnad favours an empirical approach whereby objects are
rendered identifiable by associating their invariant features, Fodor favours a nativist
version of mentalese whereby they trigger concepts that are already latent in the mind.
This controversy, long predating mentalese, has raged in philosophy since the time of

Locke and was later to infect psychology.

Both Fodor and Maze (1991) are critical of mentalese empiricism. They consider
it to beg the question: if it is possible for perception to organize:symbols into
hypotheses like the robin is on the lawn by association, “where do ‘robin’ and ‘lawn’
and, for that matter, ‘being on’, come from? It must be obvious that the acquisition of
the background knowledge presents just the same difficulties as the interpretation of
current sensory information.” (Maze, 1991, p. 173) As Fodor (1975) points out, “If,
in short, there are elementary concepts in terms of which all the others can be

specified, then only the former needs to be assumed to be unlearned” (p. 96).

Fodor proposes a nativist solution to the problem of grounding the concepts

expressed in a language of thought. He posits a passive mechanism of perceptual
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analysis that derives symbolic representations of real objects from sensory data (the
raw unstructured readings of physical parameters). Demons, each sensitive to a single
physical property, shriek yes or no depending on \;vhether a hypothesis is present or
absent in the environment. These demons activate innate elementary concepts which,

once properly combined, are used to reason formally about the world.!°

Part of the controversy surrounding perceptual analysis has resulted from its
apparent support for the existence of a ‘grandmother cell’ (a neurone which fires
whenever you recognize your grandmother). (This may be a misconception.)
However, similar architectures have won supporters in the neurosciences. Marr
(1982) proposed a theory of stereoscopic vision based on feature detectors analogous
to Fodor’s shrieking demons.!! The results of experiments on feature recognition in
monkeys (e.g., Fujita et al., 1992) have suggested to some that visual memories may
be written in an alphabet of iconic figures (Stryker, 1992) not unlike Leibniz’s
“alphabet of human thoughts” (1951, p. 20). This interpretation contrasts with the
. view that recognition and recall are evoked by- highly distributed brain activity
(Rumelhart & Norman, 1981; Rumelhart & McClelland, 1986; Smolensky, 1988).2
This distributed account has lead others to conclude that it may be impossible to

translate between thoughts and brain activity, for example, by means of an intervening

9 In characterizing perception in terms of a cacophony of demons, Fodor drew-inspira-
tion from Selfridge’s (1959) demon-based pandemonium model. However, it is doubtful
whether Selfridge himself would have approved of the use Fodor makes of demons. Fodor
implies that the causal connection between external states of affairs and the activation of
demons is set up a priori. Selfridge, by contrast, proposed a kind of learning: evolving a
population of similarly constructed demons by means of natural selection (p. 523).

Clearly, Selfridge did not conceive of perceptual categories as being a priori.

! Starting from the bottom up, he first proposed algorithms for extracting edge
segments, blobs, boundaries, and orientations from a static scene and then for discrimi-
nating groups of these primitives according to their size, orientation, and spatial
arrangement. These computations yielded three levels of representation: the primal, 2
1/,-D, and 3-D sketch.

'2 The difference between the notion of a grandmother cell and distributed connectionist
representation may only be a matter of degree. It is quantified in Valiant’s (1994)

mathematical theory of representation and retrieval in the brain.
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cognitive level such as a language of thought (Stern, 1991). But it is unlikely that
Fodor and Pylyshyn ever saw this as the purpose of mentalese, as they argued for the

autonomy of psychology and the irreducibility of intentional states.

By proposing an a priori method of transducing elementary concepts from
sensory projections, Fodor’s nativism, exemplified by Marr, does not constitute a
radical depamre from the empiricist tradition. Although Hume (1975), its quintes-
sential figure, believed that our ideas were not innate, he claimed that our impressions
were (p. 22)." And as our simple ideas, according to Hume, are just copied from and
caused by these impressions, it takes only a small step to conclude, as Fodor does,

that simple ideas are already latent in the mind.

While Maze and Fodor agree that symbols cannot ultimately be grounded

empirically, Maze also attacks Fodor’s nativist view:

By elementary concepts he seems to mean natural kinds, which, he points
out, cannot be subjected to ‘deﬁnitial. elimination’ without loss of mean-
ing. Thus, the innate language must be provided with terms for every
natural kind which we can potentially identify, which would include, jusf
for a start, every one of the millions of species of animals, birds, fish, in-
sects, vegetable life and so on with which the world is stocked. (1991, p.
173)

Interpreted in this way, Fodor’s nativism implies that we are hardwired to recognize

specific things, like Antarctic penguins and DNA molecules, that our ancestors have
never before seen. This would require a miraculous feat of evolution.!* (However,

Fodor may not adhere to such an extreme position as the one Maze extrapolates from
his reading of him.)

Maze concludes that the mentalese theory of the mind must be false because

'* Hume argued that ideas were not innate because the blind cannot form any idea of
colours nor the deaf of sounds as long as neither had experienced the corresponding

impressions (1975, p. 20). Hume’s term impression includes affect.

" The anthropic principle has been invoked to justify it. The argument, imported from
physics, is that if the universe were not the way it is, we would not be here to witness it.
It is not a denial of evolution, but it does permit highly improbable evolutionary

occurrences. In physics it is used only a last resort.
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(1) its symbols would be solipsist if ungrounded and
(2) its symbols cannot be grounded, neither empirically nor innately.

Maze’s first point may be arguably true. In places Fodor (1980) indeed appears to
maintain that cognition is solipsist and that this is unfortunate but must be accepted
(in his words, “it’s tough but true”). Maze’s second point rémains an open ques-
tion—one that can be answered empirically. In the robotic case, a preliminary
chemoreceptive simulation in chapter 6 suggests that reiaresentations can be grounded
on the basis of empirical and evolved ad’aptatibn. This is further suppoi'ted by recent
advances in many areas of pattern recognition (e.g. optical character and face recogni-

tion).

Nevertheless, we must grant Fodor that, since any category resulting from real-
time learning could have existed already, in principle robots and even humans and
other animals could be grounded solely by means of innate elementary ‘categories and
combinations thereof. Nevertheless, it seems unlikely that all or most of our catego-
ries are innate (see chapter 3), and it is especially unlikely that a robot engineer could
second guess how to set up the right causal connections to ground a robot’s categories

a priori,

The dichotomy we have set up in this section between nativism and empiricism
(i.e. arguments supporting category learning) is perhaps dated and simplistic. It has
become increasingly clear that most behaviour demands some form of learning (see
chapter 4), which “is often innately guided, that is, guided by information inherent in
the genetic makeup of the animal. In other words, the process of learning itself is
often controlled by instinct” (Gould & Marler, 1987, p. 62) Category learning must,

to some extent, be driven and biased by evolved biological constraints.

The Constraints of Modularity in Robotics

Traditional academic robotics is compatible with mentalese nativism, although few in

the field would exhort this philosophical stance. The robot Shakey designed at SRI is
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a good (though hackneyed) example of this design methodology (Nilsson, 1984)." Its

| programmers furnished it with a stock of symbols and operator rules. The robot used

the symbols to compose propositions. These propositions represented states of
affairs such as relations between nearby objects. The robot scanned its environment
in a perceptual stage to determine which propositions to include in its internal
description of its surroundings. It might represent the presence of a box at a doot-
way, for example, as at (box, doorway). Solving éproblem involved finding a chain of
operator rules whose application would transform the propositions in the robot’s
current state to those in its goal state. Each rule (e.g., for moving a box) had certain
preconditions (like the robot being at the box) and resulted in certain additions and
deletions to the robot’s world description (the location of both the robot and the box
having changed). The chain of operator rules served as an action plan for the robot to
carry out. This sensorimotor process involved matching internal symbols against

external objects so that the robot could locate and move the objects.

The trouble with this approach is that it demanded that Shakey be stocked with
symbols for every elementary object and relation it could possibly be required to -
handle.'® Otherwise, whenever it needed a new symbol to represent a new elementary
concept, its programmer would have to add it. So long as Shakey remained within the
confines of the simple environrhent of boxes and platforms expressly set up for it, the
robot’s symbols appeared to be grounded. If removed from that environment, it could
not function at all. This may be owing to the fact that Shakey had to rely on its
programmer to set up a causal relation between its internal symbols and the objects it

detected.

It is unlikely that the adaptability of robots with this kind of architecture could
approach that of most vertebrates, let alone human beings, because ‘Fl}_e programmer

may not be able to set up the appropriate causal relation or anticipate the robot’s

"“Shakey’s planning system is based on STRIPS (see Fikes & Nilsson, 1971). Brooks
(1991a, b) has been one of the strongest critics of the application of symbol systems to

robotics.

16 Although more recent systems can make deductions on the basis of derived relations, -
they still do not learn new elementary relations and categories from their sensorimotor

activity.
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future need for an elementary category. An exception to the latter would be if we let
the programmer tinker with the robot as its environment changes. But to do as much
would be to include the programmer in our overall conception of what constitutes the
robot. This would be unacceptable in any robotic system that is intended to explain
how the mind works. This is because it introduces a homunculus, the programmer,
who entirely duplicates the talents of the mind the robot’s workings were meant to
help explain (Dennett, 1979, p. 123). What is need.ed is a different sort of explanation

of how an agent may become sensitized to objects (for discussion, see Smith, 1995).

Today it may seem unfair to criticize Shakey, a robot developed almost thirty
years ago. However, up-to-date robotics systems like SOMASS (Malcolm, 1995),
designed by researchers who write about symbol grounding, try to make a virtue of
Shakey’s design limitations. In SOMASS the intention was to make the clearest
possible séparation between the classical symbolic planning module and the behav-
iour-based plan execution module so that the implementation-dependent details of
sensorimotor coordination would not complicate symbolic planning or limit it to a
particular problem domain. In the planning module, a particular instance of an object
is represented solely by types and combinations of types. In a robot with ,sénsing
equipment, presumably these types would be instantiated by feature detectors. Since
types by their very nature abstract away analogue and instance-dependent detail,
information crucial to sensorimotor coordination—such as information about an
object’s contours—is lost. This information is important for manipulating objects of
varying shapes and sizes. In SOMASS, its handling is kept away from planning down

in the plan execution module.

In the spirit of Fodor’s The Modularity of Mind (1983), SOMASS tries to encap-
sulate planning from sensing and motor control by placing it in a sepafate module.
The system’s innovation is exhibited by how it handles the complex task of interfac-
ing the planning and behaviour—based module. The benefit of such a scheme over
earlier systems, which lack encapsulated modules, is clear: it requires much lésé work
for the programmer to adapt the robot to a new problem ddmain or to a new suite of
sensors and actuators. In earlier systems it often proved necessary to reprogram the

system from scratch.

Unfortunately, the SOMASS approach is unsatisfactory from the standpoint of

grounding internal representations adaptively. This is because its modularity
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artificially divides planning and sensorimotor activity and makes untenable assuﬁp-
tions concerning their relationship. Before considering why, let us first recapitulate
Fodor’s (1981, 1983) apparent line of argument. According to Fodor, a symbol
system is necessary to explain the productivity and systematicity of thought and
language. But sensory projections do not represent the world in a form that a symbol
system can process (e.g. amodal types). Thus, Fodor concludes, it is the function of
perceptual analysis to provide the symbol system with representations in a form that
it can handle. This form is not analogue but comprised of well-formed strings of
symbols. He claims that perceptual analysis accomplishes this tokenization by

filtering out irrelevant variability in the analogue sensory input.

In the context of SOMASS, the case against this argument is that 1t 'is improbable
that the programmer can specify in advance precisely what kinds of variation a robot
will never need to consider in the planning module in order for the behaviour-based
module to execute, in the face of changing circumstances, intelligent movements. (This
also holds if we replace the programmer with a learning or evolutionary process.)
There is nothing wrong with SOMASS as a practical system set up by a programmer to
function in a simple and predictable environment. But as a model of real intentional

systems, it fails on the symbol grounding issue.

Encapsulation may prevent a robot from learning to detect new elementary
categories and from adding new elementary symbols to its planning module. . Why is
this so? The purpose of having the robot learn new symbols is so that it can make
plans about currently relevant—but as yet unrepresentable—features of the world.
But these features depend on, and must be extracted from, analogue sensory projec-
tions and motor signals. This implies that the formation of new elementary symbols
depends on an interplay between symbolic planning and (analogue) sensorimotor
information. In SOMASS this information is available only to the behaviour-based
module. Its strict division between planning and sensorimotor control places a heavy
burden on the interface between them (which was not designed to be aciaptive)
because it must translate between sensorimotor transformations and changes in

propositional descriptions of the environment. An alternative is for the robot to use
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representations of sensorimotor transformations as the basis for category formation

and planning about the world (see chapters 6 and 7).!”

According to Fodor (1987), the same elementary concepts and logical syntax that
can be used to define ‘kosher’ concepts can also be used to define any number of
‘kooky’ concepts (pp. 145-146). This excess of freedom and lack of stability in
logical formalisms is a major cause of the frame problem (see Janlert, 1996) But
(pace Fodor) the rules we posit for keeping kooky concepts out of our fepresenta—
tions should be none other than the bottom-up perceptual and empirical constraints
that SOMASS’s planner lacks (see Harnad, 1993, Schyns et al., in press, and chapter
7.

In sum: if our intent is to develop a system that can ground its own symbols,
there are at least five reasons why ot to place an artificial rift between planning and

sensorimotor coordination:

(1) Itis difficult to devise an interface that can translate between analogue
and propositional forms of representation without it being dependent
on a priori symbol categories. However, if the system cannot Jearn
new elementary categories, there may be vital sensorimotor invariance

that it can neither recognize nor learn to recognize.

(2) Often an object’s analogue features must enter into abstract planning as
well as movement execution. These features influence not only how,
for example, the robot would need to angle an object to get it through a
narrow passageway (i.e. plan execution) but also whether the passage-
way were wide enough (i.e. planning itself: is the plan even possible?).
The planner may not be able to take advantage of some opportunities
because this would require it to have access to linrepresented analogue

features of the environment.

(3) While, within a sufficient degree of accuracy, it may be possible to rep-
resent analogue information propositionally, this may carry prohibi-

17 Similarly, Glenberg (1997) proposes that, to model its world, an agent uses analogue

trajectories that develop in memory from meshed sensory projections.
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tively high computational demands (see Janlert and Pylyshyn in Ford
& Pylyshyn, 1996).

(4) According to Janlert (1996), to solve the frame problem one must find
a representational form that preempts the need for reasoning about
stabilities. Janlert believes that what the frame problem is ot about is
finding a better algorithm—one that avoids unnecessary computation
(pp. 43-44). By then it is too late: you have already let empirically in-
admissible concepts seep into your representational form. SOMASS’s
symbolic planner founders on this point because its form does not ex-
clude propositions that should be inadmissible because of bottom-up

constraints (see Harnad, 1993).

(5) It seems plausible that analogue features of particular past episodes
might influence thinking without their having been typecast in advance.
Higher-level thought may depend not only on the ability to draw on
ever more abstract categories but also on the ability to draw on par-
ticular cases that appear superficially remote but bear an abstract rela-

tion to the matter at hand.

A main motivation behind SOMASS was to save time and money. It eliminates the
need to hire someone to rewrite the robot’s program from scratch for each new
problem domain. A more adaptive system, however, miglﬁ be able to relearn what
had previously required reprogramming. Nevertheless, a learning system would still
face the problem of properly integrating knowledge of a new .domain with previously
acquired expertise. Maintaining stability in planning across different environments
remains an important issue, and there may be lessons to be learned from SOMASS—
even for systems that are grounded from the bottom up in learned sensorimotor

categories.

Learning Behavioural Possibilities: A Robot’s World-modelling

Behavioural possibilities vary according to individual differences. Ethology provides
a groundwork for expressing this (e.g. Hinde, 1987). Baron von Uxkiill (1934)
discussed in several publications differences among species in how they might relate

to the same physical environment. It has become clearer that, although other species
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may inhabit the same world that we do, they fill very different niches. An external
wall that functions as a barrier for humans may be a bird’s landing spot and nesting
place. In psychology Gibson (1979) proposed, shortly before his death, a theory of
affordances. 1t related perception to the varying behavioural possibilities that the
physical world affords each species. This view, in one form or another, may be traced
back at least to Tolman (1932). According to Tolman, living organisms can only
know objects as potential behavior-supports. Tolman was a behaviourist (though far
less simplistic in outlook than many of his contemporaries who spoke only in terms
of reflexes). He believed it to be the psychologists duty to describe objects in terms
of the specific sensorimotor adjustments they evoke in an organism. He contrasted
psychology with physics because physicists attempt to distil from their description
of an object all the particular sensorimotor conditions that could occur when an -
organism is faced with that object. They aim to déscribe objects in terms of abstract
characteristics, namely, those that remain constant regardless of whether the subject is
human or rodent, hungry or lustful, finned or winged. This is, of course, something

psychologists can never do.

Even physics’ account of the external world is, in the last analysis, an ul-
timately, though very abstracted, behavioral account. For all knowledge
of the universe is always strained through the behavior-needs and the be-
havior-possibilities of the particular organisms who are gathering that
knowledge... But what outside reality may be, in and for itself, abstracted
from all human behavioral needs and all human behavioral capacities, we
do not, cannot, and need not know. (Tolman, 1932, pp. 430-431)
It may be possible to extend Tolman and Gibson’s insights to the social domain.
A number of theorists have proposed that primate intelligence has its origin in the
selective demands of social interaction (Jolly, 1966, Humphrey, 1976; Cheney &
Seyfarth, 1990). In a social setting, relationships and individual differences add a new
level of complexity to the task of recognizing and acting on behavioural possibilities.
Here we are dealing not so much with the properties of matter as the potentialities of
other minds and, in particular, the ability of individuals to develop unique and
productive relationships. Primates (and other vertebrates) need to develop predic-
tions not only about the consequences of their motor activity relative to the physiéél
world but also about their closely-coordinated interactions with particular individuals,

interactions that have repercussions that may be interpreted at many. levels of
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abstraction. One may note, for example, that a baby girl’s mother does not afford her
fnilk in the same way that a blanket affords her warmth. Mothers have minds of their
own, and the girl’s own mother may sometimes afford her a whack. Nevertheless, we
need not assume that interactive categories, such as those involved in guessing another
person’s preferences, involve category induction that is different in kind from that

required for nonsocial categories.

A robot’s perceptual system reflects different commitments from those of its
designer’s perceptual system. This is because robots do not have human bodies and
human experience. Their sensors and actuators are very different from our own.
What is salient to a robot may not be what is salient to a human no matter how hard

we try to make it so.

This realization may sound obvious but in the Al community it has only come
after years of trial and error. The point of early robotics projects was to get robots to
recognize and label what are fo us objects. More precisely, they were meant to
identify, on the basis of the proximal sensory projections of distal objects, phenom-
ena denoted by English lexemes. They would then reason about these objects and

manipulate them accordingly.

Most researcher assumed that whole objects and complex features were defined in
terms of a fixed set of a priori features.'® Robots could then be programmed to detect
those features and to use this information to identify whole objects. This decomposi-
tion of the problem mirrored decompositions found in neurophysiological models.
Early AI work appeared to confirm it. This was largely because of allowances that

were made in the design process. Researchers carefully crafted objects that could be

'® This assumption is not limited to AL As Schyns et al. (in press) note, “many recent
approaches to categorization have continued to use stimuli that ‘wear their features on
their sleeves.” Clear-cut dimensions with distinct values are often used for reasons of
experimental hygiene” (§1.1). In psychology these facts have created an experimental
bias in support of fixed feature sets. Schyns and his colleagues argue that functionally-
determined constraints on features “should be defined by the environment and not simply
by the experimenter” (§2.1). “Experimental materials are more likely to promote
feature creation when they are not designed with a priori diagnostic features, leading to

obvious feature decompositions” (§4).
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easily recognized by the robots that were, in turn, designed to recognize them. 'fhus,
the correspondence between object and representation was built into the relationship
between robot and environment. This is possible when both world and cognizer are
the product of the same designer. Unfortunately, this made it easier for robot
experiments to corroborate assumptions about fixed feature sets; their design

prevented them from really putting fixed feature assumptions to the test.

Systems conceived along these lines simply .did not scale up, and even their
designers have temporarily put aside the hope that their robots could produce and act
on a complete description of their surroundings (see Brooks, 1991b). For example,
many systems now use deictic representations (e.g. the box in view) instead of trying
to keep track of information across time about which object is which (e.g. box #7 is at
location xyz)." Some robots are able to respond to phenomena without labelling
them—or at least when they do use labels they are neither designed nor intended to
cover human-imposed classes of things. Nevertheless, within limits we can at least

interpret the behaviour of these robots as being directed and purposeful.

Now that we have the necessary hardware to embody and test our theories about
the mind, presbsure has mounted to reconcile our picture of both mind and brain.
Much is currently being written on the subject of hybrid systems. Indeed, many
hybrid systems are under development. They -graft together low-level pgprally-
inspired models for sensing and motor control and higher-level symbdlic models of
reasoning about the world. Some of these hybrid systems will fail to live up to
expectations because like SOMASS they ignore the symbol grounding problem. The
resulting problems will expose weaknesses in the separate and distinct theories that
inspired the system’s parts and, in so doing, bring the symbol grounding problem to
the fore.

' For example, instead of having a moth-eating bat just keep track of the one or two
moths that it can most easily catch, a traditional AI approach might have it trying to
identify every moth that came within its range (e.g. as the fifth moth among eight). If it
failed to identify a moth, it would issue it a name (e.g. moth #9) before pursuing it.
(Given sonar’s limited resolution, in addition to beifig pointless, such a design probably

would not work.)
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With our current understanding, probably the fastest way to get robots to perform
certain practical tasks is to place hard constraints on their perceptual systems—for
example, by explicitly programming them to recognize the things We need them to.
However, if our aim is to develop robots that behave intelligently; philosophical
insights as well as experience in academic robotics suggest that this approach is not
enough. To avoid this we need first to develop a foundational understanding of
embodied intelligence beneath the engineeri.ng problem. Hence, we should not focus
only on short-term practical benefits. This means developing robots that work within
more flexible constraints. Certain constraints will always be necessary because
perceptual clusterings of salience do not simply pop out of the physical structure of
an individual’s sensory projections. Some form of feedback is necessary—either from
natural selection, internal variables, or both—concerning the sensory data’s relevance
to the individual’s needs and potential behaviour. The robot should have the -
wherewithal to learn to recognize new objects, to discover what patterns in its flux of
sensorimotor input are salient. The patterns it settles towards will be its objects of

perception as influenced by, among other things, its body, goals, and past.

If Martian scientists wished to understand how human cognitive processes work,
they might start by trying to surmise what kinds of things people respond to (see
Quine, 1960, 55ff; Gordon, 1992). However, if these Martians, having evolved under
different conditioné, were sensitized to different perceptual categories (perhaps they
only see infrared light), they probably would have trouble guessing what it was that a
human individual saw. Even if they could thoroughly probe a person’s brain, they
still would not know everything that person saw because they would not be able to
see it themselves. One cannot step outside the limits of one’s own perceptual
system, although one may succeed in extending the limits of that system (science and
technology have been of enormous benefit here). Now when the Martians turn to
theorizing about humans, just like us they would be able to name the things they had
names for, and with time no doubt they would invent more names. Nevertheless,
some aspects of our world would fall through the gaps. No matter who is doing the

theorizing, something is always lost.?

%% This is not to deny that, in a sense, something should be lost. Theories only approxi-

mate aspects of the world that are relevant to our interests, and this is all they are meant
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The limitations faced by these hypothetical Martians would not be unlike those
faced by human scientists when trying to understand the workings of the adaptive
systems they set up. If the wrong approach is taken in the development of robots,
the limitations of the cognitive systems of robot designers could pose a more serious
threat to robot adaptability than any hardware constraint. Perhaps one reason natural
selection has been able to evolve marvellously complex and adaptive creatures is

because it does not and cannot impose such limitations.

Summary

So far symbol systefns have offered the best hope f‘or modelling the systematicity and
productivity of thought and language. However, for them to model embodied
cognition or to serve as a basis for robotic activity, some of their symbols must be
causally- connected to the outside world. The analogue nature of sensory projections
prevents symbol systems from processing them directly. As a consequence, some
theorists posit a separate perceptual module that works beside the symbol system.
Its purpose is to present the sym‘bol system with representations of the world that it
can process and, thus, to maintain consistency between the system’s internal symbols
and the world they represent. The perceptual module is supposed to do this by
filtering out irrelevant variations in the sensory input—for example, by using a fixed

set of feature detectors.

This approach has the benefit of encapsulating the symbol system from the
messy details of sensorimotor coordination. This can make for simpler, cleaner
planners that robot engineers can more readily adapt to new sensors and actuators or
to new problem domains. Unfortunately, in realistic environments it may not be
possible to specify in advance what kinds of sensorimotor invariance will be relevant
to planning. Encapsulation and fixed features pose the following problems for a

symbol system:

to do. As Tolman pointed out, if a theory reproduced the complexity of the world, it
would lose its usefulness as a map “for finding one’s way about from one moment of
reality to the next” (Tolman, p. 425).
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 They only delay explanation of how extrinsic relations help to deter-
mine the causal role of intentional states. After all, how did the fixed

set of feature detectors originate and why is it now fixed?

* They may hinder a robot in learning new features and planning in terms

of them.

* They prevent the analogue features of an object from playing a some-

times necessary role in the process of reasoning about the world.

o They release the symbol system’s representational form frbm bottom-
up constraints. Unfortunately, these are precisely the constraints that
could have limited the form to the expression of empirically admissible
concepts. Thus, they undermine our best hope for overcoming the
frame problem (see Harnad, 1993; Fodor, 1987; Janlert, 1996; and
chapter 7). ' '

For agents to behave intelligently, they must be able to recognize—or learn to
recognize—the changing behavioural possibilities the world affords them. These
possibilities vary between individuals according to differences in body and ability and
also according to the relationships that have developed among them. As we shall see
in the next two chapters, learning appears to play an important role in how an agent
categorizes its environment and m developing sensorimotor predictions that are

responsive to bodily and environmental change.

Before technology was available to test cognitive‘ theories in embodied systems,
separate theories were developed to explain high-level thinking and low-level percep-
tion. The assumption was that they. could one day function together as modules in
hybrid systems. This is probably too optimistic. But the attempt to integrate these
different theories will have the beneficial ‘effect of forcing us to face the symbol

grounding problem and, as a result, to rethink our theories of cognition.
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Chapter 3. Category Induction for Symbol Grounding

Introduction

Psychologists have begun to uncover 'experimental evidence which challenges theories
based on a fixed repertoire of a priori features. Instead, Schyns and his colleagues
propose that high-level cognitive processes acting under perceptual constraints help
to guide the creation of new features—for example, by means of corrective feedback
from miscategorization (see Schyns et al., in press; Wisniewski & Medin, 1994;
Harnad, 1987). They found that subjects tended to decompose objects into those
parts that were diagnostic in categorization. With experience we leam to processes
stimulus categories and dimensions separately that were originally processed together.
This difference is most obvious when comparing children with adults (Smith &
Kemler, 1978; Ward, 1983). Though young children may at first categorize all round
object as balls, gradually they learn to narrow their lexical categories (Chapman,
Leonard & Mervis, 1986; Clark, 1973). This evidence supports the view that our

categorizations influence which features are used in representing objects.

Schyns and his colleagues (in press) explain the advantages of developing features

in object concepts (§2.7):

(1) The ability to learn features that distinguish objects makes for features

that are both flexible and constrained.

(2) Evidence for a proposed set of hardwired features could be explained

by an equivalent set of learned features.

(3) Afixed set of a priori features must anticipate many potential but as
yet unused categorizations. Since every learned feature must have been
formed to subserve at least one categorization, a learned set should

have far fewer extrancous features.

(4) Learning permits features to be tailored to the categorizations they are
used to make. This lessens the need to have complex rules for making

categorizations with a less specialized fixed set.
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(5) Feedback from miscategorizations can cause features to be decomposed

into subfeatures capable of subserving the correct categorization.

In this chapter we shall begin to explore category induction’s potential to aid in the

development of symbol systems that are grounded from the bottom up.

Harnad’s Theory of Category Induction

The connectionism versus symbolic representation debate has seen a history of rival

claims made about the adequacy of each methodology in modelling mind, brain, and

behaviour.?!

Harnad (1990a) suggests, however, that a successful theory may be
required to capitalize on the strengths of both. He proposes that neural networks or
other statistical learning mechanisms might be able to form basic categorical represen-
tations from invariant features in the environment. The categorical representations
could develop causal links with sensory projections through “the -acquired internal
changes that result from a history of behavioral interactions” with the distal objects
they represent (p. 343). These representations could serve as grounded elementary

symbols, and a symbol system could be built out of them from the bottom up.

Specifically, learning mechanisms would create iconic and categorical representa-
tions. Iconic representations (IRs) are analogue copies of “the proximal sensory
projections of distal objects and events” (Harnad, 1990a, p. 335). They result from
“an analog transformation,” retaining much of “the spatiotemporal structure (i.e.,
physical ‘shape’) of the input or proximal stimulus” (1987, p. 552). “In the case of
horses (and vision), they would be analogs of the many shapes that horses cast on our
retinas.” They allow us to discriminéte between horses by “superimposing icons and

registering their degree of disparity” (1990a, p. 342). Harnad (1987) notes that

analog representations are unbounded in the sense that nothing reliably
links them to a shared category except whatever natural similarities and
differences they may have. But apart from such “ecological” boundaries,

iconic representations would blend continuously into one another, sharing

%l On the connectionist side see Smolensky (1988) and Dreyfus and Dreyfus (1988). On
the symbolist side see Pinker and Prince (1988), Minsky and Papert (1988), and Fodor -
and Pylyshyn (1988).
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the same analog representational substrate to the degree that they shared

overall physical similarities of configuration or shape. (p. 551)

Categorical representations (CRs) are “learned and innate feature detectors that
pick out the invariant features of objects and event categories from their sensory
projections” (p. 335). “They are icons that have been selectively filtered to preserve
only some of the features of the shape of the sensory projeétion: those that reliably
distinguish members from nonmembers of a category.” They allow us, for example, to
identify a horse as a horse and not “a mule or a dc;nkey (or a giraffe, or a stone)” (p.
342). As Harnad explains,

successful categorization depends on finding the critical features on the
basis of which reliable, correct performance can occur. These will depend,
not on the inherent “features” of any particular instance (there are an in-
finity of them), but on the context: the range of confusable alternatives
involved, the specific contrasts to be made, the invariant features that
will reliably subserve successful categorization. And because ranges can
change (and instantiation and categorization are never-ending processes),
all categories and the features on which they are based will always remain

provisional and approximate. (1987, p. 540)

Harnad points out that, at higher levels in perceptual processing, categorical
representations may demonstrate rule-like properties: for example, a test for one-
leggedness could sort many instances of animals and trees by counting their number
of supporting structures (as detected by lower-level processing) and registering
animal if there are at least two supports, plant otherwise. The categories employed
by this test (e.g. one and leg) are grounded either directly in the sensory projections
(e.g. by category learning) or recursively in simpler categories which, at base, are
themselves grounded directly. “As anomalies were introduced, the rule could be
elaborated so as to tighten the approximation in accordance with the new contingen-
cies.” As categorical representatidns are only accountable to the data encountered so
far, “better and better approximations are all one can ever expect. No ‘essence’ of a
tree or of an animal could ever be captured by a process such as this.” (p. 539)
Nevertheless, since categorical representations encode only those invariant features of
instances sufficient for categorization, they are not extensional but intensional,

capturing abstract properties, rules, and relations (p. 556).
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Harnad’s suggestion that the old analogue versus digital distinction be replaced by
a digitalization continuum may prove highly fruitful for adaptive robotics. He

proposed that the more invertible a transformation is the more analogue (and less
digital) it is (p.A 560, fn. 4). If, for example, by inverting an X—Y transformation, we
can perfectly recreate X from ¥, then the transformation is completely analogue. If,

however, after the X—Y transformation, all of Vs spatiotemporal structure has been -

abstracted away*® and no degree of inversion is possible, then the transformation is

completely digital.

The digitalization continuum introduces thought-provoking middle ground to both
the connectionism and imagery debates. .Certain mental operations appear to be
constrained by some (but not all) of the analogue features of objects. It is possiblé
that, in a person’s cognitive economy, they are represented with some, but not all, of
their analogue detail stripped away. They would thus rest somewhere midway in the
analogue-to-digital conversion process, coming after quantization and dimensionality
reduction but before complete symbolization (see, again, fn. 4). As we have seen
ﬁom our discussion of SOMASS, for many tasks (especially those involving, for
example, spatial reasoning), symbolic planning would appear to require recourse to
just this kind of representation. It may be able to strike the right balance between the
expressive freedom of symbolic represehtation and the avoidance of reasoning about

stabilities offered by certain kinds of analogue representation (see Janlert, 1996).

Perceptual analysis is usually thought of as setting up a type-token relationship
so that an instance of a particular type activates a corresponding symbol. In this way
the sensory projections of a robin might instantiate the robin symbol. Methods of
learning this kind of input-output mapping divide according to those that are super-
vised and, hence, require at least some information about what their correct output
should be and those that are unsupervised and, hence, require no additional informa-

tion.?

22 For example, if Y is a representation manipulated purely according to the formal

properties of its lawfully combined arbitrary symbols (as opposed to its analogue shape).

¥ Examples of unsupervised learning include statistical cluster analysis, vector quantiza-

tion (Swaszek, 1985),- Kohonen nets (Kohonen, 1984), competitive leamjpg (Rumelhart




34

Unsupervised learning methods form categories solely on the basis of spatiotem-
poral correlations in their input—that is, without attaching any value(s) to it. If the
proximal projections of distal objects are the only source of input, these methods can
uncover no more than clusters of patterning in this data.®* It is unlikely, however,

that all objects we perceive can be discriminated on the basis of fortuitous correlations

(e.g. discontinuities) in their sensory projections. As Harnad (1987) writes, although .

this

is a significant simplifying factor for some categorization problems, it by
no means represents a general solution to the problem of category acqui-
sition. For example, the problem of perceiving “object constancy” [the
continuance of unobserved objects] under spatial transformations still re-
quires the selective detection of invariants.‘ Any domain in which in-
stances vary continuously is a potential problem. So is any domain in
which the variation, though discrete, is so complex, subtle, or confusable
— i.e., underdetermined — as to necessitate selective search and filtering.
Finally, there is the domain of abstract “objects,” whose instances vafy

along conceptual rather than physical dimensions. (p. 561, fn. 13)
Nature is full of mimicry, and often abstract objects like the edible and inedible must

be discriminated on the basis of fine-grained differences, which unsupervised learning

is unlikely to distinguish from noise.

In addition, more often than not, the correlations on which discriminations are
based are sensorimotor in character. Even the ability to passively recognizé objects
largely develops by means of sensorimotor activity (see chapter 4). Furthermore, our
internal reactions determine what is worth looking at—what patterns we ought to
discriminate—as do the selective pressures behind them. Tt is by sensitizing them-

selves to these patterns that cognitive systems acquire perceptual categories.  Hence,

& Zipser, 1985), and adaptive resonance theory (Grossberg, 1988). Examples of learning

from a teacher include the backpropagation of errors (Rumelhart, Hinton & Williams,-

1986) and the generalized delta rule, and from reinforcements include temporal differ-
encing (Sutton, 1988) and Q-learning (Watkins & Dayan, 1992).

24 Of course, if the input is augmented to include evaluative dimensions, the clusters
become more than mere clumps of physical similarity. But, in this case, the unsupervised

learning algorithm is being used as a form of supervised learning.
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there is little reason to believe that clusters of sensory patterning from distal objects

would coincide with the boundaries demarcating all the things we perceive as objects.

Let us assume, for point of illustration, that a neural network learned to produce a
particular output given a particular sensory projection as input. One of the sources of
this projection might be a robin at the window. For the network to make it possible
for the robin to trigger a particular output, it would have to be able to ignore irrelevant
variations in the projection: for example, variations related to lighting, viewing
perspective, or the bird’s posture and position. In the absence of additional feedback
(e.g. from motor signals, internal reactions, and other mechanism that result from
natural selection), this is not easy. Harnad brings to light this weakness of unsuper-
vised learning in his criticism of Tversky:

nondirected or ‘ad lib’ similarity... seems unlikely to explain how we cate-

gorize. Categorization is an imposed rather than an ad lib task. Hence

the relevant dimensions of similarity must be found and selected by active

processing guided by feedback from the consequences of miscategoriza-

tion.... In nontrivial (i.e., confusable, underdetermined) categorization

problems the solution is not obvious in the precategorical (ad lib; unsu-

pervised) similarity structure. (1987, p. 561, fn. 15) .
Indeed, it is because unsupervised methods accentuate the gross physical features of
sensory projections that, in so doing, they are likely to filter out the kinds of .
potentially crucial details required for making life or death discriminations (e.g. edible
versus poisonous). By contrast, supervised leaming methods, which may exploit
various reinforcements (e.g. physiological reactions) or knowledge acquired from a
teacher, can make these kinds of discriminations. We shall examine this more fully in

chapter 6 and appendix A.

Vanishing Intersections Revisited

As Harnad (1990a) has pointed out, category induction has had many critics over the
years; they have denied that categorical representations, capturing invariant aspects of
sensory data, can be learned and revised empirically:

It has been claimed that one cannot find invariant features in the sensory

projections because they simply do not exist: The intersection of all the

projections of the members of a category such as “horse” is empty. The
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British empiricists have been criticized for thinking otherwise.... The
problem of vanishing intersections (together with Chomsky’s “poverty
of the stimulus argument™) has even been cited by thinkers such as Fodor
as a justification for extreme nativism. (p. 344) |
Let us consider a simple illustration.of vanishing intersections at the level of the
raw optical character input to a computer. The first two columns display two hand-
written instances of the letter 4, the third column their superimposition (with points

of intersection in black):

1] ] [
1l

I
{3

IEEEEERE

117
A

T
1
T
IENNERERES]
ESEENEEEENES|

TTTTTTTT

T
|ENENENEEREEEN]
FTTTTI T T T TTI 00
IENEEREERREN]

IEENERNN|

| 4=
1 1 | 1

Though perfectly scaled and aligned, less than forfy percent of the pixels in the first
letter’s image match the second’s, and‘vice versa. If we repeatéd this process,
intersecting the fifteen remaining pixels with some other varied instances, none may
remain.?> Below we see that even identical characters, slightly misaligned, may yield

few points of intersection (less than ten percent):
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This lack of overlap would be even more pronounced at higher resolutions. Categori-
zation is further complicated by the fact that an instance of one category may have
more points in common with an instance of another category than with. other

instances of its own. The 4 below shares sixty-two percent of its points with the B:

** For another simple demonstration of this, imagine superimposing two images of a
horse on a computer screen and then blackening out all pixels whose colours differ at
corresponding points in the two images. One need only repeat this process a few times

with different pictures of horses to see the screen turn completely black.
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In a project I helped to supervise, images of handwritten characters were normalized
for scale and translation, detilted, decomposed using Gabor wavelets (see the next
section), and then reprojected into a space of lower dimensionality using the K-L
transform.?® A neural network, which adjusted its weights by means of the RPROP
algorithm, found invariant features in the output of this process. It outperformed

undergraduate students at categorizing highly-degraded handwritten characters.

If one assumes that the intersections are taken solely at the level of raw sensory
projections, then for many domains intersections may well vanish. However, extreme
nativism does not solve the problem of vanishing intersections; a priori feature
detectors would still need to categorize pa;ticular instances of types on the basis of
invariance identifiable in the sensory projections of those instances. The only
difference is that, under extreme nativism, there would be no need to learn how to do
this. This is because the features detectors would already have evolved specifically

for it.

Arguably, intersections do occur but at higher levels of abstraction. Horses do not
exist as recognizable entities at the lowest levels of visual processing. At this level

invariance may facilitate the detection of simpler and more universally applicable

¢ The Karhunen-Loeve (K-L) or Hotelling transform is an analogue, orthonormal
transformation of an inplit vector. The vector is rotated by multiplying the transpose of
the eigenvectors of the covariance matrix with it. These eigenvectors are the principal
components. Thus, the axes of its new dimensions correspond to a set of orthogonal
axes along which the original data varies maximally (see Haykin, 1994). Dimensions in
the new space that provide little information may be discarded. Although principal
components analysis and the K-L transform are never mentioned in Numerical Recipes
| (Press et al., 1992), the book provides routines for performing almost all the necessary
calculations. After subtracting the mean from the data points, I used a chunk of code
from pearsn (§14.5) to calculate the correlations for the correlation matrix. Since the
correlation matrix is symmetric, I was able to use tred2 to tridiagonalize it, before

calculating the eigenvectors and eigenvalues with tgli, the QL algorithm (§11.2).
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categories, and here it may be appropriate to speak in terms of Marr’s detectors of
edge segments, blobs, boundaries, and orientations. Higher levels are sensitive to
horse-indicative invariance in lower levels, and no doubt this invariance is integrated
from multiple sensorimotor modalities. Yet it may be more fruitful to think in terms
of feature selection than feature detection. The global ‘interpretation’ of a figure may
place constraints on lower-level processing thus permitting a categorization-to have
multiple equilibria as the Necker cube, Jastrow’s. (1900) duck-rabbit, and Rubin’s
(1915) vase-face figures exemplify (see Wittgenstein, 1958, further examples in
Gregory, 1970, and the Gestalt literature).

M

Fig. 2.1: The Necker cube, Jastrow’s duck-rabbit, and Rubin’s vase-face

exemplify how a higher-level global interpretation may lead to the selec-

tion of different features at lower levels.

To exploit physical invariance in sensorimotor projections, the same invariant
features need not be present for every instance of a category. Any one of a disjunc-
tive set of invariant features, sampled from any number of sensory modalities, can
serve to indicate sensorimotor invariance at a more abstract level. And it is at more
abstract levels that invariance is most significant. Either consciously or noncon-
sciously, an individual needs to be able to recognize abstract invariance—what
something is, the ways that individual can interact with it, and the likely outcome of
those interactions. At more concrete levels variance can be crucial—not the abstract
properties an instance shares with other members of a class but its particular shape,

weight, and so on.

This is where Harnad’s digitalization continuum comes in handy (1987, p. 560, fn.

9). Since we need not conceive of representations as entirely analogue or entirely

digital (i.e. categorical or symbolic), we can make use of representations that have
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undergone various degrees of digitalization to exploit simultaneouély bbth their
instance particular, variant features and their invariant, formal features—and features
in between. In the present discussion, one category may be referred to as being more
abstract than another simply because it is further removed from the physical structure
of the sensory projection. We might expect this to imply that later brain processing is
involved and that its recognition is more likely to depend on learned predictions than
hardwired detectors. Indeed, sometimes even the distinction between iconic and
categorical representations may be blurred if, to some degree, a representation can

serve both iconic and categorical roles.

Wavelet Multiresolution Analysis for Category Induction

Studies of peripheral sénsory processing in the brain have supported the view that
sensory input undergoes considerable filtering, reprojection, dimensionality reduction
(see Kaas, 1995), and low-level discrimination (e.g. edge detection) before being
categorized at anything like a semantically penetrable level.?” For no sense is this
more true than vision. In this section, we examine some of the reasons for ‘pre-
categorical’ processing with the aid of a specific model: the discrete wavelet transform
(OWT). The DWT accentuates variations in sensory projections at varying scales and
localizations. As Schyns and his colleagues (in press) note (though without mention

of wavelets),

Many psychophysical and computational models are converging'v"on the
observation that perception operates simultaneously at multiple spatial
scales and that the coarser scales are often sufficient for effective proc-
essing of complex pictures (e.g., Burt & Adelson, 1983; De Valois & De
Valois, 1990; Maar, 1982; Schyns & Olivia, 1994; Watt, 1987; Witkin,
1986). Multi-scale representations suggest that the input stimuli are dis-
cretized at different scales, possibly using scale-specific feature reper-
toires.... Large features may be registered without being composed out of
smaller features, and small features may sometimes be created by decom-

posing larger features. (§3.1)

2" This observation does not undermine the view that semantically penetrable categories

take part in feature learning.
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After briefly introducing how the DWT works, we apply it, in four sets of experi-
ments, to the task of learning visual categorization. Not only is wavelet analysis
compatible with Harnad’s (1987) theory of category induction but preliminary results
involving its application have revealed the theory’s utility relative to other ap-

proaches.

Although wavelets have developed from work in mathematics, engineering, and the
physical sciences (especially signal analysis, image procéssing, approximation theory,
and physics), their promise for modelling early visual processing has recently come to
light. In 1980 Daugman (1980) proposed that a parameterized family of two-
dimensional Gabor filters (see Gabor, 1946) could offer a suitable model of the
anisotropic receptive field profiles of single neurones in several areas of the primary
visual cortex. Van Essen (1979), among others, has found these neurones selectiveiy
respond to Ithe 2-D location, orientation, spatial frequency (size), symmetry, colour,
motioh, and stereoscopic depth of visual stimuli. "The 2-D Gabor filters are able to
account for the selective tuning of simple cells (i.e. linear neurones) for characteristic
scale (spatial frequency), localization, orientation, and quadrature phase relationships
(Daugman, 1988). Daugrﬁan (1985) has shown by chi-squared tests that this family
of elementary functions fits the profiles of ninety-seven percent of simple cells in the

cat visual cortex (based on measurements reported in Jones & Palmer, 1987).

How the Discrete Wavelet Transform Works

The fast Fourier transform (FFT) is typically used to decompose a signal (e.g. a
soundwave, image, or video clip) into a series of coefficients, each of which describes
the signal at one frequency only. (The FFT has an inverse, since the sum of the
functions resulting from the multiplication of the coefficients by their respective sines
and cosines approximates the original signal) To take a biological analogue, the
cochlea performs the same kind of mapping nonalgorithmically by virtue of its spiral

28

shape.”® Wavelets provide localization in characteristic scale (roughly analogous to

- frequency), but unlike sines and cosines they also provide localization in space.

?% The Fourier transform and its inverse also provide a model of the rapid adaptation of
surface markings in tropical flatfish to patterns at various spatial frequencies in their

background (Ramachandran et al., 1996).




41

Thus, the discrete wavelet transform (DWT) is useful for analysing many kinds of
boundéd, discontinuous, aperiodic signals that are ill-suited to the Fourier domain—
for example, an image with many sharp edges. Like the FFT, fhe DWT is quick to
compute (linear-time complexity), and the sparsity of its output—most coefficients
are negligible or zero—makes it ideal for data compression and fast numerical

solutions.

In the 1-D case, the DWT takes a data vector, whose length is an integer power of
two, and transforms it into a numerically different vector of the same length.?’ The
transform decomposes the data vector into a particular wavelet basis (e.g. Haar,
Daubechies, Gabor). A Basis is a minimal set of vectors that can generate any
possible data vector in the vector space through linear combination. Since wavelets
are a set of linearly independent functions spanning a vector space, a wavelet basis is
a minimal spanning set of functions that are also linearly independent. The number of
possible wavelet bases is infinite. Difference among them usually reflect a trade-off
between compactness and smoothness. Smooth bases provide higher numerical

accuracy, while compact bases are better for data with sharp discontinuities.

The original data vector may be reconstructed from the output vector by multi-
plying each output coefficient by its respective wavelet basis function and summing -
up the result. Thus, DWT effects an analogue-to-analogue transformation because the
input is recoverable from the output to within the numerical accuracy of the comput-
ing elements (be they neurones or a floating point chip, see Hamad, 1987). The
method of recovery is the discrete wavelet inverse transform, and it has been used to

restore many kinds of data after decompression, including images and video.

A rigorous introduction to wavelets would require a lengthy mathematical
exposition (see Chui, 1992; Daubechies, 1992). However, a simple example will

suffice to glean a basic understanding of how they work. Consider this data vector

%% Notes and exceptions: (1) We shall later see that, from the 1-D case, it is easy to
generalize to matrices (e.g. for images) and tensors (e.g. for video). (2) Data vectors
whose length is not an integer power of two may be padded before applying the DWT. (3)
For the box basis, the DWT does result in a numerically identical vector. We use the box

basis only for purposes of explanation.
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(2,2,6,2,3,5,3,1)

and its graphical representation

It may be decomposed into an equivalent set of coefficients using the box basis, as

shown in the first column of Figure 2.2 below:
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Fig. 2.2

When multiplied out, these box functions all sum up to the original input vector. If
we treat the input vector as a piecewise-constant function on the half-open interval

[0, 1), we can generate the eight box functions (also called Haar scaling functions)
8. 97, 63, 93, 01, 03, 2, 67
from the function
¢! (x)é 0(2'x—i) i=0,.2-1

where

] for0<x«<l

0 otherwise

¢(x)<—{

The data vector may, however, be decomposed into a different basis—for
example, the Haar (1910) basis—as shown in the centre column of Figure 2.2. This is

the simplest and most compact basis. Its first function (Figure 2.2, top, centre) is
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called the mother function. (Other bases often have more than one.) The mother

function for the Haar basis is the box ﬁmctibn
o

Notice that the mother function is completely smooth (flat) for the interval [0,1). Its
matching coefficient (3, in our example) is called the mother-function coefficient.
When the mother function and its coefficient are multiplied together, the result is an
average for the entire vector (Figure 2.2, right column, top).

The remaining seven functions (which follow in sequence under the mother

-function in the centre column) are called wavelets. We can generate the seven Haar

wavelets in Figure 2.2 _
Wos Vo Vi Vo, Vi V3, U3

by scaling and translating the wavelet

[XEN

14

given by the function
V) «—yw@x-i) i=0,..2/-1

where

1 for0<x<i%
y(x)—4-1 fori<x<l1
0 otherwise

As an alternative, we can generate Haar wavelets directly from the box function
Y (x)=¢(2x)-9(2x~1)

Unlike the mother function, wavelets do not respond to data vectors that are flat
in their response area (hence, their integral is always zero). Their response is positive
if the left-hand side of their response area is greater than the right-hand side; negative

if less than. The wavelets’ matching coefficients (0, -1, 1, 0, 2, -1, 1, in Figure 2.2) are
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called wavelet coefficients. These detail coefficients® pick out variations in the data
vector at various scales and translations. By multiplying each wavelet by its
respective coefficient, we get the third column in Figure 2.2, which sums up to the

original data vector. As is true of any Haar basis, all the basis functions in the second

column

RV RV ARVERVERVE

are orthogonal to each other. Not all bases share this property (e.g. Gabor does not).
When they do not it rather complicates the calculation of the DWT.

We obtain the wavelet coefficients for the Haar DWT by means of a filter bank. A
filter bank calculates "/, pairwise averages for a vector of length » and "/, pairwise
differences. This makes it both a smoothing and a detailing filter (it is called a
quadrature mirror filter in signal processing parlance). The detail coefficients can be
used to recover the information that has been averaged away. We apply the filter
bank first to the entire data vector, then to the resulting "/, (*/s, "/s,... ) smoothed
coefficients (the pairwise averages), recursively, until—in the case of the Haar basis—
only one smooth coefficient remains. This is the mother function coefficient, the
average for the entire data vector. This is sometimes called a pyramidal algorithm.

We are now prepared to calculate the wavelet coefficients for the input vector in
the above example (final values are in italics). We begin with the input vector

2 2 6 2 3 5 3 1
For each pair of coefficients, we calculate the average

2 4 4 2
and half the difference:
0 2 -1 1

Then, for each pair of averages, we calculate the average

3 3
and half the difference:

% Wavelet coefficients are sometimes called detail coefficients. This is a useful distinc-
tion for the following reason: As a kind of shorthand, the term wavelet coefficients is
often applied to all the coefficients collectively. Thus, the term detail coefficients

makes clear that we are excluding the (smooth) mother-function coefficient(s).
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-1 1
Finally, for the remaining pair of averages, we calculate the average
3
and half the difference:
0
Collecting the coefficients, we have
3 0 -1 ] 0 2 -1

A C function forl‘rhe Haar DWT is given as follows:

void hdwt (double *vector, int length)
{

double *temp;

int n, mid_pt, i, twice_i;

if ((temp = (double *) malloc (length * sizeof (double))) == NULL) {
fprintf (stderr, “Error in hwd(): unable to allocate enough memory.\n”);

exit (EXIT FATLURE) ;
1
for (n = length, mid_pt = length/2; n >= 2; n = mid pt, mid pt /= 2) {
for (i = twice i = 0; 1 < mid_pt; i++, twice_i += 2) {
temp[i] = (vector[twice_i] + vector[twice_i+1])/2;
temp[i+mid pt] = (vector([twice_i] - vector[twice_i+1]1)/2;
}
for (i = 0; i < n; i++)
vector[i] = temp[i];

}
The first half of the program does no more than declare the variables and allocate
space in memory for a temporary array used to hold the smooth coefficients. The
outer for loop recursively subdivides the vector. (For a vector of length eight, it sets
the length to 8 and the mid point to 4 on the first iteration, 4 and 2 on the second, 2
and 1 on the third.) For each pair of coefficients in the vector, the first inner for
loop accumulates the averages (to the left of the mid-point) and the differences (from
the mid-point rightward). The second inner for loop simply copies the smooth

coefficients from the temporary array back into vector.

It is often useful to use a normalized basis (for example, when a standard measure

of error for all coefficients is required). We may calculate the DWT for a normalized

Haar basis by dividing by V27 each output coefficient (calculated by hdwt) whose
matching wavelet has the superscript j. (The normalization can also be incorporated

into the DWT itself. T have found both implementations to give the same results.)
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The 2-D DWT generalizes neatly from the 1-D case. The standard approach is to
apply the above function sequentially to every row of the data matrix and then to
every column. To do this, the following C function calls hawt:

void hdwt_2d (double **matrix, int x size, int y size)
{
double *temp;

int i, j, max_size = x _size < y size ? y size : x_size;
if ((temp = (double *) malloc (max_size * sizeof (double))) == NULL) {
fprintf (stderr, “Error in hwd(): unable to allocate enough memory.\n”) ;

exit (EXIT FAILURE) ;
}
for (j = 0; j < y_size; j++) {
for (i = 0; i < x_size; i++)
temp[i] = matrix[i][]];
hdwt (temp, x_size);
for (i = 0; i < x size; i++)
matrix([i] [j] = temp[i];
}
for (i = 0; 1 < x size; i++) {
for (j = 0; j < y_size; j++)
temp[j] = matrix[i][j];
hdwt (temp, y size);
for (3 = 0; J < y_size; j++)
matrix[i]l [j] = temp[i];

}
The first outer for loop indexes through the rows. Its inner for loop copies each
row into a temporary array. It then computes the 1-D Haar DWT on that array and
copies the results back into the matrix (overwriting the original values). The same

process is repeated in the second outer for loop for the columns. To avoid all the

copying, I combined hdwt and hdwt_2d.

Some Categorization Experiments using Wavelets

The 2-D DWT may be used to prepare images for categorization and’ category
induction. Unlike random patterns, images of the natural world are highly redundant
(in information-theoretic terms). It is possible to predict the values for a set of pixels
on the basis of another, possibly remote, set. Examples of this self-correlation are
locally similar values for colour or luminance, edge continuance, and uniformity of
texture. Wavelets provide a means of exploiting these correlations to varying extents.
As we have noted, wavelets selectively respond to variations in the input, which they
describe in a hierarchy of resolutions and localizations. The larger the variation, the
- larger (in absolute value) the coefficients for the wavelets that respond in that region;

the smaller the variation, the smaller the coefficients. It is precisely because images
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* are highly redundant that most wavelets show little or no response.>! I took advan-
tage of this feature in a simple experiment of sorting mushrooms. The matrix
positions of twenty significant coefficients (out of a total of 4096) provided a highly

compact signature from which to extract invariant features.

In the experiments I took greyscale snapshdts of sixty mushrooms with a video
camera—fifteen from each of four species: shiitake, chestnut, oyster, and closed cup.
I took the images under good, though somewhat varying, indoor lighting conditions
with a greyish cardboard background, from about the same angle (15°-25°) and
distance (1215 cm). The shiitake and especially the oyster mushrooms were highly
asymmetrical, so I decided to digitize the mushrooms at random rotations to prevent
the categorization program from exploiting these asymmetries. I roughly centred each
mushroom in its image but made no attempt to keep uniform its distance to the edges
of the image. (In object recognition research, it is common to scale ';he object
horizontally or vertically in order to fit it to the frame of the image.) The images
measured 64-by-64 pixels, with 256 shades of grey, varying from black (0) to white
(255). They were in PGM (P5) format—a binary pixel-by-pixel representation.

Figure 2.3 displays two mushrooms from each species.

Fig. 2.3: Shown above are pairs of mushrooms chosen at random from

each species in the data set: (from top left) shiitake, chestnut, oyster, and

! This is why, with no observable loss of detail, image compression programs can
compress an image at ratios sometimes exceeding 20:1. They truncate or quantize the
small coefficients and then recode the sparse matrix in a compact form (e.g. using
Huffman and run-length coding). |
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closed cup. These images were among those used in the experiments
(64x64 pixels, 256 greys). .'

I performed four sets of experiments. The criterion of corre;ctness for the experi-
ments was to categorize each mushroom with the other members of its species.’?> The
purpose of the first set—the baseline experiment—was to gain some insight into what
degree of categorization accuracy I should expect when such considerations as
memory requirements and computational efficiency are ignored. The second set—the
first of the signature-based experiments—was intended to find out whether the
performance of signature-based categorization could approach that of the brute force -
method taken in the baseline experiment. The third set—the prototype experi-
ments—was designed to appraise the effectiveness of using an ‘average mushroom’
from each species for categorization. The fourth set—the experiments with categori-
cal representatiohs—were meant to test whether four categorical representations, one
for each species, could successfully categorize the mushrooms. The program
developed these representations by filtering in within-category invariance while
filtering out between-category invariance. This proved to be the most prormsmg

approach so far attempted.

The baseline experiment. In the first experiment, the program performed a
normalized Haar discrete wavelet transform (DWT) on all sixty images. For purposes
of comparison we may conceive of each of the sixty resulting 64-by-64 matrices as a
4096-dimensional vector. The program simply caiculated the Euclidean distance
between all the vectors; a mushroom’s best match was determined according to
whichever mushroom’s vector was closest to its own. The program categorized
ninety-seven percent (58/60) of the mushrooms correctly (i.e. with other mushrooms
of the ;same species). However, the program’s memory and computational require-.
ments were formidable. Sixty double-precision (10 byte) images occupied nearly 2.5

million bytes of memory. To compare just two matrices required 4096 multiplica-

2 In these categorization experiments, we need not presuppose either language or a
teacher. The category induction could have been based simply on a physiological
response. (To me this became all too clear when I discovered in the course of the

experiments that I have an allergy to shiitake mushroomé.)
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tions; to compare every pair required almost 7.25 million multiplications (4096 times

1770). This method was not promising to scale up well.

The first signature-based experiments: categorization from past instances. In this
set of experiments, the program converted each 40960-byte matrix (4096 pixels times
its 10 byte double-precision representation) to a signature after performing the DWT
on the image. The signature is simply an ordered list of the signs and 1-D positions of
the k largest detailed coefficients in the matrix. (For the purposes of this routine, the
matrix was treated just as a long 1-D array.) Only 13 bits were required for each
entry in the list (12 for the position and 1 for the sign). Diminishing returns usually
set in for signatures with more than 20 entries and, as the number of entries got into

the hundreds, performance declined. The memory requirement for a signature of

,,,,,,

length 20 was only 260 bits (20 times 13) or 33 bytes. Thus, for sixty matrices the
total memory requirements were 1980 bytes, less than a tenth of a percent of the 2.5

million bytes required for storing the matrices.

To create a signature, the program first obtained the value of the kth largest
coefficient (in absolute value) in the matrix. It calculated it by creating a heap (see
Sedgewick, 1988) from the first £ coefficients in the matrix, with the smallest at the
root of the heap, and then replacing the smallest coefficient in the heap with any larger
coefficients found in the remainder of the matrix. This is the most efficient method
when £ is much smaller than », where » is the size of the matrix (i.e. 4096). It takes
only order » log, n operations. The program then used the value of the kth largest
coefficient to ﬁnd and extract the signs and 1-D positions of the &k largest coefficients
in the matrix. To save on the number of operations required to compare two signa-
tures, the program first backed through the matrix ﬁnding the negative coefficients that
were largest in absolute value and then passed forward through it finding the largest

positive ones. A sample signature is

-1793 -576 -387 -322 -256 -196 -128 -67 -65 -64 -4 -2 1 3 6 192 195 323 448 896

The minus signs do not indicate negativé 1-D positions (positions range in value from
0 to 4095) but positions whose coefficients are negative. The program compared
pairs of signatures by counting matches. (A match occurred only if both the sign and

position were the same.) If there was a mat;:h, the program incremented the indexes in
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both lists to the next entry in each; if there was a mismatch, it would increment

whichever index pointed to the lower value.

To appraise the performance of this scheme, I used two measures. The first was
the same as the one used in the baseline experiment except that the program counted
matching sign-position -entries in signature pairs rather than computing distances
between vectors. For the second measure, the program selected one mushroom from
each species in turn without replacements. If, in the first turn, it selected a shiitake
mushroom and, in the next, a chestnut, it would have no choice but to match the

chestnut with the shiitake since it would have no other signatures to match it against.

As the program accumulated more instances of different species, its performance

improved, but under neither scheme did its performance ever approach that of the

baseline experiment.

I repeated the experiments using the Haar basis without normalization and my
implementation of the Daubechies 4-tap basis.*® Some of my results are summarized
in Table 2.1. The percentage of correct matches listed in the table is based on

signature matching alone. In other experiments I factored in a comparison of the image

33 Press et al. (1992, chap. 13.10) elucidate the theory behind Daubechies wavelet bases.
Daubechies 4 is a highly compact basis, though less compact than Haar. The code for the
Daubechies 4 DWT is no longer than that for the normalized Haar DWT but it runs slower,
largely because it requires twice as many multiplications. In general, Daubechies 4 is
much better than the Haar bases for image compression. Both of these images were

produced from the same snapshot from just under 5% of their detail coefficients:

The image on the left used the Daubechies 4 basis, while the image on the right used the
Haar basis (notice the blocky artefacts). Nevertheless, for categorization the normalized
Haar basis performed at least as well as Daubechies 4. This can probably be put down to
the fact that the highly compact (and, hence, unsmooth) Haar basis is very sensitive to
changes in luminance (e.g. edges) and that this factor is more critical in categorization

than numerical accuracy.
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pair’s average luminance.’* Although this improved some statistical measures, it had
little influence on the number of correct matches. Based on these and other statistical
measures, I came to conclude that the normalized Haar basis performed marginally
better than Daubechies 4, which performed somewhat better than the Haar basis
without normalization. While one would expect high error rates at the beginning of
learning, if we compare rates after learning,' it is clear that the best accuracy obtained
by the signature-base method—ninety percent—fell significantly short of the ninety-

seven percent accuracy of the baseline experiment.

Wavelet basis Length of Percentage correct Percentage correct
Jfor the DWT signature after learning while learning
Haar 20 85% (51/60) 72% (43/60)
Haar : 60 80% (48/60) 67% (40/60)
Normalized Haar 20 90% (54/60) 77% (46/60)
Normalized Haar 60 90% (54/60) 77% (46/60)
Daubechies 4 20 85% (51/60) 80% (48/60)
Daubechies 4 60 88% (53/60) "~ 68% (41/60)
Table 2.1

Fig. 2.4: The image on the left resulted from performing the normalized
Haar inverse transform on a complete 64-by-64 matrix (40960 bytes).
The .centre image resulted from performing the normalized Haar inverse
transform on a matrix generated from the mother function coefficient
and a signature of length 60 (108 bytes). The image on the right resulted

from the same process as the second, only using the Daubechies 4 inverse

* This figure was derived from the mother function coefficients. For the Haar basis,
there is only one mother function coefficient, and it is the average luminance. For the
Daubechies 4 basis, there are four mother function coefficients for the 2-D transform;

two for the 1-D transform.
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transform. Although the image in the centre and on the left were pro-
duced using only a fourth of a percent as many bits as the first, the mush-
rooms are still discernible. Note that even though the image produced
using the Daubechies 4 basis appears clearer than the one produced with
the normalized Haqr, the normalized Haar basis proved to perform

slightly better overall than the Daubechies 4 basis.

The prototype éxperiments. A prototype is the most typical member of a
category. For example, a robin might be the most typical bird—certainly more typical
than a goose or an ostrich (see Rosch née Heider, 1971). From previous experiments,
it had already become clear that basing categorization on the most average mushroom
projection of each épecies would give poor results, so I decided to base it on a
prototype-like representation—an average of the projections of all the mushrooms of
a category. Comparing a mushroom to, say, the shiitake representation was equiva-
lent to finding out how many matches it would have on average with all the instances
from that species. The accuracy of this method was relatively low: only 70% correct
for signatures of length 20, 73% for signatures of length 60. These poor results are
owing to the fact that oddly shaped mushrooms belonging to a given category may
sometimes better match the average representation of a category other than their own.
Such results are to be expected as long as each category has only one prototype.

Prototypes fail at categorizing disjunctive sets for the similar reasons.> -

Experiments with categorical representations. The basic idea for these experi-
ments was to develop one categorical representation for each species of mushroom.
The representation was meant to capture as much within-category invariance and as
little between-species invariance as possible (see Harnad, 1987). The program derived
each categorical representation from the signatures of ten mushrooms of the same
species. Learning was then turned off, and the program assessed not only how
accurately the four representations categorized the four sets of ten mushrooms from
which they were derived but also the remaining twenty (hitherto unseen) mushrooms.

I attempted various schemes which placed different weight on the importance of

3> Minsky and Papert, 1988, discussed this limitation in relation to single-layer percep-

trons and showed why it prevented them from learning the logical exclusive-or (XOR)
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including within-category invariance in each representation relative to excluding

between-category invariance.

Fig. 2.5: Here is a first attempt at displaying within-category invariance
derived from ten mushrooms of each species: (columns, from left to
right) shiitake, chestnut, oyster, and closed cup. The normalized Haar in-
verse transform was used for the top row; Daubechies 4 for the bottom

Tow.

The scheme which struck the best balance was to include a sign-position entry in a
categorical representation’s signature if the total number of instances matching that
entry from the same category exceeded one-fifth the total number matching for the
other three categories combined. (This scheme would need to be adjusted for
increases in the total number of categories.) The program correctly categorized all of
the forty mushrooms from which the categorical representations were derived, thus
showing better accuracy than the distant metric used in the baseline experiment. It
miscategorized only one of the twenty novel mushrooms—a 95% success rate. There
were some variations among the signature lengths for the different species (106 for
closed cup, 146 for shiitake, 148 for oyster, and 155 for chestnut). Only 902 bytes
(7215 bits) of memory were required to store the four categorical representations.
Not only did this scheme prove to be more accurate than that of the baseline experi-
ment, but it required less than one twentieth of one percent the memory and far less

computation.

There are, however, potential problems with this scheme. Recall back to Harnad’s

test of whether something is a plant or animal depending on how many supporting
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structures (i.e. legs) its has (1987, p. 539). Let us consider an even simpler problem.
Our agent is presented with images revealing a leg on either the left or right-hand side,
or on both sides, or neither, and it must categorize each image as either one-legged or
not one-legged. (This is a version of the XOR problem, see Minsky & Papert, 1988.) '
‘ The‘agent will not be able to develop a pair of categorical representations to discrimi-
nate instances as either one-legged or not one-legged because images of two legs are’
essentially linear combinations of images of legs on either the right or left-hand side.
Since ONE-LEGGEDNESS is equivalent to (LEG-ON-LEFT and not LEG-ON-RIGHT) or
(LEG-ON-RIGHT and not LEG-ON-LEFT), it requires a two-tier logical structure and the

lower-level categorical representations LEG-ON-RIGHT and LEG-ON-LEFT.

So we need to address

(1) how the robot can determine when it needs to form additional categori-

cal representations, and
(2) how to decide which instances to use in deriving them.

One suggestion might be to use feedback from miscategorization (Harnad, 1987).
Miscategorization can occur for many reasons, and it is not necessarily a symptom of
the above problem. However, miscategorization in conjunction with a low-learning

rate may indicate a need for additional representations and logical structure.

A similarity measure may be useful in deciding which instances to use in devel-
oping new lower-level categorical representations. This would help to ensure that
“/ithjn-categbry invariance is high relative to between-category invariance, so the
categories are fairly stable. However, in determining similarity this measure should
probably include more than just the physical shape of the sensory projections. As
we shall discuss in chapter 6, it may be useful to include similarities in internal (e.g.
physiological) feedback, so that the invariance being picked up includes more of the
factors that are relevant to the agent. If the new lower-level categorical representa-
tions still fail to improve learning, the sirnilarfty measure can be progressively
tightened. This would narrow the range of instances from which each categorical
representation could be derived and widen the number of possible representations that
could be formed. Thus, it would prompt the agent to form new categorical represen-
tations until the learning rate improves. More advanced techniques could use cluster

analysis in place of a similarity measure.
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Summary and Conclusion

The balance of evidence may now be tipping in support of theories that permit the
formation of (completely) novel features. There are a number of advantages to being
able to learn new features rather than having to rely on a fixed set. Schyns and his
colleagues (in press) propose that features are formed through the interaction of top-
down functional and bottom-up perceptual constraints. Feedback from miscategori-

zation plays a key role in initiating and guiding their development.

Harnad (1987, 1990a) proposes that categorical representations could develop
causal links with the sensory projections of objects during behavioural interactions.
Categorization feedback informs the inductive process by which the representations
are sensitized to sensory features. The learning process is aimed at developing
intensional representations that are capable of detecting those features—and only
those features—that have, in previous sensory projections, reliably distinguished
positive and negative instances of a category. Thus, they can uncover abstract
propetties, rules, and relations. When anomalies lead to miscategorization, a categori-
cal representation tightens its approximation. Which features can best subserve
categorization depend on the scope of confusable alternatives. Harnad’s approach has
clear advantages over unsupervised learning. The latter must rely on fortuitous
patterning and discontinuities in the sensory projections and, thus, can pass over

spatial details that may be critical to an organism’s activity.

Harnad (1990a) has indicated that categorical representations can act as grounded
symbols. Thus, they might form the basic building blocks from which a symbol

system could be developed from the bottom up.

Often it may not be possible to discover a category’s invariant features by
intersecting the sensory projections of its instances: the intersection of all the
instances might be empty. But it would be wrong to conclude from this that category

induction is impossible:

(1) Intersections may appear after the sensory input has been reprojected
into a new domain by means of an analogue transformation like the fast

Fourier transform or the discrete wavelet transform.
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(2) Intersections may also appear after the input has been processed by
low-level feature detectors or after a brief interplay between bottom-

up and top-down constraints.

(3) Category induction does not depend on every instance of a category
sharing the same invariant features. Different clusters of instances may
share different clusters of invariant features. The presence of features
associated with any one of a disjunctive set of clusters is enough to

subserve categorization.

(4) An organism may first learn categorical representations for more basic
and easily learned categories. These representations may then boot-
strap the leamning of more complex or abstract categories that are ex-

pressed in terms of them.

The discrete wavelet transform provides a means of exploiting the high degree of
redundancy or self-correlation typical of the sensory projections of natural environ-
ments. Wavelet coefficients can pick out variations in the sensory projections at
various scales and translations. Daugman (1980) has devised a family of 2-D Gabor
filters that accurately model the receptive field profiles of simple cells in the primary
visual cortex. These wavelet filters account for the cells’ selective tuning for scale,

localization, orientation, and quadrature phase relationships.

In a series of experiments, I prepared images of mushrooms for categorization by
writing a program to decompose them using the Haar and Daubechies 4 wavelet bases.
The program then learned to categorize the mushrooms by means of a number of
different methods. Some were brute force, others used compact and easily compared
signatures. Some were inspired by prototype theories, others tried to find closest
matches between individual instances. One technique, based on Harnad’s theory of
category induction, proved to be significantly more accurate at categorization than the
other approaches. It was also the most efficient in terms of computation and memory
requirements. Category representations were derived from withiﬂ-category invariance
with between-category invariance filtered out. After exposure to only ten mushrooms
from each species, the program was able to classify new mushrooms with ninety-five

percent accuracy.
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Chapter 4. Learning Sensorimotor Predictions

Introduction

P

This chapter considers the shortcomings of nonadaptive approaches to grounding
perceptual categories. It attempts to go beyond the minimal requirement that they be
causally linked with actual objects, events, and relations by developing a fuller, more
ecological notion of grounding. At their foundations, perceptual categories are seen as
part of an organism’s sensorimotor loop with its environment and, through an

empirical process of adaptation, they mediate its activity.

In developing an adaptive approach to grounding perceptual categories and, by
extension, all internal representation, this chapter advances and elaborates a theory of
sensorimotor predictions. It also explores computational techniques for implementing
predictions. An agent leafns predictions from spatiotemporal correlations in sensory
projections, and these predictions serve as a basis for how it models its environment.
Sensorimotor predictions are not to be confused with response probabilities, which
may be learned without requiring a model of how actions affect the environment or
internal variables (see appendix A). Neither are sensorimotor predictions to be
confused with hypothesis testing. Nevertheless, much risk can be avoided by testing

hypotheses against these predictions before taking action.

It would be difficult for proponents of symbolic representation to explain its
evolutionary origin without granting that it, at some point, must have conferred on its

bearer selective advantage.’® Symbolic representation can offer no benefit, however,

*¢ The argument has been put forward that a language system developed like a spandrel in
a cathedral, that is, because of the demands of surrounding architecture and not because of
anything that it contributed in its own right. This argument could also be extended to
symbolic representation.  Yet considering the complexity of both language systems and
symbol systems and the lack of empirical evidence that surrounding architecture would
have created a selective demand for them, it seem unlikely that either could be spandrels.

A comparison of the anatomy of the human mouth and throat with that of our simian
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unless symbolic categories capture features of the surrounding world that are relevant
to an organism behaving so as to enhance its reproductive success. Therefore, to
achieve minimal biological grounding, an internal category must stand in some relation

to sensorimotor coordination.

Genes are passed on when an organism is, sufficiently able to discriminate
sensorimotor patteming relevant to its reproductive success. The essential kind of
invariance in this patterning, the kind that motivates an organism at least to behave as
though it categorizes different instances, with their disparate sensory projections, as
similar, is that those different instances can be dealt with in similar ways to produce

similar physiological effects.

This chapter is structured according to a line of argument that runs as_'f_qllows.
Unaugmented, fixed feature detectors are inadequate to ground perceptual categories
adaptively in sensorimotor coordination. It is not enough for internal indicators to be -
causally linked to outside states of affairs. They must also capture sensorimotor
relationships. By capturing these relationships they enable an intelligent agent to
anticipate likely consequences on the basis of its sensory projections and motor
signals. These relationships iﬂvolve the learning of mappings that relate information

from various sources and sensory modalities.

Since sensorimotor relationships vary according to both body and environment,

- they must reflect individual differences. Environmentally-mediated processes of

growth, damage, regeneration, and decay change an organism’s sensorimotor dynamics

in unforseeable ways. This suggests not only that an organism learns predictions in

order to anticipate the likely consequences of potential motor signals but also that it

alters these predictions in light of bodily and environmental changes.

To take this into account, we develop a high-level theory of sensorimotor

representation. It is based on the empirical development of sensorimotor predictions.

ancestofs reveals that our vocal track is anything but a spandrel. It is good for speech
and not much else (see Lieberman et al., 1992). To make room for a rounded tongue and
enhanced voice box, our teeth are crowded, and we have a longer, more vulnerable neck.
It is much likelier for humans to die from choking on food or from abscesses caused by
impacted molars. The fact that speech came at a price supports the thesis that it must

have had selective advantage.
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Although the theory does not state how to implement systems that develop predic-
tions, it may be used to appraise prospective implementations. We do precisely that
in our examination of a memory-based model that has been used to learn sensorimotor
mappings. The appraisal not only shows the implementation to be promising but
also demonstrates that, after adding a few extensions, it can be brought into confor-
mance with the theory. I am currently supervising a project which incorporates my
extensions while expanding the system’s performance. Finally, we reconsider the
implications of the theory for the simulation of intelligent behaviour and find a rich

vein for future work.

Evidence from Vision for Sensorimotor Integration

The brain’s processing of visual input is highly complex, and much occurs even before
this information is integrated with sensorimotor information from other modalities.
Nevertheless, sensorimotor integration must come at some point in order to ground
perceptual categories in sensorimotor activity. An appreciation for evelution would
lead us to believe that this grounding comes prior to and serves as the foundation for
more abstract, systematic modes of behaviour. Unfortun_ately, an emphasis on vision
and its modality-specific processing in isolation from both other sensory modalities
and motor coordination has lead to potentially misleading analyses of the nature of
visual processing. This has biased computational approaches towards a reliance on
fixed feature detection as opposed to empirical adaptation. But eventually we must
confront the issue of grounding, and it would be a mistake to postpone its considera-
tion until after we obtained a thorough understanding of early stages of visual
processing. This is in part because there, is no stage of visual processing whose
evolution has not been influenced by the fact that an organism’s perceptual categories
are grounded in its sensorimotor activity. In our study of physiological structures, we
should not lose sight of their function in biological adaptatlon Hence a deeper level

of analysis is called for than just considering input-output relations.

Vision’s dependence on coordination is well acknowledged. The manner and
degree of this dependence has been contested by neuroscientists for more than 40
years—ever since it became clear that whether the brain attributes a movement on the

retinal image to the viewer or to an object depends on whether the motion was self-
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induced (see Gyr et al., 1979).3" It is only by taking self-induced movemeﬂts into
account, for example, that the brain can maintain the stability of the visual scene.
Kohler (‘1964) showed that such movements were necessary for subjects to adapt to
seeing the world through reversing prisms. The importance of movement is illustrated
by the fact that if the eye is held focused at a fixed point in a static scene, once
neurones have habituated the viewer even fails to see. Distance perception may
depend more heavily on movement parallax than binocular disparity, and evidence
suggests‘ that infants b‘ecome sensitive to it first (Slater, 1989). Unfortunately, Marr’s
stereoscopic theory of vision echoes perceptual analysis in its neglect of sensorimotor
coordination. There has, nevertheless, been a growing realization in the 1990s that
computational models need to be extended to account for the role of action in vision
(Ballérd, 1991; Blake & Yuille, 1992).

A consideration of the drawbacks in Marr’s attempt at perceptual analysis will
illustrate the importance of relating internal categories to sensorimotor coordination.
Marr proposed that different neurones in a network could be attuned to varying
degrees of binocular disparity in the retinal image. In this manner a network could

extract a viewer’s distance from a perceived object. However, to be grounded, this

distance measure would need to be related to the viewer’s behaviour, such as the

movements necessary to grasp the object. Otherwise, the measure could not serve
any behavioural ends nor could a selective process be involved directly in its evolu-

tion.

This observation is acutely evident with body variables. For example, although
there is a correspondence between the topography of the retina and arrays of cells in
various cortical regions, the output from these cells does not capture any spatial
relationship. To accomplish this, further representations would be required to relate
the retinal image to the individual’s motor activities such as the eye movemeﬁts that
would be required to foveate a peripheral object. To be effectual and, therefore,
evolutionarily explicable, symbols must be grounded in sensorimotor categories that

are relevant to coordination. Otherwise, they are as useless as a cockpit furnished

37 Under the right circumstances, of course, the brain can be easily fooled. For example,
a person seated in a train compartment at a station may sometimes look at an adjacent

train that is moving and think that his or her cabin is moving instead.
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with unlabelled and undimensionalized instruments in the hands of a pilot lacking

instructions as to their bearing on the flight of the aircraft.

Research Caveats

The methodology of the neurosciences can lead theorists to overestimate the impor-
tance of feature detection and neglect the brain’s essential role in setting up sensori-
motor mappings. This is hardly surprising considering the primitive tools we have for
exploring the brain. And so, for example, they resort to probing neurones with

electrodes and trying to find out what kinds of stimuli can make them fire.

In devising intelligent agents we run up against limits in our own perception with
its particular epistemological commitments. When an agent is confronted with an
object, we may be inclined to infer what it detects on the basis of our own percep-
tions. We usually imagine that it ‘sees’ pretty much what we do. In ordinary life this
might seem like a reasonable assumption. A life-time of consensual endorsements
within a language community backs up the inferences we make concerning consisten-
cies in the appearance of objects. Unfortunately, inferences based on consensual
endorsements within our own language community may be of 1ittip use when
analysing the workings of intelligent agents. This is because these inferences take for

granted that the agent, like us, is human and partakes in the same language and culture.

It would be a mistake, for example, to assume that a resemblance between the
source of an agent’s sensory projections and the patterns of neural firings in one of its
cortical regions implies that the agent sees what we see or can respond to what we
can. It is not the resemblance that matters. If the sensory inputs to a cortical region |
were all shifted spatially, the resemblance would remain but the organism would not
be able to handle the object until it had adapted to this change. Furthermore, if it were
possible to displace neurones spatially without interfering with their interconnectiv-
ity, the resemblance could be obscured .without affecting the behaviour of the
organism. Whatever form these patterns take, that form must be ecologically
mediated. It depends on the relationship between the organism and its environment as

set up by its particular body and sense organs.




62

A Theory for Learning Sensorimotor Predictions

The aim of this dissertation is to propose a possible method of modelling the
development of behaviourally-relevant categories. When an agent is using an internal
representation, what makes that representation a representation is not the fact that it
looks like one to us (i.e. that we can interpret it) but that it can function as one for the
agent. Hence, we propose that sensorimotor representations form the foundation for
our model of cognition. Sensorimotor representations denote adaptations that take
place within an individual on the basis of past seﬁsorimotor projections (and evolu-
tion), and they depend on, among other things, the individual’s particular body,
internal reactions, and life history. As a working definition, we shall say that
representation is about something (e.g. an 6bject, event, or relation) to the extent that
those sensorimotor processes of the agent that need to be appropriately related to
that thing can be appropriately related to its representation. By using this criteria to
qualify it as a representation of that thing, we avoid the danger posed by our ability to
interpret symbols as standing for things even if, to the agent, they have no causal

connection (i.e. grounding, see Harnad, 1990b, on the hermeneutic hall of mirrors).

There is likely to be a close relationship between how representations function
and how they develop and change. With this in niind, Sommerhoff and MacDorman
(1994, §5) proposed an approach to modelling sensorimotor relationships based on
neurophysiological predictions. They also discussed evidence for these predictions
from brain research and suggested one way they might be represented neurally. Their
approach shall be corrected and, from the standpoint of behavioural simulation,

further developed here.

An individual learns predictions (within the constraints of biological adaptation)
on the basis of spatial and temporal correlations in sensorimotor projections and
internal variables. These predictions need not be conscious. They may concern, for
example, the effect of self-induced movement on sensory projections from internal
and external sensory receptors. An individual may also learn them passively. They
may, therefore, concern likely trends in internal physiological and external sensory
projections that can occur either without motor involvement or independently of it.
An individual’s anticipation of consequences is always contingent on that individual

acting in particular environmental circumstances. Therefore, sensorimotor projections
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(as well as internal processes like thinking, remembering, and feeling) elicit, revise, and
sustain an individual’s learned predictions, and only a subset of them will be active at

any given moment. They are in tlus sense conditional predictions.

Once activated, predictions prepare the individual for the kinds of sensorimotor
projections that typically ensue. They do this by expediting aﬁticipatory responses.
- Unexpected sensorimotor projections initiate orienting responses. They stimulate the
revision of old predictions and the development of new ones in order to account for
the unexpected projections. Since sensorimotor predictions are learned by means of
sensorimotor projections from actual bodily interactions, they are able to model the
relationship between individual and environment. Other individuals are an important’
part of that environment and certainly the most complex (see Cowley & MacDorman,
1995).

We shall next consider how this theory can be adaptively used to ground an a
priori symbol system. Memory-based techniques in robots provide one possible

route to its implementation.

Grounding an A Priori Symbol System

The propositions of a symbol system résemble the disembodied knowledge found in
books (see Harnad, 1993). This contrasts with an individual’s knowledge which is
full of internal variables and relates to body and personal history. As with the words
in a book, the symbols of a symbol system are ungrounded insofar as they have been
abstracted from their relation to a particular person. Moreover, the symbols
manipulated by most Al programs are not part of an autonomous system: they are
not embedded in an agent that can cope with the world on its own (e.g. a robot).
Hence, they are not required to mediate between sensory projections and motor
signals. This is because the program has neither. The symbols the program generates
are only intended for human consumption, and their meaning is determined by a user’s
interpretation (Harnad, 1990c). Although these programs cannot interact with the
world through bodies under their direct control, their output influences their user’s
behaviour; and people have successfully applied them to a variety of endeayours from

mineral exploration to medical diagnosis.
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A robot, by contrast, must rely on its own sensors and actuators. If internal
symbols can be functionally analogous to intentional states (as Fodor argues), in order
to relate these symbols to the outside world, they- ought to be abstracted from and
grounded in the robot’s own sensorimotor coordination. If we consider the difference
between an agent acting on the basis of phenomena it has itself detected or instead
acting on the basis of a description of that phenomena (perhaps one produced by its
own perceptual system), intuitively, the difference may seem trivial. This is because
we straightforwardly perceive a world populated by objects, and much of the brain
activity involved in recognizing and responding to them is introspectively opaque.
Being subconscious it can only be inferred.*® We further take for granted that our
similar bodies, sense organs, language, and culture make it possible for us to agree on
what constitutes an object. But far from being trivial, grounding symbols in behaviour
has proved unexpectedly difficult for robot designers. For example, it appears to be
much easier to automate the task of deciding what chess moves to make (the

‘intellectual’ part) than physically moving chess pieces about the board.

Few programs, including programs that play chess, could be said to have the clear
semantics of a symbol system. Internal symbols (in the computer science sense)
often do not stand for external states of affairs, and indeed their semantics can be
rather convoluted (Smith, forthcoming). Nevertheless, by Harnad’s eight criteria
(1990a, p. 336 and chapter 1), we may give a symbol-system interpretation to
significant portions of a chess-playing program. The game has explicit rules for the
abstract movement of pieces (as opposed to their physical movement on a board).
The manipulation of internal representations is purely syntactic, and a significant
subset of these representations may be interpreted semantically—for example, as

standing for chess pieces, board positions, and chess moves.

To illustrate how learning can provide a well-adapted sensorimotor grounding to
the symbols shared by a chess program and a piece locating system, let us consider in
more detail an aspect of the hand-eye coordination task of moving chess pieces. A
robot must move its six-jointed arm so that its hand is positioned to grasp a piece.

For eyes the robot has two cameras, both trained on the chess board. If either its

3% It has been noted that we cannot explain how we recognized someone’s face with the

same certainty that we can explain, for example, how we solved a mathematics problem.
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hand or a chess piece becomes visible, feature detectors activate a proposition that
contains the corresponding symbol and its location in camera-based coordinates. For
example, the proposition at (rook, camjloc (497, 325), camjoc (890, 194)) may
signify that there is a castle centred at the position x = 497, y = 325 in the first
camera’s image plane and x = 890, y = 194 in the second camera’s image plane. To
give the symbol rook a sensorimotor grounding, the robot must be able to pick up the
castle and move it across the board. The robot could move its hand into position by
constantly monitoring the visual consequences of small changes in its joint angles, and
using this negative feedback to correct for errors in the manner of a servo-mechanism.
This method would be comparatively slow, however. If only the robot were able to
know which joint angles corresponded to the object’s visual location, it could make a -
beeline through the coordinate space of joint angles, thus positioning its hand in one

swift and graceful movement.

Technically, the robot needs to be able to make a coordinate space transformation
from points in the 4-D visual coordinate space® of the camera’s image planes to
points in the 6-D proprioceptive coordinate space of the robot arm’s joint angles. In
humans some neuroscientists have assigned this task to the cerebellum. Pellionisz and
Llinas (1979) conjectured that Purkinje cells in the cerebellum were responsible for

making this kind of coordinate space transformation by acting as a metric tensor.

In. robotics the standard approach has been to compute the transformation
according to a‘mathematical function that has been analytically derived from a set of
equations describing the geometry of the robot’s cameras and the kinematics of its arm
(Paul, 1981). This kind of a priori mapping leads to robots whose behaviour lacks
resilience to mishéps, such as a joint sticking or a camera being knocked askew.

Omohundro (1990a) contrasts this rigidity with the adaptability found in nature:

Biology must deal with the control of limbs which change in size and
shape during an organism’s lifetime. An important component of the
biological solution is to build up the mapping between sensory domains by

learning. A baby flails its arms about and sees the visual consequences of

% In the literature these coordinate spaces are also referred to ‘as vector spaces, state
spaces, and phase spaces. Sometimes more general non-Euclidean spaces are discussed

such as dissimilarity spaces which have no fixed dimensionality.
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its motor actions. Such an approach can be much more robust than the
analytical one. (p. 310)
Neither hard-wired transformations nor fixed motor patterns are flexible enough to
provide a sensorimotor mapping for bodies that grow and change in often unpredict-
able ways. Following any significant alteration in kinematics, perseverative changes in
a creature’s nervous system are needed to effect adaptations in sensorimotor map-

pings—at least in performing complex or learned movements.

Considering the speed at which neural signals tr‘avel, servo-mechanical response is
not fast enough to account for the fluidity of human movement. Taking a swing at a
golf ball and many other kinds of movement are simply too rapid to rely on it. This is
especially true of ballistic movements like throwing a ball (see chap. 9 of Carpenter,
1990). Were these movements to exploit any kind of feedback, it could only come
from an internal mapping. This is because external feedback concerning where the ball
has landed relative to the goal arrives after control of the ball has been relinquished.
As Jeannerod (1994) makes clear, these mappings must be of considerable complexity

to explain the resilience of human performance to environmental perturbations:

The corrections in movement trajectory and/or kinematics in response to
these perturbations can be so fast (usually within less than 100 ms) that
they cannot be due to programming another movement based on feedback
error detection. Instead, they have to rely on an open-loop adjustment
of the ongoing program. This suggests that the central representation.
must be a “dynamic” structure, in the sense that it permanently monitors
movement-related signals (e.g., proprioceptive) and compares them with
the ongoing efferent commands. Any deviation arising from this com-
parison would immediately trigger corrections (see Prablanc et al. 1979;
Jeannerod 1990; and for a computer model using the same principle, Bul-
lock and Grossberg 1988). (p. 200) -

Considering the relatively slow speed of neural pathways and the need to adapt to
unpredictable sensory and kinematic change, sensory feedback and innate motor
patterns probably play a relatively minor role in grounding perceptual categories as
compared to patterns of behaviour developed in light of sensorimotqr experience. We
should not be surprised if all perceptual information is, to some extent, filtered
through learned sensorimotor mappings. In this case sensorimotor learning must be a

prerequisite for any kind of passive learning.
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Evidence from patients with brain lesions supports a semewhat hierarchical
framework for motor control in which the basal ganglia affects the initiation and
perhaps the strategic planning of movements, the cerebelluﬁ their execution with |
reference to sensorimotor feedback, and the motor cortex the transformation from
desired limb positions to motor signals governing muscular forces (Carpenter, 1990,
pp.- 300, 293-294). People who lack a working cerebellum cannot make rapid well-
coordinated movements and must apparently rely on constant conscious monitoring

of small motions.

These findings support Marr’s (19695 hypothesis that, in learning a skill, the
cerebellum automates consciously-controlled movements. His hypothesis is that, at
first, neural signals from higher centres pass along climbing fibres through Purkinje
cells to the motor cortex. Meanwhile, the sensorimotor context creates patterns of
activation across parallel fibres. Gradually, presynaptic and post-synaptic coinci-
dences in the firings of paralle] fibres and Purkinje cells result in the strengthening of
connecting synapses, so that the performance of movements no longer requires direct
conscious control. Nonetheless, neurophysiological e{ridence for these mechanisms is
inconclusive, and in some ways Marr’s explanation may be too modular: it down-
plays the fact that knowledge of sensorimotor relationships must be consciously

available in sensorimotor planning, perceptual recall, and dreaming.

Memory-based Implementations for Learning Sensorimotor Mappings

There is a broad class of algorithms for learning nonlinear mappings like those needed
for sensorimotor coordination including, for example, feed-forward neural networks
that learn connection weights by back-propagation (Rumelhart & McClelland, 1986).
Indeed, connectionism has already been applied to learning in sensorimotor domains
(e.g., Mell, 1988). However, Omohundro (1987, 1990a) has instead advocated the
application of closest-point (i.e. geometric) learning algorithms to sensorifnotor
problems. They are easier to analyse and, for this kind of application, learn many
orders of magnitude more quickly and accurately (at least when implemented on
ordinary computers, also see Gross & Wagner, 1996). Methods abound for finding
closest points (see Bentley, 1975, Friedman et al., 1977; Sproull, 1991; Tamminen,
1982; Ramasubramanian & Paliwal, 1992; Mic6, Oncina & Vidal, 1994). There are

even efficient methods of finding closest points in dissimilarity spaces where, as is the
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case for phoneme recognition, the dimensionality of the instance and the categorical
representation are likely to differ and the computational cost of comparing them is
high. For simplicity’s sake, however, discussion in this dissertation will be limited to

Euclidean distance measures in ordinary vector spaces.

Clocksin and Moore (1989) successfully applied a closest-point algorithm to
learning stereoscopic hand-eye coordination like that required for moving chess pieces.
Clutching a pen light (to simplify the recognition of its hand), their robot moved its
arm about. It recorded in a composite coordinate space the locations it visited in its
visual and proprioceptive subspaces. If nearby points in its visual subspace had been
reached by more than one set of joint angles, it would only remember the set that
resulted in the least contortion to its arm. During a ‘dreaming’ period, the robot was
disconnected ffom its arm and recorded further points by making linear interpolations
from neighbouring points. To approximate the joint angles corresponding to a new
visual location, the robot consulted the joint angles for the closest point recorded in
the visual part of its coordinate space. Thus, previous sensory projections acted as
hedra (a special class of multidimensional convex hulls where the hyperplane
boundaries that quantize the coordinate space are equidistant from the closest two
points). If an object were recognized, the image plane coordinates of its location
would fall into one of these hulls, and the corresponding representation would serve
as the robot’s prediction about the movements required to approach it. In a compara-
tively short period of time the robot learned to move its hand to within a centimetre
of a given goal point without the use of an algorithm for either stereoscopic vision

(like that proposed by Marr) or arm kinematics.

Even more significantly, coordinate space learning methods (of which the closest-
point method is but one example) are highly general. There are only two assumptions
implicit in the above model, and both of them generalize to other geometric problems.
The first is continuity which indicates that nearby points in the domain of a mapping
are also nearby in the range. The second is smoothness which indicates that the
mapping can be approximated by local interpolation. The shortcoming of the current
chess example is that a chess board shares little in common with the complexity of the
real world. However, the learning techniques used here generalize to more intricate

environments. As Clocksin and Moore note, the same class of techniques could have
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been used if the robot were controlling wings or fins or viewing the world through

reversing prisms.

Improving the Implementation

Sommerhoff and MacDorman’s high-level description of how an individual could
develop predictions (beginning with representations about sensorimotor relationships)
does not immediately suggest a particular implementation. Nevertheless, we may
appraise the suitability of an implementation in terms of a description such as theirs.
We shall presently consider Clocksin and Moore’s hand-eye coordinating robot. The
suitability of their implementation will depend on many things that must, of course,
be left out of the high-level description, for example, what computing elements are
available and the intended sensorimotor domain. Unsurprisingly, implementations
that model qualitatively different kinds of patterning (e.g. acoustic, proprioceptive)
will require some degree of differentiation and modularity. Nevertheless, given some
of the broad adaptive features-of biological systems considered in this chapter, we
may use Sommerhoff and MacDorman’s description to appraise Clocksin and

Moore’s implementation and to suggest how it may be improved.

We can do this by assigning the functional particulars of the implementation an
intertheoretic interpretation in terms of the description. In this way, we can evaluate
the plausibility of the implementation vis-a-vis the description. Indeed, this process
can be applied—in addition to implementations—to representational frameworks
such as Fodor’s language of thought. The more detailed the description, the more
deficiencies it can potentially expose in a theory or implementation, so ideally it
should be very detailed (containing as much low-level information ag possible), and
cognitive scientists should all be able to agree on it. This is, unfortunately, not
realistic given how controversial representational theories in this field are. In what
follows we shall analyse, in the context of our chess game, Clocksin and Moore’s
implementation of hand-eye coordination m terms of Sommerhoff and MacDorman’s

high-level account of how an individual represents sensorimotor relationships (§§3, 5,
1994).

The proposition about the rook’s location on the robot’s image planes qualifies as
a sensorimotor representation because the sensorimotor processes that need to be

appropriately related to the manipulation of the rook are appropriately related to the
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proposition. Specifically, the processes that determine where to move the robot hand
rely on the proposition’s image plane location values for the rook. Also, the robot
derives lasting benefit from sensing the visual and proprioceptive consequences of its
arm movements insofar as they leave their mark in the form of corresponding
sensorimotor predictions about the movements required to reach visual locations.
Indeed, the core of the robot’s behaviourally-grounded representations consists of
these learned predictions. Hence, Clocksin and Moore’s implementation certainly
- reflects the spitit of Sommerhoff and MacDorman’s high-level description and, up to
a point, conforms with the description. The robot, however, does not exhibit
orienting responses to unexpected sensorimotor projections. They are generally
accompanied by a shift in attention from ongoing activity to the unanticipated
perception and, according to the present approach, lead to the formation of new

predictions or the modification of insufficiently accurate predictions.

To account for orienting responses, the robo’; must be able to shift emphasis
between leamning, correcting, and using its coordinate space model as circumstances
dictate. If the robot’s predictions are sufficiently accurate for it to position its hand
so as to move a piece, the robot need not augment or modify them. If not, the robot
can, in the final stages of positioning its hand, resort to positioning it servo-
mechanically by exploiting negative feedback from vision. (This appears to be what a

- person does in extending an arm to place a finger on a spot. The arm movement slows
right before the spot is reached.) Once suitably positioned, the robot can then store in
its coordinate space the new visual and proprioceptive position of its hand so as to
fill in the gap in its sensorimotor model. It is also important that the robot be able to
distinguish between a lack of predictions and predictions that are no longer suffi-
ciently accurate because of bodily or environmental change. A lack of predictions can
be corrected simply by further exploration so that predictions may be developed from
previously-unencountered sensorimotor projections. However, insufficiently accurate
predictions must be modified, amended, or forgotten. If the robot’s arm or cameras
are knocked out of alignment, this may necessitate replacing all predictions related to
hand-eye coordination, and it may be more efficient simply to forget them and to start

afresh by relearning the mapping.

Once amended Clocksin and Moore’s implementation conforms to Sommerhoff

and MacDorman’s high-level description at least insofar as it concerns the robot’s
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sensorimotor coordination in mapping from visual locations to corresponding arm
movements. (Piece recognition is another matter.) All the points in the robot’s
coordinate space constitute learned conditional predictions. Active predictions—
those that have been elicited, revised, or sustained by sensorimotor projections—
prepare the robot with anticipatory responses for sensorimotor projections that are
likely to follow. In the present example, the recognition of a particuiar chess piece
triggers the anticipétory response of the robot’s arm movement; in turn, the arm
movement triggers the anticipatory response of grasping the rook.** Unexpected
projections initiate orienting responses in order to learn new predicﬁons or mddify
insufficiently accurate predictions. If the arm is not positioned close enough to the
rook, the robot must resort to positioning it servo-mechanically and then augment or

modify its predictions.

I am supervising a project, currently at the simulation state, which extends the
above enhancements to Clocksin and Moore’s model. Instead of simply moving its
arm to a point in space, the robot learns to predict the future position of a ball based
on its position when it came into view of both cameras’ image planes and again its
position some milliseconds later. The arm moves a basket to that position to catch
the ball. |

Implications and Extensions

Reconceptualizing Visual Processing

One important feature of Clocksin and Moore’s memory-based approach to hand-eye
coordination is that no intermediary form of representation was necessary for the
robot to map from vision to proprioception. The robot was able to integrate
information from these two modalities without, for example, computing a depth map

from binocular disparity. From our earlier discussion on sensorimotor integration, we

“® These responses are rather simple and uninteresting because they do not involve
interaction. Nevertheless, predictions may elicit anticipatory responses when two or
more agents must coordinate their activity—for example, if one must catch a ball thrown

by another during a game.
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note that a depth map by itself is only grounded insofar as it serves (or could
potentially serve) to coordinate the robot’s activity. It would have required consid-
erably more computation than Clocksin and Moore’s memory-based approach, and it
is unclear what it could have contributed because values for depths would still need to
be mapped onto arm movements. The mapping is more straightforwardly performed
directly from the image planes of the two cameras. In using a depth map, if the depth
values were to be represented in some objective unit of measure, the robot would need
to have a means of calibrating itself accordingly. A depth map would also probably
make it harder for the robot to adapt to unanticipated change. Even were it to choose
its units subjectively for its own convenience, if its caméras were knocked out of
alignment, it would be difficult for it to compensate for the change in its camera
geometry. Incorrect values would require it to relearn the sensorimotor mapping from

scratch, thus offering no advantage over Clocksin and Moore’s approach.

This is not to deny that intermediary forms of representation do at some point
become useful or even necessary. However, there is little point in developing
representational models without first considering how they are to mediate between
sensation and action. Otherwise, we might develop models that, in practical robotics

problems, would prove unworkable or superfluous.

Computational approaches often conceive of visual processing as operating on a
static scene. The task is to mark out and label objects according to their abstract class
(e.g. chair, table, cup). This information can then be converted into a symbolic
description of the objects and their relations to each other which, in turn, can be used
to make inferences. Contact between the visual systems and objects is limited to a
stationary image. It is impossible to touch, hear, smell, taste, or in any way handle
objects. These constraints and the totally noninteractive conceptualization of the
problem naturally lead to an undue emphasis on a priori feature detectors. This is
because, with such limited sensorimotor contact, it is virtually impossible for the
visual system to discover what might constitute an object. But when people
recognize objects they implicitly reéognize the behavioural and physiological
possibilities they afford. This is because multimodal interactions with objects enable
us to distinguish them from their surroundings and, with time, to discover what they

do and do not afford (see chapter 6).
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A tendency to introspect verbally about what is in a scene and then to try to link
up the symbols (words) used to describe it with the objects they stand for perhaps
tempts researchers to take a short cut. It may tempt them to rely on a priori feature
detectors and overlook the low-level sensorimotor dimension that may underpin much
of recognition. Although it is patently true that adult humans can look at a static
scene (e.g. a photograph) and recognize objects without moving in that scene, this
ability may depend on much prior learning. At base this learning may need to be a
sensorimotor kind. The development of our powers of recognition may be closely
tied to the rqlationship between movement and perception. The next subsection

explores one way to conceive of this happening.

Multimodal Integration Facilitates Abstract Perception

In the hand-eye coordination example, sensorimotor projections from vision elicit
predictions about proprioception. This kind of mapping is also possible within the
same modality. By the coordinate space methods described, for example, a robot can
learn to map between movement parallax and binocular disparity, or binocular
disparity and vergence, or vergence and changes in apparent size, etc., or any
combination of these. Information from these sources can also be used to set up
predictions about the movements required to reach an object. Bodily movements can
likewise be used to set up predictions related to vision. As mentioned at the begin-
ning of the chapter, this has been observeci and studied extensively in humans. For
example, a person walking without vision from one location to another automatically
updates the relative direction of surrounding objects (see Rieser, Guth & Hill, 1986).

From past experience an individual develops a feeling about which way to turn.

This kind of behaviour can be modelled in robotics. A robot can learn to update,
among other things, predictions about the direction it would have to turn to reach
objects solely on the basis of proprioceptive information. In this way, a robot can
use one source of sensory information to elicit predictions that are more directly
related to a second source and, thereby, to compensate for a lack of information from
that second source. In cases like this, the predictions would prqbably be less
accurate; however, coordinate space models at least offer graceful degradation in
predictive accuracy when fewer dimensions are available. (In the simplest closest-

point model, this means fewer terms in the Euclidean distance measure.)
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As mappings are learned between and within different sensory modalities, it is
possible to see how predictions can be elicited by ever more indirect means of
sensorimotor contact. For example, a robot might initially be obliged to follow the
contours of objects with its hands and eyes to discern their shape and how they
behave. Gradually, éensorimotor predictions could develop from it havingibuched
and foveated points along fhe contours of objects. These predictions map the
topography of the image plane to eye saccades so that it is no longer necessary to
follow the contours of an object with hand or eye to elicit predictions about its shape.
Instead its shape is recognizable from the still image. Eventually, sensorimotor
predictions. develop not only through self-induced movement but also by passively

watching things happen.

If infants develop the ability to recognize objects passively oﬁly after developing
rich predictive maps integrating the multimodal sensory consequences of motor
actions, this may suggest that robots should do the same. In this way they could
learn perceptual categories that can ground their symbols. Object recognition ' would
certainly be more robust if the robot had access to such maps: If the robot could not
categorize an object with certainty by passively looking at it, it could try foveating
along its edges or moving around it. This activity would probably lead to the
confirmation or violation of its active predictions and would sustain and elicit further
predictions. There should be little doubt that having integrating maps can contribute
to recognition. The most adaptable (and perhaps easiest) way to have them is to learn
them. This learning may be best modelled in terms of the development and revision of
sensorimotor predictions. An understanding of the process by which robots can learn

these predictions may help to diminish their reliance on a priori feature detectors.

Multimodal Integration Facilitates an Object-Centred Frame of Reference

Predictions about how bodily movements transform a viewpoint-dependent represen-
tation of an object (or configuration of objects) can in fact serve as a viewp(?int-
independent representation of that object. By themselves, the sensory projections of
an object as viewed from a particular perspective can say little about either the
projections of that object as viewed from another perspective or how motor actions
could be related to that object. However, a viewpoint-dependent representation plus

predictions about how motor actions transform its projections make it possible to
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predict the appearance of the object from other angles and distances. Thus, they
together provide a viewpoint-independent representation.*! From this we can see that
sensorimotor predictions concerning how motor actions transform an dbject’s sensory
projections indeed facilitate the formation of an object-centred (allocentric) frame of
reference from a viewer-centred (egocentric) frame of reference (see Feldman, 1985,
for background). This is because predictions concerning transformations caused by
self-induced movements can be used to compensate for those movements, for

example, in visualizing activity from an object-centred perspective.

The Need for More Realistic Environments

So far we have only increased the adaptability of the robot’s hand-eye coordination.
Yet although the robot can now adaptively adjust to changes in its visual geometry
and arm kinematics, its feature detecting mechanisms do not improve with practice.
(This could be remedied, for example, through the learning of categorical representa-
- tions as described in the last chapter.) Moreover, the robot can only classify objects
as belonging to a finite number of specified categories. This is no disadvantage in
playing chess because there are only six kinds of pieces and two colours. But the real
world is more complex. To adapt to environmental change, it may be necessary to

become sensitized to new kinds of sensorimotor patterning.

Plainly, there are a number of ways in which playing chess is not like getting
about in a natural environment. For one, the fundamental objects of chess (its abstract
pieces, board positions, legal moves, etc.)—on which all chess players agree—are not
representative of all perceptual categories.”> Perceptual categories _probably vary
somewhat between individuals—and certainly between different species. I have
suggested this be explained in terms of their reliance on sensorimotor mappings

developed in the course of a particular individual’s life.

*! This representation need not rely on any intermediary form of representation, such as

a representation of the object’s shape in allocentric (object-centred) coordinates.

42 Chess players may, of course, disagree about other matters such as whether the pieces
are situated in a particular strategic arrangement, the significance of that arrangement,

and what term should best describe it.
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There are other limitations about the domain of chess that, unlike physical
environments, make the game amenable to symbol systems. Unlike real environ-
ments, chess only requires the recognition of a few objects which are known in
advance: six kinds of chess pieces of two different colours, and their position on the
chess board. Likewise, abstract piece movement is constrained by the rules of play
which do not change. Furthermore, a chess program can get away with being
solipsistic. A human can directly interpret the meaning of its output so the program
does not need to connect its symbols to actual pieces and board positions (see
Harnad, 1990c). However, even in a highly constrained domain like chess, if a chess
program had to recognize and move actual chess pieces, an a priori grounding of the
kind provided by feature detectors may not be flexible enough to recognize all the
_different kinds of chess sets with which it might potentially be confronted—-and this
would be a good place to start applying the methods of the last section. '

Chapter 6 is intended to illustrate an adaptive approach to discovering classes of
objects. The next chapter extends the approach taken here to learning sensorimotor

predictions that can be applied to the planning of action sequences.

Conclusions

Human beings exhibit a general capacity to adapt: we can learn to eat with chopsticks,
ride a horse, play tennis, or feel our way through darkness with a cane (from Bateson,
1979), without need for the genes of our ancestors to have been selected specifically

for these purposes.

In pondering the nature of representation, theorists often consider sensory
modalities in isolation. By overlooking sensorimotor integration, they place an undue
emphasis on ~peripheral sensory processing (which, because of its proximity to the
sense organ, is specific to that modality alone). This results in theories that are too
optimistic about what peripheral sensory processing can do. This bias may also lead
to theories that exaggerate the importance of a priori feature detectors. This is
perhaps because, with impoverished data from only one sensory domain, it is very
difficult to discover relevant featurés empiricaliy. Multimodal interaction with

objects enables the perceptual system to sensitize itself simultaneously to the
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sensorimotor projections of the objects and to the behavioural and physiologiéal

possibilities they afford.

Through the empirical learning of conditional sensorimotor predictions, it seems
likely that one may simulate many aspects of intelligent behaviour. According to the
predictive theory put forward, active predictions form the nexus of-an.organism’s
grounded sensorimotor representations. They relate motor signals to their sensory
(including physiological) consequences. Since they are learned empirically, unlike a
priori feature detectors they reflect bodily and environmental change. It is necessary
for an organism to learn an internal mapping of this kind to explain the adaptability
agd fluidity of coordinated movement. As Jeannerod (1994) has shown, the use of
negative feedback in closed-loop control requires too much time to explain the speed
with which people can adjust their movements to environmental perturbations.
Open-loop control requires access to a mapping—a mapping which to some extent
must be learned empirically. According to Jeannerod (1994) this “central representa-
tion” would need to have a dynamic structure in order to compare proprioceptive and

motor signals and respond in accordance with their changing relationshib.

Predictions may allow an organism not only to anticipate the effects of its actions
but also to model mentally its relationship to its surroundings. The role of a priori
feature detectors, however vital it may be, is probably at the periphery of this

process.

It is relatively easy to simulate an organism’s learning of sensorimotor predictions
by means of any number of algorithms for learning nonlinear mappings including those
used by artificial neural networks (e.g. backprop). Especially robust is the closest-
point technique used by Clocksin and Mogre (1989) and Omohundro (1990a). By
exploiting the geometric properties of continuity and smoothness, this learning

algorithm can be applied to any sensory domain.

Sensorimotor categories are grc;unded in coordinated activity. There is some
evidence to suggest that these categories precede and, to some extent, subserve
abstract reasoning. Wason (1981) tests have demonstrated that people can more
easily solve many kinds of abstract problems once they have been redescribed in
concrete settings. This suggests that a sensorimotor context can aid deduction. Could

even logical reasoning partly depend on the elicitation of sensorimotor predictions?
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(Some research has indicated that, insofar as thinking is logical, learning is important:
sociocultural institutions like schools are influential, see Scribner & Cole, 1981, PP.
126-128; Wertsch, 1991.) If in thinking we eproit. sensorimotor transformations that
are analogue in nature and, for the most part, learned, then thihking would appear to

depend on more than what could be explained by an a priori symbol system.

This chapter proposes a theory which claims that learned predictions can model
the integration of multimodal sensorimotor information. Early in cognitive develop-
ment predictions may integrate information related to the same sensory source or
modality. Later they may integrate information from various sources and modalities.
This is possible because earlier predictions provide scaffolding for later 6nes to
develop. In this way predictions initially identified with one sensory source or
modality come to elicit predictions related to other sources and modalities. As more
abstract and indirect mappings are built up, predictions may be elicited by ever more
indirect means of sensorimotor contact. Thus, our sophisticated ability to recognize
objects passively may in part be rooted in active sensorimotor learning. If this can be
shown then it would confirm that all perceptual categories do not need to be triggered

by a priori feature detectors.
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Chapter 5. Adaptive Sensorimotor Route Planning

Introduction

;o
In this chapter we examine how an autonomous robot can learn about its sensorimotor

dynamics from experimentation. As in the preceding chapter, the robot empirically
learned predictions about the sensory consequences of motor signals, and these
predictions served to model its relation to its world. However, in the last chapter we
focused on how the robot could learn a mapping between sensory modalities. We
specifically considered how Clocksin and Moore’s robot learned proprioceptive
predictions about visual positions. The control part was straightforward and only
depended on this mapping: the robot moved its arm into position by making a beeline

through its proprioceptive coordinate space.

In many domains movement is not so simple. For example, it may be necessary
to compute paths that circumnavigate obstructions. (This is usually called route
planning. Of course, there does not need to be anything consciously thought out
about this planning.) In this chapter we shall consider how a robot can learn sensori-
motor predictions about the dynamics of a remote controlled car and use these
predictions to plan sequences of movements in cluttered environments. In experi-
ments with a simulated car, the robot developed generalizations about its movements,
and used this information to successfully plan paths through uncharted areas of its
state space. In the next chapter, we will consider more abstract forms of planning (as

well as how a robot can learn to recognize objects without advance knowledge).

We first begin by considering rudimentary models of learning in which a robot
only takes a single action before evaluating the success of its behaviour. To be more
precise, given its current sensory projections from external sensors e (e, e,,... €,), it
produces motor signals m at one time step and then appraises the outcome o at the
following time step. In this simple example e, m, and o are not vectors but scalars,
and together (e, m, 0) determine a point p in a sensory-motor-outcome coordinate

space.
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We first consider learning by trial and error and then examine how the number of
trials may be minimized by exploiting consistencies: for example, the closest-point
method can be effective if sensory projections and motor signals that are closer in the
sensory-motor subspace are more likely to lead to outcomes that are more similar in
the outcome subspace than sensory projections and motor signals that are further
apart. We shall also investigate the criteria the robot may use to select motor signals
and the trade-off between taking the time to enhance its sensorimotor predictions
(which model its relationship to its surroundings) and making immediate use of them.
That is, the trade off between exploration and exploitation. We then explore how the
robot could cope with a nondeterministic environment and how apparent nondeter-
minism can actually be caused by an inadequate suite of sensors or the inability to

recognize an underlying regularity.

Finally we examine how the robot may properly scale the dimensions of its
coordinate space—that is, the range of values produced by each sensor—in order to
improve behavioural prediction, to reduce noise, to eliminate behaviourally redundant
or irrelevant sensors, and to uncover regularities that can be used to make predictions
about the consequences of motor signals—even when the robot is in a novel perceived
state, having never detected physically similar éensory projections before. The
capacity to make accurate predictions by making generalizations about sensory
projections that are apparently very different equips the robot with ‘sufficient
knowledge to successfully plan out sequences of motor signals without the need of

having previously tested each sensory-motor combination.

A Preliminary Example

In an introductory example, Clocksin and Moore (1989) explored the use of an
adaptive model for solving the task of getting a car safely across a street while another
car is approaching. A common solution would be to apply standard control theory in
order to devise a mathematical model of the dynamics of the system including the
performance of the cars involved. The usefulness of the model, however, would
depend on how accurately this idealization represented the real world. It would,
therefore, be sensitive to problems of measurement and could not adapt to changes in

the environment or the functioning of its sensors or mechanics. Clocksin and Moore
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sought rather to design a robot which does not require an a priori model but can adapt

to its environment regardless of variations in the car’s sensing or performance.

The robot is given the velocity and location of the car on the main road when it
first appears. These numbers index the fixed amount of acceleration it will use. If
there is a collision, the value that was indexed is randomly replaced with a new value.
Eventually the robot learns to cross the road. The robot achieves somewhat better
perforrhance with smoothing—that is, resetting untested or unsﬁccessful indexed
entries to successful neighbouring entries. Still better performance was achieved by
usjng the “Boxes” method (Michie & Chamberé, 1968) where the likelihood that an

action is selected is proportional to its estimated probability of success.

The robot learned slowly because it can only determine the effect of its motor
signals in light of previous trials that were very similar. If the nature of the robot’s
environment is such that, for any giveh motor signal, the mapping from the sensory-
motor subspace to the outcome subspace is fairly flat and continuous, nearby points
in coordinate space are likely to produce similar results. The closest-point method
(Friedman et al., 1977) exploits this underlying consistency: the robot dispatches
motor signals that were successful for a nearby point in coordinate space (Clocksin &
Moore, 1989; Moore, 1990; Omohundro, 1990a). Of course, this method will be less
effective in regions characterised by sharp boundaries, because the same signals will
produce very different behaviours for nearby points. Moore proposes thé use of a
multidimensional tree (Bentley, 1975) to record the previous attempts of the robot,
because it facilitates the rapid look up of a point’s nearest neighbour. Its complexity
is order 2* log, n where k is the number of dimensions and # the number of past trials.
The exponential £ term posed no problem in experiments using up to twenty

dimensions.

In a practical system we would want the robot to be able to modify the speed of
the car while it is passing through the intersection so that it could adjust to changes in
the speed of the other vehicle. It might also be useful for the car to know how much
time it is taking to pass through the intersection or the amount of fuel it is consuming,
in order to optimize its behaviour. Mean's of addressing these issues in situations

where sequences of motor signals are required will be discussed later in this chapter.
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Should the gazelle stop to check if the rustling in the bushes is a predator or
should it immediately flee? Living creatures are able to balance the need for updating
and embellishing their model of the world with the need for exploiting it, because
those that could not perished with their genes. The question of exploration versus
exploitation is similar to the n-arm-bandit problem (Jervis, 1992). Should one risk
losing money in order to be more certain that one is pulling the arm of the slot
machine with the highest expected pay-off? Of course, animals developed the ability
also to balance the priorities of maximizing long-term pay-off with those of short-
term pay-off. If a squirrel squanders all of its time surveying its habitat, it may starve
before it can take advantage of its efforts. People have used decision theory to
balance the cost of gaining more information with its utility (this has been called
bounded rationality, see Russell, 1991). For example, we would like the robot to be
able to determine based on the goals we set out for it whether it should explore
boundaries between regions where different behaviours are predicted or avoid them.
The robot should be able to determine, for ex‘ample, whether to weight newer

information more heavily than older information.

Moore (1990, chap. 8.11) uses a probability distribution to ensure that previously
successful motor signals (and those most similar to them) would be attempted more
often than other motor signals, although all would have some chance of being tried.®3
The best candidates are those reliably predicted to be successful. The next best are
those unreliably predicted to be successful. The worst are reliably predicted to be
unsuccessful. To illustrate let us again assume that our robot is trying to guide a car
across the street given that another car is approaching with a certain speed and
position. Furthermore, let us assume that the robot may choose among ten actions:

accelerating the car between one and ten feet per second. If the car had safely crossed

** Moore called these motor signals actions. This is an unfortunate use of language
because it blurs an important distinction. Motor signals cannot be equated with physical
movement because, although they influence it, they do not determine it. The environ-
ment also comes into play. For example, when animals copulate, the behaviour. of one is
not the direct result of its motor signals but depends in part on the movement of its
mate. It is also important to distinguish physical movement from perceived behaviour.
Much of what animals do goes unobserved because of the limits of our own sense organs

and the way we categorize and conceptualize their input (Gordon, 1992).
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the intersection with accelerations two and nine already, but was unsuccessful with
four, and if the robot is trying first to maximize safety and then minimize time across:,
it would be more likely that the robot would attempt accelerating eight-or ten feet per
second rather than three or five. Of course, the robot would face more complicated

choices in a real driving situation, because there are other dimensions to control such

as steering.

What if the driver of the other car sometimes spotted the robot controlled car in
time to avert an accident? Unmodified the p.aerformance of the closest-point algorithm
would be impaired by this external stochastic process. There would be a region of
coordinate space in which a motor signal may or may not lead to an accident. Because
the success or failure of a point in this region depends on the other driver’s behaviour,
the fact that a motor signal had been successful when the car was in a nearby location

is a poor indicator of whether it will be successful again.

Ideally, instead of marking these points as successes or failures, they would be
marked as potentially being either. If success and failure are represented by real
values, the expected outcome of taking a given action in this region could be repre-
sented by an average of the utility of the » closest points to the current sensory-
motor point being considered, weighted according to their proximity to it. Hence, the
expected utility of the outcome would be somewhere between the values for success
and failure. If the robot always tried to chaose the best action possible, it would then
learn to avoid this area. However, there is quite a difference between a point that is
consistently mediocre and one that could be successful but is potentially fatal. An
animal’s reproductive success, for example, might sometimes be enhanced if it acted to
ensure subsistence rather than taking unnecessary risks in the hopeé of greater gains.
At other times the opposite might be true. Therefore, it may also be useful for the
robot to calculate something like a weighted standard deviation. This information
could be exploited by a well-adapted control strategy in light of changing circum-

stances.

One difficulty with any method of smoothing the coordinate space is that the
robot could be smoothing out important detail. How does it distinguish a very
convoluted area of coordinate space from a nondeterministic one? This might be

revealed by an attempt at optimizing the weighting of the average, trying, for example,




84

steeper Gaussians. Another consideration is that different areas of the coordinate

space could require different amounts of smoothing.

Apparent nondeterminism can actually be caused by an inadequate sensor suite or
the inability to recognize an underlying pattern. 1t may therefore be possible to
reduce it by incorporating another sensor input. In the street crossing problem, for
example, the effect of the behaviour of the other driver may not be genuinely nonde-
terministic. If the robot were able to sense that the other driver had braked, the.

nondeterminism would disappear.

Given the current sensory projections, there are many methods of predicting more
accurately the outcome of motor signals beyond deferring to the closest point in the
sensory-motor subspace. The nature of the sensorimotor domain will determine the
relative merits of each method. Prediction can be improved by scaling the dimensions
of coordinate space so that the proximity of a pair of points in the sensory-motor
subspace better indicates their proximity in the outcome subspace. Scaling may also
be necessary to put the ranges of relevant variables within the operating ranges of
computing elements (for example, neurones). Not. only may different dimensions be
scaled relative to each other but different regions within a dimension may also be
scaled relative to each other. The next chapter discusses how local linear interpolation
can perform both scaling and interpolation based on nearby points in the coordinate
space. This approach is very flexible and can be used after or in place of globai
scaling.

A robot’s sensory projections may be determined by information from a number
of sensors. Sometimes a sensor may be providing information that is superfluous
because it is redundant or because it is unlikely to have any bearing on behaviour. It
may also be necessary to discount a malfunctioning sensor if it is produéiﬁg more
noise than useful information. Discovering the best scaling of dimensions means
knowing which sensor inputs should be weighted more heavily. Of course, the
computational cost of finding a closest point will increase with each new dimension
added to the coordinate space and will depend on which closest-point method is being
used. (For example, although the cost of adding new points to the coordinate space is
very low for a multidimensional tree, growing logarithmically, it is very high for
adding new dimensions, growing exponentially, see Friedman et al., 1977). If a sensor

is not contributing any useful information, it would be best to ignore it all together.
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However, if it contributes some information, it may be worth considering whether the

information it provides warrants the added computation.

Let us now formalize this. The closest-point method would perform optimally if
the distance between nearby points in the sensory-motor subspace were proportional
to their corresponding distance in the outcome subspace. Intuitively, this means that,
the more similar the robot’s sensory projections and motor signals (after scaling), the

more similar the outcome. Let s represent a point in the sensory-motor subspace of

dimensionality | S | , where s = (s1, 5,,... §|5|), and o represents a point in the outcome
subspace O, where 0 = (01, 0,,... 0|¢|). Then for all points i, j where i #j and l 0; - 0j|
< x (sufficiently close to be considered nearby), we would like |s,- - S o | 0; - ojl.

Unfortunately, it is highly unlikely that this is attainable. We can, however, scale the |
dimensions of the sensory-motor subspace with a weight vector w to minimize the
overall disproportionately between the subspace S and the subspace O. We,

therefore, wish to solve for w such that

n n || 9]

miny Y \/Z(wd(sf,d —5;)) - \/2(0,.,,, —0,,)0 |
i=1 j=i+l&|o,-—oj|<x d=1 d=1

This equation can be minimized using Powell’s method (Brent, 1973, chap. 7) or the

downhill simplex method (Nelder & Mead, 1965; Press et al., 1992).

If a sensory input dimension d provides no indication of the -robot’s likely
behaviour, w, should be close to zero. In this case we can drop the dth dimension.

We may also wish to drop it if it is very small relative to the other components of w.
We may compute some € below which the value of the information contributed is not

sufficient to justify the added complexity of using the dimension. If two dimensions
provide exactly the same information, removing one will double the weighting of the
other. By selectively removing dimensions it is possible to discover what minimal set
offers adequate predictive power. A less computationally intensive approach which
should offer reasonable performance for most applications is to eliminate sensory
dimensions that are either not correlated or very weakly correlated with the outcome.
Dimensions can then be scaled using linear least-squares minimization. Dimensions
that most strongly influence the outcome will have larger coefficients. As the same

variation in distance in these dimensions will have a larger likely impact on the
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outcome than in other dimensions, closest-point prediction can be improved by using
these coefficients to weight the distance function so that distances are extended in
these dimensions relative to less influential dimensions (see the next chapter for a

more detailed explanation).
Route-planning Experiments

Discovering the Building Blocks of Plans

Our sensory projections are in constant change, and one moment is never quite like
the next. Nevertheless, we and other vertebrates are able to develop from experience
predictions about the consequences of behaviour. This feat would require an
astronomical amount of time were our brains not able to generalize. In the last section
we discussed how a robot could improve the accuracy of its predictions about the
outcome of its motor signals. In the remainder of this chapter, we will consider how a
robot can develop predictions that specifically concern the effect its motor signals
have, from moment to moment, on its sensory projections from external sensors.
These predictions can be used to model transitions in the robot’s perceived state. In
experiments in which a robot learns to control a simulated car, we find that prediction
can be improved by scaling the dimensions of a sensorimotor coordinate space so as
to enhance the predictive accuracy of the closest-point mapping (at time #) perceived

state,xmotor signals,—perceived state,,. This permits the robot to form generali-

zations that leverage on consistent sensorimotor regularities.

We shall also consider how learned sensorimotor predictions can replace an a
priori mathematical model in domains where it is necessary to plan a sequence of
actions. We shall be looking specifically at the task of route planning. In experiments
with cbntrolling a simulated car, the robot used these predictions to plan, among other
things, a three-point turn. This is an example of the robot finding the best route when
constraints have been placed on its mobility. The robot needed to be able to predict
the consequences of its motor signals for many intermediate states on its way to a
goal state. This is useful because there will be times when it is not feasible for the

robot to test in advance these unexplored regions of its coordinate space before
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planning a course through them. In the experiments, the robot avoided this by

forming generalizations on the basis of past trials.

My aim in the route-planning experiments was clear: We would like the robot to
be able to form, on the basis of a minimal number of trials, generalizations that are
sufficiently accurate for it to be able to plan with them. For example, if the car is at a
certain location with a certain orientation, speed, and steering position, 'the robot
should be able to predict approximately where it will be located in the next interval if
it applies a certain force to the brake, accelerator, or steering wheel—even if it has
never visited that location before. The robot should be able to discover that the
current speed of the car, the amount of pressure placed on the accelerator, and the
gradient of the street largely determine its speed in the next interval. (If the remote
controlled car is kept to a flat surface—as was the case in the experiments—then the

gradient can also be discounted.)

Of course, the car could conceivably encounter a street where its past generaliza-
tions do not apply (perhaps the street is covered with ice or it has a gradient while the
roads it was trained on did not). In this case its previous predictiorvls".~ would need to
be modified, augmented, or forgotten and replaced by new predictions that were
conditional on the relevant environmental change as sensed. Also if the dynamics of
the car itself change (say, if the tires go bald), old predictions will fail to forecast
changes in its sensory.prdjections, and this will signal the need for corrective meas-
ures. The experiments were set up in two stages. In the first half, the robot experi-
mented moving the car to develop a sensorimotor model. In the second half, it used
the model to plan. Ideally, however, these steps should operate in tandem—and this

is a good place to begin future research.

The same method of scaling dimensions that we used before to increase the
predictive power of the closest-point method were used here to extract sensorimotor

regularities to plan in novel circumstances. We may characterize an environment
which requires a sequence of motor s@gnals as perceived statexmotor sig-
nals,—perceived state, . Therefore, an outcome can simply be thought of as a state
transition perceived state,.; — perceived state, The robot computed a set of weight
vectors {Wy,... Wa,... W|o|} for each of the possible |O | outcome dimensions. Since,

in the experiments, the location and orientation did not affect the car’s speed in the
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next interval (obstacles notwithstanding), after scaling the weighted vector associated
with the change in speed outcome had a value at or very near zero for its two .
components that scale the location and orientation dimensions of the coordinate
space. Thérefore, to plan the robot was able to apply what it has learned about
regulating speed at other regions of the coordinate space—those associated with
different locations and orientations—to unfamiliar areas which must be crossed on the
way to its goal. This form of inductive generalization permitted more accurate

predictions about the consequences of motor signals with far fewer trials.

Using Dynamic Programming for Optimal Plans

In this section we will consider models that have been used previously in various
domains for path planning given an a priori mathematical model of the robot’s
dynamics. The findings of my experiments with a remote-controlled car show that,
after a period of experimentation, planning may be performed using acquired sensori-
motor predictions and that this period may be greatly reduced by scaling the dimen-
sions by the methods discussed above. The position, orientation, velocity,
acceleration and lateral acceleration of the remote-controlled car were originally to be
sensed by means of an overhead camera with the outline of the car marked out in
reflective tape. Obstructions (e.g. the edges of the road) were marked out in the same
 way. Unfortunately, I had to move the experimeilt to computer simulation because
the particular car I was using was too quick to control well and because the control-
ler’s crystal gradually began to detune after I had soldered together a computer-

interfacing box.
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Fig. 5.1: First, the robot collected data in a sensorimotor coordinate space
about how its actions affect the position, orientation, and velocity of the
remote-controlled car. It then rescaled the dimensions of the coordinate
space to eliminate uninformative dimensions. (This is a kind of inductive
generalization.) For example, having experimented with the car on a flat
surface, the robot was able to ignore the position dimensions in predicting
its velocity in the next time step. Second, the robot exploited its senso-
rimotor model to form optimal plans by means of dynamic programming.
Dynamic programming involved backward chaining from the goal to the
initial state while maintaining only optimal subpaths in a quantized coor-

dinate space.

A brute force way to find an optimal path might have been to begin with the initial
state and search by hypothetically trying various aécelerations and turning torques
until the goal is reached. In a depth-first search, provisions would have to be made for
the robot to keep the car from returning to a position it had visited before, thereby
getting itself caught in a potentially infinite loop. Moreover, when the robot does find
a path to the goal, there is no guarantee that it will be the most efﬁciqnt path. These -
problems can be avoided with a breadth-first search (or a depth-first search with
progressive deepening). There are numerous problems with this method, not the least

of which is exponential growth in the size of the search tree as its depth increases.

One way of limiting this growth is to eliminate all suboptimal subpaths, and hence
all suboptimal paths. For example, if there are several ways of getting from one
intermediate point to another, the robot should only retain the path which spans the
two points-in the least amount of time (fewest time steps). (If several do, it should
choose only one path to keep.) Now, when it is ready to search further, it will have
eliminated all but an 6ptimal subpath. Of course, it is unlikely that two different
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plans Would take us to exactly the same point, so i’; would be impossible to get much
leverage out of employing this technique by itself. That is why it is important to
make these calculations with some degree of coarseness. The planning coordinate
space may be divided into hypercubes, with all points that fall within the same

hypercube treated as the same point.

In the last subsection the robot used a sensorimotor coordinate space as a
predictive model for the consequences of its actions. Here it uses an additional data
structure, a quantized coordinate space, for dynamic programming. It fills in hyper-
cubes of the new planning coordinate space with values indicating transitions in the
state of the car based on its actions by virtue of the now scaled sensorimotor

coordinate space.

In the experiments, the above technique proved sufficient for planning a number of
simple manoeuvres. Some of them, like three-point ttirns, required the car to at first -
move away from the goal. Thus, they could not have been solved by servoing or by
simple forms of means-end analysis. All the solutions were optimal to within the

accuracy of the coordinate-space quantization.

So far we have only discussed forward chaining. However, the search algorithm I
irnplementéd branched out from the goal, trying all possible actions in reverse. This is
the same as asking what action could produce the outcome of being in the goal state
(or, in our coordinate space representation, the goal hypercube). The robot used its
sensorimotor model to determine which hypercube in the coordinate space the car
must be in in order to get the goal. Using this method, it was possible to backward
chain to all hypercubes leading directly to the goal, and then to all hypercubes which
could lead to those hypercubes that were one step from the goal, and so on, until the
initial state of the car was finally reached. (The algorithm could have forward chained
just as easily. As we shall discuss shortly, a combination of forward and backward

chaining can lead to huge efficiency gains.)

Of course, the algbrithm had to ignore unacceptable possibilities, as when
backward chaining took the car outside the coordinate space or on to an obstacle. At
the start of planning, all hypercubes were initializet to infinity. When the search
algorithm reached a hypercube, this figure was replaced with the number of time steps
it took for the robot to reach it. It immediately pruned away multiple paths by only
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keeping track of the first action to reach a given hypercube. The algorithm then set a
pointer in the newly reached hypercube to the originating hypercube. Once the
algorithm reached the initial state, it simply followed the pointers forward from
hypercube to hypercube until it reached the goal, accumulating a list of actions along
the way. This list constitutes the robot’s plan for getting from its initial state to the
goal.

If we wished to forward chain from the initial state to the goal state, we would
have followed a similar procedure: For every hypercube the car visits in its coordi-
nate space (which includes its position, orientation, acceleration, and lateral accelera-
tion), we can first store the forward and lateral acceleration responsible for taking it
there. If we begin this process from the initial state then, once the goal is found, it is
easy to trace the optimal path back to' that state. Because the algorithm only stores
optimal subpaths, it will be the only possible path between them.

Obstructions were marked out as inaccessible car positions in the coordinate space
regardless of the values for other dimensions (acceleration, lateral acceleration, etc).
One advantage to forward chaining is that, if all accessible paths in the coordinate
space are charted froﬁ1 a starting point, it is a trivial calculation to ﬁnd the optimal
path to any accessible hypercube. If we have not yet selected a goal, we can use the
forward search to give us information about what regions of the coordinate space are
accessible and how efficiently the car can reach them. This information can then help
the robot pick its goal. The method used in the actual experiments exploited the
opposite advantage conferred by backward chaining. Since the search was conducted
in reverse, starting from the goal, the robot simultaneously discovered how to reach
the goal from any arbitrary initial hypercube. Of course, both methods could have
been combined. But for the simple problem of getting from one initial state to one

goal state, this would be redundant. It results in roughly double the computation.

If we are only concerned about computing the optimal path from one initial
position to one goal position, there is a method for greatly pfuning the search: we can
search forward from the initial position and backward from the goal position simulta-
neously. When the two searches meet at the same hypercube, we know we have
found an optimal path. This effectively transforms a problem of order £" computa-
tions to a problem of order 24 computations, where k is the number of dimensions

and 7 the length of the path.
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Even when using dynamic programming (Larson, 1978; Smith, 1991), as the size,
resolution, or number of dimensions of the coordinate space increase, the amount of
search required still grows exponentially. However, dynamic programming can often
be used to extend the horizon beyond which search is no longer feasible. Although the
curse of dimensionality is not avoided, for many applications, it may be sufficiently

postponed so as to make them tractable.

There are a number of ways to represent the quantized coordinate space for
planning. In the above experiments, the robot u§ed a very large multidimensional
array. The array was indexed according to the location, orientation, steering position,
and speed of the car. This information was used to ook up the optimal forward or
lateral acceleration to get to another hypercube. The quantization was sufficiently
fine so that there was always enough forward and/or laterai acceleration to get the car
out of the current hypercube. Were this not the case, the time interval would need to
be extended to lengthen these paths. This is of particular importance with the
dynamic programming of variable resolution tries because there is great variation in the

side of the hypercubes (Moore, 1991; also see Moore & Atkeson, 1995).

The disadvantage of using large arrays is that the data structure could be much
larger than necessary, if, for example, much of the space is inaccessible. This was not
the case in the above expefiments. It could also be slow if the array is stored on pages

of virtual memory that are frequently being swapped in from disk and out to it.

An alternative is to store points in a kind of fast lookup table (i.e. a hash table)
that places points that are sufficiently close together in the same location. The
overhead of using a hash table should not be signiﬁcantly greater than that of an array:
because the access time for both is also O(n) (polynomial time).** Although we may
need to dynamically increase the size of a hash table during the process of calculating
a solution, we would also need to dynamically increase the size of the multidimen-

sional array if we wanted to increase the size or resolution of the problem space. A

* For example, n-dimensional arrays are often represented by one-dimensional arrays
internally. This means that every time the array is accessed, each index must be
multiplied by a constant and summed to compute the offset for the one-dimensional
array. It is also possible to represent #-dimensional arrays as an n — 1 dimensional array

of pointers, but the access time is still O(n).
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special function would be needed to access the array (with its own overhead) in order
to make these changes in size and resolution possible. ‘Hashing has the added
convenience that one only need store the locations that one uses: not only are
inaccessible locations never stored, but neither are out of the way locations. By this I
mean that once the robot forms a plan in which the goal is reached, all the points that

lie beyond the goal need not be stored.

Adapting and Optimizing Previously Successful Plans

Given a starting state and a goal state, dynamic programming can be used to determine
the optimum path a car may follow. The question arises how one might best cope
with a similar but not identical situation. Dynamic programming is more efficient than
an exhaustive search, but even so it may require too much computation to be effective
- for real time situations if the state space is very large. Therefore, it may be useful to
store plans for future use. These plans could either be indexed based on the perceived
features of the world weighted according 'to their relevance, or all plans could be
executed simultaneously and those which fail because they are not legal, safe, or
possible under the current circumstances could then be rejected. Depending on the
cost of failure, sometimes it might make the most sense simply to try out a plan and
then revise it when it does not work. If we are working under the constraints of a
sequential machine, in order to increase the efficiency of the implementation, the
indexing system could rank the plans according to which had been most successful in
similar circumstances. They could then be executed in the mental model until one can

be found which sufficed.

But what if no plan can be found that describes a path that fits perfectly? A new
path may be either calculated using dynamic programming or else interpolated or

extrapolated from the paths described by one or more existing plans.

If a nearly sufficient plan is found, one method of reducing the computation
required to find a better plan would be to apply dynamic programming only to region
of coordinate space within a certain distance of the path suggested by the original
plan. Under this scheme if the new path at some point is as far from the original path
as is permitted, then it is unlikely to be optimal. So if the new plan is not good
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enough, the process may be repeated, only with d)'/namic programming being applied

to the region about this new path.

Moore describes a similar method in which dynamic programming is applied to a
coordinate space at a coarse resolution and an attempt is made to find an optimal path
(Moore, 1991). Then the resolution of the area about this path is increased, and
dynamic programming is again applied to the space. The difference is that rather than
limiting computation by applying dynamic programming to only the area around the
best mental trajectory computed so far, it is applied, at an increased resolution, to the

region of all the previous trajectories attempted.

This method of searching for a better plan in the area about a plan that aiready
works is a form of hill climbing. It is only guaranteed to find a solution that is locally
optimal. If we begin by starting with a three-point turn, we may find a three-point
turn that better fits the circumstances. However, should there be enough space for the
more efficient U-turn, it is unlikely that this method would find it. Unfortunately,
Moore’s method suffers from the same limitation. When there is a choice between
two very different alternatives, increasing the resolution about oﬁe would not
necessarily uncover another—and perhaps more efficient—path through the multidi-
mensional coordinate space, because the resoiution of far away points is hardly

increased.

Rather than indexing and adapting a path in its entirety, it may be more feasible to
modify only the part of the path which is not successful. As mentioned earlier, we
can dynamic program from the initial position forwards and from the goal position
backwards until they touch. If most of the path does not require correction, we can
dynamic program only those segments -that do. If we imagine, for example, that
points along our original path are lettered from A at the initial position to Z at the goal
position, and only the segment Eto Hand Q to T .are unacceptable, then the segment
A to E can be copied into the new path, E can be set to the starﬁng position and H to
the goal. This can be dynamic programmed and the results can be copied into the new
path. The segment from H to Q can likewise be copied over. Then Q can be set to
-the starting position and 7 to the goal and so on. Even if there are many smaller
segments to dynamic program, there will be less to compute than if we dynamic
prograrﬁmed a new path from 4 to Z. Of course, this path is not guaranteed to be the

best if we are trying to optimize for such things as time to the completion of the task.
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We can combine this method with that of limiting the region about the path to be

dynamic programmed.

What Plans Make Good Generalizations?

There is, of course, a trade off between generating, storing, and indexing a large number
of plans and finding a few prototypes or generalizations that can be easily adapted to
many situations. A three-point turn can be looked upon as a particular kind of
generalization. Is it necessary, however, to have many different three point turns
available to solve this class of problems, or is one sufficient? If only a single or a

small number of prototypes are necessary, then what qualities would we want them
to exhibit?

Earlier I discussed how the process of hill climbing may be used to find a locally
optimal plan for a three point turn if we have already been given the plan for an
adequate three-point turn. It would be ideal if we could start with a description of an
optimal three-point turn, but unfortunately that is not possible because the minima
will shift with small changes in, say, the width of the road. If from a plan for any
three-point turn, we would find the optimal three-point turn solution, then we do not _
need to store multiple generalizations of the same plan. However, we would need to
store a generalization of a U-turn if the locally best solution that would be found with

it could also be the globally best solution.

We can imagine a landscape of peaks and valleys for a given problem where the
lowest point in a particular valley is a local minimum. It would be fortuitous if we
only needed one prototype for each valley. The trouble is that, as the particulars of
the problem change such as the width of the road, not only can new local minima arise
but also the positions of existing valleys can shift. Therefore, two prototype plans
may uncover two different local minima or the same local minimum depending on the

circumstances.

Stretching and Distorting Plans

When learning handwriting, a child first tries to trace or copy examples of individual
letters. Eventually, the child no longer needs to consciously imagine the letters, but

develops a personal style of writing. Were we to program a robot to write longhand,



96

we might represent each letter as an array of motor torques for each interval. Of
course, we can write more quiqkly or more neatly as need be, so the length of the
interval should likewise vary. Because certain letters like ‘0’ leave us further above
‘the line than other letters like ‘e,” adjustments would have to be made to connect

letters in different sequences.

Even though we have a sense of the location of our writing based on our joint
positions, because we may tend to drift up or down when we do not watch where we
are writing, some form of closed loop control may be useful. This was used by Vogel
(1992) to monitor fhe gait of a bipedal robot. The ease with which we write letters of
arbitrary sizes implies that we do not have to relearn the alphabet in order to make
these adjustments. Our robot should be able to increase torques linearly to produce
this effect without any additional learning. Of course, when we move from the fine
motor hand coordination required for writing on paper to the gross motor arm
coordination réquired for writing on a chalk board, people often require a period of
adjustment. This fact should not be surprising: the larger writing can no longer be
accomplished by means of linear distortion of torques. In our computer model of
hand-eye coordination, when it is no longer possible simply to increase the torques of
the motors controlling the hand joints, we will have to relearn the torques for the arm

joints.

Our capacity for distorting handwriting (e.g. bending it around corners or shrinking
it) has been revealed in many a postcard where the sender has had more to say than
space permits. Relating this back to the example of the three-point turn, we see that
the robot must also be able to fit its plan for various driving manoeuvres, such as
passing, turning off, or following the bend of the road. Just as when we write on a
postcard and are forced to bend, distort, or compress letters to fit our words into the
limited space, so may the constraints of the problem be used to distort a plan that has
areasonably close fit. The robot, therefore, needs to adjust these manoeuvres to the
space available and to perform tracking using servos or closed-loop control. Even if
stretching and shrinking plans to fit the circumstance is not adequate, it may at least

suggest an area of coordinate space to be explored by dynamic programming.
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Summary

The experiments discussed in this chapter show how, from limited experimentation, it
is possible to learn predictions about the influence of self-induced movement on
sensory projections and to use these predictions for route planning. In one simulation
I used dynamic programming to corﬁpute a three-point turn for a car that had limited
space to manoeuvre. This could not have been achieved servo-mechanically because
the solution requires the car at first to move away from the goal.** Thus, the model is
based on planning with empirically learned predictions about self-induced transitions

between sensory projections.

Planning approaches, whether based on learned predictions or symbolic rules,
require heuristics to set computational limits on search. This problem has been the
subject of intense investigation and is not the main focus of thls dissertation.
Nevertheless, we have seen that there are approaches which can reduce the need for

computation, especially if we do not require a globally optimal solution.

> A servo mechanism would simply have reversed the car towards the goal. At this point
the car would be stuck—unable to move anywhere because any movement would take it

further away from the goal.
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Chapter 6. CSM Representations: A Grounded Foundation

Introduction

In chapter 3, we explored a few possible models for learning to recognize objects. A
preliminary model which combined some of the strengths of wavelet analysis and
Harnad’s (1987) theory of category induction proved successful in experiments with
classifying mushrooms. In chapter 4, we began with a pre-existing chess playing
symbdl system and a pre-existing piece locating perceptual module and then devel-
oped a method of grounding their shared symbols adaptively in sensorimotor
coordination. We found it useful to develop the concept of sensorimotor predictions.
These predictions can support adaptive mappings between different sensory
modalities. By modelling sensorimotor relationships, they provide a basis for an
agent to decide how to act. In chapter 5, we demonstrated how a robot can use

sensorimotor predictions to plan optimal routes.

In this chapter, we explore how an agent can inducﬁvely learn behaviourally and
physiologically relevant categorical-sensorimotor (CSM) representations. It can use
the same CSM representation both for recognizing an object and for modelling the
.consequences of its actions directed at that object—simultaneously in terms of its
actions’ environmental and internal (i.e. physiological) consequences. Thus, these
CSM representations extend the concept of sensorimotor predictions: it is possible for
the predictions to not only refer to sensorimotor mappings but also real world
objects—or, to be more precise, their correlates in the sensorimotor projections.
Furthermore, we show in our fish simulation tha.t these predictions can be learned

inductively.

As research moves in the direction of learning perceptual or sensorimotor
categories, to some extent, we may be able to wean our models off what may be an
over-reliance on a priori feature detectors. No doubt, such detectors can contribute to
the recognition of low-level features and even certain whole objects (namely, those,
like faces and hands, that are of enduring significance to the proliferation of the

genotype across evolutionary time scales). However, at some point category
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induction probably must come into play, especially in leaming to recognize objects
that entail novel sensorimotor patterning or combinations of features. This sensori-
motor patterning will not necessarily be semantically penetrable. Like the wavelet
coefficients of chapter 3, it may be no more than a novel configuration of frequency

and localization invariance in the sensorimotor projections.

So, in this chapter, we shall focus on how an agent could learn behaviourally and
physiologically relevant categories and use them to predict the consequences of its
actions. Specifically, we shall consider category induction in a simulation of a fish
that moves about a simple aquatic environment. By chapter’s end, we will be able to
start considering how its learned categories could serve as the elementary symbols of a
symbol system, and how a symbol system might develop from them in a bottom-up
fashion (see Harnad, 1990a). But first let me introduce the representational model

that we shall.use.

A Coordinate Space Model for Multimodal Sensorimotor Integration

Of the five senses, perceptual research has tended to concentrate on the last to evolve:
vision. This sense appears to- rely on highly refined special-purpose processes for
recognition. Unfortunately, this fact has tended to distract attention away from the
importance of learning to integrate multimodal sensorimotor information. The
purpose of the following predictive model is to demonstrate how it-is possible to
directly map sensorimotor information from more basic senses like smell and touch to
cognitive categories that an agent can use not only for reactive behaviour but also
higher-level planning. Itis likely to be possible to adapt similar principles to vision,
-for example, by using more complex feedback loops, multiresolution analysis (see
chapter 3) or, for bootstrapping purposes, evolved feature detectors and sensorimotor

pathways. But to focus on that now would be a distraction.

We may represent the sensory stimulation that an agent receives from external
sources as a point e (e, e, . . . e,) in a sensory subspace E. The stimulation may

arrive either directly from its sensors or pass through an intervening preprocessing
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stage.* Likewise, we may represent the sensory stimulation that an agent receives
from internal sources as a point i in a sensory subspace I. Ina very simple agent, the .
point may be determined by a single scalar value such as a reinforcemen.tl-from a
reward function (see appendix A). In a more complex agent, it may be determined by
numerous sensed physiological variables (e.g. thirst resulting from dehydration) and
other internal reinforcement feedback loops as well as higher-level cognitive variables.
(For simplicity, these shall be referred to collectively as internal variables.) Finally,
we may represent the motor signals the agent sends to its actuators as a point m in a

motor subspace M.

The agent can represent the consequences of a self-induced action by storing
points in a sensorimotor coordinate space composed of its motor subspace and its
sensory subspaces before and after carrying out the action. We assume for the
moment discrete time steps. We further assume that the sensory effects of an action

are available by the next time step. Thus, at time £, (m,, €, €1, iy, i;+1) determine the

location of the point p, in a composite coordinate space. The internal changes Ai,

correlated with (m,, i,, ;) are simply i - i,, and the external changes Ae, are e - e,

As long as there is some degree of consistency across time and space in what the
agent senses, it can exploit the points stored in its sensorimotor coordinate space to
predict the consequences of its actions. Thus, the past is brought to bear on the
present. Once again, this may be achieved by tﬁe closest-point method. Thus, the
agent may approximate the likely effect of a motor signal m on its sensory stimulation
(i, e,) by finding the point p, (m,, i, €,, i1, €.) such that (m,, i, e,) is the closest
point to (m, i, ;) in that subspace. The predicted values for sensory stimulation in
the next time step are (i1, €.+1). It follows that the predicted change in the agent’s
internal sensory stimulation is i, - i,; and the predicted change in the agent’s external
sensory stimulation is e,y; - €, Thus, points contained within the sensorimotor
- coordinate space may serve as a basis for predictions about the physiological and

ecological consequences of possible actions. The agent may select the action it deems

% Preprocessing in Clocksin and Moore’s penlight-holding robot, for example, reduced
two large matrices of light intensity values from the two camera’s image planes to a

point in a visual coordinate space of just four dimensions.
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best on the basis of these predictions or, in order to fill in for gaps in the model, an

action with relatively unknown consequences.*’

The closest-point approach upholds the property of graceful degradation found
in many kinds of artificial neural networks. For example, if closest point selection is
based on a Euclidean distance measure, estimates of distances will only be somewhat
less accurate if the squared difference between the current external sensory projection
and all previously recorded external sensory points (e; to e,;) cannot be calculated for
every relevant dimension. However, this only affects the estimate if contribution
from those dimensions would have resulted in the selection of a different point, and
even a different point may be acceptable. Just as someone who normally performs a
task sighted may still be able to accomplish it blindfolded (e.g. with | touch and
proprioception), so may an agent using the this model despite there being missing or
incomplete values for one or more dimensions of coordinate space (e.g. input from one

or more sensory modalities or sources of sensory information).

The closest-point method can be used to calculate many other kinds of approxi-
mate mappings such as those required to fill in for missing sensory data (e.g. the blind
~spot). This is done by finding, on the basis of available dimensions, the closest point
in the external sensory subspace. The values for the missing dimensioﬁs can be

estimated from the corresponding dimensions of that point.

Unlike neural networks, the closest-point method does not compromise semantic
penetrability. To an outside observer (with the appropriate sense organs or sensing
equipment), the semantics of the system should be relatively' clear. By peering into
the coordinate space we can always explain why a certain prediction was made by
tracing it to the particular sensorimotor I;rojections in which it is grounded. Of
course, this does not mean that an observer will always be éble to see clearly what the
agent is responding to. What the agent can respond to will depend on what it senses
and, therefore, its particular sensors and how it appraises their output in terms of its

learned predictions.

*7 It is possible to make more accurate predictions from less data by interpolating values

on the basis of nearby points. We shall examine this method in the next section.
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It would be useful for the agent to be able to le.';lrn the most accurate sensorimotor
model possible in the least amount of time. Ideally, the closest point to the agent’s
current sensory stimulation in coordinate space will indeed provide a prediction that
offers the best prediction. But just what should the agent be trying to predict? That
depends on what we want the agent to do. In nature selective pressures should favour
models '_chat offer a clear choice between those actions that are likely to enbance
reproductive success and those that are not. As an animal cannot relive its life to see
what works best, it can only estimate indirectly what action is most likely to enhance
its reproductive success. The expected future proximity of essential physiological
variables to their optimum provides a measure of its expected future well being (and,
as we shall discuss later in appendix A, it can be estimated using Q-learning or other
methods of learning from delayed rewards). Internal varidbles can indicate, among
other things, an organism’s physiological state. Precisely how these internal variables
are related to its bodily condition and how they are best weighted can be left for
evolution to determine, though to some extent they may be fine-tuned empirically.
According to this model then, evolution influences perception and behaviour not only
by mean of evolved adaptations but also indirectly by means of intermediate internal

variables.

There are numerous ways in which an agent can improve its model once it has
indicators (e.g. internal variables) in terms of which it can evaluate its model’s
predictive power. Statistical methods can be used to estimate the linear or nonlinear
correlation between the indicators and the other sensorimotor dimensions so that the
other dimensions can be weighted according to their likely impact on the indicators.
(This method can also be used to eliminate irrelevant sensorimotor dimensions, see
chapter 5.) However, often their relative influence will vary from one region of the
coordinate space to another. To illustrate this point, we may consider a two-
segmented arm monitored by a camera that is fixed perpendicular to the plane in
which the arm has mobility. A change in the angle between the base and the first
segment of the arm will have a much greater influence on the location, in camera-based
coordinates, of the arm’s end when the arm is extended than when it is contracted.

(You may easily demonstrate this by moving your own arm.)

In this arm example, a better method of approximation would be local linear

interpolation (see Omohundro, 1987). We are trying to approximate a mapping from
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the visual to the proprioceptive subspace, so that we can approximate the proprio-
ceptive coordinates of some new point p given only its visual coordinates. If the
proprioceptive subspace has k dimensions, we need k£ + 1 nearby points in the visual
subspace in ordér to interpolate (or extrap(?late) the proprioceptive coordinates of p.
An added restriction is that all points not fall on the same hyperplane of dimensional-
ity k- 1. A weighted sum of vectors emanating from one of the & + 1 points to the &
remaining points describes the location of p in the visual subspace, which, of course,
is known from the camera’s image plane. This provides a system of & linear equations
with £ unknowns. A straight-forward algorithmic solution provides k weights (see
Press et al.; 1992, chap. 2). The k+ 1 points in visual subspace correspond to & + 1
points in the proprioceptive subspacé. Hence, the k vectors in terms of which the
new point was originally described in the visual subspace have k corresponding
vectors in the proprioceptive subspace. The weights may be applied to these vectors,
providing an estimate of the new point in the proprioceptive subspace. Figure 6.1

illustrates this technique in two dimensions.

B C
A
/Ac
A B
y [3.
X o

Fig. 6.1: For ease of illustration, let us consider two dimensions oniy.’
From past experimentation, the robot has determined that the points 4,
B, and C in the visual xy-subspace correspond to matching points in pro-
prioceptive of-subspace. Given enough points, the robot can perform a
(globally) nonlinear mapping between the two subspaces by means of local
linear interpolation. For example, the robot predicts a new location (the
unfilled point) in the proprioceptive subspace from a known location in
visual subspace by representing the known location in terms of ratios be-
tween vectors connecting its neighbouring three points and using these ra-
tios to interpolate or extrapolate *its approximate location in the

proprioceptive subspace.




104

Gross and Wagner (1996) have applied interpolation to learning sensorimotor
mappings using a type of k-d tree (also see Omohundro, 1987, 1990a). Their results
show massive gains in efficiency over other learning methods like backprop. In one
experiment with learning the inverse kinematics of a robot arm, building the k-d tree
required less than one hundred thousandth the time that training the network did.

However, the post-training memory requirements for -d trees are significantly higher

than for neural networks.

Approximating an input-output mapping for a .point p based on the £ + 1 closest
points can lead to discontinuities when p falls outside their simplex (i.e. the convex
hull whose vertices are the £ + 1 points). Here p’s mapping is extrapolated from the &
+ 1 closest points, while points lying on just the other side of a Voronoi hyperplane
are interpolated by a somewhat different set of points—hence, the discontinuity.
This is not a crucial performance issue for the robot applications we have considered

so far, since slight discontinuities within a margin of error will generally go unnoticed.

To ensure that a mapping has no discontinuities, one may triangulate using the
vertices of the simplex enclosing p. The question is how to choose which simplex to
use. The Delaunay criteria, which takes advantage of the fact that vertices of the
simplex also specify a circle (in 2-D), sphere (in 3-D), or hyper-sphere (in 4-D and
above), selects the simplex which contains only p and no other neighbours. This
provides a bias in favour of smaller, more equilateral simplexes whose predictive
accuracy is likely to be higher than that of long, skinny simplexes in which significant
errors may arise because of nonlinearity in the long dimension. The worst case error
of the Delaunay triangulation has been proven to be lower than that of any other

triangulation method (Omohundro, 1990b).

Unfortunately, the Delauﬁay triangulation can be time consuming when there are
more than a few dimensions because, as the number of dimensions increases, the
points closest to p are less likely to be the vertices of the simplex enclosing it (as
specified by the Delaunay criteria). For learning mappings which involve between ten
and a hundred dimensions, Omohundro suggests using normalized Gaussian blending
functions to blend affine or quadratic maps and bumptrees for the fast look-up of
segments relevant to the query (personal communication, also see Omohundro, 1991,
1989).
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The Fish Experiments: Forming Relevant Categories by Adaptive Quantization

In this section, I give a description of a program I wrote to simulate fish chemorecep-
tion. I did not intend the model to accurately depict the behaviour of fish but to
illustrate how an agent can learn categories that pick out physiologically and behav-
iourally relevant invariance (e.g. edible and inedible objects) and to use these categories

to predict the consequences of actions.

Staying in constant motion the fish swims about its shallow (2-D) pond. As the
fish sways back and forth, its receptors sample the concentrations of different

chemicals in the water.*8

It controls its behaviour through two . decision-making
systems, one which controls its oral cavity and the other which controls its naviga-

tion. The former is only activated when the fish bumps into something, perhaps

another fish or a piece of debris. When this happens, the fish selects one of four -

motor responses. It () ignores it, (2) ingests it, (3) takes it up in its mouth, or (4)
empty the contents of its mouth.* Its choice of action at time ¢ is represented by a

point my, in the motor subspace of its sensorimotor coordinate space (m,, e,, ey, i,
ig,, Ai). The levels of stimulation to its different kinds of chemoreceptors from
waterborne substances determine its external sensory projection. Before performing
an action they are repfesented by the point e, and the point e ; afterwards. Before

performing an action, its essential physiological variables are represented by the point

i, After the results of the action have had time to take effect, it is represented by the

* Many vertebrates exploit olfaction for feeding, navigation, reproduction, and the
avoidance of predators (Stoddart, 1980). Evidently even birds like the petrel assess the
direction of an odour source by swaying their heads from side to side (p. 192). Fish swim
up the gradient of chemicals emitted by food to its source. They make use of klinotaxis,
successive comparisons of concentrations, and tropotaxis, simultaneous comparisons
among distinct chemosensory organs (Jones, 1992, p. 292). Although fish have natural
preferences for certain odours and tastes, experience can change their response to
chemical cues (Jones, 1992, p. 300).

* Clearly, this scheme is simplistic. Some form of action generalization is also called for
so that an intelligent agent can control actuators with real-valued motor signals (see

appendix A).



106

point i, We shall assume that the dimensions of i, and i., have already been

weighted so that the fish’s health is roughly proportional to the proximity of i, to a
known optimum. The change in the fish’s health that is correlated with the action
taken and the current external sensory projections (m,, €,) is represented by the point

Ait = iH’E = it'

The Integrated Learning of Perceptual Categories and Act-Outcome Predictions

The fish learns predictions about the effects of its motor actions on its physiological
variables by recording unexpected sensorimotor projections in its coordinate space. In
a new situation the fish approximately predicts the effect of alternative actions on its
physiological state by finding the closest point in sensorimotor coordinate space given
its current levels of chemoreceptive stimulation. (We shall delay for a moment
discussion of what we mean by closest.) Therefore, in this example, points corre-
sponding to unexpected sensorimotor projecfions help to form representations that

are at once categorical and sensorimotor. The CSM representations quantize the

- coordinate space into convex hulls to set up predictions about the consequences of

future actions.

How do we quantify what makes a sensorimotor projection unexpected in
determining when it is appropriate for the fish to learn a corresponding prediction (i.e.
CSM representation)? If we are to be very strict then any occurrence that deviates
from the fish’s current predictions is unexpected. In this case (except in the unlikely
event that its predictions were spot on), the fish should simply commit all its
experiences to memory. Economy speaks against this, because the fish would be
learning detail that is of marginal utility. We note that the fish’s receptors are of
limited accuracy and also that some of the stimulation they receive would not be
coming from whatever the fish were currently trying to distinguish. It would be a
waste of the fish’s precious resources to learn what is for the most part noise in the
system. There is another reason not to remember all past sensorimotor projections.
The better able the fish is to treat behaviourally equivalent things as the same, the
better able it is to survive and reproduce. This implies that the fish should not only
ignore extraneous detail but also take determined measures to filter out any form of

misleading information. I opted for this approach in programming the simulation.
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In a complex and rapidly changing world, there are certain things worth discrimi-

nating rather finely. If two different species of fish, for example, produce nearly
identical sensory projections (e, = e,) but radically different physiological changes
when ingested (Ai, # Ai,)—if, for example, one is poisbnous—, then priority must be

given to detecting any telltale differences in their sensory projections. Thus, e, and e,

should map to different categories, which we may write as
c(e)#c(e)

However, if two different species of fish produce somewhat different sensory
projections (e, # €,) but nearly identical physiological changes (Ai, = Aly), then they

can be lumped together in the same behaviourally equivalent category.”® Thus,
c (ex) =C (ey)

In the simulation I tried to capture this intuition by ﬁfst globally weighting the
dimensions of the coordinate space so that each variable received proper emphasis. If,
for example, slight changes in a physiological variable spell life or death for the fish
but the level of stimulation to a particular kind of chemoreceptor is relatively
unindicative of what is in its environment, then the weighting had to reflect this. The

weighting was performed by multiple linear least-squares. Here we are trying to

predict the change in the fish’s overall health | Ai, | in terms of its sensorimotor
projection p = (my, €, €u;, iy, i, Ai). If we have a set of points p;, p,,... p, corre-

sponding to r categorical-sensorimotor representations, each k& dimensional, then we
are looking for a weight vector w = wy, ws,... wy that minimizes the linear squared error

of the following set of linear algebraic equations:

%% This has a parallel in comparative linguistics. A language may lump together many
different kinds of objects if the speakers of the language deem them to be of like

importance (see Malinowski, 1923).
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WipLL FWapia . Fwepr=| Ay

WD tWapoa + . F Wi py=| Ayl

Wipr1 tWaps + . WD = | A, |

The r equations relate the £ unknowns wy, wy,... w.. Of course, the p’s and i’s were
known from the CSM representations which were learned from past sensorimotor

projections. (The method of calculation I used will be discussed below.)

Once the coordinate space had been properly . weighted, it was quantized. The
granularity of the quantization varied according to the different distance thresholds I
tried out. The threshold determines when an ‘experience’ is sufficiently different
from nearby csM represehtations to warrant the formation of a new representation
(ie. category). I discovered the most advantageous granularity at which to perform
this quantization by trial and error.>! The categories thus formed reflected similarities
among sensory projections in their likely internal (i.e. physiological) and behavioural
outcomes. This, of course, goes beyond the detection of structural similarities (ie.

spatiotemporal correlations) in the projections themselves.

As mentioned earlier, ideally the coordinate space should be quantized so as to
minimize the misleading effect of chemicals from more distant sources in discriminat-
ing what is at hand. I approached this problem in the following manner. Note that
each relevant category is determined by the placement of its CSM representation and
those of surrounding categories. Therefore, the collection of all these representations
quantized the coordinate space. At first, each sufficiently distinct sensorimotor
projection acted as a representation. However, when a second sensorhnoto;-projec—
tion fell in the same category, the representation was refined by intersecting it with
the new sensorimotor projection and resetting it to the result (see Figure 6.2).  In our

specific example, for each kind of chemoreceptor (that is, each dimension), the future

! The granularity is roughly analogous to vigilance in adaptive resonance theory
(Grossberg, 1988) or the number of units whose weights are to be adjusted in compeﬁtive
learning (Rumelhart & Zipser, 1985) and, indeed, we see that the quantization itself need
not have been performed by the closest-point approach but could have been performed

by these or other methods of unsupervised learning.
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value of the representation was assigned the minimum of its present value and the

value of the new sensorimotor projection.

This is compatible with Harnad’s insight that the purpose of a categorical
representation is to “reliably distinguish members from nonmembers of a category”
(1990a, p. 342, also see 1987). Therefore, the agent did not use prototypical
representations. Rather, it learned categorical-sensorimotor representations in order
to distil from sensorimotor projections the invariance that was shared by members of

a category but not shared by nonmembers.

-
g/

//%\ N

Fig. 6.2: (1) Two CSM representations quantize two dimensions of the
sensorimotor coordinate space. (2) A sufficiently dissimilar sensorimotor
projection forms a new representation. (3) A sensorimotor projection
(X) is categorized by a representation. (4) It is intersected with the repre-

sentation thus refining it.

The Navigational System

Apart from the decision making system for controlling its oral cavity, the fish has a
second decision making system for navigation. The two systems are autonomous
except for the fact that the second system exploits the categories formed by the first.

Based on the CSM representations that the oral cavity decision making system had
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formed so far, the navigational system ascertained which corresponding sources of
chemicals are present in its vicinity. It did this by trying to account for the level of
stimulation to the fish’s different kinds of chemoreceptors in terms of its CSM
representations by means of a multiple linear least squares technique that I had

modified to the peculiarities of this application (see Figure 6.3).

o el 105 11

sensory proections leastsquares errar

Fig. 6.3: This simplified illustration shows how the agent used least-
squares error to account for a sensory projection in terms of the known
categorical-sensorirnotbr representations 4 and B. Both 4 and to a lesser
degree B appeared to be present. However, there appeared also to be an
unexplained source of the third chemical transmitter, shown here in black.
Potentially the fish could have actively sought to uncover this unknown

chemical source.

The [ linear algebraic equations below relate the r unknowns ay, ay,... a,. The
weight coefficients ay, a,,... a, determine the likely contribution of the I-dimensional
external sensory subspace e, €,,... €, of each of the k-dimensional CSM representation

P1; P2,--- P to the current external sensory projection e;:
aetaet...tae; ey

aepptmepnt..tae,; =epy

ajey taeyt...tae; =ey

Notice that the weight coefficients aj, a»,... a, are being put to a different use from the
weight coefficients wy, ws,... w; for the equations discussed earlier. In the former we
were scaling the k& dimensions of the » CSM representations relative to each other.
Each representation’s overall influence remained fixed and equivalent. Thus, we
applied multiple least squares to the matrix of points p;, p,... p»- Here we are scaling

the » CSM representations and not their individual dimensions. Thus, we apply
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multiple least squares to the transpose of the matrix of points e, e,,... ¢,. These
points are determined by the /-dimensional external sensory subspace of the k-

dimensional CSM representations.

Although this is not how least squares is typically used, it effectively accounts for
the current sensory projection in terms of known CSM representations. We must
make two non-standard restrictions on our how we calculate least squares. None of
the weight coefficients are permitted to be negative. This is, of course, because a
substance cannot have a negative presence in the water. Also, the weighted sum of
the representations cannot exceed the sensory projection for any one chemical

transmitter.

I implemented an algorithm to perform the least squares computations by singular
value decomposition (SVD). For a detailed explanation of this technique and proofs
for its efficacy, see Golub and Reinsch (1971, they invented it) and Forsyth, Mal-
colm, and Moler (1977). Further details may be found in Lawson and Hanson (1974)
and Press et al. (1992). The following discussion will make plain why it was
necessary to use SVD to solve the above two sets of equatioﬁs instead of, for example,
Gaussian elimination, LU decomposition, or QR decomposition. (The latter is

probably the technique most commonly found in statistical packages.)

In the simulation, we start off without any CSM representations, so the number of
dimensions in both the sensorimotor coordinate space and in the external sensory
subspace exceeded the number of representations. When sufficient CSM representa-
tions have been learned, their number will exceed the number of dimensions. This
means that the first set of equations started out being underdetermined: there were
ambiguous combinations of the weight coefficients w;, ws,... wy that scale the
dimensions. It then, however, became overdetermined when the number of represen-
tations exceeded the number of dimensions. As soon as there was more than one CSM
representation, the second set of equations became underdetermined: there were
ambiguous combinations of the weight coefficients aj, a,,... a, that scale the represen-

tations.

Unlike other methods, SVD cannot fail and has been proved never to fail (see
Golub & Reinsch, 1971; Forsyth, Malcolm & Moler, 1977). If the equations are

overdetermined, SVD calculates the best possible least-squares approximation. If they
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are underdetermined, it calculates the smallest weight coefficients in the least squares
sense. These results are unaffected by the slight modifications I have made in the
algorithm when applying it to the second set of equations. Other methods can fail
because the matrices are singular (because of row degeneracy, column degeneracy, or
both) or because they are numerically so close to being singular that, because of

round-off error, for the purpose of calculation it is as if they were.

For example, when Gaussian elimination encounters a zero pivot, it can yield
infinities that unstably cancel each other out; when it encounters a pivot that is very
close to zero, it can yield large magnitudes that do likewise. SVD avoids this. The
way SVD decomposes the standard deviations ensures their mutual independence (i.e.
that all of them are uncorrelated). This makes it passible to sum them up in the root-
mean-square fashion. If any of their singular valued denominators is zero or very
close to zero, its reciprocal is set to zero instead of infinity or some large magnitude.
Thus, a zero multiple is added to the fitted weight coefficients. When the basis
functions are degenerate in the fit, this averts the problem of adding some huge

multiple that is a linear combination of them.

SVD requires an additional matrix and is purported to be significantly slower than
other methods of calculating least squares. Its speed and memory requiremenfs,
however, posed no problem in the simulation: the fish could be seen to interact in its
environment in real time. The calculations for the above set of equations required less
than a second on a moderately loaded Alpha, even with several dozen CSM represen-

tations of several hundred dimensions.

Of the CSM representations whose corresponding sources are apparently‘ present
(above a certain threshoid), the fish selected the on;: which could potentially, given the
most appropriate action, bring its current physiological variables closest to their
optimum. To climb the gradient of chemicals associated with that CSM representa-
tion, it used klinotaxis (the successive comparison of >concentrations; see Jones, 1)992)
as follows. We assume that the concentrations of chemicals will in general exponen-
tially increase as the fish swims directly towards their source. As the fish moves
ahead, it may either veer to the left or right. It will continue veering in the same
direction as long as the concentrations accounted for by the selected CSM representa-

tion are accelerating. Otherwise, it will try veering in the other direction. In simula-
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tion, the fish very quickly homes in on the desired source, especially if it is not

obscured by intervening sources that emit a similar set of chemicals.

Conclusion and Summary

In the fish example we have shown that perceptual information can be expresséd
directly in terms of sensorimotor categories. However, by sensorimotor we must now
include internal feedback from motor signals and physiological variables. The
simulated fish learned to interact with its environment so as to optimize its physio-
logical variables. It learned for example, what to eat and what to avoid eating. From |
the raw sensory projections of its different kinds of chemoreceptérs it déveloped CSM
representations that progressively better api)roximate behaviourally similar aspects of
its environment. Based on the predictions it developed about the consequences of its
actions from its past experiences, it followed a course of action that kept its essential

variables within their normal ranges for survival.

The sensorimotor coordinate space is limited to only one level, and our quantiza-
tion of it is based on the structure of the coordinate space, or specifically, on the
distribution of the CSM representations within it. Nevertheless, once sensory
projections have been scaled with respect to alternative motor actions and their likely
physiological consequences, the structure thus uncovered can no longer be equated
merely with patterns in external sensory projections. This is because;, in certain casés,
the same category will be activated by structurally dissimilar sensory projections and,
in other cases, different categories will be activated by structurally similar sensory
projections. The former occurs when the same action produces a similar physiological
effect; the latter when structurally minor details can be exploited to discriminate

things that appear similar but produce widely different physiological effects.

In extending this model, there are many avenues that may be pursued. Animals
become social early on in evolution and must compete for mates and distinguish friend
from foe. The navigational decision making system could be enlarged so that the fish
not only homes in on fish that it can profitably interact with but alsg .avoids preda-
tors. Also‘ further variables analogous to hormone levels could be added to its
sensorimotor coordinate space. To keep them in their normal ranges, actions

governing courtship and mating behaviour would need be taken.
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Chapter 7. Learning a Symbol System from the Bottom Up

Introduction

Let us now tie together various threads from the previous four chapters. In chapter 3
we devised a program to learn categorical representations inductively in order to
distinguish different kinds of mushrooms. In chapter 4 we developed a robot that
learned sensorimotor representations to map between different sensory modalities,
and in chapter 5 we developed a robot simulation that learned and used sensorimotor
representations to plan optimal routes through its environment. However, in both
chapters 4 and 5 we presupposed feature detectors—in chapter 4, to recognize chess

pieces and, in chapter 5, to recognize a car and its obstacles.

In chapter 6, we took a first step toward developing a single form of representa-
tion that serves a dual purpose. The agent uses it both for categorizing (and learning
to categorize) salient objects in its environment and for modelling the consequences of
its actions (or nonactions) vis-a-vis those objects. In addition to learning to distin-
guish objects (at time ) according to their sensory projections (e,;) and physiological

effects (i), the simulated fish also learned from past interactions to predict how

performing different actions (m,) on those objects would affect its physiological state
(ies).

In this chapter we consider ways of extending the fish’s model so that it can plan
in terms of learned representations about the world. The ability to represent how
actions transform external states of affairs offers a distinct advantage over, for
example, reinforcement learning, which can only represent internal goals. It lets the
agent plan in novel situations, applying knowledge acquired in the pursuit of previous
goals. But the more thoroughly our model articulates the structure of the world, the
more difficult it is to keep it efficiently updated. Thus, we end the chapter by
discussing the frame problem and appraising its relationship to our representational

model.
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Developing CSM Representations into a Symbol System

At the one extreme, we could improve the performance of our fish simulation by
taking a hybrid approach. We could design a symbol system and graft it on top of the
fish’s learned categories. To obtain a description of the current state of the world, a
symbol would be instantiated if its corresponding perceptual category is estimated to
be present in its surroundings above a certain threshold. This provides a listing of all
the chemical producers within a certain region near the fish. It may be calculated in
the manner described in chapter 6: by accounting for the current sensory projections
in terms of the fish’s discovered CSM representations by least-squares minimization.
The symbol system part would then need to be programmed with goals and operator
rules for their attainment. For example, if the fish had the goal of taking care of its
young, then it might have an operator rule telling it that, among other things, bringing
certain kinds of food to its offspring would help it to achieve this goal. There would
be other rules telling it how to get the food: for example, by searching for it, taking it
into its mouth, searching for its young, and then spewing out the food. The symbol

system could be implemented using a symbolic planner like STRIPS, SNLP, or SOAR.

What would be unsatisfying about this approach is that the system would still
require domain-specific programming. -To adopt it would be to quit wﬁen the fish is
only part of the way toward developing a grounded symbol system. The fish has
gone through the trouble of learning its own perceptual categories but then the

programmer dictates how it should plan with them.

At the opposite extreme from the hybrid approach, we could extend the simula-
tion so that it could ekploit an advanced f(;rm of reinforcement learning—one that
allows it to learn profitable patterns of behaviour across time. Since the fish has
already learned felevant categories that it is able to exploit, it is in a good position to
assemble simple interactions into more complex patterns of behaviour. A method
akin to learning from delayed rewards would provide an adequafe means of doing
this—for example, by the temporal differencing of Sutton’s adaptive critics (1988) or
Watkin’s Q-learning (1989). The fish’s state would be determined according to ¢ (e):
the categorization of its sensory projections when it bumps into something. If in
these §tates the fish happened to perform actions in an order that produced some kind

of internal reward, then this reward would be credited across the last few states (or
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state-action pairs). Eventually, it would learn to produce rewardable sequences of
actions in the correct circumstances. So, for example, it would learn to take the right
food to its offspring. Within the constraints of how we define state .and after a
sufficiently long period of trial and error, the fish would be behaving as if it had an a

priori symbol system.

As an enhancement, instead of having a reward system based on scalar Q-values,
finer discriminations are possible by using Q-vectors (which I propose in appendix
A). The fish can empirically learn which physiological parameters determine the
dimensions of these vectors and how they are weighted relative to each other (e.g. by
the methods used in chapters 5 and 6, in Omohundro, 1989, 1991, or by a genetic
algorithm). In reverting to a form of reinforcement learning, however, we would lose
much. The symbol categories that the fish had learned to individuate would be folded
together into states, since states are what form the basis of reinforcement learning.
The fish would also not be able to model transformations in its external world—for

example, as based on changes in its active set of perceptual categories.

At present the fish uses thé coordinate space to map from external sensory
projections and desirable internal physiological changes to appropriate motor actions.
It is worth noting that the fish’s CSM representations provide some information that
our current model has yet to exploit. As stated in chapter 6, five subspaces (m,, e,,
€5 Iy, i, Al;) determine each point p in the fish’s sensorimotor coordinate space.
On the basis of its sensory projections, the fish is already able to activate a salient
group of representations for learned categories. However, it has neglectéd to use the
external sensory projection e This projection indicates the levels of stimulation to
the fish’s different kinds of chemoreceptors after the effects of its action have had
time to propagate. Thus, e,z could allow it to predict how its motor signals trans-
form the external categories it has learned to detect. If the fish were only to exploit
this information, it would be able to start doing a very basic kind of STRIPS-style

planning. In this chapter we consider ways of extending the fish’s model so that it

can perform more abstract kinds of planning.

In chapter 2, we briefly introduced the robot Shakey. Shakey used the STRIPS
planner, which is based on symbolic representations and a priori operator rules. In

STRIPS a list of predicates describes the world’s current state, and another list the
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world’s goal state. Each operator rule consists of a list of preconditions, an add list,
and a delete list. The operator rule’s preconditions state under what conditions the
rpbot may apply the rule. For example, to pick up a ball, the robot might need to be
next to the ball and empty-handed. The add list states what becomes true when the
robot performs an action—for example, that it is holding the ball. These predicates
are added to the robot’s description of the world’s current state. The delete list states
what is no longer true and, therefore, what needs to be deleted from the description.

For example, that the robot’s hand is no longer empty.

In a hypothetical extension to the fish’s model, we may characterize changes in its
environment in terms of transformations on its active perceptual categories. To
simplify our discussion, we will overlook the fact that the fish has two separate
control systems—one for its oral cavity, the other for navigation. Given that e, is its
current sensory projection, let ¢ (e,) be the list of perceptual categories that the fish
can distinguish in e, because of its past fearning. Thus, the ﬁsh’s model may be

characterized by
f(m, c(e)) = c(eny)

It may be useful to compare and contrast this model with STRIPS. The combined
effect of STRIPS’s add and delete lists are roughly analogous to the fish’s potential
transformations on its perceptual categories. The fish also has the advantage that it
has actually learned its perceptual categories and transformations so, unlike STRIPS, it

is not reliant on a programmer to set up its model of the world.

Since the coordinate space tells the fish what effect its actions are likely to have
on succeeding perceptual categories, the mapping f would serve as a rudimentary

model of the world allowing the fish to plan sequences of actions it has never
attempted before. Therefore, if it has a certain projection as its goal, it can backward
chain to the currently active perceptual categories in the same manner that a symbolic
planner backward chains on operator rules. The fish can then attempt to perform the
chain in its correct order. Each motor action in the chain has the precondition of the
fish being exposed to a external sensory projection that (once categorized) matches the

planned action.

Of course, in a nondeterministic environment, provisions would need to be made

for the fish to retry actions or take other corrective measures when the action first
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attempted fails to produce the desired change in ¢ (ex,). (We may need to introduce

closed loop control.) We must also take care in determining the fish’s goals. Pre-
sumably, a goal would be the performance of an action under conditions in which the
fish’s physiological state is likely to improve. Planning comes in because that action

may not be immediately available. It may require a series of intervening actions.

But as yet the notion of precondition in the fish’s model is crude. It is based on a
learned mapping, which is just a simple state transformation. By folding categories
together into states the fish is, in fact, sacrificing representational power. If, given the
same set of active perceptual categories, the fish’s motor signals m were previously
successful in making the desired transformation, then it can try to repeat the action
here. But this sort of precondition is rather too inflexible. What if more or fewer
. perceptual categories happen to be active? The fish would have no basis for deter-
mining what effect its action would have. How does the fish learn which perceptual
categories are essential and which incidental to the performance of an action? In other
words, when I twist a doorknob, how do I know that the colour of the sky and a

myriad of other things do not determine whether the door will open?

Here we have hit upon a nexus of related problems. Clearly the fish needs to be
able to inductively generalize on its transformations. How to know that the generali-
zations are correct is a fundamental problem for inductive learning and has been much
examined in the philosophy of science. I think the short answer is that we cannot
definitively know that all our generalizations are correct. Even if it were possible to

test them in every identifiable situation, that would not prevent some unnoticed factor

~ from invalidating at least some of them in the meantime. The best we can hope for is

that the world has enough stability for oﬁr agents to get by. We neither need nor can

expect perfect models of the world.

Models are approximations, and we can only expect them to be answerable to the
data thus far encountered (Harnad, 1987). The approximate nature of models can, in
fact, be an advantage, since it is necessary to strike a balance between inadequate
models and models that are burdensomely complete (see Weld, 1991; Janlert, 1996).
In science at least we generally prefer simpler models—models that better predict the
data without overfitting it (Lakatos, 1976). Tolman (1932) observed this fact in the

domain of scientific models:
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All science necessarily presents, it seems to us, but a map and picture of
reality. If it were to present reality in its whole concreteness, science
would be not a map but a complete replica of reality. And then it would
lose its usefulness. For it would have to cover as many pages as does life
itself; it would no longer serve as a brief and a handbook. One of the first
requisites of a science is, in short, that it be a map, i.e., a short-hand for
finding one’s way about from one moment of reality to the next—that it
be a symbolic compendium by means of which to predict and control. (pp.
424-425)
Similar desiderata probably apply to cognitive models. The need to balance represen-
tational adequacy and economy arises because there is no complete solution to the

qualification problem (McCarthy, 1980): it is impossible to enumerate and test every
condition that could block the predicted effect of an action.

In the first proposed extension, the fish treats the set of categories like a single

state and learns a mapping from state to state:
f(my ¢ (e)) = c(eny

Unfortunately, there will be a large number of states, so it would take a long time for
the fish to learn all the salient state transitions. To some extent, it is possible to
estimate state transitions from similar past transitions (see appendix A on state
generalization). This technique is unlikely to work well here though, since necessary

and incidental categories are as yet neither comparable nor distinguishable. The fish
could use the model f as it stands. The model is just not very clever because it would

require of the fish more trials than we human beings would need to make good-
inferences. It is doubtful that the model’s limitations would really become apparent
in the fish’s simple environment as long as steps were taken to limit the. fish’s sensing
to a handful of very close objects. (This is easily accomplished by using a high
threshold and, in this way, exploiting the rapid drop off in concentrations that comes
with the inverse squares law.) But a representational system that functions only
because of the insensitivity of the fish’s sense organs or the simplicity of its environ-

ment will not scale up.

A’ second extension to the fish’s model would be to reduce the number of
extraneous categories included in its CSM representations. The fish’s predictions

would no longer be based on simple state transitions, mapping from the set of all
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detected categories at time ¢ to the set of all detected categories at time ¢ + 6. Instead,

it would map from one subset of detected categories—the subset necessary to enable

the transition—to another subset of detected categories—the subset necessary to

enable other transitions.

As yet perceptual categories are either active or inactive, but there is no notion of
them standing in relation to one another in some abstract way. This makes for
cognitive capacities that are rather primitive in a phylogenetic sense. As Fodor and
Pylyshyn (1988) note, intelligent behaviour depends not only on learning to detect
relations between objects but also being able to apply this knowledge in a systematic
way:

It is not, however, plausible that only the minds of verbal organisms are
systematic. Think what it would mean for this to be the case. It would
have to be quite usual to find, for example, animals capable of represent-
ing the state of affairs aRb, but incapable of representing the state of af-
fairs bRa. Such animals would be, as it were, aRb sighted but bRa blind
since, presumably, the representational capacities of its mind affect not
just what an organism can think, but also what it can perceive. In conse-
quence, such animals would be able to learn to respond selectively to aRb
situations but quite unable to learn to respond selectively to bRa situa-
tions. (pp. 40-41) '
To move towards truly symbol system-like behaviour would require a third extension:
the fish would need to be able to sensitize itself to constituent structure at the

perceptuo-cogntive level (see chapter 1).

The Frame Problem

As an agent performs actions, most aspects of the world do not change. The original
frame problem asked: How can an agent take account of this fact without recourse to
frame axioms? McCarthy and Hayes (1969) first uncovered the problem within the
situation calculus. They tried to represent nonchanges explicitly with frame axioms
but discovered that, for complex problems, the number of required frame axioms
would far outstrip the computational power of any computer. Besides the fact that

frame axioms are impractical in terms of COhlputer memory and processing time, they
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demand of the programmer something close to omniscience. The programmer must

second guess every conceivable nonchange that could occur.

Since programmers are not omniscient (and neither are their programs), bizarre
things tended to happen in programs that use frame axioms. Everything might appear
all right until the agent leaves the room. Then suddenly the room disappears (see
Harnad, 1993). The programmer forgot to explicitly represent this nonchange. The
programmer could add another frame axiom, but this kind of tinkering never seemed to
be enough. It oftén introduced new problems. Sometimes things do change and in
unexpected ways. But frame axioms cahnot cope when several things happen at once
or when the effects of actions take time to propagate. This is a problem because,
although opening a tin of beans does not cause the Prime Minister to resign, the Prime

Minister could resign while you are opening a tin of beans.

Researchers first noted the frame problem in deductive systems because that is
where it is most apparent. It was less obvious in (mainly) procedural systems (like
STRIPS) which used means-end reduction for planning instead of logic—at least until
researchers tried to expand these systems to- handle conditional actions, concurrent
actions (as in the example where the Prime 'Minister resigned), and actions with side-
effects (like a cup moving with its saucer, see Janlert, 1987, p. 20-21; Morgenstern,
1996, p. 116). However, when it became clear that simply abandoning logical
formalism would not remedy the problem of representing change, researchers
'identiﬁed the general frame problem, that is, “the problem of finding a representa-
tional form permitting a changing, complex world to be efficiently and adequately
represented” (Janlert, 1987, pp. 7-8). |

The frame problem is a representational problem, a problem of “episte-
. mology, of how to maintain an internal symbolic map of a (changing)
world, not a problem of heuristics, of how to puzzle over and engage in
the world. Even if the agent refrains from planning and interacting, sim-
ply maintaining its representations in step with the represented world,

there will generally be a frame problem. (Janlert, 1996, p. 43)
This last sentence makes clear the relation between the general frame problem and the
symbol grounding problem. The symbol.grounding problem asks how to causally

connect symbols to the things they represent; the frame problem asks how to

maintain that causal connection.
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Now if we assume that, to produce anything close to a human-level of perform-
ance, a robot must at least learn some of its symbol categories (Harnad, 1987, 1989,
1990a, 1993; Schyns et al., in press; and chapter 3), then it stands to reason that the
same mechanisms involved in category induction may also be involved in maintaining
the connection between its symbols and the things they represent. In other words, it
is likely that the maintenance of symbol-object correspondences is part of the ongoing
symbol grounding process. Unfortunately, in discussing the frame problem research-
ers often presuppose that there is either no symbol grounding problem or that the
problem has already been solved. The grounding o-f most (if not all) systems designed
to address the frame problem is not a real grounding: it is either parasitic on a human
user’s interpretation (as is the case with disembodied systems) or it relies on
hardwired connections usually based on a few a priori feature detectors (see Harnad
1990a; chapters 1 and 2).

This is why it is useful to recast the frame problem in terms of insights drawn
from the symbol grounding problem and the hermeneutic hall of mirrors (Harnad,
1990a, 1990b):

At any point, a symbol system has only dealt with a small amount of data
(relative to human-scale performance). That’s why such systems are of-
ten called “toy” systems. Toy performance, relative to human-scale per-
formance, is highly underdetermined... Yet in projecting a systematic
(usually natural-language) interpretation onto such a toy, one is at the
same time overinterpreting it (typically overinterpreting it mentalisti-
cally, in terms of what it “knows,” “thinks,” “means™). And, in my view,
a “frame” problem arises every time we run up against evidence that we
have exceeded the limits of that underdetermined toy; evidence that we

are overinterptreting it—and have been all along. (Harnad, 1993, §11)
If, to escape the frame problem, we find that a symbol system must be grounded in
the external states of affairs it represents, this would be another strong piece qf
evidence indicating that the semantic coherence of intentional states must depend at

least partly on extrinsic properties (see chapter 1).

The frame problem is associated—and sometimes confused—with other related

problems (see chapters in Ford & Pylyshyn, 1996):
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book-keeping problem | how most effectively to keep track of hypothetical
situations and plans

control problem how to choose a suitable action without considering
unrelated facts and inferences

Hamlet’s problem how to decide what to contemplate on and when to stop
thinking and start doing

holism problem how to make salient inferences without precluding the
possibility that what has been inferred may depend on
virtually any proximal condition

indexing problem how to find the most promising heuristic for a given
problem ‘

interfacing problem how to interface heuristics and representational forms
that are specialized for different domains in solving
problems that cut across those domains

persistence problem how to ignore unchanged facts

prediction problem how to formulate representations that stay applicable

qualification problem how to take adequate yet parsimonious account of
conditions that could prevent the predicted effect of an
action

ramification problem how to predict change across time including the-delayed
and indirect effects of actions (compare with the
temporal projection problem)

relevance prbblem see the control problem

relevance-holism

how to predict what is likely to pertain to a particular
goal without exploring too many possibilities

revision problem how to resolve conflicting facts and integrate unexpected
information
temporal projection how to predict change across time
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A number of computer scientists (e.g. Hayes and McDermott) have criticized
philosophers (e.g. Haugeland and Fetzer) for trying to broaden or change the defini-
tion of the frame problem. Their consensus is that the.frame problem is a problem for
the robot designer or programmer: “The problem is not an epistemic one of [fhe
robots ascertaining what changes and does not change]—it is a representational one of

how to express the information we want our robots to use” (Hayes, 1991, p. 72).

The frame problem is not about the content of the representation as

such; the “physics” of the world is the concern of the prediction problem.

The frame problem concerns the choice -of a form in which the physics

can be stably expressed, reflecting a categorization of the world that

minimizes change. The right form, the specific form that catches the

stabilities of the world, is, of course, dependent on the world, and in that

sense, the frame problem does not have one solution, but at least as many

as there are worlds.... the designer will have to look to the specific world.

_ (Janlert, 1996, p. 43)

Of course, until we have robots that can evolve their own representational forms, the
frame problem will be a problem for the designer. However, from the standpoint of
the symbol grounding problem, it may be misleading to focus a designer’s attention on
finding the right representational form for stably expressing the physics of a particular
domain. If our ambition is to build systems that could eventually approach a human
ievel of performance—or even if it is only to model intentional processes which
appear to operate under both intrinsic and extrinsic constraints—then our first
priority should be to find representational forms that allbw symbols to be empirically
and adaptively grounded from the bottom up. We should solve the symbol grounding
problem first and then worry about the frame problem if it is not solved in the

process.

If we focus on solving the frame problem for different domains, we will only later
be faced with an enormous interfacing problem when we try to simulate general
intelligence by integrating domain-specific abilities. Janlert claims that the frame
problem has as many solutions as there are worlds. Dreyfus and Dreyfus (1988)
might cite this as an example of a researcher confusing the concept of a universe with

that of world:

A set of interrelated facts may constitute a umiverse, like the physical

universe, but it does not constitute a world. The latter, like the world of




business, the world of theatre, or the world of the physics,... are not re-
lated like isolable physical systems to the larger systems they compose
but rather are local elaborations of a whole that they presuppose. Micro-
worlds are not worlds but isolated meaningless domains, and it has gradu-
ally become clear that there is no way they could be combined and ex-
tended to arrive at the world of everyday life. (Dreyfus & Dreyfus, 1988,
in Boden, 1990, pp. 324-325)

Although this prognosis is perhaps premature, Dreyfus and Dreyfus have identified a

problem with integrating different ungrounded formalisms.

Progress in specialized domains will no doubt appear to slow if, instead of
devising domain-specific symbol systems, we start to build systems that are fully
grounded in robotic capacities. However, the development of grounded systems may
ultimately provide the best means of integrating domain-specific expertise. For
example, if all expertise is rooted in categorical-sensorimotor representations, these
representations might be able to provide a common basis—and, hence, a common

interface—for the different kinds of abstract models that are developed from them.

Harnad’s (1993) proposed solution to the frame problem is to ground symbolic

capacities in robotic capacities:

An ungrounded symbol system has only one set of constraints: purely
formal, syntactic ones, operating rulefully on the arbitrary shapes of the
symbol tokens. A grounded symbol system would have a second set of
constraints, bottom-up ones, causally influencing its internal symbols and
symbol combinations, constraints from the internal, nonsymbolic ma-
chinery underlying its robotic capacities, especially categorization
(Harnad 1987, 1992; Harnad et al. 1991), which is what would allow the
system to pick out what its symbols are about without the mediation of

external interpretation. (Y8)
Since the frame problem has already been identiﬁed with unconstrained logical
formalisms, it is easy to see why bottom-up constraints might be crucial in finessing
it: As Janlert (1996) notes, “Because logic can be used to represent an extremely wide
range of circumstances, because so much is logically admissible, whlch is not empiri-
cally admissible, logic representations suffer from the frame problem” (p. 45).
Bottom-up constraints, grounded in learned (and evolved) categories and sensorimotor

predictions, could help to confine the logically admissible to the empirically admissi-
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ble. And, to link with our earlier point, they could also help to ensure that the various

abstract domain-specific models an agent develops remain compatible.

Schyns and his colleagues (in press) have censured inductive techniques that
embrace the expressive power of symbolic formalisms while disregarding the impor-
tance of perceptual and empirical bottom-up constraints (§3.2). These techniques
underconstrain the feature space because their symbolic form permits features that are
arbitrarily complex and because they are oblivious to perceptual factors that influence
the creation of features in humans (e.g. topology, proximity, contiguity, global
coherence). They have argued that learned features can more flexibly characterize
internal representations in terms of relatively raw stimulus properties—prior to any

interpretation or symbolization.

Janlert states that “at the bottom of the frame problem lies a tension between
freedom on the one hand and stability and simplicity on the other” (p. 45). He may
be right in arguing that with analogue representations—or pictures as he calls them—
you can have all three. However, if any lesson is to be learned from the symbol |
grounding problem, it is that stability and simplicity should be rooted not in pro-

grammer-imposed pictures but in bottom-up analogue constraints.

Whether the fish simulation suffers—or can suffer—from the frame problem
depends on your perspective. We might deem any system to be suffering from the
frame problem if it cannot meet certain performance criteria. This is the position
Morgenstern (1996) takes. She criticizes STRIPS, despite its clarity and efficiency,
because it uses the oft applauded strategy of letting sleeping dogs lie: She notes that
the possibility of unknown concurrent actions renders false the assumption that
things do not change unless they are explicitly declared to change (p. 116). As it
stands, the fish simulation is not able to plan about the world. But if it were success-
fully extended in the three ways propbsed in the last section, this would tie it to the
sleeping dogs strategy. Furthermore, though capable of planning, the fish would still

not be able to reason deductively.>?

52 STRIPS had been enhanced to include synchronic deduction in addition to its diachronic

planning.
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However, there is another sense in which the fish simulation, even with exten-
sions, clearly does not suffer from the frame problém. It does not need frame axioms
or anything like them to represent the fact that most aspects of its environment do
not change as it performs actions. This is the power of the sleeping dogs strategy.
Furthermore, unlike STRIPS and many other systems, its symbol categories are

inductively grounded in the objects they represent.

Summary

In chapter 6 we developed a simulation in which a fish acted in accordance with
learned categorical-sensorimotor representations. In this chapter we proposed three

ways of extending its predictive model:

(1) The fish could learn to map from (learned) external categories and mo-

tor signals to consequent external categories.

(2) It could develop a more parsimonious and useful mapping by removing
incidental categories from its representations of predicted changes in its

external categories.

(3) It could learn to represent relations between objects by means of con-

stituent structure.

If these extensions proved to be possible, then the fish’s performance would be
roughly on par with STRIPS’s diachronic planner and, additionally, the fish’s symbol

categories would be grounded in their aquatic environment.

There are many ways for our fish to represent its world, but some are clearly
better than others. The frame problem concerns finding the right form of representa-
tion. It should mirror the stabilities of the world so that a robot can efficiently
maintain a causal connection between its internal symbols and external states of
affairs. Our fish simulation is not faced with the frame problem but that has much to

do with the fact that its representations are impoverished by human standards.

Harnad (1993) has astutely pointed out that, in order to solve the frame prob-
lem—at least for robots whose performance is to approach our own—we have to
solve the symbol grounding problem first. The reasons are clear. Before finding a

form of representation that helps maintain causal connections between symbols and
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objects, we have to think about how those connections could have come to be; we
have to think about how the robot’s internal symbols could be grounded. - Symbol
grounding is likely to involve processes of category induction and sensorimotor
learning. If; as Harnad suggests, the frame problem is an instance of the symbol

grounding problem, then these same processes will be crucial to solving both.

The trouble with most approaches to the frame problem is that they are based
exclusively on.symbolic formalisms. Since many more concepts are formally
admissible than are empirically admissible, it is easy for a system with 6nly formal
constraints to get bogged down trying to sort out the absurd and implausible. Harnad
(1993) suggests that bottom-up constraints could help a grounded symbol system to

overcome the frame problem.

Thus, we should focus our efforts on finding forms of representation that allow
robots to ground their symbols empiﬁcally. Categorical and sensorimotor representa-
tions could provide a common basis on which a robot could develop more abstract
models. Perhaps this common basis could make it easier to interface between the
robot’s various specialized models when it comes time to apply them to a problem

that cuts across several domains.
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Chapter 8. Conclusion

Summary of Contributions

Every human body is unique as is every personal history. This placés each individual
in a unique ecological relation, and it is from this vantage that we develop an under-
standing of our surroundings and each other. We come to this understanding largely
through experience. A theory of representation, irrespective of its form, should be
able to take these facts into account if it is to explain how our extrinsic relation to the
world can causally influence our intensional states. My doctoral findings suggest that,
by leaming sensorimotor predictions, it may be possible to simulate intelligent

behaviour that is grounded in physiology and experience.

In considering several experiments with actual robots as well as creatures that exist
only in computer simulations, we explored ways in which agents can learn sensorimo-
tor predictions about the consequences of their behaviour on the basis of past
interactions and how they can profitably use these predictions to guide their future
activity. Preliminary results suggest that learning sensorimotor predictions can enable

robots to perform such fundamental cognitive tasks as

e learning categorical representations that capture invariant features of

objects (chapter 3)
e Jearning sensory mappings for hand-eye coordination (chapter 4)

e learning sensorimotor mappings for planning movement through clut-

tered environments (chapter 5)

e discovering salient features of their environment (chapters 6 and ap-
pendix A)

e learning how to act on the basis of sensorimotor predictions (chapters

6 and appendix A)

The dissertation has also argued that the development of predictions can en-

able robots to perform such complex cognitive tasks as
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* making plans in terms of sensorimotor categories (chapter 7).

There is sufficient evidence to conclude that an adaptive ecological alternative to the
methodological solipsism of symbol systems (see Fodor, 1980) not only exists in
principle but can be used in simulations with currently available technology. Inroads
have also been made in showing that this alternative can be used to simulate verbal

behaviour, the first and last bastion of the symbol system.
Discussion

Not Particularist Enough?

Brooks (1991a, b) and his colleagues have built robots that can perform certain tasks
not only without a priori symbolic representation but also without centralizéd
representation of any kind (e.g. a coordinate space). In fact, some of them avoid any
learning, planning, or search. The performance of these robots appears to degrade

more gracefully in the face of environmental change than that of symbolic approaches.

This is an important demonstration. Yet it is one of limited significance for our
purposes because Brooks’ approach does not permit a robot to adjust, without
human intervention, to either a radically different envifonment or a radically different
suite of sensors and actuators. With a predictive model, a high degree of adaptability
is possible. 'By contrast, Brooks’ robots perform well in a new domain only after a
long and painstaking process in which the engineer has designed, tested, and redes-
igned every layer of their architecture. For example, if Brooks wanted his robot
Herbert to collect soda cans underwater instead of in office spaces, he would not only
need to give it a very different body bﬁt also a completely reworked controller. But if
we wanted to use a closest-point method to model the dynamics of a remote-
controlled boat instead of a remote-controlled car (see chapter 5), there is nothing
fundamental about the predictive model that would need to be changed, although 'the
robot would be guiding a different vehicle with different actuators across a different
medium. Also, from the perspective of the robot engineer and user, robots that can

adapt to new tasks with minimal tinkering will be superior to those that cannot.

However, a predictive model might appear behaviouristic, especially when

compared to Brooks, because it concentrates on adaptive capacities shared by
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different species and because it characterizes the different kinds of intelligence that
these species exhibit in terms of the same theoretical construct: learned sensorimotor
predictions. In this respect it is similar to learning theory and unlike ethology, a field

which studies species and individuals in terms of their particular niches and relation-

ships.

This dissertation’s consideration of how differences develop bet\;s}een individuals
and between species may be faulted for being too narrowly focused and empirical.
We have discussed how sensorimotor predictions may be learned that take account of
an individual’s particular body, sense organs, physiological reactions, and life history.
But we have neglected to discuss how evolutionary and developmental adaptations
have shaped and differentiated (both ontogenetically and phylogenetically) the
physiological processes involved in empirical adaptation. Just as Brooks and his
colleagues have very specifically adapted robots to their environments, so too has
natural selection very specifically adapted animals to theirs. Cognitive abilities are
not species independent but reflect niche- specialization not accounted for by the

proposed predictive model.>

The aim of this dissertation is certainly not to rehabilitate learning theory. It
rejects the premise that operant conditioning shapes thinking with feedback from only
sensory stimuli and a scalar-valued reward function. Learning to ‘map’ the world is
valuable for predicting outcomes in novel situations. The dissertation’s aim is only to

draw attention to the following points:

¢ Empirical adaptation is necessary for even the most basic kinds of be-
haviour: indeed, aﬁy kind of behaviour that requires an agent to exploit

sensorimotor relations that change in unforeseeable ways.

e It is useful to characterize empirical adaptation in terms of the learning
of sensorimotor predictions—predictions that are particular to the in-
dividual.

%3 That is why intelligent behaviour cannot be mapped onto a phylogenetic ladder with
humans at the top. At certain cognitive tests pigeons can outperform humans (see
citations in McFarland & Bosser, 1993, pp. 9 and 14).
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® Their learning can be simulated computationally.

* Not only can a predictive model cope with environmental and somatic
variations, it can also serve as a foundation for modelling higher-level

cognitive processes.

The results of this dissertation support the conclusion that a predictive model is

sufficiently powerful to supplant competing solipsist models in many domains.

Admittedly, individual and species differences are even more important than the -
present predictive model suggests. Evolved species-specific specialization and
neuroanatomical development are crucial in facilitating well-adapted behaviour.
Different individuals have different brains—brains that are the product of different
developmental processes (Edelman, 1992)—and different species form qualitatively
different kinds of predictions with greater or lesser alacrity. But aspects of the
behaviour of all vertebrates are amenable to a characterization in terms of developed
predictions. Undoubtedly, there will be great variations in how predicctions manifest

themselves in the behaviour and physiology of individual organisms.

Symbolic representation, by contrast, tends not only to discount these kinds of
variations—the kind resulting from evolved neurophysiological adaptations—but also
variations resulting from differences in bodyv and experience. What I have tried to
show is that representation must at least be adapted to these latter, and that learned

sensorimotor predictions are a suitable form of representation for doing this.

Future Work

Neuroscientific Applications. Closest-point techniques were chosen to implement the
learning of sensorimotor predictions because ’they have a clearer semantics than neural
networks and learn more efficiently in the domains considered (see Omohundro, 1987,
1990a). However, predictions may prove to be more that just a convenient way of
describing and simulating behaviour. Neuroscientists may wish to ascertain whether
the brain has structures that indeed function as predictions. If it does, they may wish
to isolate them, find out how they develop, and model them computationally.

Sommerhoff and MacDorman (1994, §5) point to one possible neural implementation.
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Future research could be directed towards simulating how perseverative changes in

networks of neurones could account for the learning of predictions.

Analysing and Improving Other Models. Chapter 4 inﬁoduced a technique of
intertheoretic interpretation for analysing a theory or implementation in terms of a
high-level cognitive description. Researchers may apply this technique destructively:
to critique nonadaptive theories. They may also apply it constructively: to enhance

an implementation and, in doing so, to find a new application for the predictive model.

Multimodal Integration for Perception. Even when infofmation is available to only
one sensory modality, we are usually still.able to make out objects. Nevertheless,
evidence suggests that this ability often develops because of multimodal interactions
(see chapter 4; Kohler, 1964). A potential line of research is the construction of
robots that can learn to map between, for example, tactile contact, movement parallax,
binocular disparity, vergence, changes in apparent size, and motor signals. The robot
nﬁght begin by following the contours of an object with its hand while foveating the
point of contact. Once it has learned predictions that map from the topography of
the retina to hand positions, the object’s appearance can begin to elicit predictions
about its shape. This would enable a robot to recognize the object—and the behav-
ioural possibilities it affords—without hands on contact. Methods such as these, that
make use of multimodal feedback at various levels of abstraction, may be able to
finesse the problems of object constancy and vanishing intersections without boot-

strapping from evolved feature detectors.

Probabilistic Planning. We need to gain more insight into how an agent can cope
with uncertainty and, if possible, eliminate it. To eliminate it, it must learn to detect
signs that are correlated with unexpected outcomes. There are certain challenges that
need to be addressed in applying a closest-point approach to a nondeterministic
environment. If motor signals only occasionally produce a desired effect, it may be
worth repeating an action until the effect is achieved. It is possible to implement
probabilistic predictions that base estimates on the ratio of successes to failures
among nearby sensorimotor representations. But there may in fact be no nondeter-
minism—just a very convoluted coordinate space. In this case, the above method of
estimating probabilities would actually be wiping out critical sensory detail. Future

research might explore how best to balance these opposing demands.
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Abstract Planning. This dissertation has suggested that abstract planning is not so
abstract: it is probably rooted in learned sensorimotor predictions (see chapters 6 and
7). These predictions relate sensory projections either to consequent sensory |
projections or to (expected discounted values for) internal variables (see chapters 6
and 7 and appendix A). No attempt has yet been made to integrate these approaches
in a simulation. In traditional programs, planning is motivated toward some external
goal. The problem with these systems is that they require the programmer to specify
in advance what the goals can be. At the other extreme, reinforcement learning does
not make use of any explicit goals. The disadvantage of this approach is that it cannot
map relations between external objects or events there are only states. Being able to
map relations between objects and events can be extremely useful We should
perhaps look for an integrated approach that permits an agent to plan in terms of .

predictions that are about both its external world and its internal variables.

Action Generalization. Fixing in advance an agent’s choice of action places serious
constraints on its adaptability (see appendix A). It would be worthwhile to reimple-
ment the simulation in chapter 6 to allow the fish to use real-valued motor signals to
manipulate its mouth and fins. We might wish to pursue the model in a reinforcement
learning paradigm. In this case it must be able to reinforce negatively an action
sequence that leads to the attainment of a bad goal (e.g. searching for and eating
poisonous food) while reinforcing positively successful subsequences (e.g. ] quickly
getting‘ the food into its mouth). How to do this with discounted rewards is an open

question, since short-term and long-term goals fade into one another.
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Appendix A. Grounding State and Action in Reinforcement

Learning

Introduction

In the past decade interest in reinforcement learning has renewed. Approaches based
on symbolic representation have not lived up to expectations, and Al researchers have
become more apt to question whether the simulation ot“ formal reasoning provides
insight into even human minds. Attention has been refocused on the full embodiment
of simpler forms of behaviour. However, the intent of reexamining reinforcefnent
learning has not been to revive behaviourism. The idea that complex behaviour
develops from a tabula rasa by means of simple conditioning and reinforcement
learning has long been put to rest. (see e.g. Chomsky’s 1959 critique of Skinner,
1957).3* Rather the intent is to devise computational models that better reflect the

adaptability of complex organisms.

Although no one in Al claims that reinforcement leaming could supplant symbolic
representation outright, on the surface it at least appéars less reliant on programming.
Some researchers hope that reinforcement learning might one day complement
symbolic approaches in a hybrid system. Reinforcement learning has recently
benefited from the further development and application of a class of algorithms for
learning from delayed rewards. They allow an agent’s choice of action to be revised
not only according to immediate rewards but also rewards predicted to occur in the
future on the basis of its past histo'ry.55 Disenchantment among some with symbolic
Al has coincided with recent progress in other once maligned research fronts like

neural networks—fronts which often lay claim to being more neurologically plausible.

% Even when reinforcement learning offers the best explanation of behaviour, its

efficient application relies heavily on an evolved domain-specific reward function.

% The fact that an action is correlated with higher future rewards does not mean that
they resulted from that action. Nevertheless, it appears possible to learn intelligent

behaviour without solving this problem, sometimes called the credit assignment problem.
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Many people in Al are looking for new paradigms to rally behind—paradigms that at

least on the surface appear more biological and adaptive.

However, in appraising the adaptability of our artefacts we must confront
questions concerning what they are capable of sensing and responding to and how
they come to do this. For an agent to be truly intelligent it will need to be able to
cope with qualitatively new kinds of things, and s0 the distinctions it dfaws about the

world will need to be flexible and not entirely predetermined by its programming.

The State Grounding Problem

Regardless of whether symbolic planning or reinforcement learning is used to control
an autonomous robot, to act effectively the robot must causally connect internal
representations to external conditions. In symbolic planning, these representations
are composed of symbols that stand for objects, events, and relations. In reinforce-
ment learning, they stand for states. The state grounding problem concerns identify-
ing a robot’s state from spatiotemporal correlations in its sensorimotor projections

(viz. the input from its sensors and motor signals).

Reinforcement learning has been proven to converge to an optimal action policy
(as t = o) so long as the Markov property applies, For this to be true, the identifica-

tion of the robot’s current state must provide enough information for the learning
algorithm to determine what action has the highest expected reward. We must assume

the following in order for the property to hold:

e The robot has a state identification mechanism that is able to determine

its current state.

e The state identification mechanism has no source of input apart from

the robot’s sensors and motor signals.

Unfortunately, it is difficult to delimit precisely what state is. When applying
reinforcement learning to a simple physical system, it is often sufficient to character-
ize state by a complete, properly quantized description of that system (e.g. the
positiéns of its various parts). If we are concerned with building robots that can
operate in more natural environments, such detailéd information is not available. A

robot’s state should not be. confused with its current sensorimotor projections,
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although it may draw on current and previous projections. We can only say that, to

guarantee convergence, a state must distinguish everything necessary for the robot to

select the best action.

In practice it is generally a programmer who must, on a case by case basis, hand-
code a state identification mechanism that is appropriate to an agent’s particular
domain, and much foresight and ingenuity are required to ensure that states differenti-
ate the domain’s relevant aspects. For an autonomous robot, this ‘usually entails the
construction of a separate module for perceptual analysis whose job it is to detect

preselected features in the raw sensory data.

However, the reliability of reinforcemer-lt learning, unlike symbolic planning, does
not depend on a correspondence being maintained between external objects, events,
and relations and their internal counterparts. This is because it does not make use of
symbolic reference except insofar as each state is associated with a particular set of
external factors. Therefore, the perceptual analysis required by robot learners differs
from that required by robot planners in that, in order to identify states, it may be
unnecessary to identify the particular objects, events, and relations that constitute
those states. This may mean that, in domains where reinforcement learning is tenable,
it is possible to supplant the symbol grounding problem (Harnad, 1990a; MacDor-
man, 1997) with the perhaps less complex state grounding problem.

Nevertheless, the need to connect internal categories with external conditions
remains, and there are several good reasons why not to leave its accomplishment to

the robot designer:

(1) The designer must posit the existence of some fixed set of features that

are relevant to the robot and that can be specified in advance.

(2) It would require the designer to introspect about which features are
relevant to the robot. This is not an easy task because the designer’s
body places that individual in a substantially different sensorimotor
relation to the world from that of the robot. It is doubtful the designer
could specify even the set of features relevant to him or her. (Brooks,
1991b, and Clocksin, 1995, discuss related problems with the intro-

spective approach.)
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(3) It would require the robot to rely on environmental features specified
by the designer in advance. This places the robot at the mercy of the
designer’s ability to second-guess what features it will need to detect in
order to behave intelligently. The robot could not cope with an envi-
ronment that changed in ways not anticipated by the designer’s choice

of features.

(4) A major impetus for learning empirically is to minimize the need to
make assumptions about the nature of the environment. If the designer
must specify features in advance, to some extent, this lessens any ad-
vantage of having a robot learn to act on the basis of past rewards

rather than in accordance with an a priori model.

(5) There is a trade-off between having too few states to distinguish po-
tentially relevant environmental features an'd having too many to learn
efficiently. Although needs may change in unpredictable ways, this
trade-off must be set in advance. Deciding how many states are suffi-
cient for reinforcement learning to learn adequate responses is a black

art.

(6) It is costly to employ a programmer to set up a state identification

mechanism for each new kind of robot or environment.

(7) A model solely dependant on a priori states can offer no satisfying ex-
planation of how animals discover what environmental features are
relevant to successful behaviour. We have criticized planning with
purely a priori symbols as unbiological because natural selection could
not have anticipated the need for specific symbol categories to repre-
sent objects, 'events, and relations never experienced by an individual’s
genetic ancestors (see e.g. Maze, 1991; MacDorman, 1997; chapter
2).%% However, the same argument applies to state categories. Natural

selection is no better able to anticipate the need for state categories to

56 Rather it is likely that natural selection has resulted in the evolution of cognitive
mechanisms capable of category induction within the lifespan of the animal, see Harnad
1987 and chapter 3.
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represent environmental circumstances never experienced by an indi-
vidual’s genetic ancestors than it is symbol categories. This is clearly
because such an adaptation is unlikely to have evolved and to have
spread throughout a population until after the need for it has already

arisen.

It is clear, however, that at least many vertebrates are able to learn to recognize
new patterns of sensorimotor invariance and to exploit them. There is no need to wait
for evolutionary pressures to result in the evolution of specific adaptations. An
important area of investigation is how mechanisms could evolve that would permit an
animal to sensitize its responses to the behavioural possibilities afforded it by its
environment. It would appear that even a digger wasp—whose behaviour is largely
driven by instinct—can do this; it memorizes landmarks that help it find its ways

back to its nest.”’

The mechanisms that permit this are, of course, constrained by
biology, and even in far more adaptive creatures, neurological evidence suggests that
evolved feature detectors may be sensitive to common low-level types of invariance.
What could not be fixed by a creatures genes, however, are feature detectors to
recognize all potentially recognizable patterns of invariance. Presumably many of
these patterns must be learned, although to some extent bootstrapping from evolved

low-level detectors may minimize the need for experimentation.

57 Although the digger wasp appears able to recognize novel objects—pine cones,
coloured blocks, etc.—which implies learning of invariant features, it appears poor at
adapting its behaviour to new conditions. When it retrieves a caterpillar, it will inspect
its hole, before pulling the caterpillar down. If, however, the experimenter pulls the
caterpillar away from the opening while the .wasp is inspecting the hole, it will drag the
caterpillar back to the opening and inspect the hole again. This process may be repeated
indefinitely. This example suggests that the ability to learn to recognize relevant
invariance may be more fundamental from an evolutionary perspective than the ability
to experiment with various behaviour patterns and to learn to select in the future those

that had been more successful.
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Grounding States with Q-learning

An intelligent agent needs to be responsive to relevant kinds of environmental
invariance. Different paradigms conceptualize the distinctions an agent needs to make
in different ways. Reinforcement learning uses states, and an agent must be able to
make those distinctions that are necessary to maximize reward. What techniques are
appropriate for discovering (or better individuating) states depends on whether the
action policy is learned on the_ basis of immediate (;r delayed rewards. It also depends
on whether the method used to learn the policy requires a model of state transitions
and rewards. Since our aim is to propose a means for an agent to learn grounded
internal states that are not known in advance, it may be better for the robot to use a
learning method that does not require a state transition and reward model. This is
because this model would normally require the robot to already be able to identify the
states it was meant to discover. (However, there are methods of state generalization

that may allow the robot to circumvent this limitation.)

If the aim is to discover relevant states, there are certain advantages to having a
model to consult. It may aid in detecting a hidden state or equivalence between states.
This information is helpful in creating new grounded internal states or eliminating
redundant ones. For example, if we assume a deterministic environment, we deduce
an anomaly as soon as a state x is found to lead to two (or more) different states y and
z, given the same action. Either y and z are in fact the same state (and, hence, need to
be subsumed under the samé category) or else x indicates more than one underlying
state (and, hence, needs to be split). However, there are many trade-offs to consider
when both an action policy and a model of state transitions and rewards must be
learned. Also, since, for any given action, transitions may occur between any two
states, it is possible that the data structure for the transition probabilities would need
to be proportional to the number of possible actions times the square of the number
of states. For the sake of simplicity, we shall examine a method of leamning from

delayed rewards that does not require a state transition and reward model.

Watkins proposed a technique called Q-learning based on “incremental dynamic
programming by Monte-Carlo method” (1989, p. 81). Instead of performing
experiments on an internal model, an agent using one-step Q-learning learns an action

policy solely by trying out different actions in different states and calculating the
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expected discounted reward associated with them. Hence, the data structure only
| contains discounted rewards and is proportional to the number of states times the
number of actions. Watkins proved that Q will converge to the optimal policy Q* as
the number of trials approaches infinity (pp. 220-228). This holds in both determi-
nistic and nondeterministic environments as long as they are stable (in the sense of
state transition probabilities remaining fixed). Once learning has converged, the
optimal policy is followed simply by picking the action with the highest expected

discounted reward for the current state. The Q-learning algorithm is given below:

1. Q[Vstate, Vaction] <0 . {initialization)
2. 5, 5, '
A
3. a, < select (...) {main loop}
4. r, < reward (s,) ‘
5. te—t+1
6. s, < update (s, a,,)
7. Qls,1, a,] < (1 -0) Os,,, a,,]1 + 0 (r,; +ymax(Q, s)

(1) First initialize (usually to zero) the array Q of discounted rewards for each
possible state-action pair and (2) set the current sfate to the initial state. Then repeat
the following steps. (3) Select an action. Q-learning does not specify how to do this;
the convergence proof holds even if it is performed randomly. Sutton (1990a, 1990b)
proposed a stochastic procedure based on the Boltzmann distribution. It ensures that
the more promising an action is the more likely it is to be selected but that even
actions with a low expected discounted reward have some chance of being selected. A
temperature value controls the degree of randomness in the selection process so that
‘the higher the temperature, the more likely a less promising action is to be selected.
(4) An external process determines the reward the agent receives for being in the
current state. (5) The clock ticks. (6) Environmental feedback determines the current
state. In deterministic environments, it depends solely on the previous state and the
action the agent took. (7) The expected discounted reward of the action taken in the

previous state is modified according to the reward received in that state and the
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expected discounted reward of taking the most promising action in the current state.

0.9 is a typical value for yand o decreases gradually throughout the learning process.

Quantizing Sensory Projections

Uncovering hidden state is essential to solving the state grounding problem. Hidden
state refers to information that could help an agent behave in a more appfopriate
manner were the agent only able to use it. State may be hidden because it is not
directly obtainable from current sensory projections. This is especially a problem for

agents that learn exclusively from immediate rewards.

It may be necessary for an agent to take a particular action (or sequence of
actions) to create circumstances that will enable it to receive a reward some time in the
future. If an agent’s state is based solely on its current sensory projections and it
learns exclusively from immediate rewards, it is impossible for it to learn which action
to take no matter how many times it produces or fails to produce the necessary
action. What if each state takes into account the recent past? If the agent’s state is
based on its last » sensory projections (a kind of short-term memory), then the
number of states will grow exponentially not only with the number of bits in each
sensory projection but also with the number of projections. This impedes learning by
decreasing the likelihood of the agent being in the same state twice. Even so, an agent
that learns exclusively from immediate rewards is still only able to detect a correlation
between an action and a reward if both occur no more than r clock ticks apart.
Methods of learning from delayed rewards like Q-learning permit an agent to learn
what action to take in order to maximize its expected discounted rewards without
need for states that take account of anything more than what is available in the current

sensory projections.

Oddly enough, state may be hidden from an agent even when it is potentially
obtainable from its current sensory projections. This is because, in order to calculate

Q-values for an optimal policy, an agent must be able to try out different actions in
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the same state repeatedly.”® But if there are as many states as there are possible
sensory projections and the projections are of a reasonably high resolution, learning is
nearly impossible because seldom will the same state be entered twice. Nevertheless,
since only a portion of the information in the sensory projections will have any
bearing on choosing an appropriate action, states do not need to capture every
possible distinction in the sensory projections. They only need to capture those

relevant to maximizing expected discounted reward.

It is sometimes argued that environments where there is an inherent nondeter-

minism diminish the potential for uncovering hidden state:

How can we know if there is hidden state in a nondeterministic world?

The answer is probably that we cannot. However, if we assume that the

environments we are dealing with have certain useful properties of pre-

dictability, it may be appropriate to postulate the existence of hidden

state when it is not possible to find a low-entropy operator description

for certain salient postconditions (Kaebling, 1993, p. 156).
It is clearly impossible for an agent to improve its action policy in environments that
behave completely randomly. This is becduse there is nothing that can be learned—
rewards from past actions say nothing about the relative utility of current alterna-
tives—and because there is nothing to learn—no policy for selecting actions could be
better than any other policy. However, all interesting environments offer some degree
of predictability. I shall argue that, with only a few a priori assumptions about an
environment’s “properties of predictability,” it is possible to discover and exploit

hidden state.

What we need to determine is not how Q-learning can in principle discover hidden
state in nondeterministic environments. As long as state transition probabilities do
not change it can, given a sufficient, perhaps infinite amount of time, discover state
that is both hidden in the sense of not being directly obtainable from current senéory
projections and in the sense of being buried in a mass of sensory data. What we need

to determine is how it can do this efficiently.

°% Later, we can relax this requirement by allowing the agent to approximate Q-values
based on the Q-values of similar states—that is, those that are nearby by in a coordinate

space.
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- It may be possible to approximate the Q-values for a newly encountered state
from Q-values for previously encountered states if those states are similar enough to
the new state (e.g. close enough to it in a coordinate space). For example, for a set of
neighbouring states, each dimension of the coordinate space of sensory projections
may be weighted according to its effectiveness at predicting Q-values, and then the
influence of the states may be weighted according to their proximity to the current
state. In chapter 6 we have already discussed various methods of interpolating (e.g.
by Delaunay triangulation or using normalized Gaussians to blend quadratic or affine
maps). They may be used to approximate the current state’s Q-values from the set of
neighbouring states. Atkeson has used a proximity-weighted least-squares error
minimization to approximate Q-values (see Atkeson, 1990; Atkeson & Shaal, 1995).
Triangulation, blending, or error minimization all provide what is essentially a
continuous mapping from sensory projections to Q-values. They permit Q-values for
an infinite number of states to be approximated based on the results of a finite number

of state-action trials.”®

However, for leamning to take place, Q-values must also be updated. It is not

immediately clear how to do this with the above schemes. Past states are represented
as points in a coordinate space on R”, their number is potentially infinite®® and it is

unlikely that the same state would be visited more than once. Thus, if we do not
modify how we update Q-values, learning is impossible. We could quantize the
coordinate space, but then we would need to determine an appropriate granularity for
this, which might not be uniform. Perhaps a better alternative is the following: when
Q-values are updated, average the change into the Q-values for nearby past trials in
coordinate space, weighting the change according to the proximity of the nearby point

to the one that is being updated.

The accuracy of Q-values computed in the above manner will depend on, among

other things, how continuous the mapping is between states and Q-values (given the

*” Instead of making use of a closest-point approach, state generalization may be
achieved by other methods; for example, Tesauro, 1992, successfully used neural

networks with back propagation for state generalization in a backgammon player.

% Or at least it is astronomical with the limiting factor being the floating-point accuracy

of the representation.



145

same action) and how much the mapping will change with the passage of time. A vast
number of trials and a relatively stable environment may still be required to obtain

good performance.

Grounding Actions

It is important to note that actions also need to be grounded. This is often ignored in
the literature. Problems are chosen, with pole balancing being the archetypal example,
where there are as few as two available actions (Michie & Chamberé, 1968). How-
ever, when one realizes that, for example, a simpl/e pair of opposing hydraulics will
produce the same movement for an infinite number of pairs of forces as long as their
difference remains constant, the problem of action generalization becomes clear. The
above state generalization method may be applied to actions as well. Instead of
having an agent chose between a finite number of actions, Q-values may be stored in a |
coordinate space whose dimensions include both real-valued sensory inputs and real-
valued motor outputs. (For work on approximating real-valued motor outputs for Q-

learning see Baird & Klopf, 1993).

Q-Learning As a Model

In some respects Q-learning is not intuitively appealing. In reinforcement learning
experiments, maze-running rats are rewarded for following the path that leads to a
piece of food. However, evidence suggests that as they run the maze they also learn
geometric relations between locations; the rats may be forming a kind of mental map
(Tolman, 1932). For example, if the reward is moved, they show improved perform-
ance at following the new path. An agent using Q-learning may be able to navigate its
way to the reward after a sufficient period of trial and error, but it will not have any
internal representation of the geometrical relationships between intervening locations.
Having a representation of this kind would save it much trial and error if the experi-
Ihenter changes the rat’s initial location or the location of the reward. Agents
possessing internal models can have the benefit of having their hypotheses die in their
stead (to quote Popper, see Dennett, 1994, 1996). This is one reason why this
dissertation has pursued a path toward the development of systems that can repre-

sent objects and relations among objects.
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A variant of Q-learning may be used to model the effect of potential actions on
internal variables. The agent would use a vector of Q-values—a Q-vector—in place of
a single Q-value. Each Q-value in the vector signifies the agent’s expected discounted
reward as it relates to one or more physiological variables—P-variables, for short. For-
example, a Q-value related to ‘hunger’ satisfaction may be derived from P-variables
for blood sugar level and the state of digestive processes; a ‘stuffed” Q-value may be

derived from these and other P-variables.

The calculation of Q-values from P-variables is not straight-forward in part
because the agent needs to optimize P-variables, not maximize them. For example, an
animal should not eat if it is already bursting at the seams. Facts like these make the
relationship between P-variables and Q-values nonlinear. Hence, the calculation of the
relative urgency of ameliorating a P-variable is also nonlinear. In addition, it is

dynamically influenced by other P-variables.

Despite these complications, it is worth noting that even with the simple Q-value
strategy the agent’s physiological condition needs to be included in the notioh of
state. Otherwise, learning would be made very difficult because what appeared to be
the performance of the same action in the same state would sometimes be rewarded
(e.g. when the agent happened to be hungry) and at other times not (e.g. when the
agent happened to be full). As with Q-vectors, the simple Q-value strategy requires a
reward function that, when maximized, disallows overfeeding. So an overall reward
criteria—for example, an indicator of general health or reproductive fitness—must

likewise take into account the nonlinear way it relates to P-variables.

Q-vectors have the potential to pfovide an agent with a much richer model than
the simple Q-value strategy because they can m'ap changes in internal conditions
based of the effects actions have in particular states. However, unlike with symbolic
planners (see chapter 7), goals cannot be related to particular external objects because
those objects are nowhere represented explicitly. In the simplest scheme, the Q-
vectors may be mapped on to a single Q-value that indicates the best action for the
agent to take in a given state. If the agent is very thirsty and in the past it has been
able to reach potable liquids from its present state, the corresponding Q-value will
predominate. Thus, it can obtain maximal reward for pursuing a course of action that
is predicted to increése its intake of potable liquids. If the agent is instead very

hungry, a different Q-value will predominate, and it can obtain maximal reward by
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pursuing a course of action that is predicted to increase its intake of calories. This is

no different from the way ordinary Q-learning works.

There are a number of reasons to use Q-vectors in place of Q-values. Since an
animal cannot relive its life to test the effecftiveness of different strategies at fulfilling
the long-term goals of survival and reproduction, its behaviour must be rewarded for
achieving intermediate goals like hunger satisfaction. The motivation to strive for
these intermediate goals will, of necessity, be largely determined by natural selection.
And it is likely to be easier to evolve mechanisms to set relative priorities between
competing intermediate goals than to assign rewards directly to actions. Furthermore,
Q-vectors permit an agent to tune the relative weighting among its vector’s compo-
nent Q-values on the fly and without necessitating more learning. With the simple Q-
value strategy, if the reward function changes, Q-values must be relearned from

scratch.

Perhaps most importantly, Q-vectors are far more likely to finesse the state
grounding problem than ordinary Q-values. Any practical model demands a way of
handling state generalization for reasons stated in the last section. Q-vectors provide
a much richer source of information to draw: on in deciding how to geqqgalize from the
sensory projections. They make it far easier for an agent to determine how similar a
pair of states are because, unlike with the simple Q-value strategy, they reveal the
internal changes that result from taking actions in those states. These changes provide
a kind of signature that the agent can use to distinguish different states. A multidi-
mensional signature is much more effective at discriminating states than a single scalar
Q-value—as is the case with simple Q-learning—because it can discriminate states
according to rewards attributed to actions that cause particular effects (and not just a
change in overall health). This is one reason why, in the fish experiments of chapter

6, I opted for a multidimensional representation of internal state.

Summary

For an autonomous robot to learn what action to take in a given state by means of
reinforcements, it must be able to detect relevant variations in its environment solely
on the basis of spatiotemporal correlations in its sensorimotor projections. Thus,

those sensorimotor correlations to which it is sensitized determine its current state.
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The problem of determining how to map from a robot’s current and past sensorimotor

projections to its current state is the state grounding problem.

Its solution is generally left to the robot designer who must hand-code a state
identification mechanism for the particular robot in question. This approach is

problematic for reasons such as the following:

e The designer, whose sensorimotor relation to the world differs sub-
stantially from that of the robot, is required to determine which spatio-
temporal correlations in the robot’s sensorimotor projections would
indicate environmental variations relevant to the robot’s appropriate

choice of action.

e Since the designer must set up a state identification mechanism that
fixes in advance what kinds of correlations are detectable, the robot
cannot adapt to environments that change in ways not captured by the

correlations the mechanism detects.

A designer can often make a simple reinforcement learning domain tractable both

by specifying how sensorimotor information is to- be partitioned into states and by

 limiting a robot’s choice of possible motor signals. It is, however, unlikely that this

approach would work in complex environments. Some method of state-action
generalization is necessary to provide an empirical method of grounding both states
and actions in sensorimotor projections. As a correct action or series of actions may
be necessary for a robot to receive a reward some time in the future, it also makes
sense to adopt a method that permits learning from delayed rewards. If a robot using
reinforcement learning is to discover state for itself, Q-learning offers a method of
learning from deiayed rewards that has the advantage of not requiring a state transition -
and reward model. Normally, this model would require the robot to already be able to

identify the states we would wish it to discover.

Q-values for an infinite number of state-action pairs may be approximated frorh a
finite number of state-action trials. This may be accomplished by weighting each
dimension of a distance metric for the coordiﬁate space of state-action values
according to its effectiveness at predicting Q-values. The distance measure may then
be used to find the n-closest points to the robot’s current state. The Q-values

themselves may be approximated, for a given action, by applying proximity-weighted
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least-squares error minimization to those points, or by a number of other methods. In
order to keep the Q-values for past trials up-to-date, when Q-values for a given trial
are updated, the change is spread over nearby points as well, weighted according to
their proximity to the updated point. The accuracy of Q-values calculated in this way
will depend on the number and distribution of past state-action trials, the smoothness
and continuity of the mapping from state-action pairs to Q-values, and the stability of

the environment.

Q-vectors may be used in the same straight-forward way that Q-values are.
However, they also open the door to a number of enhancements, such as the tuning of
an agent’s priorities without relearning. Q-vectors can be used to improve state
generalization (and in a manner wholly autonomous from learning or contrbl). This is
because they reflect physiological changes that result from performing certain actions
in certain states. This'added information can be used to better individuate and weight
the various dimensjons of states and actions during generalization. In sum, Q-vectors,
state and action generalization, and learning from delayed rewards can work together

to make state grounding possible within the reinforcement learning paradigm.
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