
Should Your Specification Language Be Typed?

LESLIE LAMPORT

Compaq

and

LAWRENCE C. PAULSON

University of Cambridge

Most specification languages have a type system. Type systems are hard to get right, and getting
them wrong can lead to inconsistencies. Set theory can serve as the basis for a specification lan-
guage without types. This possibility, which has been widely overlooked, offers many advantages.
Untyped set theory is simple and is more flexible than any simple typed formalism. Polymorphism,
overloading, and subtyping can make a type system more powerful, but at the cost of increased
complexity, and such refinements can never attain the flexibility of having no types at all. Typed
formalisms have advantages too, stemming from the power of mechanical type checking. While
types serve little purpose in hand proofs, they do help with mechanized proofs. In the absence of
verification, type checking can catch errors in specifications. It may be possible to have the best
of both worlds by adding typing annotations to an untyped specification language.

We consider only specification languages, not programming languages.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.4 [Software Engineering]: Software/Program Verification—formal methods; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro-
grams—specification techniques

General Terms: Verification

Additional Key Words and Phrases: Set theory, specification, types

Editors’ introduction. We have invited the following paper for publication in
TOPLAS in order to stimulate discussion of the topic it covers, which is the question
of whether a typed specification language is preferable to an untyped one. This
issue, like many similar ones about programming languages, is a matter of taste
or experience. This does not mean that the issue is unimportant, only that the
usual TOPLAS standards of proof are not easy to satisfy. Therefore this paper
is not meant to approximate “peer-reviewed scientific truth,” but was submitted
to TOPLAS as a polemic, which Webster’s defines as “an aggressive attack on or
refutation of the opinions or principles of another.” We hope it can promote a
useful discussion.

Andrew W. Appel and Carl A. Gunter

Authors’ addresses: L. Lamport, System Research Center, Compaq, 130 Lytton Avenue, Palo Alto,
CA 94301, lamport@pa.dec.com; L. C. Paulson, University of Cambridge, Computer Laboratory,
Corn Exchange Street, Cambridge CB2 3QG, England, lcp@cl.cam.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Document Formatting, Vol. 8, No. 1, December 1999, Pages 1–25.



2 · Leslie Lamport and Lawrence C. Paulson

1. INTRODUCTION

Types have become ubiquitous in computer science. The advantages of typed pro-
gramming languages are obvious, so most computer scientists assume that they
should also be used in languages and logics for specification and verification. Some
computer scientists we have talked to even doubted that an untyped formalism
can be sound. Types do more good than harm in a programming language: they
let the compiler catch errors that would otherwise be found only after hours of
debugging. Specification and verification are different from programming; we do
not run specifications, and there is no convincing analogy between debugging and
verification.

We begin with two examples illustrating that types are not as benign as they
may seem to the unwary. We then try to help readers answer the question, should
the specification language they use be typed?

As the first example, suppose that a program contains an array A of type Nat→
Nat and two variables i and j of type Nat, where Nat is the type of natural
numbers. Consider the following question: is the postcondition A[i − j ] = A[i − j ]
true if the program terminates with i − j < 0 (so A[i − j ] is not type-correct)?
“It’s a run-time error” is not a meaningful answer, since our question is whether a
mathematical formula is true, and formulas don’t run. Indeed, the program might
be error-free; we can ask this question even if the expression A[i−j ] does not appear
in the program. In any conventional logic (including the one we outline below), the
answer is clear—the formula e = e is a tautology for any expression e. Now let us
examine some popular books that use types and see how they answer this question.
The books by Chandy and Misra [1988] and Manna and Pnueli [1991], despite their
efforts to be rigorous, do not provide an answer. Gries and Schneider [1993] were
more careful in the description of the typed logic in their book. Their explicit typing
rules tell us that A[i − j ] = A[i − j ] is not a legal expression. Unfortunately, those
same rules tell us that (i−j ≥ 0)⇒ (A[i−j ] = A[i−j ]) is also an illegal expression.
It would appear to be rather awkward to use their logic to reason about a program
containing the statement if i − j ≥ 0 then A[i − j ] : = 0. Few other books cope
any better with the interactions between types and definedness. The book by Apt
and Olderog [1990] avoids such problems by not allowing the type Nat; one has
to use the type Int of all integers. It also insists that all functions be total, even
defining division by zero to yield zero. Apt and Olderog do not allow you to declare
an array indexed by the set {0, . . . , 99}, but they do allow you to write x : = 1/0
in place of x : = 0.

As the second example, consider an algorithm for computing the greatest common
divisor (gcd) of (the initial values of) the variables m and n. The assertion that
the result is the gcd of m and n will be expressed by some formula F (m,n). In
an untyped formalism such as untyped temporal logic or an untyped version of
Dijkstra’s wp calculus, correctness of the algorithm for all integers is expressed by
the formula (m,n ∈ Z) ⇒ F (m,n), where Z is the set of integers. In a typed
formalism, it is expressed by the validity of F (m,n) when m and n are of type Int,
an assertion we write m,n : Int ` F (m,n). We would expect that an algorithm for
computing the gcd of two integers also computes the gcd of two natural numbers.
In an untyped formalism, this is the case because (m,n ∈ Z) ⇒ F (m,n) implies
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 3

(m,n ∈ N) ⇒ F (m,n), since the set N of natural numbers is a subset of Z.
However, in many typed formalisms, m,n : Int ` F (m,n) does not necessarily
imply m,n : Nat ` F (m,n). For example, in a typed formulation of the wp
calculus, wp(n : = n − 1,true) equals true if n has type Int and equals n > 0 if
n has type Nat [Gries 1981].1 Thus, n : Int ` wp(n : = n − 1,true) is valid, but
n : Nat ` wp(n : = n − 1,true) is not. We believe, that in formal versions of the
logics of Chandy and Misra and of Manna and Pnueli, m,n : Int ` F (m,n) will
not imply m,n : Nat ` F (m,n) for arbitrary F .

Many type systems have been proposed that handle the first example. We will
describe the most popular and point out their costs. The problem posed by the
second example seems to have gone unnoticed. Our raising of it has elicited the
response that changing the type of a variable in a program changes the program,
so there is nothing surprising about the example. But the example is about the
specification of an abstract algorithm, not about programs. We expect any infor-
mal description of Euclid’s algorithm that works for integers to work for natural
numbers. It seems reasonable to expect the same of a formal description, but types
force us to abandon common sense and think like a programmer.

An untyped formalism based on axiomatic set theory, the standard way of formal-
izing everyday mathematics, can provide a simple, powerful foundation for writing
formal specifications. For readers not familiar with set theory, Section 2 describes
such a formalism and explains how it avoids the potential inconsistencies of naive
set theory. Readers already familiar with set theory may find this section perfectly
obvious.

Some computer scientists are so used to thinking in terms of types that they
find untyped set theory completely unnatural. To them, types express a natural
classification of objects—a classification that should be enforced by the syntax.
They feel that we should not be allowed to write a nonsensical formula like 2 ∩N.
Some believe that integers and real numbers are completely distinct types, and it
should make no sense to assert that the integer 2 equals the real number 2 [Huet
1997].

There is nothing inherently natural or unnatural about types or sets. There
are mathematicians and computer scientists who find untyped set theory to be
completely natural. To them, not being allowed to write 2 ∩ N is a confusion
of syntax with semantics—like trying to redefine the grammar of English so that
“Rocks are carnivores” is not a well-formed sentence. They are happy with the
standard mathematical construction of the real numbers, in which the integers are
identified with (declared to be) a subset of the reals. They find types to be an
unnecessary and unnatural complication.

We eschew philosophical arguments about what is natural. We believe, that as
Dana Scott once said, “Logic is an experimental science.” For us, a formalism is a
tool, not an end in itself. We are concerned here with working formalisms, those
intended as a foundation for the varied and often quite large specifications that

1We are using Gries’ semantic definition of wp from Chapter 7 [Gries 1981, page 108]. His rule for
computing wp of an assignment statement in Definition 9.1.1 could be interpreted to mean that
wp(n := n − 1,true) equals either n > 0 or true, when n has type Nat. The ambiguity arises
because Gries gives no typing rules.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



4 · Leslie Lamport and Lawrence C. Paulson

arise in industrial practice, where even a simplified, high-level formal specification
of a system can be more than 50 pages. The choice of a working formalism should
be based on pragmatism, not philosophy. Types should be used if and only if they
help more than they hinder. We explain how they help and how they hinder, so
readers can make a more informed choice of whether to use them. We also discuss
the possibility of getting the best of both worlds by overlaying type systems atop
a basic untyped formalism.

Section 3 describes the general classes of type systems and how they are used. It
is followed by a discussion of the pros and cons of typed and typeless formalisms.
From this discussion, we draw the following conclusions:

—If a specification language is to be general, it must be expressive. No simple
type system is as expressive as untyped set theory. While a simple type system
can allow many specifications to be written easily, it will make some impossible
to write and others more complicated than they would be in set theory. The
constructive type theories described in Section 3.6 may be expressive enough for
writing just about any specification, but they are extremely complicated.

—Any error caught by type checking will be found easily when reasoning about a
specification. However, large specifications are seldom verified, and type checking
can catch errors in them that would otherwise go undetected. Moreover, mechan-
ical theorem proving with a typed formalism may require less human intervention
than with untyped set theory.

—Types serve little purpose in practice unless enforced by mechanical type check-
ing.

These conclusions suggest the possibility of using untyped set theory, either by itself
or in combination with a type system that poses additional well-formedness condi-
tions on formulas. Different type systems could be used for different specifications,
or even for different parts of the same specification. We believe that this approach
merits further study.

While types can be helpful for tools that must deal with real applications, they
serve little purpose in the kind of textbooks we have discussed, which rely ex-
clusively on hand proofs. In such books, types either unnecessarily restrict the
range of applications, or else add complications that are masked only by informal
presentations that sweep them under the rug.

2. TYPES ARE NOT NECESSARY

Although specification languages may employ esoteric formalisms like temporal
logic or process algebra, those formalisms are generally based on a more mundane
assertion language. The formalism’s type system, or lack thereof, comes from this
underlying language. We now sketch an untyped language, based on ZF set theory,
for specifying data structures and operations on them.2 It is similar to the language
mechanized by one of us using Isabelle [Paulson 1993; 1995].

2We prefer Zermelo-Fraenkel (ZF) set theory. However, for the purposes of this article, other
axiom systems such as Bernays-Gödel (BG) would serve just as well. Implementors of theorem
provers might prefer BG to ZF because BG has no axiom schemes.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 5

2.1 Logic

Our language is based on first-order predicate logic with equality. We also use
Hilbert’s ε operator [Leisenring 1969], which we call choose. The expression
choose x .P(x ) denotes an arbitrary value x that satisfies P(x ), if one exists;
otherwise it denotes a completely arbitrary value. The choose operator satisfies
the following axiom schemas (⇒ is implication, and ≡ is the boolean operator if
and only if ).

(∃ x .P(x )) ⇒ P(choose x .P(x ))
(∀ x .P(x ) ≡ Q(x )) ⇒ (choose x .P(x )) = (choose x .Q(x ))

(1)

Although choose is seldom mentioned in logic texts, mathematicians implicitly use
similar operators all the time. Assuming x 6= 0, a mathematician might define 1/x
to be the unique number such that x · (1/x ) = 1. This can be expressed formally
as

1/x ∆= choose y . (y ∈ R) ∧ (x · y = 1)

where R is the set of real numbers. To write a specification, we define new operators
in terms of the primitive ones provided by the formalism. We take the simple view
that definitions are purely syntactic. For example, writing F (x ) ∆= ∃ y .G(x , y)
makes F (e) an abbreviation for ∃ y .G(e, y), for any expression e. An operator can
be defined only in terms of primitive operators and operators that have already
been defined. (Recursion is discussed below.) Thus, by replacing defined symbols
with their definitions, any expression can be reduced to one containing only the
primitive operators. A definition cannot introduce unsoundness, so we never have
to prove a theorem in order to make a definition. Of course, we have to prove that
the operators we define have the properties we want. For example, we define the
if/then/else construct by

if p then e1 else e2
∆= choose x . (p ∧ (x = e1)) ∨ (¬p ∧ (x = e2)) .

From this definition and the axiom schemas (1), we can prove

(if true then e1 else e2) = e1

Since choose is permitted in function definitions, the first axiom of (1) yields a
strong form of the axiom of choice. One can use a more restricted choose operator
with weaker axioms, but the unrestricted form is more convenient. There seems to
be no practical reason to avoid the axiom of choice in a formalism for specifying
and verifying computer systems.

2.2 Set Theory

Figure 1 describes a collection of operators from set theory that we have found
valuable in writing specifications. Some of these operators are defined in terms of
the others; the rest are primitive. We will not discuss the axioms of set theory.
When writing and reasoning about specifications, it makes no difference which of
these operators are taken to be primitive. We need only understand their meanings
and know that two sets are equal if and only if they have the same elements.

Naive informal reasoning about sets can be unsound. It leads to many para-
doxes [Whitehead and Russell 1962, pp. 60–65], the most famous being Russell’s

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



6 · Leslie Lamport and Lawrence C. Paulson

= 6= ∈ /∈ ∅ ∪ ∩ ⊆ \ [set difference]

{e1, . . . , en} [Set consisting of elements e i ]

{x ∈ S : P(x)} [Set of elements x in S satisfying P(x )]

{e(x) : x ∈ S} [Set of elements e(x ) such that x in S ]

P(S) [Set of subsets of S ]⋃
S [Union of all elements of S ]

〈e1, . . . , en 〉 [The n-tuple whose i th component is e i ]

S1 × . . .× Sn [The set of all n-tuples with i th component in S i ]

Fig. 1. The operators of set theory.

f [e] [Function application]

dom f [Domain of the function f ]

S → T [Set of functions with domain S and range a subset of T ]

[x ∈ S 7→ e(x)] [Function f such that f [x ] = e(x ) for x ∈ S ]

Fig. 2. Operators for expressing functions.

paradox of the set R of all sets that are not elements of themselves. This set sat-
isfies R ∈ R if and only if it satisfies R /∈ R. In axiomatic set theory (such as
ZF), paradoxes are avoided by preventing the creation of sets that are too big. The
Russell set R might be written as the comprehension {x : x 6∈ x}, but ZF allows
only comprehension over some previously constructed set S , as shown in Figure 1.3

2.3 Functions

A function is usually defined to be a set of ordered pairs. Formally, one can define
the operator Apply by

Apply(f , x ) ∆= choose y . 〈x , y 〉 ∈ f

and let f (x ) be an abbreviation for Apply(f , x ). But, it doesn’t matter how func-
tions are defined. We prefer simply to regard the four operators of Figure 2 as
primitive, where we write f [x ] instead of the customary f (x ) to distinguish func-
tion application from operator application.4 A function f has a domain, which
is the set written dom f . The set S → T consists of all functions f such that
dom f = S and f [x ] ∈ T for all x ∈ S . The notation [x ∈ S 7→ e(x )] is used to
describe a function explicitly. (We reserve the more familiar λ-notation for other
purposes.) For example, [r ∈ R\{0} 7→ 1/r ] is the reciprocal function recip, whose
domain is the set R\{0} of nonzero reals. We can define this function by

recip[r : R\{0}] ∆= 1/r .

In general, f [x : S ] ∆= e(x ) defines f to equal [x ∈ S 7→ e(x )]. We describe recursive
function definitions in Section 2.5.

3S is considered to lie outside the scope of the bound variable x in the expression {x ∈ S : P(x)},
so {x ∈ {x} : x /∈ x} equals {y ∈ {x} : y /∈ y}.
4We could use f (x) for both; simple syntactic rules can determine which is meant.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 7

2.4 Functions versus Operators

Functions are different from operators. A function f has a domain, and we define
the value of f [x ] only for elements x in its domain. The expression recip[0], which
is an abbreviation for Apply(recip, 0), is syntactically a term, so it denotes a value.
However, we don’t know what value. It need not equal 1/0. It need not even be
a number. But, whatever its value, it must equal recip[2 − 2], since 2 − 2 equals
0. Functions are just like other values; for example, recip by itself is syntactically
a term. We can quantify over sets of functions, writing expressions such as ∀f ∈
(R→ R) . |f |∞ ≥ 0.

Operators are different from functions. (Set theorists call them class functions.)
Consider the operator

⋃
, where

⋃
S is the union of all elements of S . We cannot

define a function union so that union[S ] equals
⋃

S for all sets S . The domain of
union would have to be a set that contains all sets, and there is no such set. (If
there were, we would encounter Russell’s paradox.) The symbol

⋃
by itself is not

a term, so it does not denote a value.
Higher-order operators, which take operators as arguments, pose no problem.

For example, we can define the operator increasing so that increasing(F ) asserts
that the operator F is increasing under the partial order ⊆.

increasing(F ) ∆= ∀A .A ⊆ F (A)

However, we do not allow quantification over operators, which would lead to a
higher-order logic. The string ∃U .R ∈ U (R) is not syntactically well-formed,
since we can write R ∈ U (R) only if U is an operator, and bound variables are
terms, not operators. We could combine ZF with higher-order logic, but there is
little reason to adopt such a complicated formalism. Because we can quantify over
functions, we have not found quantification over operators to be necessary.

The distinction between operators and functions exists in ordinary mathematics.
Mathematicians don’t think of

⋃
or ∈ as functions. However, the distinction tends

to go unnoticed—perhaps because ordinary mathematicians have no generic name
for what we call operators.

2.5 Recursion

We allow recursive function definitions of the form

f [x : S ] ∆= e(x , f ) . (2)

For example, we can define the factorial function fact on natural numbers by

fact [n : N] ∆= if n = 0 then 1 else n · fact [n−1] . (3)

There are several ways to define (2); perhaps the simplest is to let it be an abbre-
viation for

f ∆= choose g . g = [x ∈ S 7→ e(x , g)] .

One can also introduce constructs for defining sets recursively, as well as for defining
least and greatest fixed points [Paulson 1994a]. They can all be translated to simple
set-theoretic definitions. However, operators, unlike functions, cannot in general be
defined recursively.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



8 · Leslie Lamport and Lawrence C. Paulson

Of course, one can write silly recursive definitions—for example, replacing n − 1
by n + 1 in (3). To prove anything about a recursively defined function, we must
prove that the recursion is well-founded. The well-foundedness of many recursive
definitions is obvious enough to be verified automatically. For some definitions, the
proof of well-foundedness may be difficult; the question may even be undecidable.
Well-founded or not, a recursive function definition does define some value (though
not necessarily a function). A definition can never introduce inconsistency.

2.6 What is 1/0?

Elementary school children and programmers are taught that 1/0 is meaningless,
and they are committing an error by even writing it. In set theory, one can give a
simple answer to the question of what 1/0 is: we don’t know and we don’t care.

Let us take 1/0 to be an abbreviation for recip[0], where recip is the reciprocal
function defined in Section 2.3. Since 0 is not in the domain of recip, we know
nothing about the value of 1/0; it might equal

√
2, it might equal R, or it might

equal anything else. We don’t care what it equals. For example, consider

(x ∈ R) ∧ (x 6= 0) ⇒ (x · (1/x ) = 1) . (4)

This formula holds for all values of x . Substituting 0 for x yields the formula
false ⇒ (0 · (1/0) = 1), which equals true regardless of the value of 1/0, and
regardless of whether or not 0 · (1/0) equals 1. The subformula x · (1/x ) = 1 of (4)
may or may not hold; we don’t know what 0 · (1/0) or R · (1/R) equals, so we don’t
know whether or not they equal 1.

One drawback of the don’t-care approach is that theorems such as 1/0 = 1/0
can be proved about undefined quantities. This is avoided by more sophisticated
approaches. We can introduce a formal notion of definedness and provide axioms
for proving that terms are defined [Farmer 1990]. Domain theory goes even further,
adding a more-defined-than relation between functions [Gunter and Scott 1990]. In
our experience [Paulson 1985], the benefits of these approaches do not justify their
complexity. Abstract Incorporated’s LAMBDA system moved from a definedness
logic [Scott 1979] to conventional higher-order logic for similar reasons.

2.7 Examples

The data structures and related operations found in programming and specification
languages are easily represented in set theory. We show how to represent three of
these structures: finite lists, records, and objects.

2.7.1 Finite Lists. We represent a finite list of length n as a function with
domain 1 . .n, the set {i ∈ N : 1 ≤ i ≤ n} of natural numbers from 1 through n. The
set List(L) of all finite lists with elements in the set L is just equal to

⋃
{(1 . .n)→

L : n ∈ N}. The length Len(s) of a finite list s is defined by

Len(s) ∆= choose n . (n ∈ N) ∧ (dom s = 1 . .n) . (5)

List and Len are operators; they cannot be functions. For them to be functions,
their domains would have to consist of all sets and all finite lists, respectively,
neither of which forms a set.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 9

2.7.2 Records. We represent a record as a function whose domain is a finite set
of strings. For example, the set of all records that consist of a ptr field that is a
natural number and a sq field that is a list of natural numbers is

{r ∈ ({“ptr”, “sq”} → N ∪ List(N)) : r [“ptr”] ∈ N ∧ r [“sq”] ∈ List(N)} .

We let r .str be an abbreviation for r [“str”], for any string str .
In set theory, one can define many useful operators on records that are not

expressible in conventional programming languages. For example, suppose T is a
“record type”—a set of records all having the same components—and r an arbitrary
record. We can define the operator Copy so that Copy(T , r) is a record t in T such
that t .c equals r .c for any component c common to both t and r . We first define
Any(T ) to equal choose t . t ∈ T and then define Copy(T , r) to equal

[c ∈ dom Any(T ) 7→ if c ∈ dom r then r [c] else Any(T )[c]] .

2.7.3 Objects. Objects and classes generalize the concept of records and record
types. One can define the class C of all objects with a cnt field and the method
add1 that, for any object o in this class, returns the object that is the same as o
except with its cnt field incremented by 1.

To represent objects in set theory, we first define some elementary sets of values,
including the set of all strings, the set of all integers, and any other desired sets of
primitive data values. We next define (by transfinite recursion) a set U of values
to be the smallest set containing all of these elementary sets such that if S and T
are elements of U , then S → T , P(S ), and all the elements of S are also elements
of U . The set O of objects is then the set of all elements in U that are records.

The class C of all objects with a cnt field is represented by the set {o ∈ O :
“cnt” ∈ dom o}, and the method add1 by the function with domain C such that
add1[o] equals the function

[ s ∈ dom o 7→ if s = “cnt” then o[“cnt”] + 1 else o[s] ]

for all o ∈ C . In general, a class is a set of objects, and a method is a function
whose domain is a class. The set M of methods is the union of all sets S → U such
that S ⊆ O . (Since classical mathematics has no notion of assignment, objects
defined in this way resemble objects in a functional programming language rather
than an imperative one.)

Some object-oriented languages allow methods to be associated with individual
objects. Methods are not elements of U , so they cannot appear as fields of an
object.5 Thus, a field o.m of an object o cannot equal add1. However, we can
define a set N of method names with N ⊆ U and a function µ in N → M such that
µ[o.m] equals add1. For example, we could let N be a set of strings, define µ such
that µ[“add1”] = add1, and let o.m equal “add1”. In principle, we could define N
to be the set of strings in some language for describing methods, and define µ to be
a “compiler” for that language. In practice, any specification will use only a small
set of distinct methods, which can be assigned arbitrary names like “add1”.

5Because the set S → S is always bigger than the set S , there is no way to construct a set of
objects so that any method can be a field of some object.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



10 · Leslie Lamport and Lawrence C. Paulson

3. TYPED FORMAL LANGUAGES

Types in programming languages are valuable but not essential. Two programming
languages can be quite similar except for the use of types—for example, C and
BCPL, or ML and Lisp. Programming languages use type checking to catch errors
at compile time and to improve run-time efficiency. Declaring A to be an array
indexed by 1 . . 4 allows the compiler to assign storage only for four array elements
and to detect A[“two”] to be an error.

Types in a typed logical formalism play an essential role. If we remove type
checking, we almost certainly make the logic inconsistent and therefore useless.
One reason for adopting a typed logic is indeed to catch errors, but type checking
cannot just be disabled when it is inconvenient.

There is usually no obvious translation between the typed and the untyped
worlds. Although basic types like Nat and Int can be identified with particu-
lar sets, more general types cannot.

One could consider ZF to be a typed formalism with the two basic types Set
and Bool, and its syntax could be formulated as typing rules. For example, ∪
would have type Set × Set → Set, and P would have type Set → Set, making
S ∪ P illegal because it doesn’t type check. But practically all expressions would
have type Set. By a typed formalism, we mean one with many basic types, such
as Nat (natural numbers) and Real (real numbers).

The most popular typed formalism is higher-order logic, also known as simple
type theory. Versions of it have been mechanized in a number of proof assistants,
including HOL [Gordon and Melham 1993], Isabelle/HOL [Paulson 1994b], and
PVS [Owre et al. 1995]. We will focus on higher-order logic, but we will also
outline alternatives to it.

3.1 Typed Set Theory

Whitehead and Russell invented types early in this century to prevent the paradoxes
of naive set theory [Whitehead and Russell 1962]. Their work contains all the
elements of modern higher-order logic. The key idea is that a set must have a
different type from its elements. If S is a set, then it has a type of the form Set(τ);
we may write x ∈ S only if x has type τ . The formula x 6∈ x , which occurs in
the definition of the Russell set R, is illegal because x cannot simultaneously have
types τ and Set(τ).

All elements of a set must have the same type. Many constructions used in un-
typed set theory violate this restriction. They mostly have the flavor of encodings.
For example, in ZF one often defines the ordered pair 〈a, b〉 to be {{a}, {a, b}}, and
the natural number n to be the set {0, . . . ,n − 1}. Higher-order logic uses different
definitions and can express much of mathematics easily. Occasionally, cumbersome
constructions are needed to get around its type constraints.

3.2 Polymorphism

As programmers know, an unduly restrictive type system can make it hard to
write perfectly reasonable expressions. Whitehead and Russell realized that a type
discipline has to be flexible. The proof of a theorem like x ∈ {x} must not depend
on the type of x . They invented (in 1910!) the concept we now call polymorphism,
which they called typical ambiguity. The premise of polymorphism is that we should
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 11

not have to think about types that are irrelevant, and that most type constraints
should be implicit. Whitehead and Russell never even bothered to invent a notation
for types [Gödel 1983].

Polymorphism uses type variables α, β, . . . as placeholders for irrelevant types.
We can prove x ∈ {x} where x has type α (so {x} has type Set(α)) and use
the instances of this theorem obtained by replacing α with any type. The length
operator Len of untyped set theory becomes a polymorphic function with type
List(α)→ Nat; we can think of Len as a collection of separate functions, one for
each type α. Polymorphic equations like Len(Reverse(L)) = Len(L) can be proved
without specifying the type of L’s elements.

A more interesting example involves the powerset operator, which has type
Set(α)→ Set(Set(α)). (Recall that the simple type system for ZF gives powerset
the type Set→ Set.) Polymorphism lets us write terms like P(P(S )) in which the
operator appears with two different types. Most proof assistants for higher-order
logic automatically type check such terms [Gordon and Melham 1993; Owre et al.
1995; Paulson 1994b].

3.3 Disjoint Sums and Data Types

Properly implemented, polymorphism lets us write specifications that hardly ever
mention types. But the types are still there, and they constrain what we may write.
In A∪B , the sets A and B must have the same type. Sometimes this restriction is
reasonable, but often it is not. If A is a set of apples and B a set of bananas, then
it is unreasonable to prohibit the set A∪B of fruit. The standard way to write this
set in higher-order logic is to define the new type Fruit to be the disjoint union of
the existing types Apple and Banana:

datatype Fruit
∆= Apple Apple | Banana Banana

In addition to declaring the type Fruit, this declaration introduces the constructor
functions Apple : Apple → Fruit and Banana : Banana → Fruit, as well as
other functions for case analysis.

The function Apple maps from apples to fruit, but we also need to map from
sets of apples to sets of fruits. For this purpose, we can use the image operator “,
defined informally by

f “S ∆= {f (x ) | x ∈ S}.
(This definition is easily formalized in higher-order logic.) If A has type
Set(Apple) and B has type Set(Banana), then Apple“A ∪ Banana“B has type
Set(Fruit).

Data type declarations can be recursive. Here is the definition of lists in terms of
two primitive functions, the empty list Nil and the constructor function Cons that
takes arguments of types α and List(α):

datatype List(α) ∆= Nil | Cons(α, List(α))

Data type declarations can be reduced to the underlying logic [Melham 1989].
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



12 · Leslie Lamport and Lawrence C. Paulson

3.4 Sets in Higher-Order logic

The simple types of higher-order logic are too restricted a notion of collection to
replace sets. To write practical specifications, we need set-theoretic operators such
as union and set comprehension. We could add appropriate set theory axioms
to typed first-order logic and then develop mathematics more or less as in ZF.
However, it is more convenient to develop typed set theory within higher-order
logic, adopting functions as a primitive concept instead of coding them as sets
of pairs. This permits quantification over predicates, which are variables of type
τ → Bool.

A practical type system for higher-order logic should provide several ways of
expressing types:

—Type variables α, β, γ, . . . for polymorphism.

—Basic types such as Nat and Real, including the type Bool of logical formulas.

—Type operators including the operator → such that σ → τ is the type of
functions from type σ to type τ .

—Data type declarations.

Type checking is decidable, using the Hindley-Milner algorithm [Milner 1978]. The
algorithm even infers the types of variables occurring in expressions. This kind
of type system is used in the functional programming languages Haskell [Hudak
et al. 1992] and ML [Paulson 1996], since one may write code that is not only
polymorphic, but almost entirely free of type declarations. It works well in logic
too.

Sets of elements of type τ are represented as predicates over type τ . We define
Set(α) to be α → Bool and make the following polymorphic definitions of set
operations: comprehension {x | P(x )} equals λx .P(x ), x ∈ S equals S (x ), and P
and

⋃
are defined by

P(S ) ∆= {T | T ⊆ S}⋃
S ∆= {x | ∃ y ∈ S . x ∈ y} .

The operator
⋃

has type Set(Set(α)) → Set(α). The other set-theoretic opera-
tors described in Section 2 have similar counterparts in higher-order logic.

In set theory, operators such as P are different from functions. In higher-order
logic they are (polymorphic) functions; there is no need to distinguish between
functions and operators.

Much of the discussion of sets in Section 2 carries over to their representation in
higher-order logic. Higher-order logic traditionally includes the operator choose.
It can adopt the same treatment of recursive functions and recursively defined sets.
As in untyped set theory, we can let 1/0 have some unspecified value. Since 1/0
has type Real, its value is a real number and thus is not completely unspecified.
In principle, this can be a problem—for example, it could allow us to prove the
correctness of an algorithm that evaluates 1/0 during its execution. In practice,
this is seldom an issue.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 13

3.5 More Sophisticated Type Theories

The simple type theory we have just described is a starting point. We now consider
some enhancements that have been added to try to create a more powerful working
formalism.

3.5.1 Subtyping. In simple type theory, a term has at most one type. We can’t
consider a value of type Nat also to be of type Int; we can only define an injection
ι : Nat→ Int that converts naturals into the corresponding integers. Addition
of natural numbers and addition of integers are different operators with different
types. (Overloading, discussed below, does allow us to use the same symbol “+”
for both of them.)

An obvious extension to simple type theory is to allow one type to be a subtype
of another. Naturals can be a subtype of integers, and text files a subtype of files.
Then, n : Nat implies n : Int, and we don’t need the injection ι. But such simple
subtyping is not enough. It does not solve the problem, posed in the introduction,
of the expression (i − j ≥ 0) ⇒ (A[i − j ] = A[i − j ]), where A is an array of type
Nat → Nat, and i and j are variables of type Nat. We tacitly assumed that
“−” is ordinary subtraction on integers, so it has type Int× Int→ Int.6 Simple
subtyping does not allow us to type check this expression. Declaring A to have
type Nat→ Nat does not imply that it has type Int→ Nat.

This problem can be solved with predicate subtyping, a strong form of subtyping
used in the proof assistant PVS. Predicate subtyping allows us to declare Nat to
be the subtype of Int such that n : Nat if and only if n : Int and n ≥ 0. The
expression (i − j ≥ 0) ⇒ (A[i − j ] = A[i − j ]) then type checks with the original
declarations of i , j , and A.

In general, predicate subtyping allows type expressions to contain arbitrary pred-
icates, so they essentially become set comprehensions. It enables us to define the
subtype Real 6=0 of nonzero real numbers and give the reciprocal function recip the
type Real 6=0 → Real. The question of what 1/0 means never arises; an expression
is not type correct if its meaning depends on the meaning of 1/0. Type checking of
any expression would include proving x 6= 0 for every occurrence of 1/x . Context
can be used, so (x 6= 0) ⇒ (x · (1/x ) = 1) is type correct. But, with predicate
subtypes, type checking is undecidable; the user must prove the type-correctness
theorems that the type checker cannot.

3.5.2 Overloading. Overloading means letting one symbol stand for many dif-
ferent functions, using types to determine which function is intended. The symbol
“+” could denote addition over types Nat, Int, and Real. Because it eliminates
the need for different versions of the operators over the numeric types, overloading
may be seen as an alternative to subtyping. However, injections among the types
are still required.

Haskell’s type classes [Wadler and Blott 1989] support overloading in a controlled

6There is no problem if one defines “−” to have type Nat × Nat → Nat; but declaring 1 − 2
to be a natural number is a way of pretending the problem doesn’t exist, not of solving it.
A system that does meaningful type checking and allows the type Nat should not only allow
(i − j ≥ 0) ⇒ (A[i − j ] = A[i − j ]), it should also disallow (i − j ≥ 0) ⇒ (A[j − i ] > 0) when A
has type Nat→ Nat.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



14 · Leslie Lamport and Lawrence C. Paulson

fashion, ensuring that symbols are shared only among suitably related types. They
treat overloading as a generalization of polymorphism. Type classes were invented
for use in functional programming and are implemented in the proof assistant Isa-
belle [Paulson 1994b].

However, overloading is probably not the best way to promote flexibility in no-
tation because it can lead to confusion. In any case, it is not a decisive reason to
prefer a typed language to an untyped one, so we will not discuss it further.

3.6 Constructive Type Theories

A number of type theories, such as the Calculus of Constructions [Coquand 1990],
have been designed as constructive alternatives to classical set theory. Constructive
reasoning—whether typed or not—is concerned with what we can know, as opposed
to what might be true “out there” [Dummett 1977]. This shift of emphasis rejects
basic laws of classical logic, even the “obvious” tautology P∨¬P . Constructive logic
accepts the truth of every integer is either even or odd, but only because we have
an effective means of determining which alternative holds for any integer. It does
not accept the statement every real number is either rational or irrational ; given a
real number, say as a convergent series, we have no effective means of determining
whether or not it is rational. Constructive logic makes distinctions that are lost in
classical logic. For instance, ∃x .P(x ) is a stronger assertion than ¬(∀x .¬P(x )),
since the former implies that we can compute the value claimed to exist.

Formally, we do not say “A is true,” but “a is a proof of A,” and write a ∈ A. A
proof of the conjunction A ∧B consists of a proof a of A and a proof b of B ; thus,
a proof of A ∧ B has the form (a, b) for a ∈ A and b ∈ B . Clearly, if we regard
A and B as sets or types, then A ∧ B is precisely the Cartesian product A × B .
Constructive type theories identify each formula with the type of its proofs.

Similarly, a proof of A ∨ B either has the form Inl(a), for a ∈ A, or Inr(b),
for b ∈ B . The disjunction is simply the disjoint sum A + B . (The Inl/Inr tag
indicates whether the attached proof verifies A or B .) A proof of A ⇒ B must
provide a proof of B given a proof of A. It is a function f such that f (x ) ∈ B
if x ∈ A. Constructive type theories represent implication by the type A → B of
functions from A to B .

Quantifiers, viewed constructively, yield dependent types. A proof of ∃x ∈
A .B(x ) consists of some element a of A paired with a proof of B(a). The cor-
responding set or type is written

∑
x ∈ A .B(x ) and consists of all pairs (a, b) such

that a ∈ A and b ∈ B(a); it generalizes the Cartesian product A × B by letting
B depend upon elements of A. A proof of ∀x ∈ A .B(x ) consists of a function f
that gives a proof f (x ) of B(x ) if x ∈ A. The collection of all such functions is
written

∏
x ∈ A .B(x ); it generalizes the function space A → B by letting B de-

pend upon elements of A. For example, if NList(n) is the type of lists of length n,
then the function f that maps each natural number n to the list [1, 2, . . . ,n] has
the dependent type

∏
n ∈ Nat .NList(n).

Constructive type theories achieve conceptional economy by identifying ∧ with ×,
∨ with +, ∃ with Σ, ∀ with Π, etc. They can use the same primitives on collections
as they do on logical propositions. Their lore is too deep for us to examine here;
look elsewhere for explanations of universes, impredicativity, intensional equality,
and other mysteries.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 15

For expressing specifications, constructive type theories are no more powerful
than the classical systems we have examined above. The Σ and Π constructions
can also be defined in both untyped set theory and in the typed set theory of
higher-order logic. Classic ZF texts define Π [Halmos 1960, p. 36], and Σ has a
simple definition. PVS’s predicate subtypes provide the effect of Σ and Π at the
level of types.

The main virtue of these type theories is precisely that they are constructive.
A constructive proof that two arbitrary numbers always have a greatest common
divisor provides an algorithm for computing it [Thompson 1991]. Researchers,
using tools such as Coq [Barras et al. 1997] and Nuprl [Constable et al. 1986], are
investigating whether this can lead to a practical method of synthesizing programs.

You can perform classical reasoning in a constructive type theory by adding
P ∨ ¬P as an axiom. The resulting system will probably be strong enough to
handle any specification problem likely to arise. However, it will be no stronger
than ZF, and it will be much more cumbersome to use. If you want classical
reasoning, use a system designed for that purpose. Since most computer scientists
do prefer classical reasoning, constructive type theories are not widely used. We
will not consider them further.

4. SETS VERSUS TYPES

Having described set theory and typed formalisms, we now compare them—first for
writing specifications, then for reasoning about them. We also cast a more critical
eye on predicate subtyping.

4.1 Specification

Our comparison of set theory and typed formalisms for writing specifications is
partitioned into four rather arbitrary categories: flexibility, convenience, pitfalls,
and abstractness.

4.1.1 Flexibility. Set theory is more flexible than typed systems. This flexibility
is evident in the ability to model objects with sets, described in Section 2.7.3. To
construct a set of all objects, we need to write sets like

⋃
{B i : i ∈ S}, the union

of all sets B i with i ∈ S . No simple typed formalism that we know of admits⋃
{B i : i ∈ S} as a type. It is a set in a typed set theory only if B i has the same

type for all i in S , which might require the use of disjoint sums.
Object-oriented type theories are being investigated [Fisher and Mitchell 1995],

and perhaps a simple, elegant one can be found. However, objects are just one ex-
ample of the diverse mathematical concepts that arise in real specifications. (In the
application that led to this example, objects were needed to represent the system,
not because we wanted to write an object-oriented specification.) We cannot expect
to find type systems ready-made for each new concept—let alone for combinations
of them. But set theory’s flexibility should enable it to take new developments in
stride. Indeed, one application of set theory is in modeling novel recursive structur-
ing principles that can be used in the design of new type theories [Paulson 1994a;
1995].

The flexibility of set theory is also useful in more mundane circumstances. The
Copy operator defined in Section 2.7.2 appears in a specification of a distributed

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



16 · Leslie Lamport and Lawrence C. Paulson

system written in part by the first author. The specification describes actions in
which a node receives a message m of one type and sends one or more messages of
different types containing many of the fields from m. Using Copy instead of listing
the fields to be copied makes the specification shorter and clearer. In a typed
system, one would need a separate Copy operator for each pair of types, which
is not feasible. Instead, one would define a single message type containing all the
fields from all messages, and would ignore irrelevant fields in specific messages.

The typed specification is easy enough to write, but having a single type for all
messages makes it essentially untyped. The set-theoretic specification is, in effect,
strongly typed: it distinguishes among the individual message types. This example
is typical of large specifications. It can be written in a typed formalism, but set
theory permits simplifications that would probably not even occur to someone who
has used only typed formalisms.

4.1.2 Convenience. One argument against typed formalisms is the inconve-
nience of having to attach type constraints to all variables. This is at most a minor
point, and it does not apply to a well-designed language based on higher-order
logic with type inference. Type inference propagates type information, rendering
most type declarations unnecessary. From the single declaration 0 : Nat and the
expression 0 ∈ A∪ {x , y}, we can infer automatically x , y : Nat and A : Set(Nat).
The standard type inference algorithm has been proved to be sound [Milner 1978]
and enjoys other strong properties; for instance, it always finds the most general
type possible. Subtyping complicates matters considerably. If Nat is a subtype
of Int, the declaration 0 : Nat does not determine the type of any variable in
0 ∈ A ∪ {x , y}. Mitchell [1991] has proposed a type inference algorithm to handle
coercions between atomic types, but subtyping clearly limits what can be inferred
automatically.

Conversely, it can be argued that types make writing specifications more conve-
nient because they make parts of the specification implicit that must be expressed
explicitly in an untyped formalism. Automatic type inference can deduce that x
is of type Nat in cases where a set-theoretic specification would need the explicit
assumption x ∈ Nat . However, the simple type system that makes type infer-
ence possible would force us to write ι(x ) − ι(y), where ι is the injection of type
Nat→ Int, in cases where the set-theoretic specification would let us simply write
x − y . Whether type inference helps more than injections hurt will depend on the
particular specification.

4.1.3 Pitfalls. By pitfalls, we mean subtle aspects of a formalism that can lead
unwary users to write specifications that don’t mean what the users think they do.
We illustrate some pitfalls using an action formalism, in which a system is specified
by an initial predicate and a next-state relation, which is a predicate relating old and
new values [Hehner 1984; Lam and Shankar 1984]. For example, a nonterminating
program in which n is initially 0 and is continually decremented by 1 is specified by
the initial predicate n = 0 and the next-state relation n ′ = n − 1. This next-state
relation is equivalent to the programming-language statement n : = n − 1, but
action formalisms allow you to write next-state relations such as n = n ′ + 1 that
have no counterpart in a conventional programming language.

One would expect the next-state relations n ′ = n − 1 and n = n ′ + 1 to be
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 17

equivalent. They are in a typed formalism, if n is declared to have a numeric type
such as Nat or Int. They are not equivalent in an untyped formalism like ZF.
For example, there could be some nonnumeric value v , different from 3, such that
4 = v + 1, so 4 = n ′ + 1 does not imply n ′ = 4 − 1. The next-state relation
for a program that continually decrements n by 1 can be written in set theory as
n ′ = n − 1 or (n = n ′ + 1) ∧ (n ′ ∈ Int), but not as n = n ′ + 1.7 The inequivalence
of n ′ = n − 1 and n = n ′ + 1 is a minor nuisance. But, it could lead unwary users
to write n = n ′ + 1 when they mean n ′ = n − 1.

This pitfall is avoided in a typed system because declaring n to have type Int
asserts the assumption that n and n ′ are integers. However, such assumptions lead
to a different pitfall. If we declare n to have type Nat, then we are assuming n ≥ 0
and n ′ ≥ 0. Hence, n ′ = n − 1 is equivalent to (n ′ = n − 1) ∧ (n > 0). Thus,
n ′ = n − 1 represents not the usual assignment statement n : = n − 1, but the
semaphore operation P(n). This means that Int ` F does not imply Nat ` F ,
if F is the formula asserting that n ′ = n − 1 is enabled. It is quite easy to forget
that the next-state relation n ′ = n − 1 is not always enabled, and this can lead to
errors. Indeed, the first author once fell into this trap and wrote incorrect proofs
for a few algorithms.

Subtlety is in the mind of the beholder. A subtle trap for the naive user is an
obvious error to the expert. An experienced user of a formalism may find it perfectly
simple and think that only other formalisms have subtle pitfalls. Set theory and
higher-order logic both have their pitfalls; there is no reason to believe that either
has fewer than the other. However, complexity usually leads to subtle problems, so
we might expect more pitfalls in a more complicated type system.

4.1.4 Abstractness. Mathematicians typically define objects by explicitly con-
structing them. For example, a standard way of defining N inductively is to let
0 be the empty set and n be the set {0, . . . ,n − 1}, for n > 0. This makes the
strange-looking formula 3 ∈ 4 a theorem.

Such definitions are often rejected in favor of more abstract ones. For example,
de Bruijn [1995, Sect. 3] writes

If we have a rational number and a set of points in the Euclidean plane, we
cannot even imagine what it means to form the intersection. The idea that
both might have been coded in ZF with a coding so crazy that the intersection
is not empty seems to be ridiculous.

In the abstract data type approach [Guttag and Horning 1978], one defines data
structures in terms of their properties, without explicitly constructing them.

The argument that abstract definitions are better than concrete ones is a philo-
sophical one. It makes no practical difference how the natural numbers are defined.
We can either define them abstractly in terms of Peano’s axioms, or define them
concretely and prove Peano’s axioms. What matters is how we reason about them.
If we use only Peano’s axioms, then we will never prove 3 ∈ 4, even if it should
happen to follow from our definition of the natural numbers.

7Defining “+” so m +n is a number if and only if m and n are both numbers does make n ′ = n−1
and n = n ′ + 1 equivalent as next-state relations for a system in which n is initially a number.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



18 · Leslie Lamport and Lawrence C. Paulson

Experience with abstract data types has shown that defining data structures ab-
stractly in terms of their properties is error-prone. It is easy to write inconsistent or
incomplete lists of properties. When there does not already exist a well-established
mathematical characterization of a data structure, one is better off defining it ex-
plicitly in terms of sets and functions.

Even though we define data types explicitly, experience with large programs
shows that it is important not to “break” an abstraction by making use of its
underlying representation. An abstraction can be enforced by some form of mod-
ularity that hides the representation from users of the abstraction. Such hiding
works for both typed and untyped specifications.

4.2 Verification

One reason for writing a specification is to allow a subsequent verification. To say
that a program (or hardware design) is correct means that it meets its specification.
Some programs are verified by hand. Others are verified using proof tools. But
most are not verified at all, even those that have been specified formally. We now
consider what these alternatives imply about the choice of a formalism.

4.2.1 Specification without Verification. Verification is difficult and time-con-
suming. For most real systems, it is prohibitively expensive. But the very act of
writing a formal specification catches errors, omissions, and ambiguities early in the
design process [Fitzgerald et al. 1995]. This is the main objective of the popular
specification languages Z and VDM. Such specifications are seldom intended for
use in proofs.

Type checking can find errors in these specifications. This is a good reason for
choosing a typed formalism. However, there may be other ways of finding errors.
We envision a system in which an untyped specification can be augmented with
typing annotations that are checked by machine. This approach is highly flexible.
The “type system” could exploit the full power of set theory, perhaps in unusual
ways. We could safely ignore “type errors”; our set theory is untyped, after all.

Analogous approaches have already been adopted for programming languages.
Soft typing [Wright and Cartwright 1997] is one attempt to combine the advantages
of untyped and typed programming languages. Modula-3 is strongly typed but
provides loopholes in order to achieve the flexibility needed for writing systems
programs [Nelson 1991].

A checker for typing annotations could combine the advantages of type checking
with the generality of set theory, but building it is a research project. Now, if one
wants the advantages of type checking, one must use a typed formalism.

4.2.2 Verification by Machine. Although not all specifications will serve as a
basis for mechanical verification, the desire for machine-checked proofs may affect
the choice of a formalism.

Type checking finds errors that, in an untyped system, must be caught when
writing a proof. It can be argued that type checking saves work by catching errors
earlier. However, type errors are generally trivial compared to the subtle errors
that the proof process is designed to catch, and they are usually caught early in the
proof. Indeed, one can argue that type checking wastes time by forcing the user to
correct type errors in formulas that are later discarded because they turn out to be
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 19

wrong or unnecessary. Neither argument carries much weight. Type checking can
save work by catching an error early, and it can create extra work by forcing one
to type check an unnecessary formula; but the amount of time saved or wasted is
almost always negligible.

A more compelling argument in favor of typed formalisms for mechanical ver-
ification is that the type checker can automatically deduce facts that have to be
asserted as lemmas with an untyped formalism. Suppose we want to prove that
(x +1)+y = y +(x +1) for real numbers x and y . In an untyped system, we would
use the proof rule

∀r , s ∈ R . r + s = s + r . (6)

To apply that rule, we must first prove x + 1 ∈ R, using the rule

∀r , s ∈ R . r + s ∈ R .

In a typed system, we would be proving (x + 1) + y = y + (x + 1) when x and y
are of type Real. The analog of (6) in a typed system is simply

r + s = s + r (7)

where “+” has type Real×Real→ Real. One can apply (7) directly to deduce
(x + 1) + y = y + (x + 1).

Logically, there is no difference between the untyped and typed proof. To apply
(7), the typed system must type check the expression (x + 1) + y , which requires
checking that x + 1 is of type Real. Hence, it has to prove the same lemma that
must be proved in the untyped proof. The two proofs are completely isomorphic,
where one writes r ∈ R in the untyped proof and r : Real in the typed proof.
An untyped prover could automatically prove theorems that correspond to type
correctness. In fact, the Nqthm theorem prover [Boyer and Moore 1988] uses type
information internally, even though the logic is untyped. Still, the untyped prover
ends up doing extra work to prove type-correctness lemmas like x + 1 ∈ R; unless
precautions are taken, it may prove the same lemmas repeatedly. In ACL2 [Kauf-
mann and Moore 1996], an untyped theorem prover for an applicative subset of
Common Lisp, the user can provide type declarations as hints to get the system to
automatically deduce the same facts that a type checker does in a typed system.

Applying the conditional rewrite rule implicit in (6) is sufficiently difficult with
current untyped systems that one often tries to avoid the problem by artificially
extending the definition of “+” so that (6) holds unconditionally:8

∀r , s . r + s = s + r (8)

For example, we can define

r + s ∆= if r , s ∈ R then . . . else nonreal (9)

where nonreal is some arbitrary value not in R. However, this approach cannot
completely avoid the need to use type information in proofs. For example, redefining
“+” and “−” in this way will not make n ′ = n − 1 and n = n ′ + 1 equivalent for
nonnumeric values of n and n ′.

8Boyer and Moore use this technique extensively to ensure that all functions are total.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



20 · Leslie Lamport and Lawrence C. Paulson

The mechanical verification systems that have so far been most successful are
probably HOL [Gordon and Melham 1993] and the Boyer-Moore prover [Boyer
and Moore 1988]. Both systems have been used for over a decade to verify many
systems. HOL uses higher-order logic, while the Boyer-Moore system is untyped,
though it is not based on set theory. PVS [Owre et al. 1995], based on predi-
cate subtyping, has recently become quite popular. Tools for ZF, such as EVES
and Isabelle/ZF [Paulson 1993], are emerging; other axiom systems for set theory,
such as Bernays-Gödel, are also suitable for automation [Quaife 1992]. It seems
impossible to draw any conclusions about the superiority of typed or untyped for-
malisms from experience with existing verification systems. The most significant
differences among them lie in such issues as the user interface, decision procedures,
extensibility, and the ability to write proof tactics—not in whether the formalism
is typed.

4.2.3 Verification by Hand. Any advantages that typed formalisms might have
for mechanized proofs do not apply to hand proofs. One might try to argue that,
even if the proof is done by hand, one could still use a type checker to catch some
errors. However, automatic type checking is possible only for simple type systems.
The errors caught by such type checking are mathematically trivial; they would be
easily caught by any reasoning rigorous enough to be called a proof. Type checking
will catch the error sooner, but our experience writing hand proofs indicates that
this would not save a significant amount of time.

When reasoning by hand, it makes little difference if the formalism is typed or
untyped. What matters is how simple the theorem is that one is trying to prove.
Because of its greater flexibility, set theory can allow a simpler statement of a
theorem than a typed formalism.

4.3 The Trouble with Predicate Subtypes

Predicate subtypes provide an appealing solution to the problem of the expression
(i − j ≥ 0)⇒ (A[i − j ] = A[i − j ]). They seem to add the advantages of sets to a
typed formalism. However, they introduce their own problems.

One problem with predicate subtypes is that they restrict how one can decompose
definitions. They permit the definition

P ∆= (i − j ≥ 0)⇒ (A[i − j ] = A[i − j ])

but not the pair of definitions

Q ∆= A[i − j ] = A[i − j ]
P ∆= (i − j ≥ 0)⇒ Q .

The definition of Q does not type check. (Note that i and j are variables declared
elsewhere, not parameters of the definition.) To write this, one would need a
separate kind of “macro” definition (perhaps akin to C’s #define directive) that
defers type checking until the definition is used. Formulas in specifications can
be very large. Reasoning about a large formula requires defining it in terms of
subformulas whose definitions are expanded only as needed. Restrictions on what
subformulas can be defined may be burdensome.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 21

initially n = 0; s = [ ]
do true → n : = n + 1; s : = s ⊕ [42]

n > 0 → n : = n − 1; s : = Tail(s) od

Fig. 3. A simple algorithm.

Another problem with predicate subtypes is illustrated by the program of Fig-
ure 3. The program uses Dijkstra’s do construct

do g1 → s1 . . . gn → sn od

which is executed by repeatedly choosing an arbitrary i such that g i is true, and
executing s i . The statement terminates when all the g i are false. Tail and ⊕
(concatenation) are the usual operations on sequences, and [ ] is the empty sequence.
The program of Figure 3 loops forever, nondeterministically adding and removing
42s from the sequence s, while keeping n equal to the length of s. We consider the
proof that the program never sets s to Tail of the empty sequence. In a formalism
based on set theory, we prove that the assertion (s ∈ List(N)) ∧ (n = Len(s)) is
an invariant of the program. What do we do in a formalism based on predicate
subtypes?

With predicate subtyping, Tail would have type Listne(α) → List(α), where
Listne(α) is the subtype of List(α) consisting of nonempty lists of elements of α. If
we let n have type Nat and s have type List(Nat), then the program of Figure 3
does not type check because Tail is applied to an expression of the wrong type
in the last clause of the do statement. The problem can be made to go away by
adding the extra test s 6= [ ] to the second guard. But verification means proving
the correctness of a given implementation, not finding an implementation whose
correctness one can prove.

In general, the type declarations of the program variables will have to encode an
invariant of the program. In the worst case—which is probably not uncommon for
algorithms that employ “partial functions” like Tail and division—the type declara-
tion will have to include a large part of the invariant needed to prove the algorithm
correct. Type checking requires performing a major part of the correctness proof
and can be quite difficult. Type declarations are likely to be an awkward way of
expressing an invariant.

With predicate subtyping, type checking is undecidable and often requires hu-
man intelligence. A well-designed verifier will handle the easy cases automatically
and generate proof obligations for the rest. Predicate subtypes can be useful for
increasing the flexibility of the type system in a theorem prover. However, the
extra flexibility comes at the price of making some specifications awkward to write.
Even with predicate subtyping, a typed formalism is significantly less flexible than
set theory. Moreover, the subtyping rules of PVS are not simple; they have caused
several bugs that violate soundness. For example, a recent PVS release note reads
in part [Owre 1998]:

Soundness bug 160 is due to subtype constraints being asserted out of
context. The subtype information in B for the expression A AND B

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



22 · Leslie Lamport and Lawrence C. Paulson

should not be asserted globally since the subtyping might depend on the
context A.

5. CONCLUSIONS

The advantages of types in programming languages are well known. Few people
are aware of the problems they can introduce in a working formalism for specifying
and reasoning about computer systems. A simple type system prohibits the simple
formula (i > 0) ⇒ (A[i ] > 0) if i has type Int and A has type Nat → Nat.
Predicate subtypes constrain how we can decompose formulas and can require quite
complicated type declarations. Set theory provides a simple, powerful alternative
that avoids these problems.

A working formalism should be designed on practical grounds. For types to be
worth using, they must offer some benefit. That benefit can lie only in the realm
of computerized tools. Without mechanical support, types have nothing to offer;
set theory’s greater flexibility makes it better suited to writing hand proofs.

The most obvious tool is a type checker. Simple type checking can catch errors in
specifications. Those errors are easy to catch with rigorous proofs. However, many
specifications are never verified; they can benefit from automatic type checking.
But typed formalisms that permit automatic type checking are less flexible than
set theory. The best way to catch errors may be to treat type declarations as
annotations that do not affect the meaning of the specification. If the type system
proved to be too inflexible, one could replace it by a different one or simply ignore
certain type errors.

Another important class of tool is a mechanical theorem prover. Mechanical
proofs in set theory tend to require more human guidance than proofs in a typed
formalism. Type checking establishes results that otherwise have to be proved as
theorems about set membership. However, untyped provers can already prove some
“type-checking” results automatically, and we can expect such implementations
to improve. Eventually, provers based on set theory may provide the benefits of
type checking together with the ability to write specifications that cannot be type
checked.

Model checkers are becoming increasingly popular, since they provide the guaran-
tees of theorem proving with little human effort. Model checking, which in principle
involves exhaustively checking all possibilities, can work only on a restricted class of
specifications. This class of specifications can be defined by adding a quite restric-
tive type system to an untyped formalism based on ZF, so the class consists of all
type-correct specifications. This approach is currently being pursued by colleagues
of the first author.

Set theory is particularly appealing as a single formalism that can be used for a
range of diverse and unforeseen applications. For each application, there may exist
a type theory that is ideal for it. But it is unlikely that any type theory can be
good for all applications. Universal formalisms do not exist in the real world; set
theory is as close to one as we are likely to get. Now, mathematical theories must
be redeveloped from scratch for each new verification system. The use of set theory
as a common foundation could make possible the sharing of results between these
different systems.

We believe that the generality of set theory can be combined with the benefit of
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 23

type-based tools by viewing a type system as just a way of imposing well-formedness
conditions on formulas. We can overlay different type systems atop untyped set
theory, choosing the one that is suited to the particular tool we want to use. This
is equivalent to defining a sublanguage of set theory to be translated into the
language of the tool. The approach was used in TLP [Engberg et al. 1992], which
translated from an untyped, ZF-based first-order language into LP [Garland and
Guttag 1989], a typed logic that (at the time) lacked quantifiers. We believe this
technique can be applied more generally and merits further research.

ACKNOWLEDGEMENTS

This work began as a diatribe against types by the first author. Mart́ın Abadi,
Robert Boyer, Luca Cardelli, Peter Hancock, Peter Ladkin, Denis Roegel, Fred
Schneider, and Andrzej Trybulec suggested improvements to early versions of that
paper. Andrew Appel, then editor-in-chief of this journal, suggested that it be
published together with a rebuttal by the second author. We felt that presenting
both sides of the issue in a single article would be more fruitful. The collaboration
allowed us to explore our initial differences and eventually to reach agreement.
The views presented here are shared by both of us. Their exposition benefited
from comments by Mart́ın Abadi, Nikolaj Bjørner, Robert Boyer, Michael Gordon,
Jim Horning, Florian Kammüller, Gary Leavens, J Moore, Fred Schneider, and
Natarajan Shankar.

REFERENCES

Apt, K. R. and Olderog, E.-R. 1990. Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science. Springer-Verlag, New York, Berlin, Heidelberg,
London, Paris, Tokyo, Hong Kong, Barcelona.

Barras, B., Boutin, S., Cornes, C., Courant, J., Fillibtre, J.-C., Giminez, E., Herbelin,
H., Huet, G., Muqoz, C., Murthy, C., Parent, C., Paulin-Mohring, C., Saobi, A., and
Werner, B. 1997. The Coq proof assistant reference manual : Version 6.1. Technical Report
RT-0203 (May), INRIA-Rocquencourt. Version 5.8.

Boyer, R. S. and Moore, J. S. 1988. A Computational Logic Handbook. Academic Press.

Chandy, K. M. and Misra, J. 1988. Parallel Program Design. Addison-Wesley, Reading, Mas-
sachusetts.

Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper,
R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P., Panagaden, P., Sasaki, J. T., and
Smith, S. F. 1986. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall.

Coquand, T. 1990. Metamathematical investigations of a calculus of constructions. In
P. Odifreddi (Ed.), Logic and Computer Science, pp. 91–122. Academic Press.

de Bruijn, N. G. 1995. On the roles of types in mathematics. In P. de Groote (Ed.), The
Curry-Howard isomorphism, pp. 27–54. Academia.

Dummett, M. 1977. Elements of Intuitionism. Oxford University Press.

Engberg, U., Grønning, P., and Lamport, L. 1992. Mechanical verification of concurrent
systems with TLA. In G. v. Bochmann and D. K. Probst (Eds.), Proceedings of the Fourth
International Conference on Computer Aided Verification, Volume 663 of Lecture Notes in
Computer Science, Berlin, pp. 44–55. Springer-Verlag. Proceedings of the Fourth International
Conference, CAV’92.

Farmer, W. M. 1990. A partial functions version of church’s simple theory of types. Journal of
Symbolic Logic 55, 3, 1269–1291.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



24 · Leslie Lamport and Lawrence C. Paulson

Fisher, K. and Mitchell, J. C. 1995. The development of type systems for object-oriented
languages. Theory and Practice of Object Systems 1, 3, 189–220.

Fitzgerald, J. S., Larsen, P. G., Brookes, T. M., and Green, M. A. 1995. Developing a
security-critical system using formal and conventional methods. In M. Hinchey and J. P.
Bowen (Eds.), Applications of Formal Methods, pp. 333–356. Prentice-Hall.

Garland, S. J. and Guttag, J. V. 1989. An overview of LP, the Larch Prover. In N. Der-
showitz (Ed.), Proceedings of the Third International Conference on Rewriting Techniques and
Applications, Volume 355 of Lecture Notes on Computer Science, pp. 137–151. Springer-Verlag.

Gödel, K. 1983. Russell’s mathematical logic. In P. Benacerraf and H. Putnam (Eds.),
Philosophy of Mathematics: Selected Readings (2nd ed.). Cambridge University Press. First
published in 1944.

Gordon, M. J. C. and Melham, T. F. 1993. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press.

Gries, D. 1981. The Science of Programming. Springer-Verlag.

Gries, D. and Schneider, F. B. 1993. A Logical Approach to Discrete Math. Springer-Verlag,
New York.

Gunter, C. A. and Scott, D. S. 1990. Semantic domains. In J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science: Volume B: Formal Models and Semantics, pp. 633–674. Elsevier.

Guttag, J. V. and Horning, J. J. 1978. The algebraic specification of abstract data types. Acta
Informatica 10, 27–52.

Halmos, P. R. 1960. Naive Set Theory. Van Nostrand.

Hehner, E. C. R. 1984. Predicative programming. Commun. ACM 27, 2 (Feb.), 134–151.

Hudak, P., Jones, S. P., and Wadler, P. 1992. Report on the programming language Haskell:
A non-strict, purely functional language. SIGPLAN Notices 27, 5 (May). Version 1.2.

Huet, G. 1997. Re: types and extremism. Email to Leslie Lamport. Internet message sent on
April 25, 1997 23:11:37 MET DST, number 199704252111.XAA19096@pauillac.inria.fr.

Kaufmann, M. and Moore, J. S. 1996. ACL2: An industrial strength version of Nqthm. In
Proceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS-96), pp.
23–34. IEEE Computer Society Press.

Lam, S. S. and Shankar, A. U. 1984. Protocol verification via projections. IEEE Transactions
on Software Engineering SE-10, 4 (July), 325–342.

Leisenring, A. C. 1969. Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach, New
York.

Manna, Z. and Pnueli, A. 1991. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York.

Melham, T. F. 1989. Automating recursive type definitions in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam (Eds.), Current Trends in Hardware Verification
and Automated Theorem Proving, pp. 341–386. Springer.

Milner, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,
348–375.

Mitchell, J. C. 1991. Type inference with simple subtypes. Journal of Functional Program-
ming 1, 3 (July), 245–285.

Nelson, G. (Ed.) 1991. Systems Programming with Modula-3. Series in Innovative Technology.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Owre, S. 1998. PVS 2.1 patches (2.417). Email to pvs@csl.sri.com. Internet message sent on Sat,
Feb 7, 1998 02:53:40 -0800, number 199802071053.CAA02273@lotus.csl.sri.com.

Owre, S., Rushby, J., Shankar, N., and von Henke, F. 1995. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software
Engineering 21, 2 (Feb.), 107–125.

Paulson, L. C. 1985. Verifying the unification algorithm in LCF. Science of Computer Program-
ming 5, 143–170.

Paulson, L. C. 1993. Set theory for verification: I. From foundations to functions. Journal of
Automated Reasoning 11, 3, 353–389.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Should Your Specification Language Be Typed? · 25

Paulson, L. C. 1994a. A fixedpoint approach to implementing (co)inductive definitions. In
A. Bundy (Ed.), 12th International Conference on Automated Deduction, LNAI 814, pp. 148–
161. Springer.

Paulson, L. C. 1994b. Isabelle: A Generic Theorem Prover. Springer. LNCS 828.

Paulson, L. C. 1995. Set theory for verification: II. Induction and recursion. Journal of Automated
Reasoning 15, 2, 167–215.

Paulson, L. C. 1996. ML for the Working Programmer (2nd ed.). Cambridge University Press.

Quaife, A. 1992. Automated deduction in von Neumann-Bernays-Gödel set theory. Journal of
Automated Reasoning 8, 1, 91–147.

Scott, D. 1979. Identity and existence in intuitionistic logic. In M. P. Fourman (Ed.), Applica-
tions of Sheaves, pp. 660–696. Springer. Lecture Notes in Mathematics 753.

Thompson, S. 1991. Type Theory and Functional Programming. Addison-Wesley.

Wadler, P. and Blott, S. 1989. How to make ad-hoc polymorphism less ad hoc. In 16th Annual
Symposium on Principles of Programming Languages, pp. 60–76. ACM Press.

Whitehead, A. N. and Russell, B. 1962. Principia Mathematica. Cambridge University Press.
Paperback edition to *56, abridged from the 2nd edition (1927).

Wright, A. K. and Cartwright, R. 1997. A practical soft type system for Scheme. ACM Trans.
on Programm. Lang. Syst. 19, 1 (Jan.), 87–152.

Received November 1995; revised April 1998; accepted February 1999.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.


